xref: /linux/drivers/gpu/drm/panthor/panthor_mmu.c (revision 39d3389331abd712461f50249722f7ed9d815068)
1 // SPDX-License-Identifier: GPL-2.0 or MIT
2 /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */
3 /* Copyright 2023 Collabora ltd. */
4 
5 #include <drm/drm_debugfs.h>
6 #include <drm/drm_drv.h>
7 #include <drm/drm_exec.h>
8 #include <drm/drm_gpuvm.h>
9 #include <drm/drm_managed.h>
10 #include <drm/drm_print.h>
11 #include <drm/gpu_scheduler.h>
12 #include <drm/panthor_drm.h>
13 
14 #include <linux/atomic.h>
15 #include <linux/bitfield.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/iopoll.h>
21 #include <linux/io-pgtable.h>
22 #include <linux/iommu.h>
23 #include <linux/kmemleak.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/rwsem.h>
27 #include <linux/sched.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/sizes.h>
30 
31 #include "panthor_device.h"
32 #include "panthor_gem.h"
33 #include "panthor_gpu.h"
34 #include "panthor_heap.h"
35 #include "panthor_mmu.h"
36 #include "panthor_regs.h"
37 #include "panthor_sched.h"
38 
39 #define MAX_AS_SLOTS			32
40 
41 struct panthor_vm;
42 
43 /**
44  * struct panthor_as_slot - Address space slot
45  */
46 struct panthor_as_slot {
47 	/** @vm: VM bound to this slot. NULL is no VM is bound. */
48 	struct panthor_vm *vm;
49 };
50 
51 /**
52  * struct panthor_mmu - MMU related data
53  */
54 struct panthor_mmu {
55 	/** @irq: The MMU irq. */
56 	struct panthor_irq irq;
57 
58 	/**
59 	 * @as: Address space related fields.
60 	 *
61 	 * The GPU has a limited number of address spaces (AS) slots, forcing
62 	 * us to re-assign them to re-assign slots on-demand.
63 	 */
64 	struct {
65 		/** @as.slots_lock: Lock protecting access to all other AS fields. */
66 		struct mutex slots_lock;
67 
68 		/** @as.alloc_mask: Bitmask encoding the allocated slots. */
69 		unsigned long alloc_mask;
70 
71 		/** @as.faulty_mask: Bitmask encoding the faulty slots. */
72 		unsigned long faulty_mask;
73 
74 		/** @as.slots: VMs currently bound to the AS slots. */
75 		struct panthor_as_slot slots[MAX_AS_SLOTS];
76 
77 		/**
78 		 * @as.lru_list: List of least recently used VMs.
79 		 *
80 		 * We use this list to pick a VM to evict when all slots are
81 		 * used.
82 		 *
83 		 * There should be no more active VMs than there are AS slots,
84 		 * so this LRU is just here to keep VMs bound until there's
85 		 * a need to release a slot, thus avoid unnecessary TLB/cache
86 		 * flushes.
87 		 */
88 		struct list_head lru_list;
89 	} as;
90 
91 	/** @vm: VMs management fields */
92 	struct {
93 		/** @vm.lock: Lock protecting access to list. */
94 		struct mutex lock;
95 
96 		/** @vm.list: List containing all VMs. */
97 		struct list_head list;
98 
99 		/** @vm.reset_in_progress: True if a reset is in progress. */
100 		bool reset_in_progress;
101 
102 		/** @vm.wq: Workqueue used for the VM_BIND queues. */
103 		struct workqueue_struct *wq;
104 	} vm;
105 };
106 
107 /**
108  * struct panthor_vm_pool - VM pool object
109  */
110 struct panthor_vm_pool {
111 	/** @xa: Array used for VM handle tracking. */
112 	struct xarray xa;
113 };
114 
115 /**
116  * struct panthor_vma - GPU mapping object
117  *
118  * This is used to track GEM mappings in GPU space.
119  */
120 struct panthor_vma {
121 	/** @base: Inherits from drm_gpuva. */
122 	struct drm_gpuva base;
123 
124 	/** @node: Used to implement deferred release of VMAs. */
125 	struct list_head node;
126 
127 	/**
128 	 * @flags: Combination of drm_panthor_vm_bind_op_flags.
129 	 *
130 	 * Only map related flags are accepted.
131 	 */
132 	u32 flags;
133 };
134 
135 /**
136  * struct panthor_vm_op_ctx - VM operation context
137  *
138  * With VM operations potentially taking place in a dma-signaling path, we
139  * need to make sure everything that might require resource allocation is
140  * pre-allocated upfront. This is what this operation context is far.
141  *
142  * We also collect resources that have been freed, so we can release them
143  * asynchronously, and let the VM_BIND scheduler process the next VM_BIND
144  * request.
145  */
146 struct panthor_vm_op_ctx {
147 	/** @rsvd_page_tables: Pages reserved for the MMU page table update. */
148 	struct {
149 		/** @rsvd_page_tables.count: Number of pages reserved. */
150 		u32 count;
151 
152 		/** @rsvd_page_tables.ptr: Point to the first unused page in the @pages table. */
153 		u32 ptr;
154 
155 		/**
156 		 * @rsvd_page_tables.pages: Array of pages to be used for an MMU page table update.
157 		 *
158 		 * After an VM operation, there might be free pages left in this array.
159 		 * They should be returned to the pt_cache as part of the op_ctx cleanup.
160 		 */
161 		void **pages;
162 	} rsvd_page_tables;
163 
164 	/**
165 	 * @preallocated_vmas: Pre-allocated VMAs to handle the remap case.
166 	 *
167 	 * Partial unmap requests or map requests overlapping existing mappings will
168 	 * trigger a remap call, which need to register up to three panthor_vma objects
169 	 * (one for the new mapping, and two for the previous and next mappings).
170 	 */
171 	struct panthor_vma *preallocated_vmas[3];
172 
173 	/** @flags: Combination of drm_panthor_vm_bind_op_flags. */
174 	u32 flags;
175 
176 	/** @va: Virtual range targeted by the VM operation. */
177 	struct {
178 		/** @va.addr: Start address. */
179 		u64 addr;
180 
181 		/** @va.range: Range size. */
182 		u64 range;
183 	} va;
184 
185 	/** @map: Fields specific to a map operation. */
186 	struct {
187 		/** @map.vm_bo: Buffer object to map. */
188 		struct drm_gpuvm_bo *vm_bo;
189 
190 		/** @map.bo_offset: Offset in the buffer object. */
191 		u64 bo_offset;
192 
193 		/**
194 		 * @map.sgt: sg-table pointing to pages backing the GEM object.
195 		 *
196 		 * This is gathered at job creation time, such that we don't have
197 		 * to allocate in ::run_job().
198 		 */
199 		struct sg_table *sgt;
200 
201 		/**
202 		 * @map.new_vma: The new VMA object that will be inserted to the VA tree.
203 		 */
204 		struct panthor_vma *new_vma;
205 	} map;
206 };
207 
208 /**
209  * struct panthor_vm - VM object
210  *
211  * A VM is an object representing a GPU (or MCU) virtual address space.
212  * It embeds the MMU page table for this address space, a tree containing
213  * all the virtual mappings of GEM objects, and other things needed to manage
214  * the VM.
215  *
216  * Except for the MCU VM, which is managed by the kernel, all other VMs are
217  * created by userspace and mostly managed by userspace, using the
218  * %DRM_IOCTL_PANTHOR_VM_BIND ioctl.
219  *
220  * A portion of the virtual address space is reserved for kernel objects,
221  * like heap chunks, and userspace gets to decide how much of the virtual
222  * address space is left to the kernel (half of the virtual address space
223  * by default).
224  */
225 struct panthor_vm {
226 	/**
227 	 * @base: Inherit from drm_gpuvm.
228 	 *
229 	 * We delegate all the VA management to the common drm_gpuvm framework
230 	 * and only implement hooks to update the MMU page table.
231 	 */
232 	struct drm_gpuvm base;
233 
234 	/**
235 	 * @sched: Scheduler used for asynchronous VM_BIND request.
236 	 *
237 	 * We use a 1:1 scheduler here.
238 	 */
239 	struct drm_gpu_scheduler sched;
240 
241 	/**
242 	 * @entity: Scheduling entity representing the VM_BIND queue.
243 	 *
244 	 * There's currently one bind queue per VM. It doesn't make sense to
245 	 * allow more given the VM operations are serialized anyway.
246 	 */
247 	struct drm_sched_entity entity;
248 
249 	/** @ptdev: Device. */
250 	struct panthor_device *ptdev;
251 
252 	/** @memattr: Value to program to the AS_MEMATTR register. */
253 	u64 memattr;
254 
255 	/** @pgtbl_ops: Page table operations. */
256 	struct io_pgtable_ops *pgtbl_ops;
257 
258 	/** @root_page_table: Stores the root page table pointer. */
259 	void *root_page_table;
260 
261 	/**
262 	 * @op_lock: Lock used to serialize operations on a VM.
263 	 *
264 	 * The serialization of jobs queued to the VM_BIND queue is already
265 	 * taken care of by drm_sched, but we need to serialize synchronous
266 	 * and asynchronous VM_BIND request. This is what this lock is for.
267 	 */
268 	struct mutex op_lock;
269 
270 	/**
271 	 * @op_ctx: The context attached to the currently executing VM operation.
272 	 *
273 	 * NULL when no operation is in progress.
274 	 */
275 	struct panthor_vm_op_ctx *op_ctx;
276 
277 	/**
278 	 * @mm: Memory management object representing the auto-VA/kernel-VA.
279 	 *
280 	 * Used to auto-allocate VA space for kernel-managed objects (tiler
281 	 * heaps, ...).
282 	 *
283 	 * For the MCU VM, this is managing the VA range that's used to map
284 	 * all shared interfaces.
285 	 *
286 	 * For user VMs, the range is specified by userspace, and must not
287 	 * exceed half of the VA space addressable.
288 	 */
289 	struct drm_mm mm;
290 
291 	/** @mm_lock: Lock protecting the @mm field. */
292 	struct mutex mm_lock;
293 
294 	/** @kernel_auto_va: Automatic VA-range for kernel BOs. */
295 	struct {
296 		/** @kernel_auto_va.start: Start of the automatic VA-range for kernel BOs. */
297 		u64 start;
298 
299 		/** @kernel_auto_va.size: Size of the automatic VA-range for kernel BOs. */
300 		u64 end;
301 	} kernel_auto_va;
302 
303 	/** @as: Address space related fields. */
304 	struct {
305 		/**
306 		 * @as.id: ID of the address space this VM is bound to.
307 		 *
308 		 * A value of -1 means the VM is inactive/not bound.
309 		 */
310 		int id;
311 
312 		/** @as.active_cnt: Number of active users of this VM. */
313 		refcount_t active_cnt;
314 
315 		/**
316 		 * @as.lru_node: Used to instead the VM in the panthor_mmu::as::lru_list.
317 		 *
318 		 * Active VMs should not be inserted in the LRU list.
319 		 */
320 		struct list_head lru_node;
321 	} as;
322 
323 	/**
324 	 * @heaps: Tiler heap related fields.
325 	 */
326 	struct {
327 		/**
328 		 * @heaps.pool: The heap pool attached to this VM.
329 		 *
330 		 * Will stay NULL until someone creates a heap context on this VM.
331 		 */
332 		struct panthor_heap_pool *pool;
333 
334 		/** @heaps.lock: Lock used to protect access to @pool. */
335 		struct mutex lock;
336 	} heaps;
337 
338 	/** @node: Used to insert the VM in the panthor_mmu::vm::list. */
339 	struct list_head node;
340 
341 	/** @for_mcu: True if this is the MCU VM. */
342 	bool for_mcu;
343 
344 	/**
345 	 * @destroyed: True if the VM was destroyed.
346 	 *
347 	 * No further bind requests should be queued to a destroyed VM.
348 	 */
349 	bool destroyed;
350 
351 	/**
352 	 * @unusable: True if the VM has turned unusable because something
353 	 * bad happened during an asynchronous request.
354 	 *
355 	 * We don't try to recover from such failures, because this implies
356 	 * informing userspace about the specific operation that failed, and
357 	 * hoping the userspace driver can replay things from there. This all
358 	 * sounds very complicated for little gain.
359 	 *
360 	 * Instead, we should just flag the VM as unusable, and fail any
361 	 * further request targeting this VM.
362 	 *
363 	 * We also provide a way to query a VM state, so userspace can destroy
364 	 * it and create a new one.
365 	 *
366 	 * As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST
367 	 * situation, where the logical device needs to be re-created.
368 	 */
369 	bool unusable;
370 
371 	/**
372 	 * @unhandled_fault: Unhandled fault happened.
373 	 *
374 	 * This should be reported to the scheduler, and the queue/group be
375 	 * flagged as faulty as a result.
376 	 */
377 	bool unhandled_fault;
378 };
379 
380 /**
381  * struct panthor_vm_bind_job - VM bind job
382  */
383 struct panthor_vm_bind_job {
384 	/** @base: Inherit from drm_sched_job. */
385 	struct drm_sched_job base;
386 
387 	/** @refcount: Reference count. */
388 	struct kref refcount;
389 
390 	/** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */
391 	struct work_struct cleanup_op_ctx_work;
392 
393 	/** @vm: VM targeted by the VM operation. */
394 	struct panthor_vm *vm;
395 
396 	/** @ctx: Operation context. */
397 	struct panthor_vm_op_ctx ctx;
398 };
399 
400 /*
401  * @pt_cache: Cache used to allocate MMU page tables.
402  *
403  * The pre-allocation pattern forces us to over-allocate to plan for
404  * the worst case scenario, and return the pages we didn't use.
405  *
406  * Having a kmem_cache allows us to speed allocations.
407  */
408 static struct kmem_cache *pt_cache;
409 
410 /**
411  * alloc_pt() - Custom page table allocator
412  * @cookie: Cookie passed at page table allocation time.
413  * @size: Size of the page table. This size should be fixed,
414  * and determined at creation time based on the granule size.
415  * @gfp: GFP flags.
416  *
417  * We want a custom allocator so we can use a cache for page table
418  * allocations and amortize the cost of the over-reservation that's
419  * done to allow asynchronous VM operations.
420  *
421  * Return: non-NULL on success, NULL if the allocation failed for any
422  * reason.
423  */
alloc_pt(void * cookie,size_t size,gfp_t gfp)424 static void *alloc_pt(void *cookie, size_t size, gfp_t gfp)
425 {
426 	struct panthor_vm *vm = cookie;
427 	void *page;
428 
429 	/* Allocation of the root page table happening during init. */
430 	if (unlikely(!vm->root_page_table)) {
431 		struct page *p;
432 
433 		drm_WARN_ON(&vm->ptdev->base, vm->op_ctx);
434 		p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev),
435 				     gfp | __GFP_ZERO, get_order(size));
436 		page = p ? page_address(p) : NULL;
437 		vm->root_page_table = page;
438 		return page;
439 	}
440 
441 	/* We're not supposed to have anything bigger than 4k here, because we picked a
442 	 * 4k granule size at init time.
443 	 */
444 	if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
445 		return NULL;
446 
447 	/* We must have some op_ctx attached to the VM and it must have at least one
448 	 * free page.
449 	 */
450 	if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) ||
451 	    drm_WARN_ON(&vm->ptdev->base,
452 			vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count))
453 		return NULL;
454 
455 	page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++];
456 	memset(page, 0, SZ_4K);
457 
458 	/* Page table entries don't use virtual addresses, which trips out
459 	 * kmemleak. kmemleak_alloc_phys() might work, but physical addresses
460 	 * are mixed with other fields, and I fear kmemleak won't detect that
461 	 * either.
462 	 *
463 	 * Let's just ignore memory passed to the page-table driver for now.
464 	 */
465 	kmemleak_ignore(page);
466 	return page;
467 }
468 
469 /**
470  * free_pt() - Custom page table free function
471  * @cookie: Cookie passed at page table allocation time.
472  * @data: Page table to free.
473  * @size: Size of the page table. This size should be fixed,
474  * and determined at creation time based on the granule size.
475  */
free_pt(void * cookie,void * data,size_t size)476 static void free_pt(void *cookie, void *data, size_t size)
477 {
478 	struct panthor_vm *vm = cookie;
479 
480 	if (unlikely(vm->root_page_table == data)) {
481 		free_pages((unsigned long)data, get_order(size));
482 		vm->root_page_table = NULL;
483 		return;
484 	}
485 
486 	if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
487 		return;
488 
489 	/* Return the page to the pt_cache. */
490 	kmem_cache_free(pt_cache, data);
491 }
492 
wait_ready(struct panthor_device * ptdev,u32 as_nr)493 static int wait_ready(struct panthor_device *ptdev, u32 as_nr)
494 {
495 	int ret;
496 	u32 val;
497 
498 	/* Wait for the MMU status to indicate there is no active command, in
499 	 * case one is pending.
500 	 */
501 	ret = gpu_read_relaxed_poll_timeout_atomic(ptdev, AS_STATUS(as_nr), val,
502 						   !(val & AS_STATUS_AS_ACTIVE),
503 						   10, 100000);
504 
505 	if (ret) {
506 		panthor_device_schedule_reset(ptdev);
507 		drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n");
508 	}
509 
510 	return ret;
511 }
512 
write_cmd(struct panthor_device * ptdev,u32 as_nr,u32 cmd)513 static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd)
514 {
515 	int status;
516 
517 	/* write AS_COMMAND when MMU is ready to accept another command */
518 	status = wait_ready(ptdev, as_nr);
519 	if (!status)
520 		gpu_write(ptdev, AS_COMMAND(as_nr), cmd);
521 
522 	return status;
523 }
524 
lock_region(struct panthor_device * ptdev,u32 as_nr,u64 region_start,u64 size)525 static void lock_region(struct panthor_device *ptdev, u32 as_nr,
526 			u64 region_start, u64 size)
527 {
528 	u8 region_width;
529 	u64 region;
530 	u64 region_end = region_start + size;
531 
532 	if (!size)
533 		return;
534 
535 	/*
536 	 * The locked region is a naturally aligned power of 2 block encoded as
537 	 * log2 minus(1).
538 	 * Calculate the desired start/end and look for the highest bit which
539 	 * differs. The smallest naturally aligned block must include this bit
540 	 * change, the desired region starts with this bit (and subsequent bits)
541 	 * zeroed and ends with the bit (and subsequent bits) set to one.
542 	 */
543 	region_width = max(fls64(region_start ^ (region_end - 1)),
544 			   const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1;
545 
546 	/*
547 	 * Mask off the low bits of region_start (which would be ignored by
548 	 * the hardware anyway)
549 	 */
550 	region_start &= GENMASK_ULL(63, region_width);
551 
552 	region = region_width | region_start;
553 
554 	/* Lock the region that needs to be updated */
555 	gpu_write64(ptdev, AS_LOCKADDR(as_nr), region);
556 	write_cmd(ptdev, as_nr, AS_COMMAND_LOCK);
557 }
558 
mmu_hw_do_operation_locked(struct panthor_device * ptdev,int as_nr,u64 iova,u64 size,u32 op)559 static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr,
560 				      u64 iova, u64 size, u32 op)
561 {
562 	const u32 l2_flush_op = CACHE_CLEAN | CACHE_INV;
563 	u32 lsc_flush_op;
564 	int ret;
565 
566 	lockdep_assert_held(&ptdev->mmu->as.slots_lock);
567 
568 	switch (op) {
569 	case AS_COMMAND_FLUSH_MEM:
570 		lsc_flush_op = CACHE_CLEAN | CACHE_INV;
571 		break;
572 	case AS_COMMAND_FLUSH_PT:
573 		lsc_flush_op = 0;
574 		break;
575 	default:
576 		drm_WARN(&ptdev->base, 1, "Unexpected AS_COMMAND: %d", op);
577 		return -EINVAL;
578 	}
579 
580 	if (as_nr < 0)
581 		return 0;
582 
583 	/*
584 	 * If the AS number is greater than zero, then we can be sure
585 	 * the device is up and running, so we don't need to explicitly
586 	 * power it up
587 	 */
588 
589 	lock_region(ptdev, as_nr, iova, size);
590 
591 	ret = wait_ready(ptdev, as_nr);
592 	if (ret)
593 		return ret;
594 
595 	ret = panthor_gpu_flush_caches(ptdev, l2_flush_op, lsc_flush_op, 0);
596 	if (ret)
597 		return ret;
598 
599 	/*
600 	 * Explicitly unlock the region as the AS is not unlocked automatically
601 	 * at the end of the GPU_CONTROL cache flush command, unlike
602 	 * AS_COMMAND_FLUSH_MEM or AS_COMMAND_FLUSH_PT.
603 	 */
604 	write_cmd(ptdev, as_nr, AS_COMMAND_UNLOCK);
605 
606 	/* Wait for the unlock command to complete */
607 	return wait_ready(ptdev, as_nr);
608 }
609 
mmu_hw_do_operation(struct panthor_vm * vm,u64 iova,u64 size,u32 op)610 static int mmu_hw_do_operation(struct panthor_vm *vm,
611 			       u64 iova, u64 size, u32 op)
612 {
613 	struct panthor_device *ptdev = vm->ptdev;
614 	int ret;
615 
616 	mutex_lock(&ptdev->mmu->as.slots_lock);
617 	ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op);
618 	mutex_unlock(&ptdev->mmu->as.slots_lock);
619 
620 	return ret;
621 }
622 
panthor_mmu_as_enable(struct panthor_device * ptdev,u32 as_nr,u64 transtab,u64 transcfg,u64 memattr)623 static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr,
624 				 u64 transtab, u64 transcfg, u64 memattr)
625 {
626 	int ret;
627 
628 	ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
629 	if (ret)
630 		return ret;
631 
632 	gpu_write64(ptdev, AS_TRANSTAB(as_nr), transtab);
633 	gpu_write64(ptdev, AS_MEMATTR(as_nr), memattr);
634 	gpu_write64(ptdev, AS_TRANSCFG(as_nr), transcfg);
635 
636 	return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
637 }
638 
panthor_mmu_as_disable(struct panthor_device * ptdev,u32 as_nr)639 static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr)
640 {
641 	int ret;
642 
643 	ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
644 	if (ret)
645 		return ret;
646 
647 	gpu_write64(ptdev, AS_TRANSTAB(as_nr), 0);
648 	gpu_write64(ptdev, AS_MEMATTR(as_nr), 0);
649 	gpu_write64(ptdev, AS_TRANSCFG(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED);
650 
651 	return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
652 }
653 
panthor_mmu_fault_mask(struct panthor_device * ptdev,u32 value)654 static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value)
655 {
656 	/* Bits 16 to 31 mean REQ_COMPLETE. */
657 	return value & GENMASK(15, 0);
658 }
659 
panthor_mmu_as_fault_mask(struct panthor_device * ptdev,u32 as)660 static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as)
661 {
662 	return BIT(as);
663 }
664 
665 /**
666  * panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults
667  * @vm: VM to check.
668  *
669  * Return: true if the VM has unhandled faults, false otherwise.
670  */
panthor_vm_has_unhandled_faults(struct panthor_vm * vm)671 bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm)
672 {
673 	return vm->unhandled_fault;
674 }
675 
676 /**
677  * panthor_vm_is_unusable() - Check if the VM is still usable
678  * @vm: VM to check.
679  *
680  * Return: true if the VM is unusable, false otherwise.
681  */
panthor_vm_is_unusable(struct panthor_vm * vm)682 bool panthor_vm_is_unusable(struct panthor_vm *vm)
683 {
684 	return vm->unusable;
685 }
686 
panthor_vm_release_as_locked(struct panthor_vm * vm)687 static void panthor_vm_release_as_locked(struct panthor_vm *vm)
688 {
689 	struct panthor_device *ptdev = vm->ptdev;
690 
691 	lockdep_assert_held(&ptdev->mmu->as.slots_lock);
692 
693 	if (drm_WARN_ON(&ptdev->base, vm->as.id < 0))
694 		return;
695 
696 	ptdev->mmu->as.slots[vm->as.id].vm = NULL;
697 	clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
698 	refcount_set(&vm->as.active_cnt, 0);
699 	list_del_init(&vm->as.lru_node);
700 	vm->as.id = -1;
701 }
702 
703 /**
704  * panthor_vm_active() - Flag a VM as active
705  * @vm: VM to flag as active.
706  *
707  * Assigns an address space to a VM so it can be used by the GPU/MCU.
708  *
709  * Return: 0 on success, a negative error code otherwise.
710  */
panthor_vm_active(struct panthor_vm * vm)711 int panthor_vm_active(struct panthor_vm *vm)
712 {
713 	struct panthor_device *ptdev = vm->ptdev;
714 	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
715 	struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg;
716 	int ret = 0, as, cookie;
717 	u64 transtab, transcfg;
718 
719 	if (!drm_dev_enter(&ptdev->base, &cookie))
720 		return -ENODEV;
721 
722 	if (refcount_inc_not_zero(&vm->as.active_cnt))
723 		goto out_dev_exit;
724 
725 	mutex_lock(&ptdev->mmu->as.slots_lock);
726 
727 	if (refcount_inc_not_zero(&vm->as.active_cnt))
728 		goto out_unlock;
729 
730 	as = vm->as.id;
731 	if (as >= 0) {
732 		/* Unhandled pagefault on this AS, the MMU was disabled. We need to
733 		 * re-enable the MMU after clearing+unmasking the AS interrupts.
734 		 */
735 		if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as))
736 			goto out_enable_as;
737 
738 		goto out_make_active;
739 	}
740 
741 	/* Check for a free AS */
742 	if (vm->for_mcu) {
743 		drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0));
744 		as = 0;
745 	} else {
746 		as = ffz(ptdev->mmu->as.alloc_mask | BIT(0));
747 	}
748 
749 	if (!(BIT(as) & ptdev->gpu_info.as_present)) {
750 		struct panthor_vm *lru_vm;
751 
752 		lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list,
753 						  struct panthor_vm,
754 						  as.lru_node);
755 		if (drm_WARN_ON(&ptdev->base, !lru_vm)) {
756 			ret = -EBUSY;
757 			goto out_unlock;
758 		}
759 
760 		drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt));
761 		as = lru_vm->as.id;
762 		panthor_vm_release_as_locked(lru_vm);
763 	}
764 
765 	/* Assign the free or reclaimed AS to the FD */
766 	vm->as.id = as;
767 	set_bit(as, &ptdev->mmu->as.alloc_mask);
768 	ptdev->mmu->as.slots[as].vm = vm;
769 
770 out_enable_as:
771 	transtab = cfg->arm_lpae_s1_cfg.ttbr;
772 	transcfg = AS_TRANSCFG_PTW_MEMATTR_WB |
773 		   AS_TRANSCFG_PTW_RA |
774 		   AS_TRANSCFG_ADRMODE_AARCH64_4K |
775 		   AS_TRANSCFG_INA_BITS(55 - va_bits);
776 	if (ptdev->coherent)
777 		transcfg |= AS_TRANSCFG_PTW_SH_OS;
778 
779 	/* If the VM is re-activated, we clear the fault. */
780 	vm->unhandled_fault = false;
781 
782 	/* Unhandled pagefault on this AS, clear the fault and re-enable interrupts
783 	 * before enabling the AS.
784 	 */
785 	if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) {
786 		gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as));
787 		ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as);
788 		ptdev->mmu->irq.mask |= panthor_mmu_as_fault_mask(ptdev, as);
789 		gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask);
790 	}
791 
792 	ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr);
793 
794 out_make_active:
795 	if (!ret) {
796 		refcount_set(&vm->as.active_cnt, 1);
797 		list_del_init(&vm->as.lru_node);
798 	}
799 
800 out_unlock:
801 	mutex_unlock(&ptdev->mmu->as.slots_lock);
802 
803 out_dev_exit:
804 	drm_dev_exit(cookie);
805 	return ret;
806 }
807 
808 /**
809  * panthor_vm_idle() - Flag a VM idle
810  * @vm: VM to flag as idle.
811  *
812  * When we know the GPU is done with the VM (no more jobs to process),
813  * we can relinquish the AS slot attached to this VM, if any.
814  *
815  * We don't release the slot immediately, but instead place the VM in
816  * the LRU list, so it can be evicted if another VM needs an AS slot.
817  * This way, VMs keep attached to the AS they were given until we run
818  * out of free slot, limiting the number of MMU operations (TLB flush
819  * and other AS updates).
820  */
panthor_vm_idle(struct panthor_vm * vm)821 void panthor_vm_idle(struct panthor_vm *vm)
822 {
823 	struct panthor_device *ptdev = vm->ptdev;
824 
825 	if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock))
826 		return;
827 
828 	if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node)))
829 		list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list);
830 
831 	refcount_set(&vm->as.active_cnt, 0);
832 	mutex_unlock(&ptdev->mmu->as.slots_lock);
833 }
834 
panthor_vm_page_size(struct panthor_vm * vm)835 u32 panthor_vm_page_size(struct panthor_vm *vm)
836 {
837 	const struct io_pgtable *pgt = io_pgtable_ops_to_pgtable(vm->pgtbl_ops);
838 	u32 pg_shift = ffs(pgt->cfg.pgsize_bitmap) - 1;
839 
840 	return 1u << pg_shift;
841 }
842 
panthor_vm_stop(struct panthor_vm * vm)843 static void panthor_vm_stop(struct panthor_vm *vm)
844 {
845 	drm_sched_stop(&vm->sched, NULL);
846 }
847 
panthor_vm_start(struct panthor_vm * vm)848 static void panthor_vm_start(struct panthor_vm *vm)
849 {
850 	drm_sched_start(&vm->sched, 0);
851 }
852 
853 /**
854  * panthor_vm_as() - Get the AS slot attached to a VM
855  * @vm: VM to get the AS slot of.
856  *
857  * Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise.
858  */
panthor_vm_as(struct panthor_vm * vm)859 int panthor_vm_as(struct panthor_vm *vm)
860 {
861 	return vm->as.id;
862 }
863 
get_pgsize(u64 addr,size_t size,size_t * count)864 static size_t get_pgsize(u64 addr, size_t size, size_t *count)
865 {
866 	/*
867 	 * io-pgtable only operates on multiple pages within a single table
868 	 * entry, so we need to split at boundaries of the table size, i.e.
869 	 * the next block size up. The distance from address A to the next
870 	 * boundary of block size B is logically B - A % B, but in unsigned
871 	 * two's complement where B is a power of two we get the equivalence
872 	 * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :)
873 	 */
874 	size_t blk_offset = -addr % SZ_2M;
875 
876 	if (blk_offset || size < SZ_2M) {
877 		*count = min_not_zero(blk_offset, size) / SZ_4K;
878 		return SZ_4K;
879 	}
880 	blk_offset = -addr % SZ_1G ?: SZ_1G;
881 	*count = min(blk_offset, size) / SZ_2M;
882 	return SZ_2M;
883 }
884 
panthor_vm_flush_range(struct panthor_vm * vm,u64 iova,u64 size)885 static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size)
886 {
887 	struct panthor_device *ptdev = vm->ptdev;
888 	int ret = 0, cookie;
889 
890 	if (vm->as.id < 0)
891 		return 0;
892 
893 	/* If the device is unplugged, we just silently skip the flush. */
894 	if (!drm_dev_enter(&ptdev->base, &cookie))
895 		return 0;
896 
897 	ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT);
898 
899 	drm_dev_exit(cookie);
900 	return ret;
901 }
902 
panthor_vm_unmap_pages(struct panthor_vm * vm,u64 iova,u64 size)903 static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size)
904 {
905 	struct panthor_device *ptdev = vm->ptdev;
906 	struct io_pgtable_ops *ops = vm->pgtbl_ops;
907 	u64 start_iova = iova;
908 	u64 offset = 0;
909 
910 	while (offset < size) {
911 		size_t unmapped_sz = 0, pgcount;
912 		size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount);
913 
914 		unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL);
915 
916 		if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) {
917 			drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n",
918 				iova + offset + unmapped_sz,
919 				iova + offset + pgsize * pgcount,
920 				iova, iova + size);
921 			panthor_vm_flush_range(vm, iova, offset + unmapped_sz);
922 			return  -EINVAL;
923 		}
924 
925 		drm_dbg(&ptdev->base,
926 			"unmap: as=%d, iova=0x%llx, sz=%llu, va=0x%llx, pgcnt=%zu, pgsz=%zu",
927 			vm->as.id, start_iova, size, iova + offset,
928 			unmapped_sz / pgsize, pgsize);
929 
930 		offset += unmapped_sz;
931 	}
932 
933 	return panthor_vm_flush_range(vm, iova, size);
934 }
935 
936 static int
panthor_vm_map_pages(struct panthor_vm * vm,u64 iova,int prot,struct sg_table * sgt,u64 offset,u64 size)937 panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot,
938 		     struct sg_table *sgt, u64 offset, u64 size)
939 {
940 	struct panthor_device *ptdev = vm->ptdev;
941 	unsigned int count;
942 	struct scatterlist *sgl;
943 	struct io_pgtable_ops *ops = vm->pgtbl_ops;
944 	u64 start_iova = iova;
945 	u64 start_size = size;
946 	int ret;
947 
948 	if (!size)
949 		return 0;
950 
951 	for_each_sgtable_dma_sg(sgt, sgl, count) {
952 		dma_addr_t paddr = sg_dma_address(sgl);
953 		size_t len = sg_dma_len(sgl);
954 
955 		if (len <= offset) {
956 			offset -= len;
957 			continue;
958 		}
959 
960 		paddr += offset;
961 		len -= offset;
962 		len = min_t(size_t, len, size);
963 		size -= len;
964 
965 		while (len) {
966 			size_t pgcount, mapped = 0;
967 			size_t pgsize = get_pgsize(iova | paddr, len, &pgcount);
968 
969 			ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot,
970 					     GFP_KERNEL, &mapped);
971 
972 			drm_dbg(&ptdev->base,
973 				"map: as=%d, iova=0x%llx, sz=%llu, va=0x%llx, pa=%pad, pgcnt=%zu, pgsz=%zu",
974 				vm->as.id, start_iova, start_size, iova, &paddr,
975 				mapped / pgsize, pgsize);
976 
977 			iova += mapped;
978 			paddr += mapped;
979 			len -= mapped;
980 
981 			if (drm_WARN_ON(&ptdev->base, !ret && !mapped))
982 				ret = -ENOMEM;
983 
984 			if (ret) {
985 				/* If something failed, unmap what we've already mapped before
986 				 * returning. The unmap call is not supposed to fail.
987 				 */
988 				drm_WARN_ON(&ptdev->base,
989 					    panthor_vm_unmap_pages(vm, start_iova,
990 								   iova - start_iova));
991 				return ret;
992 			}
993 		}
994 
995 		if (!size)
996 			break;
997 
998 		offset = 0;
999 	}
1000 
1001 	return panthor_vm_flush_range(vm, start_iova, iova - start_iova);
1002 }
1003 
flags_to_prot(u32 flags)1004 static int flags_to_prot(u32 flags)
1005 {
1006 	int prot = 0;
1007 
1008 	if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC)
1009 		prot |= IOMMU_NOEXEC;
1010 
1011 	if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED))
1012 		prot |= IOMMU_CACHE;
1013 
1014 	if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY)
1015 		prot |= IOMMU_READ;
1016 	else
1017 		prot |= IOMMU_READ | IOMMU_WRITE;
1018 
1019 	return prot;
1020 }
1021 
1022 /**
1023  * panthor_vm_alloc_va() - Allocate a region in the auto-va space
1024  * @vm: VM to allocate a region on.
1025  * @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user
1026  * wants the VA to be automatically allocated from the auto-VA range.
1027  * @size: size of the VA range.
1028  * @va_node: drm_mm_node to initialize. Must be zero-initialized.
1029  *
1030  * Some GPU objects, like heap chunks, are fully managed by the kernel and
1031  * need to be mapped to the userspace VM, in the region reserved for kernel
1032  * objects.
1033  *
1034  * This function takes care of allocating a region in the kernel auto-VA space.
1035  *
1036  * Return: 0 on success, an error code otherwise.
1037  */
1038 int
panthor_vm_alloc_va(struct panthor_vm * vm,u64 va,u64 size,struct drm_mm_node * va_node)1039 panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size,
1040 		    struct drm_mm_node *va_node)
1041 {
1042 	ssize_t vm_pgsz = panthor_vm_page_size(vm);
1043 	int ret;
1044 
1045 	if (!size || !IS_ALIGNED(size, vm_pgsz))
1046 		return -EINVAL;
1047 
1048 	if (va != PANTHOR_VM_KERNEL_AUTO_VA && !IS_ALIGNED(va, vm_pgsz))
1049 		return -EINVAL;
1050 
1051 	mutex_lock(&vm->mm_lock);
1052 	if (va != PANTHOR_VM_KERNEL_AUTO_VA) {
1053 		va_node->start = va;
1054 		va_node->size = size;
1055 		ret = drm_mm_reserve_node(&vm->mm, va_node);
1056 	} else {
1057 		ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size,
1058 						  size >= SZ_2M ? SZ_2M : SZ_4K,
1059 						  0, vm->kernel_auto_va.start,
1060 						  vm->kernel_auto_va.end,
1061 						  DRM_MM_INSERT_BEST);
1062 	}
1063 	mutex_unlock(&vm->mm_lock);
1064 
1065 	return ret;
1066 }
1067 
1068 /**
1069  * panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va()
1070  * @vm: VM to free the region on.
1071  * @va_node: Memory node representing the region to free.
1072  */
panthor_vm_free_va(struct panthor_vm * vm,struct drm_mm_node * va_node)1073 void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node)
1074 {
1075 	mutex_lock(&vm->mm_lock);
1076 	drm_mm_remove_node(va_node);
1077 	mutex_unlock(&vm->mm_lock);
1078 }
1079 
panthor_vm_bo_free(struct drm_gpuvm_bo * vm_bo)1080 static void panthor_vm_bo_free(struct drm_gpuvm_bo *vm_bo)
1081 {
1082 	struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj);
1083 
1084 	if (!drm_gem_is_imported(&bo->base.base))
1085 		drm_gem_shmem_unpin(&bo->base);
1086 	kfree(vm_bo);
1087 }
1088 
panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm)1089 static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1090 				      struct panthor_vm *vm)
1091 {
1092 	u32 remaining_pt_count = op_ctx->rsvd_page_tables.count -
1093 				 op_ctx->rsvd_page_tables.ptr;
1094 
1095 	if (remaining_pt_count) {
1096 		kmem_cache_free_bulk(pt_cache, remaining_pt_count,
1097 				     op_ctx->rsvd_page_tables.pages +
1098 				     op_ctx->rsvd_page_tables.ptr);
1099 	}
1100 
1101 	kfree(op_ctx->rsvd_page_tables.pages);
1102 
1103 	if (op_ctx->map.vm_bo)
1104 		drm_gpuvm_bo_put_deferred(op_ctx->map.vm_bo);
1105 
1106 	for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++)
1107 		kfree(op_ctx->preallocated_vmas[i]);
1108 
1109 	drm_gpuvm_bo_deferred_cleanup(&vm->base);
1110 }
1111 
1112 static void
panthor_vm_op_ctx_return_vma(struct panthor_vm_op_ctx * op_ctx,struct panthor_vma * vma)1113 panthor_vm_op_ctx_return_vma(struct panthor_vm_op_ctx *op_ctx,
1114 			     struct panthor_vma *vma)
1115 {
1116 	for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) {
1117 		if (!op_ctx->preallocated_vmas[i]) {
1118 			op_ctx->preallocated_vmas[i] = vma;
1119 			return;
1120 		}
1121 	}
1122 
1123 	WARN_ON_ONCE(1);
1124 }
1125 
1126 static struct panthor_vma *
panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx * op_ctx)1127 panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx)
1128 {
1129 	for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) {
1130 		struct panthor_vma *vma = op_ctx->preallocated_vmas[i];
1131 
1132 		if (vma) {
1133 			op_ctx->preallocated_vmas[i] = NULL;
1134 			return vma;
1135 		}
1136 	}
1137 
1138 	return NULL;
1139 }
1140 
1141 static int
panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx * op_ctx)1142 panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx)
1143 {
1144 	u32 vma_count;
1145 
1146 	switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
1147 	case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
1148 		/* One VMA for the new mapping, and two more VMAs for the remap case
1149 		 * which might contain both a prev and next VA.
1150 		 */
1151 		vma_count = 3;
1152 		break;
1153 
1154 	case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
1155 		/* Two VMAs can be needed for an unmap, as an unmap can happen
1156 		 * in the middle of a drm_gpuva, requiring a remap with both
1157 		 * prev & next VA. Or an unmap can span more than one drm_gpuva
1158 		 * where the first and last ones are covered partially, requring
1159 		 * a remap for the first with a prev VA and remap for the last
1160 		 * with a next VA.
1161 		 */
1162 		vma_count = 2;
1163 		break;
1164 
1165 	default:
1166 		return 0;
1167 	}
1168 
1169 	for (u32 i = 0; i < vma_count; i++) {
1170 		struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
1171 
1172 		if (!vma)
1173 			return -ENOMEM;
1174 
1175 		op_ctx->preallocated_vmas[i] = vma;
1176 	}
1177 
1178 	return 0;
1179 }
1180 
1181 #define PANTHOR_VM_BIND_OP_MAP_FLAGS \
1182 	(DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
1183 	 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
1184 	 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \
1185 	 DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
1186 
panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm,struct panthor_gem_object * bo,u64 offset,u64 size,u64 va,u32 flags)1187 static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1188 					 struct panthor_vm *vm,
1189 					 struct panthor_gem_object *bo,
1190 					 u64 offset,
1191 					 u64 size, u64 va,
1192 					 u32 flags)
1193 {
1194 	struct drm_gpuvm_bo *preallocated_vm_bo;
1195 	struct sg_table *sgt = NULL;
1196 	u64 pt_count;
1197 	int ret;
1198 
1199 	if (!bo)
1200 		return -EINVAL;
1201 
1202 	if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) ||
1203 	    (flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP)
1204 		return -EINVAL;
1205 
1206 	/* Make sure the VA and size are in-bounds. */
1207 	if (size > bo->base.base.size || offset > bo->base.base.size - size)
1208 		return -EINVAL;
1209 
1210 	/* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */
1211 	if (bo->exclusive_vm_root_gem &&
1212 	    bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm))
1213 		return -EINVAL;
1214 
1215 	memset(op_ctx, 0, sizeof(*op_ctx));
1216 	op_ctx->flags = flags;
1217 	op_ctx->va.range = size;
1218 	op_ctx->va.addr = va;
1219 
1220 	ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
1221 	if (ret)
1222 		goto err_cleanup;
1223 
1224 	if (!drm_gem_is_imported(&bo->base.base)) {
1225 		/* Pre-reserve the BO pages, so the map operation doesn't have to
1226 		 * allocate. This pin is dropped in panthor_vm_bo_free(), so
1227 		 * once we have successfully called drm_gpuvm_bo_create(),
1228 		 * GPUVM will take care of dropping the pin for us.
1229 		 */
1230 		ret = drm_gem_shmem_pin(&bo->base);
1231 		if (ret)
1232 			goto err_cleanup;
1233 	}
1234 
1235 	sgt = drm_gem_shmem_get_pages_sgt(&bo->base);
1236 	if (IS_ERR(sgt)) {
1237 		if (!drm_gem_is_imported(&bo->base.base))
1238 			drm_gem_shmem_unpin(&bo->base);
1239 
1240 		ret = PTR_ERR(sgt);
1241 		goto err_cleanup;
1242 	}
1243 
1244 	op_ctx->map.sgt = sgt;
1245 
1246 	preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base);
1247 	if (!preallocated_vm_bo) {
1248 		if (!drm_gem_is_imported(&bo->base.base))
1249 			drm_gem_shmem_unpin(&bo->base);
1250 
1251 		ret = -ENOMEM;
1252 		goto err_cleanup;
1253 	}
1254 
1255 	op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo);
1256 
1257 	op_ctx->map.bo_offset = offset;
1258 
1259 	/* L1, L2 and L3 page tables.
1260 	 * We could optimize L3 allocation by iterating over the sgt and merging
1261 	 * 2M contiguous blocks, but it's simpler to over-provision and return
1262 	 * the pages if they're not used.
1263 	 */
1264 	pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) +
1265 		   ((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) +
1266 		   ((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21);
1267 
1268 	op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
1269 						 sizeof(*op_ctx->rsvd_page_tables.pages),
1270 						 GFP_KERNEL);
1271 	if (!op_ctx->rsvd_page_tables.pages) {
1272 		ret = -ENOMEM;
1273 		goto err_cleanup;
1274 	}
1275 
1276 	ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
1277 				    op_ctx->rsvd_page_tables.pages);
1278 	op_ctx->rsvd_page_tables.count = ret;
1279 	if (ret != pt_count) {
1280 		ret = -ENOMEM;
1281 		goto err_cleanup;
1282 	}
1283 
1284 	/* Insert BO into the extobj list last, when we know nothing can fail. */
1285 	dma_resv_lock(panthor_vm_resv(vm), NULL);
1286 	drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo);
1287 	dma_resv_unlock(panthor_vm_resv(vm));
1288 
1289 	return 0;
1290 
1291 err_cleanup:
1292 	panthor_vm_cleanup_op_ctx(op_ctx, vm);
1293 	return ret;
1294 }
1295 
panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm,u64 va,u64 size)1296 static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1297 					   struct panthor_vm *vm,
1298 					   u64 va, u64 size)
1299 {
1300 	u32 pt_count = 0;
1301 	int ret;
1302 
1303 	memset(op_ctx, 0, sizeof(*op_ctx));
1304 	op_ctx->va.range = size;
1305 	op_ctx->va.addr = va;
1306 	op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP;
1307 
1308 	/* Pre-allocate L3 page tables to account for the split-2M-block
1309 	 * situation on unmap.
1310 	 */
1311 	if (va != ALIGN(va, SZ_2M))
1312 		pt_count++;
1313 
1314 	if (va + size != ALIGN(va + size, SZ_2M) &&
1315 	    ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M))
1316 		pt_count++;
1317 
1318 	ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
1319 	if (ret)
1320 		goto err_cleanup;
1321 
1322 	if (pt_count) {
1323 		op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
1324 							 sizeof(*op_ctx->rsvd_page_tables.pages),
1325 							 GFP_KERNEL);
1326 		if (!op_ctx->rsvd_page_tables.pages) {
1327 			ret = -ENOMEM;
1328 			goto err_cleanup;
1329 		}
1330 
1331 		ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
1332 					    op_ctx->rsvd_page_tables.pages);
1333 		if (ret != pt_count) {
1334 			ret = -ENOMEM;
1335 			goto err_cleanup;
1336 		}
1337 		op_ctx->rsvd_page_tables.count = pt_count;
1338 	}
1339 
1340 	return 0;
1341 
1342 err_cleanup:
1343 	panthor_vm_cleanup_op_ctx(op_ctx, vm);
1344 	return ret;
1345 }
1346 
panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm)1347 static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1348 						struct panthor_vm *vm)
1349 {
1350 	memset(op_ctx, 0, sizeof(*op_ctx));
1351 	op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY;
1352 }
1353 
1354 /**
1355  * panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address
1356  * @vm: VM to look into.
1357  * @va: Virtual address to search for.
1358  * @bo_offset: Offset of the GEM object mapped at this virtual address.
1359  * Only valid on success.
1360  *
1361  * The object returned by this function might no longer be mapped when the
1362  * function returns. It's the caller responsibility to ensure there's no
1363  * concurrent map/unmap operations making the returned value invalid, or
1364  * make sure it doesn't matter if the object is no longer mapped.
1365  *
1366  * Return: A valid pointer on success, an ERR_PTR() otherwise.
1367  */
1368 struct panthor_gem_object *
panthor_vm_get_bo_for_va(struct panthor_vm * vm,u64 va,u64 * bo_offset)1369 panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset)
1370 {
1371 	struct panthor_gem_object *bo = ERR_PTR(-ENOENT);
1372 	struct drm_gpuva *gpuva;
1373 	struct panthor_vma *vma;
1374 
1375 	/* Take the VM lock to prevent concurrent map/unmap operations. */
1376 	mutex_lock(&vm->op_lock);
1377 	gpuva = drm_gpuva_find_first(&vm->base, va, 1);
1378 	vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL;
1379 	if (vma && vma->base.gem.obj) {
1380 		drm_gem_object_get(vma->base.gem.obj);
1381 		bo = to_panthor_bo(vma->base.gem.obj);
1382 		*bo_offset = vma->base.gem.offset + (va - vma->base.va.addr);
1383 	}
1384 	mutex_unlock(&vm->op_lock);
1385 
1386 	return bo;
1387 }
1388 
1389 #define PANTHOR_VM_MIN_KERNEL_VA_SIZE	SZ_256M
1390 
1391 static u64
panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create * args,u64 full_va_range)1392 panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args,
1393 				    u64 full_va_range)
1394 {
1395 	u64 user_va_range;
1396 
1397 	/* Make sure we have a minimum amount of VA space for kernel objects. */
1398 	if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE)
1399 		return 0;
1400 
1401 	if (args->user_va_range) {
1402 		/* Use the user provided value if != 0. */
1403 		user_va_range = args->user_va_range;
1404 	} else if (TASK_SIZE_OF(current) < full_va_range) {
1405 		/* If the task VM size is smaller than the GPU VA range, pick this
1406 		 * as our default user VA range, so userspace can CPU/GPU map buffers
1407 		 * at the same address.
1408 		 */
1409 		user_va_range = TASK_SIZE_OF(current);
1410 	} else {
1411 		/* If the GPU VA range is smaller than the task VM size, we
1412 		 * just have to live with the fact we won't be able to map
1413 		 * all buffers at the same GPU/CPU address.
1414 		 *
1415 		 * If the GPU VA range is bigger than 4G (more than 32-bit of
1416 		 * VA), we split the range in two, and assign half of it to
1417 		 * the user and the other half to the kernel, if it's not, we
1418 		 * keep the kernel VA space as small as possible.
1419 		 */
1420 		user_va_range = full_va_range > SZ_4G ?
1421 				full_va_range / 2 :
1422 				full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
1423 	}
1424 
1425 	if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range)
1426 		user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
1427 
1428 	return user_va_range;
1429 }
1430 
1431 #define PANTHOR_VM_CREATE_FLAGS		0
1432 
1433 static int
panthor_vm_create_check_args(const struct panthor_device * ptdev,const struct drm_panthor_vm_create * args,u64 * kernel_va_start,u64 * kernel_va_range)1434 panthor_vm_create_check_args(const struct panthor_device *ptdev,
1435 			     const struct drm_panthor_vm_create *args,
1436 			     u64 *kernel_va_start, u64 *kernel_va_range)
1437 {
1438 	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
1439 	u64 full_va_range = 1ull << va_bits;
1440 	u64 user_va_range;
1441 
1442 	if (args->flags & ~PANTHOR_VM_CREATE_FLAGS)
1443 		return -EINVAL;
1444 
1445 	user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range);
1446 	if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range))
1447 		return -EINVAL;
1448 
1449 	/* Pick a kernel VA range that's a power of two, to have a clear split. */
1450 	*kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range);
1451 	*kernel_va_start = full_va_range - *kernel_va_range;
1452 	return 0;
1453 }
1454 
1455 /*
1456  * Only 32 VMs per open file. If that becomes a limiting factor, we can
1457  * increase this number.
1458  */
1459 #define PANTHOR_MAX_VMS_PER_FILE	32
1460 
1461 /**
1462  * panthor_vm_pool_create_vm() - Create a VM
1463  * @ptdev: The panthor device
1464  * @pool: The VM to create this VM on.
1465  * @args: VM creation args.
1466  *
1467  * Return: a positive VM ID on success, a negative error code otherwise.
1468  */
panthor_vm_pool_create_vm(struct panthor_device * ptdev,struct panthor_vm_pool * pool,struct drm_panthor_vm_create * args)1469 int panthor_vm_pool_create_vm(struct panthor_device *ptdev,
1470 			      struct panthor_vm_pool *pool,
1471 			      struct drm_panthor_vm_create *args)
1472 {
1473 	u64 kernel_va_start, kernel_va_range;
1474 	struct panthor_vm *vm;
1475 	int ret;
1476 	u32 id;
1477 
1478 	ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range);
1479 	if (ret)
1480 		return ret;
1481 
1482 	vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range,
1483 			       kernel_va_start, kernel_va_range);
1484 	if (IS_ERR(vm))
1485 		return PTR_ERR(vm);
1486 
1487 	ret = xa_alloc(&pool->xa, &id, vm,
1488 		       XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL);
1489 
1490 	if (ret) {
1491 		panthor_vm_put(vm);
1492 		return ret;
1493 	}
1494 
1495 	args->user_va_range = kernel_va_start;
1496 	return id;
1497 }
1498 
panthor_vm_destroy(struct panthor_vm * vm)1499 static void panthor_vm_destroy(struct panthor_vm *vm)
1500 {
1501 	if (!vm)
1502 		return;
1503 
1504 	vm->destroyed = true;
1505 
1506 	mutex_lock(&vm->heaps.lock);
1507 	panthor_heap_pool_destroy(vm->heaps.pool);
1508 	vm->heaps.pool = NULL;
1509 	mutex_unlock(&vm->heaps.lock);
1510 
1511 	drm_WARN_ON(&vm->ptdev->base,
1512 		    panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range));
1513 	panthor_vm_put(vm);
1514 }
1515 
1516 /**
1517  * panthor_vm_pool_destroy_vm() - Destroy a VM.
1518  * @pool: VM pool.
1519  * @handle: VM handle.
1520  *
1521  * This function doesn't free the VM object or its resources, it just kills
1522  * all mappings, and makes sure nothing can be mapped after that point.
1523  *
1524  * If there was any active jobs at the time this function is called, these
1525  * jobs should experience page faults and be killed as a result.
1526  *
1527  * The VM resources are freed when the last reference on the VM object is
1528  * dropped.
1529  *
1530  * Return: %0 for success, negative errno value for failure
1531  */
panthor_vm_pool_destroy_vm(struct panthor_vm_pool * pool,u32 handle)1532 int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle)
1533 {
1534 	struct panthor_vm *vm;
1535 
1536 	vm = xa_erase(&pool->xa, handle);
1537 
1538 	panthor_vm_destroy(vm);
1539 
1540 	return vm ? 0 : -EINVAL;
1541 }
1542 
1543 /**
1544  * panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle
1545  * @pool: VM pool to check.
1546  * @handle: Handle of the VM to retrieve.
1547  *
1548  * Return: A valid pointer if the VM exists, NULL otherwise.
1549  */
1550 struct panthor_vm *
panthor_vm_pool_get_vm(struct panthor_vm_pool * pool,u32 handle)1551 panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle)
1552 {
1553 	struct panthor_vm *vm;
1554 
1555 	xa_lock(&pool->xa);
1556 	vm = panthor_vm_get(xa_load(&pool->xa, handle));
1557 	xa_unlock(&pool->xa);
1558 
1559 	return vm;
1560 }
1561 
1562 /**
1563  * panthor_vm_pool_destroy() - Destroy a VM pool.
1564  * @pfile: File.
1565  *
1566  * Destroy all VMs in the pool, and release the pool resources.
1567  *
1568  * Note that VMs can outlive the pool they were created from if other
1569  * objects hold a reference to there VMs.
1570  */
panthor_vm_pool_destroy(struct panthor_file * pfile)1571 void panthor_vm_pool_destroy(struct panthor_file *pfile)
1572 {
1573 	struct panthor_vm *vm;
1574 	unsigned long i;
1575 
1576 	if (!pfile->vms)
1577 		return;
1578 
1579 	xa_for_each(&pfile->vms->xa, i, vm)
1580 		panthor_vm_destroy(vm);
1581 
1582 	xa_destroy(&pfile->vms->xa);
1583 	kfree(pfile->vms);
1584 }
1585 
1586 /**
1587  * panthor_vm_pool_create() - Create a VM pool
1588  * @pfile: File.
1589  *
1590  * Return: 0 on success, a negative error code otherwise.
1591  */
panthor_vm_pool_create(struct panthor_file * pfile)1592 int panthor_vm_pool_create(struct panthor_file *pfile)
1593 {
1594 	pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL);
1595 	if (!pfile->vms)
1596 		return -ENOMEM;
1597 
1598 	xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1);
1599 	return 0;
1600 }
1601 
1602 /* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */
mmu_tlb_flush_all(void * cookie)1603 static void mmu_tlb_flush_all(void *cookie)
1604 {
1605 }
1606 
mmu_tlb_flush_walk(unsigned long iova,size_t size,size_t granule,void * cookie)1607 static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie)
1608 {
1609 }
1610 
1611 static const struct iommu_flush_ops mmu_tlb_ops = {
1612 	.tlb_flush_all = mmu_tlb_flush_all,
1613 	.tlb_flush_walk = mmu_tlb_flush_walk,
1614 };
1615 
access_type_name(struct panthor_device * ptdev,u32 fault_status)1616 static const char *access_type_name(struct panthor_device *ptdev,
1617 				    u32 fault_status)
1618 {
1619 	switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) {
1620 	case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
1621 		return "ATOMIC";
1622 	case AS_FAULTSTATUS_ACCESS_TYPE_READ:
1623 		return "READ";
1624 	case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
1625 		return "WRITE";
1626 	case AS_FAULTSTATUS_ACCESS_TYPE_EX:
1627 		return "EXECUTE";
1628 	default:
1629 		drm_WARN_ON(&ptdev->base, 1);
1630 		return NULL;
1631 	}
1632 }
1633 
panthor_mmu_irq_handler(struct panthor_device * ptdev,u32 status)1634 static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status)
1635 {
1636 	bool has_unhandled_faults = false;
1637 
1638 	status = panthor_mmu_fault_mask(ptdev, status);
1639 	while (status) {
1640 		u32 as = ffs(status | (status >> 16)) - 1;
1641 		u32 mask = panthor_mmu_as_fault_mask(ptdev, as);
1642 		u32 new_int_mask;
1643 		u64 addr;
1644 		u32 fault_status;
1645 		u32 exception_type;
1646 		u32 access_type;
1647 		u32 source_id;
1648 
1649 		fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as));
1650 		addr = gpu_read64(ptdev, AS_FAULTADDRESS(as));
1651 
1652 		/* decode the fault status */
1653 		exception_type = fault_status & 0xFF;
1654 		access_type = (fault_status >> 8) & 0x3;
1655 		source_id = (fault_status >> 16);
1656 
1657 		mutex_lock(&ptdev->mmu->as.slots_lock);
1658 
1659 		ptdev->mmu->as.faulty_mask |= mask;
1660 		new_int_mask =
1661 			panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask);
1662 
1663 		/* terminal fault, print info about the fault */
1664 		drm_err(&ptdev->base,
1665 			"Unhandled Page fault in AS%d at VA 0x%016llX\n"
1666 			"raw fault status: 0x%X\n"
1667 			"decoded fault status: %s\n"
1668 			"exception type 0x%X: %s\n"
1669 			"access type 0x%X: %s\n"
1670 			"source id 0x%X\n",
1671 			as, addr,
1672 			fault_status,
1673 			(fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"),
1674 			exception_type, panthor_exception_name(ptdev, exception_type),
1675 			access_type, access_type_name(ptdev, fault_status),
1676 			source_id);
1677 
1678 		/* We don't handle VM faults at the moment, so let's just clear the
1679 		 * interrupt and let the writer/reader crash.
1680 		 * Note that COMPLETED irqs are never cleared, but this is fine
1681 		 * because they are always masked.
1682 		 */
1683 		gpu_write(ptdev, MMU_INT_CLEAR, mask);
1684 
1685 		/* Ignore MMU interrupts on this AS until it's been
1686 		 * re-enabled.
1687 		 */
1688 		ptdev->mmu->irq.mask = new_int_mask;
1689 
1690 		if (ptdev->mmu->as.slots[as].vm)
1691 			ptdev->mmu->as.slots[as].vm->unhandled_fault = true;
1692 
1693 		/* Disable the MMU to kill jobs on this AS. */
1694 		panthor_mmu_as_disable(ptdev, as);
1695 		mutex_unlock(&ptdev->mmu->as.slots_lock);
1696 
1697 		status &= ~mask;
1698 		has_unhandled_faults = true;
1699 	}
1700 
1701 	if (has_unhandled_faults)
1702 		panthor_sched_report_mmu_fault(ptdev);
1703 }
1704 PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler);
1705 
1706 /**
1707  * panthor_mmu_suspend() - Suspend the MMU logic
1708  * @ptdev: Device.
1709  *
1710  * All we do here is de-assign the AS slots on all active VMs, so things
1711  * get flushed to the main memory, and no further access to these VMs are
1712  * possible.
1713  *
1714  * We also suspend the MMU IRQ.
1715  */
panthor_mmu_suspend(struct panthor_device * ptdev)1716 void panthor_mmu_suspend(struct panthor_device *ptdev)
1717 {
1718 	mutex_lock(&ptdev->mmu->as.slots_lock);
1719 	for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
1720 		struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
1721 
1722 		if (vm) {
1723 			drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
1724 			panthor_vm_release_as_locked(vm);
1725 		}
1726 	}
1727 	mutex_unlock(&ptdev->mmu->as.slots_lock);
1728 
1729 	panthor_mmu_irq_suspend(&ptdev->mmu->irq);
1730 }
1731 
1732 /**
1733  * panthor_mmu_resume() - Resume the MMU logic
1734  * @ptdev: Device.
1735  *
1736  * Resume the IRQ.
1737  *
1738  * We don't re-enable previously active VMs. We assume other parts of the
1739  * driver will call panthor_vm_active() on the VMs they intend to use.
1740  */
panthor_mmu_resume(struct panthor_device * ptdev)1741 void panthor_mmu_resume(struct panthor_device *ptdev)
1742 {
1743 	mutex_lock(&ptdev->mmu->as.slots_lock);
1744 	ptdev->mmu->as.alloc_mask = 0;
1745 	ptdev->mmu->as.faulty_mask = 0;
1746 	mutex_unlock(&ptdev->mmu->as.slots_lock);
1747 
1748 	panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
1749 }
1750 
1751 /**
1752  * panthor_mmu_pre_reset() - Prepare for a reset
1753  * @ptdev: Device.
1754  *
1755  * Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we
1756  * don't get asked to do a VM operation while the GPU is down.
1757  *
1758  * We don't cleanly shutdown the AS slots here, because the reset might
1759  * come from an AS_ACTIVE_BIT stuck situation.
1760  */
panthor_mmu_pre_reset(struct panthor_device * ptdev)1761 void panthor_mmu_pre_reset(struct panthor_device *ptdev)
1762 {
1763 	struct panthor_vm *vm;
1764 
1765 	panthor_mmu_irq_suspend(&ptdev->mmu->irq);
1766 
1767 	mutex_lock(&ptdev->mmu->vm.lock);
1768 	ptdev->mmu->vm.reset_in_progress = true;
1769 	list_for_each_entry(vm, &ptdev->mmu->vm.list, node)
1770 		panthor_vm_stop(vm);
1771 	mutex_unlock(&ptdev->mmu->vm.lock);
1772 }
1773 
1774 /**
1775  * panthor_mmu_post_reset() - Restore things after a reset
1776  * @ptdev: Device.
1777  *
1778  * Put the MMU logic back in action after a reset. That implies resuming the
1779  * IRQ and re-enabling the VM_BIND queues.
1780  */
panthor_mmu_post_reset(struct panthor_device * ptdev)1781 void panthor_mmu_post_reset(struct panthor_device *ptdev)
1782 {
1783 	struct panthor_vm *vm;
1784 
1785 	mutex_lock(&ptdev->mmu->as.slots_lock);
1786 
1787 	/* Now that the reset is effective, we can assume that none of the
1788 	 * AS slots are setup, and clear the faulty flags too.
1789 	 */
1790 	ptdev->mmu->as.alloc_mask = 0;
1791 	ptdev->mmu->as.faulty_mask = 0;
1792 
1793 	for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
1794 		struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
1795 
1796 		if (vm)
1797 			panthor_vm_release_as_locked(vm);
1798 	}
1799 
1800 	mutex_unlock(&ptdev->mmu->as.slots_lock);
1801 
1802 	panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
1803 
1804 	/* Restart the VM_BIND queues. */
1805 	mutex_lock(&ptdev->mmu->vm.lock);
1806 	list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
1807 		panthor_vm_start(vm);
1808 	}
1809 	ptdev->mmu->vm.reset_in_progress = false;
1810 	mutex_unlock(&ptdev->mmu->vm.lock);
1811 }
1812 
panthor_vm_free(struct drm_gpuvm * gpuvm)1813 static void panthor_vm_free(struct drm_gpuvm *gpuvm)
1814 {
1815 	struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base);
1816 	struct panthor_device *ptdev = vm->ptdev;
1817 
1818 	mutex_lock(&vm->heaps.lock);
1819 	if (drm_WARN_ON(&ptdev->base, vm->heaps.pool))
1820 		panthor_heap_pool_destroy(vm->heaps.pool);
1821 	mutex_unlock(&vm->heaps.lock);
1822 	mutex_destroy(&vm->heaps.lock);
1823 
1824 	mutex_lock(&ptdev->mmu->vm.lock);
1825 	list_del(&vm->node);
1826 	/* Restore the scheduler state so we can call drm_sched_entity_destroy()
1827 	 * and drm_sched_fini(). If get there, that means we have no job left
1828 	 * and no new jobs can be queued, so we can start the scheduler without
1829 	 * risking interfering with the reset.
1830 	 */
1831 	if (ptdev->mmu->vm.reset_in_progress)
1832 		panthor_vm_start(vm);
1833 	mutex_unlock(&ptdev->mmu->vm.lock);
1834 
1835 	drm_sched_entity_destroy(&vm->entity);
1836 	drm_sched_fini(&vm->sched);
1837 
1838 	mutex_lock(&ptdev->mmu->as.slots_lock);
1839 	if (vm->as.id >= 0) {
1840 		int cookie;
1841 
1842 		if (drm_dev_enter(&ptdev->base, &cookie)) {
1843 			panthor_mmu_as_disable(ptdev, vm->as.id);
1844 			drm_dev_exit(cookie);
1845 		}
1846 
1847 		ptdev->mmu->as.slots[vm->as.id].vm = NULL;
1848 		clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
1849 		list_del(&vm->as.lru_node);
1850 	}
1851 	mutex_unlock(&ptdev->mmu->as.slots_lock);
1852 
1853 	free_io_pgtable_ops(vm->pgtbl_ops);
1854 
1855 	drm_mm_takedown(&vm->mm);
1856 	kfree(vm);
1857 }
1858 
1859 /**
1860  * panthor_vm_put() - Release a reference on a VM
1861  * @vm: VM to release the reference on. Can be NULL.
1862  */
panthor_vm_put(struct panthor_vm * vm)1863 void panthor_vm_put(struct panthor_vm *vm)
1864 {
1865 	drm_gpuvm_put(vm ? &vm->base : NULL);
1866 }
1867 
1868 /**
1869  * panthor_vm_get() - Get a VM reference
1870  * @vm: VM to get the reference on. Can be NULL.
1871  *
1872  * Return: @vm value.
1873  */
panthor_vm_get(struct panthor_vm * vm)1874 struct panthor_vm *panthor_vm_get(struct panthor_vm *vm)
1875 {
1876 	if (vm)
1877 		drm_gpuvm_get(&vm->base);
1878 
1879 	return vm;
1880 }
1881 
1882 /**
1883  * panthor_vm_get_heap_pool() - Get the heap pool attached to a VM
1884  * @vm: VM to query the heap pool on.
1885  * @create: True if the heap pool should be created when it doesn't exist.
1886  *
1887  * Heap pools are per-VM. This function allows one to retrieve the heap pool
1888  * attached to a VM.
1889  *
1890  * If no heap pool exists yet, and @create is true, we create one.
1891  *
1892  * The returned panthor_heap_pool should be released with panthor_heap_pool_put().
1893  *
1894  * Return: A valid pointer on success, an ERR_PTR() otherwise.
1895  */
panthor_vm_get_heap_pool(struct panthor_vm * vm,bool create)1896 struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create)
1897 {
1898 	struct panthor_heap_pool *pool;
1899 
1900 	mutex_lock(&vm->heaps.lock);
1901 	if (!vm->heaps.pool && create) {
1902 		if (vm->destroyed)
1903 			pool = ERR_PTR(-EINVAL);
1904 		else
1905 			pool = panthor_heap_pool_create(vm->ptdev, vm);
1906 
1907 		if (!IS_ERR(pool))
1908 			vm->heaps.pool = panthor_heap_pool_get(pool);
1909 	} else {
1910 		pool = panthor_heap_pool_get(vm->heaps.pool);
1911 		if (!pool)
1912 			pool = ERR_PTR(-ENOENT);
1913 	}
1914 	mutex_unlock(&vm->heaps.lock);
1915 
1916 	return pool;
1917 }
1918 
1919 /**
1920  * panthor_vm_heaps_sizes() - Calculate size of all heap chunks across all
1921  * heaps over all the heap pools in a VM
1922  * @pfile: File.
1923  * @stats: Memory stats to be updated.
1924  *
1925  * Calculate all heap chunk sizes in all heap pools bound to a VM. If the VM
1926  * is active, record the size as active as well.
1927  */
panthor_vm_heaps_sizes(struct panthor_file * pfile,struct drm_memory_stats * stats)1928 void panthor_vm_heaps_sizes(struct panthor_file *pfile, struct drm_memory_stats *stats)
1929 {
1930 	struct panthor_vm *vm;
1931 	unsigned long i;
1932 
1933 	if (!pfile->vms)
1934 		return;
1935 
1936 	xa_lock(&pfile->vms->xa);
1937 	xa_for_each(&pfile->vms->xa, i, vm) {
1938 		size_t size = panthor_heap_pool_size(vm->heaps.pool);
1939 		stats->resident += size;
1940 		if (vm->as.id >= 0)
1941 			stats->active += size;
1942 	}
1943 	xa_unlock(&pfile->vms->xa);
1944 }
1945 
mair_to_memattr(u64 mair,bool coherent)1946 static u64 mair_to_memattr(u64 mair, bool coherent)
1947 {
1948 	u64 memattr = 0;
1949 	u32 i;
1950 
1951 	for (i = 0; i < 8; i++) {
1952 		u8 in_attr = mair >> (8 * i), out_attr;
1953 		u8 outer = in_attr >> 4, inner = in_attr & 0xf;
1954 
1955 		/* For caching to be enabled, inner and outer caching policy
1956 		 * have to be both write-back, if one of them is write-through
1957 		 * or non-cacheable, we just choose non-cacheable. Device
1958 		 * memory is also translated to non-cacheable.
1959 		 */
1960 		if (!(outer & 3) || !(outer & 4) || !(inner & 4)) {
1961 			out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC |
1962 				   AS_MEMATTR_AARCH64_SH_MIDGARD_INNER |
1963 				   AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false);
1964 		} else {
1965 			out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB |
1966 				   AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2);
1967 			/* Use SH_MIDGARD_INNER mode when device isn't coherent,
1968 			 * so SH_IS, which is used when IOMMU_CACHE is set, maps
1969 			 * to Mali's internal-shareable mode. As per the Mali
1970 			 * Spec, inner and outer-shareable modes aren't allowed
1971 			 * for WB memory when coherency is disabled.
1972 			 * Use SH_CPU_INNER mode when coherency is enabled, so
1973 			 * that SH_IS actually maps to the standard definition of
1974 			 * inner-shareable.
1975 			 */
1976 			if (!coherent)
1977 				out_attr |= AS_MEMATTR_AARCH64_SH_MIDGARD_INNER;
1978 			else
1979 				out_attr |= AS_MEMATTR_AARCH64_SH_CPU_INNER;
1980 		}
1981 
1982 		memattr |= (u64)out_attr << (8 * i);
1983 	}
1984 
1985 	return memattr;
1986 }
1987 
panthor_vma_link(struct panthor_vm * vm,struct panthor_vma * vma,struct drm_gpuvm_bo * vm_bo)1988 static void panthor_vma_link(struct panthor_vm *vm,
1989 			     struct panthor_vma *vma,
1990 			     struct drm_gpuvm_bo *vm_bo)
1991 {
1992 	struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
1993 
1994 	mutex_lock(&bo->base.base.gpuva.lock);
1995 	drm_gpuva_link(&vma->base, vm_bo);
1996 	mutex_unlock(&bo->base.base.gpuva.lock);
1997 }
1998 
panthor_vma_unlink(struct panthor_vma * vma)1999 static void panthor_vma_unlink(struct panthor_vma *vma)
2000 {
2001 	drm_gpuva_unlink_defer(&vma->base);
2002 	kfree(vma);
2003 }
2004 
panthor_vma_init(struct panthor_vma * vma,u32 flags)2005 static void panthor_vma_init(struct panthor_vma *vma, u32 flags)
2006 {
2007 	INIT_LIST_HEAD(&vma->node);
2008 	vma->flags = flags;
2009 }
2010 
2011 #define PANTHOR_VM_MAP_FLAGS \
2012 	(DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
2013 	 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
2014 	 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)
2015 
panthor_gpuva_sm_step_map(struct drm_gpuva_op * op,void * priv)2016 static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv)
2017 {
2018 	struct panthor_vm *vm = priv;
2019 	struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
2020 	struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx);
2021 	int ret;
2022 
2023 	if (!vma)
2024 		return -EINVAL;
2025 
2026 	panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS);
2027 
2028 	ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags),
2029 				   op_ctx->map.sgt, op->map.gem.offset,
2030 				   op->map.va.range);
2031 	if (ret) {
2032 		panthor_vm_op_ctx_return_vma(op_ctx, vma);
2033 		return ret;
2034 	}
2035 
2036 	drm_gpuva_map(&vm->base, &vma->base, &op->map);
2037 	panthor_vma_link(vm, vma, op_ctx->map.vm_bo);
2038 
2039 	drm_gpuvm_bo_put_deferred(op_ctx->map.vm_bo);
2040 	op_ctx->map.vm_bo = NULL;
2041 
2042 	return 0;
2043 }
2044 
panthor_gpuva_sm_step_remap(struct drm_gpuva_op * op,void * priv)2045 static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op,
2046 				       void *priv)
2047 {
2048 	struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base);
2049 	struct panthor_vm *vm = priv;
2050 	struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
2051 	struct panthor_vma *prev_vma = NULL, *next_vma = NULL;
2052 	u64 unmap_start, unmap_range;
2053 	int ret;
2054 
2055 	drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range);
2056 	ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range);
2057 	if (ret)
2058 		return ret;
2059 
2060 	if (op->remap.prev) {
2061 		prev_vma = panthor_vm_op_ctx_get_vma(op_ctx);
2062 		panthor_vma_init(prev_vma, unmap_vma->flags);
2063 	}
2064 
2065 	if (op->remap.next) {
2066 		next_vma = panthor_vm_op_ctx_get_vma(op_ctx);
2067 		panthor_vma_init(next_vma, unmap_vma->flags);
2068 	}
2069 
2070 	drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL,
2071 			next_vma ? &next_vma->base : NULL,
2072 			&op->remap);
2073 
2074 	if (prev_vma) {
2075 		/* panthor_vma_link() transfers the vm_bo ownership to
2076 		 * the VMA object. Since the vm_bo we're passing is still
2077 		 * owned by the old mapping which will be released when this
2078 		 * mapping is destroyed, we need to grab a ref here.
2079 		 */
2080 		panthor_vma_link(vm, prev_vma, op->remap.unmap->va->vm_bo);
2081 	}
2082 
2083 	if (next_vma) {
2084 		panthor_vma_link(vm, next_vma, op->remap.unmap->va->vm_bo);
2085 	}
2086 
2087 	panthor_vma_unlink(unmap_vma);
2088 	return 0;
2089 }
2090 
panthor_gpuva_sm_step_unmap(struct drm_gpuva_op * op,void * priv)2091 static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op,
2092 				       void *priv)
2093 {
2094 	struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base);
2095 	struct panthor_vm *vm = priv;
2096 	int ret;
2097 
2098 	ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr,
2099 				     unmap_vma->base.va.range);
2100 	if (drm_WARN_ON(&vm->ptdev->base, ret))
2101 		return ret;
2102 
2103 	drm_gpuva_unmap(&op->unmap);
2104 	panthor_vma_unlink(unmap_vma);
2105 	return 0;
2106 }
2107 
2108 static const struct drm_gpuvm_ops panthor_gpuvm_ops = {
2109 	.vm_free = panthor_vm_free,
2110 	.vm_bo_free = panthor_vm_bo_free,
2111 	.sm_step_map = panthor_gpuva_sm_step_map,
2112 	.sm_step_remap = panthor_gpuva_sm_step_remap,
2113 	.sm_step_unmap = panthor_gpuva_sm_step_unmap,
2114 };
2115 
2116 /**
2117  * panthor_vm_resv() - Get the dma_resv object attached to a VM.
2118  * @vm: VM to get the dma_resv of.
2119  *
2120  * Return: A dma_resv object.
2121  */
panthor_vm_resv(struct panthor_vm * vm)2122 struct dma_resv *panthor_vm_resv(struct panthor_vm *vm)
2123 {
2124 	return drm_gpuvm_resv(&vm->base);
2125 }
2126 
panthor_vm_root_gem(struct panthor_vm * vm)2127 struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm)
2128 {
2129 	if (!vm)
2130 		return NULL;
2131 
2132 	return vm->base.r_obj;
2133 }
2134 
2135 static int
panthor_vm_exec_op(struct panthor_vm * vm,struct panthor_vm_op_ctx * op,bool flag_vm_unusable_on_failure)2136 panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op,
2137 		   bool flag_vm_unusable_on_failure)
2138 {
2139 	u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK;
2140 	int ret;
2141 
2142 	if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY)
2143 		return 0;
2144 
2145 	mutex_lock(&vm->op_lock);
2146 	vm->op_ctx = op;
2147 	switch (op_type) {
2148 	case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: {
2149 		const struct drm_gpuvm_map_req map_req = {
2150 			.map.va.addr = op->va.addr,
2151 			.map.va.range = op->va.range,
2152 			.map.gem.obj = op->map.vm_bo->obj,
2153 			.map.gem.offset = op->map.bo_offset,
2154 		};
2155 
2156 		if (vm->unusable) {
2157 			ret = -EINVAL;
2158 			break;
2159 		}
2160 
2161 		ret = drm_gpuvm_sm_map(&vm->base, vm, &map_req);
2162 		break;
2163 	}
2164 
2165 	case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
2166 		ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range);
2167 		break;
2168 
2169 	default:
2170 		ret = -EINVAL;
2171 		break;
2172 	}
2173 
2174 	if (ret && flag_vm_unusable_on_failure)
2175 		vm->unusable = true;
2176 
2177 	vm->op_ctx = NULL;
2178 	mutex_unlock(&vm->op_lock);
2179 
2180 	return ret;
2181 }
2182 
2183 static struct dma_fence *
panthor_vm_bind_run_job(struct drm_sched_job * sched_job)2184 panthor_vm_bind_run_job(struct drm_sched_job *sched_job)
2185 {
2186 	struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2187 	bool cookie;
2188 	int ret;
2189 
2190 	/* Not only we report an error whose result is propagated to the
2191 	 * drm_sched finished fence, but we also flag the VM as unusable, because
2192 	 * a failure in the async VM_BIND results in an inconsistent state. VM needs
2193 	 * to be destroyed and recreated.
2194 	 */
2195 	cookie = dma_fence_begin_signalling();
2196 	ret = panthor_vm_exec_op(job->vm, &job->ctx, true);
2197 	dma_fence_end_signalling(cookie);
2198 
2199 	return ret ? ERR_PTR(ret) : NULL;
2200 }
2201 
panthor_vm_bind_job_release(struct kref * kref)2202 static void panthor_vm_bind_job_release(struct kref *kref)
2203 {
2204 	struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount);
2205 
2206 	if (job->base.s_fence)
2207 		drm_sched_job_cleanup(&job->base);
2208 
2209 	panthor_vm_cleanup_op_ctx(&job->ctx, job->vm);
2210 	panthor_vm_put(job->vm);
2211 	kfree(job);
2212 }
2213 
2214 /**
2215  * panthor_vm_bind_job_put() - Release a VM_BIND job reference
2216  * @sched_job: Job to release the reference on.
2217  */
panthor_vm_bind_job_put(struct drm_sched_job * sched_job)2218 void panthor_vm_bind_job_put(struct drm_sched_job *sched_job)
2219 {
2220 	struct panthor_vm_bind_job *job =
2221 		container_of(sched_job, struct panthor_vm_bind_job, base);
2222 
2223 	if (sched_job)
2224 		kref_put(&job->refcount, panthor_vm_bind_job_release);
2225 }
2226 
2227 static void
panthor_vm_bind_free_job(struct drm_sched_job * sched_job)2228 panthor_vm_bind_free_job(struct drm_sched_job *sched_job)
2229 {
2230 	struct panthor_vm_bind_job *job =
2231 		container_of(sched_job, struct panthor_vm_bind_job, base);
2232 
2233 	drm_sched_job_cleanup(sched_job);
2234 
2235 	/* Do the heavy cleanups asynchronously, so we're out of the
2236 	 * dma-signaling path and can acquire dma-resv locks safely.
2237 	 */
2238 	queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work);
2239 }
2240 
2241 static enum drm_gpu_sched_stat
panthor_vm_bind_timedout_job(struct drm_sched_job * sched_job)2242 panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job)
2243 {
2244 	WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!");
2245 	return DRM_GPU_SCHED_STAT_RESET;
2246 }
2247 
2248 static const struct drm_sched_backend_ops panthor_vm_bind_ops = {
2249 	.run_job = panthor_vm_bind_run_job,
2250 	.free_job = panthor_vm_bind_free_job,
2251 	.timedout_job = panthor_vm_bind_timedout_job,
2252 };
2253 
2254 /**
2255  * panthor_vm_create() - Create a VM
2256  * @ptdev: Device.
2257  * @for_mcu: True if this is the FW MCU VM.
2258  * @kernel_va_start: Start of the range reserved for kernel BO mapping.
2259  * @kernel_va_size: Size of the range reserved for kernel BO mapping.
2260  * @auto_kernel_va_start: Start of the auto-VA kernel range.
2261  * @auto_kernel_va_size: Size of the auto-VA kernel range.
2262  *
2263  * Return: A valid pointer on success, an ERR_PTR() otherwise.
2264  */
2265 struct panthor_vm *
panthor_vm_create(struct panthor_device * ptdev,bool for_mcu,u64 kernel_va_start,u64 kernel_va_size,u64 auto_kernel_va_start,u64 auto_kernel_va_size)2266 panthor_vm_create(struct panthor_device *ptdev, bool for_mcu,
2267 		  u64 kernel_va_start, u64 kernel_va_size,
2268 		  u64 auto_kernel_va_start, u64 auto_kernel_va_size)
2269 {
2270 	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
2271 	u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features);
2272 	u64 full_va_range = 1ull << va_bits;
2273 	struct drm_gem_object *dummy_gem;
2274 	struct drm_gpu_scheduler *sched;
2275 	const struct drm_sched_init_args sched_args = {
2276 		.ops = &panthor_vm_bind_ops,
2277 		.submit_wq = ptdev->mmu->vm.wq,
2278 		.num_rqs = 1,
2279 		.credit_limit = 1,
2280 		/* Bind operations are synchronous for now, no timeout needed. */
2281 		.timeout = MAX_SCHEDULE_TIMEOUT,
2282 		.name = "panthor-vm-bind",
2283 		.dev = ptdev->base.dev,
2284 	};
2285 	struct io_pgtable_cfg pgtbl_cfg;
2286 	u64 mair, min_va, va_range;
2287 	struct panthor_vm *vm;
2288 	int ret;
2289 
2290 	vm = kzalloc(sizeof(*vm), GFP_KERNEL);
2291 	if (!vm)
2292 		return ERR_PTR(-ENOMEM);
2293 
2294 	/* We allocate a dummy GEM for the VM. */
2295 	dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base);
2296 	if (!dummy_gem) {
2297 		ret = -ENOMEM;
2298 		goto err_free_vm;
2299 	}
2300 
2301 	mutex_init(&vm->heaps.lock);
2302 	vm->for_mcu = for_mcu;
2303 	vm->ptdev = ptdev;
2304 	mutex_init(&vm->op_lock);
2305 
2306 	if (for_mcu) {
2307 		/* CSF MCU is a cortex M7, and can only address 4G */
2308 		min_va = 0;
2309 		va_range = SZ_4G;
2310 	} else {
2311 		min_va = 0;
2312 		va_range = full_va_range;
2313 	}
2314 
2315 	mutex_init(&vm->mm_lock);
2316 	drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size);
2317 	vm->kernel_auto_va.start = auto_kernel_va_start;
2318 	vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1;
2319 
2320 	INIT_LIST_HEAD(&vm->node);
2321 	INIT_LIST_HEAD(&vm->as.lru_node);
2322 	vm->as.id = -1;
2323 	refcount_set(&vm->as.active_cnt, 0);
2324 
2325 	pgtbl_cfg = (struct io_pgtable_cfg) {
2326 		.pgsize_bitmap	= SZ_4K | SZ_2M,
2327 		.ias		= va_bits,
2328 		.oas		= pa_bits,
2329 		.coherent_walk	= ptdev->coherent,
2330 		.tlb		= &mmu_tlb_ops,
2331 		.iommu_dev	= ptdev->base.dev,
2332 		.alloc		= alloc_pt,
2333 		.free		= free_pt,
2334 	};
2335 
2336 	vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm);
2337 	if (!vm->pgtbl_ops) {
2338 		ret = -EINVAL;
2339 		goto err_mm_takedown;
2340 	}
2341 
2342 	ret = drm_sched_init(&vm->sched, &sched_args);
2343 	if (ret)
2344 		goto err_free_io_pgtable;
2345 
2346 	sched = &vm->sched;
2347 	ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL);
2348 	if (ret)
2349 		goto err_sched_fini;
2350 
2351 	mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair;
2352 	vm->memattr = mair_to_memattr(mair, ptdev->coherent);
2353 
2354 	mutex_lock(&ptdev->mmu->vm.lock);
2355 	list_add_tail(&vm->node, &ptdev->mmu->vm.list);
2356 
2357 	/* If a reset is in progress, stop the scheduler. */
2358 	if (ptdev->mmu->vm.reset_in_progress)
2359 		panthor_vm_stop(vm);
2360 	mutex_unlock(&ptdev->mmu->vm.lock);
2361 
2362 	/* We intentionally leave the reserved range to zero, because we want kernel VMAs
2363 	 * to be handled the same way user VMAs are.
2364 	 */
2365 	drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM",
2366 		       DRM_GPUVM_RESV_PROTECTED | DRM_GPUVM_IMMEDIATE_MODE,
2367 		       &ptdev->base, dummy_gem, min_va, va_range, 0, 0,
2368 		       &panthor_gpuvm_ops);
2369 	drm_gem_object_put(dummy_gem);
2370 	return vm;
2371 
2372 err_sched_fini:
2373 	drm_sched_fini(&vm->sched);
2374 
2375 err_free_io_pgtable:
2376 	free_io_pgtable_ops(vm->pgtbl_ops);
2377 
2378 err_mm_takedown:
2379 	drm_mm_takedown(&vm->mm);
2380 	drm_gem_object_put(dummy_gem);
2381 
2382 err_free_vm:
2383 	kfree(vm);
2384 	return ERR_PTR(ret);
2385 }
2386 
2387 static int
panthor_vm_bind_prepare_op_ctx(struct drm_file * file,struct panthor_vm * vm,const struct drm_panthor_vm_bind_op * op,struct panthor_vm_op_ctx * op_ctx)2388 panthor_vm_bind_prepare_op_ctx(struct drm_file *file,
2389 			       struct panthor_vm *vm,
2390 			       const struct drm_panthor_vm_bind_op *op,
2391 			       struct panthor_vm_op_ctx *op_ctx)
2392 {
2393 	ssize_t vm_pgsz = panthor_vm_page_size(vm);
2394 	struct drm_gem_object *gem;
2395 	int ret;
2396 
2397 	/* Aligned on page size. */
2398 	if (!IS_ALIGNED(op->va | op->size | op->bo_offset, vm_pgsz))
2399 		return -EINVAL;
2400 
2401 	switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
2402 	case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
2403 		gem = drm_gem_object_lookup(file, op->bo_handle);
2404 		ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm,
2405 						    gem ? to_panthor_bo(gem) : NULL,
2406 						    op->bo_offset,
2407 						    op->size,
2408 						    op->va,
2409 						    op->flags);
2410 		drm_gem_object_put(gem);
2411 		return ret;
2412 
2413 	case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
2414 		if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
2415 			return -EINVAL;
2416 
2417 		if (op->bo_handle || op->bo_offset)
2418 			return -EINVAL;
2419 
2420 		return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size);
2421 
2422 	case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY:
2423 		if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
2424 			return -EINVAL;
2425 
2426 		if (op->bo_handle || op->bo_offset)
2427 			return -EINVAL;
2428 
2429 		if (op->va || op->size)
2430 			return -EINVAL;
2431 
2432 		if (!op->syncs.count)
2433 			return -EINVAL;
2434 
2435 		panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm);
2436 		return 0;
2437 
2438 	default:
2439 		return -EINVAL;
2440 	}
2441 }
2442 
panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct * work)2443 static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work)
2444 {
2445 	struct panthor_vm_bind_job *job =
2446 		container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work);
2447 
2448 	panthor_vm_bind_job_put(&job->base);
2449 }
2450 
2451 /**
2452  * panthor_vm_bind_job_create() - Create a VM_BIND job
2453  * @file: File.
2454  * @vm: VM targeted by the VM_BIND job.
2455  * @op: VM operation data.
2456  *
2457  * Return: A valid pointer on success, an ERR_PTR() otherwise.
2458  */
2459 struct drm_sched_job *
panthor_vm_bind_job_create(struct drm_file * file,struct panthor_vm * vm,const struct drm_panthor_vm_bind_op * op)2460 panthor_vm_bind_job_create(struct drm_file *file,
2461 			   struct panthor_vm *vm,
2462 			   const struct drm_panthor_vm_bind_op *op)
2463 {
2464 	struct panthor_vm_bind_job *job;
2465 	int ret;
2466 
2467 	if (!vm)
2468 		return ERR_PTR(-EINVAL);
2469 
2470 	if (vm->destroyed || vm->unusable)
2471 		return ERR_PTR(-EINVAL);
2472 
2473 	job = kzalloc(sizeof(*job), GFP_KERNEL);
2474 	if (!job)
2475 		return ERR_PTR(-ENOMEM);
2476 
2477 	ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx);
2478 	if (ret) {
2479 		kfree(job);
2480 		return ERR_PTR(ret);
2481 	}
2482 
2483 	INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work);
2484 	kref_init(&job->refcount);
2485 	job->vm = panthor_vm_get(vm);
2486 
2487 	ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm, file->client_id);
2488 	if (ret)
2489 		goto err_put_job;
2490 
2491 	return &job->base;
2492 
2493 err_put_job:
2494 	panthor_vm_bind_job_put(&job->base);
2495 	return ERR_PTR(ret);
2496 }
2497 
2498 /**
2499  * panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs
2500  * @exec: The locking/preparation context.
2501  * @sched_job: The job to prepare resvs on.
2502  *
2503  * Locks and prepare the VM resv.
2504  *
2505  * If this is a map operation, locks and prepares the GEM resv.
2506  *
2507  * Return: 0 on success, a negative error code otherwise.
2508  */
panthor_vm_bind_job_prepare_resvs(struct drm_exec * exec,struct drm_sched_job * sched_job)2509 int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec,
2510 				      struct drm_sched_job *sched_job)
2511 {
2512 	struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2513 	int ret;
2514 
2515 	/* Acquire the VM lock an reserve a slot for this VM bind job. */
2516 	ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1);
2517 	if (ret)
2518 		return ret;
2519 
2520 	if (job->ctx.map.vm_bo) {
2521 		/* Lock/prepare the GEM being mapped. */
2522 		ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1);
2523 		if (ret)
2524 			return ret;
2525 	}
2526 
2527 	return 0;
2528 }
2529 
2530 /**
2531  * panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job
2532  * @exec: drm_exec context.
2533  * @sched_job: Job to update the resvs on.
2534  */
panthor_vm_bind_job_update_resvs(struct drm_exec * exec,struct drm_sched_job * sched_job)2535 void panthor_vm_bind_job_update_resvs(struct drm_exec *exec,
2536 				      struct drm_sched_job *sched_job)
2537 {
2538 	struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2539 
2540 	/* Explicit sync => we just register our job finished fence as bookkeep. */
2541 	drm_gpuvm_resv_add_fence(&job->vm->base, exec,
2542 				 &sched_job->s_fence->finished,
2543 				 DMA_RESV_USAGE_BOOKKEEP,
2544 				 DMA_RESV_USAGE_BOOKKEEP);
2545 }
2546 
panthor_vm_update_resvs(struct panthor_vm * vm,struct drm_exec * exec,struct dma_fence * fence,enum dma_resv_usage private_usage,enum dma_resv_usage extobj_usage)2547 void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec,
2548 			     struct dma_fence *fence,
2549 			     enum dma_resv_usage private_usage,
2550 			     enum dma_resv_usage extobj_usage)
2551 {
2552 	drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage);
2553 }
2554 
2555 /**
2556  * panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously.
2557  * @file: File.
2558  * @vm: VM targeted by the VM operation.
2559  * @op: Data describing the VM operation.
2560  *
2561  * Return: 0 on success, a negative error code otherwise.
2562  */
panthor_vm_bind_exec_sync_op(struct drm_file * file,struct panthor_vm * vm,struct drm_panthor_vm_bind_op * op)2563 int panthor_vm_bind_exec_sync_op(struct drm_file *file,
2564 				 struct panthor_vm *vm,
2565 				 struct drm_panthor_vm_bind_op *op)
2566 {
2567 	struct panthor_vm_op_ctx op_ctx;
2568 	int ret;
2569 
2570 	/* No sync objects allowed on synchronous operations. */
2571 	if (op->syncs.count)
2572 		return -EINVAL;
2573 
2574 	if (!op->size)
2575 		return 0;
2576 
2577 	ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx);
2578 	if (ret)
2579 		return ret;
2580 
2581 	ret = panthor_vm_exec_op(vm, &op_ctx, false);
2582 	panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2583 
2584 	return ret;
2585 }
2586 
2587 /**
2588  * panthor_vm_map_bo_range() - Map a GEM object range to a VM
2589  * @vm: VM to map the GEM to.
2590  * @bo: GEM object to map.
2591  * @offset: Offset in the GEM object.
2592  * @size: Size to map.
2593  * @va: Virtual address to map the object to.
2594  * @flags: Combination of drm_panthor_vm_bind_op_flags flags.
2595  * Only map-related flags are valid.
2596  *
2597  * Internal use only. For userspace requests, use
2598  * panthor_vm_bind_exec_sync_op() instead.
2599  *
2600  * Return: 0 on success, a negative error code otherwise.
2601  */
panthor_vm_map_bo_range(struct panthor_vm * vm,struct panthor_gem_object * bo,u64 offset,u64 size,u64 va,u32 flags)2602 int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo,
2603 			    u64 offset, u64 size, u64 va, u32 flags)
2604 {
2605 	struct panthor_vm_op_ctx op_ctx;
2606 	int ret;
2607 
2608 	ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags);
2609 	if (ret)
2610 		return ret;
2611 
2612 	ret = panthor_vm_exec_op(vm, &op_ctx, false);
2613 	panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2614 
2615 	return ret;
2616 }
2617 
2618 /**
2619  * panthor_vm_unmap_range() - Unmap a portion of the VA space
2620  * @vm: VM to unmap the region from.
2621  * @va: Virtual address to unmap. Must be 4k aligned.
2622  * @size: Size of the region to unmap. Must be 4k aligned.
2623  *
2624  * Internal use only. For userspace requests, use
2625  * panthor_vm_bind_exec_sync_op() instead.
2626  *
2627  * Return: 0 on success, a negative error code otherwise.
2628  */
panthor_vm_unmap_range(struct panthor_vm * vm,u64 va,u64 size)2629 int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size)
2630 {
2631 	struct panthor_vm_op_ctx op_ctx;
2632 	int ret;
2633 
2634 	ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size);
2635 	if (ret)
2636 		return ret;
2637 
2638 	ret = panthor_vm_exec_op(vm, &op_ctx, false);
2639 	panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2640 
2641 	return ret;
2642 }
2643 
2644 /**
2645  * panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs.
2646  * @exec: Locking/preparation context.
2647  * @vm: VM targeted by the GPU job.
2648  * @slot_count: Number of slots to reserve.
2649  *
2650  * GPU jobs assume all BOs bound to the VM at the time the job is submitted
2651  * are available when the job is executed. In order to guarantee that, we
2652  * need to reserve a slot on all BOs mapped to a VM and update this slot with
2653  * the job fence after its submission.
2654  *
2655  * Return: 0 on success, a negative error code otherwise.
2656  */
panthor_vm_prepare_mapped_bos_resvs(struct drm_exec * exec,struct panthor_vm * vm,u32 slot_count)2657 int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm,
2658 					u32 slot_count)
2659 {
2660 	int ret;
2661 
2662 	/* Acquire the VM lock and reserve a slot for this GPU job. */
2663 	ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count);
2664 	if (ret)
2665 		return ret;
2666 
2667 	return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count);
2668 }
2669 
2670 /**
2671  * panthor_mmu_unplug() - Unplug the MMU logic
2672  * @ptdev: Device.
2673  *
2674  * No access to the MMU regs should be done after this function is called.
2675  * We suspend the IRQ and disable all VMs to guarantee that.
2676  */
panthor_mmu_unplug(struct panthor_device * ptdev)2677 void panthor_mmu_unplug(struct panthor_device *ptdev)
2678 {
2679 	if (!IS_ENABLED(CONFIG_PM) || pm_runtime_active(ptdev->base.dev))
2680 		panthor_mmu_irq_suspend(&ptdev->mmu->irq);
2681 
2682 	mutex_lock(&ptdev->mmu->as.slots_lock);
2683 	for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
2684 		struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
2685 
2686 		if (vm) {
2687 			drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
2688 			panthor_vm_release_as_locked(vm);
2689 		}
2690 	}
2691 	mutex_unlock(&ptdev->mmu->as.slots_lock);
2692 }
2693 
panthor_mmu_release_wq(struct drm_device * ddev,void * res)2694 static void panthor_mmu_release_wq(struct drm_device *ddev, void *res)
2695 {
2696 	destroy_workqueue(res);
2697 }
2698 
2699 /**
2700  * panthor_mmu_init() - Initialize the MMU logic.
2701  * @ptdev: Device.
2702  *
2703  * Return: 0 on success, a negative error code otherwise.
2704  */
panthor_mmu_init(struct panthor_device * ptdev)2705 int panthor_mmu_init(struct panthor_device *ptdev)
2706 {
2707 	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
2708 	struct panthor_mmu *mmu;
2709 	int ret, irq;
2710 
2711 	mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL);
2712 	if (!mmu)
2713 		return -ENOMEM;
2714 
2715 	INIT_LIST_HEAD(&mmu->as.lru_list);
2716 
2717 	ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock);
2718 	if (ret)
2719 		return ret;
2720 
2721 	INIT_LIST_HEAD(&mmu->vm.list);
2722 	ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock);
2723 	if (ret)
2724 		return ret;
2725 
2726 	ptdev->mmu = mmu;
2727 
2728 	irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu");
2729 	if (irq <= 0)
2730 		return -ENODEV;
2731 
2732 	ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq,
2733 				      panthor_mmu_fault_mask(ptdev, ~0));
2734 	if (ret)
2735 		return ret;
2736 
2737 	mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0);
2738 	if (!mmu->vm.wq)
2739 		return -ENOMEM;
2740 
2741 	/* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction,
2742 	 * which passes iova as an unsigned long. Patch the mmu_features to reflect this
2743 	 * limitation.
2744 	 */
2745 	if (va_bits > BITS_PER_LONG) {
2746 		ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0);
2747 		ptdev->gpu_info.mmu_features |= BITS_PER_LONG;
2748 	}
2749 
2750 	return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq);
2751 }
2752 
2753 #ifdef CONFIG_DEBUG_FS
show_vm_gpuvas(struct panthor_vm * vm,struct seq_file * m)2754 static int show_vm_gpuvas(struct panthor_vm *vm, struct seq_file *m)
2755 {
2756 	int ret;
2757 
2758 	mutex_lock(&vm->op_lock);
2759 	ret = drm_debugfs_gpuva_info(m, &vm->base);
2760 	mutex_unlock(&vm->op_lock);
2761 
2762 	return ret;
2763 }
2764 
show_each_vm(struct seq_file * m,void * arg)2765 static int show_each_vm(struct seq_file *m, void *arg)
2766 {
2767 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2768 	struct drm_device *ddev = node->minor->dev;
2769 	struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base);
2770 	int (*show)(struct panthor_vm *, struct seq_file *) = node->info_ent->data;
2771 	struct panthor_vm *vm;
2772 	int ret = 0;
2773 
2774 	mutex_lock(&ptdev->mmu->vm.lock);
2775 	list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
2776 		ret = show(vm, m);
2777 		if (ret < 0)
2778 			break;
2779 
2780 		seq_puts(m, "\n");
2781 	}
2782 	mutex_unlock(&ptdev->mmu->vm.lock);
2783 
2784 	return ret;
2785 }
2786 
2787 static struct drm_info_list panthor_mmu_debugfs_list[] = {
2788 	DRM_DEBUGFS_GPUVA_INFO(show_each_vm, show_vm_gpuvas),
2789 };
2790 
2791 /**
2792  * panthor_mmu_debugfs_init() - Initialize MMU debugfs entries
2793  * @minor: Minor.
2794  */
panthor_mmu_debugfs_init(struct drm_minor * minor)2795 void panthor_mmu_debugfs_init(struct drm_minor *minor)
2796 {
2797 	drm_debugfs_create_files(panthor_mmu_debugfs_list,
2798 				 ARRAY_SIZE(panthor_mmu_debugfs_list),
2799 				 minor->debugfs_root, minor);
2800 }
2801 #endif /* CONFIG_DEBUG_FS */
2802 
2803 /**
2804  * panthor_mmu_pt_cache_init() - Initialize the page table cache.
2805  *
2806  * Return: 0 on success, a negative error code otherwise.
2807  */
panthor_mmu_pt_cache_init(void)2808 int panthor_mmu_pt_cache_init(void)
2809 {
2810 	pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL);
2811 	if (!pt_cache)
2812 		return -ENOMEM;
2813 
2814 	return 0;
2815 }
2816 
2817 /**
2818  * panthor_mmu_pt_cache_fini() - Destroy the page table cache.
2819  */
panthor_mmu_pt_cache_fini(void)2820 void panthor_mmu_pt_cache_fini(void)
2821 {
2822 	kmem_cache_destroy(pt_cache);
2823 }
2824