xref: /linux/fs/nfsd/nfscache.c (revision 79790b6818e96c58fe2bffee1b418c16e64e7b80)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Request reply cache. This is currently a global cache, but this may
4  * change in the future and be a per-client cache.
5  *
6  * This code is heavily inspired by the 44BSD implementation, although
7  * it does things a bit differently.
8  *
9  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
10  */
11 
12 #include <linux/sunrpc/svc_xprt.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/sunrpc/addr.h>
16 #include <linux/highmem.h>
17 #include <linux/log2.h>
18 #include <linux/hash.h>
19 #include <net/checksum.h>
20 
21 #include "nfsd.h"
22 #include "cache.h"
23 #include "trace.h"
24 
25 /*
26  * We use this value to determine the number of hash buckets from the max
27  * cache size, the idea being that when the cache is at its maximum number
28  * of entries, then this should be the average number of entries per bucket.
29  */
30 #define TARGET_BUCKET_SIZE	64
31 
32 struct nfsd_drc_bucket {
33 	struct rb_root rb_head;
34 	struct list_head lru_head;
35 	spinlock_t cache_lock;
36 };
37 
38 static struct kmem_cache	*drc_slab;
39 
40 static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
41 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
42 					    struct shrink_control *sc);
43 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
44 					   struct shrink_control *sc);
45 
46 /*
47  * Put a cap on the size of the DRC based on the amount of available
48  * low memory in the machine.
49  *
50  *  64MB:    8192
51  * 128MB:   11585
52  * 256MB:   16384
53  * 512MB:   23170
54  *   1GB:   32768
55  *   2GB:   46340
56  *   4GB:   65536
57  *   8GB:   92681
58  *  16GB:  131072
59  *
60  * ...with a hard cap of 256k entries. In the worst case, each entry will be
61  * ~1k, so the above numbers should give a rough max of the amount of memory
62  * used in k.
63  *
64  * XXX: these limits are per-container, so memory used will increase
65  * linearly with number of containers.  Maybe that's OK.
66  */
67 static unsigned int
nfsd_cache_size_limit(void)68 nfsd_cache_size_limit(void)
69 {
70 	unsigned int limit;
71 	unsigned long low_pages = totalram_pages() - totalhigh_pages();
72 
73 	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
74 	return min_t(unsigned int, limit, 256*1024);
75 }
76 
77 /*
78  * Compute the number of hash buckets we need. Divide the max cachesize by
79  * the "target" max bucket size, and round up to next power of two.
80  */
81 static unsigned int
nfsd_hashsize(unsigned int limit)82 nfsd_hashsize(unsigned int limit)
83 {
84 	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
85 }
86 
87 static struct nfsd_cacherep *
nfsd_cacherep_alloc(struct svc_rqst * rqstp,__wsum csum,struct nfsd_net * nn)88 nfsd_cacherep_alloc(struct svc_rqst *rqstp, __wsum csum,
89 		    struct nfsd_net *nn)
90 {
91 	struct nfsd_cacherep *rp;
92 
93 	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
94 	if (rp) {
95 		rp->c_state = RC_UNUSED;
96 		rp->c_type = RC_NOCACHE;
97 		RB_CLEAR_NODE(&rp->c_node);
98 		INIT_LIST_HEAD(&rp->c_lru);
99 
100 		memset(&rp->c_key, 0, sizeof(rp->c_key));
101 		rp->c_key.k_xid = rqstp->rq_xid;
102 		rp->c_key.k_proc = rqstp->rq_proc;
103 		rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp));
104 		rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp)));
105 		rp->c_key.k_prot = rqstp->rq_prot;
106 		rp->c_key.k_vers = rqstp->rq_vers;
107 		rp->c_key.k_len = rqstp->rq_arg.len;
108 		rp->c_key.k_csum = csum;
109 	}
110 	return rp;
111 }
112 
nfsd_cacherep_free(struct nfsd_cacherep * rp)113 static void nfsd_cacherep_free(struct nfsd_cacherep *rp)
114 {
115 	if (rp->c_type == RC_REPLBUFF)
116 		kfree(rp->c_replvec.iov_base);
117 	kmem_cache_free(drc_slab, rp);
118 }
119 
120 static unsigned long
nfsd_cacherep_dispose(struct list_head * dispose)121 nfsd_cacherep_dispose(struct list_head *dispose)
122 {
123 	struct nfsd_cacherep *rp;
124 	unsigned long freed = 0;
125 
126 	while (!list_empty(dispose)) {
127 		rp = list_first_entry(dispose, struct nfsd_cacherep, c_lru);
128 		list_del(&rp->c_lru);
129 		nfsd_cacherep_free(rp);
130 		freed++;
131 	}
132 	return freed;
133 }
134 
135 static void
nfsd_cacherep_unlink_locked(struct nfsd_net * nn,struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp)136 nfsd_cacherep_unlink_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b,
137 			    struct nfsd_cacherep *rp)
138 {
139 	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base)
140 		nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len);
141 	if (rp->c_state != RC_UNUSED) {
142 		rb_erase(&rp->c_node, &b->rb_head);
143 		list_del(&rp->c_lru);
144 		atomic_dec(&nn->num_drc_entries);
145 		nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp));
146 	}
147 }
148 
149 static void
nfsd_reply_cache_free_locked(struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp,struct nfsd_net * nn)150 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp,
151 				struct nfsd_net *nn)
152 {
153 	nfsd_cacherep_unlink_locked(nn, b, rp);
154 	nfsd_cacherep_free(rp);
155 }
156 
157 static void
nfsd_reply_cache_free(struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp,struct nfsd_net * nn)158 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp,
159 			struct nfsd_net *nn)
160 {
161 	spin_lock(&b->cache_lock);
162 	nfsd_cacherep_unlink_locked(nn, b, rp);
163 	spin_unlock(&b->cache_lock);
164 	nfsd_cacherep_free(rp);
165 }
166 
nfsd_drc_slab_create(void)167 int nfsd_drc_slab_create(void)
168 {
169 	drc_slab = KMEM_CACHE(nfsd_cacherep, 0);
170 	return drc_slab ? 0: -ENOMEM;
171 }
172 
nfsd_drc_slab_free(void)173 void nfsd_drc_slab_free(void)
174 {
175 	kmem_cache_destroy(drc_slab);
176 }
177 
nfsd_reply_cache_init(struct nfsd_net * nn)178 int nfsd_reply_cache_init(struct nfsd_net *nn)
179 {
180 	unsigned int hashsize;
181 	unsigned int i;
182 
183 	nn->max_drc_entries = nfsd_cache_size_limit();
184 	atomic_set(&nn->num_drc_entries, 0);
185 	hashsize = nfsd_hashsize(nn->max_drc_entries);
186 	nn->maskbits = ilog2(hashsize);
187 
188 	nn->drc_hashtbl = kvzalloc(array_size(hashsize,
189 				sizeof(*nn->drc_hashtbl)), GFP_KERNEL);
190 	if (!nn->drc_hashtbl)
191 		return -ENOMEM;
192 
193 	nn->nfsd_reply_cache_shrinker = shrinker_alloc(0, "nfsd-reply:%s",
194 						       nn->nfsd_name);
195 	if (!nn->nfsd_reply_cache_shrinker)
196 		goto out_shrinker;
197 
198 	nn->nfsd_reply_cache_shrinker->scan_objects = nfsd_reply_cache_scan;
199 	nn->nfsd_reply_cache_shrinker->count_objects = nfsd_reply_cache_count;
200 	nn->nfsd_reply_cache_shrinker->seeks = 1;
201 	nn->nfsd_reply_cache_shrinker->private_data = nn;
202 
203 	shrinker_register(nn->nfsd_reply_cache_shrinker);
204 
205 	for (i = 0; i < hashsize; i++) {
206 		INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head);
207 		spin_lock_init(&nn->drc_hashtbl[i].cache_lock);
208 	}
209 	nn->drc_hashsize = hashsize;
210 
211 	return 0;
212 out_shrinker:
213 	kvfree(nn->drc_hashtbl);
214 	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
215 	return -ENOMEM;
216 }
217 
nfsd_reply_cache_shutdown(struct nfsd_net * nn)218 void nfsd_reply_cache_shutdown(struct nfsd_net *nn)
219 {
220 	struct nfsd_cacherep *rp;
221 	unsigned int i;
222 
223 	shrinker_free(nn->nfsd_reply_cache_shrinker);
224 
225 	for (i = 0; i < nn->drc_hashsize; i++) {
226 		struct list_head *head = &nn->drc_hashtbl[i].lru_head;
227 		while (!list_empty(head)) {
228 			rp = list_first_entry(head, struct nfsd_cacherep, c_lru);
229 			nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i],
230 									rp, nn);
231 		}
232 	}
233 
234 	kvfree(nn->drc_hashtbl);
235 	nn->drc_hashtbl = NULL;
236 	nn->drc_hashsize = 0;
237 
238 }
239 
240 /*
241  * Move cache entry to end of LRU list, and queue the cleaner to run if it's
242  * not already scheduled.
243  */
244 static void
lru_put_end(struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp)245 lru_put_end(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp)
246 {
247 	rp->c_timestamp = jiffies;
248 	list_move_tail(&rp->c_lru, &b->lru_head);
249 }
250 
251 static noinline struct nfsd_drc_bucket *
nfsd_cache_bucket_find(__be32 xid,struct nfsd_net * nn)252 nfsd_cache_bucket_find(__be32 xid, struct nfsd_net *nn)
253 {
254 	unsigned int hash = hash_32((__force u32)xid, nn->maskbits);
255 
256 	return &nn->drc_hashtbl[hash];
257 }
258 
259 /*
260  * Remove and return no more than @max expired entries in bucket @b.
261  * If @max is zero, do not limit the number of removed entries.
262  */
263 static void
nfsd_prune_bucket_locked(struct nfsd_net * nn,struct nfsd_drc_bucket * b,unsigned int max,struct list_head * dispose)264 nfsd_prune_bucket_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b,
265 			 unsigned int max, struct list_head *dispose)
266 {
267 	unsigned long expiry = jiffies - RC_EXPIRE;
268 	struct nfsd_cacherep *rp, *tmp;
269 	unsigned int freed = 0;
270 
271 	lockdep_assert_held(&b->cache_lock);
272 
273 	/* The bucket LRU is ordered oldest-first. */
274 	list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
275 		/*
276 		 * Don't free entries attached to calls that are still
277 		 * in-progress, but do keep scanning the list.
278 		 */
279 		if (rp->c_state == RC_INPROG)
280 			continue;
281 
282 		if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries &&
283 		    time_before(expiry, rp->c_timestamp))
284 			break;
285 
286 		nfsd_cacherep_unlink_locked(nn, b, rp);
287 		list_add(&rp->c_lru, dispose);
288 
289 		if (max && ++freed > max)
290 			break;
291 	}
292 }
293 
294 /**
295  * nfsd_reply_cache_count - count_objects method for the DRC shrinker
296  * @shrink: our registered shrinker context
297  * @sc: garbage collection parameters
298  *
299  * Returns the total number of entries in the duplicate reply cache. To
300  * keep things simple and quick, this is not the number of expired entries
301  * in the cache (ie, the number that would be removed by a call to
302  * nfsd_reply_cache_scan).
303  */
304 static unsigned long
nfsd_reply_cache_count(struct shrinker * shrink,struct shrink_control * sc)305 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
306 {
307 	struct nfsd_net *nn = shrink->private_data;
308 
309 	return atomic_read(&nn->num_drc_entries);
310 }
311 
312 /**
313  * nfsd_reply_cache_scan - scan_objects method for the DRC shrinker
314  * @shrink: our registered shrinker context
315  * @sc: garbage collection parameters
316  *
317  * Free expired entries on each bucket's LRU list until we've released
318  * nr_to_scan freed objects. Nothing will be released if the cache
319  * has not exceeded it's max_drc_entries limit.
320  *
321  * Returns the number of entries released by this call.
322  */
323 static unsigned long
nfsd_reply_cache_scan(struct shrinker * shrink,struct shrink_control * sc)324 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
325 {
326 	struct nfsd_net *nn = shrink->private_data;
327 	unsigned long freed = 0;
328 	LIST_HEAD(dispose);
329 	unsigned int i;
330 
331 	for (i = 0; i < nn->drc_hashsize; i++) {
332 		struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i];
333 
334 		if (list_empty(&b->lru_head))
335 			continue;
336 
337 		spin_lock(&b->cache_lock);
338 		nfsd_prune_bucket_locked(nn, b, 0, &dispose);
339 		spin_unlock(&b->cache_lock);
340 
341 		freed += nfsd_cacherep_dispose(&dispose);
342 		if (freed > sc->nr_to_scan)
343 			break;
344 	}
345 	return freed;
346 }
347 
348 /**
349  * nfsd_cache_csum - Checksum incoming NFS Call arguments
350  * @buf: buffer containing a whole RPC Call message
351  * @start: starting byte of the NFS Call header
352  * @remaining: size of the NFS Call header, in bytes
353  *
354  * Compute a weak checksum of the leading bytes of an NFS procedure
355  * call header to help verify that a retransmitted Call matches an
356  * entry in the duplicate reply cache.
357  *
358  * To avoid assumptions about how the RPC message is laid out in
359  * @buf and what else it might contain (eg, a GSS MIC suffix), the
360  * caller passes us the exact location and length of the NFS Call
361  * header.
362  *
363  * Returns a 32-bit checksum value, as defined in RFC 793.
364  */
nfsd_cache_csum(struct xdr_buf * buf,unsigned int start,unsigned int remaining)365 static __wsum nfsd_cache_csum(struct xdr_buf *buf, unsigned int start,
366 			      unsigned int remaining)
367 {
368 	unsigned int base, len;
369 	struct xdr_buf subbuf;
370 	__wsum csum = 0;
371 	void *p;
372 	int idx;
373 
374 	if (remaining > RC_CSUMLEN)
375 		remaining = RC_CSUMLEN;
376 	if (xdr_buf_subsegment(buf, &subbuf, start, remaining))
377 		return csum;
378 
379 	/* rq_arg.head first */
380 	if (subbuf.head[0].iov_len) {
381 		len = min_t(unsigned int, subbuf.head[0].iov_len, remaining);
382 		csum = csum_partial(subbuf.head[0].iov_base, len, csum);
383 		remaining -= len;
384 	}
385 
386 	/* Continue into page array */
387 	idx = subbuf.page_base / PAGE_SIZE;
388 	base = subbuf.page_base & ~PAGE_MASK;
389 	while (remaining) {
390 		p = page_address(subbuf.pages[idx]) + base;
391 		len = min_t(unsigned int, PAGE_SIZE - base, remaining);
392 		csum = csum_partial(p, len, csum);
393 		remaining -= len;
394 		base = 0;
395 		++idx;
396 	}
397 	return csum;
398 }
399 
400 static int
nfsd_cache_key_cmp(const struct nfsd_cacherep * key,const struct nfsd_cacherep * rp,struct nfsd_net * nn)401 nfsd_cache_key_cmp(const struct nfsd_cacherep *key,
402 		   const struct nfsd_cacherep *rp, struct nfsd_net *nn)
403 {
404 	if (key->c_key.k_xid == rp->c_key.k_xid &&
405 	    key->c_key.k_csum != rp->c_key.k_csum) {
406 		nfsd_stats_payload_misses_inc(nn);
407 		trace_nfsd_drc_mismatch(nn, key, rp);
408 	}
409 
410 	return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key));
411 }
412 
413 /*
414  * Search the request hash for an entry that matches the given rqstp.
415  * Must be called with cache_lock held. Returns the found entry or
416  * inserts an empty key on failure.
417  */
418 static struct nfsd_cacherep *
nfsd_cache_insert(struct nfsd_drc_bucket * b,struct nfsd_cacherep * key,struct nfsd_net * nn)419 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct nfsd_cacherep *key,
420 			struct nfsd_net *nn)
421 {
422 	struct nfsd_cacherep	*rp, *ret = key;
423 	struct rb_node		**p = &b->rb_head.rb_node,
424 				*parent = NULL;
425 	unsigned int		entries = 0;
426 	int cmp;
427 
428 	while (*p != NULL) {
429 		++entries;
430 		parent = *p;
431 		rp = rb_entry(parent, struct nfsd_cacherep, c_node);
432 
433 		cmp = nfsd_cache_key_cmp(key, rp, nn);
434 		if (cmp < 0)
435 			p = &parent->rb_left;
436 		else if (cmp > 0)
437 			p = &parent->rb_right;
438 		else {
439 			ret = rp;
440 			goto out;
441 		}
442 	}
443 	rb_link_node(&key->c_node, parent, p);
444 	rb_insert_color(&key->c_node, &b->rb_head);
445 out:
446 	/* tally hash chain length stats */
447 	if (entries > nn->longest_chain) {
448 		nn->longest_chain = entries;
449 		nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries);
450 	} else if (entries == nn->longest_chain) {
451 		/* prefer to keep the smallest cachesize possible here */
452 		nn->longest_chain_cachesize = min_t(unsigned int,
453 				nn->longest_chain_cachesize,
454 				atomic_read(&nn->num_drc_entries));
455 	}
456 
457 	lru_put_end(b, ret);
458 	return ret;
459 }
460 
461 /**
462  * nfsd_cache_lookup - Find an entry in the duplicate reply cache
463  * @rqstp: Incoming Call to find
464  * @start: starting byte in @rqstp->rq_arg of the NFS Call header
465  * @len: size of the NFS Call header, in bytes
466  * @cacherep: OUT: DRC entry for this request
467  *
468  * Try to find an entry matching the current call in the cache. When none
469  * is found, we try to grab the oldest expired entry off the LRU list. If
470  * a suitable one isn't there, then drop the cache_lock and allocate a
471  * new one, then search again in case one got inserted while this thread
472  * didn't hold the lock.
473  *
474  * Return values:
475  *   %RC_DOIT: Process the request normally
476  *   %RC_REPLY: Reply from cache
477  *   %RC_DROPIT: Do not process the request further
478  */
nfsd_cache_lookup(struct svc_rqst * rqstp,unsigned int start,unsigned int len,struct nfsd_cacherep ** cacherep)479 int nfsd_cache_lookup(struct svc_rqst *rqstp, unsigned int start,
480 		      unsigned int len, struct nfsd_cacherep **cacherep)
481 {
482 	struct nfsd_net		*nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
483 	struct nfsd_cacherep	*rp, *found;
484 	__wsum			csum;
485 	struct nfsd_drc_bucket	*b;
486 	int type = rqstp->rq_cachetype;
487 	LIST_HEAD(dispose);
488 	int rtn = RC_DOIT;
489 
490 	if (type == RC_NOCACHE) {
491 		nfsd_stats_rc_nocache_inc(nn);
492 		goto out;
493 	}
494 
495 	csum = nfsd_cache_csum(&rqstp->rq_arg, start, len);
496 
497 	/*
498 	 * Since the common case is a cache miss followed by an insert,
499 	 * preallocate an entry.
500 	 */
501 	rp = nfsd_cacherep_alloc(rqstp, csum, nn);
502 	if (!rp)
503 		goto out;
504 
505 	b = nfsd_cache_bucket_find(rqstp->rq_xid, nn);
506 	spin_lock(&b->cache_lock);
507 	found = nfsd_cache_insert(b, rp, nn);
508 	if (found != rp)
509 		goto found_entry;
510 	*cacherep = rp;
511 	rp->c_state = RC_INPROG;
512 	nfsd_prune_bucket_locked(nn, b, 3, &dispose);
513 	spin_unlock(&b->cache_lock);
514 
515 	nfsd_cacherep_dispose(&dispose);
516 
517 	nfsd_stats_rc_misses_inc(nn);
518 	atomic_inc(&nn->num_drc_entries);
519 	nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp));
520 	goto out;
521 
522 found_entry:
523 	/* We found a matching entry which is either in progress or done. */
524 	nfsd_reply_cache_free_locked(NULL, rp, nn);
525 	nfsd_stats_rc_hits_inc(nn);
526 	rtn = RC_DROPIT;
527 	rp = found;
528 
529 	/* Request being processed */
530 	if (rp->c_state == RC_INPROG)
531 		goto out_trace;
532 
533 	/* From the hall of fame of impractical attacks:
534 	 * Is this a user who tries to snoop on the cache? */
535 	rtn = RC_DOIT;
536 	if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
537 		goto out_trace;
538 
539 	/* Compose RPC reply header */
540 	switch (rp->c_type) {
541 	case RC_NOCACHE:
542 		break;
543 	case RC_REPLSTAT:
544 		xdr_stream_encode_be32(&rqstp->rq_res_stream, rp->c_replstat);
545 		rtn = RC_REPLY;
546 		break;
547 	case RC_REPLBUFF:
548 		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
549 			goto out_unlock; /* should not happen */
550 		rtn = RC_REPLY;
551 		break;
552 	default:
553 		WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type);
554 	}
555 
556 out_trace:
557 	trace_nfsd_drc_found(nn, rqstp, rtn);
558 out_unlock:
559 	spin_unlock(&b->cache_lock);
560 out:
561 	return rtn;
562 }
563 
564 /**
565  * nfsd_cache_update - Update an entry in the duplicate reply cache.
566  * @rqstp: svc_rqst with a finished Reply
567  * @rp: IN: DRC entry for this request
568  * @cachetype: which cache to update
569  * @statp: pointer to Reply's NFS status code, or NULL
570  *
571  * This is called from nfsd_dispatch when the procedure has been
572  * executed and the complete reply is in rqstp->rq_res.
573  *
574  * We're copying around data here rather than swapping buffers because
575  * the toplevel loop requires max-sized buffers, which would be a waste
576  * of memory for a cache with a max reply size of 100 bytes (diropokres).
577  *
578  * If we should start to use different types of cache entries tailored
579  * specifically for attrstat and fh's, we may save even more space.
580  *
581  * Also note that a cachetype of RC_NOCACHE can legally be passed when
582  * nfsd failed to encode a reply that otherwise would have been cached.
583  * In this case, nfsd_cache_update is called with statp == NULL.
584  */
nfsd_cache_update(struct svc_rqst * rqstp,struct nfsd_cacherep * rp,int cachetype,__be32 * statp)585 void nfsd_cache_update(struct svc_rqst *rqstp, struct nfsd_cacherep *rp,
586 		       int cachetype, __be32 *statp)
587 {
588 	struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
589 	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
590 	struct nfsd_drc_bucket *b;
591 	int		len;
592 	size_t		bufsize = 0;
593 
594 	if (!rp)
595 		return;
596 
597 	b = nfsd_cache_bucket_find(rp->c_key.k_xid, nn);
598 
599 	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
600 	len >>= 2;
601 
602 	/* Don't cache excessive amounts of data and XDR failures */
603 	if (!statp || len > (256 >> 2)) {
604 		nfsd_reply_cache_free(b, rp, nn);
605 		return;
606 	}
607 
608 	switch (cachetype) {
609 	case RC_REPLSTAT:
610 		if (len != 1)
611 			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
612 		rp->c_replstat = *statp;
613 		break;
614 	case RC_REPLBUFF:
615 		cachv = &rp->c_replvec;
616 		bufsize = len << 2;
617 		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
618 		if (!cachv->iov_base) {
619 			nfsd_reply_cache_free(b, rp, nn);
620 			return;
621 		}
622 		cachv->iov_len = bufsize;
623 		memcpy(cachv->iov_base, statp, bufsize);
624 		break;
625 	case RC_NOCACHE:
626 		nfsd_reply_cache_free(b, rp, nn);
627 		return;
628 	}
629 	spin_lock(&b->cache_lock);
630 	nfsd_stats_drc_mem_usage_add(nn, bufsize);
631 	lru_put_end(b, rp);
632 	rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
633 	rp->c_type = cachetype;
634 	rp->c_state = RC_DONE;
635 	spin_unlock(&b->cache_lock);
636 	return;
637 }
638 
639 static int
nfsd_cache_append(struct svc_rqst * rqstp,struct kvec * data)640 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
641 {
642 	__be32 *p;
643 
644 	p = xdr_reserve_space(&rqstp->rq_res_stream, data->iov_len);
645 	if (unlikely(!p))
646 		return false;
647 	memcpy(p, data->iov_base, data->iov_len);
648 	xdr_commit_encode(&rqstp->rq_res_stream);
649 	return true;
650 }
651 
652 /*
653  * Note that fields may be added, removed or reordered in the future. Programs
654  * scraping this file for info should test the labels to ensure they're
655  * getting the correct field.
656  */
nfsd_reply_cache_stats_show(struct seq_file * m,void * v)657 int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
658 {
659 	struct nfsd_net *nn = net_generic(file_inode(m->file)->i_sb->s_fs_info,
660 					  nfsd_net_id);
661 
662 	seq_printf(m, "max entries:           %u\n", nn->max_drc_entries);
663 	seq_printf(m, "num entries:           %u\n",
664 		   atomic_read(&nn->num_drc_entries));
665 	seq_printf(m, "hash buckets:          %u\n", 1 << nn->maskbits);
666 	seq_printf(m, "mem usage:             %lld\n",
667 		   percpu_counter_sum_positive(&nn->counter[NFSD_STATS_DRC_MEM_USAGE]));
668 	seq_printf(m, "cache hits:            %lld\n",
669 		   percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_HITS]));
670 	seq_printf(m, "cache misses:          %lld\n",
671 		   percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_MISSES]));
672 	seq_printf(m, "not cached:            %lld\n",
673 		   percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_NOCACHE]));
674 	seq_printf(m, "payload misses:        %lld\n",
675 		   percpu_counter_sum_positive(&nn->counter[NFSD_STATS_PAYLOAD_MISSES]));
676 	seq_printf(m, "longest chain len:     %u\n", nn->longest_chain);
677 	seq_printf(m, "cachesize at longest:  %u\n", nn->longest_chain_cachesize);
678 	return 0;
679 }
680