1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * access_tracking_perf_test 4 * 5 * Copyright (C) 2021, Google, Inc. 6 * 7 * This test measures the performance effects of KVM's access tracking. 8 * Access tracking is driven by the MMU notifiers test_young, clear_young, and 9 * clear_flush_young. These notifiers do not have a direct userspace API, 10 * however the clear_young notifier can be triggered either by 11 * 1. marking a pages as idle in /sys/kernel/mm/page_idle/bitmap OR 12 * 2. adding a new MGLRU generation using the lru_gen debugfs file. 13 * This test leverages page_idle to enable access tracking on guest memory 14 * unless MGLRU is enabled, in which case MGLRU is used. 15 * 16 * To measure performance this test runs a VM with a configurable number of 17 * vCPUs that each touch every page in disjoint regions of memory. Performance 18 * is measured in the time it takes all vCPUs to finish touching their 19 * predefined region. 20 * 21 * Note that a deterministic correctness test of access tracking is not possible 22 * by using page_idle or MGLRU aging as it exists today. This is for a few 23 * reasons: 24 * 25 * 1. page_idle and MGLRU only issue clear_young notifiers, which lack a TLB flush. 26 * This means subsequent guest accesses are not guaranteed to see page table 27 * updates made by KVM until some time in the future. 28 * 29 * 2. page_idle only operates on LRU pages. Newly allocated pages are not 30 * immediately allocated to LRU lists. Instead they are held in a "pagevec", 31 * which is drained to LRU lists some time in the future. There is no 32 * userspace API to force this drain to occur. 33 * 34 * These limitations are worked around in this test by using a large enough 35 * region of memory for each vCPU such that the number of translations cached in 36 * the TLB and the number of pages held in pagevecs are a small fraction of the 37 * overall workload. And if either of those conditions are not true (for example 38 * in nesting, where TLB size is unlimited) this test will print a warning 39 * rather than silently passing. 40 */ 41 #include <inttypes.h> 42 #include <limits.h> 43 #include <pthread.h> 44 #include <sys/mman.h> 45 #include <sys/types.h> 46 #include <sys/stat.h> 47 48 #include "kvm_util.h" 49 #include "test_util.h" 50 #include "memstress.h" 51 #include "guest_modes.h" 52 #include "processor.h" 53 #include "ucall_common.h" 54 55 #include "cgroup_util.h" 56 #include "lru_gen_util.h" 57 58 static const char *TEST_MEMCG_NAME = "access_tracking_perf_test"; 59 60 /* Global variable used to synchronize all of the vCPU threads. */ 61 static int iteration; 62 63 /* The cgroup memory controller root. Needed for lru_gen-based aging. */ 64 char cgroup_root[PATH_MAX]; 65 66 /* Defines what vCPU threads should do during a given iteration. */ 67 static enum { 68 /* Run the vCPU to access all its memory. */ 69 ITERATION_ACCESS_MEMORY, 70 /* Mark the vCPU's memory idle in page_idle. */ 71 ITERATION_MARK_IDLE, 72 } iteration_work; 73 74 /* The iteration that was last completed by each vCPU. */ 75 static int vcpu_last_completed_iteration[KVM_MAX_VCPUS]; 76 77 /* Whether to overlap the regions of memory vCPUs access. */ 78 static bool overlap_memory_access; 79 80 /* 81 * If the test should only warn if there are too many idle pages (i.e., it is 82 * expected). 83 * -1: Not yet set. 84 * 0: We do not expect too many idle pages, so FAIL if too many idle pages. 85 * 1: Having too many idle pages is expected, so merely print a warning if 86 * too many idle pages are found. 87 */ 88 static int idle_pages_warn_only = -1; 89 90 /* Whether or not to use MGLRU instead of page_idle for access tracking */ 91 static bool use_lru_gen; 92 93 /* Total number of pages to expect in the memcg after touching everything */ 94 static long test_pages; 95 96 /* Last generation we found the pages in */ 97 static int lru_gen_last_gen = -1; 98 99 struct test_params { 100 /* The backing source for the region of memory. */ 101 enum vm_mem_backing_src_type backing_src; 102 103 /* The amount of memory to allocate for each vCPU. */ 104 uint64_t vcpu_memory_bytes; 105 106 /* The number of vCPUs to create in the VM. */ 107 int nr_vcpus; 108 }; 109 110 static uint64_t pread_uint64(int fd, const char *filename, uint64_t index) 111 { 112 uint64_t value; 113 off_t offset = index * sizeof(value); 114 115 TEST_ASSERT(pread(fd, &value, sizeof(value), offset) == sizeof(value), 116 "pread from %s offset 0x%" PRIx64 " failed!", 117 filename, offset); 118 119 return value; 120 121 } 122 123 #define PAGEMAP_PRESENT (1ULL << 63) 124 #define PAGEMAP_PFN_MASK ((1ULL << 55) - 1) 125 126 static uint64_t lookup_pfn(int pagemap_fd, struct kvm_vm *vm, uint64_t gva) 127 { 128 uint64_t hva = (uint64_t) addr_gva2hva(vm, gva); 129 uint64_t entry; 130 uint64_t pfn; 131 132 entry = pread_uint64(pagemap_fd, "pagemap", hva / getpagesize()); 133 if (!(entry & PAGEMAP_PRESENT)) 134 return 0; 135 136 pfn = entry & PAGEMAP_PFN_MASK; 137 __TEST_REQUIRE(pfn, "Looking up PFNs requires CAP_SYS_ADMIN"); 138 139 return pfn; 140 } 141 142 static bool is_page_idle(int page_idle_fd, uint64_t pfn) 143 { 144 uint64_t bits = pread_uint64(page_idle_fd, "page_idle", pfn / 64); 145 146 return !!((bits >> (pfn % 64)) & 1); 147 } 148 149 static void mark_page_idle(int page_idle_fd, uint64_t pfn) 150 { 151 uint64_t bits = 1ULL << (pfn % 64); 152 153 TEST_ASSERT(pwrite(page_idle_fd, &bits, 8, 8 * (pfn / 64)) == 8, 154 "Set page_idle bits for PFN 0x%" PRIx64, pfn); 155 } 156 157 static void too_many_idle_pages(long idle_pages, long total_pages, int vcpu_idx) 158 { 159 char prefix[18] = {}; 160 161 if (vcpu_idx >= 0) 162 snprintf(prefix, 18, "vCPU%d: ", vcpu_idx); 163 164 TEST_ASSERT(idle_pages_warn_only, 165 "%sToo many pages still idle (%lu out of %lu)", 166 prefix, idle_pages, total_pages); 167 168 printf("WARNING: %sToo many pages still idle (%lu out of %lu), " 169 "this will affect performance results.\n", 170 prefix, idle_pages, total_pages); 171 } 172 173 static void pageidle_mark_vcpu_memory_idle(struct kvm_vm *vm, 174 struct memstress_vcpu_args *vcpu_args) 175 { 176 int vcpu_idx = vcpu_args->vcpu_idx; 177 uint64_t base_gva = vcpu_args->gva; 178 uint64_t pages = vcpu_args->pages; 179 uint64_t page; 180 uint64_t still_idle = 0; 181 uint64_t no_pfn = 0; 182 int page_idle_fd; 183 int pagemap_fd; 184 185 /* If vCPUs are using an overlapping region, let vCPU 0 mark it idle. */ 186 if (overlap_memory_access && vcpu_idx) 187 return; 188 189 page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR); 190 TEST_ASSERT(page_idle_fd > 0, "Failed to open page_idle."); 191 192 pagemap_fd = open("/proc/self/pagemap", O_RDONLY); 193 TEST_ASSERT(pagemap_fd > 0, "Failed to open pagemap."); 194 195 for (page = 0; page < pages; page++) { 196 uint64_t gva = base_gva + page * memstress_args.guest_page_size; 197 uint64_t pfn = lookup_pfn(pagemap_fd, vm, gva); 198 199 if (!pfn) { 200 no_pfn++; 201 continue; 202 } 203 204 if (is_page_idle(page_idle_fd, pfn)) { 205 still_idle++; 206 continue; 207 } 208 209 mark_page_idle(page_idle_fd, pfn); 210 } 211 212 /* 213 * Assumption: Less than 1% of pages are going to be swapped out from 214 * under us during this test. 215 */ 216 TEST_ASSERT(no_pfn < pages / 100, 217 "vCPU %d: No PFN for %" PRIu64 " out of %" PRIu64 " pages.", 218 vcpu_idx, no_pfn, pages); 219 220 /* 221 * Check that at least 90% of memory has been marked idle (the rest 222 * might not be marked idle because the pages have not yet made it to an 223 * LRU list or the translations are still cached in the TLB). 90% is 224 * arbitrary; high enough that we ensure most memory access went through 225 * access tracking but low enough as to not make the test too brittle 226 * over time and across architectures. 227 */ 228 if (still_idle >= pages / 10) 229 too_many_idle_pages(still_idle, pages, 230 overlap_memory_access ? -1 : vcpu_idx); 231 232 close(page_idle_fd); 233 close(pagemap_fd); 234 } 235 236 int find_generation(struct memcg_stats *stats, long total_pages) 237 { 238 /* 239 * For finding the generation that contains our pages, use the same 240 * 90% threshold that page_idle uses. 241 */ 242 int gen = lru_gen_find_generation(stats, total_pages * 9 / 10); 243 244 if (gen >= 0) 245 return gen; 246 247 if (!idle_pages_warn_only) { 248 TEST_FAIL("Could not find a generation with 90%% of guest memory (%ld pages).", 249 total_pages * 9 / 10); 250 return gen; 251 } 252 253 /* 254 * We couldn't find a generation with 90% of guest memory, which can 255 * happen if access tracking is unreliable. Simply look for a majority 256 * of pages. 257 */ 258 puts("WARNING: Couldn't find a generation with 90% of guest memory. " 259 "Performance results may not be accurate."); 260 gen = lru_gen_find_generation(stats, total_pages / 2); 261 TEST_ASSERT(gen >= 0, 262 "Could not find a generation with 50%% of guest memory (%ld pages).", 263 total_pages / 2); 264 return gen; 265 } 266 267 static void lru_gen_mark_memory_idle(struct kvm_vm *vm) 268 { 269 struct timespec ts_start; 270 struct timespec ts_elapsed; 271 struct memcg_stats stats; 272 int new_gen; 273 274 /* Make a new generation */ 275 clock_gettime(CLOCK_MONOTONIC, &ts_start); 276 lru_gen_do_aging(&stats, TEST_MEMCG_NAME); 277 ts_elapsed = timespec_elapsed(ts_start); 278 279 /* Check the generation again */ 280 new_gen = find_generation(&stats, test_pages); 281 282 /* 283 * This function should only be invoked with newly-accessed pages, 284 * so pages should always move to a newer generation. 285 */ 286 if (new_gen <= lru_gen_last_gen) { 287 /* We did not move to a newer generation. */ 288 long idle_pages = lru_gen_sum_memcg_stats_for_gen(lru_gen_last_gen, 289 &stats); 290 291 too_many_idle_pages(min_t(long, idle_pages, test_pages), 292 test_pages, -1); 293 } 294 pr_info("%-30s: %ld.%09lds\n", 295 "Mark memory idle (lru_gen)", ts_elapsed.tv_sec, 296 ts_elapsed.tv_nsec); 297 lru_gen_last_gen = new_gen; 298 } 299 300 static void assert_ucall(struct kvm_vcpu *vcpu, uint64_t expected_ucall) 301 { 302 struct ucall uc; 303 uint64_t actual_ucall = get_ucall(vcpu, &uc); 304 305 TEST_ASSERT(expected_ucall == actual_ucall, 306 "Guest exited unexpectedly (expected ucall %" PRIu64 307 ", got %" PRIu64 ")", 308 expected_ucall, actual_ucall); 309 } 310 311 static bool spin_wait_for_next_iteration(int *current_iteration) 312 { 313 int last_iteration = *current_iteration; 314 315 do { 316 if (READ_ONCE(memstress_args.stop_vcpus)) 317 return false; 318 319 *current_iteration = READ_ONCE(iteration); 320 } while (last_iteration == *current_iteration); 321 322 return true; 323 } 324 325 static void vcpu_thread_main(struct memstress_vcpu_args *vcpu_args) 326 { 327 struct kvm_vcpu *vcpu = vcpu_args->vcpu; 328 struct kvm_vm *vm = memstress_args.vm; 329 int vcpu_idx = vcpu_args->vcpu_idx; 330 int current_iteration = 0; 331 332 while (spin_wait_for_next_iteration(¤t_iteration)) { 333 switch (READ_ONCE(iteration_work)) { 334 case ITERATION_ACCESS_MEMORY: 335 vcpu_run(vcpu); 336 assert_ucall(vcpu, UCALL_SYNC); 337 break; 338 case ITERATION_MARK_IDLE: 339 pageidle_mark_vcpu_memory_idle(vm, vcpu_args); 340 break; 341 } 342 343 vcpu_last_completed_iteration[vcpu_idx] = current_iteration; 344 } 345 } 346 347 static void spin_wait_for_vcpu(int vcpu_idx, int target_iteration) 348 { 349 while (READ_ONCE(vcpu_last_completed_iteration[vcpu_idx]) != 350 target_iteration) { 351 continue; 352 } 353 } 354 355 /* The type of memory accesses to perform in the VM. */ 356 enum access_type { 357 ACCESS_READ, 358 ACCESS_WRITE, 359 }; 360 361 static void run_iteration(struct kvm_vm *vm, int nr_vcpus, const char *description) 362 { 363 struct timespec ts_start; 364 struct timespec ts_elapsed; 365 int next_iteration, i; 366 367 /* Kick off the vCPUs by incrementing iteration. */ 368 next_iteration = ++iteration; 369 370 clock_gettime(CLOCK_MONOTONIC, &ts_start); 371 372 /* Wait for all vCPUs to finish the iteration. */ 373 for (i = 0; i < nr_vcpus; i++) 374 spin_wait_for_vcpu(i, next_iteration); 375 376 ts_elapsed = timespec_elapsed(ts_start); 377 pr_info("%-30s: %ld.%09lds\n", 378 description, ts_elapsed.tv_sec, ts_elapsed.tv_nsec); 379 } 380 381 static void access_memory(struct kvm_vm *vm, int nr_vcpus, 382 enum access_type access, const char *description) 383 { 384 memstress_set_write_percent(vm, (access == ACCESS_READ) ? 0 : 100); 385 iteration_work = ITERATION_ACCESS_MEMORY; 386 run_iteration(vm, nr_vcpus, description); 387 } 388 389 static void mark_memory_idle(struct kvm_vm *vm, int nr_vcpus) 390 { 391 if (use_lru_gen) 392 return lru_gen_mark_memory_idle(vm); 393 394 /* 395 * Even though this parallelizes the work across vCPUs, this is still a 396 * very slow operation because page_idle forces the test to mark one pfn 397 * at a time and the clear_young notifier may serialize on the KVM MMU 398 * lock. 399 */ 400 pr_debug("Marking VM memory idle (slow)...\n"); 401 iteration_work = ITERATION_MARK_IDLE; 402 run_iteration(vm, nr_vcpus, "Mark memory idle (page_idle)"); 403 } 404 405 static void run_test(enum vm_guest_mode mode, void *arg) 406 { 407 struct test_params *params = arg; 408 struct kvm_vm *vm; 409 int nr_vcpus = params->nr_vcpus; 410 411 vm = memstress_create_vm(mode, nr_vcpus, params->vcpu_memory_bytes, 1, 412 params->backing_src, !overlap_memory_access); 413 414 /* 415 * If guest_page_size is larger than the host's page size, the 416 * guest (memstress) will only fault in a subset of the host's pages. 417 */ 418 test_pages = params->nr_vcpus * params->vcpu_memory_bytes / 419 max(memstress_args.guest_page_size, 420 (uint64_t)getpagesize()); 421 422 memstress_start_vcpu_threads(nr_vcpus, vcpu_thread_main); 423 424 pr_info("\n"); 425 access_memory(vm, nr_vcpus, ACCESS_WRITE, "Populating memory"); 426 427 if (use_lru_gen) { 428 struct memcg_stats stats; 429 430 /* 431 * Do a page table scan now. Following initial population, aging 432 * may not cause the pages to move to a newer generation. Do 433 * an aging pass now so that future aging passes always move 434 * pages to a newer generation. 435 */ 436 printf("Initial aging pass (lru_gen)\n"); 437 lru_gen_do_aging(&stats, TEST_MEMCG_NAME); 438 TEST_ASSERT(lru_gen_sum_memcg_stats(&stats) >= test_pages, 439 "Not all pages accounted for (looking for %ld). " 440 "Was the memcg set up correctly?", test_pages); 441 access_memory(vm, nr_vcpus, ACCESS_WRITE, "Re-populating memory"); 442 lru_gen_read_memcg_stats(&stats, TEST_MEMCG_NAME); 443 lru_gen_last_gen = find_generation(&stats, test_pages); 444 } 445 446 /* As a control, read and write to the populated memory first. */ 447 access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to populated memory"); 448 access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from populated memory"); 449 450 /* Repeat on memory that has been marked as idle. */ 451 mark_memory_idle(vm, nr_vcpus); 452 access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to idle memory"); 453 mark_memory_idle(vm, nr_vcpus); 454 access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from idle memory"); 455 456 memstress_join_vcpu_threads(nr_vcpus); 457 memstress_destroy_vm(vm); 458 } 459 460 static int access_tracking_unreliable(void) 461 { 462 #ifdef __x86_64__ 463 /* 464 * When running nested, the TLB size may be effectively unlimited (for 465 * example, this is the case when running on KVM L0), and KVM doesn't 466 * explicitly flush the TLB when aging SPTEs. As a result, more pages 467 * are cached and the guest won't see the "idle" bit cleared. 468 */ 469 if (this_cpu_has(X86_FEATURE_HYPERVISOR)) { 470 puts("Skipping idle page count sanity check, because the test is run nested"); 471 return 1; 472 } 473 #endif 474 /* 475 * When NUMA balancing is enabled, guest memory will be unmapped to get 476 * NUMA faults, dropping the Accessed bits. 477 */ 478 if (is_numa_balancing_enabled()) { 479 puts("Skipping idle page count sanity check, because NUMA balancing is enabled"); 480 return 1; 481 } 482 return 0; 483 } 484 485 static int run_test_for_each_guest_mode(const char *cgroup, void *arg) 486 { 487 for_each_guest_mode(run_test, arg); 488 return 0; 489 } 490 491 static void help(char *name) 492 { 493 puts(""); 494 printf("usage: %s [-h] [-m mode] [-b vcpu_bytes] [-v vcpus] [-o] [-s mem_type]\n", 495 name); 496 puts(""); 497 printf(" -h: Display this help message."); 498 guest_modes_help(); 499 printf(" -b: specify the size of the memory region which should be\n" 500 " dirtied by each vCPU. e.g. 10M or 3G.\n" 501 " (default: 1G)\n"); 502 printf(" -v: specify the number of vCPUs to run.\n"); 503 printf(" -o: Overlap guest memory accesses instead of partitioning\n" 504 " them into a separate region of memory for each vCPU.\n"); 505 printf(" -w: Control whether the test warns or fails if more than 10%%\n" 506 " of pages are still seen as idle/old after accessing guest\n" 507 " memory. >0 == warn only, 0 == fail, <0 == auto. For auto\n" 508 " mode, the test fails by default, but switches to warn only\n" 509 " if NUMA balancing is enabled or the test detects it's running\n" 510 " in a VM.\n"); 511 backing_src_help("-s"); 512 puts(""); 513 exit(0); 514 } 515 516 void destroy_cgroup(char *cg) 517 { 518 printf("Destroying cgroup: %s\n", cg); 519 } 520 521 int main(int argc, char *argv[]) 522 { 523 struct test_params params = { 524 .backing_src = DEFAULT_VM_MEM_SRC, 525 .vcpu_memory_bytes = DEFAULT_PER_VCPU_MEM_SIZE, 526 .nr_vcpus = 1, 527 }; 528 char *new_cg = NULL; 529 int page_idle_fd; 530 int opt; 531 532 guest_modes_append_default(); 533 534 while ((opt = getopt(argc, argv, "hm:b:v:os:w:")) != -1) { 535 switch (opt) { 536 case 'm': 537 guest_modes_cmdline(optarg); 538 break; 539 case 'b': 540 params.vcpu_memory_bytes = parse_size(optarg); 541 break; 542 case 'v': 543 params.nr_vcpus = atoi_positive("Number of vCPUs", optarg); 544 break; 545 case 'o': 546 overlap_memory_access = true; 547 break; 548 case 's': 549 params.backing_src = parse_backing_src_type(optarg); 550 break; 551 case 'w': 552 idle_pages_warn_only = 553 atoi_non_negative("Idle pages warning", 554 optarg); 555 break; 556 case 'h': 557 default: 558 help(argv[0]); 559 break; 560 } 561 } 562 563 if (idle_pages_warn_only == -1) 564 idle_pages_warn_only = access_tracking_unreliable(); 565 566 if (lru_gen_usable()) { 567 bool cg_created = true; 568 int ret; 569 570 puts("Using lru_gen for aging"); 571 use_lru_gen = true; 572 573 if (cg_find_controller_root(cgroup_root, sizeof(cgroup_root), "memory")) 574 ksft_exit_skip("Cannot find memory cgroup controller\n"); 575 576 new_cg = cg_name(cgroup_root, TEST_MEMCG_NAME); 577 printf("Creating cgroup: %s\n", new_cg); 578 if (cg_create(new_cg)) { 579 if (errno == EEXIST) { 580 printf("Found existing cgroup"); 581 cg_created = false; 582 } else { 583 ksft_exit_skip("could not create new cgroup: %s\n", new_cg); 584 } 585 } 586 587 /* 588 * This will fork off a new process to run the test within 589 * a new memcg, so we need to properly propagate the return 590 * value up. 591 */ 592 ret = cg_run(new_cg, &run_test_for_each_guest_mode, ¶ms); 593 if (cg_created) 594 cg_destroy(new_cg); 595 if (ret < 0) 596 TEST_FAIL("child did not spawn or was abnormally killed"); 597 if (ret) 598 return ret; 599 } else { 600 page_idle_fd = __open_path_or_exit("/sys/kernel/mm/page_idle/bitmap", O_RDWR, 601 "Is CONFIG_IDLE_PAGE_TRACKING enabled?"); 602 close(page_idle_fd); 603 604 puts("Using page_idle for aging"); 605 run_test_for_each_guest_mode(NULL, ¶ms); 606 } 607 608 return 0; 609 } 610