xref: /linux/drivers/scsi/lpfc/lpfc_init.c (revision 3ed7df085225ea8736b80d1e1a247a40d91281c8)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2024 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/idr.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/kthread.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33 #include <linux/sched/clock.h>
34 #include <linux/ctype.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <linux/miscdevice.h>
38 #include <linux/percpu.h>
39 #include <linux/irq.h>
40 #include <linux/bitops.h>
41 #include <linux/crash_dump.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuhotplug.h>
44 
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_transport_fc.h>
49 #include <scsi/scsi_tcq.h>
50 #include <scsi/fc/fc_fs.h>
51 
52 #include "lpfc_hw4.h"
53 #include "lpfc_hw.h"
54 #include "lpfc_sli.h"
55 #include "lpfc_sli4.h"
56 #include "lpfc_nl.h"
57 #include "lpfc_disc.h"
58 #include "lpfc.h"
59 #include "lpfc_scsi.h"
60 #include "lpfc_nvme.h"
61 #include "lpfc_logmsg.h"
62 #include "lpfc_crtn.h"
63 #include "lpfc_vport.h"
64 #include "lpfc_version.h"
65 #include "lpfc_ids.h"
66 
67 static enum cpuhp_state lpfc_cpuhp_state;
68 /* Used when mapping IRQ vectors in a driver centric manner */
69 static uint32_t lpfc_present_cpu;
70 static bool lpfc_pldv_detect;
71 
72 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba);
73 static void lpfc_cpuhp_remove(struct lpfc_hba *phba);
74 static void lpfc_cpuhp_add(struct lpfc_hba *phba);
75 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
76 static int lpfc_post_rcv_buf(struct lpfc_hba *);
77 static int lpfc_sli4_queue_verify(struct lpfc_hba *);
78 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *);
79 static int lpfc_setup_endian_order(struct lpfc_hba *);
80 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *);
81 static void lpfc_free_els_sgl_list(struct lpfc_hba *);
82 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *);
83 static void lpfc_init_sgl_list(struct lpfc_hba *);
84 static int lpfc_init_active_sgl_array(struct lpfc_hba *);
85 static void lpfc_free_active_sgl(struct lpfc_hba *);
86 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba);
87 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba);
88 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *);
89 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *);
90 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *);
91 static void lpfc_sli4_disable_intr(struct lpfc_hba *);
92 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t);
93 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba);
94 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int);
95 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *);
96 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *);
97 static void lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba);
98 static void lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba);
99 
100 static struct scsi_transport_template *lpfc_transport_template = NULL;
101 static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
102 static DEFINE_IDR(lpfc_hba_index);
103 #define LPFC_NVMET_BUF_POST 254
104 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport);
105 static void lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts);
106 
107 /**
108  * lpfc_config_port_prep - Perform lpfc initialization prior to config port
109  * @phba: pointer to lpfc hba data structure.
110  *
111  * This routine will do LPFC initialization prior to issuing the CONFIG_PORT
112  * mailbox command. It retrieves the revision information from the HBA and
113  * collects the Vital Product Data (VPD) about the HBA for preparing the
114  * configuration of the HBA.
115  *
116  * Return codes:
117  *   0 - success.
118  *   -ERESTART - requests the SLI layer to reset the HBA and try again.
119  *   Any other value - indicates an error.
120  **/
121 int
lpfc_config_port_prep(struct lpfc_hba * phba)122 lpfc_config_port_prep(struct lpfc_hba *phba)
123 {
124 	lpfc_vpd_t *vp = &phba->vpd;
125 	int i = 0, rc;
126 	LPFC_MBOXQ_t *pmb;
127 	MAILBOX_t *mb;
128 	char *lpfc_vpd_data = NULL;
129 	uint16_t offset = 0;
130 	static char licensed[56] =
131 		    "key unlock for use with gnu public licensed code only\0";
132 	static int init_key = 1;
133 
134 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
135 	if (!pmb) {
136 		phba->link_state = LPFC_HBA_ERROR;
137 		return -ENOMEM;
138 	}
139 
140 	mb = &pmb->u.mb;
141 	phba->link_state = LPFC_INIT_MBX_CMDS;
142 
143 	if (lpfc_is_LC_HBA(phba->pcidev->device)) {
144 		if (init_key) {
145 			uint32_t *ptext = (uint32_t *) licensed;
146 
147 			for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
148 				*ptext = cpu_to_be32(*ptext);
149 			init_key = 0;
150 		}
151 
152 		lpfc_read_nv(phba, pmb);
153 		memset((char*)mb->un.varRDnvp.rsvd3, 0,
154 			sizeof (mb->un.varRDnvp.rsvd3));
155 		memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
156 			 sizeof (licensed));
157 
158 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
159 
160 		if (rc != MBX_SUCCESS) {
161 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
162 					"0324 Config Port initialization "
163 					"error, mbxCmd x%x READ_NVPARM, "
164 					"mbxStatus x%x\n",
165 					mb->mbxCommand, mb->mbxStatus);
166 			mempool_free(pmb, phba->mbox_mem_pool);
167 			return -ERESTART;
168 		}
169 		memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
170 		       sizeof(phba->wwnn));
171 		memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
172 		       sizeof(phba->wwpn));
173 	}
174 
175 	/*
176 	 * Clear all option bits except LPFC_SLI3_BG_ENABLED,
177 	 * which was already set in lpfc_get_cfgparam()
178 	 */
179 	phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED;
180 
181 	/* Setup and issue mailbox READ REV command */
182 	lpfc_read_rev(phba, pmb);
183 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
184 	if (rc != MBX_SUCCESS) {
185 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
186 				"0439 Adapter failed to init, mbxCmd x%x "
187 				"READ_REV, mbxStatus x%x\n",
188 				mb->mbxCommand, mb->mbxStatus);
189 		mempool_free( pmb, phba->mbox_mem_pool);
190 		return -ERESTART;
191 	}
192 
193 
194 	/*
195 	 * The value of rr must be 1 since the driver set the cv field to 1.
196 	 * This setting requires the FW to set all revision fields.
197 	 */
198 	if (mb->un.varRdRev.rr == 0) {
199 		vp->rev.rBit = 0;
200 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
201 				"0440 Adapter failed to init, READ_REV has "
202 				"missing revision information.\n");
203 		mempool_free(pmb, phba->mbox_mem_pool);
204 		return -ERESTART;
205 	}
206 
207 	if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
208 		mempool_free(pmb, phba->mbox_mem_pool);
209 		return -EINVAL;
210 	}
211 
212 	/* Save information as VPD data */
213 	vp->rev.rBit = 1;
214 	memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
215 	vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
216 	memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
217 	vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
218 	memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
219 	vp->rev.biuRev = mb->un.varRdRev.biuRev;
220 	vp->rev.smRev = mb->un.varRdRev.smRev;
221 	vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
222 	vp->rev.endecRev = mb->un.varRdRev.endecRev;
223 	vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
224 	vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
225 	vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
226 	vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
227 	vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
228 	vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
229 
230 	/* If the sli feature level is less then 9, we must
231 	 * tear down all RPIs and VPIs on link down if NPIV
232 	 * is enabled.
233 	 */
234 	if (vp->rev.feaLevelHigh < 9)
235 		phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
236 
237 	if (lpfc_is_LC_HBA(phba->pcidev->device))
238 		memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
239 						sizeof (phba->RandomData));
240 
241 	/* Get adapter VPD information */
242 	lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
243 	if (!lpfc_vpd_data)
244 		goto out_free_mbox;
245 	do {
246 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD);
247 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
248 
249 		if (rc != MBX_SUCCESS) {
250 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
251 					"0441 VPD not present on adapter, "
252 					"mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
253 					mb->mbxCommand, mb->mbxStatus);
254 			mb->un.varDmp.word_cnt = 0;
255 		}
256 		/* dump mem may return a zero when finished or we got a
257 		 * mailbox error, either way we are done.
258 		 */
259 		if (mb->un.varDmp.word_cnt == 0)
260 			break;
261 
262 		if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
263 			mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
264 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
265 				      lpfc_vpd_data + offset,
266 				      mb->un.varDmp.word_cnt);
267 		offset += mb->un.varDmp.word_cnt;
268 	} while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
269 
270 	lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
271 
272 	kfree(lpfc_vpd_data);
273 out_free_mbox:
274 	mempool_free(pmb, phba->mbox_mem_pool);
275 	return 0;
276 }
277 
278 /**
279  * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
280  * @phba: pointer to lpfc hba data structure.
281  * @pmboxq: pointer to the driver internal queue element for mailbox command.
282  *
283  * This is the completion handler for driver's configuring asynchronous event
284  * mailbox command to the device. If the mailbox command returns successfully,
285  * it will set internal async event support flag to 1; otherwise, it will
286  * set internal async event support flag to 0.
287  **/
288 static void
lpfc_config_async_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq)289 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
290 {
291 	if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS)
292 		phba->temp_sensor_support = 1;
293 	else
294 		phba->temp_sensor_support = 0;
295 	mempool_free(pmboxq, phba->mbox_mem_pool);
296 	return;
297 }
298 
299 /**
300  * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
301  * @phba: pointer to lpfc hba data structure.
302  * @pmboxq: pointer to the driver internal queue element for mailbox command.
303  *
304  * This is the completion handler for dump mailbox command for getting
305  * wake up parameters. When this command complete, the response contain
306  * Option rom version of the HBA. This function translate the version number
307  * into a human readable string and store it in OptionROMVersion.
308  **/
309 static void
lpfc_dump_wakeup_param_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq)310 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
311 {
312 	struct prog_id *prg;
313 	uint32_t prog_id_word;
314 	char dist = ' ';
315 	/* character array used for decoding dist type. */
316 	char dist_char[] = "nabx";
317 
318 	if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) {
319 		mempool_free(pmboxq, phba->mbox_mem_pool);
320 		return;
321 	}
322 
323 	prg = (struct prog_id *) &prog_id_word;
324 
325 	/* word 7 contain option rom version */
326 	prog_id_word = pmboxq->u.mb.un.varWords[7];
327 
328 	/* Decode the Option rom version word to a readable string */
329 	dist = dist_char[prg->dist];
330 
331 	if ((prg->dist == 3) && (prg->num == 0))
332 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d",
333 			prg->ver, prg->rev, prg->lev);
334 	else
335 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d",
336 			prg->ver, prg->rev, prg->lev,
337 			dist, prg->num);
338 	mempool_free(pmboxq, phba->mbox_mem_pool);
339 	return;
340 }
341 
342 /**
343  * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname,
344  * @vport: pointer to lpfc vport data structure.
345  *
346  *
347  * Return codes
348  *   None.
349  **/
350 void
lpfc_update_vport_wwn(struct lpfc_vport * vport)351 lpfc_update_vport_wwn(struct lpfc_vport *vport)
352 {
353 	struct lpfc_hba *phba = vport->phba;
354 
355 	/*
356 	 * If the name is empty or there exists a soft name
357 	 * then copy the service params name, otherwise use the fc name
358 	 */
359 	if (vport->fc_nodename.u.wwn[0] == 0)
360 		memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
361 			sizeof(struct lpfc_name));
362 	else
363 		memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename,
364 			sizeof(struct lpfc_name));
365 
366 	/*
367 	 * If the port name has changed, then set the Param changes flag
368 	 * to unreg the login
369 	 */
370 	if (vport->fc_portname.u.wwn[0] != 0 &&
371 		memcmp(&vport->fc_portname, &vport->fc_sparam.portName,
372 		       sizeof(struct lpfc_name))) {
373 		vport->vport_flag |= FAWWPN_PARAM_CHG;
374 
375 		if (phba->sli_rev == LPFC_SLI_REV4 &&
376 		    vport->port_type == LPFC_PHYSICAL_PORT &&
377 		    phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_FABRIC) {
378 			if (!(phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG))
379 				phba->sli4_hba.fawwpn_flag &=
380 						~LPFC_FAWWPN_FABRIC;
381 			lpfc_printf_log(phba, KERN_INFO,
382 					LOG_SLI | LOG_DISCOVERY | LOG_ELS,
383 					"2701 FA-PWWN change WWPN from %llx to "
384 					"%llx: vflag x%x fawwpn_flag x%x\n",
385 					wwn_to_u64(vport->fc_portname.u.wwn),
386 					wwn_to_u64
387 					   (vport->fc_sparam.portName.u.wwn),
388 					vport->vport_flag,
389 					phba->sli4_hba.fawwpn_flag);
390 			memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
391 			       sizeof(struct lpfc_name));
392 		}
393 	}
394 
395 	if (vport->fc_portname.u.wwn[0] == 0)
396 		memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
397 		       sizeof(struct lpfc_name));
398 	else
399 		memcpy(&vport->fc_sparam.portName, &vport->fc_portname,
400 		       sizeof(struct lpfc_name));
401 }
402 
403 /**
404  * lpfc_config_port_post - Perform lpfc initialization after config port
405  * @phba: pointer to lpfc hba data structure.
406  *
407  * This routine will do LPFC initialization after the CONFIG_PORT mailbox
408  * command call. It performs all internal resource and state setups on the
409  * port: post IOCB buffers, enable appropriate host interrupt attentions,
410  * ELS ring timers, etc.
411  *
412  * Return codes
413  *   0 - success.
414  *   Any other value - error.
415  **/
416 int
lpfc_config_port_post(struct lpfc_hba * phba)417 lpfc_config_port_post(struct lpfc_hba *phba)
418 {
419 	struct lpfc_vport *vport = phba->pport;
420 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
421 	LPFC_MBOXQ_t *pmb;
422 	MAILBOX_t *mb;
423 	struct lpfc_dmabuf *mp;
424 	struct lpfc_sli *psli = &phba->sli;
425 	uint32_t status, timeout;
426 	int i, j;
427 	int rc;
428 
429 	spin_lock_irq(&phba->hbalock);
430 	/*
431 	 * If the Config port completed correctly the HBA is not
432 	 * over heated any more.
433 	 */
434 	if (phba->over_temp_state == HBA_OVER_TEMP)
435 		phba->over_temp_state = HBA_NORMAL_TEMP;
436 	spin_unlock_irq(&phba->hbalock);
437 
438 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
439 	if (!pmb) {
440 		phba->link_state = LPFC_HBA_ERROR;
441 		return -ENOMEM;
442 	}
443 	mb = &pmb->u.mb;
444 
445 	/* Get login parameters for NID.  */
446 	rc = lpfc_read_sparam(phba, pmb, 0);
447 	if (rc) {
448 		mempool_free(pmb, phba->mbox_mem_pool);
449 		return -ENOMEM;
450 	}
451 
452 	pmb->vport = vport;
453 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
454 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
455 				"0448 Adapter failed init, mbxCmd x%x "
456 				"READ_SPARM mbxStatus x%x\n",
457 				mb->mbxCommand, mb->mbxStatus);
458 		phba->link_state = LPFC_HBA_ERROR;
459 		lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
460 		return -EIO;
461 	}
462 
463 	mp = pmb->ctx_buf;
464 
465 	/* This dmabuf was allocated by lpfc_read_sparam. The dmabuf is no
466 	 * longer needed.  Prevent unintended ctx_buf access as the mbox is
467 	 * reused.
468 	 */
469 	memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
470 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
471 	kfree(mp);
472 	pmb->ctx_buf = NULL;
473 	lpfc_update_vport_wwn(vport);
474 
475 	/* Update the fc_host data structures with new wwn. */
476 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
477 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
478 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
479 
480 	/* If no serial number in VPD data, use low 6 bytes of WWNN */
481 	/* This should be consolidated into parse_vpd ? - mr */
482 	if (phba->SerialNumber[0] == 0) {
483 		uint8_t *outptr;
484 
485 		outptr = &vport->fc_nodename.u.s.IEEE[0];
486 		for (i = 0; i < 12; i++) {
487 			status = *outptr++;
488 			j = ((status & 0xf0) >> 4);
489 			if (j <= 9)
490 				phba->SerialNumber[i] =
491 				    (char)((uint8_t) 0x30 + (uint8_t) j);
492 			else
493 				phba->SerialNumber[i] =
494 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
495 			i++;
496 			j = (status & 0xf);
497 			if (j <= 9)
498 				phba->SerialNumber[i] =
499 				    (char)((uint8_t) 0x30 + (uint8_t) j);
500 			else
501 				phba->SerialNumber[i] =
502 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
503 		}
504 	}
505 
506 	lpfc_read_config(phba, pmb);
507 	pmb->vport = vport;
508 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
509 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
510 				"0453 Adapter failed to init, mbxCmd x%x "
511 				"READ_CONFIG, mbxStatus x%x\n",
512 				mb->mbxCommand, mb->mbxStatus);
513 		phba->link_state = LPFC_HBA_ERROR;
514 		mempool_free( pmb, phba->mbox_mem_pool);
515 		return -EIO;
516 	}
517 
518 	/* Check if the port is disabled */
519 	lpfc_sli_read_link_ste(phba);
520 
521 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
522 	if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) {
523 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
524 				"3359 HBA queue depth changed from %d to %d\n",
525 				phba->cfg_hba_queue_depth,
526 				mb->un.varRdConfig.max_xri);
527 		phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri;
528 	}
529 
530 	phba->lmt = mb->un.varRdConfig.lmt;
531 
532 	/* Get the default values for Model Name and Description */
533 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
534 
535 	phba->link_state = LPFC_LINK_DOWN;
536 
537 	/* Only process IOCBs on ELS ring till hba_state is READY */
538 	if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr)
539 		psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT;
540 	if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr)
541 		psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT;
542 
543 	/* Post receive buffers for desired rings */
544 	if (phba->sli_rev != 3)
545 		lpfc_post_rcv_buf(phba);
546 
547 	/*
548 	 * Configure HBA MSI-X attention conditions to messages if MSI-X mode
549 	 */
550 	if (phba->intr_type == MSIX) {
551 		rc = lpfc_config_msi(phba, pmb);
552 		if (rc) {
553 			mempool_free(pmb, phba->mbox_mem_pool);
554 			return -EIO;
555 		}
556 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
557 		if (rc != MBX_SUCCESS) {
558 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
559 					"0352 Config MSI mailbox command "
560 					"failed, mbxCmd x%x, mbxStatus x%x\n",
561 					pmb->u.mb.mbxCommand,
562 					pmb->u.mb.mbxStatus);
563 			mempool_free(pmb, phba->mbox_mem_pool);
564 			return -EIO;
565 		}
566 	}
567 
568 	spin_lock_irq(&phba->hbalock);
569 	/* Initialize ERATT handling flag */
570 	clear_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
571 
572 	/* Enable appropriate host interrupts */
573 	if (lpfc_readl(phba->HCregaddr, &status)) {
574 		spin_unlock_irq(&phba->hbalock);
575 		return -EIO;
576 	}
577 	status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
578 	if (psli->num_rings > 0)
579 		status |= HC_R0INT_ENA;
580 	if (psli->num_rings > 1)
581 		status |= HC_R1INT_ENA;
582 	if (psli->num_rings > 2)
583 		status |= HC_R2INT_ENA;
584 	if (psli->num_rings > 3)
585 		status |= HC_R3INT_ENA;
586 
587 	if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
588 	    (phba->cfg_poll & DISABLE_FCP_RING_INT))
589 		status &= ~(HC_R0INT_ENA);
590 
591 	writel(status, phba->HCregaddr);
592 	readl(phba->HCregaddr); /* flush */
593 	spin_unlock_irq(&phba->hbalock);
594 
595 	/* Set up ring-0 (ELS) timer */
596 	timeout = phba->fc_ratov * 2;
597 	mod_timer(&vport->els_tmofunc,
598 		  jiffies + msecs_to_jiffies(1000 * timeout));
599 	/* Set up heart beat (HB) timer */
600 	mod_timer(&phba->hb_tmofunc,
601 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
602 	clear_bit(HBA_HBEAT_INP, &phba->hba_flag);
603 	clear_bit(HBA_HBEAT_TMO, &phba->hba_flag);
604 	phba->last_completion_time = jiffies;
605 	/* Set up error attention (ERATT) polling timer */
606 	mod_timer(&phba->eratt_poll,
607 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
608 
609 	if (test_bit(LINK_DISABLED, &phba->hba_flag)) {
610 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
611 				"2598 Adapter Link is disabled.\n");
612 		lpfc_down_link(phba, pmb);
613 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
614 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
615 		if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
616 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
617 					"2599 Adapter failed to issue DOWN_LINK"
618 					" mbox command rc 0x%x\n", rc);
619 
620 			mempool_free(pmb, phba->mbox_mem_pool);
621 			return -EIO;
622 		}
623 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
624 		mempool_free(pmb, phba->mbox_mem_pool);
625 		rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
626 		if (rc)
627 			return rc;
628 	}
629 	/* MBOX buffer will be freed in mbox compl */
630 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
631 	if (!pmb) {
632 		phba->link_state = LPFC_HBA_ERROR;
633 		return -ENOMEM;
634 	}
635 
636 	lpfc_config_async(phba, pmb, LPFC_ELS_RING);
637 	pmb->mbox_cmpl = lpfc_config_async_cmpl;
638 	pmb->vport = phba->pport;
639 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
640 
641 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
642 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
643 				"0456 Adapter failed to issue "
644 				"ASYNCEVT_ENABLE mbox status x%x\n",
645 				rc);
646 		mempool_free(pmb, phba->mbox_mem_pool);
647 	}
648 
649 	/* Get Option rom version */
650 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
651 	if (!pmb) {
652 		phba->link_state = LPFC_HBA_ERROR;
653 		return -ENOMEM;
654 	}
655 
656 	lpfc_dump_wakeup_param(phba, pmb);
657 	pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
658 	pmb->vport = phba->pport;
659 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
660 
661 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
662 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
663 				"0435 Adapter failed "
664 				"to get Option ROM version status x%x\n", rc);
665 		mempool_free(pmb, phba->mbox_mem_pool);
666 	}
667 
668 	return 0;
669 }
670 
671 /**
672  * lpfc_sli4_refresh_params - update driver copy of params.
673  * @phba: Pointer to HBA context object.
674  *
675  * This is called to refresh driver copy of dynamic fields from the
676  * common_get_sli4_parameters descriptor.
677  **/
678 int
lpfc_sli4_refresh_params(struct lpfc_hba * phba)679 lpfc_sli4_refresh_params(struct lpfc_hba *phba)
680 {
681 	LPFC_MBOXQ_t *mboxq;
682 	struct lpfc_mqe *mqe;
683 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
684 	int length, rc;
685 
686 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
687 	if (!mboxq)
688 		return -ENOMEM;
689 
690 	mqe = &mboxq->u.mqe;
691 	/* Read the port's SLI4 Config Parameters */
692 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
693 		  sizeof(struct lpfc_sli4_cfg_mhdr));
694 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
695 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
696 			 length, LPFC_SLI4_MBX_EMBED);
697 
698 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
699 	if (unlikely(rc)) {
700 		mempool_free(mboxq, phba->mbox_mem_pool);
701 		return rc;
702 	}
703 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
704 	phba->sli4_hba.pc_sli4_params.mi_cap =
705 		bf_get(cfg_mi_ver, mbx_sli4_parameters);
706 
707 	/* Are we forcing MI off via module parameter? */
708 	if (phba->cfg_enable_mi)
709 		phba->sli4_hba.pc_sli4_params.mi_ver =
710 			bf_get(cfg_mi_ver, mbx_sli4_parameters);
711 	else
712 		phba->sli4_hba.pc_sli4_params.mi_ver = 0;
713 
714 	phba->sli4_hba.pc_sli4_params.cmf =
715 			bf_get(cfg_cmf, mbx_sli4_parameters);
716 	phba->sli4_hba.pc_sli4_params.pls =
717 			bf_get(cfg_pvl, mbx_sli4_parameters);
718 
719 	mempool_free(mboxq, phba->mbox_mem_pool);
720 	return rc;
721 }
722 
723 /**
724  * lpfc_hba_init_link - Initialize the FC link
725  * @phba: pointer to lpfc hba data structure.
726  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
727  *
728  * This routine will issue the INIT_LINK mailbox command call.
729  * It is available to other drivers through the lpfc_hba data
730  * structure for use as a delayed link up mechanism with the
731  * module parameter lpfc_suppress_link_up.
732  *
733  * Return code
734  *		0 - success
735  *		Any other value - error
736  **/
737 static int
lpfc_hba_init_link(struct lpfc_hba * phba,uint32_t flag)738 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag)
739 {
740 	return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag);
741 }
742 
743 /**
744  * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology
745  * @phba: pointer to lpfc hba data structure.
746  * @fc_topology: desired fc topology.
747  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
748  *
749  * This routine will issue the INIT_LINK mailbox command call.
750  * It is available to other drivers through the lpfc_hba data
751  * structure for use as a delayed link up mechanism with the
752  * module parameter lpfc_suppress_link_up.
753  *
754  * Return code
755  *              0 - success
756  *              Any other value - error
757  **/
758 int
lpfc_hba_init_link_fc_topology(struct lpfc_hba * phba,uint32_t fc_topology,uint32_t flag)759 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology,
760 			       uint32_t flag)
761 {
762 	struct lpfc_vport *vport = phba->pport;
763 	LPFC_MBOXQ_t *pmb;
764 	MAILBOX_t *mb;
765 	int rc;
766 
767 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
768 	if (!pmb) {
769 		phba->link_state = LPFC_HBA_ERROR;
770 		return -ENOMEM;
771 	}
772 	mb = &pmb->u.mb;
773 	pmb->vport = vport;
774 
775 	if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) ||
776 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) &&
777 	     !(phba->lmt & LMT_1Gb)) ||
778 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) &&
779 	     !(phba->lmt & LMT_2Gb)) ||
780 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) &&
781 	     !(phba->lmt & LMT_4Gb)) ||
782 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) &&
783 	     !(phba->lmt & LMT_8Gb)) ||
784 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) &&
785 	     !(phba->lmt & LMT_10Gb)) ||
786 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) &&
787 	     !(phba->lmt & LMT_16Gb)) ||
788 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) &&
789 	     !(phba->lmt & LMT_32Gb)) ||
790 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) &&
791 	     !(phba->lmt & LMT_64Gb))) {
792 		/* Reset link speed to auto */
793 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
794 				"1302 Invalid speed for this board:%d "
795 				"Reset link speed to auto.\n",
796 				phba->cfg_link_speed);
797 			phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO;
798 	}
799 	lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed);
800 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
801 	if (phba->sli_rev < LPFC_SLI_REV4)
802 		lpfc_set_loopback_flag(phba);
803 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
804 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
805 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
806 				"0498 Adapter failed to init, mbxCmd x%x "
807 				"INIT_LINK, mbxStatus x%x\n",
808 				mb->mbxCommand, mb->mbxStatus);
809 		if (phba->sli_rev <= LPFC_SLI_REV3) {
810 			/* Clear all interrupt enable conditions */
811 			writel(0, phba->HCregaddr);
812 			readl(phba->HCregaddr); /* flush */
813 			/* Clear all pending interrupts */
814 			writel(0xffffffff, phba->HAregaddr);
815 			readl(phba->HAregaddr); /* flush */
816 		}
817 		phba->link_state = LPFC_HBA_ERROR;
818 		if (rc != MBX_BUSY || flag == MBX_POLL)
819 			mempool_free(pmb, phba->mbox_mem_pool);
820 		return -EIO;
821 	}
822 	phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK;
823 	if (flag == MBX_POLL)
824 		mempool_free(pmb, phba->mbox_mem_pool);
825 
826 	return 0;
827 }
828 
829 /**
830  * lpfc_hba_down_link - this routine downs the FC link
831  * @phba: pointer to lpfc hba data structure.
832  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
833  *
834  * This routine will issue the DOWN_LINK mailbox command call.
835  * It is available to other drivers through the lpfc_hba data
836  * structure for use to stop the link.
837  *
838  * Return code
839  *		0 - success
840  *		Any other value - error
841  **/
842 static int
lpfc_hba_down_link(struct lpfc_hba * phba,uint32_t flag)843 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag)
844 {
845 	LPFC_MBOXQ_t *pmb;
846 	int rc;
847 
848 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
849 	if (!pmb) {
850 		phba->link_state = LPFC_HBA_ERROR;
851 		return -ENOMEM;
852 	}
853 
854 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
855 			"0491 Adapter Link is disabled.\n");
856 	lpfc_down_link(phba, pmb);
857 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
858 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
859 	if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
860 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
861 				"2522 Adapter failed to issue DOWN_LINK"
862 				" mbox command rc 0x%x\n", rc);
863 
864 		mempool_free(pmb, phba->mbox_mem_pool);
865 		return -EIO;
866 	}
867 	if (flag == MBX_POLL)
868 		mempool_free(pmb, phba->mbox_mem_pool);
869 
870 	return 0;
871 }
872 
873 /**
874  * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
875  * @phba: pointer to lpfc HBA data structure.
876  *
877  * This routine will do LPFC uninitialization before the HBA is reset when
878  * bringing down the SLI Layer.
879  *
880  * Return codes
881  *   0 - success.
882  *   Any other value - error.
883  **/
884 int
lpfc_hba_down_prep(struct lpfc_hba * phba)885 lpfc_hba_down_prep(struct lpfc_hba *phba)
886 {
887 	struct lpfc_vport **vports;
888 	int i;
889 
890 	if (phba->sli_rev <= LPFC_SLI_REV3) {
891 		/* Disable interrupts */
892 		writel(0, phba->HCregaddr);
893 		readl(phba->HCregaddr); /* flush */
894 	}
895 
896 	if (test_bit(FC_UNLOADING, &phba->pport->load_flag))
897 		lpfc_cleanup_discovery_resources(phba->pport);
898 	else {
899 		vports = lpfc_create_vport_work_array(phba);
900 		if (vports != NULL)
901 			for (i = 0; i <= phba->max_vports &&
902 				vports[i] != NULL; i++)
903 				lpfc_cleanup_discovery_resources(vports[i]);
904 		lpfc_destroy_vport_work_array(phba, vports);
905 	}
906 	return 0;
907 }
908 
909 /**
910  * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free
911  * rspiocb which got deferred
912  *
913  * @phba: pointer to lpfc HBA data structure.
914  *
915  * This routine will cleanup completed slow path events after HBA is reset
916  * when bringing down the SLI Layer.
917  *
918  *
919  * Return codes
920  *   void.
921  **/
922 static void
lpfc_sli4_free_sp_events(struct lpfc_hba * phba)923 lpfc_sli4_free_sp_events(struct lpfc_hba *phba)
924 {
925 	struct lpfc_iocbq *rspiocbq;
926 	struct hbq_dmabuf *dmabuf;
927 	struct lpfc_cq_event *cq_event;
928 
929 	clear_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag);
930 
931 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
932 		/* Get the response iocb from the head of work queue */
933 		spin_lock_irq(&phba->hbalock);
934 		list_remove_head(&phba->sli4_hba.sp_queue_event,
935 				 cq_event, struct lpfc_cq_event, list);
936 		spin_unlock_irq(&phba->hbalock);
937 
938 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
939 		case CQE_CODE_COMPL_WQE:
940 			rspiocbq = container_of(cq_event, struct lpfc_iocbq,
941 						 cq_event);
942 			lpfc_sli_release_iocbq(phba, rspiocbq);
943 			break;
944 		case CQE_CODE_RECEIVE:
945 		case CQE_CODE_RECEIVE_V1:
946 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
947 					      cq_event);
948 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
949 		}
950 	}
951 }
952 
953 /**
954  * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset
955  * @phba: pointer to lpfc HBA data structure.
956  *
957  * This routine will cleanup posted ELS buffers after the HBA is reset
958  * when bringing down the SLI Layer.
959  *
960  *
961  * Return codes
962  *   void.
963  **/
964 static void
lpfc_hba_free_post_buf(struct lpfc_hba * phba)965 lpfc_hba_free_post_buf(struct lpfc_hba *phba)
966 {
967 	struct lpfc_sli *psli = &phba->sli;
968 	struct lpfc_sli_ring *pring;
969 	struct lpfc_dmabuf *mp, *next_mp;
970 	LIST_HEAD(buflist);
971 	int count;
972 
973 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
974 		lpfc_sli_hbqbuf_free_all(phba);
975 	else {
976 		/* Cleanup preposted buffers on the ELS ring */
977 		pring = &psli->sli3_ring[LPFC_ELS_RING];
978 		spin_lock_irq(&phba->hbalock);
979 		list_splice_init(&pring->postbufq, &buflist);
980 		spin_unlock_irq(&phba->hbalock);
981 
982 		count = 0;
983 		list_for_each_entry_safe(mp, next_mp, &buflist, list) {
984 			list_del(&mp->list);
985 			count++;
986 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
987 			kfree(mp);
988 		}
989 
990 		spin_lock_irq(&phba->hbalock);
991 		pring->postbufq_cnt -= count;
992 		spin_unlock_irq(&phba->hbalock);
993 	}
994 }
995 
996 /**
997  * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset
998  * @phba: pointer to lpfc HBA data structure.
999  *
1000  * This routine will cleanup the txcmplq after the HBA is reset when bringing
1001  * down the SLI Layer.
1002  *
1003  * Return codes
1004  *   void
1005  **/
1006 static void
lpfc_hba_clean_txcmplq(struct lpfc_hba * phba)1007 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba)
1008 {
1009 	struct lpfc_sli *psli = &phba->sli;
1010 	struct lpfc_queue *qp = NULL;
1011 	struct lpfc_sli_ring *pring;
1012 	LIST_HEAD(completions);
1013 	int i;
1014 	struct lpfc_iocbq *piocb, *next_iocb;
1015 
1016 	if (phba->sli_rev != LPFC_SLI_REV4) {
1017 		for (i = 0; i < psli->num_rings; i++) {
1018 			pring = &psli->sli3_ring[i];
1019 			spin_lock_irq(&phba->hbalock);
1020 			/* At this point in time the HBA is either reset or DOA
1021 			 * Nothing should be on txcmplq as it will
1022 			 * NEVER complete.
1023 			 */
1024 			list_splice_init(&pring->txcmplq, &completions);
1025 			pring->txcmplq_cnt = 0;
1026 			spin_unlock_irq(&phba->hbalock);
1027 
1028 			lpfc_sli_abort_iocb_ring(phba, pring);
1029 		}
1030 		/* Cancel all the IOCBs from the completions list */
1031 		lpfc_sli_cancel_iocbs(phba, &completions,
1032 				      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1033 		return;
1034 	}
1035 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
1036 		pring = qp->pring;
1037 		if (!pring)
1038 			continue;
1039 		spin_lock_irq(&pring->ring_lock);
1040 		list_for_each_entry_safe(piocb, next_iocb,
1041 					 &pring->txcmplq, list)
1042 			piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
1043 		list_splice_init(&pring->txcmplq, &completions);
1044 		pring->txcmplq_cnt = 0;
1045 		spin_unlock_irq(&pring->ring_lock);
1046 		lpfc_sli_abort_iocb_ring(phba, pring);
1047 	}
1048 	/* Cancel all the IOCBs from the completions list */
1049 	lpfc_sli_cancel_iocbs(phba, &completions,
1050 			      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1051 }
1052 
1053 /**
1054  * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset
1055  * @phba: pointer to lpfc HBA data structure.
1056  *
1057  * This routine will do uninitialization after the HBA is reset when bring
1058  * down the SLI Layer.
1059  *
1060  * Return codes
1061  *   0 - success.
1062  *   Any other value - error.
1063  **/
1064 static int
lpfc_hba_down_post_s3(struct lpfc_hba * phba)1065 lpfc_hba_down_post_s3(struct lpfc_hba *phba)
1066 {
1067 	lpfc_hba_free_post_buf(phba);
1068 	lpfc_hba_clean_txcmplq(phba);
1069 	return 0;
1070 }
1071 
1072 /**
1073  * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset
1074  * @phba: pointer to lpfc HBA data structure.
1075  *
1076  * This routine will do uninitialization after the HBA is reset when bring
1077  * down the SLI Layer.
1078  *
1079  * Return codes
1080  *   0 - success.
1081  *   Any other value - error.
1082  **/
1083 static int
lpfc_hba_down_post_s4(struct lpfc_hba * phba)1084 lpfc_hba_down_post_s4(struct lpfc_hba *phba)
1085 {
1086 	struct lpfc_io_buf *psb, *psb_next;
1087 	struct lpfc_async_xchg_ctx *ctxp, *ctxp_next;
1088 	struct lpfc_sli4_hdw_queue *qp;
1089 	LIST_HEAD(aborts);
1090 	LIST_HEAD(nvme_aborts);
1091 	LIST_HEAD(nvmet_aborts);
1092 	struct lpfc_sglq *sglq_entry = NULL;
1093 	int cnt, idx;
1094 
1095 
1096 	lpfc_sli_hbqbuf_free_all(phba);
1097 	lpfc_hba_clean_txcmplq(phba);
1098 
1099 	/* At this point in time the HBA is either reset or DOA. Either
1100 	 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be
1101 	 * on the lpfc_els_sgl_list so that it can either be freed if the
1102 	 * driver is unloading or reposted if the driver is restarting
1103 	 * the port.
1104 	 */
1105 
1106 	/* sgl_list_lock required because worker thread uses this
1107 	 * list.
1108 	 */
1109 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
1110 	list_for_each_entry(sglq_entry,
1111 		&phba->sli4_hba.lpfc_abts_els_sgl_list, list)
1112 		sglq_entry->state = SGL_FREED;
1113 
1114 	list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list,
1115 			&phba->sli4_hba.lpfc_els_sgl_list);
1116 
1117 
1118 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
1119 
1120 	/* abts_xxxx_buf_list_lock required because worker thread uses this
1121 	 * list.
1122 	 */
1123 	spin_lock_irq(&phba->hbalock);
1124 	cnt = 0;
1125 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
1126 		qp = &phba->sli4_hba.hdwq[idx];
1127 
1128 		spin_lock(&qp->abts_io_buf_list_lock);
1129 		list_splice_init(&qp->lpfc_abts_io_buf_list,
1130 				 &aborts);
1131 
1132 		list_for_each_entry_safe(psb, psb_next, &aborts, list) {
1133 			psb->pCmd = NULL;
1134 			psb->status = IOSTAT_SUCCESS;
1135 			cnt++;
1136 		}
1137 		spin_lock(&qp->io_buf_list_put_lock);
1138 		list_splice_init(&aborts, &qp->lpfc_io_buf_list_put);
1139 		qp->put_io_bufs += qp->abts_scsi_io_bufs;
1140 		qp->put_io_bufs += qp->abts_nvme_io_bufs;
1141 		qp->abts_scsi_io_bufs = 0;
1142 		qp->abts_nvme_io_bufs = 0;
1143 		spin_unlock(&qp->io_buf_list_put_lock);
1144 		spin_unlock(&qp->abts_io_buf_list_lock);
1145 	}
1146 	spin_unlock_irq(&phba->hbalock);
1147 
1148 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
1149 		spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1150 		list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1151 				 &nvmet_aborts);
1152 		spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1153 		list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) {
1154 			ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP);
1155 			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1156 		}
1157 	}
1158 
1159 	lpfc_sli4_free_sp_events(phba);
1160 	return cnt;
1161 }
1162 
1163 /**
1164  * lpfc_hba_down_post - Wrapper func for hba down post routine
1165  * @phba: pointer to lpfc HBA data structure.
1166  *
1167  * This routine wraps the actual SLI3 or SLI4 routine for performing
1168  * uninitialization after the HBA is reset when bring down the SLI Layer.
1169  *
1170  * Return codes
1171  *   0 - success.
1172  *   Any other value - error.
1173  **/
1174 int
lpfc_hba_down_post(struct lpfc_hba * phba)1175 lpfc_hba_down_post(struct lpfc_hba *phba)
1176 {
1177 	return (*phba->lpfc_hba_down_post)(phba);
1178 }
1179 
1180 /**
1181  * lpfc_hb_timeout - The HBA-timer timeout handler
1182  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1183  *
1184  * This is the HBA-timer timeout handler registered to the lpfc driver. When
1185  * this timer fires, a HBA timeout event shall be posted to the lpfc driver
1186  * work-port-events bitmap and the worker thread is notified. This timeout
1187  * event will be used by the worker thread to invoke the actual timeout
1188  * handler routine, lpfc_hb_timeout_handler. Any periodical operations will
1189  * be performed in the timeout handler and the HBA timeout event bit shall
1190  * be cleared by the worker thread after it has taken the event bitmap out.
1191  **/
1192 static void
lpfc_hb_timeout(struct timer_list * t)1193 lpfc_hb_timeout(struct timer_list *t)
1194 {
1195 	struct lpfc_hba *phba;
1196 	uint32_t tmo_posted;
1197 	unsigned long iflag;
1198 
1199 	phba = from_timer(phba, t, hb_tmofunc);
1200 
1201 	/* Check for heart beat timeout conditions */
1202 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1203 	tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
1204 	if (!tmo_posted)
1205 		phba->pport->work_port_events |= WORKER_HB_TMO;
1206 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1207 
1208 	/* Tell the worker thread there is work to do */
1209 	if (!tmo_posted)
1210 		lpfc_worker_wake_up(phba);
1211 	return;
1212 }
1213 
1214 /**
1215  * lpfc_rrq_timeout - The RRQ-timer timeout handler
1216  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1217  *
1218  * This is the RRQ-timer timeout handler registered to the lpfc driver. When
1219  * this timer fires, a RRQ timeout event shall be posted to the lpfc driver
1220  * work-port-events bitmap and the worker thread is notified. This timeout
1221  * event will be used by the worker thread to invoke the actual timeout
1222  * handler routine, lpfc_rrq_handler. Any periodical operations will
1223  * be performed in the timeout handler and the RRQ timeout event bit shall
1224  * be cleared by the worker thread after it has taken the event bitmap out.
1225  **/
1226 static void
lpfc_rrq_timeout(struct timer_list * t)1227 lpfc_rrq_timeout(struct timer_list *t)
1228 {
1229 	struct lpfc_hba *phba;
1230 
1231 	phba = from_timer(phba, t, rrq_tmr);
1232 	if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) {
1233 		clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag);
1234 		return;
1235 	}
1236 
1237 	set_bit(HBA_RRQ_ACTIVE, &phba->hba_flag);
1238 	lpfc_worker_wake_up(phba);
1239 }
1240 
1241 /**
1242  * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
1243  * @phba: pointer to lpfc hba data structure.
1244  * @pmboxq: pointer to the driver internal queue element for mailbox command.
1245  *
1246  * This is the callback function to the lpfc heart-beat mailbox command.
1247  * If configured, the lpfc driver issues the heart-beat mailbox command to
1248  * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
1249  * heart-beat mailbox command is issued, the driver shall set up heart-beat
1250  * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
1251  * heart-beat outstanding state. Once the mailbox command comes back and
1252  * no error conditions detected, the heart-beat mailbox command timer is
1253  * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
1254  * state is cleared for the next heart-beat. If the timer expired with the
1255  * heart-beat outstanding state set, the driver will put the HBA offline.
1256  **/
1257 static void
lpfc_hb_mbox_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq)1258 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
1259 {
1260 	clear_bit(HBA_HBEAT_INP, &phba->hba_flag);
1261 	clear_bit(HBA_HBEAT_TMO, &phba->hba_flag);
1262 
1263 	/* Check and reset heart-beat timer if necessary */
1264 	mempool_free(pmboxq, phba->mbox_mem_pool);
1265 	if (!test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag) &&
1266 	    !(phba->link_state == LPFC_HBA_ERROR) &&
1267 	    !test_bit(FC_UNLOADING, &phba->pport->load_flag))
1268 		mod_timer(&phba->hb_tmofunc,
1269 			  jiffies +
1270 			  msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
1271 	return;
1272 }
1273 
1274 /*
1275  * lpfc_idle_stat_delay_work - idle_stat tracking
1276  *
1277  * This routine tracks per-eq idle_stat and determines polling decisions.
1278  *
1279  * Return codes:
1280  *   None
1281  **/
1282 static void
lpfc_idle_stat_delay_work(struct work_struct * work)1283 lpfc_idle_stat_delay_work(struct work_struct *work)
1284 {
1285 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1286 					     struct lpfc_hba,
1287 					     idle_stat_delay_work);
1288 	struct lpfc_queue *eq;
1289 	struct lpfc_sli4_hdw_queue *hdwq;
1290 	struct lpfc_idle_stat *idle_stat;
1291 	u32 i, idle_percent;
1292 	u64 wall, wall_idle, diff_wall, diff_idle, busy_time;
1293 
1294 	if (test_bit(FC_UNLOADING, &phba->pport->load_flag))
1295 		return;
1296 
1297 	if (phba->link_state == LPFC_HBA_ERROR ||
1298 	    test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag) ||
1299 	    phba->cmf_active_mode != LPFC_CFG_OFF)
1300 		goto requeue;
1301 
1302 	for_each_present_cpu(i) {
1303 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
1304 		eq = hdwq->hba_eq;
1305 
1306 		/* Skip if we've already handled this eq's primary CPU */
1307 		if (eq->chann != i)
1308 			continue;
1309 
1310 		idle_stat = &phba->sli4_hba.idle_stat[i];
1311 
1312 		/* get_cpu_idle_time returns values as running counters. Thus,
1313 		 * to know the amount for this period, the prior counter values
1314 		 * need to be subtracted from the current counter values.
1315 		 * From there, the idle time stat can be calculated as a
1316 		 * percentage of 100 - the sum of the other consumption times.
1317 		 */
1318 		wall_idle = get_cpu_idle_time(i, &wall, 1);
1319 		diff_idle = wall_idle - idle_stat->prev_idle;
1320 		diff_wall = wall - idle_stat->prev_wall;
1321 
1322 		if (diff_wall <= diff_idle)
1323 			busy_time = 0;
1324 		else
1325 			busy_time = diff_wall - diff_idle;
1326 
1327 		idle_percent = div64_u64(100 * busy_time, diff_wall);
1328 		idle_percent = 100 - idle_percent;
1329 
1330 		if (idle_percent < 15)
1331 			eq->poll_mode = LPFC_QUEUE_WORK;
1332 		else
1333 			eq->poll_mode = LPFC_THREADED_IRQ;
1334 
1335 		idle_stat->prev_idle = wall_idle;
1336 		idle_stat->prev_wall = wall;
1337 	}
1338 
1339 requeue:
1340 	schedule_delayed_work(&phba->idle_stat_delay_work,
1341 			      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
1342 }
1343 
1344 static void
lpfc_hb_eq_delay_work(struct work_struct * work)1345 lpfc_hb_eq_delay_work(struct work_struct *work)
1346 {
1347 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1348 					     struct lpfc_hba, eq_delay_work);
1349 	struct lpfc_eq_intr_info *eqi, *eqi_new;
1350 	struct lpfc_queue *eq, *eq_next;
1351 	unsigned char *ena_delay = NULL;
1352 	uint32_t usdelay;
1353 	int i;
1354 
1355 	if (!phba->cfg_auto_imax ||
1356 	    test_bit(FC_UNLOADING, &phba->pport->load_flag))
1357 		return;
1358 
1359 	if (phba->link_state == LPFC_HBA_ERROR ||
1360 	    test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
1361 		goto requeue;
1362 
1363 	ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay),
1364 			    GFP_KERNEL);
1365 	if (!ena_delay)
1366 		goto requeue;
1367 
1368 	for (i = 0; i < phba->cfg_irq_chann; i++) {
1369 		/* Get the EQ corresponding to the IRQ vector */
1370 		eq = phba->sli4_hba.hba_eq_hdl[i].eq;
1371 		if (!eq)
1372 			continue;
1373 		if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) {
1374 			eq->q_flag &= ~HBA_EQ_DELAY_CHK;
1375 			ena_delay[eq->last_cpu] = 1;
1376 		}
1377 	}
1378 
1379 	for_each_present_cpu(i) {
1380 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i);
1381 		if (ena_delay[i]) {
1382 			usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP;
1383 			if (usdelay > LPFC_MAX_AUTO_EQ_DELAY)
1384 				usdelay = LPFC_MAX_AUTO_EQ_DELAY;
1385 		} else {
1386 			usdelay = 0;
1387 		}
1388 
1389 		eqi->icnt = 0;
1390 
1391 		list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) {
1392 			if (unlikely(eq->last_cpu != i)) {
1393 				eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info,
1394 						      eq->last_cpu);
1395 				list_move_tail(&eq->cpu_list, &eqi_new->list);
1396 				continue;
1397 			}
1398 			if (usdelay != eq->q_mode)
1399 				lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1,
1400 							 usdelay);
1401 		}
1402 	}
1403 
1404 	kfree(ena_delay);
1405 
1406 requeue:
1407 	queue_delayed_work(phba->wq, &phba->eq_delay_work,
1408 			   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
1409 }
1410 
1411 /**
1412  * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution
1413  * @phba: pointer to lpfc hba data structure.
1414  *
1415  * For each heartbeat, this routine does some heuristic methods to adjust
1416  * XRI distribution. The goal is to fully utilize free XRIs.
1417  **/
lpfc_hb_mxp_handler(struct lpfc_hba * phba)1418 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba)
1419 {
1420 	u32 i;
1421 	u32 hwq_count;
1422 
1423 	hwq_count = phba->cfg_hdw_queue;
1424 	for (i = 0; i < hwq_count; i++) {
1425 		/* Adjust XRIs in private pool */
1426 		lpfc_adjust_pvt_pool_count(phba, i);
1427 
1428 		/* Adjust high watermark */
1429 		lpfc_adjust_high_watermark(phba, i);
1430 
1431 #ifdef LPFC_MXP_STAT
1432 		/* Snapshot pbl, pvt and busy count */
1433 		lpfc_snapshot_mxp(phba, i);
1434 #endif
1435 	}
1436 }
1437 
1438 /**
1439  * lpfc_issue_hb_mbox - Issues heart-beat mailbox command
1440  * @phba: pointer to lpfc hba data structure.
1441  *
1442  * If a HB mbox is not already in progrees, this routine will allocate
1443  * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command,
1444  * and issue it. The HBA_HBEAT_INP flag means the command is in progress.
1445  **/
1446 int
lpfc_issue_hb_mbox(struct lpfc_hba * phba)1447 lpfc_issue_hb_mbox(struct lpfc_hba *phba)
1448 {
1449 	LPFC_MBOXQ_t *pmboxq;
1450 	int retval;
1451 
1452 	/* Is a Heartbeat mbox already in progress */
1453 	if (test_bit(HBA_HBEAT_INP, &phba->hba_flag))
1454 		return 0;
1455 
1456 	pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1457 	if (!pmboxq)
1458 		return -ENOMEM;
1459 
1460 	lpfc_heart_beat(phba, pmboxq);
1461 	pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
1462 	pmboxq->vport = phba->pport;
1463 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
1464 
1465 	if (retval != MBX_BUSY && retval != MBX_SUCCESS) {
1466 		mempool_free(pmboxq, phba->mbox_mem_pool);
1467 		return -ENXIO;
1468 	}
1469 	set_bit(HBA_HBEAT_INP, &phba->hba_flag);
1470 
1471 	return 0;
1472 }
1473 
1474 /**
1475  * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command
1476  * @phba: pointer to lpfc hba data structure.
1477  *
1478  * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO
1479  * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless
1480  * of the value of lpfc_enable_hba_heartbeat.
1481  * If lpfc_enable_hba_heartbeat is set, the timeout routine will always
1482  * try to issue a MBX_HEARTBEAT mbox command.
1483  **/
1484 void
lpfc_issue_hb_tmo(struct lpfc_hba * phba)1485 lpfc_issue_hb_tmo(struct lpfc_hba *phba)
1486 {
1487 	if (phba->cfg_enable_hba_heartbeat)
1488 		return;
1489 	set_bit(HBA_HBEAT_TMO, &phba->hba_flag);
1490 }
1491 
1492 /**
1493  * lpfc_hb_timeout_handler - The HBA-timer timeout handler
1494  * @phba: pointer to lpfc hba data structure.
1495  *
1496  * This is the actual HBA-timer timeout handler to be invoked by the worker
1497  * thread whenever the HBA timer fired and HBA-timeout event posted. This
1498  * handler performs any periodic operations needed for the device. If such
1499  * periodic event has already been attended to either in the interrupt handler
1500  * or by processing slow-ring or fast-ring events within the HBA-timer
1501  * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
1502  * the timer for the next timeout period. If lpfc heart-beat mailbox command
1503  * is configured and there is no heart-beat mailbox command outstanding, a
1504  * heart-beat mailbox is issued and timer set properly. Otherwise, if there
1505  * has been a heart-beat mailbox command outstanding, the HBA shall be put
1506  * to offline.
1507  **/
1508 void
lpfc_hb_timeout_handler(struct lpfc_hba * phba)1509 lpfc_hb_timeout_handler(struct lpfc_hba *phba)
1510 {
1511 	struct lpfc_vport **vports;
1512 	struct lpfc_dmabuf *buf_ptr;
1513 	int retval = 0;
1514 	int i, tmo;
1515 	struct lpfc_sli *psli = &phba->sli;
1516 	LIST_HEAD(completions);
1517 
1518 	if (phba->cfg_xri_rebalancing) {
1519 		/* Multi-XRI pools handler */
1520 		lpfc_hb_mxp_handler(phba);
1521 	}
1522 
1523 	vports = lpfc_create_vport_work_array(phba);
1524 	if (vports != NULL)
1525 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
1526 			lpfc_rcv_seq_check_edtov(vports[i]);
1527 			lpfc_fdmi_change_check(vports[i]);
1528 		}
1529 	lpfc_destroy_vport_work_array(phba, vports);
1530 
1531 	if (phba->link_state == LPFC_HBA_ERROR ||
1532 	    test_bit(FC_UNLOADING, &phba->pport->load_flag) ||
1533 	    test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
1534 		return;
1535 
1536 	if (phba->elsbuf_cnt &&
1537 		(phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
1538 		spin_lock_irq(&phba->hbalock);
1539 		list_splice_init(&phba->elsbuf, &completions);
1540 		phba->elsbuf_cnt = 0;
1541 		phba->elsbuf_prev_cnt = 0;
1542 		spin_unlock_irq(&phba->hbalock);
1543 
1544 		while (!list_empty(&completions)) {
1545 			list_remove_head(&completions, buf_ptr,
1546 				struct lpfc_dmabuf, list);
1547 			lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
1548 			kfree(buf_ptr);
1549 		}
1550 	}
1551 	phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
1552 
1553 	/* If there is no heart beat outstanding, issue a heartbeat command */
1554 	if (phba->cfg_enable_hba_heartbeat) {
1555 		/* If IOs are completing, no need to issue a MBX_HEARTBEAT */
1556 		spin_lock_irq(&phba->pport->work_port_lock);
1557 		if (time_after(phba->last_completion_time +
1558 				msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL),
1559 				jiffies)) {
1560 			spin_unlock_irq(&phba->pport->work_port_lock);
1561 			if (test_bit(HBA_HBEAT_INP, &phba->hba_flag))
1562 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1563 			else
1564 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1565 			goto out;
1566 		}
1567 		spin_unlock_irq(&phba->pport->work_port_lock);
1568 
1569 		/* Check if a MBX_HEARTBEAT is already in progress */
1570 		if (test_bit(HBA_HBEAT_INP, &phba->hba_flag)) {
1571 			/*
1572 			 * If heart beat timeout called with HBA_HBEAT_INP set
1573 			 * we need to give the hb mailbox cmd a chance to
1574 			 * complete or TMO.
1575 			 */
1576 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
1577 				"0459 Adapter heartbeat still outstanding: "
1578 				"last compl time was %d ms.\n",
1579 				jiffies_to_msecs(jiffies
1580 					 - phba->last_completion_time));
1581 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1582 		} else {
1583 			if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) &&
1584 				(list_empty(&psli->mboxq))) {
1585 
1586 				retval = lpfc_issue_hb_mbox(phba);
1587 				if (retval) {
1588 					tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1589 					goto out;
1590 				}
1591 				phba->skipped_hb = 0;
1592 			} else if (time_before_eq(phba->last_completion_time,
1593 					phba->skipped_hb)) {
1594 				lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
1595 					"2857 Last completion time not "
1596 					" updated in %d ms\n",
1597 					jiffies_to_msecs(jiffies
1598 						 - phba->last_completion_time));
1599 			} else
1600 				phba->skipped_hb = jiffies;
1601 
1602 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1603 			goto out;
1604 		}
1605 	} else {
1606 		/* Check to see if we want to force a MBX_HEARTBEAT */
1607 		if (test_bit(HBA_HBEAT_TMO, &phba->hba_flag)) {
1608 			retval = lpfc_issue_hb_mbox(phba);
1609 			if (retval)
1610 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1611 			else
1612 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1613 			goto out;
1614 		}
1615 		tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1616 	}
1617 out:
1618 	mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo));
1619 }
1620 
1621 /**
1622  * lpfc_offline_eratt - Bring lpfc offline on hardware error attention
1623  * @phba: pointer to lpfc hba data structure.
1624  *
1625  * This routine is called to bring the HBA offline when HBA hardware error
1626  * other than Port Error 6 has been detected.
1627  **/
1628 static void
lpfc_offline_eratt(struct lpfc_hba * phba)1629 lpfc_offline_eratt(struct lpfc_hba *phba)
1630 {
1631 	struct lpfc_sli   *psli = &phba->sli;
1632 
1633 	spin_lock_irq(&phba->hbalock);
1634 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1635 	spin_unlock_irq(&phba->hbalock);
1636 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1637 
1638 	lpfc_offline(phba);
1639 	lpfc_reset_barrier(phba);
1640 	spin_lock_irq(&phba->hbalock);
1641 	lpfc_sli_brdreset(phba);
1642 	spin_unlock_irq(&phba->hbalock);
1643 	lpfc_hba_down_post(phba);
1644 	lpfc_sli_brdready(phba, HS_MBRDY);
1645 	lpfc_unblock_mgmt_io(phba);
1646 	phba->link_state = LPFC_HBA_ERROR;
1647 	return;
1648 }
1649 
1650 /**
1651  * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention
1652  * @phba: pointer to lpfc hba data structure.
1653  *
1654  * This routine is called to bring a SLI4 HBA offline when HBA hardware error
1655  * other than Port Error 6 has been detected.
1656  **/
1657 void
lpfc_sli4_offline_eratt(struct lpfc_hba * phba)1658 lpfc_sli4_offline_eratt(struct lpfc_hba *phba)
1659 {
1660 	spin_lock_irq(&phba->hbalock);
1661 	if (phba->link_state == LPFC_HBA_ERROR &&
1662 		test_bit(HBA_PCI_ERR, &phba->bit_flags)) {
1663 		spin_unlock_irq(&phba->hbalock);
1664 		return;
1665 	}
1666 	phba->link_state = LPFC_HBA_ERROR;
1667 	spin_unlock_irq(&phba->hbalock);
1668 
1669 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1670 	lpfc_sli_flush_io_rings(phba);
1671 	lpfc_offline(phba);
1672 	lpfc_hba_down_post(phba);
1673 	lpfc_unblock_mgmt_io(phba);
1674 }
1675 
1676 /**
1677  * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
1678  * @phba: pointer to lpfc hba data structure.
1679  *
1680  * This routine is invoked to handle the deferred HBA hardware error
1681  * conditions. This type of error is indicated by HBA by setting ER1
1682  * and another ER bit in the host status register. The driver will
1683  * wait until the ER1 bit clears before handling the error condition.
1684  **/
1685 static void
lpfc_handle_deferred_eratt(struct lpfc_hba * phba)1686 lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
1687 {
1688 	uint32_t old_host_status = phba->work_hs;
1689 	struct lpfc_sli *psli = &phba->sli;
1690 
1691 	/* If the pci channel is offline, ignore possible errors,
1692 	 * since we cannot communicate with the pci card anyway.
1693 	 */
1694 	if (pci_channel_offline(phba->pcidev)) {
1695 		clear_bit(DEFER_ERATT, &phba->hba_flag);
1696 		return;
1697 	}
1698 
1699 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1700 			"0479 Deferred Adapter Hardware Error "
1701 			"Data: x%x x%x x%x\n",
1702 			phba->work_hs, phba->work_status[0],
1703 			phba->work_status[1]);
1704 
1705 	spin_lock_irq(&phba->hbalock);
1706 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1707 	spin_unlock_irq(&phba->hbalock);
1708 
1709 
1710 	/*
1711 	 * Firmware stops when it triggred erratt. That could cause the I/Os
1712 	 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the
1713 	 * SCSI layer retry it after re-establishing link.
1714 	 */
1715 	lpfc_sli_abort_fcp_rings(phba);
1716 
1717 	/*
1718 	 * There was a firmware error. Take the hba offline and then
1719 	 * attempt to restart it.
1720 	 */
1721 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
1722 	lpfc_offline(phba);
1723 
1724 	/* Wait for the ER1 bit to clear.*/
1725 	while (phba->work_hs & HS_FFER1) {
1726 		msleep(100);
1727 		if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) {
1728 			phba->work_hs = UNPLUG_ERR ;
1729 			break;
1730 		}
1731 		/* If driver is unloading let the worker thread continue */
1732 		if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) {
1733 			phba->work_hs = 0;
1734 			break;
1735 		}
1736 	}
1737 
1738 	/*
1739 	 * This is to ptrotect against a race condition in which
1740 	 * first write to the host attention register clear the
1741 	 * host status register.
1742 	 */
1743 	if (!phba->work_hs && !test_bit(FC_UNLOADING, &phba->pport->load_flag))
1744 		phba->work_hs = old_host_status & ~HS_FFER1;
1745 
1746 	clear_bit(DEFER_ERATT, &phba->hba_flag);
1747 	phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
1748 	phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
1749 }
1750 
1751 static void
lpfc_board_errevt_to_mgmt(struct lpfc_hba * phba)1752 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba)
1753 {
1754 	struct lpfc_board_event_header board_event;
1755 	struct Scsi_Host *shost;
1756 
1757 	board_event.event_type = FC_REG_BOARD_EVENT;
1758 	board_event.subcategory = LPFC_EVENT_PORTINTERR;
1759 	shost = lpfc_shost_from_vport(phba->pport);
1760 	fc_host_post_vendor_event(shost, fc_get_event_number(),
1761 				  sizeof(board_event),
1762 				  (char *) &board_event,
1763 				  LPFC_NL_VENDOR_ID);
1764 }
1765 
1766 /**
1767  * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler
1768  * @phba: pointer to lpfc hba data structure.
1769  *
1770  * This routine is invoked to handle the following HBA hardware error
1771  * conditions:
1772  * 1 - HBA error attention interrupt
1773  * 2 - DMA ring index out of range
1774  * 3 - Mailbox command came back as unknown
1775  **/
1776 static void
lpfc_handle_eratt_s3(struct lpfc_hba * phba)1777 lpfc_handle_eratt_s3(struct lpfc_hba *phba)
1778 {
1779 	struct lpfc_vport *vport = phba->pport;
1780 	struct lpfc_sli   *psli = &phba->sli;
1781 	uint32_t event_data;
1782 	unsigned long temperature;
1783 	struct temp_event temp_event_data;
1784 	struct Scsi_Host  *shost;
1785 
1786 	/* If the pci channel is offline, ignore possible errors,
1787 	 * since we cannot communicate with the pci card anyway.
1788 	 */
1789 	if (pci_channel_offline(phba->pcidev)) {
1790 		clear_bit(DEFER_ERATT, &phba->hba_flag);
1791 		return;
1792 	}
1793 
1794 	/* If resets are disabled then leave the HBA alone and return */
1795 	if (!phba->cfg_enable_hba_reset)
1796 		return;
1797 
1798 	/* Send an internal error event to mgmt application */
1799 	lpfc_board_errevt_to_mgmt(phba);
1800 
1801 	if (test_bit(DEFER_ERATT, &phba->hba_flag))
1802 		lpfc_handle_deferred_eratt(phba);
1803 
1804 	if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) {
1805 		if (phba->work_hs & HS_FFER6)
1806 			/* Re-establishing Link */
1807 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1808 					"1301 Re-establishing Link "
1809 					"Data: x%x x%x x%x\n",
1810 					phba->work_hs, phba->work_status[0],
1811 					phba->work_status[1]);
1812 		if (phba->work_hs & HS_FFER8)
1813 			/* Device Zeroization */
1814 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1815 					"2861 Host Authentication device "
1816 					"zeroization Data:x%x x%x x%x\n",
1817 					phba->work_hs, phba->work_status[0],
1818 					phba->work_status[1]);
1819 
1820 		spin_lock_irq(&phba->hbalock);
1821 		psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1822 		spin_unlock_irq(&phba->hbalock);
1823 
1824 		/*
1825 		* Firmware stops when it triggled erratt with HS_FFER6.
1826 		* That could cause the I/Os dropped by the firmware.
1827 		* Error iocb (I/O) on txcmplq and let the SCSI layer
1828 		* retry it after re-establishing link.
1829 		*/
1830 		lpfc_sli_abort_fcp_rings(phba);
1831 
1832 		/*
1833 		 * There was a firmware error.  Take the hba offline and then
1834 		 * attempt to restart it.
1835 		 */
1836 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1837 		lpfc_offline(phba);
1838 		lpfc_sli_brdrestart(phba);
1839 		if (lpfc_online(phba) == 0) {	/* Initialize the HBA */
1840 			lpfc_unblock_mgmt_io(phba);
1841 			return;
1842 		}
1843 		lpfc_unblock_mgmt_io(phba);
1844 	} else if (phba->work_hs & HS_CRIT_TEMP) {
1845 		temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
1846 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
1847 		temp_event_data.event_code = LPFC_CRIT_TEMP;
1848 		temp_event_data.data = (uint32_t)temperature;
1849 
1850 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1851 				"0406 Adapter maximum temperature exceeded "
1852 				"(%ld), taking this port offline "
1853 				"Data: x%x x%x x%x\n",
1854 				temperature, phba->work_hs,
1855 				phba->work_status[0], phba->work_status[1]);
1856 
1857 		shost = lpfc_shost_from_vport(phba->pport);
1858 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1859 					  sizeof(temp_event_data),
1860 					  (char *) &temp_event_data,
1861 					  SCSI_NL_VID_TYPE_PCI
1862 					  | PCI_VENDOR_ID_EMULEX);
1863 
1864 		spin_lock_irq(&phba->hbalock);
1865 		phba->over_temp_state = HBA_OVER_TEMP;
1866 		spin_unlock_irq(&phba->hbalock);
1867 		lpfc_offline_eratt(phba);
1868 
1869 	} else {
1870 		/* The if clause above forces this code path when the status
1871 		 * failure is a value other than FFER6. Do not call the offline
1872 		 * twice. This is the adapter hardware error path.
1873 		 */
1874 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1875 				"0457 Adapter Hardware Error "
1876 				"Data: x%x x%x x%x\n",
1877 				phba->work_hs,
1878 				phba->work_status[0], phba->work_status[1]);
1879 
1880 		event_data = FC_REG_DUMP_EVENT;
1881 		shost = lpfc_shost_from_vport(vport);
1882 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1883 				sizeof(event_data), (char *) &event_data,
1884 				SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
1885 
1886 		lpfc_offline_eratt(phba);
1887 	}
1888 	return;
1889 }
1890 
1891 /**
1892  * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg
1893  * @phba: pointer to lpfc hba data structure.
1894  * @mbx_action: flag for mailbox shutdown action.
1895  * @en_rn_msg: send reset/port recovery message.
1896  * This routine is invoked to perform an SLI4 port PCI function reset in
1897  * response to port status register polling attention. It waits for port
1898  * status register (ERR, RDY, RN) bits before proceeding with function reset.
1899  * During this process, interrupt vectors are freed and later requested
1900  * for handling possible port resource change.
1901  **/
1902 static int
lpfc_sli4_port_sta_fn_reset(struct lpfc_hba * phba,int mbx_action,bool en_rn_msg)1903 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action,
1904 			    bool en_rn_msg)
1905 {
1906 	int rc;
1907 	uint32_t intr_mode;
1908 	LPFC_MBOXQ_t *mboxq;
1909 
1910 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
1911 	    LPFC_SLI_INTF_IF_TYPE_2) {
1912 		/*
1913 		 * On error status condition, driver need to wait for port
1914 		 * ready before performing reset.
1915 		 */
1916 		rc = lpfc_sli4_pdev_status_reg_wait(phba);
1917 		if (rc)
1918 			return rc;
1919 	}
1920 
1921 	/* need reset: attempt for port recovery */
1922 	if (en_rn_msg)
1923 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1924 				"2887 Reset Needed: Attempting Port "
1925 				"Recovery...\n");
1926 
1927 	/* If we are no wait, the HBA has been reset and is not
1928 	 * functional, thus we should clear
1929 	 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags.
1930 	 */
1931 	if (mbx_action == LPFC_MBX_NO_WAIT) {
1932 		spin_lock_irq(&phba->hbalock);
1933 		phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
1934 		if (phba->sli.mbox_active) {
1935 			mboxq = phba->sli.mbox_active;
1936 			mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
1937 			__lpfc_mbox_cmpl_put(phba, mboxq);
1938 			phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
1939 			phba->sli.mbox_active = NULL;
1940 		}
1941 		spin_unlock_irq(&phba->hbalock);
1942 	}
1943 
1944 	lpfc_offline_prep(phba, mbx_action);
1945 	lpfc_sli_flush_io_rings(phba);
1946 	lpfc_offline(phba);
1947 	/* release interrupt for possible resource change */
1948 	lpfc_sli4_disable_intr(phba);
1949 	rc = lpfc_sli_brdrestart(phba);
1950 	if (rc) {
1951 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1952 				"6309 Failed to restart board\n");
1953 		return rc;
1954 	}
1955 	/* request and enable interrupt */
1956 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
1957 	if (intr_mode == LPFC_INTR_ERROR) {
1958 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1959 				"3175 Failed to enable interrupt\n");
1960 		return -EIO;
1961 	}
1962 	phba->intr_mode = intr_mode;
1963 	rc = lpfc_online(phba);
1964 	if (rc == 0)
1965 		lpfc_unblock_mgmt_io(phba);
1966 
1967 	return rc;
1968 }
1969 
1970 /**
1971  * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler
1972  * @phba: pointer to lpfc hba data structure.
1973  *
1974  * This routine is invoked to handle the SLI4 HBA hardware error attention
1975  * conditions.
1976  **/
1977 static void
lpfc_handle_eratt_s4(struct lpfc_hba * phba)1978 lpfc_handle_eratt_s4(struct lpfc_hba *phba)
1979 {
1980 	struct lpfc_vport *vport = phba->pport;
1981 	uint32_t event_data;
1982 	struct Scsi_Host *shost;
1983 	uint32_t if_type;
1984 	struct lpfc_register portstat_reg = {0};
1985 	uint32_t reg_err1, reg_err2;
1986 	uint32_t uerrlo_reg, uemasklo_reg;
1987 	uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2;
1988 	bool en_rn_msg = true;
1989 	struct temp_event temp_event_data;
1990 	struct lpfc_register portsmphr_reg;
1991 	int rc, i;
1992 
1993 	/* If the pci channel is offline, ignore possible errors, since
1994 	 * we cannot communicate with the pci card anyway.
1995 	 */
1996 	if (pci_channel_offline(phba->pcidev)) {
1997 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1998 				"3166 pci channel is offline\n");
1999 		lpfc_sli_flush_io_rings(phba);
2000 		return;
2001 	}
2002 
2003 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
2004 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
2005 	switch (if_type) {
2006 	case LPFC_SLI_INTF_IF_TYPE_0:
2007 		pci_rd_rc1 = lpfc_readl(
2008 				phba->sli4_hba.u.if_type0.UERRLOregaddr,
2009 				&uerrlo_reg);
2010 		pci_rd_rc2 = lpfc_readl(
2011 				phba->sli4_hba.u.if_type0.UEMASKLOregaddr,
2012 				&uemasklo_reg);
2013 		/* consider PCI bus read error as pci_channel_offline */
2014 		if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO)
2015 			return;
2016 		if (!test_bit(HBA_RECOVERABLE_UE, &phba->hba_flag)) {
2017 			lpfc_sli4_offline_eratt(phba);
2018 			return;
2019 		}
2020 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2021 				"7623 Checking UE recoverable");
2022 
2023 		for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) {
2024 			if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2025 				       &portsmphr_reg.word0))
2026 				continue;
2027 
2028 			smphr_port_status = bf_get(lpfc_port_smphr_port_status,
2029 						   &portsmphr_reg);
2030 			if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2031 			    LPFC_PORT_SEM_UE_RECOVERABLE)
2032 				break;
2033 			/*Sleep for 1Sec, before checking SEMAPHORE */
2034 			msleep(1000);
2035 		}
2036 
2037 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2038 				"4827 smphr_port_status x%x : Waited %dSec",
2039 				smphr_port_status, i);
2040 
2041 		/* Recoverable UE, reset the HBA device */
2042 		if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2043 		    LPFC_PORT_SEM_UE_RECOVERABLE) {
2044 			for (i = 0; i < 20; i++) {
2045 				msleep(1000);
2046 				if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2047 				    &portsmphr_reg.word0) &&
2048 				    (LPFC_POST_STAGE_PORT_READY ==
2049 				     bf_get(lpfc_port_smphr_port_status,
2050 				     &portsmphr_reg))) {
2051 					rc = lpfc_sli4_port_sta_fn_reset(phba,
2052 						LPFC_MBX_NO_WAIT, en_rn_msg);
2053 					if (rc == 0)
2054 						return;
2055 					lpfc_printf_log(phba, KERN_ERR,
2056 						LOG_TRACE_EVENT,
2057 						"4215 Failed to recover UE");
2058 					break;
2059 				}
2060 			}
2061 		}
2062 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2063 				"7624 Firmware not ready: Failing UE recovery,"
2064 				" waited %dSec", i);
2065 		phba->link_state = LPFC_HBA_ERROR;
2066 		break;
2067 
2068 	case LPFC_SLI_INTF_IF_TYPE_2:
2069 	case LPFC_SLI_INTF_IF_TYPE_6:
2070 		pci_rd_rc1 = lpfc_readl(
2071 				phba->sli4_hba.u.if_type2.STATUSregaddr,
2072 				&portstat_reg.word0);
2073 		/* consider PCI bus read error as pci_channel_offline */
2074 		if (pci_rd_rc1 == -EIO) {
2075 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2076 				"3151 PCI bus read access failure: x%x\n",
2077 				readl(phba->sli4_hba.u.if_type2.STATUSregaddr));
2078 			lpfc_sli4_offline_eratt(phba);
2079 			return;
2080 		}
2081 		reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
2082 		reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
2083 		if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) {
2084 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2085 					"2889 Port Overtemperature event, "
2086 					"taking port offline Data: x%x x%x\n",
2087 					reg_err1, reg_err2);
2088 
2089 			phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
2090 			temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
2091 			temp_event_data.event_code = LPFC_CRIT_TEMP;
2092 			temp_event_data.data = 0xFFFFFFFF;
2093 
2094 			shost = lpfc_shost_from_vport(phba->pport);
2095 			fc_host_post_vendor_event(shost, fc_get_event_number(),
2096 						  sizeof(temp_event_data),
2097 						  (char *)&temp_event_data,
2098 						  SCSI_NL_VID_TYPE_PCI
2099 						  | PCI_VENDOR_ID_EMULEX);
2100 
2101 			spin_lock_irq(&phba->hbalock);
2102 			phba->over_temp_state = HBA_OVER_TEMP;
2103 			spin_unlock_irq(&phba->hbalock);
2104 			lpfc_sli4_offline_eratt(phba);
2105 			return;
2106 		}
2107 		if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2108 		    reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) {
2109 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2110 					"3143 Port Down: Firmware Update "
2111 					"Detected\n");
2112 			en_rn_msg = false;
2113 		} else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2114 			 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2115 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2116 					"3144 Port Down: Debug Dump\n");
2117 		else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2118 			 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON)
2119 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2120 					"3145 Port Down: Provisioning\n");
2121 
2122 		/* If resets are disabled then leave the HBA alone and return */
2123 		if (!phba->cfg_enable_hba_reset)
2124 			return;
2125 
2126 		/* Check port status register for function reset */
2127 		rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT,
2128 				en_rn_msg);
2129 		if (rc == 0) {
2130 			/* don't report event on forced debug dump */
2131 			if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2132 			    reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2133 				return;
2134 			else
2135 				break;
2136 		}
2137 		/* fall through for not able to recover */
2138 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2139 				"3152 Unrecoverable error\n");
2140 		lpfc_sli4_offline_eratt(phba);
2141 		break;
2142 	case LPFC_SLI_INTF_IF_TYPE_1:
2143 	default:
2144 		break;
2145 	}
2146 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
2147 			"3123 Report dump event to upper layer\n");
2148 	/* Send an internal error event to mgmt application */
2149 	lpfc_board_errevt_to_mgmt(phba);
2150 
2151 	event_data = FC_REG_DUMP_EVENT;
2152 	shost = lpfc_shost_from_vport(vport);
2153 	fc_host_post_vendor_event(shost, fc_get_event_number(),
2154 				  sizeof(event_data), (char *) &event_data,
2155 				  SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
2156 }
2157 
2158 /**
2159  * lpfc_handle_eratt - Wrapper func for handling hba error attention
2160  * @phba: pointer to lpfc HBA data structure.
2161  *
2162  * This routine wraps the actual SLI3 or SLI4 hba error attention handling
2163  * routine from the API jump table function pointer from the lpfc_hba struct.
2164  *
2165  * Return codes
2166  *   0 - success.
2167  *   Any other value - error.
2168  **/
2169 void
lpfc_handle_eratt(struct lpfc_hba * phba)2170 lpfc_handle_eratt(struct lpfc_hba *phba)
2171 {
2172 	(*phba->lpfc_handle_eratt)(phba);
2173 }
2174 
2175 /**
2176  * lpfc_handle_latt - The HBA link event handler
2177  * @phba: pointer to lpfc hba data structure.
2178  *
2179  * This routine is invoked from the worker thread to handle a HBA host
2180  * attention link event. SLI3 only.
2181  **/
2182 void
lpfc_handle_latt(struct lpfc_hba * phba)2183 lpfc_handle_latt(struct lpfc_hba *phba)
2184 {
2185 	struct lpfc_vport *vport = phba->pport;
2186 	struct lpfc_sli   *psli = &phba->sli;
2187 	LPFC_MBOXQ_t *pmb;
2188 	volatile uint32_t control;
2189 	int rc = 0;
2190 
2191 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
2192 	if (!pmb) {
2193 		rc = 1;
2194 		goto lpfc_handle_latt_err_exit;
2195 	}
2196 
2197 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
2198 	if (rc) {
2199 		rc = 2;
2200 		mempool_free(pmb, phba->mbox_mem_pool);
2201 		goto lpfc_handle_latt_err_exit;
2202 	}
2203 
2204 	/* Cleanup any outstanding ELS commands */
2205 	lpfc_els_flush_all_cmd(phba);
2206 	psli->slistat.link_event++;
2207 	lpfc_read_topology(phba, pmb, pmb->ctx_buf);
2208 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
2209 	pmb->vport = vport;
2210 	/* Block ELS IOCBs until we have processed this mbox command */
2211 	phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
2212 	rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
2213 	if (rc == MBX_NOT_FINISHED) {
2214 		rc = 4;
2215 		goto lpfc_handle_latt_free_mbuf;
2216 	}
2217 
2218 	/* Clear Link Attention in HA REG */
2219 	spin_lock_irq(&phba->hbalock);
2220 	writel(HA_LATT, phba->HAregaddr);
2221 	readl(phba->HAregaddr); /* flush */
2222 	spin_unlock_irq(&phba->hbalock);
2223 
2224 	return;
2225 
2226 lpfc_handle_latt_free_mbuf:
2227 	phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
2228 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
2229 lpfc_handle_latt_err_exit:
2230 	/* Enable Link attention interrupts */
2231 	spin_lock_irq(&phba->hbalock);
2232 	psli->sli_flag |= LPFC_PROCESS_LA;
2233 	control = readl(phba->HCregaddr);
2234 	control |= HC_LAINT_ENA;
2235 	writel(control, phba->HCregaddr);
2236 	readl(phba->HCregaddr); /* flush */
2237 
2238 	/* Clear Link Attention in HA REG */
2239 	writel(HA_LATT, phba->HAregaddr);
2240 	readl(phba->HAregaddr); /* flush */
2241 	spin_unlock_irq(&phba->hbalock);
2242 	lpfc_linkdown(phba);
2243 	phba->link_state = LPFC_HBA_ERROR;
2244 
2245 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2246 			"0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
2247 
2248 	return;
2249 }
2250 
2251 static void
lpfc_fill_vpd(struct lpfc_hba * phba,uint8_t * vpd,int length,int * pindex)2252 lpfc_fill_vpd(struct lpfc_hba *phba, uint8_t *vpd, int length, int *pindex)
2253 {
2254 	int i, j;
2255 
2256 	while (length > 0) {
2257 		/* Look for Serial Number */
2258 		if ((vpd[*pindex] == 'S') && (vpd[*pindex + 1] == 'N')) {
2259 			*pindex += 2;
2260 			i = vpd[*pindex];
2261 			*pindex += 1;
2262 			j = 0;
2263 			length -= (3+i);
2264 			while (i--) {
2265 				phba->SerialNumber[j++] = vpd[(*pindex)++];
2266 				if (j == 31)
2267 					break;
2268 			}
2269 			phba->SerialNumber[j] = 0;
2270 			continue;
2271 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '1')) {
2272 			phba->vpd_flag |= VPD_MODEL_DESC;
2273 			*pindex += 2;
2274 			i = vpd[*pindex];
2275 			*pindex += 1;
2276 			j = 0;
2277 			length -= (3+i);
2278 			while (i--) {
2279 				phba->ModelDesc[j++] = vpd[(*pindex)++];
2280 				if (j == 255)
2281 					break;
2282 			}
2283 			phba->ModelDesc[j] = 0;
2284 			continue;
2285 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '2')) {
2286 			phba->vpd_flag |= VPD_MODEL_NAME;
2287 			*pindex += 2;
2288 			i = vpd[*pindex];
2289 			*pindex += 1;
2290 			j = 0;
2291 			length -= (3+i);
2292 			while (i--) {
2293 				phba->ModelName[j++] = vpd[(*pindex)++];
2294 				if (j == 79)
2295 					break;
2296 			}
2297 			phba->ModelName[j] = 0;
2298 			continue;
2299 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '3')) {
2300 			phba->vpd_flag |= VPD_PROGRAM_TYPE;
2301 			*pindex += 2;
2302 			i = vpd[*pindex];
2303 			*pindex += 1;
2304 			j = 0;
2305 			length -= (3+i);
2306 			while (i--) {
2307 				phba->ProgramType[j++] = vpd[(*pindex)++];
2308 				if (j == 255)
2309 					break;
2310 			}
2311 			phba->ProgramType[j] = 0;
2312 			continue;
2313 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '4')) {
2314 			phba->vpd_flag |= VPD_PORT;
2315 			*pindex += 2;
2316 			i = vpd[*pindex];
2317 			*pindex += 1;
2318 			j = 0;
2319 			length -= (3 + i);
2320 			while (i--) {
2321 				if ((phba->sli_rev == LPFC_SLI_REV4) &&
2322 				    (phba->sli4_hba.pport_name_sta ==
2323 				     LPFC_SLI4_PPNAME_GET)) {
2324 					j++;
2325 					(*pindex)++;
2326 				} else
2327 					phba->Port[j++] = vpd[(*pindex)++];
2328 				if (j == 19)
2329 					break;
2330 			}
2331 			if ((phba->sli_rev != LPFC_SLI_REV4) ||
2332 			    (phba->sli4_hba.pport_name_sta ==
2333 			     LPFC_SLI4_PPNAME_NON))
2334 				phba->Port[j] = 0;
2335 			continue;
2336 		} else {
2337 			*pindex += 2;
2338 			i = vpd[*pindex];
2339 			*pindex += 1;
2340 			*pindex += i;
2341 			length -= (3 + i);
2342 		}
2343 	}
2344 }
2345 
2346 /**
2347  * lpfc_parse_vpd - Parse VPD (Vital Product Data)
2348  * @phba: pointer to lpfc hba data structure.
2349  * @vpd: pointer to the vital product data.
2350  * @len: length of the vital product data in bytes.
2351  *
2352  * This routine parses the Vital Product Data (VPD). The VPD is treated as
2353  * an array of characters. In this routine, the ModelName, ProgramType, and
2354  * ModelDesc, etc. fields of the phba data structure will be populated.
2355  *
2356  * Return codes
2357  *   0 - pointer to the VPD passed in is NULL
2358  *   1 - success
2359  **/
2360 int
lpfc_parse_vpd(struct lpfc_hba * phba,uint8_t * vpd,int len)2361 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
2362 {
2363 	uint8_t lenlo, lenhi;
2364 	int Length;
2365 	int i;
2366 	int finished = 0;
2367 	int index = 0;
2368 
2369 	if (!vpd)
2370 		return 0;
2371 
2372 	/* Vital Product */
2373 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
2374 			"0455 Vital Product Data: x%x x%x x%x x%x\n",
2375 			(uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
2376 			(uint32_t) vpd[3]);
2377 	while (!finished && (index < (len - 4))) {
2378 		switch (vpd[index]) {
2379 		case 0x82:
2380 		case 0x91:
2381 			index += 1;
2382 			lenlo = vpd[index];
2383 			index += 1;
2384 			lenhi = vpd[index];
2385 			index += 1;
2386 			i = ((((unsigned short)lenhi) << 8) + lenlo);
2387 			index += i;
2388 			break;
2389 		case 0x90:
2390 			index += 1;
2391 			lenlo = vpd[index];
2392 			index += 1;
2393 			lenhi = vpd[index];
2394 			index += 1;
2395 			Length = ((((unsigned short)lenhi) << 8) + lenlo);
2396 			if (Length > len - index)
2397 				Length = len - index;
2398 
2399 			lpfc_fill_vpd(phba, vpd, Length, &index);
2400 			finished = 0;
2401 			break;
2402 		case 0x78:
2403 			finished = 1;
2404 			break;
2405 		default:
2406 			index ++;
2407 			break;
2408 		}
2409 	}
2410 
2411 	return(1);
2412 }
2413 
2414 /**
2415  * lpfc_get_atto_model_desc - Retrieve ATTO HBA device model name and description
2416  * @phba: pointer to lpfc hba data structure.
2417  * @mdp: pointer to the data structure to hold the derived model name.
2418  * @descp: pointer to the data structure to hold the derived description.
2419  *
2420  * This routine retrieves HBA's description based on its registered PCI device
2421  * ID. The @descp passed into this function points to an array of 256 chars. It
2422  * shall be returned with the model name, maximum speed, and the host bus type.
2423  * The @mdp passed into this function points to an array of 80 chars. When the
2424  * function returns, the @mdp will be filled with the model name.
2425  **/
2426 static void
lpfc_get_atto_model_desc(struct lpfc_hba * phba,uint8_t * mdp,uint8_t * descp)2427 lpfc_get_atto_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2428 {
2429 	uint16_t sub_dev_id = phba->pcidev->subsystem_device;
2430 	char *model = "<Unknown>";
2431 	int tbolt = 0;
2432 
2433 	switch (sub_dev_id) {
2434 	case PCI_DEVICE_ID_CLRY_161E:
2435 		model = "161E";
2436 		break;
2437 	case PCI_DEVICE_ID_CLRY_162E:
2438 		model = "162E";
2439 		break;
2440 	case PCI_DEVICE_ID_CLRY_164E:
2441 		model = "164E";
2442 		break;
2443 	case PCI_DEVICE_ID_CLRY_161P:
2444 		model = "161P";
2445 		break;
2446 	case PCI_DEVICE_ID_CLRY_162P:
2447 		model = "162P";
2448 		break;
2449 	case PCI_DEVICE_ID_CLRY_164P:
2450 		model = "164P";
2451 		break;
2452 	case PCI_DEVICE_ID_CLRY_321E:
2453 		model = "321E";
2454 		break;
2455 	case PCI_DEVICE_ID_CLRY_322E:
2456 		model = "322E";
2457 		break;
2458 	case PCI_DEVICE_ID_CLRY_324E:
2459 		model = "324E";
2460 		break;
2461 	case PCI_DEVICE_ID_CLRY_321P:
2462 		model = "321P";
2463 		break;
2464 	case PCI_DEVICE_ID_CLRY_322P:
2465 		model = "322P";
2466 		break;
2467 	case PCI_DEVICE_ID_CLRY_324P:
2468 		model = "324P";
2469 		break;
2470 	case PCI_DEVICE_ID_TLFC_2XX2:
2471 		model = "2XX2";
2472 		tbolt = 1;
2473 		break;
2474 	case PCI_DEVICE_ID_TLFC_3162:
2475 		model = "3162";
2476 		tbolt = 1;
2477 		break;
2478 	case PCI_DEVICE_ID_TLFC_3322:
2479 		model = "3322";
2480 		tbolt = 1;
2481 		break;
2482 	default:
2483 		model = "Unknown";
2484 		break;
2485 	}
2486 
2487 	if (mdp && mdp[0] == '\0')
2488 		snprintf(mdp, 79, "%s", model);
2489 
2490 	if (descp && descp[0] == '\0')
2491 		snprintf(descp, 255,
2492 			 "ATTO %s%s, Fibre Channel Adapter Initiator, Port %s",
2493 			 (tbolt) ? "ThunderLink FC " : "Celerity FC-",
2494 			 model,
2495 			 phba->Port);
2496 }
2497 
2498 /**
2499  * lpfc_get_hba_model_desc - Retrieve HBA device model name and description
2500  * @phba: pointer to lpfc hba data structure.
2501  * @mdp: pointer to the data structure to hold the derived model name.
2502  * @descp: pointer to the data structure to hold the derived description.
2503  *
2504  * This routine retrieves HBA's description based on its registered PCI device
2505  * ID. The @descp passed into this function points to an array of 256 chars. It
2506  * shall be returned with the model name, maximum speed, and the host bus type.
2507  * The @mdp passed into this function points to an array of 80 chars. When the
2508  * function returns, the @mdp will be filled with the model name.
2509  **/
2510 static void
lpfc_get_hba_model_desc(struct lpfc_hba * phba,uint8_t * mdp,uint8_t * descp)2511 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2512 {
2513 	lpfc_vpd_t *vp;
2514 	uint16_t dev_id = phba->pcidev->device;
2515 	int max_speed;
2516 	int GE = 0;
2517 	int oneConnect = 0; /* default is not a oneConnect */
2518 	struct {
2519 		char *name;
2520 		char *bus;
2521 		char *function;
2522 	} m = {"<Unknown>", "", ""};
2523 
2524 	if (mdp && mdp[0] != '\0'
2525 		&& descp && descp[0] != '\0')
2526 		return;
2527 
2528 	if (phba->pcidev->vendor == PCI_VENDOR_ID_ATTO) {
2529 		lpfc_get_atto_model_desc(phba, mdp, descp);
2530 		return;
2531 	}
2532 
2533 	if (phba->lmt & LMT_64Gb)
2534 		max_speed = 64;
2535 	else if (phba->lmt & LMT_32Gb)
2536 		max_speed = 32;
2537 	else if (phba->lmt & LMT_16Gb)
2538 		max_speed = 16;
2539 	else if (phba->lmt & LMT_10Gb)
2540 		max_speed = 10;
2541 	else if (phba->lmt & LMT_8Gb)
2542 		max_speed = 8;
2543 	else if (phba->lmt & LMT_4Gb)
2544 		max_speed = 4;
2545 	else if (phba->lmt & LMT_2Gb)
2546 		max_speed = 2;
2547 	else if (phba->lmt & LMT_1Gb)
2548 		max_speed = 1;
2549 	else
2550 		max_speed = 0;
2551 
2552 	vp = &phba->vpd;
2553 
2554 	switch (dev_id) {
2555 	case PCI_DEVICE_ID_FIREFLY:
2556 		m = (typeof(m)){"LP6000", "PCI",
2557 				"Obsolete, Unsupported Fibre Channel Adapter"};
2558 		break;
2559 	case PCI_DEVICE_ID_SUPERFLY:
2560 		if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
2561 			m = (typeof(m)){"LP7000", "PCI", ""};
2562 		else
2563 			m = (typeof(m)){"LP7000E", "PCI", ""};
2564 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2565 		break;
2566 	case PCI_DEVICE_ID_DRAGONFLY:
2567 		m = (typeof(m)){"LP8000", "PCI",
2568 				"Obsolete, Unsupported Fibre Channel Adapter"};
2569 		break;
2570 	case PCI_DEVICE_ID_CENTAUR:
2571 		if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
2572 			m = (typeof(m)){"LP9002", "PCI", ""};
2573 		else
2574 			m = (typeof(m)){"LP9000", "PCI", ""};
2575 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2576 		break;
2577 	case PCI_DEVICE_ID_RFLY:
2578 		m = (typeof(m)){"LP952", "PCI",
2579 				"Obsolete, Unsupported Fibre Channel Adapter"};
2580 		break;
2581 	case PCI_DEVICE_ID_PEGASUS:
2582 		m = (typeof(m)){"LP9802", "PCI-X",
2583 				"Obsolete, Unsupported Fibre Channel Adapter"};
2584 		break;
2585 	case PCI_DEVICE_ID_THOR:
2586 		m = (typeof(m)){"LP10000", "PCI-X",
2587 				"Obsolete, Unsupported Fibre Channel Adapter"};
2588 		break;
2589 	case PCI_DEVICE_ID_VIPER:
2590 		m = (typeof(m)){"LPX1000",  "PCI-X",
2591 				"Obsolete, Unsupported Fibre Channel Adapter"};
2592 		break;
2593 	case PCI_DEVICE_ID_PFLY:
2594 		m = (typeof(m)){"LP982", "PCI-X",
2595 				"Obsolete, Unsupported Fibre Channel Adapter"};
2596 		break;
2597 	case PCI_DEVICE_ID_TFLY:
2598 		m = (typeof(m)){"LP1050", "PCI-X",
2599 				"Obsolete, Unsupported Fibre Channel Adapter"};
2600 		break;
2601 	case PCI_DEVICE_ID_HELIOS:
2602 		m = (typeof(m)){"LP11000", "PCI-X2",
2603 				"Obsolete, Unsupported Fibre Channel Adapter"};
2604 		break;
2605 	case PCI_DEVICE_ID_HELIOS_SCSP:
2606 		m = (typeof(m)){"LP11000-SP", "PCI-X2",
2607 				"Obsolete, Unsupported Fibre Channel Adapter"};
2608 		break;
2609 	case PCI_DEVICE_ID_HELIOS_DCSP:
2610 		m = (typeof(m)){"LP11002-SP",  "PCI-X2",
2611 				"Obsolete, Unsupported Fibre Channel Adapter"};
2612 		break;
2613 	case PCI_DEVICE_ID_NEPTUNE:
2614 		m = (typeof(m)){"LPe1000", "PCIe",
2615 				"Obsolete, Unsupported Fibre Channel Adapter"};
2616 		break;
2617 	case PCI_DEVICE_ID_NEPTUNE_SCSP:
2618 		m = (typeof(m)){"LPe1000-SP", "PCIe",
2619 				"Obsolete, Unsupported Fibre Channel Adapter"};
2620 		break;
2621 	case PCI_DEVICE_ID_NEPTUNE_DCSP:
2622 		m = (typeof(m)){"LPe1002-SP", "PCIe",
2623 				"Obsolete, Unsupported Fibre Channel Adapter"};
2624 		break;
2625 	case PCI_DEVICE_ID_BMID:
2626 		m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"};
2627 		break;
2628 	case PCI_DEVICE_ID_BSMB:
2629 		m = (typeof(m)){"LP111", "PCI-X2",
2630 				"Obsolete, Unsupported Fibre Channel Adapter"};
2631 		break;
2632 	case PCI_DEVICE_ID_ZEPHYR:
2633 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2634 		break;
2635 	case PCI_DEVICE_ID_ZEPHYR_SCSP:
2636 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2637 		break;
2638 	case PCI_DEVICE_ID_ZEPHYR_DCSP:
2639 		m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"};
2640 		GE = 1;
2641 		break;
2642 	case PCI_DEVICE_ID_ZMID:
2643 		m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"};
2644 		break;
2645 	case PCI_DEVICE_ID_ZSMB:
2646 		m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"};
2647 		break;
2648 	case PCI_DEVICE_ID_LP101:
2649 		m = (typeof(m)){"LP101", "PCI-X",
2650 				"Obsolete, Unsupported Fibre Channel Adapter"};
2651 		break;
2652 	case PCI_DEVICE_ID_LP10000S:
2653 		m = (typeof(m)){"LP10000-S", "PCI",
2654 				"Obsolete, Unsupported Fibre Channel Adapter"};
2655 		break;
2656 	case PCI_DEVICE_ID_LP11000S:
2657 		m = (typeof(m)){"LP11000-S", "PCI-X2",
2658 				"Obsolete, Unsupported Fibre Channel Adapter"};
2659 		break;
2660 	case PCI_DEVICE_ID_LPE11000S:
2661 		m = (typeof(m)){"LPe11000-S", "PCIe",
2662 				"Obsolete, Unsupported Fibre Channel Adapter"};
2663 		break;
2664 	case PCI_DEVICE_ID_SAT:
2665 		m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"};
2666 		break;
2667 	case PCI_DEVICE_ID_SAT_MID:
2668 		m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"};
2669 		break;
2670 	case PCI_DEVICE_ID_SAT_SMB:
2671 		m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"};
2672 		break;
2673 	case PCI_DEVICE_ID_SAT_DCSP:
2674 		m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"};
2675 		break;
2676 	case PCI_DEVICE_ID_SAT_SCSP:
2677 		m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"};
2678 		break;
2679 	case PCI_DEVICE_ID_SAT_S:
2680 		m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"};
2681 		break;
2682 	case PCI_DEVICE_ID_PROTEUS_VF:
2683 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2684 				"Obsolete, Unsupported Fibre Channel Adapter"};
2685 		break;
2686 	case PCI_DEVICE_ID_PROTEUS_PF:
2687 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2688 				"Obsolete, Unsupported Fibre Channel Adapter"};
2689 		break;
2690 	case PCI_DEVICE_ID_PROTEUS_S:
2691 		m = (typeof(m)){"LPemv12002-S", "PCIe IOV",
2692 				"Obsolete, Unsupported Fibre Channel Adapter"};
2693 		break;
2694 	case PCI_DEVICE_ID_TIGERSHARK:
2695 		oneConnect = 1;
2696 		m = (typeof(m)){"OCe10100", "PCIe", "FCoE"};
2697 		break;
2698 	case PCI_DEVICE_ID_TOMCAT:
2699 		oneConnect = 1;
2700 		m = (typeof(m)){"OCe11100", "PCIe", "FCoE"};
2701 		break;
2702 	case PCI_DEVICE_ID_FALCON:
2703 		m = (typeof(m)){"LPSe12002-ML1-E", "PCIe",
2704 				"EmulexSecure Fibre"};
2705 		break;
2706 	case PCI_DEVICE_ID_BALIUS:
2707 		m = (typeof(m)){"LPVe12002", "PCIe Shared I/O",
2708 				"Obsolete, Unsupported Fibre Channel Adapter"};
2709 		break;
2710 	case PCI_DEVICE_ID_LANCER_FC:
2711 		m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"};
2712 		break;
2713 	case PCI_DEVICE_ID_LANCER_FC_VF:
2714 		m = (typeof(m)){"LPe16000", "PCIe",
2715 				"Obsolete, Unsupported Fibre Channel Adapter"};
2716 		break;
2717 	case PCI_DEVICE_ID_LANCER_FCOE:
2718 		oneConnect = 1;
2719 		m = (typeof(m)){"OCe15100", "PCIe", "FCoE"};
2720 		break;
2721 	case PCI_DEVICE_ID_LANCER_FCOE_VF:
2722 		oneConnect = 1;
2723 		m = (typeof(m)){"OCe15100", "PCIe",
2724 				"Obsolete, Unsupported FCoE"};
2725 		break;
2726 	case PCI_DEVICE_ID_LANCER_G6_FC:
2727 		m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"};
2728 		break;
2729 	case PCI_DEVICE_ID_LANCER_G7_FC:
2730 		m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"};
2731 		break;
2732 	case PCI_DEVICE_ID_LANCER_G7P_FC:
2733 		m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"};
2734 		break;
2735 	case PCI_DEVICE_ID_SKYHAWK:
2736 	case PCI_DEVICE_ID_SKYHAWK_VF:
2737 		oneConnect = 1;
2738 		m = (typeof(m)){"OCe14000", "PCIe", "FCoE"};
2739 		break;
2740 	default:
2741 		m = (typeof(m)){"Unknown", "", ""};
2742 		break;
2743 	}
2744 
2745 	if (mdp && mdp[0] == '\0')
2746 		snprintf(mdp, 79,"%s", m.name);
2747 	/*
2748 	 * oneConnect hba requires special processing, they are all initiators
2749 	 * and we put the port number on the end
2750 	 */
2751 	if (descp && descp[0] == '\0') {
2752 		if (oneConnect)
2753 			snprintf(descp, 255,
2754 				"Emulex OneConnect %s, %s Initiator %s",
2755 				m.name, m.function,
2756 				phba->Port);
2757 		else if (max_speed == 0)
2758 			snprintf(descp, 255,
2759 				"Emulex %s %s %s",
2760 				m.name, m.bus, m.function);
2761 		else
2762 			snprintf(descp, 255,
2763 				"Emulex %s %d%s %s %s",
2764 				m.name, max_speed, (GE) ? "GE" : "Gb",
2765 				m.bus, m.function);
2766 	}
2767 }
2768 
2769 /**
2770  * lpfc_sli3_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
2771  * @phba: pointer to lpfc hba data structure.
2772  * @pring: pointer to a IOCB ring.
2773  * @cnt: the number of IOCBs to be posted to the IOCB ring.
2774  *
2775  * This routine posts a given number of IOCBs with the associated DMA buffer
2776  * descriptors specified by the cnt argument to the given IOCB ring.
2777  *
2778  * Return codes
2779  *   The number of IOCBs NOT able to be posted to the IOCB ring.
2780  **/
2781 int
lpfc_sli3_post_buffer(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,int cnt)2782 lpfc_sli3_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
2783 {
2784 	IOCB_t *icmd;
2785 	struct lpfc_iocbq *iocb;
2786 	struct lpfc_dmabuf *mp1, *mp2;
2787 
2788 	cnt += pring->missbufcnt;
2789 
2790 	/* While there are buffers to post */
2791 	while (cnt > 0) {
2792 		/* Allocate buffer for  command iocb */
2793 		iocb = lpfc_sli_get_iocbq(phba);
2794 		if (iocb == NULL) {
2795 			pring->missbufcnt = cnt;
2796 			return cnt;
2797 		}
2798 		icmd = &iocb->iocb;
2799 
2800 		/* 2 buffers can be posted per command */
2801 		/* Allocate buffer to post */
2802 		mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2803 		if (mp1)
2804 		    mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
2805 		if (!mp1 || !mp1->virt) {
2806 			kfree(mp1);
2807 			lpfc_sli_release_iocbq(phba, iocb);
2808 			pring->missbufcnt = cnt;
2809 			return cnt;
2810 		}
2811 
2812 		INIT_LIST_HEAD(&mp1->list);
2813 		/* Allocate buffer to post */
2814 		if (cnt > 1) {
2815 			mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2816 			if (mp2)
2817 				mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
2818 							    &mp2->phys);
2819 			if (!mp2 || !mp2->virt) {
2820 				kfree(mp2);
2821 				lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2822 				kfree(mp1);
2823 				lpfc_sli_release_iocbq(phba, iocb);
2824 				pring->missbufcnt = cnt;
2825 				return cnt;
2826 			}
2827 
2828 			INIT_LIST_HEAD(&mp2->list);
2829 		} else {
2830 			mp2 = NULL;
2831 		}
2832 
2833 		icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
2834 		icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
2835 		icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
2836 		icmd->ulpBdeCount = 1;
2837 		cnt--;
2838 		if (mp2) {
2839 			icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
2840 			icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
2841 			icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
2842 			cnt--;
2843 			icmd->ulpBdeCount = 2;
2844 		}
2845 
2846 		icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
2847 		icmd->ulpLe = 1;
2848 
2849 		if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) ==
2850 		    IOCB_ERROR) {
2851 			lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2852 			kfree(mp1);
2853 			cnt++;
2854 			if (mp2) {
2855 				lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
2856 				kfree(mp2);
2857 				cnt++;
2858 			}
2859 			lpfc_sli_release_iocbq(phba, iocb);
2860 			pring->missbufcnt = cnt;
2861 			return cnt;
2862 		}
2863 		lpfc_sli_ringpostbuf_put(phba, pring, mp1);
2864 		if (mp2)
2865 			lpfc_sli_ringpostbuf_put(phba, pring, mp2);
2866 	}
2867 	pring->missbufcnt = 0;
2868 	return 0;
2869 }
2870 
2871 /**
2872  * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
2873  * @phba: pointer to lpfc hba data structure.
2874  *
2875  * This routine posts initial receive IOCB buffers to the ELS ring. The
2876  * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
2877  * set to 64 IOCBs. SLI3 only.
2878  *
2879  * Return codes
2880  *   0 - success (currently always success)
2881  **/
2882 static int
lpfc_post_rcv_buf(struct lpfc_hba * phba)2883 lpfc_post_rcv_buf(struct lpfc_hba *phba)
2884 {
2885 	struct lpfc_sli *psli = &phba->sli;
2886 
2887 	/* Ring 0, ELS / CT buffers */
2888 	lpfc_sli3_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0);
2889 	/* Ring 2 - FCP no buffers needed */
2890 
2891 	return 0;
2892 }
2893 
2894 #define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
2895 
2896 /**
2897  * lpfc_sha_init - Set up initial array of hash table entries
2898  * @HashResultPointer: pointer to an array as hash table.
2899  *
2900  * This routine sets up the initial values to the array of hash table entries
2901  * for the LC HBAs.
2902  **/
2903 static void
lpfc_sha_init(uint32_t * HashResultPointer)2904 lpfc_sha_init(uint32_t * HashResultPointer)
2905 {
2906 	HashResultPointer[0] = 0x67452301;
2907 	HashResultPointer[1] = 0xEFCDAB89;
2908 	HashResultPointer[2] = 0x98BADCFE;
2909 	HashResultPointer[3] = 0x10325476;
2910 	HashResultPointer[4] = 0xC3D2E1F0;
2911 }
2912 
2913 /**
2914  * lpfc_sha_iterate - Iterate initial hash table with the working hash table
2915  * @HashResultPointer: pointer to an initial/result hash table.
2916  * @HashWorkingPointer: pointer to an working hash table.
2917  *
2918  * This routine iterates an initial hash table pointed by @HashResultPointer
2919  * with the values from the working hash table pointeed by @HashWorkingPointer.
2920  * The results are putting back to the initial hash table, returned through
2921  * the @HashResultPointer as the result hash table.
2922  **/
2923 static void
lpfc_sha_iterate(uint32_t * HashResultPointer,uint32_t * HashWorkingPointer)2924 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
2925 {
2926 	int t;
2927 	uint32_t TEMP;
2928 	uint32_t A, B, C, D, E;
2929 	t = 16;
2930 	do {
2931 		HashWorkingPointer[t] =
2932 		    S(1,
2933 		      HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
2934 								     8] ^
2935 		      HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
2936 	} while (++t <= 79);
2937 	t = 0;
2938 	A = HashResultPointer[0];
2939 	B = HashResultPointer[1];
2940 	C = HashResultPointer[2];
2941 	D = HashResultPointer[3];
2942 	E = HashResultPointer[4];
2943 
2944 	do {
2945 		if (t < 20) {
2946 			TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
2947 		} else if (t < 40) {
2948 			TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
2949 		} else if (t < 60) {
2950 			TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
2951 		} else {
2952 			TEMP = (B ^ C ^ D) + 0xCA62C1D6;
2953 		}
2954 		TEMP += S(5, A) + E + HashWorkingPointer[t];
2955 		E = D;
2956 		D = C;
2957 		C = S(30, B);
2958 		B = A;
2959 		A = TEMP;
2960 	} while (++t <= 79);
2961 
2962 	HashResultPointer[0] += A;
2963 	HashResultPointer[1] += B;
2964 	HashResultPointer[2] += C;
2965 	HashResultPointer[3] += D;
2966 	HashResultPointer[4] += E;
2967 
2968 }
2969 
2970 /**
2971  * lpfc_challenge_key - Create challenge key based on WWPN of the HBA
2972  * @RandomChallenge: pointer to the entry of host challenge random number array.
2973  * @HashWorking: pointer to the entry of the working hash array.
2974  *
2975  * This routine calculates the working hash array referred by @HashWorking
2976  * from the challenge random numbers associated with the host, referred by
2977  * @RandomChallenge. The result is put into the entry of the working hash
2978  * array and returned by reference through @HashWorking.
2979  **/
2980 static void
lpfc_challenge_key(uint32_t * RandomChallenge,uint32_t * HashWorking)2981 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
2982 {
2983 	*HashWorking = (*RandomChallenge ^ *HashWorking);
2984 }
2985 
2986 /**
2987  * lpfc_hba_init - Perform special handling for LC HBA initialization
2988  * @phba: pointer to lpfc hba data structure.
2989  * @hbainit: pointer to an array of unsigned 32-bit integers.
2990  *
2991  * This routine performs the special handling for LC HBA initialization.
2992  **/
2993 void
lpfc_hba_init(struct lpfc_hba * phba,uint32_t * hbainit)2994 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
2995 {
2996 	int t;
2997 	uint32_t *HashWorking;
2998 	uint32_t *pwwnn = (uint32_t *) phba->wwnn;
2999 
3000 	HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
3001 	if (!HashWorking)
3002 		return;
3003 
3004 	HashWorking[0] = HashWorking[78] = *pwwnn++;
3005 	HashWorking[1] = HashWorking[79] = *pwwnn;
3006 
3007 	for (t = 0; t < 7; t++)
3008 		lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
3009 
3010 	lpfc_sha_init(hbainit);
3011 	lpfc_sha_iterate(hbainit, HashWorking);
3012 	kfree(HashWorking);
3013 }
3014 
3015 /**
3016  * lpfc_cleanup - Performs vport cleanups before deleting a vport
3017  * @vport: pointer to a virtual N_Port data structure.
3018  *
3019  * This routine performs the necessary cleanups before deleting the @vport.
3020  * It invokes the discovery state machine to perform necessary state
3021  * transitions and to release the ndlps associated with the @vport. Note,
3022  * the physical port is treated as @vport 0.
3023  **/
3024 void
lpfc_cleanup(struct lpfc_vport * vport)3025 lpfc_cleanup(struct lpfc_vport *vport)
3026 {
3027 	struct lpfc_hba   *phba = vport->phba;
3028 	struct lpfc_nodelist *ndlp, *next_ndlp;
3029 	int i = 0;
3030 
3031 	if (phba->link_state > LPFC_LINK_DOWN)
3032 		lpfc_port_link_failure(vport);
3033 
3034 	/* Clean up VMID resources */
3035 	if (lpfc_is_vmid_enabled(phba))
3036 		lpfc_vmid_vport_cleanup(vport);
3037 
3038 	list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
3039 		if (vport->port_type != LPFC_PHYSICAL_PORT &&
3040 		    ndlp->nlp_DID == Fabric_DID) {
3041 			/* Just free up ndlp with Fabric_DID for vports */
3042 			lpfc_nlp_put(ndlp);
3043 			continue;
3044 		}
3045 
3046 		if (ndlp->nlp_DID == Fabric_Cntl_DID &&
3047 		    ndlp->nlp_state == NLP_STE_UNUSED_NODE) {
3048 			lpfc_nlp_put(ndlp);
3049 			continue;
3050 		}
3051 
3052 		/* Fabric Ports not in UNMAPPED state are cleaned up in the
3053 		 * DEVICE_RM event.
3054 		 */
3055 		if (ndlp->nlp_type & NLP_FABRIC &&
3056 		    ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)
3057 			lpfc_disc_state_machine(vport, ndlp, NULL,
3058 					NLP_EVT_DEVICE_RECOVERY);
3059 
3060 		if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD)))
3061 			lpfc_disc_state_machine(vport, ndlp, NULL,
3062 					NLP_EVT_DEVICE_RM);
3063 	}
3064 
3065 	/* This is a special case flush to return all
3066 	 * IOs before entering this loop. There are
3067 	 * two points in the code where a flush is
3068 	 * avoided if the FC_UNLOADING flag is set.
3069 	 * one is in the multipool destroy,
3070 	 * (this prevents a crash) and the other is
3071 	 * in the nvme abort handler, ( also prevents
3072 	 * a crash). Both of these exceptions are
3073 	 * cases where the slot is still accessible.
3074 	 * The flush here is only when the pci slot
3075 	 * is offline.
3076 	 */
3077 	if (test_bit(FC_UNLOADING, &vport->load_flag) &&
3078 	    pci_channel_offline(phba->pcidev))
3079 		lpfc_sli_flush_io_rings(vport->phba);
3080 
3081 	/* At this point, ALL ndlp's should be gone
3082 	 * because of the previous NLP_EVT_DEVICE_RM.
3083 	 * Lets wait for this to happen, if needed.
3084 	 */
3085 	while (!list_empty(&vport->fc_nodes)) {
3086 		if (i++ > 3000) {
3087 			lpfc_printf_vlog(vport, KERN_ERR,
3088 					 LOG_TRACE_EVENT,
3089 				"0233 Nodelist not empty\n");
3090 			list_for_each_entry_safe(ndlp, next_ndlp,
3091 						&vport->fc_nodes, nlp_listp) {
3092 				lpfc_printf_vlog(ndlp->vport, KERN_ERR,
3093 						 LOG_DISCOVERY,
3094 						 "0282 did:x%x ndlp:x%px "
3095 						 "refcnt:%d xflags x%x nflag x%x\n",
3096 						 ndlp->nlp_DID, (void *)ndlp,
3097 						 kref_read(&ndlp->kref),
3098 						 ndlp->fc4_xpt_flags,
3099 						 ndlp->nlp_flag);
3100 			}
3101 			break;
3102 		}
3103 
3104 		/* Wait for any activity on ndlps to settle */
3105 		msleep(10);
3106 	}
3107 	lpfc_cleanup_vports_rrqs(vport, NULL);
3108 }
3109 
3110 /**
3111  * lpfc_stop_vport_timers - Stop all the timers associated with a vport
3112  * @vport: pointer to a virtual N_Port data structure.
3113  *
3114  * This routine stops all the timers associated with a @vport. This function
3115  * is invoked before disabling or deleting a @vport. Note that the physical
3116  * port is treated as @vport 0.
3117  **/
3118 void
lpfc_stop_vport_timers(struct lpfc_vport * vport)3119 lpfc_stop_vport_timers(struct lpfc_vport *vport)
3120 {
3121 	del_timer_sync(&vport->els_tmofunc);
3122 	del_timer_sync(&vport->delayed_disc_tmo);
3123 	lpfc_can_disctmo(vport);
3124 	return;
3125 }
3126 
3127 /**
3128  * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3129  * @phba: pointer to lpfc hba data structure.
3130  *
3131  * This routine stops the SLI4 FCF rediscover wait timer if it's on. The
3132  * caller of this routine should already hold the host lock.
3133  **/
3134 void
__lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba * phba)3135 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3136 {
3137 	/* Clear pending FCF rediscovery wait flag */
3138 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
3139 
3140 	/* Now, try to stop the timer */
3141 	del_timer(&phba->fcf.redisc_wait);
3142 }
3143 
3144 /**
3145  * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3146  * @phba: pointer to lpfc hba data structure.
3147  *
3148  * This routine stops the SLI4 FCF rediscover wait timer if it's on. It
3149  * checks whether the FCF rediscovery wait timer is pending with the host
3150  * lock held before proceeding with disabling the timer and clearing the
3151  * wait timer pendig flag.
3152  **/
3153 void
lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba * phba)3154 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3155 {
3156 	spin_lock_irq(&phba->hbalock);
3157 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
3158 		/* FCF rediscovery timer already fired or stopped */
3159 		spin_unlock_irq(&phba->hbalock);
3160 		return;
3161 	}
3162 	__lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3163 	/* Clear failover in progress flags */
3164 	phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC);
3165 	spin_unlock_irq(&phba->hbalock);
3166 }
3167 
3168 /**
3169  * lpfc_cmf_stop - Stop CMF processing
3170  * @phba: pointer to lpfc hba data structure.
3171  *
3172  * This is called when the link goes down or if CMF mode is turned OFF.
3173  * It is also called when going offline or unloaded just before the
3174  * congestion info buffer is unregistered.
3175  **/
3176 void
lpfc_cmf_stop(struct lpfc_hba * phba)3177 lpfc_cmf_stop(struct lpfc_hba *phba)
3178 {
3179 	int cpu;
3180 	struct lpfc_cgn_stat *cgs;
3181 
3182 	/* We only do something if CMF is enabled */
3183 	if (!phba->sli4_hba.pc_sli4_params.cmf)
3184 		return;
3185 
3186 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3187 			"6221 Stop CMF / Cancel Timer\n");
3188 
3189 	/* Cancel the CMF timer */
3190 	hrtimer_cancel(&phba->cmf_stats_timer);
3191 	hrtimer_cancel(&phba->cmf_timer);
3192 
3193 	/* Zero CMF counters */
3194 	atomic_set(&phba->cmf_busy, 0);
3195 	for_each_present_cpu(cpu) {
3196 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3197 		atomic64_set(&cgs->total_bytes, 0);
3198 		atomic64_set(&cgs->rcv_bytes, 0);
3199 		atomic_set(&cgs->rx_io_cnt, 0);
3200 		atomic64_set(&cgs->rx_latency, 0);
3201 	}
3202 	atomic_set(&phba->cmf_bw_wait, 0);
3203 
3204 	/* Resume any blocked IO - Queue unblock on workqueue */
3205 	queue_work(phba->wq, &phba->unblock_request_work);
3206 }
3207 
3208 static inline uint64_t
lpfc_get_max_line_rate(struct lpfc_hba * phba)3209 lpfc_get_max_line_rate(struct lpfc_hba *phba)
3210 {
3211 	uint64_t rate = lpfc_sli_port_speed_get(phba);
3212 
3213 	return ((((unsigned long)rate) * 1024 * 1024) / 10);
3214 }
3215 
3216 void
lpfc_cmf_signal_init(struct lpfc_hba * phba)3217 lpfc_cmf_signal_init(struct lpfc_hba *phba)
3218 {
3219 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3220 			"6223 Signal CMF init\n");
3221 
3222 	/* Use the new fc_linkspeed to recalculate */
3223 	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
3224 	phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba);
3225 	phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
3226 					    phba->cmf_interval_rate, 1000);
3227 	phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count;
3228 
3229 	/* This is a signal to firmware to sync up CMF BW with link speed */
3230 	lpfc_issue_cmf_sync_wqe(phba, 0, 0);
3231 }
3232 
3233 /**
3234  * lpfc_cmf_start - Start CMF processing
3235  * @phba: pointer to lpfc hba data structure.
3236  *
3237  * This is called when the link comes up or if CMF mode is turned OFF
3238  * to Monitor or Managed.
3239  **/
3240 void
lpfc_cmf_start(struct lpfc_hba * phba)3241 lpfc_cmf_start(struct lpfc_hba *phba)
3242 {
3243 	struct lpfc_cgn_stat *cgs;
3244 	int cpu;
3245 
3246 	/* We only do something if CMF is enabled */
3247 	if (!phba->sli4_hba.pc_sli4_params.cmf ||
3248 	    phba->cmf_active_mode == LPFC_CFG_OFF)
3249 		return;
3250 
3251 	/* Reinitialize congestion buffer info */
3252 	lpfc_init_congestion_buf(phba);
3253 
3254 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
3255 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
3256 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
3257 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
3258 
3259 	atomic_set(&phba->cmf_busy, 0);
3260 	for_each_present_cpu(cpu) {
3261 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3262 		atomic64_set(&cgs->total_bytes, 0);
3263 		atomic64_set(&cgs->rcv_bytes, 0);
3264 		atomic_set(&cgs->rx_io_cnt, 0);
3265 		atomic64_set(&cgs->rx_latency, 0);
3266 	}
3267 	phba->cmf_latency.tv_sec = 0;
3268 	phba->cmf_latency.tv_nsec = 0;
3269 
3270 	lpfc_cmf_signal_init(phba);
3271 
3272 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3273 			"6222 Start CMF / Timer\n");
3274 
3275 	phba->cmf_timer_cnt = 0;
3276 	hrtimer_start(&phba->cmf_timer,
3277 		      ktime_set(0, LPFC_CMF_INTERVAL * NSEC_PER_MSEC),
3278 		      HRTIMER_MODE_REL);
3279 	hrtimer_start(&phba->cmf_stats_timer,
3280 		      ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC),
3281 		      HRTIMER_MODE_REL);
3282 	/* Setup for latency check in IO cmpl routines */
3283 	ktime_get_real_ts64(&phba->cmf_latency);
3284 
3285 	atomic_set(&phba->cmf_bw_wait, 0);
3286 	atomic_set(&phba->cmf_stop_io, 0);
3287 }
3288 
3289 /**
3290  * lpfc_stop_hba_timers - Stop all the timers associated with an HBA
3291  * @phba: pointer to lpfc hba data structure.
3292  *
3293  * This routine stops all the timers associated with a HBA. This function is
3294  * invoked before either putting a HBA offline or unloading the driver.
3295  **/
3296 void
lpfc_stop_hba_timers(struct lpfc_hba * phba)3297 lpfc_stop_hba_timers(struct lpfc_hba *phba)
3298 {
3299 	if (phba->pport)
3300 		lpfc_stop_vport_timers(phba->pport);
3301 	cancel_delayed_work_sync(&phba->eq_delay_work);
3302 	cancel_delayed_work_sync(&phba->idle_stat_delay_work);
3303 	del_timer_sync(&phba->sli.mbox_tmo);
3304 	del_timer_sync(&phba->fabric_block_timer);
3305 	del_timer_sync(&phba->eratt_poll);
3306 	del_timer_sync(&phba->hb_tmofunc);
3307 	if (phba->sli_rev == LPFC_SLI_REV4) {
3308 		del_timer_sync(&phba->rrq_tmr);
3309 		clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag);
3310 	}
3311 	clear_bit(HBA_HBEAT_INP, &phba->hba_flag);
3312 	clear_bit(HBA_HBEAT_TMO, &phba->hba_flag);
3313 
3314 	switch (phba->pci_dev_grp) {
3315 	case LPFC_PCI_DEV_LP:
3316 		/* Stop any LightPulse device specific driver timers */
3317 		del_timer_sync(&phba->fcp_poll_timer);
3318 		break;
3319 	case LPFC_PCI_DEV_OC:
3320 		/* Stop any OneConnect device specific driver timers */
3321 		lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3322 		break;
3323 	default:
3324 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3325 				"0297 Invalid device group (x%x)\n",
3326 				phba->pci_dev_grp);
3327 		break;
3328 	}
3329 	return;
3330 }
3331 
3332 /**
3333  * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
3334  * @phba: pointer to lpfc hba data structure.
3335  * @mbx_action: flag for mailbox no wait action.
3336  *
3337  * This routine marks a HBA's management interface as blocked. Once the HBA's
3338  * management interface is marked as blocked, all the user space access to
3339  * the HBA, whether they are from sysfs interface or libdfc interface will
3340  * all be blocked. The HBA is set to block the management interface when the
3341  * driver prepares the HBA interface for online or offline.
3342  **/
3343 static void
lpfc_block_mgmt_io(struct lpfc_hba * phba,int mbx_action)3344 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action)
3345 {
3346 	unsigned long iflag;
3347 	uint8_t actcmd = MBX_HEARTBEAT;
3348 	unsigned long timeout;
3349 
3350 	spin_lock_irqsave(&phba->hbalock, iflag);
3351 	phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
3352 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3353 	if (mbx_action == LPFC_MBX_NO_WAIT)
3354 		return;
3355 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
3356 	spin_lock_irqsave(&phba->hbalock, iflag);
3357 	if (phba->sli.mbox_active) {
3358 		actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
3359 		/* Determine how long we might wait for the active mailbox
3360 		 * command to be gracefully completed by firmware.
3361 		 */
3362 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
3363 				phba->sli.mbox_active) * 1000) + jiffies;
3364 	}
3365 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3366 
3367 	/* Wait for the outstnading mailbox command to complete */
3368 	while (phba->sli.mbox_active) {
3369 		/* Check active mailbox complete status every 2ms */
3370 		msleep(2);
3371 		if (time_after(jiffies, timeout)) {
3372 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3373 					"2813 Mgmt IO is Blocked %x "
3374 					"- mbox cmd %x still active\n",
3375 					phba->sli.sli_flag, actcmd);
3376 			break;
3377 		}
3378 	}
3379 }
3380 
3381 /**
3382  * lpfc_sli4_node_prep - Assign RPIs for active nodes.
3383  * @phba: pointer to lpfc hba data structure.
3384  *
3385  * Allocate RPIs for all active remote nodes. This is needed whenever
3386  * an SLI4 adapter is reset and the driver is not unloading. Its purpose
3387  * is to fixup the temporary rpi assignments.
3388  **/
3389 void
lpfc_sli4_node_prep(struct lpfc_hba * phba)3390 lpfc_sli4_node_prep(struct lpfc_hba *phba)
3391 {
3392 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3393 	struct lpfc_vport **vports;
3394 	int i, rpi;
3395 
3396 	if (phba->sli_rev != LPFC_SLI_REV4)
3397 		return;
3398 
3399 	vports = lpfc_create_vport_work_array(phba);
3400 	if (vports == NULL)
3401 		return;
3402 
3403 	for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3404 		if (test_bit(FC_UNLOADING, &vports[i]->load_flag))
3405 			continue;
3406 
3407 		list_for_each_entry_safe(ndlp, next_ndlp,
3408 					 &vports[i]->fc_nodes,
3409 					 nlp_listp) {
3410 			rpi = lpfc_sli4_alloc_rpi(phba);
3411 			if (rpi == LPFC_RPI_ALLOC_ERROR) {
3412 				/* TODO print log? */
3413 				continue;
3414 			}
3415 			ndlp->nlp_rpi = rpi;
3416 			lpfc_printf_vlog(ndlp->vport, KERN_INFO,
3417 					 LOG_NODE | LOG_DISCOVERY,
3418 					 "0009 Assign RPI x%x to ndlp x%px "
3419 					 "DID:x%06x flg:x%x\n",
3420 					 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID,
3421 					 ndlp->nlp_flag);
3422 		}
3423 	}
3424 	lpfc_destroy_vport_work_array(phba, vports);
3425 }
3426 
3427 /**
3428  * lpfc_create_expedite_pool - create expedite pool
3429  * @phba: pointer to lpfc hba data structure.
3430  *
3431  * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0
3432  * to expedite pool. Mark them as expedite.
3433  **/
lpfc_create_expedite_pool(struct lpfc_hba * phba)3434 static void lpfc_create_expedite_pool(struct lpfc_hba *phba)
3435 {
3436 	struct lpfc_sli4_hdw_queue *qp;
3437 	struct lpfc_io_buf *lpfc_ncmd;
3438 	struct lpfc_io_buf *lpfc_ncmd_next;
3439 	struct lpfc_epd_pool *epd_pool;
3440 	unsigned long iflag;
3441 
3442 	epd_pool = &phba->epd_pool;
3443 	qp = &phba->sli4_hba.hdwq[0];
3444 
3445 	spin_lock_init(&epd_pool->lock);
3446 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3447 	spin_lock(&epd_pool->lock);
3448 	INIT_LIST_HEAD(&epd_pool->list);
3449 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3450 				 &qp->lpfc_io_buf_list_put, list) {
3451 		list_move_tail(&lpfc_ncmd->list, &epd_pool->list);
3452 		lpfc_ncmd->expedite = true;
3453 		qp->put_io_bufs--;
3454 		epd_pool->count++;
3455 		if (epd_pool->count >= XRI_BATCH)
3456 			break;
3457 	}
3458 	spin_unlock(&epd_pool->lock);
3459 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3460 }
3461 
3462 /**
3463  * lpfc_destroy_expedite_pool - destroy expedite pool
3464  * @phba: pointer to lpfc hba data structure.
3465  *
3466  * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put
3467  * of HWQ 0. Clear the mark.
3468  **/
lpfc_destroy_expedite_pool(struct lpfc_hba * phba)3469 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba)
3470 {
3471 	struct lpfc_sli4_hdw_queue *qp;
3472 	struct lpfc_io_buf *lpfc_ncmd;
3473 	struct lpfc_io_buf *lpfc_ncmd_next;
3474 	struct lpfc_epd_pool *epd_pool;
3475 	unsigned long iflag;
3476 
3477 	epd_pool = &phba->epd_pool;
3478 	qp = &phba->sli4_hba.hdwq[0];
3479 
3480 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3481 	spin_lock(&epd_pool->lock);
3482 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3483 				 &epd_pool->list, list) {
3484 		list_move_tail(&lpfc_ncmd->list,
3485 			       &qp->lpfc_io_buf_list_put);
3486 		lpfc_ncmd->flags = false;
3487 		qp->put_io_bufs++;
3488 		epd_pool->count--;
3489 	}
3490 	spin_unlock(&epd_pool->lock);
3491 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3492 }
3493 
3494 /**
3495  * lpfc_create_multixri_pools - create multi-XRI pools
3496  * @phba: pointer to lpfc hba data structure.
3497  *
3498  * This routine initialize public, private per HWQ. Then, move XRIs from
3499  * lpfc_io_buf_list_put to public pool. High and low watermark are also
3500  * Initialized.
3501  **/
lpfc_create_multixri_pools(struct lpfc_hba * phba)3502 void lpfc_create_multixri_pools(struct lpfc_hba *phba)
3503 {
3504 	u32 i, j;
3505 	u32 hwq_count;
3506 	u32 count_per_hwq;
3507 	struct lpfc_io_buf *lpfc_ncmd;
3508 	struct lpfc_io_buf *lpfc_ncmd_next;
3509 	unsigned long iflag;
3510 	struct lpfc_sli4_hdw_queue *qp;
3511 	struct lpfc_multixri_pool *multixri_pool;
3512 	struct lpfc_pbl_pool *pbl_pool;
3513 	struct lpfc_pvt_pool *pvt_pool;
3514 
3515 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3516 			"1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n",
3517 			phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu,
3518 			phba->sli4_hba.io_xri_cnt);
3519 
3520 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3521 		lpfc_create_expedite_pool(phba);
3522 
3523 	hwq_count = phba->cfg_hdw_queue;
3524 	count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count;
3525 
3526 	for (i = 0; i < hwq_count; i++) {
3527 		multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL);
3528 
3529 		if (!multixri_pool) {
3530 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3531 					"1238 Failed to allocate memory for "
3532 					"multixri_pool\n");
3533 
3534 			if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3535 				lpfc_destroy_expedite_pool(phba);
3536 
3537 			j = 0;
3538 			while (j < i) {
3539 				qp = &phba->sli4_hba.hdwq[j];
3540 				kfree(qp->p_multixri_pool);
3541 				j++;
3542 			}
3543 			phba->cfg_xri_rebalancing = 0;
3544 			return;
3545 		}
3546 
3547 		qp = &phba->sli4_hba.hdwq[i];
3548 		qp->p_multixri_pool = multixri_pool;
3549 
3550 		multixri_pool->xri_limit = count_per_hwq;
3551 		multixri_pool->rrb_next_hwqid = i;
3552 
3553 		/* Deal with public free xri pool */
3554 		pbl_pool = &multixri_pool->pbl_pool;
3555 		spin_lock_init(&pbl_pool->lock);
3556 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3557 		spin_lock(&pbl_pool->lock);
3558 		INIT_LIST_HEAD(&pbl_pool->list);
3559 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3560 					 &qp->lpfc_io_buf_list_put, list) {
3561 			list_move_tail(&lpfc_ncmd->list, &pbl_pool->list);
3562 			qp->put_io_bufs--;
3563 			pbl_pool->count++;
3564 		}
3565 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3566 				"1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n",
3567 				pbl_pool->count, i);
3568 		spin_unlock(&pbl_pool->lock);
3569 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3570 
3571 		/* Deal with private free xri pool */
3572 		pvt_pool = &multixri_pool->pvt_pool;
3573 		pvt_pool->high_watermark = multixri_pool->xri_limit / 2;
3574 		pvt_pool->low_watermark = XRI_BATCH;
3575 		spin_lock_init(&pvt_pool->lock);
3576 		spin_lock_irqsave(&pvt_pool->lock, iflag);
3577 		INIT_LIST_HEAD(&pvt_pool->list);
3578 		pvt_pool->count = 0;
3579 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
3580 	}
3581 }
3582 
3583 /**
3584  * lpfc_destroy_multixri_pools - destroy multi-XRI pools
3585  * @phba: pointer to lpfc hba data structure.
3586  *
3587  * This routine returns XRIs from public/private to lpfc_io_buf_list_put.
3588  **/
lpfc_destroy_multixri_pools(struct lpfc_hba * phba)3589 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba)
3590 {
3591 	u32 i;
3592 	u32 hwq_count;
3593 	struct lpfc_io_buf *lpfc_ncmd;
3594 	struct lpfc_io_buf *lpfc_ncmd_next;
3595 	unsigned long iflag;
3596 	struct lpfc_sli4_hdw_queue *qp;
3597 	struct lpfc_multixri_pool *multixri_pool;
3598 	struct lpfc_pbl_pool *pbl_pool;
3599 	struct lpfc_pvt_pool *pvt_pool;
3600 
3601 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3602 		lpfc_destroy_expedite_pool(phba);
3603 
3604 	if (!test_bit(FC_UNLOADING, &phba->pport->load_flag))
3605 		lpfc_sli_flush_io_rings(phba);
3606 
3607 	hwq_count = phba->cfg_hdw_queue;
3608 
3609 	for (i = 0; i < hwq_count; i++) {
3610 		qp = &phba->sli4_hba.hdwq[i];
3611 		multixri_pool = qp->p_multixri_pool;
3612 		if (!multixri_pool)
3613 			continue;
3614 
3615 		qp->p_multixri_pool = NULL;
3616 
3617 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3618 
3619 		/* Deal with public free xri pool */
3620 		pbl_pool = &multixri_pool->pbl_pool;
3621 		spin_lock(&pbl_pool->lock);
3622 
3623 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3624 				"1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n",
3625 				pbl_pool->count, i);
3626 
3627 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3628 					 &pbl_pool->list, list) {
3629 			list_move_tail(&lpfc_ncmd->list,
3630 				       &qp->lpfc_io_buf_list_put);
3631 			qp->put_io_bufs++;
3632 			pbl_pool->count--;
3633 		}
3634 
3635 		INIT_LIST_HEAD(&pbl_pool->list);
3636 		pbl_pool->count = 0;
3637 
3638 		spin_unlock(&pbl_pool->lock);
3639 
3640 		/* Deal with private free xri pool */
3641 		pvt_pool = &multixri_pool->pvt_pool;
3642 		spin_lock(&pvt_pool->lock);
3643 
3644 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3645 				"1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n",
3646 				pvt_pool->count, i);
3647 
3648 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3649 					 &pvt_pool->list, list) {
3650 			list_move_tail(&lpfc_ncmd->list,
3651 				       &qp->lpfc_io_buf_list_put);
3652 			qp->put_io_bufs++;
3653 			pvt_pool->count--;
3654 		}
3655 
3656 		INIT_LIST_HEAD(&pvt_pool->list);
3657 		pvt_pool->count = 0;
3658 
3659 		spin_unlock(&pvt_pool->lock);
3660 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3661 
3662 		kfree(multixri_pool);
3663 	}
3664 }
3665 
3666 /**
3667  * lpfc_online - Initialize and bring a HBA online
3668  * @phba: pointer to lpfc hba data structure.
3669  *
3670  * This routine initializes the HBA and brings a HBA online. During this
3671  * process, the management interface is blocked to prevent user space access
3672  * to the HBA interfering with the driver initialization.
3673  *
3674  * Return codes
3675  *   0 - successful
3676  *   1 - failed
3677  **/
3678 int
lpfc_online(struct lpfc_hba * phba)3679 lpfc_online(struct lpfc_hba *phba)
3680 {
3681 	struct lpfc_vport *vport;
3682 	struct lpfc_vport **vports;
3683 	int i, error = 0;
3684 	bool vpis_cleared = false;
3685 
3686 	if (!phba)
3687 		return 0;
3688 	vport = phba->pport;
3689 
3690 	if (!test_bit(FC_OFFLINE_MODE, &vport->fc_flag))
3691 		return 0;
3692 
3693 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3694 			"0458 Bring Adapter online\n");
3695 
3696 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
3697 
3698 	if (phba->sli_rev == LPFC_SLI_REV4) {
3699 		if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */
3700 			lpfc_unblock_mgmt_io(phba);
3701 			return 1;
3702 		}
3703 		spin_lock_irq(&phba->hbalock);
3704 		if (!phba->sli4_hba.max_cfg_param.vpi_used)
3705 			vpis_cleared = true;
3706 		spin_unlock_irq(&phba->hbalock);
3707 
3708 		/* Reestablish the local initiator port.
3709 		 * The offline process destroyed the previous lport.
3710 		 */
3711 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME &&
3712 				!phba->nvmet_support) {
3713 			error = lpfc_nvme_create_localport(phba->pport);
3714 			if (error)
3715 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3716 					"6132 NVME restore reg failed "
3717 					"on nvmei error x%x\n", error);
3718 		}
3719 	} else {
3720 		lpfc_sli_queue_init(phba);
3721 		if (lpfc_sli_hba_setup(phba)) {	/* Initialize SLI2/SLI3 HBA */
3722 			lpfc_unblock_mgmt_io(phba);
3723 			return 1;
3724 		}
3725 	}
3726 
3727 	vports = lpfc_create_vport_work_array(phba);
3728 	if (vports != NULL) {
3729 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3730 			clear_bit(FC_OFFLINE_MODE, &vports[i]->fc_flag);
3731 			if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
3732 				set_bit(FC_VPORT_NEEDS_REG_VPI,
3733 					&vports[i]->fc_flag);
3734 			if (phba->sli_rev == LPFC_SLI_REV4) {
3735 				set_bit(FC_VPORT_NEEDS_INIT_VPI,
3736 					&vports[i]->fc_flag);
3737 				if ((vpis_cleared) &&
3738 				    (vports[i]->port_type !=
3739 					LPFC_PHYSICAL_PORT))
3740 					vports[i]->vpi = 0;
3741 			}
3742 		}
3743 	}
3744 	lpfc_destroy_vport_work_array(phba, vports);
3745 
3746 	if (phba->cfg_xri_rebalancing)
3747 		lpfc_create_multixri_pools(phba);
3748 
3749 	lpfc_cpuhp_add(phba);
3750 
3751 	lpfc_unblock_mgmt_io(phba);
3752 	return 0;
3753 }
3754 
3755 /**
3756  * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
3757  * @phba: pointer to lpfc hba data structure.
3758  *
3759  * This routine marks a HBA's management interface as not blocked. Once the
3760  * HBA's management interface is marked as not blocked, all the user space
3761  * access to the HBA, whether they are from sysfs interface or libdfc
3762  * interface will be allowed. The HBA is set to block the management interface
3763  * when the driver prepares the HBA interface for online or offline and then
3764  * set to unblock the management interface afterwards.
3765  **/
3766 void
lpfc_unblock_mgmt_io(struct lpfc_hba * phba)3767 lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
3768 {
3769 	unsigned long iflag;
3770 
3771 	spin_lock_irqsave(&phba->hbalock, iflag);
3772 	phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
3773 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3774 }
3775 
3776 /**
3777  * lpfc_offline_prep - Prepare a HBA to be brought offline
3778  * @phba: pointer to lpfc hba data structure.
3779  * @mbx_action: flag for mailbox shutdown action.
3780  *
3781  * This routine is invoked to prepare a HBA to be brought offline. It performs
3782  * unregistration login to all the nodes on all vports and flushes the mailbox
3783  * queue to make it ready to be brought offline.
3784  **/
3785 void
lpfc_offline_prep(struct lpfc_hba * phba,int mbx_action)3786 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action)
3787 {
3788 	struct lpfc_vport *vport = phba->pport;
3789 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3790 	struct lpfc_vport **vports;
3791 	struct Scsi_Host *shost;
3792 	int i;
3793 	int offline;
3794 	bool hba_pci_err;
3795 
3796 	if (test_bit(FC_OFFLINE_MODE, &vport->fc_flag))
3797 		return;
3798 
3799 	lpfc_block_mgmt_io(phba, mbx_action);
3800 
3801 	lpfc_linkdown(phba);
3802 
3803 	offline =  pci_channel_offline(phba->pcidev);
3804 	hba_pci_err = test_bit(HBA_PCI_ERR, &phba->bit_flags);
3805 
3806 	/* Issue an unreg_login to all nodes on all vports */
3807 	vports = lpfc_create_vport_work_array(phba);
3808 	if (vports != NULL) {
3809 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3810 			if (test_bit(FC_UNLOADING, &vports[i]->load_flag))
3811 				continue;
3812 			shost = lpfc_shost_from_vport(vports[i]);
3813 			spin_lock_irq(shost->host_lock);
3814 			vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED;
3815 			spin_unlock_irq(shost->host_lock);
3816 			set_bit(FC_VPORT_NEEDS_REG_VPI, &vports[i]->fc_flag);
3817 			clear_bit(FC_VFI_REGISTERED, &vports[i]->fc_flag);
3818 
3819 			list_for_each_entry_safe(ndlp, next_ndlp,
3820 						 &vports[i]->fc_nodes,
3821 						 nlp_listp) {
3822 
3823 				spin_lock_irq(&ndlp->lock);
3824 				ndlp->nlp_flag &= ~NLP_NPR_ADISC;
3825 				spin_unlock_irq(&ndlp->lock);
3826 
3827 				if (offline || hba_pci_err) {
3828 					spin_lock_irq(&ndlp->lock);
3829 					ndlp->nlp_flag &= ~(NLP_UNREG_INP |
3830 							    NLP_RPI_REGISTERED);
3831 					spin_unlock_irq(&ndlp->lock);
3832 					if (phba->sli_rev == LPFC_SLI_REV4)
3833 						lpfc_sli_rpi_release(vports[i],
3834 								     ndlp);
3835 				} else {
3836 					lpfc_unreg_rpi(vports[i], ndlp);
3837 				}
3838 				/*
3839 				 * Whenever an SLI4 port goes offline, free the
3840 				 * RPI. Get a new RPI when the adapter port
3841 				 * comes back online.
3842 				 */
3843 				if (phba->sli_rev == LPFC_SLI_REV4) {
3844 					lpfc_printf_vlog(vports[i], KERN_INFO,
3845 						 LOG_NODE | LOG_DISCOVERY,
3846 						 "0011 Free RPI x%x on "
3847 						 "ndlp: x%px did x%x\n",
3848 						 ndlp->nlp_rpi, ndlp,
3849 						 ndlp->nlp_DID);
3850 					lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi);
3851 					ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
3852 				}
3853 
3854 				if (ndlp->nlp_type & NLP_FABRIC) {
3855 					lpfc_disc_state_machine(vports[i], ndlp,
3856 						NULL, NLP_EVT_DEVICE_RECOVERY);
3857 
3858 					/* Don't remove the node unless the node
3859 					 * has been unregistered with the
3860 					 * transport, and we're not in recovery
3861 					 * before dev_loss_tmo triggered.
3862 					 * Otherwise, let dev_loss take care of
3863 					 * the node.
3864 					 */
3865 					if (!(ndlp->save_flags &
3866 					      NLP_IN_RECOV_POST_DEV_LOSS) &&
3867 					    !(ndlp->fc4_xpt_flags &
3868 					      (NVME_XPT_REGD | SCSI_XPT_REGD)))
3869 						lpfc_disc_state_machine
3870 							(vports[i], ndlp,
3871 							 NULL,
3872 							 NLP_EVT_DEVICE_RM);
3873 				}
3874 			}
3875 		}
3876 	}
3877 	lpfc_destroy_vport_work_array(phba, vports);
3878 
3879 	lpfc_sli_mbox_sys_shutdown(phba, mbx_action);
3880 
3881 	if (phba->wq)
3882 		flush_workqueue(phba->wq);
3883 }
3884 
3885 /**
3886  * lpfc_offline - Bring a HBA offline
3887  * @phba: pointer to lpfc hba data structure.
3888  *
3889  * This routine actually brings a HBA offline. It stops all the timers
3890  * associated with the HBA, brings down the SLI layer, and eventually
3891  * marks the HBA as in offline state for the upper layer protocol.
3892  **/
3893 void
lpfc_offline(struct lpfc_hba * phba)3894 lpfc_offline(struct lpfc_hba *phba)
3895 {
3896 	struct Scsi_Host  *shost;
3897 	struct lpfc_vport **vports;
3898 	int i;
3899 
3900 	if (test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
3901 		return;
3902 
3903 	/* stop port and all timers associated with this hba */
3904 	lpfc_stop_port(phba);
3905 
3906 	/* Tear down the local and target port registrations.  The
3907 	 * nvme transports need to cleanup.
3908 	 */
3909 	lpfc_nvmet_destroy_targetport(phba);
3910 	lpfc_nvme_destroy_localport(phba->pport);
3911 
3912 	vports = lpfc_create_vport_work_array(phba);
3913 	if (vports != NULL)
3914 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
3915 			lpfc_stop_vport_timers(vports[i]);
3916 	lpfc_destroy_vport_work_array(phba, vports);
3917 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3918 			"0460 Bring Adapter offline\n");
3919 	/* Bring down the SLI Layer and cleanup.  The HBA is offline
3920 	   now.  */
3921 	lpfc_sli_hba_down(phba);
3922 	spin_lock_irq(&phba->hbalock);
3923 	phba->work_ha = 0;
3924 	spin_unlock_irq(&phba->hbalock);
3925 	vports = lpfc_create_vport_work_array(phba);
3926 	if (vports != NULL)
3927 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3928 			shost = lpfc_shost_from_vport(vports[i]);
3929 			spin_lock_irq(shost->host_lock);
3930 			vports[i]->work_port_events = 0;
3931 			spin_unlock_irq(shost->host_lock);
3932 			set_bit(FC_OFFLINE_MODE, &vports[i]->fc_flag);
3933 		}
3934 	lpfc_destroy_vport_work_array(phba, vports);
3935 	/* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled
3936 	 * in hba_unset
3937 	 */
3938 	if (test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
3939 		__lpfc_cpuhp_remove(phba);
3940 
3941 	if (phba->cfg_xri_rebalancing)
3942 		lpfc_destroy_multixri_pools(phba);
3943 }
3944 
3945 /**
3946  * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
3947  * @phba: pointer to lpfc hba data structure.
3948  *
3949  * This routine is to free all the SCSI buffers and IOCBs from the driver
3950  * list back to kernel. It is called from lpfc_pci_remove_one to free
3951  * the internal resources before the device is removed from the system.
3952  **/
3953 static void
lpfc_scsi_free(struct lpfc_hba * phba)3954 lpfc_scsi_free(struct lpfc_hba *phba)
3955 {
3956 	struct lpfc_io_buf *sb, *sb_next;
3957 
3958 	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
3959 		return;
3960 
3961 	spin_lock_irq(&phba->hbalock);
3962 
3963 	/* Release all the lpfc_scsi_bufs maintained by this host. */
3964 
3965 	spin_lock(&phba->scsi_buf_list_put_lock);
3966 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put,
3967 				 list) {
3968 		list_del(&sb->list);
3969 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3970 			      sb->dma_handle);
3971 		kfree(sb);
3972 		phba->total_scsi_bufs--;
3973 	}
3974 	spin_unlock(&phba->scsi_buf_list_put_lock);
3975 
3976 	spin_lock(&phba->scsi_buf_list_get_lock);
3977 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get,
3978 				 list) {
3979 		list_del(&sb->list);
3980 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3981 			      sb->dma_handle);
3982 		kfree(sb);
3983 		phba->total_scsi_bufs--;
3984 	}
3985 	spin_unlock(&phba->scsi_buf_list_get_lock);
3986 	spin_unlock_irq(&phba->hbalock);
3987 }
3988 
3989 /**
3990  * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists
3991  * @phba: pointer to lpfc hba data structure.
3992  *
3993  * This routine is to free all the IO buffers and IOCBs from the driver
3994  * list back to kernel. It is called from lpfc_pci_remove_one to free
3995  * the internal resources before the device is removed from the system.
3996  **/
3997 void
lpfc_io_free(struct lpfc_hba * phba)3998 lpfc_io_free(struct lpfc_hba *phba)
3999 {
4000 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
4001 	struct lpfc_sli4_hdw_queue *qp;
4002 	int idx;
4003 
4004 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4005 		qp = &phba->sli4_hba.hdwq[idx];
4006 		/* Release all the lpfc_nvme_bufs maintained by this host. */
4007 		spin_lock(&qp->io_buf_list_put_lock);
4008 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4009 					 &qp->lpfc_io_buf_list_put,
4010 					 list) {
4011 			list_del(&lpfc_ncmd->list);
4012 			qp->put_io_bufs--;
4013 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4014 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4015 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4016 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4017 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4018 			kfree(lpfc_ncmd);
4019 			qp->total_io_bufs--;
4020 		}
4021 		spin_unlock(&qp->io_buf_list_put_lock);
4022 
4023 		spin_lock(&qp->io_buf_list_get_lock);
4024 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4025 					 &qp->lpfc_io_buf_list_get,
4026 					 list) {
4027 			list_del(&lpfc_ncmd->list);
4028 			qp->get_io_bufs--;
4029 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4030 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4031 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4032 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4033 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4034 			kfree(lpfc_ncmd);
4035 			qp->total_io_bufs--;
4036 		}
4037 		spin_unlock(&qp->io_buf_list_get_lock);
4038 	}
4039 }
4040 
4041 /**
4042  * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping
4043  * @phba: pointer to lpfc hba data structure.
4044  *
4045  * This routine first calculates the sizes of the current els and allocated
4046  * scsi sgl lists, and then goes through all sgls to updates the physical
4047  * XRIs assigned due to port function reset. During port initialization, the
4048  * current els and allocated scsi sgl lists are 0s.
4049  *
4050  * Return codes
4051  *   0 - successful (for now, it always returns 0)
4052  **/
4053 int
lpfc_sli4_els_sgl_update(struct lpfc_hba * phba)4054 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba)
4055 {
4056 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4057 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4058 	LIST_HEAD(els_sgl_list);
4059 	int rc;
4060 
4061 	/*
4062 	 * update on pci function's els xri-sgl list
4063 	 */
4064 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4065 
4066 	if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) {
4067 		/* els xri-sgl expanded */
4068 		xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt;
4069 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4070 				"3157 ELS xri-sgl count increased from "
4071 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4072 				els_xri_cnt);
4073 		/* allocate the additional els sgls */
4074 		for (i = 0; i < xri_cnt; i++) {
4075 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4076 					     GFP_KERNEL);
4077 			if (sglq_entry == NULL) {
4078 				lpfc_printf_log(phba, KERN_ERR,
4079 						LOG_TRACE_EVENT,
4080 						"2562 Failure to allocate an "
4081 						"ELS sgl entry:%d\n", i);
4082 				rc = -ENOMEM;
4083 				goto out_free_mem;
4084 			}
4085 			sglq_entry->buff_type = GEN_BUFF_TYPE;
4086 			sglq_entry->virt = lpfc_mbuf_alloc(phba, 0,
4087 							   &sglq_entry->phys);
4088 			if (sglq_entry->virt == NULL) {
4089 				kfree(sglq_entry);
4090 				lpfc_printf_log(phba, KERN_ERR,
4091 						LOG_TRACE_EVENT,
4092 						"2563 Failure to allocate an "
4093 						"ELS mbuf:%d\n", i);
4094 				rc = -ENOMEM;
4095 				goto out_free_mem;
4096 			}
4097 			sglq_entry->sgl = sglq_entry->virt;
4098 			memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE);
4099 			sglq_entry->state = SGL_FREED;
4100 			list_add_tail(&sglq_entry->list, &els_sgl_list);
4101 		}
4102 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4103 		list_splice_init(&els_sgl_list,
4104 				 &phba->sli4_hba.lpfc_els_sgl_list);
4105 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4106 	} else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) {
4107 		/* els xri-sgl shrinked */
4108 		xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt;
4109 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4110 				"3158 ELS xri-sgl count decreased from "
4111 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4112 				els_xri_cnt);
4113 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4114 		list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list,
4115 				 &els_sgl_list);
4116 		/* release extra els sgls from list */
4117 		for (i = 0; i < xri_cnt; i++) {
4118 			list_remove_head(&els_sgl_list,
4119 					 sglq_entry, struct lpfc_sglq, list);
4120 			if (sglq_entry) {
4121 				__lpfc_mbuf_free(phba, sglq_entry->virt,
4122 						 sglq_entry->phys);
4123 				kfree(sglq_entry);
4124 			}
4125 		}
4126 		list_splice_init(&els_sgl_list,
4127 				 &phba->sli4_hba.lpfc_els_sgl_list);
4128 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4129 	} else
4130 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4131 				"3163 ELS xri-sgl count unchanged: %d\n",
4132 				els_xri_cnt);
4133 	phba->sli4_hba.els_xri_cnt = els_xri_cnt;
4134 
4135 	/* update xris to els sgls on the list */
4136 	sglq_entry = NULL;
4137 	sglq_entry_next = NULL;
4138 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4139 				 &phba->sli4_hba.lpfc_els_sgl_list, list) {
4140 		lxri = lpfc_sli4_next_xritag(phba);
4141 		if (lxri == NO_XRI) {
4142 			lpfc_printf_log(phba, KERN_ERR,
4143 					LOG_TRACE_EVENT,
4144 					"2400 Failed to allocate xri for "
4145 					"ELS sgl\n");
4146 			rc = -ENOMEM;
4147 			goto out_free_mem;
4148 		}
4149 		sglq_entry->sli4_lxritag = lxri;
4150 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4151 	}
4152 	return 0;
4153 
4154 out_free_mem:
4155 	lpfc_free_els_sgl_list(phba);
4156 	return rc;
4157 }
4158 
4159 /**
4160  * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping
4161  * @phba: pointer to lpfc hba data structure.
4162  *
4163  * This routine first calculates the sizes of the current els and allocated
4164  * scsi sgl lists, and then goes through all sgls to updates the physical
4165  * XRIs assigned due to port function reset. During port initialization, the
4166  * current els and allocated scsi sgl lists are 0s.
4167  *
4168  * Return codes
4169  *   0 - successful (for now, it always returns 0)
4170  **/
4171 int
lpfc_sli4_nvmet_sgl_update(struct lpfc_hba * phba)4172 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba)
4173 {
4174 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4175 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4176 	uint16_t nvmet_xri_cnt;
4177 	LIST_HEAD(nvmet_sgl_list);
4178 	int rc;
4179 
4180 	/*
4181 	 * update on pci function's nvmet xri-sgl list
4182 	 */
4183 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4184 
4185 	/* For NVMET, ALL remaining XRIs are dedicated for IO processing */
4186 	nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4187 	if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) {
4188 		/* els xri-sgl expanded */
4189 		xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt;
4190 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4191 				"6302 NVMET xri-sgl cnt grew from %d to %d\n",
4192 				phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt);
4193 		/* allocate the additional nvmet sgls */
4194 		for (i = 0; i < xri_cnt; i++) {
4195 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4196 					     GFP_KERNEL);
4197 			if (sglq_entry == NULL) {
4198 				lpfc_printf_log(phba, KERN_ERR,
4199 						LOG_TRACE_EVENT,
4200 						"6303 Failure to allocate an "
4201 						"NVMET sgl entry:%d\n", i);
4202 				rc = -ENOMEM;
4203 				goto out_free_mem;
4204 			}
4205 			sglq_entry->buff_type = NVMET_BUFF_TYPE;
4206 			sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0,
4207 							   &sglq_entry->phys);
4208 			if (sglq_entry->virt == NULL) {
4209 				kfree(sglq_entry);
4210 				lpfc_printf_log(phba, KERN_ERR,
4211 						LOG_TRACE_EVENT,
4212 						"6304 Failure to allocate an "
4213 						"NVMET buf:%d\n", i);
4214 				rc = -ENOMEM;
4215 				goto out_free_mem;
4216 			}
4217 			sglq_entry->sgl = sglq_entry->virt;
4218 			memset(sglq_entry->sgl, 0,
4219 			       phba->cfg_sg_dma_buf_size);
4220 			sglq_entry->state = SGL_FREED;
4221 			list_add_tail(&sglq_entry->list, &nvmet_sgl_list);
4222 		}
4223 		spin_lock_irq(&phba->hbalock);
4224 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4225 		list_splice_init(&nvmet_sgl_list,
4226 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4227 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4228 		spin_unlock_irq(&phba->hbalock);
4229 	} else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) {
4230 		/* nvmet xri-sgl shrunk */
4231 		xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt;
4232 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4233 				"6305 NVMET xri-sgl count decreased from "
4234 				"%d to %d\n", phba->sli4_hba.nvmet_xri_cnt,
4235 				nvmet_xri_cnt);
4236 		spin_lock_irq(&phba->hbalock);
4237 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4238 		list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list,
4239 				 &nvmet_sgl_list);
4240 		/* release extra nvmet sgls from list */
4241 		for (i = 0; i < xri_cnt; i++) {
4242 			list_remove_head(&nvmet_sgl_list,
4243 					 sglq_entry, struct lpfc_sglq, list);
4244 			if (sglq_entry) {
4245 				lpfc_nvmet_buf_free(phba, sglq_entry->virt,
4246 						    sglq_entry->phys);
4247 				kfree(sglq_entry);
4248 			}
4249 		}
4250 		list_splice_init(&nvmet_sgl_list,
4251 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4252 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4253 		spin_unlock_irq(&phba->hbalock);
4254 	} else
4255 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4256 				"6306 NVMET xri-sgl count unchanged: %d\n",
4257 				nvmet_xri_cnt);
4258 	phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt;
4259 
4260 	/* update xris to nvmet sgls on the list */
4261 	sglq_entry = NULL;
4262 	sglq_entry_next = NULL;
4263 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4264 				 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) {
4265 		lxri = lpfc_sli4_next_xritag(phba);
4266 		if (lxri == NO_XRI) {
4267 			lpfc_printf_log(phba, KERN_ERR,
4268 					LOG_TRACE_EVENT,
4269 					"6307 Failed to allocate xri for "
4270 					"NVMET sgl\n");
4271 			rc = -ENOMEM;
4272 			goto out_free_mem;
4273 		}
4274 		sglq_entry->sli4_lxritag = lxri;
4275 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4276 	}
4277 	return 0;
4278 
4279 out_free_mem:
4280 	lpfc_free_nvmet_sgl_list(phba);
4281 	return rc;
4282 }
4283 
4284 int
lpfc_io_buf_flush(struct lpfc_hba * phba,struct list_head * cbuf)4285 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf)
4286 {
4287 	LIST_HEAD(blist);
4288 	struct lpfc_sli4_hdw_queue *qp;
4289 	struct lpfc_io_buf *lpfc_cmd;
4290 	struct lpfc_io_buf *iobufp, *prev_iobufp;
4291 	int idx, cnt, xri, inserted;
4292 
4293 	cnt = 0;
4294 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4295 		qp = &phba->sli4_hba.hdwq[idx];
4296 		spin_lock_irq(&qp->io_buf_list_get_lock);
4297 		spin_lock(&qp->io_buf_list_put_lock);
4298 
4299 		/* Take everything off the get and put lists */
4300 		list_splice_init(&qp->lpfc_io_buf_list_get, &blist);
4301 		list_splice(&qp->lpfc_io_buf_list_put, &blist);
4302 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
4303 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
4304 		cnt += qp->get_io_bufs + qp->put_io_bufs;
4305 		qp->get_io_bufs = 0;
4306 		qp->put_io_bufs = 0;
4307 		qp->total_io_bufs = 0;
4308 		spin_unlock(&qp->io_buf_list_put_lock);
4309 		spin_unlock_irq(&qp->io_buf_list_get_lock);
4310 	}
4311 
4312 	/*
4313 	 * Take IO buffers off blist and put on cbuf sorted by XRI.
4314 	 * This is because POST_SGL takes a sequential range of XRIs
4315 	 * to post to the firmware.
4316 	 */
4317 	for (idx = 0; idx < cnt; idx++) {
4318 		list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list);
4319 		if (!lpfc_cmd)
4320 			return cnt;
4321 		if (idx == 0) {
4322 			list_add_tail(&lpfc_cmd->list, cbuf);
4323 			continue;
4324 		}
4325 		xri = lpfc_cmd->cur_iocbq.sli4_xritag;
4326 		inserted = 0;
4327 		prev_iobufp = NULL;
4328 		list_for_each_entry(iobufp, cbuf, list) {
4329 			if (xri < iobufp->cur_iocbq.sli4_xritag) {
4330 				if (prev_iobufp)
4331 					list_add(&lpfc_cmd->list,
4332 						 &prev_iobufp->list);
4333 				else
4334 					list_add(&lpfc_cmd->list, cbuf);
4335 				inserted = 1;
4336 				break;
4337 			}
4338 			prev_iobufp = iobufp;
4339 		}
4340 		if (!inserted)
4341 			list_add_tail(&lpfc_cmd->list, cbuf);
4342 	}
4343 	return cnt;
4344 }
4345 
4346 int
lpfc_io_buf_replenish(struct lpfc_hba * phba,struct list_head * cbuf)4347 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf)
4348 {
4349 	struct lpfc_sli4_hdw_queue *qp;
4350 	struct lpfc_io_buf *lpfc_cmd;
4351 	int idx, cnt;
4352 	unsigned long iflags;
4353 
4354 	qp = phba->sli4_hba.hdwq;
4355 	cnt = 0;
4356 	while (!list_empty(cbuf)) {
4357 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4358 			list_remove_head(cbuf, lpfc_cmd,
4359 					 struct lpfc_io_buf, list);
4360 			if (!lpfc_cmd)
4361 				return cnt;
4362 			cnt++;
4363 			qp = &phba->sli4_hba.hdwq[idx];
4364 			lpfc_cmd->hdwq_no = idx;
4365 			lpfc_cmd->hdwq = qp;
4366 			lpfc_cmd->cur_iocbq.cmd_cmpl = NULL;
4367 			spin_lock_irqsave(&qp->io_buf_list_put_lock, iflags);
4368 			list_add_tail(&lpfc_cmd->list,
4369 				      &qp->lpfc_io_buf_list_put);
4370 			qp->put_io_bufs++;
4371 			qp->total_io_bufs++;
4372 			spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
4373 					       iflags);
4374 		}
4375 	}
4376 	return cnt;
4377 }
4378 
4379 /**
4380  * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping
4381  * @phba: pointer to lpfc hba data structure.
4382  *
4383  * This routine first calculates the sizes of the current els and allocated
4384  * scsi sgl lists, and then goes through all sgls to updates the physical
4385  * XRIs assigned due to port function reset. During port initialization, the
4386  * current els and allocated scsi sgl lists are 0s.
4387  *
4388  * Return codes
4389  *   0 - successful (for now, it always returns 0)
4390  **/
4391 int
lpfc_sli4_io_sgl_update(struct lpfc_hba * phba)4392 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba)
4393 {
4394 	struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL;
4395 	uint16_t i, lxri, els_xri_cnt;
4396 	uint16_t io_xri_cnt, io_xri_max;
4397 	LIST_HEAD(io_sgl_list);
4398 	int rc, cnt;
4399 
4400 	/*
4401 	 * update on pci function's allocated nvme xri-sgl list
4402 	 */
4403 
4404 	/* maximum number of xris available for nvme buffers */
4405 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4406 	io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4407 	phba->sli4_hba.io_xri_max = io_xri_max;
4408 
4409 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4410 			"6074 Current allocated XRI sgl count:%d, "
4411 			"maximum XRI count:%d els_xri_cnt:%d\n\n",
4412 			phba->sli4_hba.io_xri_cnt,
4413 			phba->sli4_hba.io_xri_max,
4414 			els_xri_cnt);
4415 
4416 	cnt = lpfc_io_buf_flush(phba, &io_sgl_list);
4417 
4418 	if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) {
4419 		/* max nvme xri shrunk below the allocated nvme buffers */
4420 		io_xri_cnt = phba->sli4_hba.io_xri_cnt -
4421 					phba->sli4_hba.io_xri_max;
4422 		/* release the extra allocated nvme buffers */
4423 		for (i = 0; i < io_xri_cnt; i++) {
4424 			list_remove_head(&io_sgl_list, lpfc_ncmd,
4425 					 struct lpfc_io_buf, list);
4426 			if (lpfc_ncmd) {
4427 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4428 					      lpfc_ncmd->data,
4429 					      lpfc_ncmd->dma_handle);
4430 				kfree(lpfc_ncmd);
4431 			}
4432 		}
4433 		phba->sli4_hba.io_xri_cnt -= io_xri_cnt;
4434 	}
4435 
4436 	/* update xris associated to remaining allocated nvme buffers */
4437 	lpfc_ncmd = NULL;
4438 	lpfc_ncmd_next = NULL;
4439 	phba->sli4_hba.io_xri_cnt = cnt;
4440 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4441 				 &io_sgl_list, list) {
4442 		lxri = lpfc_sli4_next_xritag(phba);
4443 		if (lxri == NO_XRI) {
4444 			lpfc_printf_log(phba, KERN_ERR,
4445 					LOG_TRACE_EVENT,
4446 					"6075 Failed to allocate xri for "
4447 					"nvme buffer\n");
4448 			rc = -ENOMEM;
4449 			goto out_free_mem;
4450 		}
4451 		lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri;
4452 		lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4453 	}
4454 	cnt = lpfc_io_buf_replenish(phba, &io_sgl_list);
4455 	return 0;
4456 
4457 out_free_mem:
4458 	lpfc_io_free(phba);
4459 	return rc;
4460 }
4461 
4462 /**
4463  * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec
4464  * @phba: Pointer to lpfc hba data structure.
4465  * @num_to_alloc: The requested number of buffers to allocate.
4466  *
4467  * This routine allocates nvme buffers for device with SLI-4 interface spec,
4468  * the nvme buffer contains all the necessary information needed to initiate
4469  * an I/O. After allocating up to @num_to_allocate IO buffers and put
4470  * them on a list, it post them to the port by using SGL block post.
4471  *
4472  * Return codes:
4473  *   int - number of IO buffers that were allocated and posted.
4474  *   0 = failure, less than num_to_alloc is a partial failure.
4475  **/
4476 int
lpfc_new_io_buf(struct lpfc_hba * phba,int num_to_alloc)4477 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc)
4478 {
4479 	struct lpfc_io_buf *lpfc_ncmd;
4480 	struct lpfc_iocbq *pwqeq;
4481 	uint16_t iotag, lxri = 0;
4482 	int bcnt, num_posted;
4483 	LIST_HEAD(prep_nblist);
4484 	LIST_HEAD(post_nblist);
4485 	LIST_HEAD(nvme_nblist);
4486 
4487 	phba->sli4_hba.io_xri_cnt = 0;
4488 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
4489 		lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL);
4490 		if (!lpfc_ncmd)
4491 			break;
4492 		/*
4493 		 * Get memory from the pci pool to map the virt space to
4494 		 * pci bus space for an I/O. The DMA buffer includes the
4495 		 * number of SGE's necessary to support the sg_tablesize.
4496 		 */
4497 		lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool,
4498 						  GFP_KERNEL,
4499 						  &lpfc_ncmd->dma_handle);
4500 		if (!lpfc_ncmd->data) {
4501 			kfree(lpfc_ncmd);
4502 			break;
4503 		}
4504 
4505 		if (phba->cfg_xpsgl && !phba->nvmet_support) {
4506 			INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list);
4507 		} else {
4508 			/*
4509 			 * 4K Page alignment is CRITICAL to BlockGuard, double
4510 			 * check to be sure.
4511 			 */
4512 			if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
4513 			    (((unsigned long)(lpfc_ncmd->data) &
4514 			    (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) {
4515 				lpfc_printf_log(phba, KERN_ERR,
4516 						LOG_TRACE_EVENT,
4517 						"3369 Memory alignment err: "
4518 						"addr=%lx\n",
4519 						(unsigned long)lpfc_ncmd->data);
4520 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4521 					      lpfc_ncmd->data,
4522 					      lpfc_ncmd->dma_handle);
4523 				kfree(lpfc_ncmd);
4524 				break;
4525 			}
4526 		}
4527 
4528 		INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list);
4529 
4530 		lxri = lpfc_sli4_next_xritag(phba);
4531 		if (lxri == NO_XRI) {
4532 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4533 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4534 			kfree(lpfc_ncmd);
4535 			break;
4536 		}
4537 		pwqeq = &lpfc_ncmd->cur_iocbq;
4538 
4539 		/* Allocate iotag for lpfc_ncmd->cur_iocbq. */
4540 		iotag = lpfc_sli_next_iotag(phba, pwqeq);
4541 		if (iotag == 0) {
4542 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4543 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4544 			kfree(lpfc_ncmd);
4545 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4546 					"6121 Failed to allocate IOTAG for"
4547 					" XRI:0x%x\n", lxri);
4548 			lpfc_sli4_free_xri(phba, lxri);
4549 			break;
4550 		}
4551 		pwqeq->sli4_lxritag = lxri;
4552 		pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4553 
4554 		/* Initialize local short-hand pointers. */
4555 		lpfc_ncmd->dma_sgl = lpfc_ncmd->data;
4556 		lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle;
4557 		lpfc_ncmd->cur_iocbq.io_buf = lpfc_ncmd;
4558 		spin_lock_init(&lpfc_ncmd->buf_lock);
4559 
4560 		/* add the nvme buffer to a post list */
4561 		list_add_tail(&lpfc_ncmd->list, &post_nblist);
4562 		phba->sli4_hba.io_xri_cnt++;
4563 	}
4564 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
4565 			"6114 Allocate %d out of %d requested new NVME "
4566 			"buffers of size x%zu bytes\n", bcnt, num_to_alloc,
4567 			sizeof(*lpfc_ncmd));
4568 
4569 
4570 	/* post the list of nvme buffer sgls to port if available */
4571 	if (!list_empty(&post_nblist))
4572 		num_posted = lpfc_sli4_post_io_sgl_list(
4573 				phba, &post_nblist, bcnt);
4574 	else
4575 		num_posted = 0;
4576 
4577 	return num_posted;
4578 }
4579 
4580 static uint64_t
lpfc_get_wwpn(struct lpfc_hba * phba)4581 lpfc_get_wwpn(struct lpfc_hba *phba)
4582 {
4583 	uint64_t wwn;
4584 	int rc;
4585 	LPFC_MBOXQ_t *mboxq;
4586 	MAILBOX_t *mb;
4587 
4588 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
4589 						GFP_KERNEL);
4590 	if (!mboxq)
4591 		return (uint64_t)-1;
4592 
4593 	/* First get WWN of HBA instance */
4594 	lpfc_read_nv(phba, mboxq);
4595 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4596 	if (rc != MBX_SUCCESS) {
4597 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4598 				"6019 Mailbox failed , mbxCmd x%x "
4599 				"READ_NV, mbxStatus x%x\n",
4600 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
4601 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
4602 		mempool_free(mboxq, phba->mbox_mem_pool);
4603 		return (uint64_t) -1;
4604 	}
4605 	mb = &mboxq->u.mb;
4606 	memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t));
4607 	/* wwn is WWPN of HBA instance */
4608 	mempool_free(mboxq, phba->mbox_mem_pool);
4609 	if (phba->sli_rev == LPFC_SLI_REV4)
4610 		return be64_to_cpu(wwn);
4611 	else
4612 		return rol64(wwn, 32);
4613 }
4614 
lpfc_get_sg_tablesize(struct lpfc_hba * phba)4615 static unsigned short lpfc_get_sg_tablesize(struct lpfc_hba *phba)
4616 {
4617 	if (phba->sli_rev == LPFC_SLI_REV4)
4618 		if (phba->cfg_xpsgl && !phba->nvmet_support)
4619 			return LPFC_MAX_SG_TABLESIZE;
4620 		else
4621 			return phba->cfg_scsi_seg_cnt;
4622 	else
4623 		return phba->cfg_sg_seg_cnt;
4624 }
4625 
4626 /**
4627  * lpfc_vmid_res_alloc - Allocates resources for VMID
4628  * @phba: pointer to lpfc hba data structure.
4629  * @vport: pointer to vport data structure
4630  *
4631  * This routine allocated the resources needed for the VMID.
4632  *
4633  * Return codes
4634  *	0 on Success
4635  *	Non-0 on Failure
4636  */
4637 static int
lpfc_vmid_res_alloc(struct lpfc_hba * phba,struct lpfc_vport * vport)4638 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport)
4639 {
4640 	/* VMID feature is supported only on SLI4 */
4641 	if (phba->sli_rev == LPFC_SLI_REV3) {
4642 		phba->cfg_vmid_app_header = 0;
4643 		phba->cfg_vmid_priority_tagging = 0;
4644 	}
4645 
4646 	if (lpfc_is_vmid_enabled(phba)) {
4647 		vport->vmid =
4648 		    kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid),
4649 			    GFP_KERNEL);
4650 		if (!vport->vmid)
4651 			return -ENOMEM;
4652 
4653 		rwlock_init(&vport->vmid_lock);
4654 
4655 		/* Set the VMID parameters for the vport */
4656 		vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging;
4657 		vport->vmid_inactivity_timeout =
4658 		    phba->cfg_vmid_inactivity_timeout;
4659 		vport->max_vmid = phba->cfg_max_vmid;
4660 		vport->cur_vmid_cnt = 0;
4661 
4662 		vport->vmid_priority_range = bitmap_zalloc
4663 			(LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL);
4664 
4665 		if (!vport->vmid_priority_range) {
4666 			kfree(vport->vmid);
4667 			return -ENOMEM;
4668 		}
4669 
4670 		hash_init(vport->hash_table);
4671 	}
4672 	return 0;
4673 }
4674 
4675 /**
4676  * lpfc_create_port - Create an FC port
4677  * @phba: pointer to lpfc hba data structure.
4678  * @instance: a unique integer ID to this FC port.
4679  * @dev: pointer to the device data structure.
4680  *
4681  * This routine creates a FC port for the upper layer protocol. The FC port
4682  * can be created on top of either a physical port or a virtual port provided
4683  * by the HBA. This routine also allocates a SCSI host data structure (shost)
4684  * and associates the FC port created before adding the shost into the SCSI
4685  * layer.
4686  *
4687  * Return codes
4688  *   @vport - pointer to the virtual N_Port data structure.
4689  *   NULL - port create failed.
4690  **/
4691 struct lpfc_vport *
lpfc_create_port(struct lpfc_hba * phba,int instance,struct device * dev)4692 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
4693 {
4694 	struct lpfc_vport *vport;
4695 	struct Scsi_Host  *shost = NULL;
4696 	struct scsi_host_template *template;
4697 	int error = 0;
4698 	int i;
4699 	uint64_t wwn;
4700 	bool use_no_reset_hba = false;
4701 	int rc;
4702 	u8 if_type;
4703 
4704 	if (lpfc_no_hba_reset_cnt) {
4705 		if (phba->sli_rev < LPFC_SLI_REV4 &&
4706 		    dev == &phba->pcidev->dev) {
4707 			/* Reset the port first */
4708 			lpfc_sli_brdrestart(phba);
4709 			rc = lpfc_sli_chipset_init(phba);
4710 			if (rc)
4711 				return NULL;
4712 		}
4713 		wwn = lpfc_get_wwpn(phba);
4714 	}
4715 
4716 	for (i = 0; i < lpfc_no_hba_reset_cnt; i++) {
4717 		if (wwn == lpfc_no_hba_reset[i]) {
4718 			lpfc_printf_log(phba, KERN_ERR,
4719 					LOG_TRACE_EVENT,
4720 					"6020 Setting use_no_reset port=%llx\n",
4721 					wwn);
4722 			use_no_reset_hba = true;
4723 			break;
4724 		}
4725 	}
4726 
4727 	/* Seed template for SCSI host registration */
4728 	if (dev == &phba->pcidev->dev) {
4729 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
4730 			/* Seed physical port template */
4731 			template = &lpfc_template;
4732 
4733 			if (use_no_reset_hba)
4734 				/* template is for a no reset SCSI Host */
4735 				template->eh_host_reset_handler = NULL;
4736 
4737 			/* Seed updated value of sg_tablesize */
4738 			template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4739 		} else {
4740 			/* NVMET is for physical port only */
4741 			template = &lpfc_template_nvme;
4742 		}
4743 	} else {
4744 		/* Seed vport template */
4745 		template = &lpfc_vport_template;
4746 
4747 		/* Seed updated value of sg_tablesize */
4748 		template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4749 	}
4750 
4751 	shost = scsi_host_alloc(template, sizeof(struct lpfc_vport));
4752 	if (!shost)
4753 		goto out;
4754 
4755 	vport = (struct lpfc_vport *) shost->hostdata;
4756 	vport->phba = phba;
4757 	set_bit(FC_LOADING, &vport->load_flag);
4758 	set_bit(FC_VPORT_NEEDS_REG_VPI, &vport->fc_flag);
4759 	vport->fc_rscn_flush = 0;
4760 	atomic_set(&vport->fc_plogi_cnt, 0);
4761 	atomic_set(&vport->fc_adisc_cnt, 0);
4762 	atomic_set(&vport->fc_reglogin_cnt, 0);
4763 	atomic_set(&vport->fc_prli_cnt, 0);
4764 	atomic_set(&vport->fc_unmap_cnt, 0);
4765 	atomic_set(&vport->fc_map_cnt, 0);
4766 	atomic_set(&vport->fc_npr_cnt, 0);
4767 	atomic_set(&vport->fc_unused_cnt, 0);
4768 	lpfc_get_vport_cfgparam(vport);
4769 
4770 	/* Adjust value in vport */
4771 	vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type;
4772 
4773 	shost->unique_id = instance;
4774 	shost->max_id = LPFC_MAX_TARGET;
4775 	shost->max_lun = vport->cfg_max_luns;
4776 	shost->this_id = -1;
4777 
4778 	/* Set max_cmd_len applicable to ASIC support */
4779 	if (phba->sli_rev == LPFC_SLI_REV4) {
4780 		if_type = bf_get(lpfc_sli_intf_if_type,
4781 				 &phba->sli4_hba.sli_intf);
4782 		switch (if_type) {
4783 		case LPFC_SLI_INTF_IF_TYPE_2:
4784 			fallthrough;
4785 		case LPFC_SLI_INTF_IF_TYPE_6:
4786 			shost->max_cmd_len = LPFC_FCP_CDB_LEN_32;
4787 			break;
4788 		default:
4789 			shost->max_cmd_len = LPFC_FCP_CDB_LEN;
4790 			break;
4791 		}
4792 	} else {
4793 		shost->max_cmd_len = LPFC_FCP_CDB_LEN;
4794 	}
4795 
4796 	if (phba->sli_rev == LPFC_SLI_REV4) {
4797 		if (!phba->cfg_fcp_mq_threshold ||
4798 		    phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue)
4799 			phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue;
4800 
4801 		shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(),
4802 					    phba->cfg_fcp_mq_threshold);
4803 
4804 		shost->dma_boundary =
4805 			phba->sli4_hba.pc_sli4_params.sge_supp_len-1;
4806 	} else
4807 		/* SLI-3 has a limited number of hardware queues (3),
4808 		 * thus there is only one for FCP processing.
4809 		 */
4810 		shost->nr_hw_queues = 1;
4811 
4812 	/*
4813 	 * Set initial can_queue value since 0 is no longer supported and
4814 	 * scsi_add_host will fail. This will be adjusted later based on the
4815 	 * max xri value determined in hba setup.
4816 	 */
4817 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
4818 	if (dev != &phba->pcidev->dev) {
4819 		shost->transportt = lpfc_vport_transport_template;
4820 		vport->port_type = LPFC_NPIV_PORT;
4821 	} else {
4822 		shost->transportt = lpfc_transport_template;
4823 		vport->port_type = LPFC_PHYSICAL_PORT;
4824 	}
4825 
4826 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
4827 			"9081 CreatePort TMPLATE type %x TBLsize %d "
4828 			"SEGcnt %d/%d\n",
4829 			vport->port_type, shost->sg_tablesize,
4830 			phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt);
4831 
4832 	/* Allocate the resources for VMID */
4833 	rc = lpfc_vmid_res_alloc(phba, vport);
4834 
4835 	if (rc)
4836 		goto out_put_shost;
4837 
4838 	/* Initialize all internally managed lists. */
4839 	INIT_LIST_HEAD(&vport->fc_nodes);
4840 	spin_lock_init(&vport->fc_nodes_list_lock);
4841 	INIT_LIST_HEAD(&vport->rcv_buffer_list);
4842 	spin_lock_init(&vport->work_port_lock);
4843 
4844 	timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0);
4845 
4846 	timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0);
4847 
4848 	timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0);
4849 
4850 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED)
4851 		lpfc_setup_bg(phba, shost);
4852 
4853 	error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev);
4854 	if (error)
4855 		goto out_free_vmid;
4856 
4857 	spin_lock_irq(&phba->port_list_lock);
4858 	list_add_tail(&vport->listentry, &phba->port_list);
4859 	spin_unlock_irq(&phba->port_list_lock);
4860 	return vport;
4861 
4862 out_free_vmid:
4863 	kfree(vport->vmid);
4864 	bitmap_free(vport->vmid_priority_range);
4865 out_put_shost:
4866 	scsi_host_put(shost);
4867 out:
4868 	return NULL;
4869 }
4870 
4871 /**
4872  * destroy_port -  destroy an FC port
4873  * @vport: pointer to an lpfc virtual N_Port data structure.
4874  *
4875  * This routine destroys a FC port from the upper layer protocol. All the
4876  * resources associated with the port are released.
4877  **/
4878 void
destroy_port(struct lpfc_vport * vport)4879 destroy_port(struct lpfc_vport *vport)
4880 {
4881 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
4882 	struct lpfc_hba  *phba = vport->phba;
4883 
4884 	lpfc_debugfs_terminate(vport);
4885 	fc_remove_host(shost);
4886 	scsi_remove_host(shost);
4887 
4888 	spin_lock_irq(&phba->port_list_lock);
4889 	list_del_init(&vport->listentry);
4890 	spin_unlock_irq(&phba->port_list_lock);
4891 
4892 	lpfc_cleanup(vport);
4893 	return;
4894 }
4895 
4896 /**
4897  * lpfc_get_instance - Get a unique integer ID
4898  *
4899  * This routine allocates a unique integer ID from lpfc_hba_index pool. It
4900  * uses the kernel idr facility to perform the task.
4901  *
4902  * Return codes:
4903  *   instance - a unique integer ID allocated as the new instance.
4904  *   -1 - lpfc get instance failed.
4905  **/
4906 int
lpfc_get_instance(void)4907 lpfc_get_instance(void)
4908 {
4909 	int ret;
4910 
4911 	ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL);
4912 	return ret < 0 ? -1 : ret;
4913 }
4914 
4915 /**
4916  * lpfc_scan_finished - method for SCSI layer to detect whether scan is done
4917  * @shost: pointer to SCSI host data structure.
4918  * @time: elapsed time of the scan in jiffies.
4919  *
4920  * This routine is called by the SCSI layer with a SCSI host to determine
4921  * whether the scan host is finished.
4922  *
4923  * Note: there is no scan_start function as adapter initialization will have
4924  * asynchronously kicked off the link initialization.
4925  *
4926  * Return codes
4927  *   0 - SCSI host scan is not over yet.
4928  *   1 - SCSI host scan is over.
4929  **/
lpfc_scan_finished(struct Scsi_Host * shost,unsigned long time)4930 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
4931 {
4932 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4933 	struct lpfc_hba   *phba = vport->phba;
4934 	int stat = 0;
4935 
4936 	spin_lock_irq(shost->host_lock);
4937 
4938 	if (test_bit(FC_UNLOADING, &vport->load_flag)) {
4939 		stat = 1;
4940 		goto finished;
4941 	}
4942 	if (time >= msecs_to_jiffies(30 * 1000)) {
4943 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4944 				"0461 Scanning longer than 30 "
4945 				"seconds.  Continuing initialization\n");
4946 		stat = 1;
4947 		goto finished;
4948 	}
4949 	if (time >= msecs_to_jiffies(15 * 1000) &&
4950 	    phba->link_state <= LPFC_LINK_DOWN) {
4951 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4952 				"0465 Link down longer than 15 "
4953 				"seconds.  Continuing initialization\n");
4954 		stat = 1;
4955 		goto finished;
4956 	}
4957 
4958 	if (vport->port_state != LPFC_VPORT_READY)
4959 		goto finished;
4960 	if (vport->num_disc_nodes || vport->fc_prli_sent)
4961 		goto finished;
4962 	if (!atomic_read(&vport->fc_map_cnt) &&
4963 	    time < msecs_to_jiffies(2 * 1000))
4964 		goto finished;
4965 	if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
4966 		goto finished;
4967 
4968 	stat = 1;
4969 
4970 finished:
4971 	spin_unlock_irq(shost->host_lock);
4972 	return stat;
4973 }
4974 
lpfc_host_supported_speeds_set(struct Scsi_Host * shost)4975 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost)
4976 {
4977 	struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata;
4978 	struct lpfc_hba   *phba = vport->phba;
4979 
4980 	fc_host_supported_speeds(shost) = 0;
4981 	/*
4982 	 * Avoid reporting supported link speed for FCoE as it can't be
4983 	 * controlled via FCoE.
4984 	 */
4985 	if (test_bit(HBA_FCOE_MODE, &phba->hba_flag))
4986 		return;
4987 
4988 	if (phba->lmt & LMT_256Gb)
4989 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT;
4990 	if (phba->lmt & LMT_128Gb)
4991 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT;
4992 	if (phba->lmt & LMT_64Gb)
4993 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT;
4994 	if (phba->lmt & LMT_32Gb)
4995 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT;
4996 	if (phba->lmt & LMT_16Gb)
4997 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT;
4998 	if (phba->lmt & LMT_10Gb)
4999 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
5000 	if (phba->lmt & LMT_8Gb)
5001 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
5002 	if (phba->lmt & LMT_4Gb)
5003 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
5004 	if (phba->lmt & LMT_2Gb)
5005 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
5006 	if (phba->lmt & LMT_1Gb)
5007 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
5008 }
5009 
5010 /**
5011  * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
5012  * @shost: pointer to SCSI host data structure.
5013  *
5014  * This routine initializes a given SCSI host attributes on a FC port. The
5015  * SCSI host can be either on top of a physical port or a virtual port.
5016  **/
lpfc_host_attrib_init(struct Scsi_Host * shost)5017 void lpfc_host_attrib_init(struct Scsi_Host *shost)
5018 {
5019 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
5020 	struct lpfc_hba   *phba = vport->phba;
5021 	/*
5022 	 * Set fixed host attributes.  Must done after lpfc_sli_hba_setup().
5023 	 */
5024 
5025 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
5026 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
5027 	fc_host_supported_classes(shost) = FC_COS_CLASS3;
5028 
5029 	memset(fc_host_supported_fc4s(shost), 0,
5030 	       sizeof(fc_host_supported_fc4s(shost)));
5031 	fc_host_supported_fc4s(shost)[2] = 1;
5032 	fc_host_supported_fc4s(shost)[7] = 1;
5033 
5034 	lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
5035 				 sizeof fc_host_symbolic_name(shost));
5036 
5037 	lpfc_host_supported_speeds_set(shost);
5038 
5039 	fc_host_maxframe_size(shost) =
5040 		(((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
5041 		(uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
5042 
5043 	fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo;
5044 
5045 	/* This value is also unchanging */
5046 	memset(fc_host_active_fc4s(shost), 0,
5047 	       sizeof(fc_host_active_fc4s(shost)));
5048 	fc_host_active_fc4s(shost)[2] = 1;
5049 	fc_host_active_fc4s(shost)[7] = 1;
5050 
5051 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
5052 	clear_bit(FC_LOADING, &vport->load_flag);
5053 }
5054 
5055 /**
5056  * lpfc_stop_port_s3 - Stop SLI3 device port
5057  * @phba: pointer to lpfc hba data structure.
5058  *
5059  * This routine is invoked to stop an SLI3 device port, it stops the device
5060  * from generating interrupts and stops the device driver's timers for the
5061  * device.
5062  **/
5063 static void
lpfc_stop_port_s3(struct lpfc_hba * phba)5064 lpfc_stop_port_s3(struct lpfc_hba *phba)
5065 {
5066 	/* Clear all interrupt enable conditions */
5067 	writel(0, phba->HCregaddr);
5068 	readl(phba->HCregaddr); /* flush */
5069 	/* Clear all pending interrupts */
5070 	writel(0xffffffff, phba->HAregaddr);
5071 	readl(phba->HAregaddr); /* flush */
5072 
5073 	/* Reset some HBA SLI setup states */
5074 	lpfc_stop_hba_timers(phba);
5075 	phba->pport->work_port_events = 0;
5076 }
5077 
5078 /**
5079  * lpfc_stop_port_s4 - Stop SLI4 device port
5080  * @phba: pointer to lpfc hba data structure.
5081  *
5082  * This routine is invoked to stop an SLI4 device port, it stops the device
5083  * from generating interrupts and stops the device driver's timers for the
5084  * device.
5085  **/
5086 static void
lpfc_stop_port_s4(struct lpfc_hba * phba)5087 lpfc_stop_port_s4(struct lpfc_hba *phba)
5088 {
5089 	/* Reset some HBA SLI4 setup states */
5090 	lpfc_stop_hba_timers(phba);
5091 	if (phba->pport)
5092 		phba->pport->work_port_events = 0;
5093 	phba->sli4_hba.intr_enable = 0;
5094 }
5095 
5096 /**
5097  * lpfc_stop_port - Wrapper function for stopping hba port
5098  * @phba: Pointer to HBA context object.
5099  *
5100  * This routine wraps the actual SLI3 or SLI4 hba stop port routine from
5101  * the API jump table function pointer from the lpfc_hba struct.
5102  **/
5103 void
lpfc_stop_port(struct lpfc_hba * phba)5104 lpfc_stop_port(struct lpfc_hba *phba)
5105 {
5106 	phba->lpfc_stop_port(phba);
5107 
5108 	if (phba->wq)
5109 		flush_workqueue(phba->wq);
5110 }
5111 
5112 /**
5113  * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer
5114  * @phba: Pointer to hba for which this call is being executed.
5115  *
5116  * This routine starts the timer waiting for the FCF rediscovery to complete.
5117  **/
5118 void
lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba * phba)5119 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba)
5120 {
5121 	unsigned long fcf_redisc_wait_tmo =
5122 		(jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO));
5123 	/* Start fcf rediscovery wait period timer */
5124 	mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo);
5125 	spin_lock_irq(&phba->hbalock);
5126 	/* Allow action to new fcf asynchronous event */
5127 	phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE);
5128 	/* Mark the FCF rediscovery pending state */
5129 	phba->fcf.fcf_flag |= FCF_REDISC_PEND;
5130 	spin_unlock_irq(&phba->hbalock);
5131 }
5132 
5133 /**
5134  * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout
5135  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5136  *
5137  * This routine is invoked when waiting for FCF table rediscover has been
5138  * timed out. If new FCF record(s) has (have) been discovered during the
5139  * wait period, a new FCF event shall be added to the FCOE async event
5140  * list, and then worker thread shall be waked up for processing from the
5141  * worker thread context.
5142  **/
5143 static void
lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list * t)5144 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t)
5145 {
5146 	struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait);
5147 
5148 	/* Don't send FCF rediscovery event if timer cancelled */
5149 	spin_lock_irq(&phba->hbalock);
5150 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
5151 		spin_unlock_irq(&phba->hbalock);
5152 		return;
5153 	}
5154 	/* Clear FCF rediscovery timer pending flag */
5155 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
5156 	/* FCF rediscovery event to worker thread */
5157 	phba->fcf.fcf_flag |= FCF_REDISC_EVT;
5158 	spin_unlock_irq(&phba->hbalock);
5159 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
5160 			"2776 FCF rediscover quiescent timer expired\n");
5161 	/* wake up worker thread */
5162 	lpfc_worker_wake_up(phba);
5163 }
5164 
5165 /**
5166  * lpfc_vmid_poll - VMID timeout detection
5167  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5168  *
5169  * This routine is invoked when there is no I/O on by a VM for the specified
5170  * amount of time. When this situation is detected, the VMID has to be
5171  * deregistered from the switch and all the local resources freed. The VMID
5172  * will be reassigned to the VM once the I/O begins.
5173  **/
5174 static void
lpfc_vmid_poll(struct timer_list * t)5175 lpfc_vmid_poll(struct timer_list *t)
5176 {
5177 	struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll);
5178 	u32 wake_up = 0;
5179 
5180 	/* check if there is a need to issue QFPA */
5181 	if (phba->pport->vmid_priority_tagging) {
5182 		wake_up = 1;
5183 		phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA;
5184 	}
5185 
5186 	/* Is the vmid inactivity timer enabled */
5187 	if (phba->pport->vmid_inactivity_timeout ||
5188 	    test_bit(FC_DEREGISTER_ALL_APP_ID, &phba->pport->load_flag)) {
5189 		wake_up = 1;
5190 		phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID;
5191 	}
5192 
5193 	if (wake_up)
5194 		lpfc_worker_wake_up(phba);
5195 
5196 	/* restart the timer for the next iteration */
5197 	mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 *
5198 							LPFC_VMID_TIMER));
5199 }
5200 
5201 /**
5202  * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code
5203  * @phba: pointer to lpfc hba data structure.
5204  * @acqe_link: pointer to the async link completion queue entry.
5205  *
5206  * This routine is to parse the SLI4 link-attention link fault code.
5207  **/
5208 static void
lpfc_sli4_parse_latt_fault(struct lpfc_hba * phba,struct lpfc_acqe_link * acqe_link)5209 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba,
5210 			   struct lpfc_acqe_link *acqe_link)
5211 {
5212 	switch (bf_get(lpfc_acqe_fc_la_att_type, acqe_link)) {
5213 	case LPFC_FC_LA_TYPE_LINK_DOWN:
5214 	case LPFC_FC_LA_TYPE_TRUNKING_EVENT:
5215 	case LPFC_FC_LA_TYPE_ACTIVATE_FAIL:
5216 	case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT:
5217 		break;
5218 	default:
5219 		switch (bf_get(lpfc_acqe_link_fault, acqe_link)) {
5220 		case LPFC_ASYNC_LINK_FAULT_NONE:
5221 		case LPFC_ASYNC_LINK_FAULT_LOCAL:
5222 		case LPFC_ASYNC_LINK_FAULT_REMOTE:
5223 		case LPFC_ASYNC_LINK_FAULT_LR_LRR:
5224 			break;
5225 		default:
5226 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5227 					"0398 Unknown link fault code: x%x\n",
5228 					bf_get(lpfc_acqe_link_fault, acqe_link));
5229 			break;
5230 		}
5231 		break;
5232 	}
5233 }
5234 
5235 /**
5236  * lpfc_sli4_parse_latt_type - Parse sli4 link attention type
5237  * @phba: pointer to lpfc hba data structure.
5238  * @acqe_link: pointer to the async link completion queue entry.
5239  *
5240  * This routine is to parse the SLI4 link attention type and translate it
5241  * into the base driver's link attention type coding.
5242  *
5243  * Return: Link attention type in terms of base driver's coding.
5244  **/
5245 static uint8_t
lpfc_sli4_parse_latt_type(struct lpfc_hba * phba,struct lpfc_acqe_link * acqe_link)5246 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba,
5247 			  struct lpfc_acqe_link *acqe_link)
5248 {
5249 	uint8_t att_type;
5250 
5251 	switch (bf_get(lpfc_acqe_link_status, acqe_link)) {
5252 	case LPFC_ASYNC_LINK_STATUS_DOWN:
5253 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN:
5254 		att_type = LPFC_ATT_LINK_DOWN;
5255 		break;
5256 	case LPFC_ASYNC_LINK_STATUS_UP:
5257 		/* Ignore physical link up events - wait for logical link up */
5258 		att_type = LPFC_ATT_RESERVED;
5259 		break;
5260 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP:
5261 		att_type = LPFC_ATT_LINK_UP;
5262 		break;
5263 	default:
5264 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5265 				"0399 Invalid link attention type: x%x\n",
5266 				bf_get(lpfc_acqe_link_status, acqe_link));
5267 		att_type = LPFC_ATT_RESERVED;
5268 		break;
5269 	}
5270 	return att_type;
5271 }
5272 
5273 /**
5274  * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed
5275  * @phba: pointer to lpfc hba data structure.
5276  *
5277  * This routine is to get an SLI3 FC port's link speed in Mbps.
5278  *
5279  * Return: link speed in terms of Mbps.
5280  **/
5281 uint32_t
lpfc_sli_port_speed_get(struct lpfc_hba * phba)5282 lpfc_sli_port_speed_get(struct lpfc_hba *phba)
5283 {
5284 	uint32_t link_speed;
5285 
5286 	if (!lpfc_is_link_up(phba))
5287 		return 0;
5288 
5289 	if (phba->sli_rev <= LPFC_SLI_REV3) {
5290 		switch (phba->fc_linkspeed) {
5291 		case LPFC_LINK_SPEED_1GHZ:
5292 			link_speed = 1000;
5293 			break;
5294 		case LPFC_LINK_SPEED_2GHZ:
5295 			link_speed = 2000;
5296 			break;
5297 		case LPFC_LINK_SPEED_4GHZ:
5298 			link_speed = 4000;
5299 			break;
5300 		case LPFC_LINK_SPEED_8GHZ:
5301 			link_speed = 8000;
5302 			break;
5303 		case LPFC_LINK_SPEED_10GHZ:
5304 			link_speed = 10000;
5305 			break;
5306 		case LPFC_LINK_SPEED_16GHZ:
5307 			link_speed = 16000;
5308 			break;
5309 		default:
5310 			link_speed = 0;
5311 		}
5312 	} else {
5313 		if (phba->sli4_hba.link_state.logical_speed)
5314 			link_speed =
5315 			      phba->sli4_hba.link_state.logical_speed;
5316 		else
5317 			link_speed = phba->sli4_hba.link_state.speed;
5318 	}
5319 	return link_speed;
5320 }
5321 
5322 /**
5323  * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed
5324  * @phba: pointer to lpfc hba data structure.
5325  * @evt_code: asynchronous event code.
5326  * @speed_code: asynchronous event link speed code.
5327  *
5328  * This routine is to parse the giving SLI4 async event link speed code into
5329  * value of Mbps for the link speed.
5330  *
5331  * Return: link speed in terms of Mbps.
5332  **/
5333 static uint32_t
lpfc_sli4_port_speed_parse(struct lpfc_hba * phba,uint32_t evt_code,uint8_t speed_code)5334 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code,
5335 			   uint8_t speed_code)
5336 {
5337 	uint32_t port_speed;
5338 
5339 	switch (evt_code) {
5340 	case LPFC_TRAILER_CODE_LINK:
5341 		switch (speed_code) {
5342 		case LPFC_ASYNC_LINK_SPEED_ZERO:
5343 			port_speed = 0;
5344 			break;
5345 		case LPFC_ASYNC_LINK_SPEED_10MBPS:
5346 			port_speed = 10;
5347 			break;
5348 		case LPFC_ASYNC_LINK_SPEED_100MBPS:
5349 			port_speed = 100;
5350 			break;
5351 		case LPFC_ASYNC_LINK_SPEED_1GBPS:
5352 			port_speed = 1000;
5353 			break;
5354 		case LPFC_ASYNC_LINK_SPEED_10GBPS:
5355 			port_speed = 10000;
5356 			break;
5357 		case LPFC_ASYNC_LINK_SPEED_20GBPS:
5358 			port_speed = 20000;
5359 			break;
5360 		case LPFC_ASYNC_LINK_SPEED_25GBPS:
5361 			port_speed = 25000;
5362 			break;
5363 		case LPFC_ASYNC_LINK_SPEED_40GBPS:
5364 			port_speed = 40000;
5365 			break;
5366 		case LPFC_ASYNC_LINK_SPEED_100GBPS:
5367 			port_speed = 100000;
5368 			break;
5369 		default:
5370 			port_speed = 0;
5371 		}
5372 		break;
5373 	case LPFC_TRAILER_CODE_FC:
5374 		switch (speed_code) {
5375 		case LPFC_FC_LA_SPEED_UNKNOWN:
5376 			port_speed = 0;
5377 			break;
5378 		case LPFC_FC_LA_SPEED_1G:
5379 			port_speed = 1000;
5380 			break;
5381 		case LPFC_FC_LA_SPEED_2G:
5382 			port_speed = 2000;
5383 			break;
5384 		case LPFC_FC_LA_SPEED_4G:
5385 			port_speed = 4000;
5386 			break;
5387 		case LPFC_FC_LA_SPEED_8G:
5388 			port_speed = 8000;
5389 			break;
5390 		case LPFC_FC_LA_SPEED_10G:
5391 			port_speed = 10000;
5392 			break;
5393 		case LPFC_FC_LA_SPEED_16G:
5394 			port_speed = 16000;
5395 			break;
5396 		case LPFC_FC_LA_SPEED_32G:
5397 			port_speed = 32000;
5398 			break;
5399 		case LPFC_FC_LA_SPEED_64G:
5400 			port_speed = 64000;
5401 			break;
5402 		case LPFC_FC_LA_SPEED_128G:
5403 			port_speed = 128000;
5404 			break;
5405 		case LPFC_FC_LA_SPEED_256G:
5406 			port_speed = 256000;
5407 			break;
5408 		default:
5409 			port_speed = 0;
5410 		}
5411 		break;
5412 	default:
5413 		port_speed = 0;
5414 	}
5415 	return port_speed;
5416 }
5417 
5418 /**
5419  * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event
5420  * @phba: pointer to lpfc hba data structure.
5421  * @acqe_link: pointer to the async link completion queue entry.
5422  *
5423  * This routine is to handle the SLI4 asynchronous FCoE link event.
5424  **/
5425 static void
lpfc_sli4_async_link_evt(struct lpfc_hba * phba,struct lpfc_acqe_link * acqe_link)5426 lpfc_sli4_async_link_evt(struct lpfc_hba *phba,
5427 			 struct lpfc_acqe_link *acqe_link)
5428 {
5429 	LPFC_MBOXQ_t *pmb;
5430 	MAILBOX_t *mb;
5431 	struct lpfc_mbx_read_top *la;
5432 	uint8_t att_type;
5433 	int rc;
5434 
5435 	att_type = lpfc_sli4_parse_latt_type(phba, acqe_link);
5436 	if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP)
5437 		return;
5438 	phba->fcoe_eventtag = acqe_link->event_tag;
5439 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5440 	if (!pmb) {
5441 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5442 				"0395 The mboxq allocation failed\n");
5443 		return;
5444 	}
5445 
5446 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
5447 	if (rc) {
5448 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5449 				"0396 mailbox allocation failed\n");
5450 		goto out_free_pmb;
5451 	}
5452 
5453 	/* Cleanup any outstanding ELS commands */
5454 	lpfc_els_flush_all_cmd(phba);
5455 
5456 	/* Block ELS IOCBs until we have done process link event */
5457 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
5458 
5459 	/* Update link event statistics */
5460 	phba->sli.slistat.link_event++;
5461 
5462 	/* Create lpfc_handle_latt mailbox command from link ACQE */
5463 	lpfc_read_topology(phba, pmb, pmb->ctx_buf);
5464 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
5465 	pmb->vport = phba->pport;
5466 
5467 	/* Keep the link status for extra SLI4 state machine reference */
5468 	phba->sli4_hba.link_state.speed =
5469 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK,
5470 				bf_get(lpfc_acqe_link_speed, acqe_link));
5471 	phba->sli4_hba.link_state.duplex =
5472 				bf_get(lpfc_acqe_link_duplex, acqe_link);
5473 	phba->sli4_hba.link_state.status =
5474 				bf_get(lpfc_acqe_link_status, acqe_link);
5475 	phba->sli4_hba.link_state.type =
5476 				bf_get(lpfc_acqe_link_type, acqe_link);
5477 	phba->sli4_hba.link_state.number =
5478 				bf_get(lpfc_acqe_link_number, acqe_link);
5479 	phba->sli4_hba.link_state.fault =
5480 				bf_get(lpfc_acqe_link_fault, acqe_link);
5481 	phba->sli4_hba.link_state.logical_speed =
5482 			bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10;
5483 
5484 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5485 			"2900 Async FC/FCoE Link event - Speed:%dGBit "
5486 			"duplex:x%x LA Type:x%x Port Type:%d Port Number:%d "
5487 			"Logical speed:%dMbps Fault:%d\n",
5488 			phba->sli4_hba.link_state.speed,
5489 			phba->sli4_hba.link_state.topology,
5490 			phba->sli4_hba.link_state.status,
5491 			phba->sli4_hba.link_state.type,
5492 			phba->sli4_hba.link_state.number,
5493 			phba->sli4_hba.link_state.logical_speed,
5494 			phba->sli4_hba.link_state.fault);
5495 	/*
5496 	 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch
5497 	 * topology info. Note: Optional for non FC-AL ports.
5498 	 */
5499 	if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag)) {
5500 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5501 		if (rc == MBX_NOT_FINISHED)
5502 			goto out_free_pmb;
5503 		return;
5504 	}
5505 	/*
5506 	 * For FCoE Mode: fill in all the topology information we need and call
5507 	 * the READ_TOPOLOGY completion routine to continue without actually
5508 	 * sending the READ_TOPOLOGY mailbox command to the port.
5509 	 */
5510 	/* Initialize completion status */
5511 	mb = &pmb->u.mb;
5512 	mb->mbxStatus = MBX_SUCCESS;
5513 
5514 	/* Parse port fault information field */
5515 	lpfc_sli4_parse_latt_fault(phba, acqe_link);
5516 
5517 	/* Parse and translate link attention fields */
5518 	la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop;
5519 	la->eventTag = acqe_link->event_tag;
5520 	bf_set(lpfc_mbx_read_top_att_type, la, att_type);
5521 	bf_set(lpfc_mbx_read_top_link_spd, la,
5522 	       (bf_get(lpfc_acqe_link_speed, acqe_link)));
5523 
5524 	/* Fake the following irrelevant fields */
5525 	bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT);
5526 	bf_set(lpfc_mbx_read_top_alpa_granted, la, 0);
5527 	bf_set(lpfc_mbx_read_top_il, la, 0);
5528 	bf_set(lpfc_mbx_read_top_pb, la, 0);
5529 	bf_set(lpfc_mbx_read_top_fa, la, 0);
5530 	bf_set(lpfc_mbx_read_top_mm, la, 0);
5531 
5532 	/* Invoke the lpfc_handle_latt mailbox command callback function */
5533 	lpfc_mbx_cmpl_read_topology(phba, pmb);
5534 
5535 	return;
5536 
5537 out_free_pmb:
5538 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
5539 }
5540 
5541 /**
5542  * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read
5543  * topology.
5544  * @phba: pointer to lpfc hba data structure.
5545  * @speed_code: asynchronous event link speed code.
5546  *
5547  * This routine is to parse the giving SLI4 async event link speed code into
5548  * value of Read topology link speed.
5549  *
5550  * Return: link speed in terms of Read topology.
5551  **/
5552 static uint8_t
lpfc_async_link_speed_to_read_top(struct lpfc_hba * phba,uint8_t speed_code)5553 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code)
5554 {
5555 	uint8_t port_speed;
5556 
5557 	switch (speed_code) {
5558 	case LPFC_FC_LA_SPEED_1G:
5559 		port_speed = LPFC_LINK_SPEED_1GHZ;
5560 		break;
5561 	case LPFC_FC_LA_SPEED_2G:
5562 		port_speed = LPFC_LINK_SPEED_2GHZ;
5563 		break;
5564 	case LPFC_FC_LA_SPEED_4G:
5565 		port_speed = LPFC_LINK_SPEED_4GHZ;
5566 		break;
5567 	case LPFC_FC_LA_SPEED_8G:
5568 		port_speed = LPFC_LINK_SPEED_8GHZ;
5569 		break;
5570 	case LPFC_FC_LA_SPEED_16G:
5571 		port_speed = LPFC_LINK_SPEED_16GHZ;
5572 		break;
5573 	case LPFC_FC_LA_SPEED_32G:
5574 		port_speed = LPFC_LINK_SPEED_32GHZ;
5575 		break;
5576 	case LPFC_FC_LA_SPEED_64G:
5577 		port_speed = LPFC_LINK_SPEED_64GHZ;
5578 		break;
5579 	case LPFC_FC_LA_SPEED_128G:
5580 		port_speed = LPFC_LINK_SPEED_128GHZ;
5581 		break;
5582 	case LPFC_FC_LA_SPEED_256G:
5583 		port_speed = LPFC_LINK_SPEED_256GHZ;
5584 		break;
5585 	default:
5586 		port_speed = 0;
5587 		break;
5588 	}
5589 
5590 	return port_speed;
5591 }
5592 
5593 void
lpfc_cgn_dump_rxmonitor(struct lpfc_hba * phba)5594 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba)
5595 {
5596 	if (!phba->rx_monitor) {
5597 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5598 				"4411 Rx Monitor Info is empty.\n");
5599 	} else {
5600 		lpfc_rx_monitor_report(phba, phba->rx_monitor, NULL, 0,
5601 				       LPFC_MAX_RXMONITOR_DUMP);
5602 	}
5603 }
5604 
5605 /**
5606  * lpfc_cgn_update_stat - Save data into congestion stats buffer
5607  * @phba: pointer to lpfc hba data structure.
5608  * @dtag: FPIN descriptor received
5609  *
5610  * Increment the FPIN received counter/time when it happens.
5611  */
5612 void
lpfc_cgn_update_stat(struct lpfc_hba * phba,uint32_t dtag)5613 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag)
5614 {
5615 	struct lpfc_cgn_info *cp;
5616 	u32 value;
5617 
5618 	/* Make sure we have a congestion info buffer */
5619 	if (!phba->cgn_i)
5620 		return;
5621 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5622 
5623 	/* Update congestion statistics */
5624 	switch (dtag) {
5625 	case ELS_DTAG_LNK_INTEGRITY:
5626 		le32_add_cpu(&cp->link_integ_notification, 1);
5627 		lpfc_cgn_update_tstamp(phba, &cp->stat_lnk);
5628 		break;
5629 	case ELS_DTAG_DELIVERY:
5630 		le32_add_cpu(&cp->delivery_notification, 1);
5631 		lpfc_cgn_update_tstamp(phba, &cp->stat_delivery);
5632 		break;
5633 	case ELS_DTAG_PEER_CONGEST:
5634 		le32_add_cpu(&cp->cgn_peer_notification, 1);
5635 		lpfc_cgn_update_tstamp(phba, &cp->stat_peer);
5636 		break;
5637 	case ELS_DTAG_CONGESTION:
5638 		le32_add_cpu(&cp->cgn_notification, 1);
5639 		lpfc_cgn_update_tstamp(phba, &cp->stat_fpin);
5640 	}
5641 	if (phba->cgn_fpin_frequency &&
5642 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5643 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5644 		cp->cgn_stat_npm = value;
5645 	}
5646 
5647 	value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5648 				    LPFC_CGN_CRC32_SEED);
5649 	cp->cgn_info_crc = cpu_to_le32(value);
5650 }
5651 
5652 /**
5653  * lpfc_cgn_update_tstamp - Update cmf timestamp
5654  * @phba: pointer to lpfc hba data structure.
5655  * @ts: structure to write the timestamp to.
5656  */
5657 void
lpfc_cgn_update_tstamp(struct lpfc_hba * phba,struct lpfc_cgn_ts * ts)5658 lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts)
5659 {
5660 	struct timespec64 cur_time;
5661 	struct tm tm_val;
5662 
5663 	ktime_get_real_ts64(&cur_time);
5664 	time64_to_tm(cur_time.tv_sec, 0, &tm_val);
5665 
5666 	ts->month = tm_val.tm_mon + 1;
5667 	ts->day	= tm_val.tm_mday;
5668 	ts->year = tm_val.tm_year - 100;
5669 	ts->hour = tm_val.tm_hour;
5670 	ts->minute = tm_val.tm_min;
5671 	ts->second = tm_val.tm_sec;
5672 
5673 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5674 			"2646 Updated CMF timestamp : "
5675 			"%u/%u/%u %u:%u:%u\n",
5676 			ts->day, ts->month,
5677 			ts->year, ts->hour,
5678 			ts->minute, ts->second);
5679 }
5680 
5681 /**
5682  * lpfc_cmf_stats_timer - Save data into registered congestion buffer
5683  * @timer: Timer cookie to access lpfc private data
5684  *
5685  * Save the congestion event data every minute.
5686  * On the hour collapse all the minute data into hour data. Every day
5687  * collapse all the hour data into daily data. Separate driver
5688  * and fabrc congestion event counters that will be saved out
5689  * to the registered congestion buffer every minute.
5690  */
5691 static enum hrtimer_restart
lpfc_cmf_stats_timer(struct hrtimer * timer)5692 lpfc_cmf_stats_timer(struct hrtimer *timer)
5693 {
5694 	struct lpfc_hba *phba;
5695 	struct lpfc_cgn_info *cp;
5696 	uint32_t i, index;
5697 	uint16_t value, mvalue;
5698 	uint64_t bps;
5699 	uint32_t mbps;
5700 	uint32_t dvalue, wvalue, lvalue, avalue;
5701 	uint64_t latsum;
5702 	__le16 *ptr;
5703 	__le32 *lptr;
5704 	__le16 *mptr;
5705 
5706 	phba = container_of(timer, struct lpfc_hba, cmf_stats_timer);
5707 	/* Make sure we have a congestion info buffer */
5708 	if (!phba->cgn_i)
5709 		return HRTIMER_NORESTART;
5710 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5711 
5712 	phba->cgn_evt_timestamp = jiffies +
5713 			msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
5714 	phba->cgn_evt_minute++;
5715 
5716 	/* We should get to this point in the routine on 1 minute intervals */
5717 	lpfc_cgn_update_tstamp(phba, &cp->base_time);
5718 
5719 	if (phba->cgn_fpin_frequency &&
5720 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5721 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5722 		cp->cgn_stat_npm = value;
5723 	}
5724 
5725 	/* Read and clear the latency counters for this minute */
5726 	lvalue = atomic_read(&phba->cgn_latency_evt_cnt);
5727 	latsum = atomic64_read(&phba->cgn_latency_evt);
5728 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
5729 	atomic64_set(&phba->cgn_latency_evt, 0);
5730 
5731 	/* We need to store MB/sec bandwidth in the congestion information.
5732 	 * block_cnt is count of 512 byte blocks for the entire minute,
5733 	 * bps will get bytes per sec before finally converting to MB/sec.
5734 	 */
5735 	bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512;
5736 	phba->rx_block_cnt = 0;
5737 	mvalue = bps / (1024 * 1024); /* convert to MB/sec */
5738 
5739 	/* Every minute */
5740 	/* cgn parameters */
5741 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
5742 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
5743 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
5744 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
5745 
5746 	/* Fill in default LUN qdepth */
5747 	value = (uint16_t)(phba->pport->cfg_lun_queue_depth);
5748 	cp->cgn_lunq = cpu_to_le16(value);
5749 
5750 	/* Record congestion buffer info - every minute
5751 	 * cgn_driver_evt_cnt (Driver events)
5752 	 * cgn_fabric_warn_cnt (Congestion Warnings)
5753 	 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency)
5754 	 * cgn_fabric_alarm_cnt (Congestion Alarms)
5755 	 */
5756 	index = ++cp->cgn_index_minute;
5757 	if (cp->cgn_index_minute == LPFC_MIN_HOUR) {
5758 		cp->cgn_index_minute = 0;
5759 		index = 0;
5760 	}
5761 
5762 	/* Get the number of driver events in this sample and reset counter */
5763 	dvalue = atomic_read(&phba->cgn_driver_evt_cnt);
5764 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
5765 
5766 	/* Get the number of warning events - FPIN and Signal for this minute */
5767 	wvalue = 0;
5768 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) ||
5769 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5770 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5771 		wvalue = atomic_read(&phba->cgn_fabric_warn_cnt);
5772 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
5773 
5774 	/* Get the number of alarm events - FPIN and Signal for this minute */
5775 	avalue = 0;
5776 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) ||
5777 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5778 		avalue = atomic_read(&phba->cgn_fabric_alarm_cnt);
5779 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
5780 
5781 	/* Collect the driver, warning, alarm and latency counts for this
5782 	 * minute into the driver congestion buffer.
5783 	 */
5784 	ptr = &cp->cgn_drvr_min[index];
5785 	value = (uint16_t)dvalue;
5786 	*ptr = cpu_to_le16(value);
5787 
5788 	ptr = &cp->cgn_warn_min[index];
5789 	value = (uint16_t)wvalue;
5790 	*ptr = cpu_to_le16(value);
5791 
5792 	ptr = &cp->cgn_alarm_min[index];
5793 	value = (uint16_t)avalue;
5794 	*ptr = cpu_to_le16(value);
5795 
5796 	lptr = &cp->cgn_latency_min[index];
5797 	if (lvalue) {
5798 		lvalue = (uint32_t)div_u64(latsum, lvalue);
5799 		*lptr = cpu_to_le32(lvalue);
5800 	} else {
5801 		*lptr = 0;
5802 	}
5803 
5804 	/* Collect the bandwidth value into the driver's congesion buffer. */
5805 	mptr = &cp->cgn_bw_min[index];
5806 	*mptr = cpu_to_le16(mvalue);
5807 
5808 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5809 			"2418 Congestion Info - minute (%d): %d %d %d %d %d\n",
5810 			index, dvalue, wvalue, *lptr, mvalue, avalue);
5811 
5812 	/* Every hour */
5813 	if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) {
5814 		/* Record congestion buffer info - every hour
5815 		 * Collapse all minutes into an hour
5816 		 */
5817 		index = ++cp->cgn_index_hour;
5818 		if (cp->cgn_index_hour == LPFC_HOUR_DAY) {
5819 			cp->cgn_index_hour = 0;
5820 			index = 0;
5821 		}
5822 
5823 		dvalue = 0;
5824 		wvalue = 0;
5825 		lvalue = 0;
5826 		avalue = 0;
5827 		mvalue = 0;
5828 		mbps = 0;
5829 		for (i = 0; i < LPFC_MIN_HOUR; i++) {
5830 			dvalue += le16_to_cpu(cp->cgn_drvr_min[i]);
5831 			wvalue += le16_to_cpu(cp->cgn_warn_min[i]);
5832 			lvalue += le32_to_cpu(cp->cgn_latency_min[i]);
5833 			mbps += le16_to_cpu(cp->cgn_bw_min[i]);
5834 			avalue += le16_to_cpu(cp->cgn_alarm_min[i]);
5835 		}
5836 		if (lvalue)		/* Avg of latency averages */
5837 			lvalue /= LPFC_MIN_HOUR;
5838 		if (mbps)		/* Avg of Bandwidth averages */
5839 			mvalue = mbps / LPFC_MIN_HOUR;
5840 
5841 		lptr = &cp->cgn_drvr_hr[index];
5842 		*lptr = cpu_to_le32(dvalue);
5843 		lptr = &cp->cgn_warn_hr[index];
5844 		*lptr = cpu_to_le32(wvalue);
5845 		lptr = &cp->cgn_latency_hr[index];
5846 		*lptr = cpu_to_le32(lvalue);
5847 		mptr = &cp->cgn_bw_hr[index];
5848 		*mptr = cpu_to_le16(mvalue);
5849 		lptr = &cp->cgn_alarm_hr[index];
5850 		*lptr = cpu_to_le32(avalue);
5851 
5852 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5853 				"2419 Congestion Info - hour "
5854 				"(%d): %d %d %d %d %d\n",
5855 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5856 	}
5857 
5858 	/* Every day */
5859 	if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) {
5860 		/* Record congestion buffer info - every hour
5861 		 * Collapse all hours into a day. Rotate days
5862 		 * after LPFC_MAX_CGN_DAYS.
5863 		 */
5864 		index = ++cp->cgn_index_day;
5865 		if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) {
5866 			cp->cgn_index_day = 0;
5867 			index = 0;
5868 		}
5869 
5870 		dvalue = 0;
5871 		wvalue = 0;
5872 		lvalue = 0;
5873 		mvalue = 0;
5874 		mbps = 0;
5875 		avalue = 0;
5876 		for (i = 0; i < LPFC_HOUR_DAY; i++) {
5877 			dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]);
5878 			wvalue += le32_to_cpu(cp->cgn_warn_hr[i]);
5879 			lvalue += le32_to_cpu(cp->cgn_latency_hr[i]);
5880 			mbps += le16_to_cpu(cp->cgn_bw_hr[i]);
5881 			avalue += le32_to_cpu(cp->cgn_alarm_hr[i]);
5882 		}
5883 		if (lvalue)		/* Avg of latency averages */
5884 			lvalue /= LPFC_HOUR_DAY;
5885 		if (mbps)		/* Avg of Bandwidth averages */
5886 			mvalue = mbps / LPFC_HOUR_DAY;
5887 
5888 		lptr = &cp->cgn_drvr_day[index];
5889 		*lptr = cpu_to_le32(dvalue);
5890 		lptr = &cp->cgn_warn_day[index];
5891 		*lptr = cpu_to_le32(wvalue);
5892 		lptr = &cp->cgn_latency_day[index];
5893 		*lptr = cpu_to_le32(lvalue);
5894 		mptr = &cp->cgn_bw_day[index];
5895 		*mptr = cpu_to_le16(mvalue);
5896 		lptr = &cp->cgn_alarm_day[index];
5897 		*lptr = cpu_to_le32(avalue);
5898 
5899 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5900 				"2420 Congestion Info - daily (%d): "
5901 				"%d %d %d %d %d\n",
5902 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5903 	}
5904 
5905 	/* Use the frequency found in the last rcv'ed FPIN */
5906 	value = phba->cgn_fpin_frequency;
5907 	cp->cgn_warn_freq = cpu_to_le16(value);
5908 	cp->cgn_alarm_freq = cpu_to_le16(value);
5909 
5910 	lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5911 				     LPFC_CGN_CRC32_SEED);
5912 	cp->cgn_info_crc = cpu_to_le32(lvalue);
5913 
5914 	hrtimer_forward_now(timer, ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC));
5915 
5916 	return HRTIMER_RESTART;
5917 }
5918 
5919 /**
5920  * lpfc_calc_cmf_latency - latency from start of rxate timer interval
5921  * @phba: The Hba for which this call is being executed.
5922  *
5923  * The routine calculates the latency from the beginning of the CMF timer
5924  * interval to the current point in time. It is called from IO completion
5925  * when we exceed our Bandwidth limitation for the time interval.
5926  */
5927 uint32_t
lpfc_calc_cmf_latency(struct lpfc_hba * phba)5928 lpfc_calc_cmf_latency(struct lpfc_hba *phba)
5929 {
5930 	struct timespec64 cmpl_time;
5931 	uint32_t msec = 0;
5932 
5933 	ktime_get_real_ts64(&cmpl_time);
5934 
5935 	/* This routine works on a ms granularity so sec and usec are
5936 	 * converted accordingly.
5937 	 */
5938 	if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) {
5939 		msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) /
5940 			NSEC_PER_MSEC;
5941 	} else {
5942 		if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) {
5943 			msec = (cmpl_time.tv_sec -
5944 				phba->cmf_latency.tv_sec) * MSEC_PER_SEC;
5945 			msec += ((cmpl_time.tv_nsec -
5946 				  phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC);
5947 		} else {
5948 			msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec -
5949 				1) * MSEC_PER_SEC;
5950 			msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) +
5951 				 cmpl_time.tv_nsec) / NSEC_PER_MSEC);
5952 		}
5953 	}
5954 	return msec;
5955 }
5956 
5957 /**
5958  * lpfc_cmf_timer -  This is the timer function for one congestion
5959  * rate interval.
5960  * @timer: Pointer to the high resolution timer that expired
5961  */
5962 static enum hrtimer_restart
lpfc_cmf_timer(struct hrtimer * timer)5963 lpfc_cmf_timer(struct hrtimer *timer)
5964 {
5965 	struct lpfc_hba *phba = container_of(timer, struct lpfc_hba,
5966 					     cmf_timer);
5967 	struct rx_info_entry entry;
5968 	uint32_t io_cnt;
5969 	uint32_t busy, max_read;
5970 	uint64_t total, rcv, lat, mbpi, extra, cnt;
5971 	int timer_interval = LPFC_CMF_INTERVAL;
5972 	uint32_t ms;
5973 	struct lpfc_cgn_stat *cgs;
5974 	int cpu;
5975 
5976 	/* Only restart the timer if congestion mgmt is on */
5977 	if (phba->cmf_active_mode == LPFC_CFG_OFF ||
5978 	    !phba->cmf_latency.tv_sec) {
5979 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5980 				"6224 CMF timer exit: %d %lld\n",
5981 				phba->cmf_active_mode,
5982 				(uint64_t)phba->cmf_latency.tv_sec);
5983 		return HRTIMER_NORESTART;
5984 	}
5985 
5986 	/* If pport is not ready yet, just exit and wait for
5987 	 * the next timer cycle to hit.
5988 	 */
5989 	if (!phba->pport)
5990 		goto skip;
5991 
5992 	/* Do not block SCSI IO while in the timer routine since
5993 	 * total_bytes will be cleared
5994 	 */
5995 	atomic_set(&phba->cmf_stop_io, 1);
5996 
5997 	/* First we need to calculate the actual ms between
5998 	 * the last timer interrupt and this one. We ask for
5999 	 * LPFC_CMF_INTERVAL, however the actual time may
6000 	 * vary depending on system overhead.
6001 	 */
6002 	ms = lpfc_calc_cmf_latency(phba);
6003 
6004 
6005 	/* Immediately after we calculate the time since the last
6006 	 * timer interrupt, set the start time for the next
6007 	 * interrupt
6008 	 */
6009 	ktime_get_real_ts64(&phba->cmf_latency);
6010 
6011 	phba->cmf_link_byte_count =
6012 		div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000);
6013 
6014 	/* Collect all the stats from the prior timer interval */
6015 	total = 0;
6016 	io_cnt = 0;
6017 	lat = 0;
6018 	rcv = 0;
6019 	for_each_present_cpu(cpu) {
6020 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
6021 		total += atomic64_xchg(&cgs->total_bytes, 0);
6022 		io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0);
6023 		lat += atomic64_xchg(&cgs->rx_latency, 0);
6024 		rcv += atomic64_xchg(&cgs->rcv_bytes, 0);
6025 	}
6026 
6027 	/* Before we issue another CMF_SYNC_WQE, retrieve the BW
6028 	 * returned from the last CMF_SYNC_WQE issued, from
6029 	 * cmf_last_sync_bw. This will be the target BW for
6030 	 * this next timer interval.
6031 	 */
6032 	if (phba->cmf_active_mode == LPFC_CFG_MANAGED &&
6033 	    phba->link_state != LPFC_LINK_DOWN &&
6034 	    test_bit(HBA_SETUP, &phba->hba_flag)) {
6035 		mbpi = phba->cmf_last_sync_bw;
6036 		phba->cmf_last_sync_bw = 0;
6037 		extra = 0;
6038 
6039 		/* Calculate any extra bytes needed to account for the
6040 		 * timer accuracy. If we are less than LPFC_CMF_INTERVAL
6041 		 * calculate the adjustment needed for total to reflect
6042 		 * a full LPFC_CMF_INTERVAL.
6043 		 */
6044 		if (ms && ms < LPFC_CMF_INTERVAL) {
6045 			cnt = div_u64(total, ms); /* bytes per ms */
6046 			cnt *= LPFC_CMF_INTERVAL; /* what total should be */
6047 			extra = cnt - total;
6048 		}
6049 		lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra);
6050 	} else {
6051 		/* For Monitor mode or link down we want mbpi
6052 		 * to be the full link speed
6053 		 */
6054 		mbpi = phba->cmf_link_byte_count;
6055 		extra = 0;
6056 	}
6057 	phba->cmf_timer_cnt++;
6058 
6059 	if (io_cnt) {
6060 		/* Update congestion info buffer latency in us */
6061 		atomic_add(io_cnt, &phba->cgn_latency_evt_cnt);
6062 		atomic64_add(lat, &phba->cgn_latency_evt);
6063 	}
6064 	busy = atomic_xchg(&phba->cmf_busy, 0);
6065 	max_read = atomic_xchg(&phba->rx_max_read_cnt, 0);
6066 
6067 	/* Calculate MBPI for the next timer interval */
6068 	if (mbpi) {
6069 		if (mbpi > phba->cmf_link_byte_count ||
6070 		    phba->cmf_active_mode == LPFC_CFG_MONITOR)
6071 			mbpi = phba->cmf_link_byte_count;
6072 
6073 		/* Change max_bytes_per_interval to what the prior
6074 		 * CMF_SYNC_WQE cmpl indicated.
6075 		 */
6076 		if (mbpi != phba->cmf_max_bytes_per_interval)
6077 			phba->cmf_max_bytes_per_interval = mbpi;
6078 	}
6079 
6080 	/* Save rxmonitor information for debug */
6081 	if (phba->rx_monitor) {
6082 		entry.total_bytes = total;
6083 		entry.cmf_bytes = total + extra;
6084 		entry.rcv_bytes = rcv;
6085 		entry.cmf_busy = busy;
6086 		entry.cmf_info = phba->cmf_active_info;
6087 		if (io_cnt) {
6088 			entry.avg_io_latency = div_u64(lat, io_cnt);
6089 			entry.avg_io_size = div_u64(rcv, io_cnt);
6090 		} else {
6091 			entry.avg_io_latency = 0;
6092 			entry.avg_io_size = 0;
6093 		}
6094 		entry.max_read_cnt = max_read;
6095 		entry.io_cnt = io_cnt;
6096 		entry.max_bytes_per_interval = mbpi;
6097 		if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
6098 			entry.timer_utilization = phba->cmf_last_ts;
6099 		else
6100 			entry.timer_utilization = ms;
6101 		entry.timer_interval = ms;
6102 		phba->cmf_last_ts = 0;
6103 
6104 		lpfc_rx_monitor_record(phba->rx_monitor, &entry);
6105 	}
6106 
6107 	if (phba->cmf_active_mode == LPFC_CFG_MONITOR) {
6108 		/* If Monitor mode, check if we are oversubscribed
6109 		 * against the full line rate.
6110 		 */
6111 		if (mbpi && total > mbpi)
6112 			atomic_inc(&phba->cgn_driver_evt_cnt);
6113 	}
6114 	phba->rx_block_cnt += div_u64(rcv, 512);  /* save 512 byte block cnt */
6115 
6116 	/* Since total_bytes has already been zero'ed, its okay to unblock
6117 	 * after max_bytes_per_interval is setup.
6118 	 */
6119 	if (atomic_xchg(&phba->cmf_bw_wait, 0))
6120 		queue_work(phba->wq, &phba->unblock_request_work);
6121 
6122 	/* SCSI IO is now unblocked */
6123 	atomic_set(&phba->cmf_stop_io, 0);
6124 
6125 skip:
6126 	hrtimer_forward_now(timer,
6127 			    ktime_set(0, timer_interval * NSEC_PER_MSEC));
6128 	return HRTIMER_RESTART;
6129 }
6130 
6131 #define trunk_link_status(__idx)\
6132 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6133 	       ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\
6134 		"Link up" : "Link down") : "NA"
6135 /* Did port __idx reported an error */
6136 #define trunk_port_fault(__idx)\
6137 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6138 	       (port_fault & (1 << __idx) ? "YES" : "NO") : "NA"
6139 
6140 static void
lpfc_update_trunk_link_status(struct lpfc_hba * phba,struct lpfc_acqe_fc_la * acqe_fc)6141 lpfc_update_trunk_link_status(struct lpfc_hba *phba,
6142 			      struct lpfc_acqe_fc_la *acqe_fc)
6143 {
6144 	uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc);
6145 	uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc);
6146 	u8 cnt = 0;
6147 
6148 	phba->sli4_hba.link_state.speed =
6149 		lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6150 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6151 
6152 	phba->sli4_hba.link_state.logical_speed =
6153 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6154 	/* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */
6155 	phba->fc_linkspeed =
6156 		 lpfc_async_link_speed_to_read_top(
6157 				phba,
6158 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6159 
6160 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) {
6161 		phba->trunk_link.link0.state =
6162 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc)
6163 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6164 		phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0;
6165 		cnt++;
6166 	}
6167 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) {
6168 		phba->trunk_link.link1.state =
6169 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc)
6170 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6171 		phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0;
6172 		cnt++;
6173 	}
6174 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) {
6175 		phba->trunk_link.link2.state =
6176 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc)
6177 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6178 		phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0;
6179 		cnt++;
6180 	}
6181 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) {
6182 		phba->trunk_link.link3.state =
6183 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc)
6184 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6185 		phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0;
6186 		cnt++;
6187 	}
6188 
6189 	if (cnt)
6190 		phba->trunk_link.phy_lnk_speed =
6191 			phba->sli4_hba.link_state.logical_speed / (cnt * 1000);
6192 	else
6193 		phba->trunk_link.phy_lnk_speed = LPFC_LINK_SPEED_UNKNOWN;
6194 
6195 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6196 			"2910 Async FC Trunking Event - Speed:%d\n"
6197 			"\tLogical speed:%d "
6198 			"port0: %s port1: %s port2: %s port3: %s\n",
6199 			phba->sli4_hba.link_state.speed,
6200 			phba->sli4_hba.link_state.logical_speed,
6201 			trunk_link_status(0), trunk_link_status(1),
6202 			trunk_link_status(2), trunk_link_status(3));
6203 
6204 	if (phba->cmf_active_mode != LPFC_CFG_OFF)
6205 		lpfc_cmf_signal_init(phba);
6206 
6207 	if (port_fault)
6208 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6209 				"3202 trunk error:0x%x (%s) seen on port0:%s "
6210 				/*
6211 				 * SLI-4: We have only 0xA error codes
6212 				 * defined as of now. print an appropriate
6213 				 * message in case driver needs to be updated.
6214 				 */
6215 				"port1:%s port2:%s port3:%s\n", err, err > 0xA ?
6216 				"UNDEFINED. update driver." : trunk_errmsg[err],
6217 				trunk_port_fault(0), trunk_port_fault(1),
6218 				trunk_port_fault(2), trunk_port_fault(3));
6219 }
6220 
6221 
6222 /**
6223  * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event
6224  * @phba: pointer to lpfc hba data structure.
6225  * @acqe_fc: pointer to the async fc completion queue entry.
6226  *
6227  * This routine is to handle the SLI4 asynchronous FC event. It will simply log
6228  * that the event was received and then issue a read_topology mailbox command so
6229  * that the rest of the driver will treat it the same as SLI3.
6230  **/
6231 static void
lpfc_sli4_async_fc_evt(struct lpfc_hba * phba,struct lpfc_acqe_fc_la * acqe_fc)6232 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc)
6233 {
6234 	LPFC_MBOXQ_t *pmb;
6235 	MAILBOX_t *mb;
6236 	struct lpfc_mbx_read_top *la;
6237 	char *log_level;
6238 	int rc;
6239 
6240 	if (bf_get(lpfc_trailer_type, acqe_fc) !=
6241 	    LPFC_FC_LA_EVENT_TYPE_FC_LINK) {
6242 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6243 				"2895 Non FC link Event detected.(%d)\n",
6244 				bf_get(lpfc_trailer_type, acqe_fc));
6245 		return;
6246 	}
6247 
6248 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6249 	    LPFC_FC_LA_TYPE_TRUNKING_EVENT) {
6250 		lpfc_update_trunk_link_status(phba, acqe_fc);
6251 		return;
6252 	}
6253 
6254 	/* Keep the link status for extra SLI4 state machine reference */
6255 	phba->sli4_hba.link_state.speed =
6256 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6257 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6258 	phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL;
6259 	phba->sli4_hba.link_state.topology =
6260 				bf_get(lpfc_acqe_fc_la_topology, acqe_fc);
6261 	phba->sli4_hba.link_state.status =
6262 				bf_get(lpfc_acqe_fc_la_att_type, acqe_fc);
6263 	phba->sli4_hba.link_state.type =
6264 				bf_get(lpfc_acqe_fc_la_port_type, acqe_fc);
6265 	phba->sli4_hba.link_state.number =
6266 				bf_get(lpfc_acqe_fc_la_port_number, acqe_fc);
6267 	phba->sli4_hba.link_state.fault =
6268 				bf_get(lpfc_acqe_link_fault, acqe_fc);
6269 	phba->sli4_hba.link_state.link_status =
6270 				bf_get(lpfc_acqe_fc_la_link_status, acqe_fc);
6271 
6272 	/*
6273 	 * Only select attention types need logical speed modification to what
6274 	 * was previously set.
6275 	 */
6276 	if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_LINK_UP &&
6277 	    phba->sli4_hba.link_state.status < LPFC_FC_LA_TYPE_ACTIVATE_FAIL) {
6278 		if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6279 		    LPFC_FC_LA_TYPE_LINK_DOWN)
6280 			phba->sli4_hba.link_state.logical_speed = 0;
6281 		else if (!phba->sli4_hba.conf_trunk)
6282 			phba->sli4_hba.link_state.logical_speed =
6283 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6284 	}
6285 
6286 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6287 			"2896 Async FC event - Speed:%dGBaud Topology:x%x "
6288 			"LA Type:x%x Port Type:%d Port Number:%d Logical speed:"
6289 			"%dMbps Fault:x%x Link Status:x%x\n",
6290 			phba->sli4_hba.link_state.speed,
6291 			phba->sli4_hba.link_state.topology,
6292 			phba->sli4_hba.link_state.status,
6293 			phba->sli4_hba.link_state.type,
6294 			phba->sli4_hba.link_state.number,
6295 			phba->sli4_hba.link_state.logical_speed,
6296 			phba->sli4_hba.link_state.fault,
6297 			phba->sli4_hba.link_state.link_status);
6298 
6299 	/*
6300 	 * The following attention types are informational only, providing
6301 	 * further details about link status.  Overwrite the value of
6302 	 * link_state.status appropriately.  No further action is required.
6303 	 */
6304 	if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_ACTIVATE_FAIL) {
6305 		switch (phba->sli4_hba.link_state.status) {
6306 		case LPFC_FC_LA_TYPE_ACTIVATE_FAIL:
6307 			log_level = KERN_WARNING;
6308 			phba->sli4_hba.link_state.status =
6309 					LPFC_FC_LA_TYPE_LINK_DOWN;
6310 			break;
6311 		case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT:
6312 			/*
6313 			 * During bb credit recovery establishment, receiving
6314 			 * this attention type is normal.  Link Up attention
6315 			 * type is expected to occur before this informational
6316 			 * attention type so keep the Link Up status.
6317 			 */
6318 			log_level = KERN_INFO;
6319 			phba->sli4_hba.link_state.status =
6320 					LPFC_FC_LA_TYPE_LINK_UP;
6321 			break;
6322 		default:
6323 			log_level = KERN_INFO;
6324 			break;
6325 		}
6326 		lpfc_log_msg(phba, log_level, LOG_SLI,
6327 			     "2992 Async FC event - Informational Link "
6328 			     "Attention Type x%x\n",
6329 			     bf_get(lpfc_acqe_fc_la_att_type, acqe_fc));
6330 		return;
6331 	}
6332 
6333 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6334 	if (!pmb) {
6335 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6336 				"2897 The mboxq allocation failed\n");
6337 		return;
6338 	}
6339 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
6340 	if (rc) {
6341 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6342 				"2898 The mboxq prep failed\n");
6343 		goto out_free_pmb;
6344 	}
6345 
6346 	/* Cleanup any outstanding ELS commands */
6347 	lpfc_els_flush_all_cmd(phba);
6348 
6349 	/* Block ELS IOCBs until we have done process link event */
6350 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
6351 
6352 	/* Update link event statistics */
6353 	phba->sli.slistat.link_event++;
6354 
6355 	/* Create lpfc_handle_latt mailbox command from link ACQE */
6356 	lpfc_read_topology(phba, pmb, pmb->ctx_buf);
6357 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
6358 	pmb->vport = phba->pport;
6359 
6360 	if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) {
6361 		phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK);
6362 
6363 		switch (phba->sli4_hba.link_state.status) {
6364 		case LPFC_FC_LA_TYPE_MDS_LINK_DOWN:
6365 			phba->link_flag |= LS_MDS_LINK_DOWN;
6366 			break;
6367 		case LPFC_FC_LA_TYPE_MDS_LOOPBACK:
6368 			phba->link_flag |= LS_MDS_LOOPBACK;
6369 			break;
6370 		default:
6371 			break;
6372 		}
6373 
6374 		/* Initialize completion status */
6375 		mb = &pmb->u.mb;
6376 		mb->mbxStatus = MBX_SUCCESS;
6377 
6378 		/* Parse port fault information field */
6379 		lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc);
6380 
6381 		/* Parse and translate link attention fields */
6382 		la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop;
6383 		la->eventTag = acqe_fc->event_tag;
6384 
6385 		if (phba->sli4_hba.link_state.status ==
6386 		    LPFC_FC_LA_TYPE_UNEXP_WWPN) {
6387 			bf_set(lpfc_mbx_read_top_att_type, la,
6388 			       LPFC_FC_LA_TYPE_UNEXP_WWPN);
6389 		} else {
6390 			bf_set(lpfc_mbx_read_top_att_type, la,
6391 			       LPFC_FC_LA_TYPE_LINK_DOWN);
6392 		}
6393 		/* Invoke the mailbox command callback function */
6394 		lpfc_mbx_cmpl_read_topology(phba, pmb);
6395 
6396 		return;
6397 	}
6398 
6399 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
6400 	if (rc == MBX_NOT_FINISHED)
6401 		goto out_free_pmb;
6402 	return;
6403 
6404 out_free_pmb:
6405 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
6406 }
6407 
6408 /**
6409  * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event
6410  * @phba: pointer to lpfc hba data structure.
6411  * @acqe_sli: pointer to the async SLI completion queue entry.
6412  *
6413  * This routine is to handle the SLI4 asynchronous SLI events.
6414  **/
6415 static void
lpfc_sli4_async_sli_evt(struct lpfc_hba * phba,struct lpfc_acqe_sli * acqe_sli)6416 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli)
6417 {
6418 	char port_name;
6419 	char message[128];
6420 	uint8_t status;
6421 	uint8_t evt_type;
6422 	uint8_t operational = 0;
6423 	struct temp_event temp_event_data;
6424 	struct lpfc_acqe_misconfigured_event *misconfigured;
6425 	struct lpfc_acqe_cgn_signal *cgn_signal;
6426 	struct Scsi_Host  *shost;
6427 	struct lpfc_vport **vports;
6428 	int rc, i, cnt;
6429 
6430 	evt_type = bf_get(lpfc_trailer_type, acqe_sli);
6431 
6432 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6433 			"2901 Async SLI event - Type:%d, Event Data: x%08x "
6434 			"x%08x x%08x x%08x\n", evt_type,
6435 			acqe_sli->event_data1, acqe_sli->event_data2,
6436 			acqe_sli->event_data3, acqe_sli->trailer);
6437 
6438 	port_name = phba->Port[0];
6439 	if (port_name == 0x00)
6440 		port_name = '?'; /* get port name is empty */
6441 
6442 	switch (evt_type) {
6443 	case LPFC_SLI_EVENT_TYPE_OVER_TEMP:
6444 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6445 		temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
6446 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6447 
6448 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6449 				"3190 Over Temperature:%d Celsius- Port Name %c\n",
6450 				acqe_sli->event_data1, port_name);
6451 
6452 		phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
6453 		shost = lpfc_shost_from_vport(phba->pport);
6454 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6455 					  sizeof(temp_event_data),
6456 					  (char *)&temp_event_data,
6457 					  SCSI_NL_VID_TYPE_PCI
6458 					  | PCI_VENDOR_ID_EMULEX);
6459 		break;
6460 	case LPFC_SLI_EVENT_TYPE_NORM_TEMP:
6461 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6462 		temp_event_data.event_code = LPFC_NORMAL_TEMP;
6463 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6464 
6465 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_LDS_EVENT,
6466 				"3191 Normal Temperature:%d Celsius - Port Name %c\n",
6467 				acqe_sli->event_data1, port_name);
6468 
6469 		shost = lpfc_shost_from_vport(phba->pport);
6470 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6471 					  sizeof(temp_event_data),
6472 					  (char *)&temp_event_data,
6473 					  SCSI_NL_VID_TYPE_PCI
6474 					  | PCI_VENDOR_ID_EMULEX);
6475 		break;
6476 	case LPFC_SLI_EVENT_TYPE_MISCONFIGURED:
6477 		misconfigured = (struct lpfc_acqe_misconfigured_event *)
6478 					&acqe_sli->event_data1;
6479 
6480 		/* fetch the status for this port */
6481 		switch (phba->sli4_hba.lnk_info.lnk_no) {
6482 		case LPFC_LINK_NUMBER_0:
6483 			status = bf_get(lpfc_sli_misconfigured_port0_state,
6484 					&misconfigured->theEvent);
6485 			operational = bf_get(lpfc_sli_misconfigured_port0_op,
6486 					&misconfigured->theEvent);
6487 			break;
6488 		case LPFC_LINK_NUMBER_1:
6489 			status = bf_get(lpfc_sli_misconfigured_port1_state,
6490 					&misconfigured->theEvent);
6491 			operational = bf_get(lpfc_sli_misconfigured_port1_op,
6492 					&misconfigured->theEvent);
6493 			break;
6494 		case LPFC_LINK_NUMBER_2:
6495 			status = bf_get(lpfc_sli_misconfigured_port2_state,
6496 					&misconfigured->theEvent);
6497 			operational = bf_get(lpfc_sli_misconfigured_port2_op,
6498 					&misconfigured->theEvent);
6499 			break;
6500 		case LPFC_LINK_NUMBER_3:
6501 			status = bf_get(lpfc_sli_misconfigured_port3_state,
6502 					&misconfigured->theEvent);
6503 			operational = bf_get(lpfc_sli_misconfigured_port3_op,
6504 					&misconfigured->theEvent);
6505 			break;
6506 		default:
6507 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6508 					"3296 "
6509 					"LPFC_SLI_EVENT_TYPE_MISCONFIGURED "
6510 					"event: Invalid link %d",
6511 					phba->sli4_hba.lnk_info.lnk_no);
6512 			return;
6513 		}
6514 
6515 		/* Skip if optic state unchanged */
6516 		if (phba->sli4_hba.lnk_info.optic_state == status)
6517 			return;
6518 
6519 		switch (status) {
6520 		case LPFC_SLI_EVENT_STATUS_VALID:
6521 			sprintf(message, "Physical Link is functional");
6522 			break;
6523 		case LPFC_SLI_EVENT_STATUS_NOT_PRESENT:
6524 			sprintf(message, "Optics faulted/incorrectly "
6525 				"installed/not installed - Reseat optics, "
6526 				"if issue not resolved, replace.");
6527 			break;
6528 		case LPFC_SLI_EVENT_STATUS_WRONG_TYPE:
6529 			sprintf(message,
6530 				"Optics of two types installed - Remove one "
6531 				"optic or install matching pair of optics.");
6532 			break;
6533 		case LPFC_SLI_EVENT_STATUS_UNSUPPORTED:
6534 			sprintf(message, "Incompatible optics - Replace with "
6535 				"compatible optics for card to function.");
6536 			break;
6537 		case LPFC_SLI_EVENT_STATUS_UNQUALIFIED:
6538 			sprintf(message, "Unqualified optics - Replace with "
6539 				"Avago optics for Warranty and Technical "
6540 				"Support - Link is%s operational",
6541 				(operational) ? " not" : "");
6542 			break;
6543 		case LPFC_SLI_EVENT_STATUS_UNCERTIFIED:
6544 			sprintf(message, "Uncertified optics - Replace with "
6545 				"Avago-certified optics to enable link "
6546 				"operation - Link is%s operational",
6547 				(operational) ? " not" : "");
6548 			break;
6549 		default:
6550 			/* firmware is reporting a status we don't know about */
6551 			sprintf(message, "Unknown event status x%02x", status);
6552 			break;
6553 		}
6554 
6555 		/* Issue READ_CONFIG mbox command to refresh supported speeds */
6556 		rc = lpfc_sli4_read_config(phba);
6557 		if (rc) {
6558 			phba->lmt = 0;
6559 			lpfc_printf_log(phba, KERN_ERR,
6560 					LOG_TRACE_EVENT,
6561 					"3194 Unable to retrieve supported "
6562 					"speeds, rc = 0x%x\n", rc);
6563 		}
6564 		rc = lpfc_sli4_refresh_params(phba);
6565 		if (rc) {
6566 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6567 					"3174 Unable to update pls support, "
6568 					"rc x%x\n", rc);
6569 		}
6570 		vports = lpfc_create_vport_work_array(phba);
6571 		if (vports != NULL) {
6572 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6573 					i++) {
6574 				shost = lpfc_shost_from_vport(vports[i]);
6575 				lpfc_host_supported_speeds_set(shost);
6576 			}
6577 		}
6578 		lpfc_destroy_vport_work_array(phba, vports);
6579 
6580 		phba->sli4_hba.lnk_info.optic_state = status;
6581 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6582 				"3176 Port Name %c %s\n", port_name, message);
6583 		break;
6584 	case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT:
6585 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6586 				"3192 Remote DPort Test Initiated - "
6587 				"Event Data1:x%08x Event Data2: x%08x\n",
6588 				acqe_sli->event_data1, acqe_sli->event_data2);
6589 		break;
6590 	case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG:
6591 		/* Call FW to obtain active parms */
6592 		lpfc_sli4_cgn_parm_chg_evt(phba);
6593 		break;
6594 	case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN:
6595 		/* Misconfigured WWN. Reports that the SLI Port is configured
6596 		 * to use FA-WWN, but the attached device doesn’t support it.
6597 		 * Event Data1 - N.A, Event Data2 - N.A
6598 		 * This event only happens on the physical port.
6599 		 */
6600 		lpfc_log_msg(phba, KERN_WARNING, LOG_SLI | LOG_DISCOVERY,
6601 			     "2699 Misconfigured FA-PWWN - Attached device "
6602 			     "does not support FA-PWWN\n");
6603 		phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_FABRIC;
6604 		memset(phba->pport->fc_portname.u.wwn, 0,
6605 		       sizeof(struct lpfc_name));
6606 		break;
6607 	case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE:
6608 		/* EEPROM failure. No driver action is required */
6609 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6610 			     "2518 EEPROM failure - "
6611 			     "Event Data1: x%08x Event Data2: x%08x\n",
6612 			     acqe_sli->event_data1, acqe_sli->event_data2);
6613 		break;
6614 	case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL:
6615 		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6616 			break;
6617 		cgn_signal = (struct lpfc_acqe_cgn_signal *)
6618 					&acqe_sli->event_data1;
6619 		phba->cgn_acqe_cnt++;
6620 
6621 		cnt = bf_get(lpfc_warn_acqe, cgn_signal);
6622 		atomic64_add(cnt, &phba->cgn_acqe_stat.warn);
6623 		atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm);
6624 
6625 		/* no threshold for CMF, even 1 signal will trigger an event */
6626 
6627 		/* Alarm overrides warning, so check that first */
6628 		if (cgn_signal->alarm_cnt) {
6629 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6630 				/* Keep track of alarm cnt for CMF_SYNC_WQE */
6631 				atomic_add(cgn_signal->alarm_cnt,
6632 					   &phba->cgn_sync_alarm_cnt);
6633 			}
6634 		} else if (cnt) {
6635 			/* signal action needs to be taken */
6636 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
6637 			    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6638 				/* Keep track of warning cnt for CMF_SYNC_WQE */
6639 				atomic_add(cnt, &phba->cgn_sync_warn_cnt);
6640 			}
6641 		}
6642 		break;
6643 	case LPFC_SLI_EVENT_TYPE_RD_SIGNAL:
6644 		/* May be accompanied by a temperature event */
6645 		lpfc_printf_log(phba, KERN_INFO,
6646 				LOG_SLI | LOG_LINK_EVENT | LOG_LDS_EVENT,
6647 				"2902 Remote Degrade Signaling: x%08x x%08x "
6648 				"x%08x\n",
6649 				acqe_sli->event_data1, acqe_sli->event_data2,
6650 				acqe_sli->event_data3);
6651 		break;
6652 	case LPFC_SLI_EVENT_TYPE_RESET_CM_STATS:
6653 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
6654 				"2905 Reset CM statistics\n");
6655 		lpfc_sli4_async_cmstat_evt(phba);
6656 		break;
6657 	default:
6658 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6659 				"3193 Unrecognized SLI event, type: 0x%x",
6660 				evt_type);
6661 		break;
6662 	}
6663 }
6664 
6665 /**
6666  * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport
6667  * @vport: pointer to vport data structure.
6668  *
6669  * This routine is to perform Clear Virtual Link (CVL) on a vport in
6670  * response to a CVL event.
6671  *
6672  * Return the pointer to the ndlp with the vport if successful, otherwise
6673  * return NULL.
6674  **/
6675 static struct lpfc_nodelist *
lpfc_sli4_perform_vport_cvl(struct lpfc_vport * vport)6676 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport)
6677 {
6678 	struct lpfc_nodelist *ndlp;
6679 	struct Scsi_Host *shost;
6680 	struct lpfc_hba *phba;
6681 
6682 	if (!vport)
6683 		return NULL;
6684 	phba = vport->phba;
6685 	if (!phba)
6686 		return NULL;
6687 	ndlp = lpfc_findnode_did(vport, Fabric_DID);
6688 	if (!ndlp) {
6689 		/* Cannot find existing Fabric ndlp, so allocate a new one */
6690 		ndlp = lpfc_nlp_init(vport, Fabric_DID);
6691 		if (!ndlp)
6692 			return NULL;
6693 		/* Set the node type */
6694 		ndlp->nlp_type |= NLP_FABRIC;
6695 		/* Put ndlp onto node list */
6696 		lpfc_enqueue_node(vport, ndlp);
6697 	}
6698 	if ((phba->pport->port_state < LPFC_FLOGI) &&
6699 		(phba->pport->port_state != LPFC_VPORT_FAILED))
6700 		return NULL;
6701 	/* If virtual link is not yet instantiated ignore CVL */
6702 	if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC)
6703 		&& (vport->port_state != LPFC_VPORT_FAILED))
6704 		return NULL;
6705 	shost = lpfc_shost_from_vport(vport);
6706 	if (!shost)
6707 		return NULL;
6708 	lpfc_linkdown_port(vport);
6709 	lpfc_cleanup_pending_mbox(vport);
6710 	set_bit(FC_VPORT_CVL_RCVD, &vport->fc_flag);
6711 
6712 	return ndlp;
6713 }
6714 
6715 /**
6716  * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports
6717  * @phba: pointer to lpfc hba data structure.
6718  *
6719  * This routine is to perform Clear Virtual Link (CVL) on all vports in
6720  * response to a FCF dead event.
6721  **/
6722 static void
lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba * phba)6723 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba)
6724 {
6725 	struct lpfc_vport **vports;
6726 	int i;
6727 
6728 	vports = lpfc_create_vport_work_array(phba);
6729 	if (vports)
6730 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
6731 			lpfc_sli4_perform_vport_cvl(vports[i]);
6732 	lpfc_destroy_vport_work_array(phba, vports);
6733 }
6734 
6735 /**
6736  * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event
6737  * @phba: pointer to lpfc hba data structure.
6738  * @acqe_fip: pointer to the async fcoe completion queue entry.
6739  *
6740  * This routine is to handle the SLI4 asynchronous fcoe event.
6741  **/
6742 static void
lpfc_sli4_async_fip_evt(struct lpfc_hba * phba,struct lpfc_acqe_fip * acqe_fip)6743 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba,
6744 			struct lpfc_acqe_fip *acqe_fip)
6745 {
6746 	uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip);
6747 	int rc;
6748 	struct lpfc_vport *vport;
6749 	struct lpfc_nodelist *ndlp;
6750 	int active_vlink_present;
6751 	struct lpfc_vport **vports;
6752 	int i;
6753 
6754 	phba->fc_eventTag = acqe_fip->event_tag;
6755 	phba->fcoe_eventtag = acqe_fip->event_tag;
6756 	switch (event_type) {
6757 	case LPFC_FIP_EVENT_TYPE_NEW_FCF:
6758 	case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD:
6759 		if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF)
6760 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6761 					"2546 New FCF event, evt_tag:x%x, "
6762 					"index:x%x\n",
6763 					acqe_fip->event_tag,
6764 					acqe_fip->index);
6765 		else
6766 			lpfc_printf_log(phba, KERN_WARNING, LOG_FIP |
6767 					LOG_DISCOVERY,
6768 					"2788 FCF param modified event, "
6769 					"evt_tag:x%x, index:x%x\n",
6770 					acqe_fip->event_tag,
6771 					acqe_fip->index);
6772 		if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6773 			/*
6774 			 * During period of FCF discovery, read the FCF
6775 			 * table record indexed by the event to update
6776 			 * FCF roundrobin failover eligible FCF bmask.
6777 			 */
6778 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6779 					LOG_DISCOVERY,
6780 					"2779 Read FCF (x%x) for updating "
6781 					"roundrobin FCF failover bmask\n",
6782 					acqe_fip->index);
6783 			rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index);
6784 		}
6785 
6786 		/* If the FCF discovery is in progress, do nothing. */
6787 		if (test_bit(FCF_TS_INPROG, &phba->hba_flag))
6788 			break;
6789 		spin_lock_irq(&phba->hbalock);
6790 		/* If fast FCF failover rescan event is pending, do nothing */
6791 		if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) {
6792 			spin_unlock_irq(&phba->hbalock);
6793 			break;
6794 		}
6795 
6796 		/* If the FCF has been in discovered state, do nothing. */
6797 		if (phba->fcf.fcf_flag & FCF_SCAN_DONE) {
6798 			spin_unlock_irq(&phba->hbalock);
6799 			break;
6800 		}
6801 		spin_unlock_irq(&phba->hbalock);
6802 
6803 		/* Otherwise, scan the entire FCF table and re-discover SAN */
6804 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6805 				"2770 Start FCF table scan per async FCF "
6806 				"event, evt_tag:x%x, index:x%x\n",
6807 				acqe_fip->event_tag, acqe_fip->index);
6808 		rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba,
6809 						     LPFC_FCOE_FCF_GET_FIRST);
6810 		if (rc)
6811 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6812 					"2547 Issue FCF scan read FCF mailbox "
6813 					"command failed (x%x)\n", rc);
6814 		break;
6815 
6816 	case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL:
6817 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6818 				"2548 FCF Table full count 0x%x tag 0x%x\n",
6819 				bf_get(lpfc_acqe_fip_fcf_count, acqe_fip),
6820 				acqe_fip->event_tag);
6821 		break;
6822 
6823 	case LPFC_FIP_EVENT_TYPE_FCF_DEAD:
6824 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6825 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6826 				"2549 FCF (x%x) disconnected from network, "
6827 				 "tag:x%x\n", acqe_fip->index,
6828 				 acqe_fip->event_tag);
6829 		/*
6830 		 * If we are in the middle of FCF failover process, clear
6831 		 * the corresponding FCF bit in the roundrobin bitmap.
6832 		 */
6833 		spin_lock_irq(&phba->hbalock);
6834 		if ((phba->fcf.fcf_flag & FCF_DISCOVERY) &&
6835 		    (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) {
6836 			spin_unlock_irq(&phba->hbalock);
6837 			/* Update FLOGI FCF failover eligible FCF bmask */
6838 			lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index);
6839 			break;
6840 		}
6841 		spin_unlock_irq(&phba->hbalock);
6842 
6843 		/* If the event is not for currently used fcf do nothing */
6844 		if (phba->fcf.current_rec.fcf_indx != acqe_fip->index)
6845 			break;
6846 
6847 		/*
6848 		 * Otherwise, request the port to rediscover the entire FCF
6849 		 * table for a fast recovery from case that the current FCF
6850 		 * is no longer valid as we are not in the middle of FCF
6851 		 * failover process already.
6852 		 */
6853 		spin_lock_irq(&phba->hbalock);
6854 		/* Mark the fast failover process in progress */
6855 		phba->fcf.fcf_flag |= FCF_DEAD_DISC;
6856 		spin_unlock_irq(&phba->hbalock);
6857 
6858 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6859 				"2771 Start FCF fast failover process due to "
6860 				"FCF DEAD event: evt_tag:x%x, fcf_index:x%x "
6861 				"\n", acqe_fip->event_tag, acqe_fip->index);
6862 		rc = lpfc_sli4_redisc_fcf_table(phba);
6863 		if (rc) {
6864 			lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6865 					LOG_TRACE_EVENT,
6866 					"2772 Issue FCF rediscover mailbox "
6867 					"command failed, fail through to FCF "
6868 					"dead event\n");
6869 			spin_lock_irq(&phba->hbalock);
6870 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
6871 			spin_unlock_irq(&phba->hbalock);
6872 			/*
6873 			 * Last resort will fail over by treating this
6874 			 * as a link down to FCF registration.
6875 			 */
6876 			lpfc_sli4_fcf_dead_failthrough(phba);
6877 		} else {
6878 			/* Reset FCF roundrobin bmask for new discovery */
6879 			lpfc_sli4_clear_fcf_rr_bmask(phba);
6880 			/*
6881 			 * Handling fast FCF failover to a DEAD FCF event is
6882 			 * considered equalivant to receiving CVL to all vports.
6883 			 */
6884 			lpfc_sli4_perform_all_vport_cvl(phba);
6885 		}
6886 		break;
6887 	case LPFC_FIP_EVENT_TYPE_CVL:
6888 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6889 		lpfc_printf_log(phba, KERN_ERR,
6890 				LOG_TRACE_EVENT,
6891 			"2718 Clear Virtual Link Received for VPI 0x%x"
6892 			" tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag);
6893 
6894 		vport = lpfc_find_vport_by_vpid(phba,
6895 						acqe_fip->index);
6896 		ndlp = lpfc_sli4_perform_vport_cvl(vport);
6897 		if (!ndlp)
6898 			break;
6899 		active_vlink_present = 0;
6900 
6901 		vports = lpfc_create_vport_work_array(phba);
6902 		if (vports) {
6903 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6904 					i++) {
6905 				if (!test_bit(FC_VPORT_CVL_RCVD,
6906 					      &vports[i]->fc_flag) &&
6907 				    vports[i]->port_state > LPFC_FDISC) {
6908 					active_vlink_present = 1;
6909 					break;
6910 				}
6911 			}
6912 			lpfc_destroy_vport_work_array(phba, vports);
6913 		}
6914 
6915 		/*
6916 		 * Don't re-instantiate if vport is marked for deletion.
6917 		 * If we are here first then vport_delete is going to wait
6918 		 * for discovery to complete.
6919 		 */
6920 		if (!test_bit(FC_UNLOADING, &vport->load_flag) &&
6921 		    active_vlink_present) {
6922 			/*
6923 			 * If there are other active VLinks present,
6924 			 * re-instantiate the Vlink using FDISC.
6925 			 */
6926 			mod_timer(&ndlp->nlp_delayfunc,
6927 				  jiffies + msecs_to_jiffies(1000));
6928 			spin_lock_irq(&ndlp->lock);
6929 			ndlp->nlp_flag |= NLP_DELAY_TMO;
6930 			spin_unlock_irq(&ndlp->lock);
6931 			ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
6932 			vport->port_state = LPFC_FDISC;
6933 		} else {
6934 			/*
6935 			 * Otherwise, we request port to rediscover
6936 			 * the entire FCF table for a fast recovery
6937 			 * from possible case that the current FCF
6938 			 * is no longer valid if we are not already
6939 			 * in the FCF failover process.
6940 			 */
6941 			spin_lock_irq(&phba->hbalock);
6942 			if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6943 				spin_unlock_irq(&phba->hbalock);
6944 				break;
6945 			}
6946 			/* Mark the fast failover process in progress */
6947 			phba->fcf.fcf_flag |= FCF_ACVL_DISC;
6948 			spin_unlock_irq(&phba->hbalock);
6949 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6950 					LOG_DISCOVERY,
6951 					"2773 Start FCF failover per CVL, "
6952 					"evt_tag:x%x\n", acqe_fip->event_tag);
6953 			rc = lpfc_sli4_redisc_fcf_table(phba);
6954 			if (rc) {
6955 				lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6956 						LOG_TRACE_EVENT,
6957 						"2774 Issue FCF rediscover "
6958 						"mailbox command failed, "
6959 						"through to CVL event\n");
6960 				spin_lock_irq(&phba->hbalock);
6961 				phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
6962 				spin_unlock_irq(&phba->hbalock);
6963 				/*
6964 				 * Last resort will be re-try on the
6965 				 * the current registered FCF entry.
6966 				 */
6967 				lpfc_retry_pport_discovery(phba);
6968 			} else
6969 				/*
6970 				 * Reset FCF roundrobin bmask for new
6971 				 * discovery.
6972 				 */
6973 				lpfc_sli4_clear_fcf_rr_bmask(phba);
6974 		}
6975 		break;
6976 	default:
6977 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6978 				"0288 Unknown FCoE event type 0x%x event tag "
6979 				"0x%x\n", event_type, acqe_fip->event_tag);
6980 		break;
6981 	}
6982 }
6983 
6984 /**
6985  * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event
6986  * @phba: pointer to lpfc hba data structure.
6987  * @acqe_dcbx: pointer to the async dcbx completion queue entry.
6988  *
6989  * This routine is to handle the SLI4 asynchronous dcbx event.
6990  **/
6991 static void
lpfc_sli4_async_dcbx_evt(struct lpfc_hba * phba,struct lpfc_acqe_dcbx * acqe_dcbx)6992 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba,
6993 			 struct lpfc_acqe_dcbx *acqe_dcbx)
6994 {
6995 	phba->fc_eventTag = acqe_dcbx->event_tag;
6996 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6997 			"0290 The SLI4 DCBX asynchronous event is not "
6998 			"handled yet\n");
6999 }
7000 
7001 /**
7002  * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event
7003  * @phba: pointer to lpfc hba data structure.
7004  * @acqe_grp5: pointer to the async grp5 completion queue entry.
7005  *
7006  * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event
7007  * is an asynchronous notified of a logical link speed change.  The Port
7008  * reports the logical link speed in units of 10Mbps.
7009  **/
7010 static void
lpfc_sli4_async_grp5_evt(struct lpfc_hba * phba,struct lpfc_acqe_grp5 * acqe_grp5)7011 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba,
7012 			 struct lpfc_acqe_grp5 *acqe_grp5)
7013 {
7014 	uint16_t prev_ll_spd;
7015 
7016 	phba->fc_eventTag = acqe_grp5->event_tag;
7017 	phba->fcoe_eventtag = acqe_grp5->event_tag;
7018 	prev_ll_spd = phba->sli4_hba.link_state.logical_speed;
7019 	phba->sli4_hba.link_state.logical_speed =
7020 		(bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10;
7021 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
7022 			"2789 GRP5 Async Event: Updating logical link speed "
7023 			"from %dMbps to %dMbps\n", prev_ll_spd,
7024 			phba->sli4_hba.link_state.logical_speed);
7025 }
7026 
7027 /**
7028  * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event
7029  * @phba: pointer to lpfc hba data structure.
7030  *
7031  * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event
7032  * is an asynchronous notification of a request to reset CM stats.
7033  **/
7034 static void
lpfc_sli4_async_cmstat_evt(struct lpfc_hba * phba)7035 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba)
7036 {
7037 	if (!phba->cgn_i)
7038 		return;
7039 	lpfc_init_congestion_stat(phba);
7040 }
7041 
7042 /**
7043  * lpfc_cgn_params_val - Validate FW congestion parameters.
7044  * @phba: pointer to lpfc hba data structure.
7045  * @p_cfg_param: pointer to FW provided congestion parameters.
7046  *
7047  * This routine validates the congestion parameters passed
7048  * by the FW to the driver via an ACQE event.
7049  **/
7050 static void
lpfc_cgn_params_val(struct lpfc_hba * phba,struct lpfc_cgn_param * p_cfg_param)7051 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param)
7052 {
7053 	spin_lock_irq(&phba->hbalock);
7054 
7055 	if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF,
7056 			     LPFC_CFG_MONITOR)) {
7057 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
7058 				"6225 CMF mode param out of range: %d\n",
7059 				 p_cfg_param->cgn_param_mode);
7060 		p_cfg_param->cgn_param_mode = LPFC_CFG_OFF;
7061 	}
7062 
7063 	spin_unlock_irq(&phba->hbalock);
7064 }
7065 
7066 static const char * const lpfc_cmf_mode_to_str[] = {
7067 	"OFF",
7068 	"MANAGED",
7069 	"MONITOR",
7070 };
7071 
7072 /**
7073  * lpfc_cgn_params_parse - Process a FW cong parm change event
7074  * @phba: pointer to lpfc hba data structure.
7075  * @p_cgn_param: pointer to a data buffer with the FW cong params.
7076  * @len: the size of pdata in bytes.
7077  *
7078  * This routine validates the congestion management buffer signature
7079  * from the FW, validates the contents and makes corrections for
7080  * valid, in-range values.  If the signature magic is correct and
7081  * after parameter validation, the contents are copied to the driver's
7082  * @phba structure. If the magic is incorrect, an error message is
7083  * logged.
7084  **/
7085 static void
lpfc_cgn_params_parse(struct lpfc_hba * phba,struct lpfc_cgn_param * p_cgn_param,uint32_t len)7086 lpfc_cgn_params_parse(struct lpfc_hba *phba,
7087 		      struct lpfc_cgn_param *p_cgn_param, uint32_t len)
7088 {
7089 	struct lpfc_cgn_info *cp;
7090 	uint32_t crc, oldmode;
7091 	char acr_string[4] = {0};
7092 
7093 	/* Make sure the FW has encoded the correct magic number to
7094 	 * validate the congestion parameter in FW memory.
7095 	 */
7096 	if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) {
7097 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7098 				"4668 FW cgn parm buffer data: "
7099 				"magic 0x%x version %d mode %d "
7100 				"level0 %d level1 %d "
7101 				"level2 %d byte13 %d "
7102 				"byte14 %d byte15 %d "
7103 				"byte11 %d byte12 %d activeMode %d\n",
7104 				p_cgn_param->cgn_param_magic,
7105 				p_cgn_param->cgn_param_version,
7106 				p_cgn_param->cgn_param_mode,
7107 				p_cgn_param->cgn_param_level0,
7108 				p_cgn_param->cgn_param_level1,
7109 				p_cgn_param->cgn_param_level2,
7110 				p_cgn_param->byte13,
7111 				p_cgn_param->byte14,
7112 				p_cgn_param->byte15,
7113 				p_cgn_param->byte11,
7114 				p_cgn_param->byte12,
7115 				phba->cmf_active_mode);
7116 
7117 		oldmode = phba->cmf_active_mode;
7118 
7119 		/* Any parameters out of range are corrected to defaults
7120 		 * by this routine.  No need to fail.
7121 		 */
7122 		lpfc_cgn_params_val(phba, p_cgn_param);
7123 
7124 		/* Parameters are verified, move them into driver storage */
7125 		spin_lock_irq(&phba->hbalock);
7126 		memcpy(&phba->cgn_p, p_cgn_param,
7127 		       sizeof(struct lpfc_cgn_param));
7128 
7129 		/* Update parameters in congestion info buffer now */
7130 		if (phba->cgn_i) {
7131 			cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
7132 			cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
7133 			cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
7134 			cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
7135 			cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
7136 			crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
7137 						  LPFC_CGN_CRC32_SEED);
7138 			cp->cgn_info_crc = cpu_to_le32(crc);
7139 		}
7140 		spin_unlock_irq(&phba->hbalock);
7141 
7142 		phba->cmf_active_mode = phba->cgn_p.cgn_param_mode;
7143 
7144 		switch (oldmode) {
7145 		case LPFC_CFG_OFF:
7146 			if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) {
7147 				/* Turning CMF on */
7148 				lpfc_cmf_start(phba);
7149 
7150 				if (phba->link_state >= LPFC_LINK_UP) {
7151 					phba->cgn_reg_fpin =
7152 						phba->cgn_init_reg_fpin;
7153 					phba->cgn_reg_signal =
7154 						phba->cgn_init_reg_signal;
7155 					lpfc_issue_els_edc(phba->pport, 0);
7156 				}
7157 			}
7158 			break;
7159 		case LPFC_CFG_MANAGED:
7160 			switch (phba->cgn_p.cgn_param_mode) {
7161 			case LPFC_CFG_OFF:
7162 				/* Turning CMF off */
7163 				lpfc_cmf_stop(phba);
7164 				if (phba->link_state >= LPFC_LINK_UP)
7165 					lpfc_issue_els_edc(phba->pport, 0);
7166 				break;
7167 			case LPFC_CFG_MONITOR:
7168 				phba->cmf_max_bytes_per_interval =
7169 					phba->cmf_link_byte_count;
7170 
7171 				/* Resume blocked IO - unblock on workqueue */
7172 				queue_work(phba->wq,
7173 					   &phba->unblock_request_work);
7174 				break;
7175 			}
7176 			break;
7177 		case LPFC_CFG_MONITOR:
7178 			switch (phba->cgn_p.cgn_param_mode) {
7179 			case LPFC_CFG_OFF:
7180 				/* Turning CMF off */
7181 				lpfc_cmf_stop(phba);
7182 				if (phba->link_state >= LPFC_LINK_UP)
7183 					lpfc_issue_els_edc(phba->pport, 0);
7184 				break;
7185 			case LPFC_CFG_MANAGED:
7186 				lpfc_cmf_signal_init(phba);
7187 				break;
7188 			}
7189 			break;
7190 		}
7191 		if (oldmode != LPFC_CFG_OFF ||
7192 		    oldmode != phba->cgn_p.cgn_param_mode) {
7193 			if (phba->cgn_p.cgn_param_mode == LPFC_CFG_MANAGED)
7194 				scnprintf(acr_string, sizeof(acr_string), "%u",
7195 					  phba->cgn_p.cgn_param_level0);
7196 			else
7197 				scnprintf(acr_string, sizeof(acr_string), "NA");
7198 
7199 			dev_info(&phba->pcidev->dev, "%d: "
7200 				 "4663 CMF: Mode %s acr %s\n",
7201 				 phba->brd_no,
7202 				 lpfc_cmf_mode_to_str
7203 				 [phba->cgn_p.cgn_param_mode],
7204 				 acr_string);
7205 		}
7206 	} else {
7207 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7208 				"4669 FW cgn parm buf wrong magic 0x%x "
7209 				"version %d\n", p_cgn_param->cgn_param_magic,
7210 				p_cgn_param->cgn_param_version);
7211 	}
7212 }
7213 
7214 /**
7215  * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters.
7216  * @phba: pointer to lpfc hba data structure.
7217  *
7218  * This routine issues a read_object mailbox command to
7219  * get the congestion management parameters from the FW
7220  * parses it and updates the driver maintained values.
7221  *
7222  * Returns
7223  *  0     if the object was empty
7224  *  -Eval if an error was encountered
7225  *  Count if bytes were read from object
7226  **/
7227 int
lpfc_sli4_cgn_params_read(struct lpfc_hba * phba)7228 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba)
7229 {
7230 	int ret = 0;
7231 	struct lpfc_cgn_param *p_cgn_param = NULL;
7232 	u32 *pdata = NULL;
7233 	u32 len = 0;
7234 
7235 	/* Find out if the FW has a new set of congestion parameters. */
7236 	len = sizeof(struct lpfc_cgn_param);
7237 	pdata = kzalloc(len, GFP_KERNEL);
7238 	if (!pdata)
7239 		return -ENOMEM;
7240 	ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME,
7241 			       pdata, len);
7242 
7243 	/* 0 means no data.  A negative means error.  A positive means
7244 	 * bytes were copied.
7245 	 */
7246 	if (!ret) {
7247 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7248 				"4670 CGN RD OBJ returns no data\n");
7249 		goto rd_obj_err;
7250 	} else if (ret < 0) {
7251 		/* Some error.  Just exit and return it to the caller.*/
7252 		goto rd_obj_err;
7253 	}
7254 
7255 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7256 			"6234 READ CGN PARAMS Successful %d\n", len);
7257 
7258 	/* Parse data pointer over len and update the phba congestion
7259 	 * parameters with values passed back.  The receive rate values
7260 	 * may have been altered in FW, but take no action here.
7261 	 */
7262 	p_cgn_param = (struct lpfc_cgn_param *)pdata;
7263 	lpfc_cgn_params_parse(phba, p_cgn_param, len);
7264 
7265  rd_obj_err:
7266 	kfree(pdata);
7267 	return ret;
7268 }
7269 
7270 /**
7271  * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event
7272  * @phba: pointer to lpfc hba data structure.
7273  *
7274  * The FW generated Async ACQE SLI event calls this routine when
7275  * the event type is an SLI Internal Port Event and the Event Code
7276  * indicates a change to the FW maintained congestion parameters.
7277  *
7278  * This routine executes a Read_Object mailbox call to obtain the
7279  * current congestion parameters maintained in FW and corrects
7280  * the driver's active congestion parameters.
7281  *
7282  * The acqe event is not passed because there is no further data
7283  * required.
7284  *
7285  * Returns nonzero error if event processing encountered an error.
7286  * Zero otherwise for success.
7287  **/
7288 static int
lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba * phba)7289 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba)
7290 {
7291 	int ret = 0;
7292 
7293 	if (!phba->sli4_hba.pc_sli4_params.cmf) {
7294 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7295 				"4664 Cgn Evt when E2E off. Drop event\n");
7296 		return -EACCES;
7297 	}
7298 
7299 	/* If the event is claiming an empty object, it's ok.  A write
7300 	 * could have cleared it.  Only error is a negative return
7301 	 * status.
7302 	 */
7303 	ret = lpfc_sli4_cgn_params_read(phba);
7304 	if (ret < 0) {
7305 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7306 				"4667 Error reading Cgn Params (%d)\n",
7307 				ret);
7308 	} else if (!ret) {
7309 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7310 				"4673 CGN Event empty object.\n");
7311 	}
7312 	return ret;
7313 }
7314 
7315 /**
7316  * lpfc_sli4_async_event_proc - Process all the pending asynchronous event
7317  * @phba: pointer to lpfc hba data structure.
7318  *
7319  * This routine is invoked by the worker thread to process all the pending
7320  * SLI4 asynchronous events.
7321  **/
lpfc_sli4_async_event_proc(struct lpfc_hba * phba)7322 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba)
7323 {
7324 	struct lpfc_cq_event *cq_event;
7325 	unsigned long iflags;
7326 
7327 	/* First, declare the async event has been handled */
7328 	clear_bit(ASYNC_EVENT, &phba->hba_flag);
7329 
7330 	/* Now, handle all the async events */
7331 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7332 	while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) {
7333 		list_remove_head(&phba->sli4_hba.sp_asynce_work_queue,
7334 				 cq_event, struct lpfc_cq_event, list);
7335 		spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock,
7336 				       iflags);
7337 
7338 		/* Process the asynchronous event */
7339 		switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) {
7340 		case LPFC_TRAILER_CODE_LINK:
7341 			lpfc_sli4_async_link_evt(phba,
7342 						 &cq_event->cqe.acqe_link);
7343 			break;
7344 		case LPFC_TRAILER_CODE_FCOE:
7345 			lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip);
7346 			break;
7347 		case LPFC_TRAILER_CODE_DCBX:
7348 			lpfc_sli4_async_dcbx_evt(phba,
7349 						 &cq_event->cqe.acqe_dcbx);
7350 			break;
7351 		case LPFC_TRAILER_CODE_GRP5:
7352 			lpfc_sli4_async_grp5_evt(phba,
7353 						 &cq_event->cqe.acqe_grp5);
7354 			break;
7355 		case LPFC_TRAILER_CODE_FC:
7356 			lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc);
7357 			break;
7358 		case LPFC_TRAILER_CODE_SLI:
7359 			lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli);
7360 			break;
7361 		default:
7362 			lpfc_printf_log(phba, KERN_ERR,
7363 					LOG_TRACE_EVENT,
7364 					"1804 Invalid asynchronous event code: "
7365 					"x%x\n", bf_get(lpfc_trailer_code,
7366 					&cq_event->cqe.mcqe_cmpl));
7367 			break;
7368 		}
7369 
7370 		/* Free the completion event processed to the free pool */
7371 		lpfc_sli4_cq_event_release(phba, cq_event);
7372 		spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7373 	}
7374 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
7375 }
7376 
7377 /**
7378  * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event
7379  * @phba: pointer to lpfc hba data structure.
7380  *
7381  * This routine is invoked by the worker thread to process FCF table
7382  * rediscovery pending completion event.
7383  **/
lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba * phba)7384 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba)
7385 {
7386 	int rc;
7387 
7388 	spin_lock_irq(&phba->hbalock);
7389 	/* Clear FCF rediscovery timeout event */
7390 	phba->fcf.fcf_flag &= ~FCF_REDISC_EVT;
7391 	/* Clear driver fast failover FCF record flag */
7392 	phba->fcf.failover_rec.flag = 0;
7393 	/* Set state for FCF fast failover */
7394 	phba->fcf.fcf_flag |= FCF_REDISC_FOV;
7395 	spin_unlock_irq(&phba->hbalock);
7396 
7397 	/* Scan FCF table from the first entry to re-discover SAN */
7398 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
7399 			"2777 Start post-quiescent FCF table scan\n");
7400 	rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST);
7401 	if (rc)
7402 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7403 				"2747 Issue FCF scan read FCF mailbox "
7404 				"command failed 0x%x\n", rc);
7405 }
7406 
7407 /**
7408  * lpfc_api_table_setup - Set up per hba pci-device group func api jump table
7409  * @phba: pointer to lpfc hba data structure.
7410  * @dev_grp: The HBA PCI-Device group number.
7411  *
7412  * This routine is invoked to set up the per HBA PCI-Device group function
7413  * API jump table entries.
7414  *
7415  * Return: 0 if success, otherwise -ENODEV
7416  **/
7417 int
lpfc_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)7418 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7419 {
7420 	int rc;
7421 
7422 	/* Set up lpfc PCI-device group */
7423 	phba->pci_dev_grp = dev_grp;
7424 
7425 	/* The LPFC_PCI_DEV_OC uses SLI4 */
7426 	if (dev_grp == LPFC_PCI_DEV_OC)
7427 		phba->sli_rev = LPFC_SLI_REV4;
7428 
7429 	/* Set up device INIT API function jump table */
7430 	rc = lpfc_init_api_table_setup(phba, dev_grp);
7431 	if (rc)
7432 		return -ENODEV;
7433 	/* Set up SCSI API function jump table */
7434 	rc = lpfc_scsi_api_table_setup(phba, dev_grp);
7435 	if (rc)
7436 		return -ENODEV;
7437 	/* Set up SLI API function jump table */
7438 	rc = lpfc_sli_api_table_setup(phba, dev_grp);
7439 	if (rc)
7440 		return -ENODEV;
7441 	/* Set up MBOX API function jump table */
7442 	rc = lpfc_mbox_api_table_setup(phba, dev_grp);
7443 	if (rc)
7444 		return -ENODEV;
7445 
7446 	return 0;
7447 }
7448 
7449 /**
7450  * lpfc_log_intr_mode - Log the active interrupt mode
7451  * @phba: pointer to lpfc hba data structure.
7452  * @intr_mode: active interrupt mode adopted.
7453  *
7454  * This routine it invoked to log the currently used active interrupt mode
7455  * to the device.
7456  **/
lpfc_log_intr_mode(struct lpfc_hba * phba,uint32_t intr_mode)7457 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
7458 {
7459 	switch (intr_mode) {
7460 	case 0:
7461 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7462 				"0470 Enable INTx interrupt mode.\n");
7463 		break;
7464 	case 1:
7465 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7466 				"0481 Enabled MSI interrupt mode.\n");
7467 		break;
7468 	case 2:
7469 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7470 				"0480 Enabled MSI-X interrupt mode.\n");
7471 		break;
7472 	default:
7473 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7474 				"0482 Illegal interrupt mode.\n");
7475 		break;
7476 	}
7477 	return;
7478 }
7479 
7480 /**
7481  * lpfc_enable_pci_dev - Enable a generic PCI device.
7482  * @phba: pointer to lpfc hba data structure.
7483  *
7484  * This routine is invoked to enable the PCI device that is common to all
7485  * PCI devices.
7486  *
7487  * Return codes
7488  * 	0 - successful
7489  * 	other values - error
7490  **/
7491 static int
lpfc_enable_pci_dev(struct lpfc_hba * phba)7492 lpfc_enable_pci_dev(struct lpfc_hba *phba)
7493 {
7494 	struct pci_dev *pdev;
7495 
7496 	/* Obtain PCI device reference */
7497 	if (!phba->pcidev)
7498 		goto out_error;
7499 	else
7500 		pdev = phba->pcidev;
7501 	/* Enable PCI device */
7502 	if (pci_enable_device_mem(pdev))
7503 		goto out_error;
7504 	/* Request PCI resource for the device */
7505 	if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME))
7506 		goto out_disable_device;
7507 	/* Set up device as PCI master and save state for EEH */
7508 	pci_set_master(pdev);
7509 	pci_try_set_mwi(pdev);
7510 	pci_save_state(pdev);
7511 
7512 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7513 	if (pci_is_pcie(pdev))
7514 		pdev->needs_freset = 1;
7515 
7516 	return 0;
7517 
7518 out_disable_device:
7519 	pci_disable_device(pdev);
7520 out_error:
7521 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7522 			"1401 Failed to enable pci device\n");
7523 	return -ENODEV;
7524 }
7525 
7526 /**
7527  * lpfc_disable_pci_dev - Disable a generic PCI device.
7528  * @phba: pointer to lpfc hba data structure.
7529  *
7530  * This routine is invoked to disable the PCI device that is common to all
7531  * PCI devices.
7532  **/
7533 static void
lpfc_disable_pci_dev(struct lpfc_hba * phba)7534 lpfc_disable_pci_dev(struct lpfc_hba *phba)
7535 {
7536 	struct pci_dev *pdev;
7537 
7538 	/* Obtain PCI device reference */
7539 	if (!phba->pcidev)
7540 		return;
7541 	else
7542 		pdev = phba->pcidev;
7543 	/* Release PCI resource and disable PCI device */
7544 	pci_release_mem_regions(pdev);
7545 	pci_disable_device(pdev);
7546 
7547 	return;
7548 }
7549 
7550 /**
7551  * lpfc_reset_hba - Reset a hba
7552  * @phba: pointer to lpfc hba data structure.
7553  *
7554  * This routine is invoked to reset a hba device. It brings the HBA
7555  * offline, performs a board restart, and then brings the board back
7556  * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up
7557  * on outstanding mailbox commands.
7558  **/
7559 void
lpfc_reset_hba(struct lpfc_hba * phba)7560 lpfc_reset_hba(struct lpfc_hba *phba)
7561 {
7562 	int rc = 0;
7563 
7564 	/* If resets are disabled then set error state and return. */
7565 	if (!phba->cfg_enable_hba_reset) {
7566 		phba->link_state = LPFC_HBA_ERROR;
7567 		return;
7568 	}
7569 
7570 	/* If not LPFC_SLI_ACTIVE, force all IO to be flushed */
7571 	if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) {
7572 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
7573 	} else {
7574 		if (test_bit(MBX_TMO_ERR, &phba->bit_flags)) {
7575 			/* Perform a PCI function reset to start from clean */
7576 			rc = lpfc_pci_function_reset(phba);
7577 			lpfc_els_flush_all_cmd(phba);
7578 		}
7579 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
7580 		lpfc_sli_flush_io_rings(phba);
7581 	}
7582 	lpfc_offline(phba);
7583 	clear_bit(MBX_TMO_ERR, &phba->bit_flags);
7584 	if (unlikely(rc)) {
7585 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7586 				"8888 PCI function reset failed rc %x\n",
7587 				rc);
7588 	} else {
7589 		lpfc_sli_brdrestart(phba);
7590 		lpfc_online(phba);
7591 		lpfc_unblock_mgmt_io(phba);
7592 	}
7593 }
7594 
7595 /**
7596  * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions
7597  * @phba: pointer to lpfc hba data structure.
7598  *
7599  * This function enables the PCI SR-IOV virtual functions to a physical
7600  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7601  * enable the number of virtual functions to the physical function. As
7602  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7603  * API call does not considered as an error condition for most of the device.
7604  **/
7605 uint16_t
lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba * phba)7606 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba)
7607 {
7608 	struct pci_dev *pdev = phba->pcidev;
7609 	uint16_t nr_virtfn;
7610 	int pos;
7611 
7612 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
7613 	if (pos == 0)
7614 		return 0;
7615 
7616 	pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn);
7617 	return nr_virtfn;
7618 }
7619 
7620 /**
7621  * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions
7622  * @phba: pointer to lpfc hba data structure.
7623  * @nr_vfn: number of virtual functions to be enabled.
7624  *
7625  * This function enables the PCI SR-IOV virtual functions to a physical
7626  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7627  * enable the number of virtual functions to the physical function. As
7628  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7629  * API call does not considered as an error condition for most of the device.
7630  **/
7631 int
lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba * phba,int nr_vfn)7632 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn)
7633 {
7634 	struct pci_dev *pdev = phba->pcidev;
7635 	uint16_t max_nr_vfn;
7636 	int rc;
7637 
7638 	max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba);
7639 	if (nr_vfn > max_nr_vfn) {
7640 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7641 				"3057 Requested vfs (%d) greater than "
7642 				"supported vfs (%d)", nr_vfn, max_nr_vfn);
7643 		return -EINVAL;
7644 	}
7645 
7646 	rc = pci_enable_sriov(pdev, nr_vfn);
7647 	if (rc) {
7648 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7649 				"2806 Failed to enable sriov on this device "
7650 				"with vfn number nr_vf:%d, rc:%d\n",
7651 				nr_vfn, rc);
7652 	} else
7653 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7654 				"2807 Successful enable sriov on this device "
7655 				"with vfn number nr_vf:%d\n", nr_vfn);
7656 	return rc;
7657 }
7658 
7659 static void
lpfc_unblock_requests_work(struct work_struct * work)7660 lpfc_unblock_requests_work(struct work_struct *work)
7661 {
7662 	struct lpfc_hba *phba = container_of(work, struct lpfc_hba,
7663 					     unblock_request_work);
7664 
7665 	lpfc_unblock_requests(phba);
7666 }
7667 
7668 /**
7669  * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources.
7670  * @phba: pointer to lpfc hba data structure.
7671  *
7672  * This routine is invoked to set up the driver internal resources before the
7673  * device specific resource setup to support the HBA device it attached to.
7674  *
7675  * Return codes
7676  *	0 - successful
7677  *	other values - error
7678  **/
7679 static int
lpfc_setup_driver_resource_phase1(struct lpfc_hba * phba)7680 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba)
7681 {
7682 	struct lpfc_sli *psli = &phba->sli;
7683 
7684 	/*
7685 	 * Driver resources common to all SLI revisions
7686 	 */
7687 	atomic_set(&phba->fast_event_count, 0);
7688 	atomic_set(&phba->dbg_log_idx, 0);
7689 	atomic_set(&phba->dbg_log_cnt, 0);
7690 	atomic_set(&phba->dbg_log_dmping, 0);
7691 	spin_lock_init(&phba->hbalock);
7692 
7693 	/* Initialize port_list spinlock */
7694 	spin_lock_init(&phba->port_list_lock);
7695 	INIT_LIST_HEAD(&phba->port_list);
7696 
7697 	INIT_LIST_HEAD(&phba->work_list);
7698 
7699 	/* Initialize the wait queue head for the kernel thread */
7700 	init_waitqueue_head(&phba->work_waitq);
7701 
7702 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7703 			"1403 Protocols supported %s %s %s\n",
7704 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ?
7705 				"SCSI" : " "),
7706 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ?
7707 				"NVME" : " "),
7708 			(phba->nvmet_support ? "NVMET" : " "));
7709 
7710 	/* ras_fwlog state */
7711 	spin_lock_init(&phba->ras_fwlog_lock);
7712 
7713 	/* Initialize the IO buffer list used by driver for SLI3 SCSI */
7714 	spin_lock_init(&phba->scsi_buf_list_get_lock);
7715 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get);
7716 	spin_lock_init(&phba->scsi_buf_list_put_lock);
7717 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
7718 
7719 	/* Initialize the fabric iocb list */
7720 	INIT_LIST_HEAD(&phba->fabric_iocb_list);
7721 
7722 	/* Initialize list to save ELS buffers */
7723 	INIT_LIST_HEAD(&phba->elsbuf);
7724 
7725 	/* Initialize FCF connection rec list */
7726 	INIT_LIST_HEAD(&phba->fcf_conn_rec_list);
7727 
7728 	/* Initialize OAS configuration list */
7729 	spin_lock_init(&phba->devicelock);
7730 	INIT_LIST_HEAD(&phba->luns);
7731 
7732 	/* MBOX heartbeat timer */
7733 	timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0);
7734 	/* Fabric block timer */
7735 	timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0);
7736 	/* EA polling mode timer */
7737 	timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0);
7738 	/* Heartbeat timer */
7739 	timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0);
7740 
7741 	INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work);
7742 
7743 	INIT_DELAYED_WORK(&phba->idle_stat_delay_work,
7744 			  lpfc_idle_stat_delay_work);
7745 	INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work);
7746 	return 0;
7747 }
7748 
7749 /**
7750  * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev
7751  * @phba: pointer to lpfc hba data structure.
7752  *
7753  * This routine is invoked to set up the driver internal resources specific to
7754  * support the SLI-3 HBA device it attached to.
7755  *
7756  * Return codes
7757  * 0 - successful
7758  * other values - error
7759  **/
7760 static int
lpfc_sli_driver_resource_setup(struct lpfc_hba * phba)7761 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba)
7762 {
7763 	int rc, entry_sz;
7764 
7765 	/*
7766 	 * Initialize timers used by driver
7767 	 */
7768 
7769 	/* FCP polling mode timer */
7770 	timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0);
7771 
7772 	/* Host attention work mask setup */
7773 	phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
7774 	phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
7775 
7776 	/* Get all the module params for configuring this host */
7777 	lpfc_get_cfgparam(phba);
7778 	/* Set up phase-1 common device driver resources */
7779 
7780 	rc = lpfc_setup_driver_resource_phase1(phba);
7781 	if (rc)
7782 		return -ENODEV;
7783 
7784 	if (!phba->sli.sli3_ring)
7785 		phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING,
7786 					      sizeof(struct lpfc_sli_ring),
7787 					      GFP_KERNEL);
7788 	if (!phba->sli.sli3_ring)
7789 		return -ENOMEM;
7790 
7791 	/*
7792 	 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size
7793 	 * used to create the sg_dma_buf_pool must be dynamically calculated.
7794 	 */
7795 
7796 	if (phba->sli_rev == LPFC_SLI_REV4)
7797 		entry_sz = sizeof(struct sli4_sge);
7798 	else
7799 		entry_sz = sizeof(struct ulp_bde64);
7800 
7801 	/* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */
7802 	if (phba->cfg_enable_bg) {
7803 		/*
7804 		 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd,
7805 		 * the FCP rsp, and a BDE for each. Sice we have no control
7806 		 * over how many protection data segments the SCSI Layer
7807 		 * will hand us (ie: there could be one for every block
7808 		 * in the IO), we just allocate enough BDEs to accomidate
7809 		 * our max amount and we need to limit lpfc_sg_seg_cnt to
7810 		 * minimize the risk of running out.
7811 		 */
7812 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7813 			sizeof(struct fcp_rsp) +
7814 			(LPFC_MAX_SG_SEG_CNT * entry_sz);
7815 
7816 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF)
7817 			phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF;
7818 
7819 		/* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */
7820 		phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT;
7821 	} else {
7822 		/*
7823 		 * The scsi_buf for a regular I/O will hold the FCP cmnd,
7824 		 * the FCP rsp, a BDE for each, and a BDE for up to
7825 		 * cfg_sg_seg_cnt data segments.
7826 		 */
7827 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7828 			sizeof(struct fcp_rsp) +
7829 			((phba->cfg_sg_seg_cnt + 2) * entry_sz);
7830 
7831 		/* Total BDEs in BPL for scsi_sg_list */
7832 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
7833 	}
7834 
7835 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
7836 			"9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n",
7837 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
7838 			phba->cfg_total_seg_cnt);
7839 
7840 	phba->max_vpi = LPFC_MAX_VPI;
7841 	/* This will be set to correct value after config_port mbox */
7842 	phba->max_vports = 0;
7843 
7844 	/*
7845 	 * Initialize the SLI Layer to run with lpfc HBAs.
7846 	 */
7847 	lpfc_sli_setup(phba);
7848 	lpfc_sli_queue_init(phba);
7849 
7850 	/* Allocate device driver memory */
7851 	if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ))
7852 		return -ENOMEM;
7853 
7854 	phba->lpfc_sg_dma_buf_pool =
7855 		dma_pool_create("lpfc_sg_dma_buf_pool",
7856 				&phba->pcidev->dev, phba->cfg_sg_dma_buf_size,
7857 				BPL_ALIGN_SZ, 0);
7858 
7859 	if (!phba->lpfc_sg_dma_buf_pool)
7860 		goto fail_free_mem;
7861 
7862 	phba->lpfc_cmd_rsp_buf_pool =
7863 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
7864 					&phba->pcidev->dev,
7865 					sizeof(struct fcp_cmnd) +
7866 					sizeof(struct fcp_rsp),
7867 					BPL_ALIGN_SZ, 0);
7868 
7869 	if (!phba->lpfc_cmd_rsp_buf_pool)
7870 		goto fail_free_dma_buf_pool;
7871 
7872 	/*
7873 	 * Enable sr-iov virtual functions if supported and configured
7874 	 * through the module parameter.
7875 	 */
7876 	if (phba->cfg_sriov_nr_virtfn > 0) {
7877 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
7878 						 phba->cfg_sriov_nr_virtfn);
7879 		if (rc) {
7880 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7881 					"2808 Requested number of SR-IOV "
7882 					"virtual functions (%d) is not "
7883 					"supported\n",
7884 					phba->cfg_sriov_nr_virtfn);
7885 			phba->cfg_sriov_nr_virtfn = 0;
7886 		}
7887 	}
7888 
7889 	return 0;
7890 
7891 fail_free_dma_buf_pool:
7892 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
7893 	phba->lpfc_sg_dma_buf_pool = NULL;
7894 fail_free_mem:
7895 	lpfc_mem_free(phba);
7896 	return -ENOMEM;
7897 }
7898 
7899 /**
7900  * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev
7901  * @phba: pointer to lpfc hba data structure.
7902  *
7903  * This routine is invoked to unset the driver internal resources set up
7904  * specific for supporting the SLI-3 HBA device it attached to.
7905  **/
7906 static void
lpfc_sli_driver_resource_unset(struct lpfc_hba * phba)7907 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba)
7908 {
7909 	/* Free device driver memory allocated */
7910 	lpfc_mem_free_all(phba);
7911 
7912 	return;
7913 }
7914 
7915 /**
7916  * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev
7917  * @phba: pointer to lpfc hba data structure.
7918  *
7919  * This routine is invoked to set up the driver internal resources specific to
7920  * support the SLI-4 HBA device it attached to.
7921  *
7922  * Return codes
7923  * 	0 - successful
7924  * 	other values - error
7925  **/
7926 static int
lpfc_sli4_driver_resource_setup(struct lpfc_hba * phba)7927 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba)
7928 {
7929 	LPFC_MBOXQ_t *mboxq;
7930 	MAILBOX_t *mb;
7931 	int rc, i, max_buf_size;
7932 	int longs;
7933 	int extra;
7934 	uint64_t wwn;
7935 	u32 if_type;
7936 	u32 if_fam;
7937 
7938 	phba->sli4_hba.num_present_cpu = lpfc_present_cpu;
7939 	phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1;
7940 	phba->sli4_hba.curr_disp_cpu = 0;
7941 
7942 	/* Get all the module params for configuring this host */
7943 	lpfc_get_cfgparam(phba);
7944 
7945 	/* Set up phase-1 common device driver resources */
7946 	rc = lpfc_setup_driver_resource_phase1(phba);
7947 	if (rc)
7948 		return -ENODEV;
7949 
7950 	/* Before proceed, wait for POST done and device ready */
7951 	rc = lpfc_sli4_post_status_check(phba);
7952 	if (rc)
7953 		return -ENODEV;
7954 
7955 	/* Allocate all driver workqueues here */
7956 
7957 	/* The lpfc_wq workqueue for deferred irq use */
7958 	phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0);
7959 	if (!phba->wq)
7960 		return -ENOMEM;
7961 
7962 	/*
7963 	 * Initialize timers used by driver
7964 	 */
7965 
7966 	timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0);
7967 
7968 	/* FCF rediscover timer */
7969 	timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0);
7970 
7971 	/* CMF congestion timer */
7972 	hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7973 	phba->cmf_timer.function = lpfc_cmf_timer;
7974 	/* CMF 1 minute stats collection timer */
7975 	hrtimer_init(&phba->cmf_stats_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7976 	phba->cmf_stats_timer.function = lpfc_cmf_stats_timer;
7977 
7978 	/*
7979 	 * Control structure for handling external multi-buffer mailbox
7980 	 * command pass-through.
7981 	 */
7982 	memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0,
7983 		sizeof(struct lpfc_mbox_ext_buf_ctx));
7984 	INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list);
7985 
7986 	phba->max_vpi = LPFC_MAX_VPI;
7987 
7988 	/* This will be set to correct value after the read_config mbox */
7989 	phba->max_vports = 0;
7990 
7991 	/* Program the default value of vlan_id and fc_map */
7992 	phba->valid_vlan = 0;
7993 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
7994 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
7995 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
7996 
7997 	/*
7998 	 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands
7999 	 * we will associate a new ring, for each EQ/CQ/WQ tuple.
8000 	 * The WQ create will allocate the ring.
8001 	 */
8002 
8003 	/* Initialize buffer queue management fields */
8004 	INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list);
8005 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc;
8006 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free;
8007 
8008 	/* for VMID idle timeout if VMID is enabled */
8009 	if (lpfc_is_vmid_enabled(phba))
8010 		timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0);
8011 
8012 	/*
8013 	 * Initialize the SLI Layer to run with lpfc SLI4 HBAs.
8014 	 */
8015 	/* Initialize the Abort buffer list used by driver */
8016 	spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock);
8017 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list);
8018 
8019 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8020 		/* Initialize the Abort nvme buffer list used by driver */
8021 		spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock);
8022 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8023 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list);
8024 		spin_lock_init(&phba->sli4_hba.t_active_list_lock);
8025 		INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list);
8026 	}
8027 
8028 	/* This abort list used by worker thread */
8029 	spin_lock_init(&phba->sli4_hba.sgl_list_lock);
8030 	spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock);
8031 	spin_lock_init(&phba->sli4_hba.asynce_list_lock);
8032 	spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock);
8033 
8034 	/*
8035 	 * Initialize driver internal slow-path work queues
8036 	 */
8037 
8038 	/* Driver internel slow-path CQ Event pool */
8039 	INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool);
8040 	/* Response IOCB work queue list */
8041 	INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event);
8042 	/* Asynchronous event CQ Event work queue list */
8043 	INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue);
8044 	/* Slow-path XRI aborted CQ Event work queue list */
8045 	INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue);
8046 	/* Receive queue CQ Event work queue list */
8047 	INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue);
8048 
8049 	/* Initialize extent block lists. */
8050 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list);
8051 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list);
8052 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list);
8053 	INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list);
8054 
8055 	/* Initialize mboxq lists. If the early init routines fail
8056 	 * these lists need to be correctly initialized.
8057 	 */
8058 	INIT_LIST_HEAD(&phba->sli.mboxq);
8059 	INIT_LIST_HEAD(&phba->sli.mboxq_cmpl);
8060 
8061 	/* initialize optic_state to 0xFF */
8062 	phba->sli4_hba.lnk_info.optic_state = 0xff;
8063 
8064 	/* Allocate device driver memory */
8065 	rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ);
8066 	if (rc)
8067 		goto out_destroy_workqueue;
8068 
8069 	/* IF Type 2 ports get initialized now. */
8070 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
8071 	    LPFC_SLI_INTF_IF_TYPE_2) {
8072 		rc = lpfc_pci_function_reset(phba);
8073 		if (unlikely(rc)) {
8074 			rc = -ENODEV;
8075 			goto out_free_mem;
8076 		}
8077 		phba->temp_sensor_support = 1;
8078 	}
8079 
8080 	/* Create the bootstrap mailbox command */
8081 	rc = lpfc_create_bootstrap_mbox(phba);
8082 	if (unlikely(rc))
8083 		goto out_free_mem;
8084 
8085 	/* Set up the host's endian order with the device. */
8086 	rc = lpfc_setup_endian_order(phba);
8087 	if (unlikely(rc))
8088 		goto out_free_bsmbx;
8089 
8090 	/* Set up the hba's configuration parameters. */
8091 	rc = lpfc_sli4_read_config(phba);
8092 	if (unlikely(rc))
8093 		goto out_free_bsmbx;
8094 
8095 	if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) {
8096 		/* Right now the link is down, if FA-PWWN is configured the
8097 		 * firmware will try FLOGI before the driver gets a link up.
8098 		 * If it fails, the driver should get a MISCONFIGURED async
8099 		 * event which will clear this flag. The only notification
8100 		 * the driver gets is if it fails, if it succeeds there is no
8101 		 * notification given. Assume success.
8102 		 */
8103 		phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC;
8104 	}
8105 
8106 	rc = lpfc_mem_alloc_active_rrq_pool_s4(phba);
8107 	if (unlikely(rc))
8108 		goto out_free_bsmbx;
8109 
8110 	/* IF Type 0 ports get initialized now. */
8111 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8112 	    LPFC_SLI_INTF_IF_TYPE_0) {
8113 		rc = lpfc_pci_function_reset(phba);
8114 		if (unlikely(rc))
8115 			goto out_free_bsmbx;
8116 	}
8117 
8118 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
8119 						       GFP_KERNEL);
8120 	if (!mboxq) {
8121 		rc = -ENOMEM;
8122 		goto out_free_bsmbx;
8123 	}
8124 
8125 	/* Check for NVMET being configured */
8126 	phba->nvmet_support = 0;
8127 	if (lpfc_enable_nvmet_cnt) {
8128 
8129 		/* First get WWN of HBA instance */
8130 		lpfc_read_nv(phba, mboxq);
8131 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8132 		if (rc != MBX_SUCCESS) {
8133 			lpfc_printf_log(phba, KERN_ERR,
8134 					LOG_TRACE_EVENT,
8135 					"6016 Mailbox failed , mbxCmd x%x "
8136 					"READ_NV, mbxStatus x%x\n",
8137 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8138 					bf_get(lpfc_mqe_status, &mboxq->u.mqe));
8139 			mempool_free(mboxq, phba->mbox_mem_pool);
8140 			rc = -EIO;
8141 			goto out_free_bsmbx;
8142 		}
8143 		mb = &mboxq->u.mb;
8144 		memcpy(&wwn, (char *)mb->un.varRDnvp.nodename,
8145 		       sizeof(uint64_t));
8146 		wwn = cpu_to_be64(wwn);
8147 		phba->sli4_hba.wwnn.u.name = wwn;
8148 		memcpy(&wwn, (char *)mb->un.varRDnvp.portname,
8149 		       sizeof(uint64_t));
8150 		/* wwn is WWPN of HBA instance */
8151 		wwn = cpu_to_be64(wwn);
8152 		phba->sli4_hba.wwpn.u.name = wwn;
8153 
8154 		/* Check to see if it matches any module parameter */
8155 		for (i = 0; i < lpfc_enable_nvmet_cnt; i++) {
8156 			if (wwn == lpfc_enable_nvmet[i]) {
8157 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
8158 				if (lpfc_nvmet_mem_alloc(phba))
8159 					break;
8160 
8161 				phba->nvmet_support = 1; /* a match */
8162 
8163 				lpfc_printf_log(phba, KERN_ERR,
8164 						LOG_TRACE_EVENT,
8165 						"6017 NVME Target %016llx\n",
8166 						wwn);
8167 #else
8168 				lpfc_printf_log(phba, KERN_ERR,
8169 						LOG_TRACE_EVENT,
8170 						"6021 Can't enable NVME Target."
8171 						" NVME_TARGET_FC infrastructure"
8172 						" is not in kernel\n");
8173 #endif
8174 				/* Not supported for NVMET */
8175 				phba->cfg_xri_rebalancing = 0;
8176 				if (phba->irq_chann_mode == NHT_MODE) {
8177 					phba->cfg_irq_chann =
8178 						phba->sli4_hba.num_present_cpu;
8179 					phba->cfg_hdw_queue =
8180 						phba->sli4_hba.num_present_cpu;
8181 					phba->irq_chann_mode = NORMAL_MODE;
8182 				}
8183 				break;
8184 			}
8185 		}
8186 	}
8187 
8188 	lpfc_nvme_mod_param_dep(phba);
8189 
8190 	/*
8191 	 * Get sli4 parameters that override parameters from Port capabilities.
8192 	 * If this call fails, it isn't critical unless the SLI4 parameters come
8193 	 * back in conflict.
8194 	 */
8195 	rc = lpfc_get_sli4_parameters(phba, mboxq);
8196 	if (rc) {
8197 		if_type = bf_get(lpfc_sli_intf_if_type,
8198 				 &phba->sli4_hba.sli_intf);
8199 		if_fam = bf_get(lpfc_sli_intf_sli_family,
8200 				&phba->sli4_hba.sli_intf);
8201 		if (phba->sli4_hba.extents_in_use &&
8202 		    phba->sli4_hba.rpi_hdrs_in_use) {
8203 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8204 					"2999 Unsupported SLI4 Parameters "
8205 					"Extents and RPI headers enabled.\n");
8206 			if (if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8207 			    if_fam ==  LPFC_SLI_INTF_FAMILY_BE2) {
8208 				mempool_free(mboxq, phba->mbox_mem_pool);
8209 				rc = -EIO;
8210 				goto out_free_bsmbx;
8211 			}
8212 		}
8213 		if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8214 		      if_fam == LPFC_SLI_INTF_FAMILY_BE2)) {
8215 			mempool_free(mboxq, phba->mbox_mem_pool);
8216 			rc = -EIO;
8217 			goto out_free_bsmbx;
8218 		}
8219 	}
8220 
8221 	/*
8222 	 * 1 for cmd, 1 for rsp, NVME adds an extra one
8223 	 * for boundary conditions in its max_sgl_segment template.
8224 	 */
8225 	extra = 2;
8226 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
8227 		extra++;
8228 
8229 	/*
8230 	 * It doesn't matter what family our adapter is in, we are
8231 	 * limited to 2 Pages, 512 SGEs, for our SGL.
8232 	 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp
8233 	 */
8234 	max_buf_size = (2 * SLI4_PAGE_SIZE);
8235 
8236 	/*
8237 	 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size
8238 	 * used to create the sg_dma_buf_pool must be calculated.
8239 	 */
8240 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8241 		/* Both cfg_enable_bg and cfg_external_dif code paths */
8242 
8243 		/*
8244 		 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd,
8245 		 * the FCP rsp, and a SGE. Sice we have no control
8246 		 * over how many protection segments the SCSI Layer
8247 		 * will hand us (ie: there could be one for every block
8248 		 * in the IO), just allocate enough SGEs to accomidate
8249 		 * our max amount and we need to limit lpfc_sg_seg_cnt
8250 		 * to minimize the risk of running out.
8251 		 */
8252 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd32) +
8253 				sizeof(struct fcp_rsp) + max_buf_size;
8254 
8255 		/* Total SGEs for scsi_sg_list and scsi_sg_prot_list */
8256 		phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT;
8257 
8258 		/*
8259 		 * If supporting DIF, reduce the seg count for scsi to
8260 		 * allow room for the DIF sges.
8261 		 */
8262 		if (phba->cfg_enable_bg &&
8263 		    phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF)
8264 			phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF;
8265 		else
8266 			phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8267 
8268 	} else {
8269 		/*
8270 		 * The scsi_buf for a regular I/O holds the FCP cmnd,
8271 		 * the FCP rsp, a SGE for each, and a SGE for up to
8272 		 * cfg_sg_seg_cnt data segments.
8273 		 */
8274 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd32) +
8275 				sizeof(struct fcp_rsp) +
8276 				((phba->cfg_sg_seg_cnt + extra) *
8277 				sizeof(struct sli4_sge));
8278 
8279 		/* Total SGEs for scsi_sg_list */
8280 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra;
8281 		phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8282 
8283 		/*
8284 		 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only
8285 		 * need to post 1 page for the SGL.
8286 		 */
8287 	}
8288 
8289 	if (phba->cfg_xpsgl && !phba->nvmet_support)
8290 		phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE;
8291 	else if (phba->cfg_sg_dma_buf_size  <= LPFC_MIN_SG_SLI4_BUF_SZ)
8292 		phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ;
8293 	else
8294 		phba->cfg_sg_dma_buf_size =
8295 				SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size);
8296 
8297 	phba->border_sge_num = phba->cfg_sg_dma_buf_size /
8298 			       sizeof(struct sli4_sge);
8299 
8300 	/* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */
8301 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8302 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
8303 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
8304 					"6300 Reducing NVME sg segment "
8305 					"cnt to %d\n",
8306 					LPFC_MAX_NVME_SEG_CNT);
8307 			phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
8308 		} else
8309 			phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
8310 	}
8311 
8312 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
8313 			"9087 sg_seg_cnt:%d dmabuf_size:%d "
8314 			"total:%d scsi:%d nvme:%d\n",
8315 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
8316 			phba->cfg_total_seg_cnt,  phba->cfg_scsi_seg_cnt,
8317 			phba->cfg_nvme_seg_cnt);
8318 
8319 	if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE)
8320 		i = phba->cfg_sg_dma_buf_size;
8321 	else
8322 		i = SLI4_PAGE_SIZE;
8323 
8324 	phba->lpfc_sg_dma_buf_pool =
8325 			dma_pool_create("lpfc_sg_dma_buf_pool",
8326 					&phba->pcidev->dev,
8327 					phba->cfg_sg_dma_buf_size,
8328 					i, 0);
8329 	if (!phba->lpfc_sg_dma_buf_pool) {
8330 		rc = -ENOMEM;
8331 		goto out_free_bsmbx;
8332 	}
8333 
8334 	phba->lpfc_cmd_rsp_buf_pool =
8335 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
8336 					&phba->pcidev->dev,
8337 					sizeof(struct fcp_cmnd32) +
8338 					sizeof(struct fcp_rsp),
8339 					i, 0);
8340 	if (!phba->lpfc_cmd_rsp_buf_pool) {
8341 		rc = -ENOMEM;
8342 		goto out_free_sg_dma_buf;
8343 	}
8344 
8345 	mempool_free(mboxq, phba->mbox_mem_pool);
8346 
8347 	/* Verify OAS is supported */
8348 	lpfc_sli4_oas_verify(phba);
8349 
8350 	/* Verify RAS support on adapter */
8351 	lpfc_sli4_ras_init(phba);
8352 
8353 	/* Verify all the SLI4 queues */
8354 	rc = lpfc_sli4_queue_verify(phba);
8355 	if (rc)
8356 		goto out_free_cmd_rsp_buf;
8357 
8358 	/* Create driver internal CQE event pool */
8359 	rc = lpfc_sli4_cq_event_pool_create(phba);
8360 	if (rc)
8361 		goto out_free_cmd_rsp_buf;
8362 
8363 	/* Initialize sgl lists per host */
8364 	lpfc_init_sgl_list(phba);
8365 
8366 	/* Allocate and initialize active sgl array */
8367 	rc = lpfc_init_active_sgl_array(phba);
8368 	if (rc) {
8369 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8370 				"1430 Failed to initialize sgl list.\n");
8371 		goto out_destroy_cq_event_pool;
8372 	}
8373 	rc = lpfc_sli4_init_rpi_hdrs(phba);
8374 	if (rc) {
8375 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8376 				"1432 Failed to initialize rpi headers.\n");
8377 		goto out_free_active_sgl;
8378 	}
8379 
8380 	/* Allocate eligible FCF bmask memory for FCF roundrobin failover */
8381 	longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG;
8382 	phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long),
8383 					 GFP_KERNEL);
8384 	if (!phba->fcf.fcf_rr_bmask) {
8385 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8386 				"2759 Failed allocate memory for FCF round "
8387 				"robin failover bmask\n");
8388 		rc = -ENOMEM;
8389 		goto out_remove_rpi_hdrs;
8390 	}
8391 
8392 	phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann,
8393 					    sizeof(struct lpfc_hba_eq_hdl),
8394 					    GFP_KERNEL);
8395 	if (!phba->sli4_hba.hba_eq_hdl) {
8396 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8397 				"2572 Failed allocate memory for "
8398 				"fast-path per-EQ handle array\n");
8399 		rc = -ENOMEM;
8400 		goto out_free_fcf_rr_bmask;
8401 	}
8402 
8403 	phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu,
8404 					sizeof(struct lpfc_vector_map_info),
8405 					GFP_KERNEL);
8406 	if (!phba->sli4_hba.cpu_map) {
8407 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8408 				"3327 Failed allocate memory for msi-x "
8409 				"interrupt vector mapping\n");
8410 		rc = -ENOMEM;
8411 		goto out_free_hba_eq_hdl;
8412 	}
8413 
8414 	phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info);
8415 	if (!phba->sli4_hba.eq_info) {
8416 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8417 				"3321 Failed allocation for per_cpu stats\n");
8418 		rc = -ENOMEM;
8419 		goto out_free_hba_cpu_map;
8420 	}
8421 
8422 	phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu,
8423 					   sizeof(*phba->sli4_hba.idle_stat),
8424 					   GFP_KERNEL);
8425 	if (!phba->sli4_hba.idle_stat) {
8426 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8427 				"3390 Failed allocation for idle_stat\n");
8428 		rc = -ENOMEM;
8429 		goto out_free_hba_eq_info;
8430 	}
8431 
8432 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8433 	phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat);
8434 	if (!phba->sli4_hba.c_stat) {
8435 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8436 				"3332 Failed allocating per cpu hdwq stats\n");
8437 		rc = -ENOMEM;
8438 		goto out_free_hba_idle_stat;
8439 	}
8440 #endif
8441 
8442 	phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat);
8443 	if (!phba->cmf_stat) {
8444 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8445 				"3331 Failed allocating per cpu cgn stats\n");
8446 		rc = -ENOMEM;
8447 		goto out_free_hba_hdwq_info;
8448 	}
8449 
8450 	/*
8451 	 * Enable sr-iov virtual functions if supported and configured
8452 	 * through the module parameter.
8453 	 */
8454 	if (phba->cfg_sriov_nr_virtfn > 0) {
8455 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
8456 						 phba->cfg_sriov_nr_virtfn);
8457 		if (rc) {
8458 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
8459 					"3020 Requested number of SR-IOV "
8460 					"virtual functions (%d) is not "
8461 					"supported\n",
8462 					phba->cfg_sriov_nr_virtfn);
8463 			phba->cfg_sriov_nr_virtfn = 0;
8464 		}
8465 	}
8466 
8467 	return 0;
8468 
8469 out_free_hba_hdwq_info:
8470 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8471 	free_percpu(phba->sli4_hba.c_stat);
8472 out_free_hba_idle_stat:
8473 #endif
8474 	kfree(phba->sli4_hba.idle_stat);
8475 out_free_hba_eq_info:
8476 	free_percpu(phba->sli4_hba.eq_info);
8477 out_free_hba_cpu_map:
8478 	kfree(phba->sli4_hba.cpu_map);
8479 out_free_hba_eq_hdl:
8480 	kfree(phba->sli4_hba.hba_eq_hdl);
8481 out_free_fcf_rr_bmask:
8482 	kfree(phba->fcf.fcf_rr_bmask);
8483 out_remove_rpi_hdrs:
8484 	lpfc_sli4_remove_rpi_hdrs(phba);
8485 out_free_active_sgl:
8486 	lpfc_free_active_sgl(phba);
8487 out_destroy_cq_event_pool:
8488 	lpfc_sli4_cq_event_pool_destroy(phba);
8489 out_free_cmd_rsp_buf:
8490 	dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool);
8491 	phba->lpfc_cmd_rsp_buf_pool = NULL;
8492 out_free_sg_dma_buf:
8493 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
8494 	phba->lpfc_sg_dma_buf_pool = NULL;
8495 out_free_bsmbx:
8496 	lpfc_destroy_bootstrap_mbox(phba);
8497 out_free_mem:
8498 	lpfc_mem_free(phba);
8499 out_destroy_workqueue:
8500 	destroy_workqueue(phba->wq);
8501 	phba->wq = NULL;
8502 	return rc;
8503 }
8504 
8505 /**
8506  * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev
8507  * @phba: pointer to lpfc hba data structure.
8508  *
8509  * This routine is invoked to unset the driver internal resources set up
8510  * specific for supporting the SLI-4 HBA device it attached to.
8511  **/
8512 static void
lpfc_sli4_driver_resource_unset(struct lpfc_hba * phba)8513 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba)
8514 {
8515 	struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry;
8516 
8517 	free_percpu(phba->sli4_hba.eq_info);
8518 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8519 	free_percpu(phba->sli4_hba.c_stat);
8520 #endif
8521 	free_percpu(phba->cmf_stat);
8522 	kfree(phba->sli4_hba.idle_stat);
8523 
8524 	/* Free memory allocated for msi-x interrupt vector to CPU mapping */
8525 	kfree(phba->sli4_hba.cpu_map);
8526 	phba->sli4_hba.num_possible_cpu = 0;
8527 	phba->sli4_hba.num_present_cpu = 0;
8528 	phba->sli4_hba.curr_disp_cpu = 0;
8529 	cpumask_clear(&phba->sli4_hba.irq_aff_mask);
8530 
8531 	/* Free memory allocated for fast-path work queue handles */
8532 	kfree(phba->sli4_hba.hba_eq_hdl);
8533 
8534 	/* Free the allocated rpi headers. */
8535 	lpfc_sli4_remove_rpi_hdrs(phba);
8536 	lpfc_sli4_remove_rpis(phba);
8537 
8538 	/* Free eligible FCF index bmask */
8539 	kfree(phba->fcf.fcf_rr_bmask);
8540 
8541 	/* Free the ELS sgl list */
8542 	lpfc_free_active_sgl(phba);
8543 	lpfc_free_els_sgl_list(phba);
8544 	lpfc_free_nvmet_sgl_list(phba);
8545 
8546 	/* Free the completion queue EQ event pool */
8547 	lpfc_sli4_cq_event_release_all(phba);
8548 	lpfc_sli4_cq_event_pool_destroy(phba);
8549 
8550 	/* Release resource identifiers. */
8551 	lpfc_sli4_dealloc_resource_identifiers(phba);
8552 
8553 	/* Free the bsmbx region. */
8554 	lpfc_destroy_bootstrap_mbox(phba);
8555 
8556 	/* Free the SLI Layer memory with SLI4 HBAs */
8557 	lpfc_mem_free_all(phba);
8558 
8559 	/* Free the current connect table */
8560 	list_for_each_entry_safe(conn_entry, next_conn_entry,
8561 		&phba->fcf_conn_rec_list, list) {
8562 		list_del_init(&conn_entry->list);
8563 		kfree(conn_entry);
8564 	}
8565 
8566 	return;
8567 }
8568 
8569 /**
8570  * lpfc_init_api_table_setup - Set up init api function jump table
8571  * @phba: The hba struct for which this call is being executed.
8572  * @dev_grp: The HBA PCI-Device group number.
8573  *
8574  * This routine sets up the device INIT interface API function jump table
8575  * in @phba struct.
8576  *
8577  * Returns: 0 - success, -ENODEV - failure.
8578  **/
8579 int
lpfc_init_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)8580 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8581 {
8582 	phba->lpfc_hba_init_link = lpfc_hba_init_link;
8583 	phba->lpfc_hba_down_link = lpfc_hba_down_link;
8584 	phba->lpfc_selective_reset = lpfc_selective_reset;
8585 	switch (dev_grp) {
8586 	case LPFC_PCI_DEV_LP:
8587 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s3;
8588 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s3;
8589 		phba->lpfc_stop_port = lpfc_stop_port_s3;
8590 		break;
8591 	case LPFC_PCI_DEV_OC:
8592 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s4;
8593 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s4;
8594 		phba->lpfc_stop_port = lpfc_stop_port_s4;
8595 		break;
8596 	default:
8597 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8598 				"1431 Invalid HBA PCI-device group: 0x%x\n",
8599 				dev_grp);
8600 		return -ENODEV;
8601 	}
8602 	return 0;
8603 }
8604 
8605 /**
8606  * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources.
8607  * @phba: pointer to lpfc hba data structure.
8608  *
8609  * This routine is invoked to set up the driver internal resources after the
8610  * device specific resource setup to support the HBA device it attached to.
8611  *
8612  * Return codes
8613  * 	0 - successful
8614  * 	other values - error
8615  **/
8616 static int
lpfc_setup_driver_resource_phase2(struct lpfc_hba * phba)8617 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba)
8618 {
8619 	int error;
8620 
8621 	/* Startup the kernel thread for this host adapter. */
8622 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
8623 					  "lpfc_worker_%d", phba->brd_no);
8624 	if (IS_ERR(phba->worker_thread)) {
8625 		error = PTR_ERR(phba->worker_thread);
8626 		return error;
8627 	}
8628 
8629 	return 0;
8630 }
8631 
8632 /**
8633  * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources.
8634  * @phba: pointer to lpfc hba data structure.
8635  *
8636  * This routine is invoked to unset the driver internal resources set up after
8637  * the device specific resource setup for supporting the HBA device it
8638  * attached to.
8639  **/
8640 static void
lpfc_unset_driver_resource_phase2(struct lpfc_hba * phba)8641 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba)
8642 {
8643 	if (phba->wq) {
8644 		destroy_workqueue(phba->wq);
8645 		phba->wq = NULL;
8646 	}
8647 
8648 	/* Stop kernel worker thread */
8649 	if (phba->worker_thread)
8650 		kthread_stop(phba->worker_thread);
8651 }
8652 
8653 /**
8654  * lpfc_free_iocb_list - Free iocb list.
8655  * @phba: pointer to lpfc hba data structure.
8656  *
8657  * This routine is invoked to free the driver's IOCB list and memory.
8658  **/
8659 void
lpfc_free_iocb_list(struct lpfc_hba * phba)8660 lpfc_free_iocb_list(struct lpfc_hba *phba)
8661 {
8662 	struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
8663 
8664 	spin_lock_irq(&phba->hbalock);
8665 	list_for_each_entry_safe(iocbq_entry, iocbq_next,
8666 				 &phba->lpfc_iocb_list, list) {
8667 		list_del(&iocbq_entry->list);
8668 		kfree(iocbq_entry);
8669 		phba->total_iocbq_bufs--;
8670 	}
8671 	spin_unlock_irq(&phba->hbalock);
8672 
8673 	return;
8674 }
8675 
8676 /**
8677  * lpfc_init_iocb_list - Allocate and initialize iocb list.
8678  * @phba: pointer to lpfc hba data structure.
8679  * @iocb_count: number of requested iocbs
8680  *
8681  * This routine is invoked to allocate and initizlize the driver's IOCB
8682  * list and set up the IOCB tag array accordingly.
8683  *
8684  * Return codes
8685  *	0 - successful
8686  *	other values - error
8687  **/
8688 int
lpfc_init_iocb_list(struct lpfc_hba * phba,int iocb_count)8689 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count)
8690 {
8691 	struct lpfc_iocbq *iocbq_entry = NULL;
8692 	uint16_t iotag;
8693 	int i;
8694 
8695 	/* Initialize and populate the iocb list per host.  */
8696 	INIT_LIST_HEAD(&phba->lpfc_iocb_list);
8697 	for (i = 0; i < iocb_count; i++) {
8698 		iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
8699 		if (iocbq_entry == NULL) {
8700 			printk(KERN_ERR "%s: only allocated %d iocbs of "
8701 				"expected %d count. Unloading driver.\n",
8702 				__func__, i, iocb_count);
8703 			goto out_free_iocbq;
8704 		}
8705 
8706 		iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
8707 		if (iotag == 0) {
8708 			kfree(iocbq_entry);
8709 			printk(KERN_ERR "%s: failed to allocate IOTAG. "
8710 				"Unloading driver.\n", __func__);
8711 			goto out_free_iocbq;
8712 		}
8713 		iocbq_entry->sli4_lxritag = NO_XRI;
8714 		iocbq_entry->sli4_xritag = NO_XRI;
8715 
8716 		spin_lock_irq(&phba->hbalock);
8717 		list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
8718 		phba->total_iocbq_bufs++;
8719 		spin_unlock_irq(&phba->hbalock);
8720 	}
8721 
8722 	return 0;
8723 
8724 out_free_iocbq:
8725 	lpfc_free_iocb_list(phba);
8726 
8727 	return -ENOMEM;
8728 }
8729 
8730 /**
8731  * lpfc_free_sgl_list - Free a given sgl list.
8732  * @phba: pointer to lpfc hba data structure.
8733  * @sglq_list: pointer to the head of sgl list.
8734  *
8735  * This routine is invoked to free a give sgl list and memory.
8736  **/
8737 void
lpfc_free_sgl_list(struct lpfc_hba * phba,struct list_head * sglq_list)8738 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list)
8739 {
8740 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8741 
8742 	list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) {
8743 		list_del(&sglq_entry->list);
8744 		lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys);
8745 		kfree(sglq_entry);
8746 	}
8747 }
8748 
8749 /**
8750  * lpfc_free_els_sgl_list - Free els sgl list.
8751  * @phba: pointer to lpfc hba data structure.
8752  *
8753  * This routine is invoked to free the driver's els sgl list and memory.
8754  **/
8755 static void
lpfc_free_els_sgl_list(struct lpfc_hba * phba)8756 lpfc_free_els_sgl_list(struct lpfc_hba *phba)
8757 {
8758 	LIST_HEAD(sglq_list);
8759 
8760 	/* Retrieve all els sgls from driver list */
8761 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
8762 	list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list);
8763 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
8764 
8765 	/* Now free the sgl list */
8766 	lpfc_free_sgl_list(phba, &sglq_list);
8767 }
8768 
8769 /**
8770  * lpfc_free_nvmet_sgl_list - Free nvmet sgl list.
8771  * @phba: pointer to lpfc hba data structure.
8772  *
8773  * This routine is invoked to free the driver's nvmet sgl list and memory.
8774  **/
8775 static void
lpfc_free_nvmet_sgl_list(struct lpfc_hba * phba)8776 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba)
8777 {
8778 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8779 	LIST_HEAD(sglq_list);
8780 
8781 	/* Retrieve all nvmet sgls from driver list */
8782 	spin_lock_irq(&phba->hbalock);
8783 	spin_lock(&phba->sli4_hba.sgl_list_lock);
8784 	list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list);
8785 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
8786 	spin_unlock_irq(&phba->hbalock);
8787 
8788 	/* Now free the sgl list */
8789 	list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) {
8790 		list_del(&sglq_entry->list);
8791 		lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys);
8792 		kfree(sglq_entry);
8793 	}
8794 
8795 	/* Update the nvmet_xri_cnt to reflect no current sgls.
8796 	 * The next initialization cycle sets the count and allocates
8797 	 * the sgls over again.
8798 	 */
8799 	phba->sli4_hba.nvmet_xri_cnt = 0;
8800 }
8801 
8802 /**
8803  * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs.
8804  * @phba: pointer to lpfc hba data structure.
8805  *
8806  * This routine is invoked to allocate the driver's active sgl memory.
8807  * This array will hold the sglq_entry's for active IOs.
8808  **/
8809 static int
lpfc_init_active_sgl_array(struct lpfc_hba * phba)8810 lpfc_init_active_sgl_array(struct lpfc_hba *phba)
8811 {
8812 	int size;
8813 	size = sizeof(struct lpfc_sglq *);
8814 	size *= phba->sli4_hba.max_cfg_param.max_xri;
8815 
8816 	phba->sli4_hba.lpfc_sglq_active_list =
8817 		kzalloc(size, GFP_KERNEL);
8818 	if (!phba->sli4_hba.lpfc_sglq_active_list)
8819 		return -ENOMEM;
8820 	return 0;
8821 }
8822 
8823 /**
8824  * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs.
8825  * @phba: pointer to lpfc hba data structure.
8826  *
8827  * This routine is invoked to walk through the array of active sglq entries
8828  * and free all of the resources.
8829  * This is just a place holder for now.
8830  **/
8831 static void
lpfc_free_active_sgl(struct lpfc_hba * phba)8832 lpfc_free_active_sgl(struct lpfc_hba *phba)
8833 {
8834 	kfree(phba->sli4_hba.lpfc_sglq_active_list);
8835 }
8836 
8837 /**
8838  * lpfc_init_sgl_list - Allocate and initialize sgl list.
8839  * @phba: pointer to lpfc hba data structure.
8840  *
8841  * This routine is invoked to allocate and initizlize the driver's sgl
8842  * list and set up the sgl xritag tag array accordingly.
8843  *
8844  **/
8845 static void
lpfc_init_sgl_list(struct lpfc_hba * phba)8846 lpfc_init_sgl_list(struct lpfc_hba *phba)
8847 {
8848 	/* Initialize and populate the sglq list per host/VF. */
8849 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list);
8850 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list);
8851 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list);
8852 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8853 
8854 	/* els xri-sgl book keeping */
8855 	phba->sli4_hba.els_xri_cnt = 0;
8856 
8857 	/* nvme xri-buffer book keeping */
8858 	phba->sli4_hba.io_xri_cnt = 0;
8859 }
8860 
8861 /**
8862  * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port
8863  * @phba: pointer to lpfc hba data structure.
8864  *
8865  * This routine is invoked to post rpi header templates to the
8866  * port for those SLI4 ports that do not support extents.  This routine
8867  * posts a PAGE_SIZE memory region to the port to hold up to
8868  * PAGE_SIZE modulo 64 rpi context headers.  This is an initialization routine
8869  * and should be called only when interrupts are disabled.
8870  *
8871  * Return codes
8872  * 	0 - successful
8873  *	-ERROR - otherwise.
8874  **/
8875 int
lpfc_sli4_init_rpi_hdrs(struct lpfc_hba * phba)8876 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba)
8877 {
8878 	int rc = 0;
8879 	struct lpfc_rpi_hdr *rpi_hdr;
8880 
8881 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list);
8882 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8883 		return rc;
8884 	if (phba->sli4_hba.extents_in_use)
8885 		return -EIO;
8886 
8887 	rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
8888 	if (!rpi_hdr) {
8889 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8890 				"0391 Error during rpi post operation\n");
8891 		lpfc_sli4_remove_rpis(phba);
8892 		rc = -ENODEV;
8893 	}
8894 
8895 	return rc;
8896 }
8897 
8898 /**
8899  * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region
8900  * @phba: pointer to lpfc hba data structure.
8901  *
8902  * This routine is invoked to allocate a single 4KB memory region to
8903  * support rpis and stores them in the phba.  This single region
8904  * provides support for up to 64 rpis.  The region is used globally
8905  * by the device.
8906  *
8907  * Returns:
8908  *   A valid rpi hdr on success.
8909  *   A NULL pointer on any failure.
8910  **/
8911 struct lpfc_rpi_hdr *
lpfc_sli4_create_rpi_hdr(struct lpfc_hba * phba)8912 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba)
8913 {
8914 	uint16_t rpi_limit, curr_rpi_range;
8915 	struct lpfc_dmabuf *dmabuf;
8916 	struct lpfc_rpi_hdr *rpi_hdr;
8917 
8918 	/*
8919 	 * If the SLI4 port supports extents, posting the rpi header isn't
8920 	 * required.  Set the expected maximum count and let the actual value
8921 	 * get set when extents are fully allocated.
8922 	 */
8923 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8924 		return NULL;
8925 	if (phba->sli4_hba.extents_in_use)
8926 		return NULL;
8927 
8928 	/* The limit on the logical index is just the max_rpi count. */
8929 	rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi;
8930 
8931 	spin_lock_irq(&phba->hbalock);
8932 	/*
8933 	 * Establish the starting RPI in this header block.  The starting
8934 	 * rpi is normalized to a zero base because the physical rpi is
8935 	 * port based.
8936 	 */
8937 	curr_rpi_range = phba->sli4_hba.next_rpi;
8938 	spin_unlock_irq(&phba->hbalock);
8939 
8940 	/* Reached full RPI range */
8941 	if (curr_rpi_range == rpi_limit)
8942 		return NULL;
8943 
8944 	/*
8945 	 * First allocate the protocol header region for the port.  The
8946 	 * port expects a 4KB DMA-mapped memory region that is 4K aligned.
8947 	 */
8948 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
8949 	if (!dmabuf)
8950 		return NULL;
8951 
8952 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
8953 					  LPFC_HDR_TEMPLATE_SIZE,
8954 					  &dmabuf->phys, GFP_KERNEL);
8955 	if (!dmabuf->virt) {
8956 		rpi_hdr = NULL;
8957 		goto err_free_dmabuf;
8958 	}
8959 
8960 	if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) {
8961 		rpi_hdr = NULL;
8962 		goto err_free_coherent;
8963 	}
8964 
8965 	/* Save the rpi header data for cleanup later. */
8966 	rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL);
8967 	if (!rpi_hdr)
8968 		goto err_free_coherent;
8969 
8970 	rpi_hdr->dmabuf = dmabuf;
8971 	rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE;
8972 	rpi_hdr->page_count = 1;
8973 	spin_lock_irq(&phba->hbalock);
8974 
8975 	/* The rpi_hdr stores the logical index only. */
8976 	rpi_hdr->start_rpi = curr_rpi_range;
8977 	rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT;
8978 	list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list);
8979 
8980 	spin_unlock_irq(&phba->hbalock);
8981 	return rpi_hdr;
8982 
8983  err_free_coherent:
8984 	dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE,
8985 			  dmabuf->virt, dmabuf->phys);
8986  err_free_dmabuf:
8987 	kfree(dmabuf);
8988 	return NULL;
8989 }
8990 
8991 /**
8992  * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions
8993  * @phba: pointer to lpfc hba data structure.
8994  *
8995  * This routine is invoked to remove all memory resources allocated
8996  * to support rpis for SLI4 ports not supporting extents. This routine
8997  * presumes the caller has released all rpis consumed by fabric or port
8998  * logins and is prepared to have the header pages removed.
8999  **/
9000 void
lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba * phba)9001 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba)
9002 {
9003 	struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr;
9004 
9005 	if (!phba->sli4_hba.rpi_hdrs_in_use)
9006 		goto exit;
9007 
9008 	list_for_each_entry_safe(rpi_hdr, next_rpi_hdr,
9009 				 &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
9010 		list_del(&rpi_hdr->list);
9011 		dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len,
9012 				  rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys);
9013 		kfree(rpi_hdr->dmabuf);
9014 		kfree(rpi_hdr);
9015 	}
9016  exit:
9017 	/* There are no rpis available to the port now. */
9018 	phba->sli4_hba.next_rpi = 0;
9019 }
9020 
9021 /**
9022  * lpfc_hba_alloc - Allocate driver hba data structure for a device.
9023  * @pdev: pointer to pci device data structure.
9024  *
9025  * This routine is invoked to allocate the driver hba data structure for an
9026  * HBA device. If the allocation is successful, the phba reference to the
9027  * PCI device data structure is set.
9028  *
9029  * Return codes
9030  *      pointer to @phba - successful
9031  *      NULL - error
9032  **/
9033 static struct lpfc_hba *
lpfc_hba_alloc(struct pci_dev * pdev)9034 lpfc_hba_alloc(struct pci_dev *pdev)
9035 {
9036 	struct lpfc_hba *phba;
9037 
9038 	/* Allocate memory for HBA structure */
9039 	phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL);
9040 	if (!phba) {
9041 		dev_err(&pdev->dev, "failed to allocate hba struct\n");
9042 		return NULL;
9043 	}
9044 
9045 	/* Set reference to PCI device in HBA structure */
9046 	phba->pcidev = pdev;
9047 
9048 	/* Assign an unused board number */
9049 	phba->brd_no = lpfc_get_instance();
9050 	if (phba->brd_no < 0) {
9051 		kfree(phba);
9052 		return NULL;
9053 	}
9054 	phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL;
9055 
9056 	spin_lock_init(&phba->ct_ev_lock);
9057 	INIT_LIST_HEAD(&phba->ct_ev_waiters);
9058 
9059 	return phba;
9060 }
9061 
9062 /**
9063  * lpfc_hba_free - Free driver hba data structure with a device.
9064  * @phba: pointer to lpfc hba data structure.
9065  *
9066  * This routine is invoked to free the driver hba data structure with an
9067  * HBA device.
9068  **/
9069 static void
lpfc_hba_free(struct lpfc_hba * phba)9070 lpfc_hba_free(struct lpfc_hba *phba)
9071 {
9072 	if (phba->sli_rev == LPFC_SLI_REV4)
9073 		kfree(phba->sli4_hba.hdwq);
9074 
9075 	/* Release the driver assigned board number */
9076 	idr_remove(&lpfc_hba_index, phba->brd_no);
9077 
9078 	/* Free memory allocated with sli3 rings */
9079 	kfree(phba->sli.sli3_ring);
9080 	phba->sli.sli3_ring = NULL;
9081 
9082 	kfree(phba);
9083 	return;
9084 }
9085 
9086 /**
9087  * lpfc_setup_fdmi_mask - Setup initial FDMI mask for HBA and Port attributes
9088  * @vport: pointer to lpfc vport data structure.
9089  *
9090  * This routine is will setup initial FDMI attribute masks for
9091  * FDMI2 or SmartSAN depending on module parameters. The driver will attempt
9092  * to get these attributes first before falling back, the attribute
9093  * fallback hierarchy is SmartSAN -> FDMI2 -> FMDI1
9094  **/
9095 void
lpfc_setup_fdmi_mask(struct lpfc_vport * vport)9096 lpfc_setup_fdmi_mask(struct lpfc_vport *vport)
9097 {
9098 	struct lpfc_hba *phba = vport->phba;
9099 
9100 	set_bit(FC_ALLOW_FDMI, &vport->load_flag);
9101 	if (phba->cfg_enable_SmartSAN ||
9102 	    phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT) {
9103 		/* Setup appropriate attribute masks */
9104 		vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR;
9105 		if (phba->cfg_enable_SmartSAN)
9106 			vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR;
9107 		else
9108 			vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR;
9109 	}
9110 
9111 	lpfc_printf_log(phba, KERN_INFO, LOG_DISCOVERY,
9112 			"6077 Setup FDMI mask: hba x%x port x%x\n",
9113 			vport->fdmi_hba_mask, vport->fdmi_port_mask);
9114 }
9115 
9116 /**
9117  * lpfc_create_shost - Create hba physical port with associated scsi host.
9118  * @phba: pointer to lpfc hba data structure.
9119  *
9120  * This routine is invoked to create HBA physical port and associate a SCSI
9121  * host with it.
9122  *
9123  * Return codes
9124  *      0 - successful
9125  *      other values - error
9126  **/
9127 static int
lpfc_create_shost(struct lpfc_hba * phba)9128 lpfc_create_shost(struct lpfc_hba *phba)
9129 {
9130 	struct lpfc_vport *vport;
9131 	struct Scsi_Host  *shost;
9132 
9133 	/* Initialize HBA FC structure */
9134 	phba->fc_edtov = FF_DEF_EDTOV;
9135 	phba->fc_ratov = FF_DEF_RATOV;
9136 	phba->fc_altov = FF_DEF_ALTOV;
9137 	phba->fc_arbtov = FF_DEF_ARBTOV;
9138 
9139 	atomic_set(&phba->sdev_cnt, 0);
9140 	vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
9141 	if (!vport)
9142 		return -ENODEV;
9143 
9144 	shost = lpfc_shost_from_vport(vport);
9145 	phba->pport = vport;
9146 
9147 	if (phba->nvmet_support) {
9148 		/* Only 1 vport (pport) will support NVME target */
9149 		phba->targetport = NULL;
9150 		phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME;
9151 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC,
9152 				"6076 NVME Target Found\n");
9153 	}
9154 
9155 	lpfc_debugfs_initialize(vport);
9156 	/* Put reference to SCSI host to driver's device private data */
9157 	pci_set_drvdata(phba->pcidev, shost);
9158 
9159 	lpfc_setup_fdmi_mask(vport);
9160 
9161 	/*
9162 	 * At this point we are fully registered with PSA. In addition,
9163 	 * any initial discovery should be completed.
9164 	 */
9165 	return 0;
9166 }
9167 
9168 /**
9169  * lpfc_destroy_shost - Destroy hba physical port with associated scsi host.
9170  * @phba: pointer to lpfc hba data structure.
9171  *
9172  * This routine is invoked to destroy HBA physical port and the associated
9173  * SCSI host.
9174  **/
9175 static void
lpfc_destroy_shost(struct lpfc_hba * phba)9176 lpfc_destroy_shost(struct lpfc_hba *phba)
9177 {
9178 	struct lpfc_vport *vport = phba->pport;
9179 
9180 	/* Destroy physical port that associated with the SCSI host */
9181 	destroy_port(vport);
9182 
9183 	return;
9184 }
9185 
9186 /**
9187  * lpfc_setup_bg - Setup Block guard structures and debug areas.
9188  * @phba: pointer to lpfc hba data structure.
9189  * @shost: the shost to be used to detect Block guard settings.
9190  *
9191  * This routine sets up the local Block guard protocol settings for @shost.
9192  * This routine also allocates memory for debugging bg buffers.
9193  **/
9194 static void
lpfc_setup_bg(struct lpfc_hba * phba,struct Scsi_Host * shost)9195 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost)
9196 {
9197 	uint32_t old_mask;
9198 	uint32_t old_guard;
9199 
9200 	if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9201 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9202 				"1478 Registering BlockGuard with the "
9203 				"SCSI layer\n");
9204 
9205 		old_mask = phba->cfg_prot_mask;
9206 		old_guard = phba->cfg_prot_guard;
9207 
9208 		/* Only allow supported values */
9209 		phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION |
9210 			SHOST_DIX_TYPE0_PROTECTION |
9211 			SHOST_DIX_TYPE1_PROTECTION);
9212 		phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP |
9213 					 SHOST_DIX_GUARD_CRC);
9214 
9215 		/* DIF Type 1 protection for profiles AST1/C1 is end to end */
9216 		if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION)
9217 			phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION;
9218 
9219 		if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9220 			if ((old_mask != phba->cfg_prot_mask) ||
9221 				(old_guard != phba->cfg_prot_guard))
9222 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9223 					"1475 Registering BlockGuard with the "
9224 					"SCSI layer: mask %d  guard %d\n",
9225 					phba->cfg_prot_mask,
9226 					phba->cfg_prot_guard);
9227 
9228 			scsi_host_set_prot(shost, phba->cfg_prot_mask);
9229 			scsi_host_set_guard(shost, phba->cfg_prot_guard);
9230 		} else
9231 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9232 				"1479 Not Registering BlockGuard with the SCSI "
9233 				"layer, Bad protection parameters: %d %d\n",
9234 				old_mask, old_guard);
9235 	}
9236 }
9237 
9238 /**
9239  * lpfc_post_init_setup - Perform necessary device post initialization setup.
9240  * @phba: pointer to lpfc hba data structure.
9241  *
9242  * This routine is invoked to perform all the necessary post initialization
9243  * setup for the device.
9244  **/
9245 static void
lpfc_post_init_setup(struct lpfc_hba * phba)9246 lpfc_post_init_setup(struct lpfc_hba *phba)
9247 {
9248 	struct Scsi_Host  *shost;
9249 	struct lpfc_adapter_event_header adapter_event;
9250 
9251 	/* Get the default values for Model Name and Description */
9252 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
9253 
9254 	/*
9255 	 * hba setup may have changed the hba_queue_depth so we need to
9256 	 * adjust the value of can_queue.
9257 	 */
9258 	shost = pci_get_drvdata(phba->pcidev);
9259 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
9260 
9261 	lpfc_host_attrib_init(shost);
9262 
9263 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
9264 		spin_lock_irq(shost->host_lock);
9265 		lpfc_poll_start_timer(phba);
9266 		spin_unlock_irq(shost->host_lock);
9267 	}
9268 
9269 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9270 			"0428 Perform SCSI scan\n");
9271 	/* Send board arrival event to upper layer */
9272 	adapter_event.event_type = FC_REG_ADAPTER_EVENT;
9273 	adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
9274 	fc_host_post_vendor_event(shost, fc_get_event_number(),
9275 				  sizeof(adapter_event),
9276 				  (char *) &adapter_event,
9277 				  LPFC_NL_VENDOR_ID);
9278 	return;
9279 }
9280 
9281 /**
9282  * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space.
9283  * @phba: pointer to lpfc hba data structure.
9284  *
9285  * This routine is invoked to set up the PCI device memory space for device
9286  * with SLI-3 interface spec.
9287  *
9288  * Return codes
9289  * 	0 - successful
9290  * 	other values - error
9291  **/
9292 static int
lpfc_sli_pci_mem_setup(struct lpfc_hba * phba)9293 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba)
9294 {
9295 	struct pci_dev *pdev = phba->pcidev;
9296 	unsigned long bar0map_len, bar2map_len;
9297 	int i, hbq_count;
9298 	void *ptr;
9299 	int error;
9300 
9301 	if (!pdev)
9302 		return -ENODEV;
9303 
9304 	/* Set the device DMA mask size */
9305 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9306 	if (error)
9307 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9308 	if (error)
9309 		return error;
9310 	error = -ENODEV;
9311 
9312 	/* Get the bus address of Bar0 and Bar2 and the number of bytes
9313 	 * required by each mapping.
9314 	 */
9315 	phba->pci_bar0_map = pci_resource_start(pdev, 0);
9316 	bar0map_len = pci_resource_len(pdev, 0);
9317 
9318 	phba->pci_bar2_map = pci_resource_start(pdev, 2);
9319 	bar2map_len = pci_resource_len(pdev, 2);
9320 
9321 	/* Map HBA SLIM to a kernel virtual address. */
9322 	phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
9323 	if (!phba->slim_memmap_p) {
9324 		dev_printk(KERN_ERR, &pdev->dev,
9325 			   "ioremap failed for SLIM memory.\n");
9326 		goto out;
9327 	}
9328 
9329 	/* Map HBA Control Registers to a kernel virtual address. */
9330 	phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
9331 	if (!phba->ctrl_regs_memmap_p) {
9332 		dev_printk(KERN_ERR, &pdev->dev,
9333 			   "ioremap failed for HBA control registers.\n");
9334 		goto out_iounmap_slim;
9335 	}
9336 
9337 	/* Allocate memory for SLI-2 structures */
9338 	phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9339 					       &phba->slim2p.phys, GFP_KERNEL);
9340 	if (!phba->slim2p.virt)
9341 		goto out_iounmap;
9342 
9343 	phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
9344 	phba->mbox_ext = (phba->slim2p.virt +
9345 		offsetof(struct lpfc_sli2_slim, mbx_ext_words));
9346 	phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
9347 	phba->IOCBs = (phba->slim2p.virt +
9348 		       offsetof(struct lpfc_sli2_slim, IOCBs));
9349 
9350 	phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev,
9351 						 lpfc_sli_hbq_size(),
9352 						 &phba->hbqslimp.phys,
9353 						 GFP_KERNEL);
9354 	if (!phba->hbqslimp.virt)
9355 		goto out_free_slim;
9356 
9357 	hbq_count = lpfc_sli_hbq_count();
9358 	ptr = phba->hbqslimp.virt;
9359 	for (i = 0; i < hbq_count; ++i) {
9360 		phba->hbqs[i].hbq_virt = ptr;
9361 		INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
9362 		ptr += (lpfc_hbq_defs[i]->entry_count *
9363 			sizeof(struct lpfc_hbq_entry));
9364 	}
9365 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
9366 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
9367 
9368 	memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
9369 
9370 	phba->MBslimaddr = phba->slim_memmap_p;
9371 	phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
9372 	phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
9373 	phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
9374 	phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
9375 
9376 	return 0;
9377 
9378 out_free_slim:
9379 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9380 			  phba->slim2p.virt, phba->slim2p.phys);
9381 out_iounmap:
9382 	iounmap(phba->ctrl_regs_memmap_p);
9383 out_iounmap_slim:
9384 	iounmap(phba->slim_memmap_p);
9385 out:
9386 	return error;
9387 }
9388 
9389 /**
9390  * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space.
9391  * @phba: pointer to lpfc hba data structure.
9392  *
9393  * This routine is invoked to unset the PCI device memory space for device
9394  * with SLI-3 interface spec.
9395  **/
9396 static void
lpfc_sli_pci_mem_unset(struct lpfc_hba * phba)9397 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba)
9398 {
9399 	struct pci_dev *pdev;
9400 
9401 	/* Obtain PCI device reference */
9402 	if (!phba->pcidev)
9403 		return;
9404 	else
9405 		pdev = phba->pcidev;
9406 
9407 	/* Free coherent DMA memory allocated */
9408 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
9409 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
9410 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9411 			  phba->slim2p.virt, phba->slim2p.phys);
9412 
9413 	/* I/O memory unmap */
9414 	iounmap(phba->ctrl_regs_memmap_p);
9415 	iounmap(phba->slim_memmap_p);
9416 
9417 	return;
9418 }
9419 
9420 /**
9421  * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status
9422  * @phba: pointer to lpfc hba data structure.
9423  *
9424  * This routine is invoked to wait for SLI4 device Power On Self Test (POST)
9425  * done and check status.
9426  *
9427  * Return 0 if successful, otherwise -ENODEV.
9428  **/
9429 int
lpfc_sli4_post_status_check(struct lpfc_hba * phba)9430 lpfc_sli4_post_status_check(struct lpfc_hba *phba)
9431 {
9432 	struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg;
9433 	struct lpfc_register reg_data;
9434 	int i, port_error = 0;
9435 	uint32_t if_type;
9436 
9437 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
9438 	memset(&reg_data, 0, sizeof(reg_data));
9439 	if (!phba->sli4_hba.PSMPHRregaddr)
9440 		return -ENODEV;
9441 
9442 	/* Wait up to 30 seconds for the SLI Port POST done and ready */
9443 	for (i = 0; i < 3000; i++) {
9444 		if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
9445 			&portsmphr_reg.word0) ||
9446 			(bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) {
9447 			/* Port has a fatal POST error, break out */
9448 			port_error = -ENODEV;
9449 			break;
9450 		}
9451 		if (LPFC_POST_STAGE_PORT_READY ==
9452 		    bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))
9453 			break;
9454 		msleep(10);
9455 	}
9456 
9457 	/*
9458 	 * If there was a port error during POST, then don't proceed with
9459 	 * other register reads as the data may not be valid.  Just exit.
9460 	 */
9461 	if (port_error) {
9462 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9463 			"1408 Port Failed POST - portsmphr=0x%x, "
9464 			"perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, "
9465 			"scr2=x%x, hscratch=x%x, pstatus=x%x\n",
9466 			portsmphr_reg.word0,
9467 			bf_get(lpfc_port_smphr_perr, &portsmphr_reg),
9468 			bf_get(lpfc_port_smphr_sfi, &portsmphr_reg),
9469 			bf_get(lpfc_port_smphr_nip, &portsmphr_reg),
9470 			bf_get(lpfc_port_smphr_ipc, &portsmphr_reg),
9471 			bf_get(lpfc_port_smphr_scr1, &portsmphr_reg),
9472 			bf_get(lpfc_port_smphr_scr2, &portsmphr_reg),
9473 			bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg),
9474 			bf_get(lpfc_port_smphr_port_status, &portsmphr_reg));
9475 	} else {
9476 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9477 				"2534 Device Info: SLIFamily=0x%x, "
9478 				"SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, "
9479 				"SLIHint_2=0x%x, FT=0x%x\n",
9480 				bf_get(lpfc_sli_intf_sli_family,
9481 				       &phba->sli4_hba.sli_intf),
9482 				bf_get(lpfc_sli_intf_slirev,
9483 				       &phba->sli4_hba.sli_intf),
9484 				bf_get(lpfc_sli_intf_if_type,
9485 				       &phba->sli4_hba.sli_intf),
9486 				bf_get(lpfc_sli_intf_sli_hint1,
9487 				       &phba->sli4_hba.sli_intf),
9488 				bf_get(lpfc_sli_intf_sli_hint2,
9489 				       &phba->sli4_hba.sli_intf),
9490 				bf_get(lpfc_sli_intf_func_type,
9491 				       &phba->sli4_hba.sli_intf));
9492 		/*
9493 		 * Check for other Port errors during the initialization
9494 		 * process.  Fail the load if the port did not come up
9495 		 * correctly.
9496 		 */
9497 		if_type = bf_get(lpfc_sli_intf_if_type,
9498 				 &phba->sli4_hba.sli_intf);
9499 		switch (if_type) {
9500 		case LPFC_SLI_INTF_IF_TYPE_0:
9501 			phba->sli4_hba.ue_mask_lo =
9502 			      readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr);
9503 			phba->sli4_hba.ue_mask_hi =
9504 			      readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr);
9505 			uerrlo_reg.word0 =
9506 			      readl(phba->sli4_hba.u.if_type0.UERRLOregaddr);
9507 			uerrhi_reg.word0 =
9508 				readl(phba->sli4_hba.u.if_type0.UERRHIregaddr);
9509 			if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) ||
9510 			    (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) {
9511 				lpfc_printf_log(phba, KERN_ERR,
9512 						LOG_TRACE_EVENT,
9513 						"1422 Unrecoverable Error "
9514 						"Detected during POST "
9515 						"uerr_lo_reg=0x%x, "
9516 						"uerr_hi_reg=0x%x, "
9517 						"ue_mask_lo_reg=0x%x, "
9518 						"ue_mask_hi_reg=0x%x\n",
9519 						uerrlo_reg.word0,
9520 						uerrhi_reg.word0,
9521 						phba->sli4_hba.ue_mask_lo,
9522 						phba->sli4_hba.ue_mask_hi);
9523 				port_error = -ENODEV;
9524 			}
9525 			break;
9526 		case LPFC_SLI_INTF_IF_TYPE_2:
9527 		case LPFC_SLI_INTF_IF_TYPE_6:
9528 			/* Final checks.  The port status should be clean. */
9529 			if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9530 				&reg_data.word0) ||
9531 				lpfc_sli4_unrecoverable_port(&reg_data)) {
9532 				phba->work_status[0] =
9533 					readl(phba->sli4_hba.u.if_type2.
9534 					      ERR1regaddr);
9535 				phba->work_status[1] =
9536 					readl(phba->sli4_hba.u.if_type2.
9537 					      ERR2regaddr);
9538 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9539 					"2888 Unrecoverable port error "
9540 					"following POST: port status reg "
9541 					"0x%x, port_smphr reg 0x%x, "
9542 					"error 1=0x%x, error 2=0x%x\n",
9543 					reg_data.word0,
9544 					portsmphr_reg.word0,
9545 					phba->work_status[0],
9546 					phba->work_status[1]);
9547 				port_error = -ENODEV;
9548 				break;
9549 			}
9550 
9551 			if (lpfc_pldv_detect &&
9552 			    bf_get(lpfc_sli_intf_sli_family,
9553 				   &phba->sli4_hba.sli_intf) ==
9554 					LPFC_SLI_INTF_FAMILY_G6)
9555 				pci_write_config_byte(phba->pcidev,
9556 						      LPFC_SLI_INTF, CFG_PLD);
9557 			break;
9558 		case LPFC_SLI_INTF_IF_TYPE_1:
9559 		default:
9560 			break;
9561 		}
9562 	}
9563 	return port_error;
9564 }
9565 
9566 /**
9567  * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map.
9568  * @phba: pointer to lpfc hba data structure.
9569  * @if_type:  The SLI4 interface type getting configured.
9570  *
9571  * This routine is invoked to set up SLI4 BAR0 PCI config space register
9572  * memory map.
9573  **/
9574 static void
lpfc_sli4_bar0_register_memmap(struct lpfc_hba * phba,uint32_t if_type)9575 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9576 {
9577 	switch (if_type) {
9578 	case LPFC_SLI_INTF_IF_TYPE_0:
9579 		phba->sli4_hba.u.if_type0.UERRLOregaddr =
9580 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO;
9581 		phba->sli4_hba.u.if_type0.UERRHIregaddr =
9582 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI;
9583 		phba->sli4_hba.u.if_type0.UEMASKLOregaddr =
9584 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO;
9585 		phba->sli4_hba.u.if_type0.UEMASKHIregaddr =
9586 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI;
9587 		phba->sli4_hba.SLIINTFregaddr =
9588 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9589 		break;
9590 	case LPFC_SLI_INTF_IF_TYPE_2:
9591 		phba->sli4_hba.u.if_type2.EQDregaddr =
9592 			phba->sli4_hba.conf_regs_memmap_p +
9593 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9594 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9595 			phba->sli4_hba.conf_regs_memmap_p +
9596 						LPFC_CTL_PORT_ER1_OFFSET;
9597 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9598 			phba->sli4_hba.conf_regs_memmap_p +
9599 						LPFC_CTL_PORT_ER2_OFFSET;
9600 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9601 			phba->sli4_hba.conf_regs_memmap_p +
9602 						LPFC_CTL_PORT_CTL_OFFSET;
9603 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9604 			phba->sli4_hba.conf_regs_memmap_p +
9605 						LPFC_CTL_PORT_STA_OFFSET;
9606 		phba->sli4_hba.SLIINTFregaddr =
9607 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9608 		phba->sli4_hba.PSMPHRregaddr =
9609 			phba->sli4_hba.conf_regs_memmap_p +
9610 						LPFC_CTL_PORT_SEM_OFFSET;
9611 		phba->sli4_hba.RQDBregaddr =
9612 			phba->sli4_hba.conf_regs_memmap_p +
9613 						LPFC_ULP0_RQ_DOORBELL;
9614 		phba->sli4_hba.WQDBregaddr =
9615 			phba->sli4_hba.conf_regs_memmap_p +
9616 						LPFC_ULP0_WQ_DOORBELL;
9617 		phba->sli4_hba.CQDBregaddr =
9618 			phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL;
9619 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9620 		phba->sli4_hba.MQDBregaddr =
9621 			phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL;
9622 		phba->sli4_hba.BMBXregaddr =
9623 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9624 		break;
9625 	case LPFC_SLI_INTF_IF_TYPE_6:
9626 		phba->sli4_hba.u.if_type2.EQDregaddr =
9627 			phba->sli4_hba.conf_regs_memmap_p +
9628 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9629 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9630 			phba->sli4_hba.conf_regs_memmap_p +
9631 						LPFC_CTL_PORT_ER1_OFFSET;
9632 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9633 			phba->sli4_hba.conf_regs_memmap_p +
9634 						LPFC_CTL_PORT_ER2_OFFSET;
9635 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9636 			phba->sli4_hba.conf_regs_memmap_p +
9637 						LPFC_CTL_PORT_CTL_OFFSET;
9638 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9639 			phba->sli4_hba.conf_regs_memmap_p +
9640 						LPFC_CTL_PORT_STA_OFFSET;
9641 		phba->sli4_hba.PSMPHRregaddr =
9642 			phba->sli4_hba.conf_regs_memmap_p +
9643 						LPFC_CTL_PORT_SEM_OFFSET;
9644 		phba->sli4_hba.BMBXregaddr =
9645 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9646 		break;
9647 	case LPFC_SLI_INTF_IF_TYPE_1:
9648 	default:
9649 		dev_printk(KERN_ERR, &phba->pcidev->dev,
9650 			   "FATAL - unsupported SLI4 interface type - %d\n",
9651 			   if_type);
9652 		break;
9653 	}
9654 }
9655 
9656 /**
9657  * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map.
9658  * @phba: pointer to lpfc hba data structure.
9659  * @if_type: sli if type to operate on.
9660  *
9661  * This routine is invoked to set up SLI4 BAR1 register memory map.
9662  **/
9663 static void
lpfc_sli4_bar1_register_memmap(struct lpfc_hba * phba,uint32_t if_type)9664 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9665 {
9666 	switch (if_type) {
9667 	case LPFC_SLI_INTF_IF_TYPE_0:
9668 		phba->sli4_hba.PSMPHRregaddr =
9669 			phba->sli4_hba.ctrl_regs_memmap_p +
9670 			LPFC_SLIPORT_IF0_SMPHR;
9671 		phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9672 			LPFC_HST_ISR0;
9673 		phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9674 			LPFC_HST_IMR0;
9675 		phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9676 			LPFC_HST_ISCR0;
9677 		break;
9678 	case LPFC_SLI_INTF_IF_TYPE_6:
9679 		phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9680 			LPFC_IF6_RQ_DOORBELL;
9681 		phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9682 			LPFC_IF6_WQ_DOORBELL;
9683 		phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9684 			LPFC_IF6_CQ_DOORBELL;
9685 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9686 			LPFC_IF6_EQ_DOORBELL;
9687 		phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9688 			LPFC_IF6_MQ_DOORBELL;
9689 		break;
9690 	case LPFC_SLI_INTF_IF_TYPE_2:
9691 	case LPFC_SLI_INTF_IF_TYPE_1:
9692 	default:
9693 		dev_err(&phba->pcidev->dev,
9694 			   "FATAL - unsupported SLI4 interface type - %d\n",
9695 			   if_type);
9696 		break;
9697 	}
9698 }
9699 
9700 /**
9701  * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map.
9702  * @phba: pointer to lpfc hba data structure.
9703  * @vf: virtual function number
9704  *
9705  * This routine is invoked to set up SLI4 BAR2 doorbell register memory map
9706  * based on the given viftual function number, @vf.
9707  *
9708  * Return 0 if successful, otherwise -ENODEV.
9709  **/
9710 static int
lpfc_sli4_bar2_register_memmap(struct lpfc_hba * phba,uint32_t vf)9711 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf)
9712 {
9713 	if (vf > LPFC_VIR_FUNC_MAX)
9714 		return -ENODEV;
9715 
9716 	phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9717 				vf * LPFC_VFR_PAGE_SIZE +
9718 					LPFC_ULP0_RQ_DOORBELL);
9719 	phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9720 				vf * LPFC_VFR_PAGE_SIZE +
9721 					LPFC_ULP0_WQ_DOORBELL);
9722 	phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9723 				vf * LPFC_VFR_PAGE_SIZE +
9724 					LPFC_EQCQ_DOORBELL);
9725 	phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9726 	phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9727 				vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL);
9728 	phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9729 				vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX);
9730 	return 0;
9731 }
9732 
9733 /**
9734  * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox
9735  * @phba: pointer to lpfc hba data structure.
9736  *
9737  * This routine is invoked to create the bootstrap mailbox
9738  * region consistent with the SLI-4 interface spec.  This
9739  * routine allocates all memory necessary to communicate
9740  * mailbox commands to the port and sets up all alignment
9741  * needs.  No locks are expected to be held when calling
9742  * this routine.
9743  *
9744  * Return codes
9745  * 	0 - successful
9746  * 	-ENOMEM - could not allocated memory.
9747  **/
9748 static int
lpfc_create_bootstrap_mbox(struct lpfc_hba * phba)9749 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba)
9750 {
9751 	uint32_t bmbx_size;
9752 	struct lpfc_dmabuf *dmabuf;
9753 	struct dma_address *dma_address;
9754 	uint32_t pa_addr;
9755 	uint64_t phys_addr;
9756 
9757 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
9758 	if (!dmabuf)
9759 		return -ENOMEM;
9760 
9761 	/*
9762 	 * The bootstrap mailbox region is comprised of 2 parts
9763 	 * plus an alignment restriction of 16 bytes.
9764 	 */
9765 	bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1);
9766 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size,
9767 					  &dmabuf->phys, GFP_KERNEL);
9768 	if (!dmabuf->virt) {
9769 		kfree(dmabuf);
9770 		return -ENOMEM;
9771 	}
9772 
9773 	/*
9774 	 * Initialize the bootstrap mailbox pointers now so that the register
9775 	 * operations are simple later.  The mailbox dma address is required
9776 	 * to be 16-byte aligned.  Also align the virtual memory as each
9777 	 * maibox is copied into the bmbx mailbox region before issuing the
9778 	 * command to the port.
9779 	 */
9780 	phba->sli4_hba.bmbx.dmabuf = dmabuf;
9781 	phba->sli4_hba.bmbx.bmbx_size = bmbx_size;
9782 
9783 	phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt,
9784 					      LPFC_ALIGN_16_BYTE);
9785 	phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys,
9786 					      LPFC_ALIGN_16_BYTE);
9787 
9788 	/*
9789 	 * Set the high and low physical addresses now.  The SLI4 alignment
9790 	 * requirement is 16 bytes and the mailbox is posted to the port
9791 	 * as two 30-bit addresses.  The other data is a bit marking whether
9792 	 * the 30-bit address is the high or low address.
9793 	 * Upcast bmbx aphys to 64bits so shift instruction compiles
9794 	 * clean on 32 bit machines.
9795 	 */
9796 	dma_address = &phba->sli4_hba.bmbx.dma_address;
9797 	phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys;
9798 	pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff);
9799 	dma_address->addr_hi = (uint32_t) ((pa_addr << 2) |
9800 					   LPFC_BMBX_BIT1_ADDR_HI);
9801 
9802 	pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff);
9803 	dma_address->addr_lo = (uint32_t) ((pa_addr << 2) |
9804 					   LPFC_BMBX_BIT1_ADDR_LO);
9805 	return 0;
9806 }
9807 
9808 /**
9809  * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources
9810  * @phba: pointer to lpfc hba data structure.
9811  *
9812  * This routine is invoked to teardown the bootstrap mailbox
9813  * region and release all host resources. This routine requires
9814  * the caller to ensure all mailbox commands recovered, no
9815  * additional mailbox comands are sent, and interrupts are disabled
9816  * before calling this routine.
9817  *
9818  **/
9819 static void
lpfc_destroy_bootstrap_mbox(struct lpfc_hba * phba)9820 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba)
9821 {
9822 	dma_free_coherent(&phba->pcidev->dev,
9823 			  phba->sli4_hba.bmbx.bmbx_size,
9824 			  phba->sli4_hba.bmbx.dmabuf->virt,
9825 			  phba->sli4_hba.bmbx.dmabuf->phys);
9826 
9827 	kfree(phba->sli4_hba.bmbx.dmabuf);
9828 	memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx));
9829 }
9830 
9831 static const char * const lpfc_topo_to_str[] = {
9832 	"Loop then P2P",
9833 	"Loopback",
9834 	"P2P Only",
9835 	"Unsupported",
9836 	"Loop Only",
9837 	"Unsupported",
9838 	"P2P then Loop",
9839 };
9840 
9841 #define	LINK_FLAGS_DEF	0x0
9842 #define	LINK_FLAGS_P2P	0x1
9843 #define	LINK_FLAGS_LOOP	0x2
9844 /**
9845  * lpfc_map_topology - Map the topology read from READ_CONFIG
9846  * @phba: pointer to lpfc hba data structure.
9847  * @rd_config: pointer to read config data
9848  *
9849  * This routine is invoked to map the topology values as read
9850  * from the read config mailbox command. If the persistent
9851  * topology feature is supported, the firmware will provide the
9852  * saved topology information to be used in INIT_LINK
9853  **/
9854 static void
lpfc_map_topology(struct lpfc_hba * phba,struct lpfc_mbx_read_config * rd_config)9855 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config)
9856 {
9857 	u8 ptv, tf, pt;
9858 
9859 	ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config);
9860 	tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config);
9861 	pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config);
9862 
9863 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9864 			"2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x",
9865 			 ptv, tf, pt);
9866 	if (!ptv) {
9867 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9868 				"2019 FW does not support persistent topology "
9869 				"Using driver parameter defined value [%s]",
9870 				lpfc_topo_to_str[phba->cfg_topology]);
9871 		return;
9872 	}
9873 	/* FW supports persistent topology - override module parameter value */
9874 	set_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag);
9875 
9876 	/* if ASIC_GEN_NUM >= 0xC) */
9877 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
9878 		    LPFC_SLI_INTF_IF_TYPE_6) ||
9879 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
9880 		    LPFC_SLI_INTF_FAMILY_G6)) {
9881 		if (!tf)
9882 			phba->cfg_topology = ((pt == LINK_FLAGS_LOOP)
9883 					? FLAGS_TOPOLOGY_MODE_LOOP
9884 					: FLAGS_TOPOLOGY_MODE_PT_PT);
9885 		else
9886 			clear_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag);
9887 	} else { /* G5 */
9888 		if (tf)
9889 			/* If topology failover set - pt is '0' or '1' */
9890 			phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP :
9891 					      FLAGS_TOPOLOGY_MODE_LOOP_PT);
9892 		else
9893 			phba->cfg_topology = ((pt == LINK_FLAGS_P2P)
9894 					? FLAGS_TOPOLOGY_MODE_PT_PT
9895 					: FLAGS_TOPOLOGY_MODE_LOOP);
9896 	}
9897 	if (test_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag))
9898 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9899 				"2020 Using persistent topology value [%s]",
9900 				lpfc_topo_to_str[phba->cfg_topology]);
9901 	else
9902 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9903 				"2021 Invalid topology values from FW "
9904 				"Using driver parameter defined value [%s]",
9905 				lpfc_topo_to_str[phba->cfg_topology]);
9906 }
9907 
9908 /**
9909  * lpfc_sli4_read_config - Get the config parameters.
9910  * @phba: pointer to lpfc hba data structure.
9911  *
9912  * This routine is invoked to read the configuration parameters from the HBA.
9913  * The configuration parameters are used to set the base and maximum values
9914  * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource
9915  * allocation for the port.
9916  *
9917  * Return codes
9918  * 	0 - successful
9919  * 	-ENOMEM - No available memory
9920  *      -EIO - The mailbox failed to complete successfully.
9921  **/
9922 int
lpfc_sli4_read_config(struct lpfc_hba * phba)9923 lpfc_sli4_read_config(struct lpfc_hba *phba)
9924 {
9925 	LPFC_MBOXQ_t *pmb;
9926 	struct lpfc_mbx_read_config *rd_config;
9927 	union  lpfc_sli4_cfg_shdr *shdr;
9928 	uint32_t shdr_status, shdr_add_status;
9929 	struct lpfc_mbx_get_func_cfg *get_func_cfg;
9930 	struct lpfc_rsrc_desc_fcfcoe *desc;
9931 	char *pdesc_0;
9932 	uint16_t forced_link_speed;
9933 	uint32_t if_type, qmin, fawwpn;
9934 	int length, i, rc = 0, rc2;
9935 
9936 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
9937 	if (!pmb) {
9938 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9939 				"2011 Unable to allocate memory for issuing "
9940 				"SLI_CONFIG_SPECIAL mailbox command\n");
9941 		return -ENOMEM;
9942 	}
9943 
9944 	lpfc_read_config(phba, pmb);
9945 
9946 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9947 	if (rc != MBX_SUCCESS) {
9948 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9949 				"2012 Mailbox failed , mbxCmd x%x "
9950 				"READ_CONFIG, mbxStatus x%x\n",
9951 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
9952 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
9953 		rc = -EIO;
9954 	} else {
9955 		rd_config = &pmb->u.mqe.un.rd_config;
9956 		if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) {
9957 			phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
9958 			phba->sli4_hba.lnk_info.lnk_tp =
9959 				bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config);
9960 			phba->sli4_hba.lnk_info.lnk_no =
9961 				bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config);
9962 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9963 					"3081 lnk_type:%d, lnk_numb:%d\n",
9964 					phba->sli4_hba.lnk_info.lnk_tp,
9965 					phba->sli4_hba.lnk_info.lnk_no);
9966 		} else
9967 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9968 					"3082 Mailbox (x%x) returned ldv:x0\n",
9969 					bf_get(lpfc_mqe_command, &pmb->u.mqe));
9970 		if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) {
9971 			phba->bbcredit_support = 1;
9972 			phba->sli4_hba.bbscn_params.word0 = rd_config->word8;
9973 		}
9974 
9975 		fawwpn = bf_get(lpfc_mbx_rd_conf_fawwpn, rd_config);
9976 
9977 		if (fawwpn) {
9978 			lpfc_printf_log(phba, KERN_INFO,
9979 					LOG_INIT | LOG_DISCOVERY,
9980 					"2702 READ_CONFIG: FA-PWWN is "
9981 					"configured on\n");
9982 			phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_CONFIG;
9983 		} else {
9984 			/* Clear FW configured flag, preserve driver flag */
9985 			phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_CONFIG;
9986 		}
9987 
9988 		phba->sli4_hba.conf_trunk =
9989 			bf_get(lpfc_mbx_rd_conf_trunk, rd_config);
9990 		phba->sli4_hba.extents_in_use =
9991 			bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config);
9992 
9993 		phba->sli4_hba.max_cfg_param.max_xri =
9994 			bf_get(lpfc_mbx_rd_conf_xri_count, rd_config);
9995 		/* Reduce resource usage in kdump environment */
9996 		if (is_kdump_kernel() &&
9997 		    phba->sli4_hba.max_cfg_param.max_xri > 512)
9998 			phba->sli4_hba.max_cfg_param.max_xri = 512;
9999 		phba->sli4_hba.max_cfg_param.xri_base =
10000 			bf_get(lpfc_mbx_rd_conf_xri_base, rd_config);
10001 		phba->sli4_hba.max_cfg_param.max_vpi =
10002 			bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config);
10003 		/* Limit the max we support */
10004 		if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS)
10005 			phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS;
10006 		phba->sli4_hba.max_cfg_param.vpi_base =
10007 			bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config);
10008 		phba->sli4_hba.max_cfg_param.max_rpi =
10009 			bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config);
10010 		phba->sli4_hba.max_cfg_param.rpi_base =
10011 			bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config);
10012 		phba->sli4_hba.max_cfg_param.max_vfi =
10013 			bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config);
10014 		phba->sli4_hba.max_cfg_param.vfi_base =
10015 			bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config);
10016 		phba->sli4_hba.max_cfg_param.max_fcfi =
10017 			bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config);
10018 		phba->sli4_hba.max_cfg_param.max_eq =
10019 			bf_get(lpfc_mbx_rd_conf_eq_count, rd_config);
10020 		phba->sli4_hba.max_cfg_param.max_rq =
10021 			bf_get(lpfc_mbx_rd_conf_rq_count, rd_config);
10022 		phba->sli4_hba.max_cfg_param.max_wq =
10023 			bf_get(lpfc_mbx_rd_conf_wq_count, rd_config);
10024 		phba->sli4_hba.max_cfg_param.max_cq =
10025 			bf_get(lpfc_mbx_rd_conf_cq_count, rd_config);
10026 		phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config);
10027 		phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base;
10028 		phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base;
10029 		phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base;
10030 		phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ?
10031 				(phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0;
10032 		phba->max_vports = phba->max_vpi;
10033 
10034 		/* Next decide on FPIN or Signal E2E CGN support
10035 		 * For congestion alarms and warnings valid combination are:
10036 		 * 1. FPIN alarms / FPIN warnings
10037 		 * 2. Signal alarms / Signal warnings
10038 		 * 3. FPIN alarms / Signal warnings
10039 		 * 4. Signal alarms / FPIN warnings
10040 		 *
10041 		 * Initialize the adapter frequency to 100 mSecs
10042 		 */
10043 		phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10044 		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
10045 		phba->cgn_sig_freq = lpfc_fabric_cgn_frequency;
10046 
10047 		if (lpfc_use_cgn_signal) {
10048 			if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) {
10049 				phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY;
10050 				phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN;
10051 			}
10052 			if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) {
10053 				/* MUST support both alarm and warning
10054 				 * because EDC does not support alarm alone.
10055 				 */
10056 				if (phba->cgn_reg_signal !=
10057 				    EDC_CG_SIG_WARN_ONLY) {
10058 					/* Must support both or none */
10059 					phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10060 					phba->cgn_reg_signal =
10061 						EDC_CG_SIG_NOTSUPPORTED;
10062 				} else {
10063 					phba->cgn_reg_signal =
10064 						EDC_CG_SIG_WARN_ALARM;
10065 					phba->cgn_reg_fpin =
10066 						LPFC_CGN_FPIN_NONE;
10067 				}
10068 			}
10069 		}
10070 
10071 		/* Set the congestion initial signal and fpin values. */
10072 		phba->cgn_init_reg_fpin = phba->cgn_reg_fpin;
10073 		phba->cgn_init_reg_signal = phba->cgn_reg_signal;
10074 
10075 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
10076 				"6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n",
10077 				phba->cgn_reg_signal, phba->cgn_reg_fpin);
10078 
10079 		lpfc_map_topology(phba, rd_config);
10080 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10081 				"2003 cfg params Extents? %d "
10082 				"XRI(B:%d M:%d), "
10083 				"VPI(B:%d M:%d) "
10084 				"VFI(B:%d M:%d) "
10085 				"RPI(B:%d M:%d) "
10086 				"FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n",
10087 				phba->sli4_hba.extents_in_use,
10088 				phba->sli4_hba.max_cfg_param.xri_base,
10089 				phba->sli4_hba.max_cfg_param.max_xri,
10090 				phba->sli4_hba.max_cfg_param.vpi_base,
10091 				phba->sli4_hba.max_cfg_param.max_vpi,
10092 				phba->sli4_hba.max_cfg_param.vfi_base,
10093 				phba->sli4_hba.max_cfg_param.max_vfi,
10094 				phba->sli4_hba.max_cfg_param.rpi_base,
10095 				phba->sli4_hba.max_cfg_param.max_rpi,
10096 				phba->sli4_hba.max_cfg_param.max_fcfi,
10097 				phba->sli4_hba.max_cfg_param.max_eq,
10098 				phba->sli4_hba.max_cfg_param.max_cq,
10099 				phba->sli4_hba.max_cfg_param.max_wq,
10100 				phba->sli4_hba.max_cfg_param.max_rq,
10101 				phba->lmt);
10102 
10103 		/*
10104 		 * Calculate queue resources based on how
10105 		 * many WQ/CQ/EQs are available.
10106 		 */
10107 		qmin = phba->sli4_hba.max_cfg_param.max_wq;
10108 		if (phba->sli4_hba.max_cfg_param.max_cq < qmin)
10109 			qmin = phba->sli4_hba.max_cfg_param.max_cq;
10110 		/*
10111 		 * Reserve 4 (ELS, NVME LS, MBOX, plus one extra) and
10112 		 * the remainder can be used for NVME / FCP.
10113 		 */
10114 		qmin -= 4;
10115 		if (phba->sli4_hba.max_cfg_param.max_eq < qmin)
10116 			qmin = phba->sli4_hba.max_cfg_param.max_eq;
10117 
10118 		/* Check to see if there is enough for default cfg */
10119 		if ((phba->cfg_irq_chann > qmin) ||
10120 		    (phba->cfg_hdw_queue > qmin)) {
10121 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10122 					"2005 Reducing Queues - "
10123 					"FW resource limitation: "
10124 					"WQ %d CQ %d EQ %d: min %d: "
10125 					"IRQ %d HDWQ %d\n",
10126 					phba->sli4_hba.max_cfg_param.max_wq,
10127 					phba->sli4_hba.max_cfg_param.max_cq,
10128 					phba->sli4_hba.max_cfg_param.max_eq,
10129 					qmin, phba->cfg_irq_chann,
10130 					phba->cfg_hdw_queue);
10131 
10132 			if (phba->cfg_irq_chann > qmin)
10133 				phba->cfg_irq_chann = qmin;
10134 			if (phba->cfg_hdw_queue > qmin)
10135 				phba->cfg_hdw_queue = qmin;
10136 		}
10137 	}
10138 
10139 	if (rc)
10140 		goto read_cfg_out;
10141 
10142 	/* Update link speed if forced link speed is supported */
10143 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10144 	if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
10145 		forced_link_speed =
10146 			bf_get(lpfc_mbx_rd_conf_link_speed, rd_config);
10147 		if (forced_link_speed) {
10148 			set_bit(HBA_FORCED_LINK_SPEED, &phba->hba_flag);
10149 
10150 			switch (forced_link_speed) {
10151 			case LINK_SPEED_1G:
10152 				phba->cfg_link_speed =
10153 					LPFC_USER_LINK_SPEED_1G;
10154 				break;
10155 			case LINK_SPEED_2G:
10156 				phba->cfg_link_speed =
10157 					LPFC_USER_LINK_SPEED_2G;
10158 				break;
10159 			case LINK_SPEED_4G:
10160 				phba->cfg_link_speed =
10161 					LPFC_USER_LINK_SPEED_4G;
10162 				break;
10163 			case LINK_SPEED_8G:
10164 				phba->cfg_link_speed =
10165 					LPFC_USER_LINK_SPEED_8G;
10166 				break;
10167 			case LINK_SPEED_10G:
10168 				phba->cfg_link_speed =
10169 					LPFC_USER_LINK_SPEED_10G;
10170 				break;
10171 			case LINK_SPEED_16G:
10172 				phba->cfg_link_speed =
10173 					LPFC_USER_LINK_SPEED_16G;
10174 				break;
10175 			case LINK_SPEED_32G:
10176 				phba->cfg_link_speed =
10177 					LPFC_USER_LINK_SPEED_32G;
10178 				break;
10179 			case LINK_SPEED_64G:
10180 				phba->cfg_link_speed =
10181 					LPFC_USER_LINK_SPEED_64G;
10182 				break;
10183 			case 0xffff:
10184 				phba->cfg_link_speed =
10185 					LPFC_USER_LINK_SPEED_AUTO;
10186 				break;
10187 			default:
10188 				lpfc_printf_log(phba, KERN_ERR,
10189 						LOG_TRACE_EVENT,
10190 						"0047 Unrecognized link "
10191 						"speed : %d\n",
10192 						forced_link_speed);
10193 				phba->cfg_link_speed =
10194 					LPFC_USER_LINK_SPEED_AUTO;
10195 			}
10196 		}
10197 	}
10198 
10199 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
10200 	length = phba->sli4_hba.max_cfg_param.max_xri -
10201 			lpfc_sli4_get_els_iocb_cnt(phba);
10202 	if (phba->cfg_hba_queue_depth > length) {
10203 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
10204 				"3361 HBA queue depth changed from %d to %d\n",
10205 				phba->cfg_hba_queue_depth, length);
10206 		phba->cfg_hba_queue_depth = length;
10207 	}
10208 
10209 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
10210 	    LPFC_SLI_INTF_IF_TYPE_2)
10211 		goto read_cfg_out;
10212 
10213 	/* get the pf# and vf# for SLI4 if_type 2 port */
10214 	length = (sizeof(struct lpfc_mbx_get_func_cfg) -
10215 		  sizeof(struct lpfc_sli4_cfg_mhdr));
10216 	lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON,
10217 			 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG,
10218 			 length, LPFC_SLI4_MBX_EMBED);
10219 
10220 	rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
10221 	shdr = (union lpfc_sli4_cfg_shdr *)
10222 				&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
10223 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10224 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10225 	if (rc2 || shdr_status || shdr_add_status) {
10226 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10227 				"3026 Mailbox failed , mbxCmd x%x "
10228 				"GET_FUNCTION_CONFIG, mbxStatus x%x\n",
10229 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
10230 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
10231 		goto read_cfg_out;
10232 	}
10233 
10234 	/* search for fc_fcoe resrouce descriptor */
10235 	get_func_cfg = &pmb->u.mqe.un.get_func_cfg;
10236 
10237 	pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0];
10238 	desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0;
10239 	length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc);
10240 	if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD)
10241 		length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH;
10242 	else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH)
10243 		goto read_cfg_out;
10244 
10245 	for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) {
10246 		desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i);
10247 		if (LPFC_RSRC_DESC_TYPE_FCFCOE ==
10248 		    bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) {
10249 			phba->sli4_hba.iov.pf_number =
10250 				bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc);
10251 			phba->sli4_hba.iov.vf_number =
10252 				bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc);
10253 			break;
10254 		}
10255 	}
10256 
10257 	if (i < LPFC_RSRC_DESC_MAX_NUM)
10258 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10259 				"3027 GET_FUNCTION_CONFIG: pf_number:%d, "
10260 				"vf_number:%d\n", phba->sli4_hba.iov.pf_number,
10261 				phba->sli4_hba.iov.vf_number);
10262 	else
10263 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10264 				"3028 GET_FUNCTION_CONFIG: failed to find "
10265 				"Resource Descriptor:x%x\n",
10266 				LPFC_RSRC_DESC_TYPE_FCFCOE);
10267 
10268 read_cfg_out:
10269 	mempool_free(pmb, phba->mbox_mem_pool);
10270 	return rc;
10271 }
10272 
10273 /**
10274  * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port.
10275  * @phba: pointer to lpfc hba data structure.
10276  *
10277  * This routine is invoked to setup the port-side endian order when
10278  * the port if_type is 0.  This routine has no function for other
10279  * if_types.
10280  *
10281  * Return codes
10282  * 	0 - successful
10283  * 	-ENOMEM - No available memory
10284  *      -EIO - The mailbox failed to complete successfully.
10285  **/
10286 static int
lpfc_setup_endian_order(struct lpfc_hba * phba)10287 lpfc_setup_endian_order(struct lpfc_hba *phba)
10288 {
10289 	LPFC_MBOXQ_t *mboxq;
10290 	uint32_t if_type, rc = 0;
10291 	uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0,
10292 				      HOST_ENDIAN_HIGH_WORD1};
10293 
10294 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10295 	switch (if_type) {
10296 	case LPFC_SLI_INTF_IF_TYPE_0:
10297 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
10298 						       GFP_KERNEL);
10299 		if (!mboxq) {
10300 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10301 					"0492 Unable to allocate memory for "
10302 					"issuing SLI_CONFIG_SPECIAL mailbox "
10303 					"command\n");
10304 			return -ENOMEM;
10305 		}
10306 
10307 		/*
10308 		 * The SLI4_CONFIG_SPECIAL mailbox command requires the first
10309 		 * two words to contain special data values and no other data.
10310 		 */
10311 		memset(mboxq, 0, sizeof(LPFC_MBOXQ_t));
10312 		memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data));
10313 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10314 		if (rc != MBX_SUCCESS) {
10315 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10316 					"0493 SLI_CONFIG_SPECIAL mailbox "
10317 					"failed with status x%x\n",
10318 					rc);
10319 			rc = -EIO;
10320 		}
10321 		mempool_free(mboxq, phba->mbox_mem_pool);
10322 		break;
10323 	case LPFC_SLI_INTF_IF_TYPE_6:
10324 	case LPFC_SLI_INTF_IF_TYPE_2:
10325 	case LPFC_SLI_INTF_IF_TYPE_1:
10326 	default:
10327 		break;
10328 	}
10329 	return rc;
10330 }
10331 
10332 /**
10333  * lpfc_sli4_queue_verify - Verify and update EQ counts
10334  * @phba: pointer to lpfc hba data structure.
10335  *
10336  * This routine is invoked to check the user settable queue counts for EQs.
10337  * After this routine is called the counts will be set to valid values that
10338  * adhere to the constraints of the system's interrupt vectors and the port's
10339  * queue resources.
10340  *
10341  * Return codes
10342  *      0 - successful
10343  *      -ENOMEM - No available memory
10344  **/
10345 static int
lpfc_sli4_queue_verify(struct lpfc_hba * phba)10346 lpfc_sli4_queue_verify(struct lpfc_hba *phba)
10347 {
10348 	/*
10349 	 * Sanity check for configured queue parameters against the run-time
10350 	 * device parameters
10351 	 */
10352 
10353 	if (phba->nvmet_support) {
10354 		if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq)
10355 			phba->cfg_nvmet_mrq = phba->cfg_hdw_queue;
10356 		if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX)
10357 			phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX;
10358 	}
10359 
10360 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10361 			"2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n",
10362 			phba->cfg_hdw_queue, phba->cfg_irq_chann,
10363 			phba->cfg_nvmet_mrq);
10364 
10365 	/* Get EQ depth from module parameter, fake the default for now */
10366 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10367 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10368 
10369 	/* Get CQ depth from module parameter, fake the default for now */
10370 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10371 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10372 	return 0;
10373 }
10374 
10375 static int
lpfc_alloc_io_wq_cq(struct lpfc_hba * phba,int idx)10376 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx)
10377 {
10378 	struct lpfc_queue *qdesc;
10379 	u32 wqesize;
10380 	int cpu;
10381 
10382 	cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ);
10383 	/* Create Fast Path IO CQs */
10384 	if (phba->enab_exp_wqcq_pages)
10385 		/* Increase the CQ size when WQEs contain an embedded cdb */
10386 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10387 					      phba->sli4_hba.cq_esize,
10388 					      LPFC_CQE_EXP_COUNT, cpu);
10389 
10390 	else
10391 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10392 					      phba->sli4_hba.cq_esize,
10393 					      phba->sli4_hba.cq_ecount, cpu);
10394 	if (!qdesc) {
10395 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10396 				"0499 Failed allocate fast-path IO CQ (%d)\n",
10397 				idx);
10398 		return 1;
10399 	}
10400 	qdesc->qe_valid = 1;
10401 	qdesc->hdwq = idx;
10402 	qdesc->chann = cpu;
10403 	phba->sli4_hba.hdwq[idx].io_cq = qdesc;
10404 
10405 	/* Create Fast Path IO WQs */
10406 	if (phba->enab_exp_wqcq_pages) {
10407 		/* Increase the WQ size when WQEs contain an embedded cdb */
10408 		wqesize = (phba->fcp_embed_io) ?
10409 			LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10410 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10411 					      wqesize,
10412 					      LPFC_WQE_EXP_COUNT, cpu);
10413 	} else
10414 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10415 					      phba->sli4_hba.wq_esize,
10416 					      phba->sli4_hba.wq_ecount, cpu);
10417 
10418 	if (!qdesc) {
10419 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10420 				"0503 Failed allocate fast-path IO WQ (%d)\n",
10421 				idx);
10422 		return 1;
10423 	}
10424 	qdesc->hdwq = idx;
10425 	qdesc->chann = cpu;
10426 	phba->sli4_hba.hdwq[idx].io_wq = qdesc;
10427 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10428 	return 0;
10429 }
10430 
10431 /**
10432  * lpfc_sli4_queue_create - Create all the SLI4 queues
10433  * @phba: pointer to lpfc hba data structure.
10434  *
10435  * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA
10436  * operation. For each SLI4 queue type, the parameters such as queue entry
10437  * count (queue depth) shall be taken from the module parameter. For now,
10438  * we just use some constant number as place holder.
10439  *
10440  * Return codes
10441  *      0 - successful
10442  *      -ENOMEM - No availble memory
10443  *      -EIO - The mailbox failed to complete successfully.
10444  **/
10445 int
lpfc_sli4_queue_create(struct lpfc_hba * phba)10446 lpfc_sli4_queue_create(struct lpfc_hba *phba)
10447 {
10448 	struct lpfc_queue *qdesc;
10449 	int idx, cpu, eqcpu;
10450 	struct lpfc_sli4_hdw_queue *qp;
10451 	struct lpfc_vector_map_info *cpup;
10452 	struct lpfc_vector_map_info *eqcpup;
10453 	struct lpfc_eq_intr_info *eqi;
10454 	u32 wqesize;
10455 
10456 	/*
10457 	 * Create HBA Record arrays.
10458 	 * Both NVME and FCP will share that same vectors / EQs
10459 	 */
10460 	phba->sli4_hba.mq_esize = LPFC_MQE_SIZE;
10461 	phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT;
10462 	phba->sli4_hba.wq_esize = LPFC_WQE_SIZE;
10463 	phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT;
10464 	phba->sli4_hba.rq_esize = LPFC_RQE_SIZE;
10465 	phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT;
10466 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10467 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10468 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10469 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10470 
10471 	if (!phba->sli4_hba.hdwq) {
10472 		phba->sli4_hba.hdwq = kcalloc(
10473 			phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue),
10474 			GFP_KERNEL);
10475 		if (!phba->sli4_hba.hdwq) {
10476 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10477 					"6427 Failed allocate memory for "
10478 					"fast-path Hardware Queue array\n");
10479 			goto out_error;
10480 		}
10481 		/* Prepare hardware queues to take IO buffers */
10482 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10483 			qp = &phba->sli4_hba.hdwq[idx];
10484 			spin_lock_init(&qp->io_buf_list_get_lock);
10485 			spin_lock_init(&qp->io_buf_list_put_lock);
10486 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
10487 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
10488 			qp->get_io_bufs = 0;
10489 			qp->put_io_bufs = 0;
10490 			qp->total_io_bufs = 0;
10491 			spin_lock_init(&qp->abts_io_buf_list_lock);
10492 			INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list);
10493 			qp->abts_scsi_io_bufs = 0;
10494 			qp->abts_nvme_io_bufs = 0;
10495 			INIT_LIST_HEAD(&qp->sgl_list);
10496 			INIT_LIST_HEAD(&qp->cmd_rsp_buf_list);
10497 			spin_lock_init(&qp->hdwq_lock);
10498 		}
10499 	}
10500 
10501 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10502 		if (phba->nvmet_support) {
10503 			phba->sli4_hba.nvmet_cqset = kcalloc(
10504 					phba->cfg_nvmet_mrq,
10505 					sizeof(struct lpfc_queue *),
10506 					GFP_KERNEL);
10507 			if (!phba->sli4_hba.nvmet_cqset) {
10508 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10509 					"3121 Fail allocate memory for "
10510 					"fast-path CQ set array\n");
10511 				goto out_error;
10512 			}
10513 			phba->sli4_hba.nvmet_mrq_hdr = kcalloc(
10514 					phba->cfg_nvmet_mrq,
10515 					sizeof(struct lpfc_queue *),
10516 					GFP_KERNEL);
10517 			if (!phba->sli4_hba.nvmet_mrq_hdr) {
10518 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10519 					"3122 Fail allocate memory for "
10520 					"fast-path RQ set hdr array\n");
10521 				goto out_error;
10522 			}
10523 			phba->sli4_hba.nvmet_mrq_data = kcalloc(
10524 					phba->cfg_nvmet_mrq,
10525 					sizeof(struct lpfc_queue *),
10526 					GFP_KERNEL);
10527 			if (!phba->sli4_hba.nvmet_mrq_data) {
10528 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10529 					"3124 Fail allocate memory for "
10530 					"fast-path RQ set data array\n");
10531 				goto out_error;
10532 			}
10533 		}
10534 	}
10535 
10536 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10537 
10538 	/* Create HBA Event Queues (EQs) */
10539 	for_each_present_cpu(cpu) {
10540 		/* We only want to create 1 EQ per vector, even though
10541 		 * multiple CPUs might be using that vector. so only
10542 		 * selects the CPUs that are LPFC_CPU_FIRST_IRQ.
10543 		 */
10544 		cpup = &phba->sli4_hba.cpu_map[cpu];
10545 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10546 			continue;
10547 
10548 		/* Get a ptr to the Hardware Queue associated with this CPU */
10549 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10550 
10551 		/* Allocate an EQ */
10552 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10553 					      phba->sli4_hba.eq_esize,
10554 					      phba->sli4_hba.eq_ecount, cpu);
10555 		if (!qdesc) {
10556 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10557 					"0497 Failed allocate EQ (%d)\n",
10558 					cpup->hdwq);
10559 			goto out_error;
10560 		}
10561 		qdesc->qe_valid = 1;
10562 		qdesc->hdwq = cpup->hdwq;
10563 		qdesc->chann = cpu; /* First CPU this EQ is affinitized to */
10564 		qdesc->last_cpu = qdesc->chann;
10565 
10566 		/* Save the allocated EQ in the Hardware Queue */
10567 		qp->hba_eq = qdesc;
10568 
10569 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu);
10570 		list_add(&qdesc->cpu_list, &eqi->list);
10571 	}
10572 
10573 	/* Now we need to populate the other Hardware Queues, that share
10574 	 * an IRQ vector, with the associated EQ ptr.
10575 	 */
10576 	for_each_present_cpu(cpu) {
10577 		cpup = &phba->sli4_hba.cpu_map[cpu];
10578 
10579 		/* Check for EQ already allocated in previous loop */
10580 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
10581 			continue;
10582 
10583 		/* Check for multiple CPUs per hdwq */
10584 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10585 		if (qp->hba_eq)
10586 			continue;
10587 
10588 		/* We need to share an EQ for this hdwq */
10589 		eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ);
10590 		eqcpup = &phba->sli4_hba.cpu_map[eqcpu];
10591 		qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq;
10592 	}
10593 
10594 	/* Allocate IO Path SLI4 CQ/WQs */
10595 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10596 		if (lpfc_alloc_io_wq_cq(phba, idx))
10597 			goto out_error;
10598 	}
10599 
10600 	if (phba->nvmet_support) {
10601 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10602 			cpu = lpfc_find_cpu_handle(phba, idx,
10603 						   LPFC_FIND_BY_HDWQ);
10604 			qdesc = lpfc_sli4_queue_alloc(phba,
10605 						      LPFC_DEFAULT_PAGE_SIZE,
10606 						      phba->sli4_hba.cq_esize,
10607 						      phba->sli4_hba.cq_ecount,
10608 						      cpu);
10609 			if (!qdesc) {
10610 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10611 						"3142 Failed allocate NVME "
10612 						"CQ Set (%d)\n", idx);
10613 				goto out_error;
10614 			}
10615 			qdesc->qe_valid = 1;
10616 			qdesc->hdwq = idx;
10617 			qdesc->chann = cpu;
10618 			phba->sli4_hba.nvmet_cqset[idx] = qdesc;
10619 		}
10620 	}
10621 
10622 	/*
10623 	 * Create Slow Path Completion Queues (CQs)
10624 	 */
10625 
10626 	cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ);
10627 	/* Create slow-path Mailbox Command Complete Queue */
10628 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10629 				      phba->sli4_hba.cq_esize,
10630 				      phba->sli4_hba.cq_ecount, cpu);
10631 	if (!qdesc) {
10632 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10633 				"0500 Failed allocate slow-path mailbox CQ\n");
10634 		goto out_error;
10635 	}
10636 	qdesc->qe_valid = 1;
10637 	phba->sli4_hba.mbx_cq = qdesc;
10638 
10639 	/* Create slow-path ELS Complete Queue */
10640 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10641 				      phba->sli4_hba.cq_esize,
10642 				      phba->sli4_hba.cq_ecount, cpu);
10643 	if (!qdesc) {
10644 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10645 				"0501 Failed allocate slow-path ELS CQ\n");
10646 		goto out_error;
10647 	}
10648 	qdesc->qe_valid = 1;
10649 	qdesc->chann = cpu;
10650 	phba->sli4_hba.els_cq = qdesc;
10651 
10652 
10653 	/*
10654 	 * Create Slow Path Work Queues (WQs)
10655 	 */
10656 
10657 	/* Create Mailbox Command Queue */
10658 
10659 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10660 				      phba->sli4_hba.mq_esize,
10661 				      phba->sli4_hba.mq_ecount, cpu);
10662 	if (!qdesc) {
10663 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10664 				"0505 Failed allocate slow-path MQ\n");
10665 		goto out_error;
10666 	}
10667 	qdesc->chann = cpu;
10668 	phba->sli4_hba.mbx_wq = qdesc;
10669 
10670 	/*
10671 	 * Create ELS Work Queues
10672 	 */
10673 
10674 	/*
10675 	 * Create slow-path ELS Work Queue.
10676 	 * Increase the ELS WQ size when WQEs contain an embedded cdb
10677 	 */
10678 	wqesize = (phba->fcp_embed_io) ?
10679 			LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10680 
10681 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10682 				      wqesize,
10683 				      phba->sli4_hba.wq_ecount, cpu);
10684 	if (!qdesc) {
10685 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10686 				"0504 Failed allocate slow-path ELS WQ\n");
10687 		goto out_error;
10688 	}
10689 	qdesc->chann = cpu;
10690 	phba->sli4_hba.els_wq = qdesc;
10691 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10692 
10693 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10694 		/* Create NVME LS Complete Queue */
10695 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10696 					      phba->sli4_hba.cq_esize,
10697 					      phba->sli4_hba.cq_ecount, cpu);
10698 		if (!qdesc) {
10699 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10700 					"6079 Failed allocate NVME LS CQ\n");
10701 			goto out_error;
10702 		}
10703 		qdesc->chann = cpu;
10704 		qdesc->qe_valid = 1;
10705 		phba->sli4_hba.nvmels_cq = qdesc;
10706 
10707 		/* Create NVME LS Work Queue */
10708 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10709 					      phba->sli4_hba.wq_esize,
10710 					      phba->sli4_hba.wq_ecount, cpu);
10711 		if (!qdesc) {
10712 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10713 					"6080 Failed allocate NVME LS WQ\n");
10714 			goto out_error;
10715 		}
10716 		qdesc->chann = cpu;
10717 		phba->sli4_hba.nvmels_wq = qdesc;
10718 		list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10719 	}
10720 
10721 	/*
10722 	 * Create Receive Queue (RQ)
10723 	 */
10724 
10725 	/* Create Receive Queue for header */
10726 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10727 				      phba->sli4_hba.rq_esize,
10728 				      phba->sli4_hba.rq_ecount, cpu);
10729 	if (!qdesc) {
10730 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10731 				"0506 Failed allocate receive HRQ\n");
10732 		goto out_error;
10733 	}
10734 	phba->sli4_hba.hdr_rq = qdesc;
10735 
10736 	/* Create Receive Queue for data */
10737 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10738 				      phba->sli4_hba.rq_esize,
10739 				      phba->sli4_hba.rq_ecount, cpu);
10740 	if (!qdesc) {
10741 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10742 				"0507 Failed allocate receive DRQ\n");
10743 		goto out_error;
10744 	}
10745 	phba->sli4_hba.dat_rq = qdesc;
10746 
10747 	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
10748 	    phba->nvmet_support) {
10749 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10750 			cpu = lpfc_find_cpu_handle(phba, idx,
10751 						   LPFC_FIND_BY_HDWQ);
10752 			/* Create NVMET Receive Queue for header */
10753 			qdesc = lpfc_sli4_queue_alloc(phba,
10754 						      LPFC_DEFAULT_PAGE_SIZE,
10755 						      phba->sli4_hba.rq_esize,
10756 						      LPFC_NVMET_RQE_DEF_COUNT,
10757 						      cpu);
10758 			if (!qdesc) {
10759 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10760 						"3146 Failed allocate "
10761 						"receive HRQ\n");
10762 				goto out_error;
10763 			}
10764 			qdesc->hdwq = idx;
10765 			phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc;
10766 
10767 			/* Only needed for header of RQ pair */
10768 			qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp),
10769 						   GFP_KERNEL,
10770 						   cpu_to_node(cpu));
10771 			if (qdesc->rqbp == NULL) {
10772 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10773 						"6131 Failed allocate "
10774 						"Header RQBP\n");
10775 				goto out_error;
10776 			}
10777 
10778 			/* Put list in known state in case driver load fails. */
10779 			INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list);
10780 
10781 			/* Create NVMET Receive Queue for data */
10782 			qdesc = lpfc_sli4_queue_alloc(phba,
10783 						      LPFC_DEFAULT_PAGE_SIZE,
10784 						      phba->sli4_hba.rq_esize,
10785 						      LPFC_NVMET_RQE_DEF_COUNT,
10786 						      cpu);
10787 			if (!qdesc) {
10788 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10789 						"3156 Failed allocate "
10790 						"receive DRQ\n");
10791 				goto out_error;
10792 			}
10793 			qdesc->hdwq = idx;
10794 			phba->sli4_hba.nvmet_mrq_data[idx] = qdesc;
10795 		}
10796 	}
10797 
10798 	/* Clear NVME stats */
10799 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10800 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10801 			memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0,
10802 			       sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat));
10803 		}
10804 	}
10805 
10806 	/* Clear SCSI stats */
10807 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
10808 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10809 			memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0,
10810 			       sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat));
10811 		}
10812 	}
10813 
10814 	return 0;
10815 
10816 out_error:
10817 	lpfc_sli4_queue_destroy(phba);
10818 	return -ENOMEM;
10819 }
10820 
10821 static inline void
__lpfc_sli4_release_queue(struct lpfc_queue ** qp)10822 __lpfc_sli4_release_queue(struct lpfc_queue **qp)
10823 {
10824 	if (*qp != NULL) {
10825 		lpfc_sli4_queue_free(*qp);
10826 		*qp = NULL;
10827 	}
10828 }
10829 
10830 static inline void
lpfc_sli4_release_queues(struct lpfc_queue *** qs,int max)10831 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max)
10832 {
10833 	int idx;
10834 
10835 	if (*qs == NULL)
10836 		return;
10837 
10838 	for (idx = 0; idx < max; idx++)
10839 		__lpfc_sli4_release_queue(&(*qs)[idx]);
10840 
10841 	kfree(*qs);
10842 	*qs = NULL;
10843 }
10844 
10845 static inline void
lpfc_sli4_release_hdwq(struct lpfc_hba * phba)10846 lpfc_sli4_release_hdwq(struct lpfc_hba *phba)
10847 {
10848 	struct lpfc_sli4_hdw_queue *hdwq;
10849 	struct lpfc_queue *eq;
10850 	uint32_t idx;
10851 
10852 	hdwq = phba->sli4_hba.hdwq;
10853 
10854 	/* Loop thru all Hardware Queues */
10855 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10856 		/* Free the CQ/WQ corresponding to the Hardware Queue */
10857 		lpfc_sli4_queue_free(hdwq[idx].io_cq);
10858 		lpfc_sli4_queue_free(hdwq[idx].io_wq);
10859 		hdwq[idx].hba_eq = NULL;
10860 		hdwq[idx].io_cq = NULL;
10861 		hdwq[idx].io_wq = NULL;
10862 		if (phba->cfg_xpsgl && !phba->nvmet_support)
10863 			lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]);
10864 		lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]);
10865 	}
10866 	/* Loop thru all IRQ vectors */
10867 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
10868 		/* Free the EQ corresponding to the IRQ vector */
10869 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
10870 		lpfc_sli4_queue_free(eq);
10871 		phba->sli4_hba.hba_eq_hdl[idx].eq = NULL;
10872 	}
10873 }
10874 
10875 /**
10876  * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues
10877  * @phba: pointer to lpfc hba data structure.
10878  *
10879  * This routine is invoked to release all the SLI4 queues with the FCoE HBA
10880  * operation.
10881  *
10882  * Return codes
10883  *      0 - successful
10884  *      -ENOMEM - No available memory
10885  *      -EIO - The mailbox failed to complete successfully.
10886  **/
10887 void
lpfc_sli4_queue_destroy(struct lpfc_hba * phba)10888 lpfc_sli4_queue_destroy(struct lpfc_hba *phba)
10889 {
10890 	/*
10891 	 * Set FREE_INIT before beginning to free the queues.
10892 	 * Wait until the users of queues to acknowledge to
10893 	 * release queues by clearing FREE_WAIT.
10894 	 */
10895 	spin_lock_irq(&phba->hbalock);
10896 	phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT;
10897 	while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) {
10898 		spin_unlock_irq(&phba->hbalock);
10899 		msleep(20);
10900 		spin_lock_irq(&phba->hbalock);
10901 	}
10902 	spin_unlock_irq(&phba->hbalock);
10903 
10904 	lpfc_sli4_cleanup_poll_list(phba);
10905 
10906 	/* Release HBA eqs */
10907 	if (phba->sli4_hba.hdwq)
10908 		lpfc_sli4_release_hdwq(phba);
10909 
10910 	if (phba->nvmet_support) {
10911 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset,
10912 					 phba->cfg_nvmet_mrq);
10913 
10914 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr,
10915 					 phba->cfg_nvmet_mrq);
10916 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data,
10917 					 phba->cfg_nvmet_mrq);
10918 	}
10919 
10920 	/* Release mailbox command work queue */
10921 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq);
10922 
10923 	/* Release ELS work queue */
10924 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_wq);
10925 
10926 	/* Release ELS work queue */
10927 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq);
10928 
10929 	/* Release unsolicited receive queue */
10930 	__lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq);
10931 	__lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq);
10932 
10933 	/* Release ELS complete queue */
10934 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_cq);
10935 
10936 	/* Release NVME LS complete queue */
10937 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq);
10938 
10939 	/* Release mailbox command complete queue */
10940 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq);
10941 
10942 	/* Everything on this list has been freed */
10943 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10944 
10945 	/* Done with freeing the queues */
10946 	spin_lock_irq(&phba->hbalock);
10947 	phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT;
10948 	spin_unlock_irq(&phba->hbalock);
10949 }
10950 
10951 int
lpfc_free_rq_buffer(struct lpfc_hba * phba,struct lpfc_queue * rq)10952 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq)
10953 {
10954 	struct lpfc_rqb *rqbp;
10955 	struct lpfc_dmabuf *h_buf;
10956 	struct rqb_dmabuf *rqb_buffer;
10957 
10958 	rqbp = rq->rqbp;
10959 	while (!list_empty(&rqbp->rqb_buffer_list)) {
10960 		list_remove_head(&rqbp->rqb_buffer_list, h_buf,
10961 				 struct lpfc_dmabuf, list);
10962 
10963 		rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf);
10964 		(rqbp->rqb_free_buffer)(phba, rqb_buffer);
10965 		rqbp->buffer_count--;
10966 	}
10967 	return 1;
10968 }
10969 
10970 static int
lpfc_create_wq_cq(struct lpfc_hba * phba,struct lpfc_queue * eq,struct lpfc_queue * cq,struct lpfc_queue * wq,uint16_t * cq_map,int qidx,uint32_t qtype)10971 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq,
10972 	struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map,
10973 	int qidx, uint32_t qtype)
10974 {
10975 	struct lpfc_sli_ring *pring;
10976 	int rc;
10977 
10978 	if (!eq || !cq || !wq) {
10979 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10980 			"6085 Fast-path %s (%d) not allocated\n",
10981 			((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx);
10982 		return -ENOMEM;
10983 	}
10984 
10985 	/* create the Cq first */
10986 	rc = lpfc_cq_create(phba, cq, eq,
10987 			(qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype);
10988 	if (rc) {
10989 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10990 				"6086 Failed setup of CQ (%d), rc = 0x%x\n",
10991 				qidx, (uint32_t)rc);
10992 		return rc;
10993 	}
10994 
10995 	if (qtype != LPFC_MBOX) {
10996 		/* Setup cq_map for fast lookup */
10997 		if (cq_map)
10998 			*cq_map = cq->queue_id;
10999 
11000 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11001 			"6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n",
11002 			qidx, cq->queue_id, qidx, eq->queue_id);
11003 
11004 		/* create the wq */
11005 		rc = lpfc_wq_create(phba, wq, cq, qtype);
11006 		if (rc) {
11007 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11008 				"4618 Fail setup fastpath WQ (%d), rc = 0x%x\n",
11009 				qidx, (uint32_t)rc);
11010 			/* no need to tear down cq - caller will do so */
11011 			return rc;
11012 		}
11013 
11014 		/* Bind this CQ/WQ to the NVME ring */
11015 		pring = wq->pring;
11016 		pring->sli.sli4.wqp = (void *)wq;
11017 		cq->pring = pring;
11018 
11019 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11020 			"2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n",
11021 			qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id);
11022 	} else {
11023 		rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX);
11024 		if (rc) {
11025 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11026 					"0539 Failed setup of slow-path MQ: "
11027 					"rc = 0x%x\n", rc);
11028 			/* no need to tear down cq - caller will do so */
11029 			return rc;
11030 		}
11031 
11032 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11033 			"2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n",
11034 			phba->sli4_hba.mbx_wq->queue_id,
11035 			phba->sli4_hba.mbx_cq->queue_id);
11036 	}
11037 
11038 	return 0;
11039 }
11040 
11041 /**
11042  * lpfc_setup_cq_lookup - Setup the CQ lookup table
11043  * @phba: pointer to lpfc hba data structure.
11044  *
11045  * This routine will populate the cq_lookup table by all
11046  * available CQ queue_id's.
11047  **/
11048 static void
lpfc_setup_cq_lookup(struct lpfc_hba * phba)11049 lpfc_setup_cq_lookup(struct lpfc_hba *phba)
11050 {
11051 	struct lpfc_queue *eq, *childq;
11052 	int qidx;
11053 
11054 	memset(phba->sli4_hba.cq_lookup, 0,
11055 	       (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1)));
11056 	/* Loop thru all IRQ vectors */
11057 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11058 		/* Get the EQ corresponding to the IRQ vector */
11059 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11060 		if (!eq)
11061 			continue;
11062 		/* Loop through all CQs associated with that EQ */
11063 		list_for_each_entry(childq, &eq->child_list, list) {
11064 			if (childq->queue_id > phba->sli4_hba.cq_max)
11065 				continue;
11066 			if (childq->subtype == LPFC_IO)
11067 				phba->sli4_hba.cq_lookup[childq->queue_id] =
11068 					childq;
11069 		}
11070 	}
11071 }
11072 
11073 /**
11074  * lpfc_sli4_queue_setup - Set up all the SLI4 queues
11075  * @phba: pointer to lpfc hba data structure.
11076  *
11077  * This routine is invoked to set up all the SLI4 queues for the FCoE HBA
11078  * operation.
11079  *
11080  * Return codes
11081  *      0 - successful
11082  *      -ENOMEM - No available memory
11083  *      -EIO - The mailbox failed to complete successfully.
11084  **/
11085 int
lpfc_sli4_queue_setup(struct lpfc_hba * phba)11086 lpfc_sli4_queue_setup(struct lpfc_hba *phba)
11087 {
11088 	uint32_t shdr_status, shdr_add_status;
11089 	union lpfc_sli4_cfg_shdr *shdr;
11090 	struct lpfc_vector_map_info *cpup;
11091 	struct lpfc_sli4_hdw_queue *qp;
11092 	LPFC_MBOXQ_t *mboxq;
11093 	int qidx, cpu;
11094 	uint32_t length, usdelay;
11095 	int rc = -ENOMEM;
11096 
11097 	/* Check for dual-ULP support */
11098 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
11099 	if (!mboxq) {
11100 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11101 				"3249 Unable to allocate memory for "
11102 				"QUERY_FW_CFG mailbox command\n");
11103 		return -ENOMEM;
11104 	}
11105 	length = (sizeof(struct lpfc_mbx_query_fw_config) -
11106 		  sizeof(struct lpfc_sli4_cfg_mhdr));
11107 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11108 			 LPFC_MBOX_OPCODE_QUERY_FW_CFG,
11109 			 length, LPFC_SLI4_MBX_EMBED);
11110 
11111 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11112 
11113 	shdr = (union lpfc_sli4_cfg_shdr *)
11114 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11115 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11116 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
11117 	if (shdr_status || shdr_add_status || rc) {
11118 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11119 				"3250 QUERY_FW_CFG mailbox failed with status "
11120 				"x%x add_status x%x, mbx status x%x\n",
11121 				shdr_status, shdr_add_status, rc);
11122 		mempool_free(mboxq, phba->mbox_mem_pool);
11123 		rc = -ENXIO;
11124 		goto out_error;
11125 	}
11126 
11127 	phba->sli4_hba.fw_func_mode =
11128 			mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode;
11129 	phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode;
11130 	phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode;
11131 	phba->sli4_hba.physical_port =
11132 			mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port;
11133 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11134 			"3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, "
11135 			"ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode,
11136 			phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode);
11137 
11138 	mempool_free(mboxq, phba->mbox_mem_pool);
11139 
11140 	/*
11141 	 * Set up HBA Event Queues (EQs)
11142 	 */
11143 	qp = phba->sli4_hba.hdwq;
11144 
11145 	/* Set up HBA event queue */
11146 	if (!qp) {
11147 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11148 				"3147 Fast-path EQs not allocated\n");
11149 		rc = -ENOMEM;
11150 		goto out_error;
11151 	}
11152 
11153 	/* Loop thru all IRQ vectors */
11154 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11155 		/* Create HBA Event Queues (EQs) in order */
11156 		for_each_present_cpu(cpu) {
11157 			cpup = &phba->sli4_hba.cpu_map[cpu];
11158 
11159 			/* Look for the CPU thats using that vector with
11160 			 * LPFC_CPU_FIRST_IRQ set.
11161 			 */
11162 			if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
11163 				continue;
11164 			if (qidx != cpup->eq)
11165 				continue;
11166 
11167 			/* Create an EQ for that vector */
11168 			rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq,
11169 					    phba->cfg_fcp_imax);
11170 			if (rc) {
11171 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11172 						"0523 Failed setup of fast-path"
11173 						" EQ (%d), rc = 0x%x\n",
11174 						cpup->eq, (uint32_t)rc);
11175 				goto out_destroy;
11176 			}
11177 
11178 			/* Save the EQ for that vector in the hba_eq_hdl */
11179 			phba->sli4_hba.hba_eq_hdl[cpup->eq].eq =
11180 				qp[cpup->hdwq].hba_eq;
11181 
11182 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11183 					"2584 HBA EQ setup: queue[%d]-id=%d\n",
11184 					cpup->eq,
11185 					qp[cpup->hdwq].hba_eq->queue_id);
11186 		}
11187 	}
11188 
11189 	/* Loop thru all Hardware Queues */
11190 	for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11191 		cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ);
11192 		cpup = &phba->sli4_hba.cpu_map[cpu];
11193 
11194 		/* Create the CQ/WQ corresponding to the Hardware Queue */
11195 		rc = lpfc_create_wq_cq(phba,
11196 				       phba->sli4_hba.hdwq[cpup->hdwq].hba_eq,
11197 				       qp[qidx].io_cq,
11198 				       qp[qidx].io_wq,
11199 				       &phba->sli4_hba.hdwq[qidx].io_cq_map,
11200 				       qidx,
11201 				       LPFC_IO);
11202 		if (rc) {
11203 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11204 					"0535 Failed to setup fastpath "
11205 					"IO WQ/CQ (%d), rc = 0x%x\n",
11206 					qidx, (uint32_t)rc);
11207 			goto out_destroy;
11208 		}
11209 	}
11210 
11211 	/*
11212 	 * Set up Slow Path Complete Queues (CQs)
11213 	 */
11214 
11215 	/* Set up slow-path MBOX CQ/MQ */
11216 
11217 	if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) {
11218 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11219 				"0528 %s not allocated\n",
11220 				phba->sli4_hba.mbx_cq ?
11221 				"Mailbox WQ" : "Mailbox CQ");
11222 		rc = -ENOMEM;
11223 		goto out_destroy;
11224 	}
11225 
11226 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11227 			       phba->sli4_hba.mbx_cq,
11228 			       phba->sli4_hba.mbx_wq,
11229 			       NULL, 0, LPFC_MBOX);
11230 	if (rc) {
11231 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11232 			"0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n",
11233 			(uint32_t)rc);
11234 		goto out_destroy;
11235 	}
11236 	if (phba->nvmet_support) {
11237 		if (!phba->sli4_hba.nvmet_cqset) {
11238 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11239 					"3165 Fast-path NVME CQ Set "
11240 					"array not allocated\n");
11241 			rc = -ENOMEM;
11242 			goto out_destroy;
11243 		}
11244 		if (phba->cfg_nvmet_mrq > 1) {
11245 			rc = lpfc_cq_create_set(phba,
11246 					phba->sli4_hba.nvmet_cqset,
11247 					qp,
11248 					LPFC_WCQ, LPFC_NVMET);
11249 			if (rc) {
11250 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11251 						"3164 Failed setup of NVME CQ "
11252 						"Set, rc = 0x%x\n",
11253 						(uint32_t)rc);
11254 				goto out_destroy;
11255 			}
11256 		} else {
11257 			/* Set up NVMET Receive Complete Queue */
11258 			rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0],
11259 					    qp[0].hba_eq,
11260 					    LPFC_WCQ, LPFC_NVMET);
11261 			if (rc) {
11262 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11263 						"6089 Failed setup NVMET CQ: "
11264 						"rc = 0x%x\n", (uint32_t)rc);
11265 				goto out_destroy;
11266 			}
11267 			phba->sli4_hba.nvmet_cqset[0]->chann = 0;
11268 
11269 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11270 					"6090 NVMET CQ setup: cq-id=%d, "
11271 					"parent eq-id=%d\n",
11272 					phba->sli4_hba.nvmet_cqset[0]->queue_id,
11273 					qp[0].hba_eq->queue_id);
11274 		}
11275 	}
11276 
11277 	/* Set up slow-path ELS WQ/CQ */
11278 	if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) {
11279 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11280 				"0530 ELS %s not allocated\n",
11281 				phba->sli4_hba.els_cq ? "WQ" : "CQ");
11282 		rc = -ENOMEM;
11283 		goto out_destroy;
11284 	}
11285 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11286 			       phba->sli4_hba.els_cq,
11287 			       phba->sli4_hba.els_wq,
11288 			       NULL, 0, LPFC_ELS);
11289 	if (rc) {
11290 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11291 				"0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n",
11292 				(uint32_t)rc);
11293 		goto out_destroy;
11294 	}
11295 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11296 			"2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n",
11297 			phba->sli4_hba.els_wq->queue_id,
11298 			phba->sli4_hba.els_cq->queue_id);
11299 
11300 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11301 		/* Set up NVME LS Complete Queue */
11302 		if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) {
11303 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11304 					"6091 LS %s not allocated\n",
11305 					phba->sli4_hba.nvmels_cq ? "WQ" : "CQ");
11306 			rc = -ENOMEM;
11307 			goto out_destroy;
11308 		}
11309 		rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11310 				       phba->sli4_hba.nvmels_cq,
11311 				       phba->sli4_hba.nvmels_wq,
11312 				       NULL, 0, LPFC_NVME_LS);
11313 		if (rc) {
11314 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11315 					"0526 Failed setup of NVVME LS WQ/CQ: "
11316 					"rc = 0x%x\n", (uint32_t)rc);
11317 			goto out_destroy;
11318 		}
11319 
11320 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11321 				"6096 ELS WQ setup: wq-id=%d, "
11322 				"parent cq-id=%d\n",
11323 				phba->sli4_hba.nvmels_wq->queue_id,
11324 				phba->sli4_hba.nvmels_cq->queue_id);
11325 	}
11326 
11327 	/*
11328 	 * Create NVMET Receive Queue (RQ)
11329 	 */
11330 	if (phba->nvmet_support) {
11331 		if ((!phba->sli4_hba.nvmet_cqset) ||
11332 		    (!phba->sli4_hba.nvmet_mrq_hdr) ||
11333 		    (!phba->sli4_hba.nvmet_mrq_data)) {
11334 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11335 					"6130 MRQ CQ Queues not "
11336 					"allocated\n");
11337 			rc = -ENOMEM;
11338 			goto out_destroy;
11339 		}
11340 		if (phba->cfg_nvmet_mrq > 1) {
11341 			rc = lpfc_mrq_create(phba,
11342 					     phba->sli4_hba.nvmet_mrq_hdr,
11343 					     phba->sli4_hba.nvmet_mrq_data,
11344 					     phba->sli4_hba.nvmet_cqset,
11345 					     LPFC_NVMET);
11346 			if (rc) {
11347 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11348 						"6098 Failed setup of NVMET "
11349 						"MRQ: rc = 0x%x\n",
11350 						(uint32_t)rc);
11351 				goto out_destroy;
11352 			}
11353 
11354 		} else {
11355 			rc = lpfc_rq_create(phba,
11356 					    phba->sli4_hba.nvmet_mrq_hdr[0],
11357 					    phba->sli4_hba.nvmet_mrq_data[0],
11358 					    phba->sli4_hba.nvmet_cqset[0],
11359 					    LPFC_NVMET);
11360 			if (rc) {
11361 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11362 						"6057 Failed setup of NVMET "
11363 						"Receive Queue: rc = 0x%x\n",
11364 						(uint32_t)rc);
11365 				goto out_destroy;
11366 			}
11367 
11368 			lpfc_printf_log(
11369 				phba, KERN_INFO, LOG_INIT,
11370 				"6099 NVMET RQ setup: hdr-rq-id=%d, "
11371 				"dat-rq-id=%d parent cq-id=%d\n",
11372 				phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id,
11373 				phba->sli4_hba.nvmet_mrq_data[0]->queue_id,
11374 				phba->sli4_hba.nvmet_cqset[0]->queue_id);
11375 
11376 		}
11377 	}
11378 
11379 	if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) {
11380 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11381 				"0540 Receive Queue not allocated\n");
11382 		rc = -ENOMEM;
11383 		goto out_destroy;
11384 	}
11385 
11386 	rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
11387 			    phba->sli4_hba.els_cq, LPFC_USOL);
11388 	if (rc) {
11389 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11390 				"0541 Failed setup of Receive Queue: "
11391 				"rc = 0x%x\n", (uint32_t)rc);
11392 		goto out_destroy;
11393 	}
11394 
11395 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11396 			"2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d "
11397 			"parent cq-id=%d\n",
11398 			phba->sli4_hba.hdr_rq->queue_id,
11399 			phba->sli4_hba.dat_rq->queue_id,
11400 			phba->sli4_hba.els_cq->queue_id);
11401 
11402 	if (phba->cfg_fcp_imax)
11403 		usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax;
11404 	else
11405 		usdelay = 0;
11406 
11407 	for (qidx = 0; qidx < phba->cfg_irq_chann;
11408 	     qidx += LPFC_MAX_EQ_DELAY_EQID_CNT)
11409 		lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT,
11410 					 usdelay);
11411 
11412 	if (phba->sli4_hba.cq_max) {
11413 		kfree(phba->sli4_hba.cq_lookup);
11414 		phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1),
11415 			sizeof(struct lpfc_queue *), GFP_KERNEL);
11416 		if (!phba->sli4_hba.cq_lookup) {
11417 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11418 					"0549 Failed setup of CQ Lookup table: "
11419 					"size 0x%x\n", phba->sli4_hba.cq_max);
11420 			rc = -ENOMEM;
11421 			goto out_destroy;
11422 		}
11423 		lpfc_setup_cq_lookup(phba);
11424 	}
11425 	return 0;
11426 
11427 out_destroy:
11428 	lpfc_sli4_queue_unset(phba);
11429 out_error:
11430 	return rc;
11431 }
11432 
11433 /**
11434  * lpfc_sli4_queue_unset - Unset all the SLI4 queues
11435  * @phba: pointer to lpfc hba data structure.
11436  *
11437  * This routine is invoked to unset all the SLI4 queues with the FCoE HBA
11438  * operation.
11439  *
11440  * Return codes
11441  *      0 - successful
11442  *      -ENOMEM - No available memory
11443  *      -EIO - The mailbox failed to complete successfully.
11444  **/
11445 void
lpfc_sli4_queue_unset(struct lpfc_hba * phba)11446 lpfc_sli4_queue_unset(struct lpfc_hba *phba)
11447 {
11448 	struct lpfc_sli4_hdw_queue *qp;
11449 	struct lpfc_queue *eq;
11450 	int qidx;
11451 
11452 	/* Unset mailbox command work queue */
11453 	if (phba->sli4_hba.mbx_wq)
11454 		lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq);
11455 
11456 	/* Unset NVME LS work queue */
11457 	if (phba->sli4_hba.nvmels_wq)
11458 		lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq);
11459 
11460 	/* Unset ELS work queue */
11461 	if (phba->sli4_hba.els_wq)
11462 		lpfc_wq_destroy(phba, phba->sli4_hba.els_wq);
11463 
11464 	/* Unset unsolicited receive queue */
11465 	if (phba->sli4_hba.hdr_rq)
11466 		lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq,
11467 				phba->sli4_hba.dat_rq);
11468 
11469 	/* Unset mailbox command complete queue */
11470 	if (phba->sli4_hba.mbx_cq)
11471 		lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq);
11472 
11473 	/* Unset ELS complete queue */
11474 	if (phba->sli4_hba.els_cq)
11475 		lpfc_cq_destroy(phba, phba->sli4_hba.els_cq);
11476 
11477 	/* Unset NVME LS complete queue */
11478 	if (phba->sli4_hba.nvmels_cq)
11479 		lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq);
11480 
11481 	if (phba->nvmet_support) {
11482 		/* Unset NVMET MRQ queue */
11483 		if (phba->sli4_hba.nvmet_mrq_hdr) {
11484 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11485 				lpfc_rq_destroy(
11486 					phba,
11487 					phba->sli4_hba.nvmet_mrq_hdr[qidx],
11488 					phba->sli4_hba.nvmet_mrq_data[qidx]);
11489 		}
11490 
11491 		/* Unset NVMET CQ Set complete queue */
11492 		if (phba->sli4_hba.nvmet_cqset) {
11493 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11494 				lpfc_cq_destroy(
11495 					phba, phba->sli4_hba.nvmet_cqset[qidx]);
11496 		}
11497 	}
11498 
11499 	/* Unset fast-path SLI4 queues */
11500 	if (phba->sli4_hba.hdwq) {
11501 		/* Loop thru all Hardware Queues */
11502 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11503 			/* Destroy the CQ/WQ corresponding to Hardware Queue */
11504 			qp = &phba->sli4_hba.hdwq[qidx];
11505 			lpfc_wq_destroy(phba, qp->io_wq);
11506 			lpfc_cq_destroy(phba, qp->io_cq);
11507 		}
11508 		/* Loop thru all IRQ vectors */
11509 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11510 			/* Destroy the EQ corresponding to the IRQ vector */
11511 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11512 			lpfc_eq_destroy(phba, eq);
11513 		}
11514 	}
11515 
11516 	kfree(phba->sli4_hba.cq_lookup);
11517 	phba->sli4_hba.cq_lookup = NULL;
11518 	phba->sli4_hba.cq_max = 0;
11519 }
11520 
11521 /**
11522  * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool
11523  * @phba: pointer to lpfc hba data structure.
11524  *
11525  * This routine is invoked to allocate and set up a pool of completion queue
11526  * events. The body of the completion queue event is a completion queue entry
11527  * CQE. For now, this pool is used for the interrupt service routine to queue
11528  * the following HBA completion queue events for the worker thread to process:
11529  *   - Mailbox asynchronous events
11530  *   - Receive queue completion unsolicited events
11531  * Later, this can be used for all the slow-path events.
11532  *
11533  * Return codes
11534  *      0 - successful
11535  *      -ENOMEM - No available memory
11536  **/
11537 static int
lpfc_sli4_cq_event_pool_create(struct lpfc_hba * phba)11538 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba)
11539 {
11540 	struct lpfc_cq_event *cq_event;
11541 	int i;
11542 
11543 	for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) {
11544 		cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL);
11545 		if (!cq_event)
11546 			goto out_pool_create_fail;
11547 		list_add_tail(&cq_event->list,
11548 			      &phba->sli4_hba.sp_cqe_event_pool);
11549 	}
11550 	return 0;
11551 
11552 out_pool_create_fail:
11553 	lpfc_sli4_cq_event_pool_destroy(phba);
11554 	return -ENOMEM;
11555 }
11556 
11557 /**
11558  * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool
11559  * @phba: pointer to lpfc hba data structure.
11560  *
11561  * This routine is invoked to free the pool of completion queue events at
11562  * driver unload time. Note that, it is the responsibility of the driver
11563  * cleanup routine to free all the outstanding completion-queue events
11564  * allocated from this pool back into the pool before invoking this routine
11565  * to destroy the pool.
11566  **/
11567 static void
lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba * phba)11568 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba)
11569 {
11570 	struct lpfc_cq_event *cq_event, *next_cq_event;
11571 
11572 	list_for_each_entry_safe(cq_event, next_cq_event,
11573 				 &phba->sli4_hba.sp_cqe_event_pool, list) {
11574 		list_del(&cq_event->list);
11575 		kfree(cq_event);
11576 	}
11577 }
11578 
11579 /**
11580  * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11581  * @phba: pointer to lpfc hba data structure.
11582  *
11583  * This routine is the lock free version of the API invoked to allocate a
11584  * completion-queue event from the free pool.
11585  *
11586  * Return: Pointer to the newly allocated completion-queue event if successful
11587  *         NULL otherwise.
11588  **/
11589 struct lpfc_cq_event *
__lpfc_sli4_cq_event_alloc(struct lpfc_hba * phba)11590 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11591 {
11592 	struct lpfc_cq_event *cq_event = NULL;
11593 
11594 	list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event,
11595 			 struct lpfc_cq_event, list);
11596 	return cq_event;
11597 }
11598 
11599 /**
11600  * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11601  * @phba: pointer to lpfc hba data structure.
11602  *
11603  * This routine is the lock version of the API invoked to allocate a
11604  * completion-queue event from the free pool.
11605  *
11606  * Return: Pointer to the newly allocated completion-queue event if successful
11607  *         NULL otherwise.
11608  **/
11609 struct lpfc_cq_event *
lpfc_sli4_cq_event_alloc(struct lpfc_hba * phba)11610 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11611 {
11612 	struct lpfc_cq_event *cq_event;
11613 	unsigned long iflags;
11614 
11615 	spin_lock_irqsave(&phba->hbalock, iflags);
11616 	cq_event = __lpfc_sli4_cq_event_alloc(phba);
11617 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11618 	return cq_event;
11619 }
11620 
11621 /**
11622  * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11623  * @phba: pointer to lpfc hba data structure.
11624  * @cq_event: pointer to the completion queue event to be freed.
11625  *
11626  * This routine is the lock free version of the API invoked to release a
11627  * completion-queue event back into the free pool.
11628  **/
11629 void
__lpfc_sli4_cq_event_release(struct lpfc_hba * phba,struct lpfc_cq_event * cq_event)11630 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11631 			     struct lpfc_cq_event *cq_event)
11632 {
11633 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool);
11634 }
11635 
11636 /**
11637  * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11638  * @phba: pointer to lpfc hba data structure.
11639  * @cq_event: pointer to the completion queue event to be freed.
11640  *
11641  * This routine is the lock version of the API invoked to release a
11642  * completion-queue event back into the free pool.
11643  **/
11644 void
lpfc_sli4_cq_event_release(struct lpfc_hba * phba,struct lpfc_cq_event * cq_event)11645 lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11646 			   struct lpfc_cq_event *cq_event)
11647 {
11648 	unsigned long iflags;
11649 	spin_lock_irqsave(&phba->hbalock, iflags);
11650 	__lpfc_sli4_cq_event_release(phba, cq_event);
11651 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11652 }
11653 
11654 /**
11655  * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool
11656  * @phba: pointer to lpfc hba data structure.
11657  *
11658  * This routine is to free all the pending completion-queue events to the
11659  * back into the free pool for device reset.
11660  **/
11661 static void
lpfc_sli4_cq_event_release_all(struct lpfc_hba * phba)11662 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba)
11663 {
11664 	LIST_HEAD(cq_event_list);
11665 	struct lpfc_cq_event *cq_event;
11666 	unsigned long iflags;
11667 
11668 	/* Retrieve all the pending WCQEs from pending WCQE lists */
11669 
11670 	/* Pending ELS XRI abort events */
11671 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11672 	list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
11673 			 &cq_event_list);
11674 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11675 
11676 	/* Pending asynnc events */
11677 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
11678 	list_splice_init(&phba->sli4_hba.sp_asynce_work_queue,
11679 			 &cq_event_list);
11680 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
11681 
11682 	while (!list_empty(&cq_event_list)) {
11683 		list_remove_head(&cq_event_list, cq_event,
11684 				 struct lpfc_cq_event, list);
11685 		lpfc_sli4_cq_event_release(phba, cq_event);
11686 	}
11687 }
11688 
11689 /**
11690  * lpfc_pci_function_reset - Reset pci function.
11691  * @phba: pointer to lpfc hba data structure.
11692  *
11693  * This routine is invoked to request a PCI function reset. It will destroys
11694  * all resources assigned to the PCI function which originates this request.
11695  *
11696  * Return codes
11697  *      0 - successful
11698  *      -ENOMEM - No available memory
11699  *      -EIO - The mailbox failed to complete successfully.
11700  **/
11701 int
lpfc_pci_function_reset(struct lpfc_hba * phba)11702 lpfc_pci_function_reset(struct lpfc_hba *phba)
11703 {
11704 	LPFC_MBOXQ_t *mboxq;
11705 	uint32_t rc = 0, if_type;
11706 	uint32_t shdr_status, shdr_add_status;
11707 	uint32_t rdy_chk;
11708 	uint32_t port_reset = 0;
11709 	union lpfc_sli4_cfg_shdr *shdr;
11710 	struct lpfc_register reg_data;
11711 	uint16_t devid;
11712 
11713 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11714 	switch (if_type) {
11715 	case LPFC_SLI_INTF_IF_TYPE_0:
11716 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
11717 						       GFP_KERNEL);
11718 		if (!mboxq) {
11719 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11720 					"0494 Unable to allocate memory for "
11721 					"issuing SLI_FUNCTION_RESET mailbox "
11722 					"command\n");
11723 			return -ENOMEM;
11724 		}
11725 
11726 		/* Setup PCI function reset mailbox-ioctl command */
11727 		lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11728 				 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0,
11729 				 LPFC_SLI4_MBX_EMBED);
11730 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11731 		shdr = (union lpfc_sli4_cfg_shdr *)
11732 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11733 		shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11734 		shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
11735 					 &shdr->response);
11736 		mempool_free(mboxq, phba->mbox_mem_pool);
11737 		if (shdr_status || shdr_add_status || rc) {
11738 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11739 					"0495 SLI_FUNCTION_RESET mailbox "
11740 					"failed with status x%x add_status x%x,"
11741 					" mbx status x%x\n",
11742 					shdr_status, shdr_add_status, rc);
11743 			rc = -ENXIO;
11744 		}
11745 		break;
11746 	case LPFC_SLI_INTF_IF_TYPE_2:
11747 	case LPFC_SLI_INTF_IF_TYPE_6:
11748 wait:
11749 		/*
11750 		 * Poll the Port Status Register and wait for RDY for
11751 		 * up to 30 seconds. If the port doesn't respond, treat
11752 		 * it as an error.
11753 		 */
11754 		for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) {
11755 			if (lpfc_readl(phba->sli4_hba.u.if_type2.
11756 				STATUSregaddr, &reg_data.word0)) {
11757 				rc = -ENODEV;
11758 				goto out;
11759 			}
11760 			if (bf_get(lpfc_sliport_status_rdy, &reg_data))
11761 				break;
11762 			msleep(20);
11763 		}
11764 
11765 		if (!bf_get(lpfc_sliport_status_rdy, &reg_data)) {
11766 			phba->work_status[0] = readl(
11767 				phba->sli4_hba.u.if_type2.ERR1regaddr);
11768 			phba->work_status[1] = readl(
11769 				phba->sli4_hba.u.if_type2.ERR2regaddr);
11770 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11771 					"2890 Port not ready, port status reg "
11772 					"0x%x error 1=0x%x, error 2=0x%x\n",
11773 					reg_data.word0,
11774 					phba->work_status[0],
11775 					phba->work_status[1]);
11776 			rc = -ENODEV;
11777 			goto out;
11778 		}
11779 
11780 		if (bf_get(lpfc_sliport_status_pldv, &reg_data))
11781 			lpfc_pldv_detect = true;
11782 
11783 		if (!port_reset) {
11784 			/*
11785 			 * Reset the port now
11786 			 */
11787 			reg_data.word0 = 0;
11788 			bf_set(lpfc_sliport_ctrl_end, &reg_data,
11789 			       LPFC_SLIPORT_LITTLE_ENDIAN);
11790 			bf_set(lpfc_sliport_ctrl_ip, &reg_data,
11791 			       LPFC_SLIPORT_INIT_PORT);
11792 			writel(reg_data.word0, phba->sli4_hba.u.if_type2.
11793 			       CTRLregaddr);
11794 			/* flush */
11795 			pci_read_config_word(phba->pcidev,
11796 					     PCI_DEVICE_ID, &devid);
11797 
11798 			port_reset = 1;
11799 			msleep(20);
11800 			goto wait;
11801 		} else if (bf_get(lpfc_sliport_status_rn, &reg_data)) {
11802 			rc = -ENODEV;
11803 			goto out;
11804 		}
11805 		break;
11806 
11807 	case LPFC_SLI_INTF_IF_TYPE_1:
11808 	default:
11809 		break;
11810 	}
11811 
11812 out:
11813 	/* Catch the not-ready port failure after a port reset. */
11814 	if (rc) {
11815 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11816 				"3317 HBA not functional: IP Reset Failed "
11817 				"try: echo fw_reset > board_mode\n");
11818 		rc = -ENODEV;
11819 	}
11820 
11821 	return rc;
11822 }
11823 
11824 /**
11825  * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space.
11826  * @phba: pointer to lpfc hba data structure.
11827  *
11828  * This routine is invoked to set up the PCI device memory space for device
11829  * with SLI-4 interface spec.
11830  *
11831  * Return codes
11832  * 	0 - successful
11833  * 	other values - error
11834  **/
11835 static int
lpfc_sli4_pci_mem_setup(struct lpfc_hba * phba)11836 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba)
11837 {
11838 	struct pci_dev *pdev = phba->pcidev;
11839 	unsigned long bar0map_len, bar1map_len, bar2map_len;
11840 	int error;
11841 	uint32_t if_type;
11842 
11843 	if (!pdev)
11844 		return -ENODEV;
11845 
11846 	/* Set the device DMA mask size */
11847 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11848 	if (error)
11849 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11850 	if (error)
11851 		return error;
11852 
11853 	/*
11854 	 * The BARs and register set definitions and offset locations are
11855 	 * dependent on the if_type.
11856 	 */
11857 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF,
11858 				  &phba->sli4_hba.sli_intf.word0)) {
11859 		return -ENODEV;
11860 	}
11861 
11862 	/* There is no SLI3 failback for SLI4 devices. */
11863 	if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) !=
11864 	    LPFC_SLI_INTF_VALID) {
11865 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11866 				"2894 SLI_INTF reg contents invalid "
11867 				"sli_intf reg 0x%x\n",
11868 				phba->sli4_hba.sli_intf.word0);
11869 		return -ENODEV;
11870 	}
11871 
11872 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11873 	/*
11874 	 * Get the bus address of SLI4 device Bar regions and the
11875 	 * number of bytes required by each mapping. The mapping of the
11876 	 * particular PCI BARs regions is dependent on the type of
11877 	 * SLI4 device.
11878 	 */
11879 	if (pci_resource_start(pdev, PCI_64BIT_BAR0)) {
11880 		phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0);
11881 		bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0);
11882 
11883 		/*
11884 		 * Map SLI4 PCI Config Space Register base to a kernel virtual
11885 		 * addr
11886 		 */
11887 		phba->sli4_hba.conf_regs_memmap_p =
11888 			ioremap(phba->pci_bar0_map, bar0map_len);
11889 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11890 			dev_printk(KERN_ERR, &pdev->dev,
11891 				   "ioremap failed for SLI4 PCI config "
11892 				   "registers.\n");
11893 			return -ENODEV;
11894 		}
11895 		phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p;
11896 		/* Set up BAR0 PCI config space register memory map */
11897 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11898 	} else {
11899 		phba->pci_bar0_map = pci_resource_start(pdev, 1);
11900 		bar0map_len = pci_resource_len(pdev, 1);
11901 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
11902 			dev_printk(KERN_ERR, &pdev->dev,
11903 			   "FATAL - No BAR0 mapping for SLI4, if_type 2\n");
11904 			return -ENODEV;
11905 		}
11906 		phba->sli4_hba.conf_regs_memmap_p =
11907 				ioremap(phba->pci_bar0_map, bar0map_len);
11908 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11909 			dev_printk(KERN_ERR, &pdev->dev,
11910 				"ioremap failed for SLI4 PCI config "
11911 				"registers.\n");
11912 			return -ENODEV;
11913 		}
11914 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11915 	}
11916 
11917 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11918 		if (pci_resource_start(pdev, PCI_64BIT_BAR2)) {
11919 			/*
11920 			 * Map SLI4 if type 0 HBA Control Register base to a
11921 			 * kernel virtual address and setup the registers.
11922 			 */
11923 			phba->pci_bar1_map = pci_resource_start(pdev,
11924 								PCI_64BIT_BAR2);
11925 			bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11926 			phba->sli4_hba.ctrl_regs_memmap_p =
11927 					ioremap(phba->pci_bar1_map,
11928 						bar1map_len);
11929 			if (!phba->sli4_hba.ctrl_regs_memmap_p) {
11930 				dev_err(&pdev->dev,
11931 					   "ioremap failed for SLI4 HBA "
11932 					    "control registers.\n");
11933 				error = -ENOMEM;
11934 				goto out_iounmap_conf;
11935 			}
11936 			phba->pci_bar2_memmap_p =
11937 					 phba->sli4_hba.ctrl_regs_memmap_p;
11938 			lpfc_sli4_bar1_register_memmap(phba, if_type);
11939 		} else {
11940 			error = -ENOMEM;
11941 			goto out_iounmap_conf;
11942 		}
11943 	}
11944 
11945 	if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) &&
11946 	    (pci_resource_start(pdev, PCI_64BIT_BAR2))) {
11947 		/*
11948 		 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel
11949 		 * virtual address and setup the registers.
11950 		 */
11951 		phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2);
11952 		bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11953 		phba->sli4_hba.drbl_regs_memmap_p =
11954 				ioremap(phba->pci_bar1_map, bar1map_len);
11955 		if (!phba->sli4_hba.drbl_regs_memmap_p) {
11956 			dev_err(&pdev->dev,
11957 			   "ioremap failed for SLI4 HBA doorbell registers.\n");
11958 			error = -ENOMEM;
11959 			goto out_iounmap_conf;
11960 		}
11961 		phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p;
11962 		lpfc_sli4_bar1_register_memmap(phba, if_type);
11963 	}
11964 
11965 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11966 		if (pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11967 			/*
11968 			 * Map SLI4 if type 0 HBA Doorbell Register base to
11969 			 * a kernel virtual address and setup the registers.
11970 			 */
11971 			phba->pci_bar2_map = pci_resource_start(pdev,
11972 								PCI_64BIT_BAR4);
11973 			bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11974 			phba->sli4_hba.drbl_regs_memmap_p =
11975 					ioremap(phba->pci_bar2_map,
11976 						bar2map_len);
11977 			if (!phba->sli4_hba.drbl_regs_memmap_p) {
11978 				dev_err(&pdev->dev,
11979 					   "ioremap failed for SLI4 HBA"
11980 					   " doorbell registers.\n");
11981 				error = -ENOMEM;
11982 				goto out_iounmap_ctrl;
11983 			}
11984 			phba->pci_bar4_memmap_p =
11985 					phba->sli4_hba.drbl_regs_memmap_p;
11986 			error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0);
11987 			if (error)
11988 				goto out_iounmap_all;
11989 		} else {
11990 			error = -ENOMEM;
11991 			goto out_iounmap_ctrl;
11992 		}
11993 	}
11994 
11995 	if (if_type == LPFC_SLI_INTF_IF_TYPE_6 &&
11996 	    pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11997 		/*
11998 		 * Map SLI4 if type 6 HBA DPP Register base to a kernel
11999 		 * virtual address and setup the registers.
12000 		 */
12001 		phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4);
12002 		bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
12003 		phba->sli4_hba.dpp_regs_memmap_p =
12004 				ioremap(phba->pci_bar2_map, bar2map_len);
12005 		if (!phba->sli4_hba.dpp_regs_memmap_p) {
12006 			dev_err(&pdev->dev,
12007 			   "ioremap failed for SLI4 HBA dpp registers.\n");
12008 			error = -ENOMEM;
12009 			goto out_iounmap_all;
12010 		}
12011 		phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p;
12012 	}
12013 
12014 	/* Set up the EQ/CQ register handeling functions now */
12015 	switch (if_type) {
12016 	case LPFC_SLI_INTF_IF_TYPE_0:
12017 	case LPFC_SLI_INTF_IF_TYPE_2:
12018 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr;
12019 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db;
12020 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db;
12021 		break;
12022 	case LPFC_SLI_INTF_IF_TYPE_6:
12023 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr;
12024 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db;
12025 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db;
12026 		break;
12027 	default:
12028 		break;
12029 	}
12030 
12031 	return 0;
12032 
12033 out_iounmap_all:
12034 	if (phba->sli4_hba.drbl_regs_memmap_p)
12035 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12036 out_iounmap_ctrl:
12037 	if (phba->sli4_hba.ctrl_regs_memmap_p)
12038 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12039 out_iounmap_conf:
12040 	iounmap(phba->sli4_hba.conf_regs_memmap_p);
12041 
12042 	return error;
12043 }
12044 
12045 /**
12046  * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space.
12047  * @phba: pointer to lpfc hba data structure.
12048  *
12049  * This routine is invoked to unset the PCI device memory space for device
12050  * with SLI-4 interface spec.
12051  **/
12052 static void
lpfc_sli4_pci_mem_unset(struct lpfc_hba * phba)12053 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba)
12054 {
12055 	uint32_t if_type;
12056 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12057 
12058 	switch (if_type) {
12059 	case LPFC_SLI_INTF_IF_TYPE_0:
12060 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12061 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12062 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12063 		break;
12064 	case LPFC_SLI_INTF_IF_TYPE_2:
12065 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12066 		break;
12067 	case LPFC_SLI_INTF_IF_TYPE_6:
12068 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12069 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12070 		if (phba->sli4_hba.dpp_regs_memmap_p)
12071 			iounmap(phba->sli4_hba.dpp_regs_memmap_p);
12072 		break;
12073 	case LPFC_SLI_INTF_IF_TYPE_1:
12074 		break;
12075 	default:
12076 		dev_printk(KERN_ERR, &phba->pcidev->dev,
12077 			   "FATAL - unsupported SLI4 interface type - %d\n",
12078 			   if_type);
12079 		break;
12080 	}
12081 }
12082 
12083 /**
12084  * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device
12085  * @phba: pointer to lpfc hba data structure.
12086  *
12087  * This routine is invoked to enable the MSI-X interrupt vectors to device
12088  * with SLI-3 interface specs.
12089  *
12090  * Return codes
12091  *   0 - successful
12092  *   other values - error
12093  **/
12094 static int
lpfc_sli_enable_msix(struct lpfc_hba * phba)12095 lpfc_sli_enable_msix(struct lpfc_hba *phba)
12096 {
12097 	int rc;
12098 	LPFC_MBOXQ_t *pmb;
12099 
12100 	/* Set up MSI-X multi-message vectors */
12101 	rc = pci_alloc_irq_vectors(phba->pcidev,
12102 			LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX);
12103 	if (rc < 0) {
12104 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12105 				"0420 PCI enable MSI-X failed (%d)\n", rc);
12106 		goto vec_fail_out;
12107 	}
12108 
12109 	/*
12110 	 * Assign MSI-X vectors to interrupt handlers
12111 	 */
12112 
12113 	/* vector-0 is associated to slow-path handler */
12114 	rc = request_irq(pci_irq_vector(phba->pcidev, 0),
12115 			 &lpfc_sli_sp_intr_handler, 0,
12116 			 LPFC_SP_DRIVER_HANDLER_NAME, phba);
12117 	if (rc) {
12118 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12119 				"0421 MSI-X slow-path request_irq failed "
12120 				"(%d)\n", rc);
12121 		goto msi_fail_out;
12122 	}
12123 
12124 	/* vector-1 is associated to fast-path handler */
12125 	rc = request_irq(pci_irq_vector(phba->pcidev, 1),
12126 			 &lpfc_sli_fp_intr_handler, 0,
12127 			 LPFC_FP_DRIVER_HANDLER_NAME, phba);
12128 
12129 	if (rc) {
12130 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12131 				"0429 MSI-X fast-path request_irq failed "
12132 				"(%d)\n", rc);
12133 		goto irq_fail_out;
12134 	}
12135 
12136 	/*
12137 	 * Configure HBA MSI-X attention conditions to messages
12138 	 */
12139 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12140 
12141 	if (!pmb) {
12142 		rc = -ENOMEM;
12143 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12144 				"0474 Unable to allocate memory for issuing "
12145 				"MBOX_CONFIG_MSI command\n");
12146 		goto mem_fail_out;
12147 	}
12148 	rc = lpfc_config_msi(phba, pmb);
12149 	if (rc)
12150 		goto mbx_fail_out;
12151 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
12152 	if (rc != MBX_SUCCESS) {
12153 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
12154 				"0351 Config MSI mailbox command failed, "
12155 				"mbxCmd x%x, mbxStatus x%x\n",
12156 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus);
12157 		goto mbx_fail_out;
12158 	}
12159 
12160 	/* Free memory allocated for mailbox command */
12161 	mempool_free(pmb, phba->mbox_mem_pool);
12162 	return rc;
12163 
12164 mbx_fail_out:
12165 	/* Free memory allocated for mailbox command */
12166 	mempool_free(pmb, phba->mbox_mem_pool);
12167 
12168 mem_fail_out:
12169 	/* free the irq already requested */
12170 	free_irq(pci_irq_vector(phba->pcidev, 1), phba);
12171 
12172 irq_fail_out:
12173 	/* free the irq already requested */
12174 	free_irq(pci_irq_vector(phba->pcidev, 0), phba);
12175 
12176 msi_fail_out:
12177 	/* Unconfigure MSI-X capability structure */
12178 	pci_free_irq_vectors(phba->pcidev);
12179 
12180 vec_fail_out:
12181 	return rc;
12182 }
12183 
12184 /**
12185  * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device.
12186  * @phba: pointer to lpfc hba data structure.
12187  *
12188  * This routine is invoked to enable the MSI interrupt mode to device with
12189  * SLI-3 interface spec. The kernel function pci_enable_msi() is called to
12190  * enable the MSI vector. The device driver is responsible for calling the
12191  * request_irq() to register MSI vector with a interrupt the handler, which
12192  * is done in this function.
12193  *
12194  * Return codes
12195  * 	0 - successful
12196  * 	other values - error
12197  */
12198 static int
lpfc_sli_enable_msi(struct lpfc_hba * phba)12199 lpfc_sli_enable_msi(struct lpfc_hba *phba)
12200 {
12201 	int rc;
12202 
12203 	rc = pci_enable_msi(phba->pcidev);
12204 	if (!rc)
12205 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12206 				"0012 PCI enable MSI mode success.\n");
12207 	else {
12208 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12209 				"0471 PCI enable MSI mode failed (%d)\n", rc);
12210 		return rc;
12211 	}
12212 
12213 	rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12214 			 0, LPFC_DRIVER_NAME, phba);
12215 	if (rc) {
12216 		pci_disable_msi(phba->pcidev);
12217 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12218 				"0478 MSI request_irq failed (%d)\n", rc);
12219 	}
12220 	return rc;
12221 }
12222 
12223 /**
12224  * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device.
12225  * @phba: pointer to lpfc hba data structure.
12226  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
12227  *
12228  * This routine is invoked to enable device interrupt and associate driver's
12229  * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface
12230  * spec. Depends on the interrupt mode configured to the driver, the driver
12231  * will try to fallback from the configured interrupt mode to an interrupt
12232  * mode which is supported by the platform, kernel, and device in the order
12233  * of:
12234  * MSI-X -> MSI -> IRQ.
12235  *
12236  * Return codes
12237  *   0 - successful
12238  *   other values - error
12239  **/
12240 static uint32_t
lpfc_sli_enable_intr(struct lpfc_hba * phba,uint32_t cfg_mode)12241 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
12242 {
12243 	uint32_t intr_mode = LPFC_INTR_ERROR;
12244 	int retval;
12245 
12246 	/* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
12247 	retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
12248 	if (retval)
12249 		return intr_mode;
12250 	clear_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag);
12251 
12252 	if (cfg_mode == 2) {
12253 		/* Now, try to enable MSI-X interrupt mode */
12254 		retval = lpfc_sli_enable_msix(phba);
12255 		if (!retval) {
12256 			/* Indicate initialization to MSI-X mode */
12257 			phba->intr_type = MSIX;
12258 			intr_mode = 2;
12259 		}
12260 	}
12261 
12262 	/* Fallback to MSI if MSI-X initialization failed */
12263 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
12264 		retval = lpfc_sli_enable_msi(phba);
12265 		if (!retval) {
12266 			/* Indicate initialization to MSI mode */
12267 			phba->intr_type = MSI;
12268 			intr_mode = 1;
12269 		}
12270 	}
12271 
12272 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
12273 	if (phba->intr_type == NONE) {
12274 		retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12275 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
12276 		if (!retval) {
12277 			/* Indicate initialization to INTx mode */
12278 			phba->intr_type = INTx;
12279 			intr_mode = 0;
12280 		}
12281 	}
12282 	return intr_mode;
12283 }
12284 
12285 /**
12286  * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device.
12287  * @phba: pointer to lpfc hba data structure.
12288  *
12289  * This routine is invoked to disable device interrupt and disassociate the
12290  * driver's interrupt handler(s) from interrupt vector(s) to device with
12291  * SLI-3 interface spec. Depending on the interrupt mode, the driver will
12292  * release the interrupt vector(s) for the message signaled interrupt.
12293  **/
12294 static void
lpfc_sli_disable_intr(struct lpfc_hba * phba)12295 lpfc_sli_disable_intr(struct lpfc_hba *phba)
12296 {
12297 	int nr_irqs, i;
12298 
12299 	if (phba->intr_type == MSIX)
12300 		nr_irqs = LPFC_MSIX_VECTORS;
12301 	else
12302 		nr_irqs = 1;
12303 
12304 	for (i = 0; i < nr_irqs; i++)
12305 		free_irq(pci_irq_vector(phba->pcidev, i), phba);
12306 	pci_free_irq_vectors(phba->pcidev);
12307 
12308 	/* Reset interrupt management states */
12309 	phba->intr_type = NONE;
12310 	phba->sli.slistat.sli_intr = 0;
12311 }
12312 
12313 /**
12314  * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue
12315  * @phba: pointer to lpfc hba data structure.
12316  * @id: EQ vector index or Hardware Queue index
12317  * @match: LPFC_FIND_BY_EQ = match by EQ
12318  *         LPFC_FIND_BY_HDWQ = match by Hardware Queue
12319  * Return the CPU that matches the selection criteria
12320  */
12321 static uint16_t
lpfc_find_cpu_handle(struct lpfc_hba * phba,uint16_t id,int match)12322 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match)
12323 {
12324 	struct lpfc_vector_map_info *cpup;
12325 	int cpu;
12326 
12327 	/* Loop through all CPUs */
12328 	for_each_present_cpu(cpu) {
12329 		cpup = &phba->sli4_hba.cpu_map[cpu];
12330 
12331 		/* If we are matching by EQ, there may be multiple CPUs using
12332 		 * using the same vector, so select the one with
12333 		 * LPFC_CPU_FIRST_IRQ set.
12334 		 */
12335 		if ((match == LPFC_FIND_BY_EQ) &&
12336 		    (cpup->flag & LPFC_CPU_FIRST_IRQ) &&
12337 		    (cpup->eq == id))
12338 			return cpu;
12339 
12340 		/* If matching by HDWQ, select the first CPU that matches */
12341 		if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id))
12342 			return cpu;
12343 	}
12344 	return 0;
12345 }
12346 
12347 #ifdef CONFIG_X86
12348 /**
12349  * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded
12350  * @phba: pointer to lpfc hba data structure.
12351  * @cpu: CPU map index
12352  * @phys_id: CPU package physical id
12353  * @core_id: CPU core id
12354  */
12355 static int
lpfc_find_hyper(struct lpfc_hba * phba,int cpu,uint16_t phys_id,uint16_t core_id)12356 lpfc_find_hyper(struct lpfc_hba *phba, int cpu,
12357 		uint16_t phys_id, uint16_t core_id)
12358 {
12359 	struct lpfc_vector_map_info *cpup;
12360 	int idx;
12361 
12362 	for_each_present_cpu(idx) {
12363 		cpup = &phba->sli4_hba.cpu_map[idx];
12364 		/* Does the cpup match the one we are looking for */
12365 		if ((cpup->phys_id == phys_id) &&
12366 		    (cpup->core_id == core_id) &&
12367 		    (cpu != idx))
12368 			return 1;
12369 	}
12370 	return 0;
12371 }
12372 #endif
12373 
12374 /*
12375  * lpfc_assign_eq_map_info - Assigns eq for vector_map structure
12376  * @phba: pointer to lpfc hba data structure.
12377  * @eqidx: index for eq and irq vector
12378  * @flag: flags to set for vector_map structure
12379  * @cpu: cpu used to index vector_map structure
12380  *
12381  * The routine assigns eq info into vector_map structure
12382  */
12383 static inline void
lpfc_assign_eq_map_info(struct lpfc_hba * phba,uint16_t eqidx,uint16_t flag,unsigned int cpu)12384 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag,
12385 			unsigned int cpu)
12386 {
12387 	struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu];
12388 	struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx);
12389 
12390 	cpup->eq = eqidx;
12391 	cpup->flag |= flag;
12392 
12393 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12394 			"3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n",
12395 			cpu, eqhdl->irq, cpup->eq, cpup->flag);
12396 }
12397 
12398 /**
12399  * lpfc_cpu_map_array_init - Initialize cpu_map structure
12400  * @phba: pointer to lpfc hba data structure.
12401  *
12402  * The routine initializes the cpu_map array structure
12403  */
12404 static void
lpfc_cpu_map_array_init(struct lpfc_hba * phba)12405 lpfc_cpu_map_array_init(struct lpfc_hba *phba)
12406 {
12407 	struct lpfc_vector_map_info *cpup;
12408 	struct lpfc_eq_intr_info *eqi;
12409 	int cpu;
12410 
12411 	for_each_possible_cpu(cpu) {
12412 		cpup = &phba->sli4_hba.cpu_map[cpu];
12413 		cpup->phys_id = LPFC_VECTOR_MAP_EMPTY;
12414 		cpup->core_id = LPFC_VECTOR_MAP_EMPTY;
12415 		cpup->hdwq = LPFC_VECTOR_MAP_EMPTY;
12416 		cpup->eq = LPFC_VECTOR_MAP_EMPTY;
12417 		cpup->flag = 0;
12418 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu);
12419 		INIT_LIST_HEAD(&eqi->list);
12420 		eqi->icnt = 0;
12421 	}
12422 }
12423 
12424 /**
12425  * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure
12426  * @phba: pointer to lpfc hba data structure.
12427  *
12428  * The routine initializes the hba_eq_hdl array structure
12429  */
12430 static void
lpfc_hba_eq_hdl_array_init(struct lpfc_hba * phba)12431 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba)
12432 {
12433 	struct lpfc_hba_eq_hdl *eqhdl;
12434 	int i;
12435 
12436 	for (i = 0; i < phba->cfg_irq_chann; i++) {
12437 		eqhdl = lpfc_get_eq_hdl(i);
12438 		eqhdl->irq = LPFC_IRQ_EMPTY;
12439 		eqhdl->phba = phba;
12440 	}
12441 }
12442 
12443 /**
12444  * lpfc_cpu_affinity_check - Check vector CPU affinity mappings
12445  * @phba: pointer to lpfc hba data structure.
12446  * @vectors: number of msix vectors allocated.
12447  *
12448  * The routine will figure out the CPU affinity assignment for every
12449  * MSI-X vector allocated for the HBA.
12450  * In addition, the CPU to IO channel mapping will be calculated
12451  * and the phba->sli4_hba.cpu_map array will reflect this.
12452  */
12453 static void
lpfc_cpu_affinity_check(struct lpfc_hba * phba,int vectors)12454 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors)
12455 {
12456 	int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu;
12457 	int max_phys_id, min_phys_id;
12458 	int max_core_id, min_core_id;
12459 	struct lpfc_vector_map_info *cpup;
12460 	struct lpfc_vector_map_info *new_cpup;
12461 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12462 	struct lpfc_hdwq_stat *c_stat;
12463 #endif
12464 
12465 	max_phys_id = 0;
12466 	min_phys_id = LPFC_VECTOR_MAP_EMPTY;
12467 	max_core_id = 0;
12468 	min_core_id = LPFC_VECTOR_MAP_EMPTY;
12469 
12470 	/* Update CPU map with physical id and core id of each CPU */
12471 	for_each_present_cpu(cpu) {
12472 		cpup = &phba->sli4_hba.cpu_map[cpu];
12473 #ifdef CONFIG_X86
12474 		cpup->phys_id = topology_physical_package_id(cpu);
12475 		cpup->core_id = topology_core_id(cpu);
12476 		if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id))
12477 			cpup->flag |= LPFC_CPU_MAP_HYPER;
12478 #else
12479 		/* No distinction between CPUs for other platforms */
12480 		cpup->phys_id = 0;
12481 		cpup->core_id = cpu;
12482 #endif
12483 
12484 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12485 				"3328 CPU %d physid %d coreid %d flag x%x\n",
12486 				cpu, cpup->phys_id, cpup->core_id, cpup->flag);
12487 
12488 		if (cpup->phys_id > max_phys_id)
12489 			max_phys_id = cpup->phys_id;
12490 		if (cpup->phys_id < min_phys_id)
12491 			min_phys_id = cpup->phys_id;
12492 
12493 		if (cpup->core_id > max_core_id)
12494 			max_core_id = cpup->core_id;
12495 		if (cpup->core_id < min_core_id)
12496 			min_core_id = cpup->core_id;
12497 	}
12498 
12499 	/* After looking at each irq vector assigned to this pcidev, its
12500 	 * possible to see that not ALL CPUs have been accounted for.
12501 	 * Next we will set any unassigned (unaffinitized) cpu map
12502 	 * entries to a IRQ on the same phys_id.
12503 	 */
12504 	first_cpu = cpumask_first(cpu_present_mask);
12505 	start_cpu = first_cpu;
12506 
12507 	for_each_present_cpu(cpu) {
12508 		cpup = &phba->sli4_hba.cpu_map[cpu];
12509 
12510 		/* Is this CPU entry unassigned */
12511 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12512 			/* Mark CPU as IRQ not assigned by the kernel */
12513 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12514 
12515 			/* If so, find a new_cpup that is on the SAME
12516 			 * phys_id as cpup. start_cpu will start where we
12517 			 * left off so all unassigned entries don't get assgined
12518 			 * the IRQ of the first entry.
12519 			 */
12520 			new_cpu = start_cpu;
12521 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12522 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12523 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12524 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) &&
12525 				    (new_cpup->phys_id == cpup->phys_id))
12526 					goto found_same;
12527 				new_cpu = lpfc_next_present_cpu(new_cpu);
12528 			}
12529 			/* At this point, we leave the CPU as unassigned */
12530 			continue;
12531 found_same:
12532 			/* We found a matching phys_id, so copy the IRQ info */
12533 			cpup->eq = new_cpup->eq;
12534 
12535 			/* Bump start_cpu to the next slot to minmize the
12536 			 * chance of having multiple unassigned CPU entries
12537 			 * selecting the same IRQ.
12538 			 */
12539 			start_cpu = lpfc_next_present_cpu(new_cpu);
12540 
12541 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12542 					"3337 Set Affinity: CPU %d "
12543 					"eq %d from peer cpu %d same "
12544 					"phys_id (%d)\n",
12545 					cpu, cpup->eq, new_cpu,
12546 					cpup->phys_id);
12547 		}
12548 	}
12549 
12550 	/* Set any unassigned cpu map entries to a IRQ on any phys_id */
12551 	start_cpu = first_cpu;
12552 
12553 	for_each_present_cpu(cpu) {
12554 		cpup = &phba->sli4_hba.cpu_map[cpu];
12555 
12556 		/* Is this entry unassigned */
12557 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12558 			/* Mark it as IRQ not assigned by the kernel */
12559 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12560 
12561 			/* If so, find a new_cpup thats on ANY phys_id
12562 			 * as the cpup. start_cpu will start where we
12563 			 * left off so all unassigned entries don't get
12564 			 * assigned the IRQ of the first entry.
12565 			 */
12566 			new_cpu = start_cpu;
12567 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12568 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12569 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12570 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY))
12571 					goto found_any;
12572 				new_cpu = lpfc_next_present_cpu(new_cpu);
12573 			}
12574 			/* We should never leave an entry unassigned */
12575 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12576 					"3339 Set Affinity: CPU %d "
12577 					"eq %d UNASSIGNED\n",
12578 					cpup->hdwq, cpup->eq);
12579 			continue;
12580 found_any:
12581 			/* We found an available entry, copy the IRQ info */
12582 			cpup->eq = new_cpup->eq;
12583 
12584 			/* Bump start_cpu to the next slot to minmize the
12585 			 * chance of having multiple unassigned CPU entries
12586 			 * selecting the same IRQ.
12587 			 */
12588 			start_cpu = lpfc_next_present_cpu(new_cpu);
12589 
12590 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12591 					"3338 Set Affinity: CPU %d "
12592 					"eq %d from peer cpu %d (%d/%d)\n",
12593 					cpu, cpup->eq, new_cpu,
12594 					new_cpup->phys_id, new_cpup->core_id);
12595 		}
12596 	}
12597 
12598 	/* Assign hdwq indices that are unique across all cpus in the map
12599 	 * that are also FIRST_CPUs.
12600 	 */
12601 	idx = 0;
12602 	for_each_present_cpu(cpu) {
12603 		cpup = &phba->sli4_hba.cpu_map[cpu];
12604 
12605 		/* Only FIRST IRQs get a hdwq index assignment. */
12606 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12607 			continue;
12608 
12609 		/* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */
12610 		cpup->hdwq = idx;
12611 		idx++;
12612 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12613 				"3333 Set Affinity: CPU %d (phys %d core %d): "
12614 				"hdwq %d eq %d flg x%x\n",
12615 				cpu, cpup->phys_id, cpup->core_id,
12616 				cpup->hdwq, cpup->eq, cpup->flag);
12617 	}
12618 	/* Associate a hdwq with each cpu_map entry
12619 	 * This will be 1 to 1 - hdwq to cpu, unless there are less
12620 	 * hardware queues then CPUs. For that case we will just round-robin
12621 	 * the available hardware queues as they get assigned to CPUs.
12622 	 * The next_idx is the idx from the FIRST_CPU loop above to account
12623 	 * for irq_chann < hdwq.  The idx is used for round-robin assignments
12624 	 * and needs to start at 0.
12625 	 */
12626 	next_idx = idx;
12627 	start_cpu = 0;
12628 	idx = 0;
12629 	for_each_present_cpu(cpu) {
12630 		cpup = &phba->sli4_hba.cpu_map[cpu];
12631 
12632 		/* FIRST cpus are already mapped. */
12633 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
12634 			continue;
12635 
12636 		/* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq
12637 		 * of the unassigned cpus to the next idx so that all
12638 		 * hdw queues are fully utilized.
12639 		 */
12640 		if (next_idx < phba->cfg_hdw_queue) {
12641 			cpup->hdwq = next_idx;
12642 			next_idx++;
12643 			continue;
12644 		}
12645 
12646 		/* Not a First CPU and all hdw_queues are used.  Reuse a
12647 		 * Hardware Queue for another CPU, so be smart about it
12648 		 * and pick one that has its IRQ/EQ mapped to the same phys_id
12649 		 * (CPU package) and core_id.
12650 		 */
12651 		new_cpu = start_cpu;
12652 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12653 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12654 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12655 			    new_cpup->phys_id == cpup->phys_id &&
12656 			    new_cpup->core_id == cpup->core_id) {
12657 				goto found_hdwq;
12658 			}
12659 			new_cpu = lpfc_next_present_cpu(new_cpu);
12660 		}
12661 
12662 		/* If we can't match both phys_id and core_id,
12663 		 * settle for just a phys_id match.
12664 		 */
12665 		new_cpu = start_cpu;
12666 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12667 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12668 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12669 			    new_cpup->phys_id == cpup->phys_id)
12670 				goto found_hdwq;
12671 			new_cpu = lpfc_next_present_cpu(new_cpu);
12672 		}
12673 
12674 		/* Otherwise just round robin on cfg_hdw_queue */
12675 		cpup->hdwq = idx % phba->cfg_hdw_queue;
12676 		idx++;
12677 		goto logit;
12678  found_hdwq:
12679 		/* We found an available entry, copy the IRQ info */
12680 		start_cpu = lpfc_next_present_cpu(new_cpu);
12681 		cpup->hdwq = new_cpup->hdwq;
12682  logit:
12683 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12684 				"3335 Set Affinity: CPU %d (phys %d core %d): "
12685 				"hdwq %d eq %d flg x%x\n",
12686 				cpu, cpup->phys_id, cpup->core_id,
12687 				cpup->hdwq, cpup->eq, cpup->flag);
12688 	}
12689 
12690 	/*
12691 	 * Initialize the cpu_map slots for not-present cpus in case
12692 	 * a cpu is hot-added. Perform a simple hdwq round robin assignment.
12693 	 */
12694 	idx = 0;
12695 	for_each_possible_cpu(cpu) {
12696 		cpup = &phba->sli4_hba.cpu_map[cpu];
12697 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12698 		c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu);
12699 		c_stat->hdwq_no = cpup->hdwq;
12700 #endif
12701 		if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY)
12702 			continue;
12703 
12704 		cpup->hdwq = idx++ % phba->cfg_hdw_queue;
12705 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12706 		c_stat->hdwq_no = cpup->hdwq;
12707 #endif
12708 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12709 				"3340 Set Affinity: not present "
12710 				"CPU %d hdwq %d\n",
12711 				cpu, cpup->hdwq);
12712 	}
12713 
12714 	/* The cpu_map array will be used later during initialization
12715 	 * when EQ / CQ / WQs are allocated and configured.
12716 	 */
12717 	return;
12718 }
12719 
12720 /**
12721  * lpfc_cpuhp_get_eq
12722  *
12723  * @phba:   pointer to lpfc hba data structure.
12724  * @cpu:    cpu going offline
12725  * @eqlist: eq list to append to
12726  */
12727 static int
lpfc_cpuhp_get_eq(struct lpfc_hba * phba,unsigned int cpu,struct list_head * eqlist)12728 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu,
12729 		  struct list_head *eqlist)
12730 {
12731 	const struct cpumask *maskp;
12732 	struct lpfc_queue *eq;
12733 	struct cpumask *tmp;
12734 	u16 idx;
12735 
12736 	tmp = kzalloc(cpumask_size(), GFP_KERNEL);
12737 	if (!tmp)
12738 		return -ENOMEM;
12739 
12740 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12741 		maskp = pci_irq_get_affinity(phba->pcidev, idx);
12742 		if (!maskp)
12743 			continue;
12744 		/*
12745 		 * if irq is not affinitized to the cpu going
12746 		 * then we don't need to poll the eq attached
12747 		 * to it.
12748 		 */
12749 		if (!cpumask_and(tmp, maskp, cpumask_of(cpu)))
12750 			continue;
12751 		/* get the cpus that are online and are affini-
12752 		 * tized to this irq vector.  If the count is
12753 		 * more than 1 then cpuhp is not going to shut-
12754 		 * down this vector.  Since this cpu has not
12755 		 * gone offline yet, we need >1.
12756 		 */
12757 		cpumask_and(tmp, maskp, cpu_online_mask);
12758 		if (cpumask_weight(tmp) > 1)
12759 			continue;
12760 
12761 		/* Now that we have an irq to shutdown, get the eq
12762 		 * mapped to this irq.  Note: multiple hdwq's in
12763 		 * the software can share an eq, but eventually
12764 		 * only eq will be mapped to this vector
12765 		 */
12766 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
12767 		list_add(&eq->_poll_list, eqlist);
12768 	}
12769 	kfree(tmp);
12770 	return 0;
12771 }
12772 
__lpfc_cpuhp_remove(struct lpfc_hba * phba)12773 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba)
12774 {
12775 	if (phba->sli_rev != LPFC_SLI_REV4)
12776 		return;
12777 
12778 	cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state,
12779 					    &phba->cpuhp);
12780 	/*
12781 	 * unregistering the instance doesn't stop the polling
12782 	 * timer. Wait for the poll timer to retire.
12783 	 */
12784 	synchronize_rcu();
12785 	del_timer_sync(&phba->cpuhp_poll_timer);
12786 }
12787 
lpfc_cpuhp_remove(struct lpfc_hba * phba)12788 static void lpfc_cpuhp_remove(struct lpfc_hba *phba)
12789 {
12790 	if (phba->pport &&
12791 	    test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
12792 		return;
12793 
12794 	__lpfc_cpuhp_remove(phba);
12795 }
12796 
lpfc_cpuhp_add(struct lpfc_hba * phba)12797 static void lpfc_cpuhp_add(struct lpfc_hba *phba)
12798 {
12799 	if (phba->sli_rev != LPFC_SLI_REV4)
12800 		return;
12801 
12802 	rcu_read_lock();
12803 
12804 	if (!list_empty(&phba->poll_list))
12805 		mod_timer(&phba->cpuhp_poll_timer,
12806 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
12807 
12808 	rcu_read_unlock();
12809 
12810 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state,
12811 					 &phba->cpuhp);
12812 }
12813 
__lpfc_cpuhp_checks(struct lpfc_hba * phba,int * retval)12814 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval)
12815 {
12816 	if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) {
12817 		*retval = -EAGAIN;
12818 		return true;
12819 	}
12820 
12821 	if (phba->sli_rev != LPFC_SLI_REV4) {
12822 		*retval = 0;
12823 		return true;
12824 	}
12825 
12826 	/* proceed with the hotplug */
12827 	return false;
12828 }
12829 
12830 /**
12831  * lpfc_irq_set_aff - set IRQ affinity
12832  * @eqhdl: EQ handle
12833  * @cpu: cpu to set affinity
12834  *
12835  **/
12836 static inline void
lpfc_irq_set_aff(struct lpfc_hba_eq_hdl * eqhdl,unsigned int cpu)12837 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu)
12838 {
12839 	cpumask_clear(&eqhdl->aff_mask);
12840 	cpumask_set_cpu(cpu, &eqhdl->aff_mask);
12841 	irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12842 	irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask);
12843 }
12844 
12845 /**
12846  * lpfc_irq_clear_aff - clear IRQ affinity
12847  * @eqhdl: EQ handle
12848  *
12849  **/
12850 static inline void
lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl * eqhdl)12851 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl)
12852 {
12853 	cpumask_clear(&eqhdl->aff_mask);
12854 	irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12855 }
12856 
12857 /**
12858  * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event
12859  * @phba: pointer to HBA context object.
12860  * @cpu: cpu going offline/online
12861  * @offline: true, cpu is going offline. false, cpu is coming online.
12862  *
12863  * If cpu is going offline, we'll try our best effort to find the next
12864  * online cpu on the phba's original_mask and migrate all offlining IRQ
12865  * affinities.
12866  *
12867  * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu.
12868  *
12869  * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on
12870  *	 PCI_IRQ_AFFINITY to auto-manage IRQ affinity.
12871  *
12872  **/
12873 static void
lpfc_irq_rebalance(struct lpfc_hba * phba,unsigned int cpu,bool offline)12874 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline)
12875 {
12876 	struct lpfc_vector_map_info *cpup;
12877 	struct cpumask *aff_mask;
12878 	unsigned int cpu_select, cpu_next, idx;
12879 	const struct cpumask *orig_mask;
12880 
12881 	if (phba->irq_chann_mode == NORMAL_MODE)
12882 		return;
12883 
12884 	orig_mask = &phba->sli4_hba.irq_aff_mask;
12885 
12886 	if (!cpumask_test_cpu(cpu, orig_mask))
12887 		return;
12888 
12889 	cpup = &phba->sli4_hba.cpu_map[cpu];
12890 
12891 	if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12892 		return;
12893 
12894 	if (offline) {
12895 		/* Find next online CPU on original mask */
12896 		cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true);
12897 		cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next);
12898 
12899 		/* Found a valid CPU */
12900 		if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) {
12901 			/* Go through each eqhdl and ensure offlining
12902 			 * cpu aff_mask is migrated
12903 			 */
12904 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12905 				aff_mask = lpfc_get_aff_mask(idx);
12906 
12907 				/* Migrate affinity */
12908 				if (cpumask_test_cpu(cpu, aff_mask))
12909 					lpfc_irq_set_aff(lpfc_get_eq_hdl(idx),
12910 							 cpu_select);
12911 			}
12912 		} else {
12913 			/* Rely on irqbalance if no online CPUs left on NUMA */
12914 			for (idx = 0; idx < phba->cfg_irq_chann; idx++)
12915 				lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx));
12916 		}
12917 	} else {
12918 		/* Migrate affinity back to this CPU */
12919 		lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu);
12920 	}
12921 }
12922 
lpfc_cpu_offline(unsigned int cpu,struct hlist_node * node)12923 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node)
12924 {
12925 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12926 	struct lpfc_queue *eq, *next;
12927 	LIST_HEAD(eqlist);
12928 	int retval;
12929 
12930 	if (!phba) {
12931 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12932 		return 0;
12933 	}
12934 
12935 	if (__lpfc_cpuhp_checks(phba, &retval))
12936 		return retval;
12937 
12938 	lpfc_irq_rebalance(phba, cpu, true);
12939 
12940 	retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist);
12941 	if (retval)
12942 		return retval;
12943 
12944 	/* start polling on these eq's */
12945 	list_for_each_entry_safe(eq, next, &eqlist, _poll_list) {
12946 		list_del_init(&eq->_poll_list);
12947 		lpfc_sli4_start_polling(eq);
12948 	}
12949 
12950 	return 0;
12951 }
12952 
lpfc_cpu_online(unsigned int cpu,struct hlist_node * node)12953 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node)
12954 {
12955 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12956 	struct lpfc_queue *eq, *next;
12957 	unsigned int n;
12958 	int retval;
12959 
12960 	if (!phba) {
12961 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12962 		return 0;
12963 	}
12964 
12965 	if (__lpfc_cpuhp_checks(phba, &retval))
12966 		return retval;
12967 
12968 	lpfc_irq_rebalance(phba, cpu, false);
12969 
12970 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) {
12971 		n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ);
12972 		if (n == cpu)
12973 			lpfc_sli4_stop_polling(eq);
12974 	}
12975 
12976 	return 0;
12977 }
12978 
12979 /**
12980  * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device
12981  * @phba: pointer to lpfc hba data structure.
12982  *
12983  * This routine is invoked to enable the MSI-X interrupt vectors to device
12984  * with SLI-4 interface spec.  It also allocates MSI-X vectors and maps them
12985  * to cpus on the system.
12986  *
12987  * When cfg_irq_numa is enabled, the adapter will only allocate vectors for
12988  * the number of cpus on the same numa node as this adapter.  The vectors are
12989  * allocated without requesting OS affinity mapping.  A vector will be
12990  * allocated and assigned to each online and offline cpu.  If the cpu is
12991  * online, then affinity will be set to that cpu.  If the cpu is offline, then
12992  * affinity will be set to the nearest peer cpu within the numa node that is
12993  * online.  If there are no online cpus within the numa node, affinity is not
12994  * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping
12995  * is consistent with the way cpu online/offline is handled when cfg_irq_numa is
12996  * configured.
12997  *
12998  * If numa mode is not enabled and there is more than 1 vector allocated, then
12999  * the driver relies on the managed irq interface where the OS assigns vector to
13000  * cpu affinity.  The driver will then use that affinity mapping to setup its
13001  * cpu mapping table.
13002  *
13003  * Return codes
13004  * 0 - successful
13005  * other values - error
13006  **/
13007 static int
lpfc_sli4_enable_msix(struct lpfc_hba * phba)13008 lpfc_sli4_enable_msix(struct lpfc_hba *phba)
13009 {
13010 	int vectors, rc, index;
13011 	char *name;
13012 	const struct cpumask *aff_mask = NULL;
13013 	unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids;
13014 	struct lpfc_vector_map_info *cpup;
13015 	struct lpfc_hba_eq_hdl *eqhdl;
13016 	const struct cpumask *maskp;
13017 	unsigned int flags = PCI_IRQ_MSIX;
13018 
13019 	/* Set up MSI-X multi-message vectors */
13020 	vectors = phba->cfg_irq_chann;
13021 
13022 	if (phba->irq_chann_mode != NORMAL_MODE)
13023 		aff_mask = &phba->sli4_hba.irq_aff_mask;
13024 
13025 	if (aff_mask) {
13026 		cpu_cnt = cpumask_weight(aff_mask);
13027 		vectors = min(phba->cfg_irq_chann, cpu_cnt);
13028 
13029 		/* cpu: iterates over aff_mask including offline or online
13030 		 * cpu_select: iterates over online aff_mask to set affinity
13031 		 */
13032 		cpu = cpumask_first(aff_mask);
13033 		cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13034 	} else {
13035 		flags |= PCI_IRQ_AFFINITY;
13036 	}
13037 
13038 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags);
13039 	if (rc < 0) {
13040 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13041 				"0484 PCI enable MSI-X failed (%d)\n", rc);
13042 		goto vec_fail_out;
13043 	}
13044 	vectors = rc;
13045 
13046 	/* Assign MSI-X vectors to interrupt handlers */
13047 	for (index = 0; index < vectors; index++) {
13048 		eqhdl = lpfc_get_eq_hdl(index);
13049 		name = eqhdl->handler_name;
13050 		memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ);
13051 		snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ,
13052 			 LPFC_DRIVER_HANDLER_NAME"%d", index);
13053 
13054 		eqhdl->idx = index;
13055 		rc = pci_irq_vector(phba->pcidev, index);
13056 		if (rc < 0) {
13057 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13058 					"0489 MSI-X fast-path (%d) "
13059 					"pci_irq_vec failed (%d)\n", index, rc);
13060 			goto cfg_fail_out;
13061 		}
13062 		eqhdl->irq = rc;
13063 
13064 		rc = request_threaded_irq(eqhdl->irq,
13065 					  &lpfc_sli4_hba_intr_handler,
13066 					  &lpfc_sli4_hba_intr_handler_th,
13067 					  0, name, eqhdl);
13068 		if (rc) {
13069 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13070 					"0486 MSI-X fast-path (%d) "
13071 					"request_irq failed (%d)\n", index, rc);
13072 			goto cfg_fail_out;
13073 		}
13074 
13075 		if (aff_mask) {
13076 			/* If found a neighboring online cpu, set affinity */
13077 			if (cpu_select < nr_cpu_ids)
13078 				lpfc_irq_set_aff(eqhdl, cpu_select);
13079 
13080 			/* Assign EQ to cpu_map */
13081 			lpfc_assign_eq_map_info(phba, index,
13082 						LPFC_CPU_FIRST_IRQ,
13083 						cpu);
13084 
13085 			/* Iterate to next offline or online cpu in aff_mask */
13086 			cpu = cpumask_next(cpu, aff_mask);
13087 
13088 			/* Find next online cpu in aff_mask to set affinity */
13089 			cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13090 		} else if (vectors == 1) {
13091 			cpu = cpumask_first(cpu_present_mask);
13092 			lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ,
13093 						cpu);
13094 		} else {
13095 			maskp = pci_irq_get_affinity(phba->pcidev, index);
13096 
13097 			/* Loop through all CPUs associated with vector index */
13098 			for_each_cpu_and(cpu, maskp, cpu_present_mask) {
13099 				cpup = &phba->sli4_hba.cpu_map[cpu];
13100 
13101 				/* If this is the first CPU thats assigned to
13102 				 * this vector, set LPFC_CPU_FIRST_IRQ.
13103 				 *
13104 				 * With certain platforms its possible that irq
13105 				 * vectors are affinitized to all the cpu's.
13106 				 * This can result in each cpu_map.eq to be set
13107 				 * to the last vector, resulting in overwrite
13108 				 * of all the previous cpu_map.eq.  Ensure that
13109 				 * each vector receives a place in cpu_map.
13110 				 * Later call to lpfc_cpu_affinity_check will
13111 				 * ensure we are nicely balanced out.
13112 				 */
13113 				if (cpup->eq != LPFC_VECTOR_MAP_EMPTY)
13114 					continue;
13115 				lpfc_assign_eq_map_info(phba, index,
13116 							LPFC_CPU_FIRST_IRQ,
13117 							cpu);
13118 				break;
13119 			}
13120 		}
13121 	}
13122 
13123 	if (vectors != phba->cfg_irq_chann) {
13124 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13125 				"3238 Reducing IO channels to match number of "
13126 				"MSI-X vectors, requested %d got %d\n",
13127 				phba->cfg_irq_chann, vectors);
13128 		if (phba->cfg_irq_chann > vectors)
13129 			phba->cfg_irq_chann = vectors;
13130 	}
13131 
13132 	return rc;
13133 
13134 cfg_fail_out:
13135 	/* free the irq already requested */
13136 	for (--index; index >= 0; index--) {
13137 		eqhdl = lpfc_get_eq_hdl(index);
13138 		lpfc_irq_clear_aff(eqhdl);
13139 		free_irq(eqhdl->irq, eqhdl);
13140 	}
13141 
13142 	/* Unconfigure MSI-X capability structure */
13143 	pci_free_irq_vectors(phba->pcidev);
13144 
13145 vec_fail_out:
13146 	return rc;
13147 }
13148 
13149 /**
13150  * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device
13151  * @phba: pointer to lpfc hba data structure.
13152  *
13153  * This routine is invoked to enable the MSI interrupt mode to device with
13154  * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is
13155  * called to enable the MSI vector. The device driver is responsible for
13156  * calling the request_irq() to register MSI vector with a interrupt the
13157  * handler, which is done in this function.
13158  *
13159  * Return codes
13160  * 	0 - successful
13161  * 	other values - error
13162  **/
13163 static int
lpfc_sli4_enable_msi(struct lpfc_hba * phba)13164 lpfc_sli4_enable_msi(struct lpfc_hba *phba)
13165 {
13166 	int rc, index;
13167 	unsigned int cpu;
13168 	struct lpfc_hba_eq_hdl *eqhdl;
13169 
13170 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1,
13171 				   PCI_IRQ_MSI | PCI_IRQ_AFFINITY);
13172 	if (rc > 0)
13173 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13174 				"0487 PCI enable MSI mode success.\n");
13175 	else {
13176 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13177 				"0488 PCI enable MSI mode failed (%d)\n", rc);
13178 		return rc ? rc : -1;
13179 	}
13180 
13181 	rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13182 			 0, LPFC_DRIVER_NAME, phba);
13183 	if (rc) {
13184 		pci_free_irq_vectors(phba->pcidev);
13185 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13186 				"0490 MSI request_irq failed (%d)\n", rc);
13187 		return rc;
13188 	}
13189 
13190 	eqhdl = lpfc_get_eq_hdl(0);
13191 	rc = pci_irq_vector(phba->pcidev, 0);
13192 	if (rc < 0) {
13193 		pci_free_irq_vectors(phba->pcidev);
13194 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13195 				"0496 MSI pci_irq_vec failed (%d)\n", rc);
13196 		return rc;
13197 	}
13198 	eqhdl->irq = rc;
13199 
13200 	cpu = cpumask_first(cpu_present_mask);
13201 	lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu);
13202 
13203 	for (index = 0; index < phba->cfg_irq_chann; index++) {
13204 		eqhdl = lpfc_get_eq_hdl(index);
13205 		eqhdl->idx = index;
13206 	}
13207 
13208 	return 0;
13209 }
13210 
13211 /**
13212  * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device
13213  * @phba: pointer to lpfc hba data structure.
13214  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
13215  *
13216  * This routine is invoked to enable device interrupt and associate driver's
13217  * interrupt handler(s) to interrupt vector(s) to device with SLI-4
13218  * interface spec. Depends on the interrupt mode configured to the driver,
13219  * the driver will try to fallback from the configured interrupt mode to an
13220  * interrupt mode which is supported by the platform, kernel, and device in
13221  * the order of:
13222  * MSI-X -> MSI -> IRQ.
13223  *
13224  * Return codes
13225  *	Interrupt mode (2, 1, 0) - successful
13226  *	LPFC_INTR_ERROR - error
13227  **/
13228 static uint32_t
lpfc_sli4_enable_intr(struct lpfc_hba * phba,uint32_t cfg_mode)13229 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
13230 {
13231 	uint32_t intr_mode = LPFC_INTR_ERROR;
13232 	int retval, idx;
13233 
13234 	if (cfg_mode == 2) {
13235 		/* Preparation before conf_msi mbox cmd */
13236 		retval = 0;
13237 		if (!retval) {
13238 			/* Now, try to enable MSI-X interrupt mode */
13239 			retval = lpfc_sli4_enable_msix(phba);
13240 			if (!retval) {
13241 				/* Indicate initialization to MSI-X mode */
13242 				phba->intr_type = MSIX;
13243 				intr_mode = 2;
13244 			}
13245 		}
13246 	}
13247 
13248 	/* Fallback to MSI if MSI-X initialization failed */
13249 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
13250 		retval = lpfc_sli4_enable_msi(phba);
13251 		if (!retval) {
13252 			/* Indicate initialization to MSI mode */
13253 			phba->intr_type = MSI;
13254 			intr_mode = 1;
13255 		}
13256 	}
13257 
13258 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
13259 	if (phba->intr_type == NONE) {
13260 		retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13261 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
13262 		if (!retval) {
13263 			struct lpfc_hba_eq_hdl *eqhdl;
13264 			unsigned int cpu;
13265 
13266 			/* Indicate initialization to INTx mode */
13267 			phba->intr_type = INTx;
13268 			intr_mode = 0;
13269 
13270 			eqhdl = lpfc_get_eq_hdl(0);
13271 			retval = pci_irq_vector(phba->pcidev, 0);
13272 			if (retval < 0) {
13273 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13274 					"0502 INTR pci_irq_vec failed (%d)\n",
13275 					 retval);
13276 				return LPFC_INTR_ERROR;
13277 			}
13278 			eqhdl->irq = retval;
13279 
13280 			cpu = cpumask_first(cpu_present_mask);
13281 			lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ,
13282 						cpu);
13283 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
13284 				eqhdl = lpfc_get_eq_hdl(idx);
13285 				eqhdl->idx = idx;
13286 			}
13287 		}
13288 	}
13289 	return intr_mode;
13290 }
13291 
13292 /**
13293  * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device
13294  * @phba: pointer to lpfc hba data structure.
13295  *
13296  * This routine is invoked to disable device interrupt and disassociate
13297  * the driver's interrupt handler(s) from interrupt vector(s) to device
13298  * with SLI-4 interface spec. Depending on the interrupt mode, the driver
13299  * will release the interrupt vector(s) for the message signaled interrupt.
13300  **/
13301 static void
lpfc_sli4_disable_intr(struct lpfc_hba * phba)13302 lpfc_sli4_disable_intr(struct lpfc_hba *phba)
13303 {
13304 	/* Disable the currently initialized interrupt mode */
13305 	if (phba->intr_type == MSIX) {
13306 		int index;
13307 		struct lpfc_hba_eq_hdl *eqhdl;
13308 
13309 		/* Free up MSI-X multi-message vectors */
13310 		for (index = 0; index < phba->cfg_irq_chann; index++) {
13311 			eqhdl = lpfc_get_eq_hdl(index);
13312 			lpfc_irq_clear_aff(eqhdl);
13313 			free_irq(eqhdl->irq, eqhdl);
13314 		}
13315 	} else {
13316 		free_irq(phba->pcidev->irq, phba);
13317 	}
13318 
13319 	pci_free_irq_vectors(phba->pcidev);
13320 
13321 	/* Reset interrupt management states */
13322 	phba->intr_type = NONE;
13323 	phba->sli.slistat.sli_intr = 0;
13324 }
13325 
13326 /**
13327  * lpfc_unset_hba - Unset SLI3 hba device initialization
13328  * @phba: pointer to lpfc hba data structure.
13329  *
13330  * This routine is invoked to unset the HBA device initialization steps to
13331  * a device with SLI-3 interface spec.
13332  **/
13333 static void
lpfc_unset_hba(struct lpfc_hba * phba)13334 lpfc_unset_hba(struct lpfc_hba *phba)
13335 {
13336 	set_bit(FC_UNLOADING, &phba->pport->load_flag);
13337 
13338 	kfree(phba->vpi_bmask);
13339 	kfree(phba->vpi_ids);
13340 
13341 	lpfc_stop_hba_timers(phba);
13342 
13343 	phba->pport->work_port_events = 0;
13344 
13345 	lpfc_sli_hba_down(phba);
13346 
13347 	lpfc_sli_brdrestart(phba);
13348 
13349 	lpfc_sli_disable_intr(phba);
13350 
13351 	return;
13352 }
13353 
13354 /**
13355  * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy
13356  * @phba: Pointer to HBA context object.
13357  *
13358  * This function is called in the SLI4 code path to wait for completion
13359  * of device's XRIs exchange busy. It will check the XRI exchange busy
13360  * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after
13361  * that, it will check the XRI exchange busy on outstanding FCP and ELS
13362  * I/Os every 30 seconds, log error message, and wait forever. Only when
13363  * all XRI exchange busy complete, the driver unload shall proceed with
13364  * invoking the function reset ioctl mailbox command to the CNA and the
13365  * the rest of the driver unload resource release.
13366  **/
13367 static void
lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba * phba)13368 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba)
13369 {
13370 	struct lpfc_sli4_hdw_queue *qp;
13371 	int idx, ccnt;
13372 	int wait_time = 0;
13373 	int io_xri_cmpl = 1;
13374 	int nvmet_xri_cmpl = 1;
13375 	int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13376 
13377 	/* Driver just aborted IOs during the hba_unset process.  Pause
13378 	 * here to give the HBA time to complete the IO and get entries
13379 	 * into the abts lists.
13380 	 */
13381 	msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5);
13382 
13383 	/* Wait for NVME pending IO to flush back to transport. */
13384 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13385 		lpfc_nvme_wait_for_io_drain(phba);
13386 
13387 	ccnt = 0;
13388 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13389 		qp = &phba->sli4_hba.hdwq[idx];
13390 		io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list);
13391 		if (!io_xri_cmpl) /* if list is NOT empty */
13392 			ccnt++;
13393 	}
13394 	if (ccnt)
13395 		io_xri_cmpl = 0;
13396 
13397 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13398 		nvmet_xri_cmpl =
13399 			list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13400 	}
13401 
13402 	while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) {
13403 		if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) {
13404 			if (!nvmet_xri_cmpl)
13405 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13406 						"6424 NVMET XRI exchange busy "
13407 						"wait time: %d seconds.\n",
13408 						wait_time/1000);
13409 			if (!io_xri_cmpl)
13410 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13411 						"6100 IO XRI exchange busy "
13412 						"wait time: %d seconds.\n",
13413 						wait_time/1000);
13414 			if (!els_xri_cmpl)
13415 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13416 						"2878 ELS XRI exchange busy "
13417 						"wait time: %d seconds.\n",
13418 						wait_time/1000);
13419 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2);
13420 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2;
13421 		} else {
13422 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
13423 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1;
13424 		}
13425 
13426 		ccnt = 0;
13427 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13428 			qp = &phba->sli4_hba.hdwq[idx];
13429 			io_xri_cmpl = list_empty(
13430 			    &qp->lpfc_abts_io_buf_list);
13431 			if (!io_xri_cmpl) /* if list is NOT empty */
13432 				ccnt++;
13433 		}
13434 		if (ccnt)
13435 			io_xri_cmpl = 0;
13436 
13437 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13438 			nvmet_xri_cmpl = list_empty(
13439 				&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13440 		}
13441 		els_xri_cmpl =
13442 			list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13443 
13444 	}
13445 }
13446 
13447 /**
13448  * lpfc_sli4_hba_unset - Unset the fcoe hba
13449  * @phba: Pointer to HBA context object.
13450  *
13451  * This function is called in the SLI4 code path to reset the HBA's FCoE
13452  * function. The caller is not required to hold any lock. This routine
13453  * issues PCI function reset mailbox command to reset the FCoE function.
13454  * At the end of the function, it calls lpfc_hba_down_post function to
13455  * free any pending commands.
13456  **/
13457 static void
lpfc_sli4_hba_unset(struct lpfc_hba * phba)13458 lpfc_sli4_hba_unset(struct lpfc_hba *phba)
13459 {
13460 	int wait_cnt = 0;
13461 	LPFC_MBOXQ_t *mboxq;
13462 	struct pci_dev *pdev = phba->pcidev;
13463 
13464 	lpfc_stop_hba_timers(phba);
13465 	hrtimer_cancel(&phba->cmf_stats_timer);
13466 	hrtimer_cancel(&phba->cmf_timer);
13467 
13468 	if (phba->pport)
13469 		phba->sli4_hba.intr_enable = 0;
13470 
13471 	/*
13472 	 * Gracefully wait out the potential current outstanding asynchronous
13473 	 * mailbox command.
13474 	 */
13475 
13476 	/* First, block any pending async mailbox command from posted */
13477 	spin_lock_irq(&phba->hbalock);
13478 	phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13479 	spin_unlock_irq(&phba->hbalock);
13480 	/* Now, trying to wait it out if we can */
13481 	while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13482 		msleep(10);
13483 		if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT)
13484 			break;
13485 	}
13486 	/* Forcefully release the outstanding mailbox command if timed out */
13487 	if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13488 		spin_lock_irq(&phba->hbalock);
13489 		mboxq = phba->sli.mbox_active;
13490 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
13491 		__lpfc_mbox_cmpl_put(phba, mboxq);
13492 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13493 		phba->sli.mbox_active = NULL;
13494 		spin_unlock_irq(&phba->hbalock);
13495 	}
13496 
13497 	/* Abort all iocbs associated with the hba */
13498 	lpfc_sli_hba_iocb_abort(phba);
13499 
13500 	if (!pci_channel_offline(phba->pcidev))
13501 		/* Wait for completion of device XRI exchange busy */
13502 		lpfc_sli4_xri_exchange_busy_wait(phba);
13503 
13504 	/* per-phba callback de-registration for hotplug event */
13505 	if (phba->pport)
13506 		lpfc_cpuhp_remove(phba);
13507 
13508 	/* Disable PCI subsystem interrupt */
13509 	lpfc_sli4_disable_intr(phba);
13510 
13511 	/* Disable SR-IOV if enabled */
13512 	if (phba->cfg_sriov_nr_virtfn)
13513 		pci_disable_sriov(pdev);
13514 
13515 	/* Stop kthread signal shall trigger work_done one more time */
13516 	kthread_stop(phba->worker_thread);
13517 
13518 	/* Disable FW logging to host memory */
13519 	lpfc_ras_stop_fwlog(phba);
13520 
13521 	/* Reset SLI4 HBA FCoE function */
13522 	lpfc_pci_function_reset(phba);
13523 
13524 	/* release all queue allocated resources. */
13525 	lpfc_sli4_queue_destroy(phba);
13526 
13527 	/* Free RAS DMA memory */
13528 	if (phba->ras_fwlog.ras_enabled)
13529 		lpfc_sli4_ras_dma_free(phba);
13530 
13531 	/* Stop the SLI4 device port */
13532 	if (phba->pport)
13533 		phba->pport->work_port_events = 0;
13534 }
13535 
13536 static uint32_t
lpfc_cgn_crc32(uint32_t crc,u8 byte)13537 lpfc_cgn_crc32(uint32_t crc, u8 byte)
13538 {
13539 	uint32_t msb = 0;
13540 	uint32_t bit;
13541 
13542 	for (bit = 0; bit < 8; bit++) {
13543 		msb = (crc >> 31) & 1;
13544 		crc <<= 1;
13545 
13546 		if (msb ^ (byte & 1)) {
13547 			crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER;
13548 			crc |= 1;
13549 		}
13550 		byte >>= 1;
13551 	}
13552 	return crc;
13553 }
13554 
13555 static uint32_t
lpfc_cgn_reverse_bits(uint32_t wd)13556 lpfc_cgn_reverse_bits(uint32_t wd)
13557 {
13558 	uint32_t result = 0;
13559 	uint32_t i;
13560 
13561 	for (i = 0; i < 32; i++) {
13562 		result <<= 1;
13563 		result |= (1 & (wd >> i));
13564 	}
13565 	return result;
13566 }
13567 
13568 /*
13569  * The routine corresponds with the algorithm the HBA firmware
13570  * uses to validate the data integrity.
13571  */
13572 uint32_t
lpfc_cgn_calc_crc32(void * ptr,uint32_t byteLen,uint32_t crc)13573 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc)
13574 {
13575 	uint32_t  i;
13576 	uint32_t result;
13577 	uint8_t  *data = (uint8_t *)ptr;
13578 
13579 	for (i = 0; i < byteLen; ++i)
13580 		crc = lpfc_cgn_crc32(crc, data[i]);
13581 
13582 	result = ~lpfc_cgn_reverse_bits(crc);
13583 	return result;
13584 }
13585 
13586 void
lpfc_init_congestion_buf(struct lpfc_hba * phba)13587 lpfc_init_congestion_buf(struct lpfc_hba *phba)
13588 {
13589 	struct lpfc_cgn_info *cp;
13590 	uint16_t size;
13591 	uint32_t crc;
13592 
13593 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13594 			"6235 INIT Congestion Buffer %p\n", phba->cgn_i);
13595 
13596 	if (!phba->cgn_i)
13597 		return;
13598 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13599 
13600 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
13601 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
13602 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
13603 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
13604 
13605 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
13606 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
13607 	atomic64_set(&phba->cgn_latency_evt, 0);
13608 	phba->cgn_evt_minute = 0;
13609 
13610 	memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat));
13611 	cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ);
13612 	cp->cgn_info_version = LPFC_CGN_INFO_V4;
13613 
13614 	/* cgn parameters */
13615 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
13616 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
13617 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
13618 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
13619 
13620 	lpfc_cgn_update_tstamp(phba, &cp->base_time);
13621 
13622 	/* Fill in default LUN qdepth */
13623 	if (phba->pport) {
13624 		size = (uint16_t)(phba->pport->cfg_lun_queue_depth);
13625 		cp->cgn_lunq = cpu_to_le16(size);
13626 	}
13627 
13628 	/* last used Index initialized to 0xff already */
13629 
13630 	cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13631 	cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13632 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13633 	cp->cgn_info_crc = cpu_to_le32(crc);
13634 
13635 	phba->cgn_evt_timestamp = jiffies +
13636 		msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
13637 }
13638 
13639 void
lpfc_init_congestion_stat(struct lpfc_hba * phba)13640 lpfc_init_congestion_stat(struct lpfc_hba *phba)
13641 {
13642 	struct lpfc_cgn_info *cp;
13643 	uint32_t crc;
13644 
13645 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13646 			"6236 INIT Congestion Stat %p\n", phba->cgn_i);
13647 
13648 	if (!phba->cgn_i)
13649 		return;
13650 
13651 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13652 	memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat));
13653 
13654 	lpfc_cgn_update_tstamp(phba, &cp->stat_start);
13655 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13656 	cp->cgn_info_crc = cpu_to_le32(crc);
13657 }
13658 
13659 /**
13660  * __lpfc_reg_congestion_buf - register congestion info buffer with HBA
13661  * @phba: Pointer to hba context object.
13662  * @reg: flag to determine register or unregister.
13663  */
13664 static int
__lpfc_reg_congestion_buf(struct lpfc_hba * phba,int reg)13665 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg)
13666 {
13667 	struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf;
13668 	union  lpfc_sli4_cfg_shdr *shdr;
13669 	uint32_t shdr_status, shdr_add_status;
13670 	LPFC_MBOXQ_t *mboxq;
13671 	int length, rc;
13672 
13673 	if (!phba->cgn_i)
13674 		return -ENXIO;
13675 
13676 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13677 	if (!mboxq) {
13678 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13679 				"2641 REG_CONGESTION_BUF mbox allocation fail: "
13680 				"HBA state x%x reg %d\n",
13681 				phba->pport->port_state, reg);
13682 		return -ENOMEM;
13683 	}
13684 
13685 	length = (sizeof(struct lpfc_mbx_reg_congestion_buf) -
13686 		sizeof(struct lpfc_sli4_cfg_mhdr));
13687 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13688 			 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length,
13689 			 LPFC_SLI4_MBX_EMBED);
13690 	reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf;
13691 	bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1);
13692 	if (reg > 0)
13693 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1);
13694 	else
13695 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0);
13696 	reg_congestion_buf->length = sizeof(struct lpfc_cgn_info);
13697 	reg_congestion_buf->addr_lo =
13698 		putPaddrLow(phba->cgn_i->phys);
13699 	reg_congestion_buf->addr_hi =
13700 		putPaddrHigh(phba->cgn_i->phys);
13701 
13702 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13703 	shdr = (union lpfc_sli4_cfg_shdr *)
13704 		&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
13705 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13706 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
13707 				 &shdr->response);
13708 	mempool_free(mboxq, phba->mbox_mem_pool);
13709 	if (shdr_status || shdr_add_status || rc) {
13710 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13711 				"2642 REG_CONGESTION_BUF mailbox "
13712 				"failed with status x%x add_status x%x,"
13713 				" mbx status x%x reg %d\n",
13714 				shdr_status, shdr_add_status, rc, reg);
13715 		return -ENXIO;
13716 	}
13717 	return 0;
13718 }
13719 
13720 int
lpfc_unreg_congestion_buf(struct lpfc_hba * phba)13721 lpfc_unreg_congestion_buf(struct lpfc_hba *phba)
13722 {
13723 	lpfc_cmf_stop(phba);
13724 	return __lpfc_reg_congestion_buf(phba, 0);
13725 }
13726 
13727 int
lpfc_reg_congestion_buf(struct lpfc_hba * phba)13728 lpfc_reg_congestion_buf(struct lpfc_hba *phba)
13729 {
13730 	return __lpfc_reg_congestion_buf(phba, 1);
13731 }
13732 
13733 /**
13734  * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS.
13735  * @phba: Pointer to HBA context object.
13736  * @mboxq: Pointer to the mailboxq memory for the mailbox command response.
13737  *
13738  * This function is called in the SLI4 code path to read the port's
13739  * sli4 capabilities.
13740  *
13741  * This function may be be called from any context that can block-wait
13742  * for the completion.  The expectation is that this routine is called
13743  * typically from probe_one or from the online routine.
13744  **/
13745 int
lpfc_get_sli4_parameters(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)13746 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
13747 {
13748 	int rc;
13749 	struct lpfc_mqe *mqe = &mboxq->u.mqe;
13750 	struct lpfc_pc_sli4_params *sli4_params;
13751 	uint32_t mbox_tmo;
13752 	int length;
13753 	bool exp_wqcq_pages = true;
13754 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
13755 
13756 	/*
13757 	 * By default, the driver assumes the SLI4 port requires RPI
13758 	 * header postings.  The SLI4_PARAM response will correct this
13759 	 * assumption.
13760 	 */
13761 	phba->sli4_hba.rpi_hdrs_in_use = 1;
13762 
13763 	/* Read the port's SLI4 Config Parameters */
13764 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
13765 		  sizeof(struct lpfc_sli4_cfg_mhdr));
13766 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13767 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
13768 			 length, LPFC_SLI4_MBX_EMBED);
13769 	if (!phba->sli4_hba.intr_enable)
13770 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13771 	else {
13772 		mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
13773 		rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
13774 	}
13775 	if (unlikely(rc))
13776 		return rc;
13777 	sli4_params = &phba->sli4_hba.pc_sli4_params;
13778 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
13779 	sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters);
13780 	sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters);
13781 	sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters);
13782 	sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1,
13783 					     mbx_sli4_parameters);
13784 	sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2,
13785 					     mbx_sli4_parameters);
13786 	if (bf_get(cfg_phwq, mbx_sli4_parameters))
13787 		phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED;
13788 	else
13789 		phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED;
13790 	sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len;
13791 	sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope,
13792 					   mbx_sli4_parameters);
13793 	sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters);
13794 	sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters);
13795 	sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters);
13796 	sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters);
13797 	sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters);
13798 	sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters);
13799 	sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters);
13800 	sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters);
13801 	sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters);
13802 	sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters);
13803 	sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt,
13804 					    mbx_sli4_parameters);
13805 	sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters);
13806 	sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align,
13807 					   mbx_sli4_parameters);
13808 	phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters);
13809 	phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters);
13810 	sli4_params->mi_cap = bf_get(cfg_mi_ver, mbx_sli4_parameters);
13811 
13812 	/* Check for Extended Pre-Registered SGL support */
13813 	phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters);
13814 
13815 	/* Check for firmware nvme support */
13816 	rc = (bf_get(cfg_nvme, mbx_sli4_parameters) &&
13817 		     bf_get(cfg_xib, mbx_sli4_parameters));
13818 
13819 	if (rc) {
13820 		/* Save this to indicate the Firmware supports NVME */
13821 		sli4_params->nvme = 1;
13822 
13823 		/* Firmware NVME support, check driver FC4 NVME support */
13824 		if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) {
13825 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13826 					"6133 Disabling NVME support: "
13827 					"FC4 type not supported: x%x\n",
13828 					phba->cfg_enable_fc4_type);
13829 			goto fcponly;
13830 		}
13831 	} else {
13832 		/* No firmware NVME support, check driver FC4 NVME support */
13833 		sli4_params->nvme = 0;
13834 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13835 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME,
13836 					"6101 Disabling NVME support: Not "
13837 					"supported by firmware (%d %d) x%x\n",
13838 					bf_get(cfg_nvme, mbx_sli4_parameters),
13839 					bf_get(cfg_xib, mbx_sli4_parameters),
13840 					phba->cfg_enable_fc4_type);
13841 fcponly:
13842 			phba->nvmet_support = 0;
13843 			phba->cfg_nvmet_mrq = 0;
13844 			phba->cfg_nvme_seg_cnt = 0;
13845 
13846 			/* If no FC4 type support, move to just SCSI support */
13847 			if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
13848 				return -ENODEV;
13849 			phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP;
13850 		}
13851 	}
13852 
13853 	/* If the NVME FC4 type is enabled, scale the sg_seg_cnt to
13854 	 * accommodate 512K and 1M IOs in a single nvme buf.
13855 	 */
13856 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13857 		phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
13858 
13859 	/* Enable embedded Payload BDE if support is indicated */
13860 	if (bf_get(cfg_pbde, mbx_sli4_parameters))
13861 		phba->cfg_enable_pbde = 1;
13862 	else
13863 		phba->cfg_enable_pbde = 0;
13864 
13865 	/*
13866 	 * To support Suppress Response feature we must satisfy 3 conditions.
13867 	 * lpfc_suppress_rsp module parameter must be set (default).
13868 	 * In SLI4-Parameters Descriptor:
13869 	 * Extended Inline Buffers (XIB) must be supported.
13870 	 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported
13871 	 * (double negative).
13872 	 */
13873 	if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) &&
13874 	    !(bf_get(cfg_nosr, mbx_sli4_parameters)))
13875 		phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP;
13876 	else
13877 		phba->cfg_suppress_rsp = 0;
13878 
13879 	if (bf_get(cfg_eqdr, mbx_sli4_parameters))
13880 		phba->sli.sli_flag |= LPFC_SLI_USE_EQDR;
13881 
13882 	/* Make sure that sge_supp_len can be handled by the driver */
13883 	if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
13884 		sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
13885 
13886 	dma_set_max_seg_size(&phba->pcidev->dev, sli4_params->sge_supp_len);
13887 
13888 	/*
13889 	 * Check whether the adapter supports an embedded copy of the
13890 	 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order
13891 	 * to use this option, 128-byte WQEs must be used.
13892 	 */
13893 	if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters))
13894 		phba->fcp_embed_io = 1;
13895 	else
13896 		phba->fcp_embed_io = 0;
13897 
13898 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13899 			"6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n",
13900 			bf_get(cfg_xib, mbx_sli4_parameters),
13901 			phba->cfg_enable_pbde,
13902 			phba->fcp_embed_io, sli4_params->nvme,
13903 			phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp);
13904 
13905 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
13906 	    LPFC_SLI_INTF_IF_TYPE_2) &&
13907 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
13908 		 LPFC_SLI_INTF_FAMILY_LNCR_A0))
13909 		exp_wqcq_pages = false;
13910 
13911 	if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) &&
13912 	    (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) &&
13913 	    exp_wqcq_pages &&
13914 	    (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT))
13915 		phba->enab_exp_wqcq_pages = 1;
13916 	else
13917 		phba->enab_exp_wqcq_pages = 0;
13918 	/*
13919 	 * Check if the SLI port supports MDS Diagnostics
13920 	 */
13921 	if (bf_get(cfg_mds_diags, mbx_sli4_parameters))
13922 		phba->mds_diags_support = 1;
13923 	else
13924 		phba->mds_diags_support = 0;
13925 
13926 	/*
13927 	 * Check if the SLI port supports NSLER
13928 	 */
13929 	if (bf_get(cfg_nsler, mbx_sli4_parameters))
13930 		phba->nsler = 1;
13931 	else
13932 		phba->nsler = 0;
13933 
13934 	return 0;
13935 }
13936 
13937 /**
13938  * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem.
13939  * @pdev: pointer to PCI device
13940  * @pid: pointer to PCI device identifier
13941  *
13942  * This routine is to be called to attach a device with SLI-3 interface spec
13943  * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
13944  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
13945  * information of the device and driver to see if the driver state that it can
13946  * support this kind of device. If the match is successful, the driver core
13947  * invokes this routine. If this routine determines it can claim the HBA, it
13948  * does all the initialization that it needs to do to handle the HBA properly.
13949  *
13950  * Return code
13951  * 	0 - driver can claim the device
13952  * 	negative value - driver can not claim the device
13953  **/
13954 static int
lpfc_pci_probe_one_s3(struct pci_dev * pdev,const struct pci_device_id * pid)13955 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid)
13956 {
13957 	struct lpfc_hba   *phba;
13958 	struct lpfc_vport *vport = NULL;
13959 	struct Scsi_Host  *shost = NULL;
13960 	int error;
13961 	uint32_t cfg_mode, intr_mode;
13962 
13963 	/* Allocate memory for HBA structure */
13964 	phba = lpfc_hba_alloc(pdev);
13965 	if (!phba)
13966 		return -ENOMEM;
13967 
13968 	/* Perform generic PCI device enabling operation */
13969 	error = lpfc_enable_pci_dev(phba);
13970 	if (error)
13971 		goto out_free_phba;
13972 
13973 	/* Set up SLI API function jump table for PCI-device group-0 HBAs */
13974 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP);
13975 	if (error)
13976 		goto out_disable_pci_dev;
13977 
13978 	/* Set up SLI-3 specific device PCI memory space */
13979 	error = lpfc_sli_pci_mem_setup(phba);
13980 	if (error) {
13981 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13982 				"1402 Failed to set up pci memory space.\n");
13983 		goto out_disable_pci_dev;
13984 	}
13985 
13986 	/* Set up SLI-3 specific device driver resources */
13987 	error = lpfc_sli_driver_resource_setup(phba);
13988 	if (error) {
13989 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13990 				"1404 Failed to set up driver resource.\n");
13991 		goto out_unset_pci_mem_s3;
13992 	}
13993 
13994 	/* Initialize and populate the iocb list per host */
13995 
13996 	error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT);
13997 	if (error) {
13998 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13999 				"1405 Failed to initialize iocb list.\n");
14000 		goto out_unset_driver_resource_s3;
14001 	}
14002 
14003 	/* Set up common device driver resources */
14004 	error = lpfc_setup_driver_resource_phase2(phba);
14005 	if (error) {
14006 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14007 				"1406 Failed to set up driver resource.\n");
14008 		goto out_free_iocb_list;
14009 	}
14010 
14011 	/* Get the default values for Model Name and Description */
14012 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14013 
14014 	/* Create SCSI host to the physical port */
14015 	error = lpfc_create_shost(phba);
14016 	if (error) {
14017 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14018 				"1407 Failed to create scsi host.\n");
14019 		goto out_unset_driver_resource;
14020 	}
14021 
14022 	/* Configure sysfs attributes */
14023 	vport = phba->pport;
14024 	error = lpfc_alloc_sysfs_attr(vport);
14025 	if (error) {
14026 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14027 				"1476 Failed to allocate sysfs attr\n");
14028 		goto out_destroy_shost;
14029 	}
14030 
14031 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14032 	/* Now, trying to enable interrupt and bring up the device */
14033 	cfg_mode = phba->cfg_use_msi;
14034 	while (true) {
14035 		/* Put device to a known state before enabling interrupt */
14036 		lpfc_stop_port(phba);
14037 		/* Configure and enable interrupt */
14038 		intr_mode = lpfc_sli_enable_intr(phba, cfg_mode);
14039 		if (intr_mode == LPFC_INTR_ERROR) {
14040 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14041 					"0431 Failed to enable interrupt.\n");
14042 			error = -ENODEV;
14043 			goto out_free_sysfs_attr;
14044 		}
14045 		/* SLI-3 HBA setup */
14046 		if (lpfc_sli_hba_setup(phba)) {
14047 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14048 					"1477 Failed to set up hba\n");
14049 			error = -ENODEV;
14050 			goto out_remove_device;
14051 		}
14052 
14053 		/* Wait 50ms for the interrupts of previous mailbox commands */
14054 		msleep(50);
14055 		/* Check active interrupts on message signaled interrupts */
14056 		if (intr_mode == 0 ||
14057 		    phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
14058 			/* Log the current active interrupt mode */
14059 			phba->intr_mode = intr_mode;
14060 			lpfc_log_intr_mode(phba, intr_mode);
14061 			break;
14062 		} else {
14063 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14064 					"0447 Configure interrupt mode (%d) "
14065 					"failed active interrupt test.\n",
14066 					intr_mode);
14067 			/* Disable the current interrupt mode */
14068 			lpfc_sli_disable_intr(phba);
14069 			/* Try next level of interrupt mode */
14070 			cfg_mode = --intr_mode;
14071 		}
14072 	}
14073 
14074 	/* Perform post initialization setup */
14075 	lpfc_post_init_setup(phba);
14076 
14077 	/* Check if there are static vports to be created. */
14078 	lpfc_create_static_vport(phba);
14079 
14080 	return 0;
14081 
14082 out_remove_device:
14083 	lpfc_unset_hba(phba);
14084 out_free_sysfs_attr:
14085 	lpfc_free_sysfs_attr(vport);
14086 out_destroy_shost:
14087 	lpfc_destroy_shost(phba);
14088 out_unset_driver_resource:
14089 	lpfc_unset_driver_resource_phase2(phba);
14090 out_free_iocb_list:
14091 	lpfc_free_iocb_list(phba);
14092 out_unset_driver_resource_s3:
14093 	lpfc_sli_driver_resource_unset(phba);
14094 out_unset_pci_mem_s3:
14095 	lpfc_sli_pci_mem_unset(phba);
14096 out_disable_pci_dev:
14097 	lpfc_disable_pci_dev(phba);
14098 	if (shost)
14099 		scsi_host_put(shost);
14100 out_free_phba:
14101 	lpfc_hba_free(phba);
14102 	return error;
14103 }
14104 
14105 /**
14106  * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem.
14107  * @pdev: pointer to PCI device
14108  *
14109  * This routine is to be called to disattach a device with SLI-3 interface
14110  * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
14111  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14112  * device to be removed from the PCI subsystem properly.
14113  **/
14114 static void
lpfc_pci_remove_one_s3(struct pci_dev * pdev)14115 lpfc_pci_remove_one_s3(struct pci_dev *pdev)
14116 {
14117 	struct Scsi_Host  *shost = pci_get_drvdata(pdev);
14118 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14119 	struct lpfc_vport **vports;
14120 	struct lpfc_hba   *phba = vport->phba;
14121 	int i;
14122 
14123 	set_bit(FC_UNLOADING, &vport->load_flag);
14124 
14125 	lpfc_free_sysfs_attr(vport);
14126 
14127 	/* Release all the vports against this physical port */
14128 	vports = lpfc_create_vport_work_array(phba);
14129 	if (vports != NULL)
14130 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14131 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14132 				continue;
14133 			fc_vport_terminate(vports[i]->fc_vport);
14134 		}
14135 	lpfc_destroy_vport_work_array(phba, vports);
14136 
14137 	/* Remove FC host with the physical port */
14138 	fc_remove_host(shost);
14139 	scsi_remove_host(shost);
14140 
14141 	/* Clean up all nodes, mailboxes and IOs. */
14142 	lpfc_cleanup(vport);
14143 
14144 	/*
14145 	 * Bring down the SLI Layer. This step disable all interrupts,
14146 	 * clears the rings, discards all mailbox commands, and resets
14147 	 * the HBA.
14148 	 */
14149 
14150 	/* HBA interrupt will be disabled after this call */
14151 	lpfc_sli_hba_down(phba);
14152 	/* Stop kthread signal shall trigger work_done one more time */
14153 	kthread_stop(phba->worker_thread);
14154 	/* Final cleanup of txcmplq and reset the HBA */
14155 	lpfc_sli_brdrestart(phba);
14156 
14157 	kfree(phba->vpi_bmask);
14158 	kfree(phba->vpi_ids);
14159 
14160 	lpfc_stop_hba_timers(phba);
14161 	spin_lock_irq(&phba->port_list_lock);
14162 	list_del_init(&vport->listentry);
14163 	spin_unlock_irq(&phba->port_list_lock);
14164 
14165 	lpfc_debugfs_terminate(vport);
14166 
14167 	/* Disable SR-IOV if enabled */
14168 	if (phba->cfg_sriov_nr_virtfn)
14169 		pci_disable_sriov(pdev);
14170 
14171 	/* Disable interrupt */
14172 	lpfc_sli_disable_intr(phba);
14173 
14174 	scsi_host_put(shost);
14175 
14176 	/*
14177 	 * Call scsi_free before mem_free since scsi bufs are released to their
14178 	 * corresponding pools here.
14179 	 */
14180 	lpfc_scsi_free(phba);
14181 	lpfc_free_iocb_list(phba);
14182 
14183 	lpfc_mem_free_all(phba);
14184 
14185 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
14186 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
14187 
14188 	/* Free resources associated with SLI2 interface */
14189 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
14190 			  phba->slim2p.virt, phba->slim2p.phys);
14191 
14192 	/* unmap adapter SLIM and Control Registers */
14193 	iounmap(phba->ctrl_regs_memmap_p);
14194 	iounmap(phba->slim_memmap_p);
14195 
14196 	lpfc_hba_free(phba);
14197 
14198 	pci_release_mem_regions(pdev);
14199 	pci_disable_device(pdev);
14200 }
14201 
14202 /**
14203  * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt
14204  * @dev_d: pointer to device
14205  *
14206  * This routine is to be called from the kernel's PCI subsystem to support
14207  * system Power Management (PM) to device with SLI-3 interface spec. When
14208  * PM invokes this method, it quiesces the device by stopping the driver's
14209  * worker thread for the device, turning off device's interrupt and DMA,
14210  * and bring the device offline. Note that as the driver implements the
14211  * minimum PM requirements to a power-aware driver's PM support for the
14212  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14213  * to the suspend() method call will be treated as SUSPEND and the driver will
14214  * fully reinitialize its device during resume() method call, the driver will
14215  * set device to PCI_D3hot state in PCI config space instead of setting it
14216  * according to the @msg provided by the PM.
14217  *
14218  * Return code
14219  * 	0 - driver suspended the device
14220  * 	Error otherwise
14221  **/
14222 static int __maybe_unused
lpfc_pci_suspend_one_s3(struct device * dev_d)14223 lpfc_pci_suspend_one_s3(struct device *dev_d)
14224 {
14225 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14226 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14227 
14228 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14229 			"0473 PCI device Power Management suspend.\n");
14230 
14231 	/* Bring down the device */
14232 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14233 	lpfc_offline(phba);
14234 	kthread_stop(phba->worker_thread);
14235 
14236 	/* Disable interrupt from device */
14237 	lpfc_sli_disable_intr(phba);
14238 
14239 	return 0;
14240 }
14241 
14242 /**
14243  * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt
14244  * @dev_d: pointer to device
14245  *
14246  * This routine is to be called from the kernel's PCI subsystem to support
14247  * system Power Management (PM) to device with SLI-3 interface spec. When PM
14248  * invokes this method, it restores the device's PCI config space state and
14249  * fully reinitializes the device and brings it online. Note that as the
14250  * driver implements the minimum PM requirements to a power-aware driver's
14251  * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE,
14252  * FREEZE) to the suspend() method call will be treated as SUSPEND and the
14253  * driver will fully reinitialize its device during resume() method call,
14254  * the device will be set to PCI_D0 directly in PCI config space before
14255  * restoring the state.
14256  *
14257  * Return code
14258  * 	0 - driver suspended the device
14259  * 	Error otherwise
14260  **/
14261 static int __maybe_unused
lpfc_pci_resume_one_s3(struct device * dev_d)14262 lpfc_pci_resume_one_s3(struct device *dev_d)
14263 {
14264 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14265 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14266 	uint32_t intr_mode;
14267 	int error;
14268 
14269 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14270 			"0452 PCI device Power Management resume.\n");
14271 
14272 	/* Startup the kernel thread for this host adapter. */
14273 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
14274 					"lpfc_worker_%d", phba->brd_no);
14275 	if (IS_ERR(phba->worker_thread)) {
14276 		error = PTR_ERR(phba->worker_thread);
14277 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14278 				"0434 PM resume failed to start worker "
14279 				"thread: error=x%x.\n", error);
14280 		return error;
14281 	}
14282 
14283 	/* Init cpu_map array */
14284 	lpfc_cpu_map_array_init(phba);
14285 	/* Init hba_eq_hdl array */
14286 	lpfc_hba_eq_hdl_array_init(phba);
14287 	/* Configure and enable interrupt */
14288 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14289 	if (intr_mode == LPFC_INTR_ERROR) {
14290 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14291 				"0430 PM resume Failed to enable interrupt\n");
14292 		return -EIO;
14293 	} else
14294 		phba->intr_mode = intr_mode;
14295 
14296 	/* Restart HBA and bring it online */
14297 	lpfc_sli_brdrestart(phba);
14298 	lpfc_online(phba);
14299 
14300 	/* Log the current active interrupt mode */
14301 	lpfc_log_intr_mode(phba, phba->intr_mode);
14302 
14303 	return 0;
14304 }
14305 
14306 /**
14307  * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover
14308  * @phba: pointer to lpfc hba data structure.
14309  *
14310  * This routine is called to prepare the SLI3 device for PCI slot recover. It
14311  * aborts all the outstanding SCSI I/Os to the pci device.
14312  **/
14313 static void
lpfc_sli_prep_dev_for_recover(struct lpfc_hba * phba)14314 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba)
14315 {
14316 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14317 			"2723 PCI channel I/O abort preparing for recovery\n");
14318 
14319 	/*
14320 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14321 	 * and let the SCSI mid-layer to retry them to recover.
14322 	 */
14323 	lpfc_sli_abort_fcp_rings(phba);
14324 }
14325 
14326 /**
14327  * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset
14328  * @phba: pointer to lpfc hba data structure.
14329  *
14330  * This routine is called to prepare the SLI3 device for PCI slot reset. It
14331  * disables the device interrupt and pci device, and aborts the internal FCP
14332  * pending I/Os.
14333  **/
14334 static void
lpfc_sli_prep_dev_for_reset(struct lpfc_hba * phba)14335 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba)
14336 {
14337 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14338 			"2710 PCI channel disable preparing for reset\n");
14339 
14340 	/* Block any management I/Os to the device */
14341 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
14342 
14343 	/* Block all SCSI devices' I/Os on the host */
14344 	lpfc_scsi_dev_block(phba);
14345 
14346 	/* Flush all driver's outstanding SCSI I/Os as we are to reset */
14347 	lpfc_sli_flush_io_rings(phba);
14348 
14349 	/* stop all timers */
14350 	lpfc_stop_hba_timers(phba);
14351 
14352 	/* Disable interrupt and pci device */
14353 	lpfc_sli_disable_intr(phba);
14354 	pci_disable_device(phba->pcidev);
14355 }
14356 
14357 /**
14358  * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable
14359  * @phba: pointer to lpfc hba data structure.
14360  *
14361  * This routine is called to prepare the SLI3 device for PCI slot permanently
14362  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14363  * pending I/Os.
14364  **/
14365 static void
lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba * phba)14366 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14367 {
14368 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14369 			"2711 PCI channel permanent disable for failure\n");
14370 	/* Block all SCSI devices' I/Os on the host */
14371 	lpfc_scsi_dev_block(phba);
14372 	lpfc_sli4_prep_dev_for_reset(phba);
14373 
14374 	/* stop all timers */
14375 	lpfc_stop_hba_timers(phba);
14376 
14377 	/* Clean up all driver's outstanding SCSI I/Os */
14378 	lpfc_sli_flush_io_rings(phba);
14379 }
14380 
14381 /**
14382  * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error
14383  * @pdev: pointer to PCI device.
14384  * @state: the current PCI connection state.
14385  *
14386  * This routine is called from the PCI subsystem for I/O error handling to
14387  * device with SLI-3 interface spec. This function is called by the PCI
14388  * subsystem after a PCI bus error affecting this device has been detected.
14389  * When this function is invoked, it will need to stop all the I/Os and
14390  * interrupt(s) to the device. Once that is done, it will return
14391  * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery
14392  * as desired.
14393  *
14394  * Return codes
14395  * 	PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link
14396  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
14397  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14398  **/
14399 static pci_ers_result_t
lpfc_io_error_detected_s3(struct pci_dev * pdev,pci_channel_state_t state)14400 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state)
14401 {
14402 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14403 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14404 
14405 	switch (state) {
14406 	case pci_channel_io_normal:
14407 		/* Non-fatal error, prepare for recovery */
14408 		lpfc_sli_prep_dev_for_recover(phba);
14409 		return PCI_ERS_RESULT_CAN_RECOVER;
14410 	case pci_channel_io_frozen:
14411 		/* Fatal error, prepare for slot reset */
14412 		lpfc_sli_prep_dev_for_reset(phba);
14413 		return PCI_ERS_RESULT_NEED_RESET;
14414 	case pci_channel_io_perm_failure:
14415 		/* Permanent failure, prepare for device down */
14416 		lpfc_sli_prep_dev_for_perm_failure(phba);
14417 		return PCI_ERS_RESULT_DISCONNECT;
14418 	default:
14419 		/* Unknown state, prepare and request slot reset */
14420 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14421 				"0472 Unknown PCI error state: x%x\n", state);
14422 		lpfc_sli_prep_dev_for_reset(phba);
14423 		return PCI_ERS_RESULT_NEED_RESET;
14424 	}
14425 }
14426 
14427 /**
14428  * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch.
14429  * @pdev: pointer to PCI device.
14430  *
14431  * This routine is called from the PCI subsystem for error handling to
14432  * device with SLI-3 interface spec. This is called after PCI bus has been
14433  * reset to restart the PCI card from scratch, as if from a cold-boot.
14434  * During the PCI subsystem error recovery, after driver returns
14435  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
14436  * recovery and then call this routine before calling the .resume method
14437  * to recover the device. This function will initialize the HBA device,
14438  * enable the interrupt, but it will just put the HBA to offline state
14439  * without passing any I/O traffic.
14440  *
14441  * Return codes
14442  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
14443  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14444  */
14445 static pci_ers_result_t
lpfc_io_slot_reset_s3(struct pci_dev * pdev)14446 lpfc_io_slot_reset_s3(struct pci_dev *pdev)
14447 {
14448 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14449 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14450 	struct lpfc_sli *psli = &phba->sli;
14451 	uint32_t intr_mode;
14452 
14453 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
14454 	if (pci_enable_device_mem(pdev)) {
14455 		printk(KERN_ERR "lpfc: Cannot re-enable "
14456 			"PCI device after reset.\n");
14457 		return PCI_ERS_RESULT_DISCONNECT;
14458 	}
14459 
14460 	pci_restore_state(pdev);
14461 
14462 	/*
14463 	 * As the new kernel behavior of pci_restore_state() API call clears
14464 	 * device saved_state flag, need to save the restored state again.
14465 	 */
14466 	pci_save_state(pdev);
14467 
14468 	if (pdev->is_busmaster)
14469 		pci_set_master(pdev);
14470 
14471 	spin_lock_irq(&phba->hbalock);
14472 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
14473 	spin_unlock_irq(&phba->hbalock);
14474 
14475 	/* Configure and enable interrupt */
14476 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14477 	if (intr_mode == LPFC_INTR_ERROR) {
14478 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14479 				"0427 Cannot re-enable interrupt after "
14480 				"slot reset.\n");
14481 		return PCI_ERS_RESULT_DISCONNECT;
14482 	} else
14483 		phba->intr_mode = intr_mode;
14484 
14485 	/* Take device offline, it will perform cleanup */
14486 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14487 	lpfc_offline(phba);
14488 	lpfc_sli_brdrestart(phba);
14489 
14490 	/* Log the current active interrupt mode */
14491 	lpfc_log_intr_mode(phba, phba->intr_mode);
14492 
14493 	return PCI_ERS_RESULT_RECOVERED;
14494 }
14495 
14496 /**
14497  * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device.
14498  * @pdev: pointer to PCI device
14499  *
14500  * This routine is called from the PCI subsystem for error handling to device
14501  * with SLI-3 interface spec. It is called when kernel error recovery tells
14502  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
14503  * error recovery. After this call, traffic can start to flow from this device
14504  * again.
14505  */
14506 static void
lpfc_io_resume_s3(struct pci_dev * pdev)14507 lpfc_io_resume_s3(struct pci_dev *pdev)
14508 {
14509 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14510 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14511 
14512 	/* Bring device online, it will be no-op for non-fatal error resume */
14513 	lpfc_online(phba);
14514 }
14515 
14516 /**
14517  * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve
14518  * @phba: pointer to lpfc hba data structure.
14519  *
14520  * returns the number of ELS/CT IOCBs to reserve
14521  **/
14522 int
lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba * phba)14523 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba)
14524 {
14525 	int max_xri = phba->sli4_hba.max_cfg_param.max_xri;
14526 
14527 	if (phba->sli_rev == LPFC_SLI_REV4) {
14528 		if (max_xri <= 100)
14529 			return 10;
14530 		else if (max_xri <= 256)
14531 			return 25;
14532 		else if (max_xri <= 512)
14533 			return 50;
14534 		else if (max_xri <= 1024)
14535 			return 100;
14536 		else if (max_xri <= 1536)
14537 			return 150;
14538 		else if (max_xri <= 2048)
14539 			return 200;
14540 		else
14541 			return 250;
14542 	} else
14543 		return 0;
14544 }
14545 
14546 /**
14547  * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve
14548  * @phba: pointer to lpfc hba data structure.
14549  *
14550  * returns the number of ELS/CT + NVMET IOCBs to reserve
14551  **/
14552 int
lpfc_sli4_get_iocb_cnt(struct lpfc_hba * phba)14553 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba)
14554 {
14555 	int max_xri = lpfc_sli4_get_els_iocb_cnt(phba);
14556 
14557 	if (phba->nvmet_support)
14558 		max_xri += LPFC_NVMET_BUF_POST;
14559 	return max_xri;
14560 }
14561 
14562 
14563 static int
lpfc_log_write_firmware_error(struct lpfc_hba * phba,uint32_t offset,uint32_t magic_number,uint32_t ftype,uint32_t fid,uint32_t fsize,const struct firmware * fw)14564 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset,
14565 	uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize,
14566 	const struct firmware *fw)
14567 {
14568 	int rc;
14569 	u8 sli_family;
14570 
14571 	sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf);
14572 	/* Three cases:  (1) FW was not supported on the detected adapter.
14573 	 * (2) FW update has been locked out administratively.
14574 	 * (3) Some other error during FW update.
14575 	 * In each case, an unmaskable message is written to the console
14576 	 * for admin diagnosis.
14577 	 */
14578 	if (offset == ADD_STATUS_FW_NOT_SUPPORTED ||
14579 	    (sli_family == LPFC_SLI_INTF_FAMILY_G6 &&
14580 	     magic_number != MAGIC_NUMBER_G6) ||
14581 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7 &&
14582 	     magic_number != MAGIC_NUMBER_G7) ||
14583 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7P &&
14584 	     magic_number != MAGIC_NUMBER_G7P)) {
14585 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14586 				"3030 This firmware version is not supported on"
14587 				" this HBA model. Device:%x Magic:%x Type:%x "
14588 				"ID:%x Size %d %zd\n",
14589 				phba->pcidev->device, magic_number, ftype, fid,
14590 				fsize, fw->size);
14591 		rc = -EINVAL;
14592 	} else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) {
14593 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14594 				"3021 Firmware downloads have been prohibited "
14595 				"by a system configuration setting on "
14596 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14597 				"%zd\n",
14598 				phba->pcidev->device, magic_number, ftype, fid,
14599 				fsize, fw->size);
14600 		rc = -EACCES;
14601 	} else {
14602 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14603 				"3022 FW Download failed. Add Status x%x "
14604 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14605 				"%zd\n",
14606 				offset, phba->pcidev->device, magic_number,
14607 				ftype, fid, fsize, fw->size);
14608 		rc = -EIO;
14609 	}
14610 	return rc;
14611 }
14612 
14613 /**
14614  * lpfc_write_firmware - attempt to write a firmware image to the port
14615  * @fw: pointer to firmware image returned from request_firmware.
14616  * @context: pointer to firmware image returned from request_firmware.
14617  *
14618  **/
14619 static void
lpfc_write_firmware(const struct firmware * fw,void * context)14620 lpfc_write_firmware(const struct firmware *fw, void *context)
14621 {
14622 	struct lpfc_hba *phba = (struct lpfc_hba *)context;
14623 	char fwrev[FW_REV_STR_SIZE];
14624 	struct lpfc_grp_hdr *image;
14625 	struct list_head dma_buffer_list;
14626 	int i, rc = 0;
14627 	struct lpfc_dmabuf *dmabuf, *next;
14628 	uint32_t offset = 0, temp_offset = 0;
14629 	uint32_t magic_number, ftype, fid, fsize;
14630 
14631 	/* It can be null in no-wait mode, sanity check */
14632 	if (!fw) {
14633 		rc = -ENXIO;
14634 		goto out;
14635 	}
14636 	image = (struct lpfc_grp_hdr *)fw->data;
14637 
14638 	magic_number = be32_to_cpu(image->magic_number);
14639 	ftype = bf_get_be32(lpfc_grp_hdr_file_type, image);
14640 	fid = bf_get_be32(lpfc_grp_hdr_id, image);
14641 	fsize = be32_to_cpu(image->size);
14642 
14643 	INIT_LIST_HEAD(&dma_buffer_list);
14644 	lpfc_decode_firmware_rev(phba, fwrev, 1);
14645 	if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) {
14646 		lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI,
14647 			     "3023 Updating Firmware, Current Version:%s "
14648 			     "New Version:%s\n",
14649 			     fwrev, image->revision);
14650 		for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) {
14651 			dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
14652 					 GFP_KERNEL);
14653 			if (!dmabuf) {
14654 				rc = -ENOMEM;
14655 				goto release_out;
14656 			}
14657 			dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14658 							  SLI4_PAGE_SIZE,
14659 							  &dmabuf->phys,
14660 							  GFP_KERNEL);
14661 			if (!dmabuf->virt) {
14662 				kfree(dmabuf);
14663 				rc = -ENOMEM;
14664 				goto release_out;
14665 			}
14666 			list_add_tail(&dmabuf->list, &dma_buffer_list);
14667 		}
14668 		while (offset < fw->size) {
14669 			temp_offset = offset;
14670 			list_for_each_entry(dmabuf, &dma_buffer_list, list) {
14671 				if (temp_offset + SLI4_PAGE_SIZE > fw->size) {
14672 					memcpy(dmabuf->virt,
14673 					       fw->data + temp_offset,
14674 					       fw->size - temp_offset);
14675 					temp_offset = fw->size;
14676 					break;
14677 				}
14678 				memcpy(dmabuf->virt, fw->data + temp_offset,
14679 				       SLI4_PAGE_SIZE);
14680 				temp_offset += SLI4_PAGE_SIZE;
14681 			}
14682 			rc = lpfc_wr_object(phba, &dma_buffer_list,
14683 				    (fw->size - offset), &offset);
14684 			if (rc) {
14685 				rc = lpfc_log_write_firmware_error(phba, offset,
14686 								   magic_number,
14687 								   ftype,
14688 								   fid,
14689 								   fsize,
14690 								   fw);
14691 				goto release_out;
14692 			}
14693 		}
14694 		rc = offset;
14695 	} else
14696 		lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI,
14697 			     "3029 Skipped Firmware update, Current "
14698 			     "Version:%s New Version:%s\n",
14699 			     fwrev, image->revision);
14700 
14701 release_out:
14702 	list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) {
14703 		list_del(&dmabuf->list);
14704 		dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE,
14705 				  dmabuf->virt, dmabuf->phys);
14706 		kfree(dmabuf);
14707 	}
14708 	release_firmware(fw);
14709 out:
14710 	if (rc < 0)
14711 		lpfc_log_msg(phba, KERN_ERR, LOG_INIT | LOG_SLI,
14712 			     "3062 Firmware update error, status %d.\n", rc);
14713 	else
14714 		lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI,
14715 			     "3024 Firmware update success: size %d.\n", rc);
14716 }
14717 
14718 /**
14719  * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade
14720  * @phba: pointer to lpfc hba data structure.
14721  * @fw_upgrade: which firmware to update.
14722  *
14723  * This routine is called to perform Linux generic firmware upgrade on device
14724  * that supports such feature.
14725  **/
14726 int
lpfc_sli4_request_firmware_update(struct lpfc_hba * phba,uint8_t fw_upgrade)14727 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade)
14728 {
14729 	char file_name[ELX_FW_NAME_SIZE] = {0};
14730 	int ret;
14731 	const struct firmware *fw;
14732 
14733 	/* Only supported on SLI4 interface type 2 for now */
14734 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
14735 	    LPFC_SLI_INTF_IF_TYPE_2)
14736 		return -EPERM;
14737 
14738 	scnprintf(file_name, sizeof(file_name), "%s.grp", phba->ModelName);
14739 
14740 	if (fw_upgrade == INT_FW_UPGRADE) {
14741 		ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
14742 					file_name, &phba->pcidev->dev,
14743 					GFP_KERNEL, (void *)phba,
14744 					lpfc_write_firmware);
14745 	} else if (fw_upgrade == RUN_FW_UPGRADE) {
14746 		ret = request_firmware(&fw, file_name, &phba->pcidev->dev);
14747 		if (!ret)
14748 			lpfc_write_firmware(fw, (void *)phba);
14749 	} else {
14750 		ret = -EINVAL;
14751 	}
14752 
14753 	return ret;
14754 }
14755 
14756 /**
14757  * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys
14758  * @pdev: pointer to PCI device
14759  * @pid: pointer to PCI device identifier
14760  *
14761  * This routine is called from the kernel's PCI subsystem to device with
14762  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14763  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
14764  * information of the device and driver to see if the driver state that it
14765  * can support this kind of device. If the match is successful, the driver
14766  * core invokes this routine. If this routine determines it can claim the HBA,
14767  * it does all the initialization that it needs to do to handle the HBA
14768  * properly.
14769  *
14770  * Return code
14771  * 	0 - driver can claim the device
14772  * 	negative value - driver can not claim the device
14773  **/
14774 static int
lpfc_pci_probe_one_s4(struct pci_dev * pdev,const struct pci_device_id * pid)14775 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid)
14776 {
14777 	struct lpfc_hba   *phba;
14778 	struct lpfc_vport *vport = NULL;
14779 	struct Scsi_Host  *shost = NULL;
14780 	int error;
14781 	uint32_t cfg_mode, intr_mode;
14782 
14783 	/* Allocate memory for HBA structure */
14784 	phba = lpfc_hba_alloc(pdev);
14785 	if (!phba)
14786 		return -ENOMEM;
14787 
14788 	INIT_LIST_HEAD(&phba->poll_list);
14789 
14790 	/* Perform generic PCI device enabling operation */
14791 	error = lpfc_enable_pci_dev(phba);
14792 	if (error)
14793 		goto out_free_phba;
14794 
14795 	/* Set up SLI API function jump table for PCI-device group-1 HBAs */
14796 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC);
14797 	if (error)
14798 		goto out_disable_pci_dev;
14799 
14800 	/* Set up SLI-4 specific device PCI memory space */
14801 	error = lpfc_sli4_pci_mem_setup(phba);
14802 	if (error) {
14803 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14804 				"1410 Failed to set up pci memory space.\n");
14805 		goto out_disable_pci_dev;
14806 	}
14807 
14808 	/* Set up SLI-4 Specific device driver resources */
14809 	error = lpfc_sli4_driver_resource_setup(phba);
14810 	if (error) {
14811 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14812 				"1412 Failed to set up driver resource.\n");
14813 		goto out_unset_pci_mem_s4;
14814 	}
14815 
14816 	spin_lock_init(&phba->rrq_list_lock);
14817 	INIT_LIST_HEAD(&phba->active_rrq_list);
14818 	INIT_LIST_HEAD(&phba->fcf.fcf_pri_list);
14819 
14820 	/* Set up common device driver resources */
14821 	error = lpfc_setup_driver_resource_phase2(phba);
14822 	if (error) {
14823 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14824 				"1414 Failed to set up driver resource.\n");
14825 		goto out_unset_driver_resource_s4;
14826 	}
14827 
14828 	/* Get the default values for Model Name and Description */
14829 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14830 
14831 	/* Now, trying to enable interrupt and bring up the device */
14832 	cfg_mode = phba->cfg_use_msi;
14833 
14834 	/* Put device to a known state before enabling interrupt */
14835 	phba->pport = NULL;
14836 	lpfc_stop_port(phba);
14837 
14838 	/* Init cpu_map array */
14839 	lpfc_cpu_map_array_init(phba);
14840 
14841 	/* Init hba_eq_hdl array */
14842 	lpfc_hba_eq_hdl_array_init(phba);
14843 
14844 	/* Configure and enable interrupt */
14845 	intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode);
14846 	if (intr_mode == LPFC_INTR_ERROR) {
14847 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14848 				"0426 Failed to enable interrupt.\n");
14849 		error = -ENODEV;
14850 		goto out_unset_driver_resource;
14851 	}
14852 	/* Default to single EQ for non-MSI-X */
14853 	if (phba->intr_type != MSIX) {
14854 		phba->cfg_irq_chann = 1;
14855 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14856 			if (phba->nvmet_support)
14857 				phba->cfg_nvmet_mrq = 1;
14858 		}
14859 	}
14860 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
14861 
14862 	/* Create SCSI host to the physical port */
14863 	error = lpfc_create_shost(phba);
14864 	if (error) {
14865 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14866 				"1415 Failed to create scsi host.\n");
14867 		goto out_disable_intr;
14868 	}
14869 	vport = phba->pport;
14870 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14871 
14872 	/* Configure sysfs attributes */
14873 	error = lpfc_alloc_sysfs_attr(vport);
14874 	if (error) {
14875 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14876 				"1416 Failed to allocate sysfs attr\n");
14877 		goto out_destroy_shost;
14878 	}
14879 
14880 	/* Set up SLI-4 HBA */
14881 	if (lpfc_sli4_hba_setup(phba)) {
14882 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14883 				"1421 Failed to set up hba\n");
14884 		error = -ENODEV;
14885 		goto out_free_sysfs_attr;
14886 	}
14887 
14888 	/* Log the current active interrupt mode */
14889 	phba->intr_mode = intr_mode;
14890 	lpfc_log_intr_mode(phba, intr_mode);
14891 
14892 	/* Perform post initialization setup */
14893 	lpfc_post_init_setup(phba);
14894 
14895 	/* NVME support in FW earlier in the driver load corrects the
14896 	 * FC4 type making a check for nvme_support unnecessary.
14897 	 */
14898 	if (phba->nvmet_support == 0) {
14899 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14900 			/* Create NVME binding with nvme_fc_transport. This
14901 			 * ensures the vport is initialized.  If the localport
14902 			 * create fails, it should not unload the driver to
14903 			 * support field issues.
14904 			 */
14905 			error = lpfc_nvme_create_localport(vport);
14906 			if (error) {
14907 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14908 						"6004 NVME registration "
14909 						"failed, error x%x\n",
14910 						error);
14911 			}
14912 		}
14913 	}
14914 
14915 	/* check for firmware upgrade or downgrade */
14916 	if (phba->cfg_request_firmware_upgrade)
14917 		lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE);
14918 
14919 	/* Check if there are static vports to be created. */
14920 	lpfc_create_static_vport(phba);
14921 
14922 	timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
14923 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp);
14924 
14925 	return 0;
14926 
14927 out_free_sysfs_attr:
14928 	lpfc_free_sysfs_attr(vport);
14929 out_destroy_shost:
14930 	lpfc_destroy_shost(phba);
14931 out_disable_intr:
14932 	lpfc_sli4_disable_intr(phba);
14933 out_unset_driver_resource:
14934 	lpfc_unset_driver_resource_phase2(phba);
14935 out_unset_driver_resource_s4:
14936 	lpfc_sli4_driver_resource_unset(phba);
14937 out_unset_pci_mem_s4:
14938 	lpfc_sli4_pci_mem_unset(phba);
14939 out_disable_pci_dev:
14940 	lpfc_disable_pci_dev(phba);
14941 	if (shost)
14942 		scsi_host_put(shost);
14943 out_free_phba:
14944 	lpfc_hba_free(phba);
14945 	return error;
14946 }
14947 
14948 /**
14949  * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem
14950  * @pdev: pointer to PCI device
14951  *
14952  * This routine is called from the kernel's PCI subsystem to device with
14953  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14954  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14955  * device to be removed from the PCI subsystem properly.
14956  **/
14957 static void
lpfc_pci_remove_one_s4(struct pci_dev * pdev)14958 lpfc_pci_remove_one_s4(struct pci_dev *pdev)
14959 {
14960 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14961 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14962 	struct lpfc_vport **vports;
14963 	struct lpfc_hba *phba = vport->phba;
14964 	int i;
14965 
14966 	/* Mark the device unloading flag */
14967 	set_bit(FC_UNLOADING, &vport->load_flag);
14968 	if (phba->cgn_i)
14969 		lpfc_unreg_congestion_buf(phba);
14970 
14971 	lpfc_free_sysfs_attr(vport);
14972 
14973 	/* Release all the vports against this physical port */
14974 	vports = lpfc_create_vport_work_array(phba);
14975 	if (vports != NULL)
14976 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14977 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14978 				continue;
14979 			fc_vport_terminate(vports[i]->fc_vport);
14980 		}
14981 	lpfc_destroy_vport_work_array(phba, vports);
14982 
14983 	/* Remove FC host with the physical port */
14984 	fc_remove_host(shost);
14985 	scsi_remove_host(shost);
14986 
14987 	/* Perform ndlp cleanup on the physical port.  The nvme and nvmet
14988 	 * localports are destroyed after to cleanup all transport memory.
14989 	 */
14990 	lpfc_cleanup(vport);
14991 	lpfc_nvmet_destroy_targetport(phba);
14992 	lpfc_nvme_destroy_localport(vport);
14993 
14994 	/* De-allocate multi-XRI pools */
14995 	if (phba->cfg_xri_rebalancing)
14996 		lpfc_destroy_multixri_pools(phba);
14997 
14998 	/*
14999 	 * Bring down the SLI Layer. This step disables all interrupts,
15000 	 * clears the rings, discards all mailbox commands, and resets
15001 	 * the HBA FCoE function.
15002 	 */
15003 	lpfc_debugfs_terminate(vport);
15004 
15005 	lpfc_stop_hba_timers(phba);
15006 	spin_lock_irq(&phba->port_list_lock);
15007 	list_del_init(&vport->listentry);
15008 	spin_unlock_irq(&phba->port_list_lock);
15009 
15010 	/* Perform scsi free before driver resource_unset since scsi
15011 	 * buffers are released to their corresponding pools here.
15012 	 */
15013 	lpfc_io_free(phba);
15014 	lpfc_free_iocb_list(phba);
15015 	lpfc_sli4_hba_unset(phba);
15016 
15017 	lpfc_unset_driver_resource_phase2(phba);
15018 	lpfc_sli4_driver_resource_unset(phba);
15019 
15020 	/* Unmap adapter Control and Doorbell registers */
15021 	lpfc_sli4_pci_mem_unset(phba);
15022 
15023 	/* Release PCI resources and disable device's PCI function */
15024 	scsi_host_put(shost);
15025 	lpfc_disable_pci_dev(phba);
15026 
15027 	/* Finally, free the driver's device data structure */
15028 	lpfc_hba_free(phba);
15029 
15030 	return;
15031 }
15032 
15033 /**
15034  * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt
15035  * @dev_d: pointer to device
15036  *
15037  * This routine is called from the kernel's PCI subsystem to support system
15038  * Power Management (PM) to device with SLI-4 interface spec. When PM invokes
15039  * this method, it quiesces the device by stopping the driver's worker
15040  * thread for the device, turning off device's interrupt and DMA, and bring
15041  * the device offline. Note that as the driver implements the minimum PM
15042  * requirements to a power-aware driver's PM support for suspend/resume -- all
15043  * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
15044  * method call will be treated as SUSPEND and the driver will fully
15045  * reinitialize its device during resume() method call, the driver will set
15046  * device to PCI_D3hot state in PCI config space instead of setting it
15047  * according to the @msg provided by the PM.
15048  *
15049  * Return code
15050  * 	0 - driver suspended the device
15051  * 	Error otherwise
15052  **/
15053 static int __maybe_unused
lpfc_pci_suspend_one_s4(struct device * dev_d)15054 lpfc_pci_suspend_one_s4(struct device *dev_d)
15055 {
15056 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15057 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15058 
15059 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15060 			"2843 PCI device Power Management suspend.\n");
15061 
15062 	/* Bring down the device */
15063 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
15064 	lpfc_offline(phba);
15065 	kthread_stop(phba->worker_thread);
15066 
15067 	/* Disable interrupt from device */
15068 	lpfc_sli4_disable_intr(phba);
15069 	lpfc_sli4_queue_destroy(phba);
15070 
15071 	return 0;
15072 }
15073 
15074 /**
15075  * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt
15076  * @dev_d: pointer to device
15077  *
15078  * This routine is called from the kernel's PCI subsystem to support system
15079  * Power Management (PM) to device with SLI-4 interface spac. When PM invokes
15080  * this method, it restores the device's PCI config space state and fully
15081  * reinitializes the device and brings it online. Note that as the driver
15082  * implements the minimum PM requirements to a power-aware driver's PM for
15083  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
15084  * to the suspend() method call will be treated as SUSPEND and the driver
15085  * will fully reinitialize its device during resume() method call, the device
15086  * will be set to PCI_D0 directly in PCI config space before restoring the
15087  * state.
15088  *
15089  * Return code
15090  * 	0 - driver suspended the device
15091  * 	Error otherwise
15092  **/
15093 static int __maybe_unused
lpfc_pci_resume_one_s4(struct device * dev_d)15094 lpfc_pci_resume_one_s4(struct device *dev_d)
15095 {
15096 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15097 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15098 	uint32_t intr_mode;
15099 	int error;
15100 
15101 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15102 			"0292 PCI device Power Management resume.\n");
15103 
15104 	 /* Startup the kernel thread for this host adapter. */
15105 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
15106 					"lpfc_worker_%d", phba->brd_no);
15107 	if (IS_ERR(phba->worker_thread)) {
15108 		error = PTR_ERR(phba->worker_thread);
15109 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15110 				"0293 PM resume failed to start worker "
15111 				"thread: error=x%x.\n", error);
15112 		return error;
15113 	}
15114 
15115 	/* Configure and enable interrupt */
15116 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15117 	if (intr_mode == LPFC_INTR_ERROR) {
15118 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15119 				"0294 PM resume Failed to enable interrupt\n");
15120 		return -EIO;
15121 	} else
15122 		phba->intr_mode = intr_mode;
15123 
15124 	/* Restart HBA and bring it online */
15125 	lpfc_sli_brdrestart(phba);
15126 	lpfc_online(phba);
15127 
15128 	/* Log the current active interrupt mode */
15129 	lpfc_log_intr_mode(phba, phba->intr_mode);
15130 
15131 	return 0;
15132 }
15133 
15134 /**
15135  * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover
15136  * @phba: pointer to lpfc hba data structure.
15137  *
15138  * This routine is called to prepare the SLI4 device for PCI slot recover. It
15139  * aborts all the outstanding SCSI I/Os to the pci device.
15140  **/
15141 static void
lpfc_sli4_prep_dev_for_recover(struct lpfc_hba * phba)15142 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba)
15143 {
15144 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15145 			"2828 PCI channel I/O abort preparing for recovery\n");
15146 	/*
15147 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
15148 	 * and let the SCSI mid-layer to retry them to recover.
15149 	 */
15150 	lpfc_sli_abort_fcp_rings(phba);
15151 }
15152 
15153 /**
15154  * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset
15155  * @phba: pointer to lpfc hba data structure.
15156  *
15157  * This routine is called to prepare the SLI4 device for PCI slot reset. It
15158  * disables the device interrupt and pci device, and aborts the internal FCP
15159  * pending I/Os.
15160  **/
15161 static void
lpfc_sli4_prep_dev_for_reset(struct lpfc_hba * phba)15162 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba)
15163 {
15164 	int offline =  pci_channel_offline(phba->pcidev);
15165 
15166 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15167 			"2826 PCI channel disable preparing for reset offline"
15168 			" %d\n", offline);
15169 
15170 	/* Block any management I/Os to the device */
15171 	lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT);
15172 
15173 
15174 	/* HBA_PCI_ERR was set in io_error_detect */
15175 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
15176 	/* Flush all driver's outstanding I/Os as we are to reset */
15177 	lpfc_sli_flush_io_rings(phba);
15178 	lpfc_offline(phba);
15179 
15180 	/* stop all timers */
15181 	lpfc_stop_hba_timers(phba);
15182 
15183 	lpfc_sli4_queue_destroy(phba);
15184 	/* Disable interrupt and pci device */
15185 	lpfc_sli4_disable_intr(phba);
15186 	pci_disable_device(phba->pcidev);
15187 }
15188 
15189 /**
15190  * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable
15191  * @phba: pointer to lpfc hba data structure.
15192  *
15193  * This routine is called to prepare the SLI4 device for PCI slot permanently
15194  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
15195  * pending I/Os.
15196  **/
15197 static void
lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba * phba)15198 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba)
15199 {
15200 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15201 			"2827 PCI channel permanent disable for failure\n");
15202 
15203 	/* Block all SCSI devices' I/Os on the host */
15204 	lpfc_scsi_dev_block(phba);
15205 
15206 	/* stop all timers */
15207 	lpfc_stop_hba_timers(phba);
15208 
15209 	/* Clean up all driver's outstanding I/Os */
15210 	lpfc_sli_flush_io_rings(phba);
15211 }
15212 
15213 /**
15214  * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device
15215  * @pdev: pointer to PCI device.
15216  * @state: the current PCI connection state.
15217  *
15218  * This routine is called from the PCI subsystem for error handling to device
15219  * with SLI-4 interface spec. This function is called by the PCI subsystem
15220  * after a PCI bus error affecting this device has been detected. When this
15221  * function is invoked, it will need to stop all the I/Os and interrupt(s)
15222  * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET
15223  * for the PCI subsystem to perform proper recovery as desired.
15224  *
15225  * Return codes
15226  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15227  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15228  **/
15229 static pci_ers_result_t
lpfc_io_error_detected_s4(struct pci_dev * pdev,pci_channel_state_t state)15230 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state)
15231 {
15232 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15233 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15234 	bool hba_pci_err;
15235 
15236 	switch (state) {
15237 	case pci_channel_io_normal:
15238 		/* Non-fatal error, prepare for recovery */
15239 		lpfc_sli4_prep_dev_for_recover(phba);
15240 		return PCI_ERS_RESULT_CAN_RECOVER;
15241 	case pci_channel_io_frozen:
15242 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15243 		/* Fatal error, prepare for slot reset */
15244 		if (!hba_pci_err)
15245 			lpfc_sli4_prep_dev_for_reset(phba);
15246 		else
15247 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15248 					"2832  Already handling PCI error "
15249 					"state: x%x\n", state);
15250 		return PCI_ERS_RESULT_NEED_RESET;
15251 	case pci_channel_io_perm_failure:
15252 		set_bit(HBA_PCI_ERR, &phba->bit_flags);
15253 		/* Permanent failure, prepare for device down */
15254 		lpfc_sli4_prep_dev_for_perm_failure(phba);
15255 		return PCI_ERS_RESULT_DISCONNECT;
15256 	default:
15257 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15258 		if (!hba_pci_err)
15259 			lpfc_sli4_prep_dev_for_reset(phba);
15260 		/* Unknown state, prepare and request slot reset */
15261 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15262 				"2825 Unknown PCI error state: x%x\n", state);
15263 		lpfc_sli4_prep_dev_for_reset(phba);
15264 		return PCI_ERS_RESULT_NEED_RESET;
15265 	}
15266 }
15267 
15268 /**
15269  * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch
15270  * @pdev: pointer to PCI device.
15271  *
15272  * This routine is called from the PCI subsystem for error handling to device
15273  * with SLI-4 interface spec. It is called after PCI bus has been reset to
15274  * restart the PCI card from scratch, as if from a cold-boot. During the
15275  * PCI subsystem error recovery, after the driver returns
15276  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
15277  * recovery and then call this routine before calling the .resume method to
15278  * recover the device. This function will initialize the HBA device, enable
15279  * the interrupt, but it will just put the HBA to offline state without
15280  * passing any I/O traffic.
15281  *
15282  * Return codes
15283  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15284  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15285  */
15286 static pci_ers_result_t
lpfc_io_slot_reset_s4(struct pci_dev * pdev)15287 lpfc_io_slot_reset_s4(struct pci_dev *pdev)
15288 {
15289 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15290 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15291 	struct lpfc_sli *psli = &phba->sli;
15292 	uint32_t intr_mode;
15293 	bool hba_pci_err;
15294 
15295 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
15296 	if (pci_enable_device_mem(pdev)) {
15297 		printk(KERN_ERR "lpfc: Cannot re-enable "
15298 		       "PCI device after reset.\n");
15299 		return PCI_ERS_RESULT_DISCONNECT;
15300 	}
15301 
15302 	pci_restore_state(pdev);
15303 
15304 	hba_pci_err = test_and_clear_bit(HBA_PCI_ERR, &phba->bit_flags);
15305 	if (!hba_pci_err)
15306 		dev_info(&pdev->dev,
15307 			 "hba_pci_err was not set, recovering slot reset.\n");
15308 	/*
15309 	 * As the new kernel behavior of pci_restore_state() API call clears
15310 	 * device saved_state flag, need to save the restored state again.
15311 	 */
15312 	pci_save_state(pdev);
15313 
15314 	if (pdev->is_busmaster)
15315 		pci_set_master(pdev);
15316 
15317 	spin_lock_irq(&phba->hbalock);
15318 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
15319 	spin_unlock_irq(&phba->hbalock);
15320 
15321 	/* Init cpu_map array */
15322 	lpfc_cpu_map_array_init(phba);
15323 	/* Configure and enable interrupt */
15324 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15325 	if (intr_mode == LPFC_INTR_ERROR) {
15326 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15327 				"2824 Cannot re-enable interrupt after "
15328 				"slot reset.\n");
15329 		return PCI_ERS_RESULT_DISCONNECT;
15330 	} else
15331 		phba->intr_mode = intr_mode;
15332 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
15333 
15334 	/* Log the current active interrupt mode */
15335 	lpfc_log_intr_mode(phba, phba->intr_mode);
15336 
15337 	return PCI_ERS_RESULT_RECOVERED;
15338 }
15339 
15340 /**
15341  * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device
15342  * @pdev: pointer to PCI device
15343  *
15344  * This routine is called from the PCI subsystem for error handling to device
15345  * with SLI-4 interface spec. It is called when kernel error recovery tells
15346  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
15347  * error recovery. After this call, traffic can start to flow from this device
15348  * again.
15349  **/
15350 static void
lpfc_io_resume_s4(struct pci_dev * pdev)15351 lpfc_io_resume_s4(struct pci_dev *pdev)
15352 {
15353 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15354 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15355 
15356 	/*
15357 	 * In case of slot reset, as function reset is performed through
15358 	 * mailbox command which needs DMA to be enabled, this operation
15359 	 * has to be moved to the io resume phase. Taking device offline
15360 	 * will perform the necessary cleanup.
15361 	 */
15362 	if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) {
15363 		/* Perform device reset */
15364 		lpfc_sli_brdrestart(phba);
15365 		/* Bring the device back online */
15366 		lpfc_online(phba);
15367 	}
15368 }
15369 
15370 /**
15371  * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem
15372  * @pdev: pointer to PCI device
15373  * @pid: pointer to PCI device identifier
15374  *
15375  * This routine is to be registered to the kernel's PCI subsystem. When an
15376  * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks
15377  * at PCI device-specific information of the device and driver to see if the
15378  * driver state that it can support this kind of device. If the match is
15379  * successful, the driver core invokes this routine. This routine dispatches
15380  * the action to the proper SLI-3 or SLI-4 device probing routine, which will
15381  * do all the initialization that it needs to do to handle the HBA device
15382  * properly.
15383  *
15384  * Return code
15385  * 	0 - driver can claim the device
15386  * 	negative value - driver can not claim the device
15387  **/
15388 static int
lpfc_pci_probe_one(struct pci_dev * pdev,const struct pci_device_id * pid)15389 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
15390 {
15391 	int rc;
15392 	struct lpfc_sli_intf intf;
15393 
15394 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0))
15395 		return -ENODEV;
15396 
15397 	if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) &&
15398 	    (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4))
15399 		rc = lpfc_pci_probe_one_s4(pdev, pid);
15400 	else
15401 		rc = lpfc_pci_probe_one_s3(pdev, pid);
15402 
15403 	return rc;
15404 }
15405 
15406 /**
15407  * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem
15408  * @pdev: pointer to PCI device
15409  *
15410  * This routine is to be registered to the kernel's PCI subsystem. When an
15411  * Emulex HBA is removed from PCI bus, the driver core invokes this routine.
15412  * This routine dispatches the action to the proper SLI-3 or SLI-4 device
15413  * remove routine, which will perform all the necessary cleanup for the
15414  * device to be removed from the PCI subsystem properly.
15415  **/
15416 static void
lpfc_pci_remove_one(struct pci_dev * pdev)15417 lpfc_pci_remove_one(struct pci_dev *pdev)
15418 {
15419 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15420 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15421 
15422 	switch (phba->pci_dev_grp) {
15423 	case LPFC_PCI_DEV_LP:
15424 		lpfc_pci_remove_one_s3(pdev);
15425 		break;
15426 	case LPFC_PCI_DEV_OC:
15427 		lpfc_pci_remove_one_s4(pdev);
15428 		break;
15429 	default:
15430 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15431 				"1424 Invalid PCI device group: 0x%x\n",
15432 				phba->pci_dev_grp);
15433 		break;
15434 	}
15435 	return;
15436 }
15437 
15438 /**
15439  * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management
15440  * @dev: pointer to device
15441  *
15442  * This routine is to be registered to the kernel's PCI subsystem to support
15443  * system Power Management (PM). When PM invokes this method, it dispatches
15444  * the action to the proper SLI-3 or SLI-4 device suspend routine, which will
15445  * suspend the device.
15446  *
15447  * Return code
15448  * 	0 - driver suspended the device
15449  * 	Error otherwise
15450  **/
15451 static int __maybe_unused
lpfc_pci_suspend_one(struct device * dev)15452 lpfc_pci_suspend_one(struct device *dev)
15453 {
15454 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15455 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15456 	int rc = -ENODEV;
15457 
15458 	switch (phba->pci_dev_grp) {
15459 	case LPFC_PCI_DEV_LP:
15460 		rc = lpfc_pci_suspend_one_s3(dev);
15461 		break;
15462 	case LPFC_PCI_DEV_OC:
15463 		rc = lpfc_pci_suspend_one_s4(dev);
15464 		break;
15465 	default:
15466 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15467 				"1425 Invalid PCI device group: 0x%x\n",
15468 				phba->pci_dev_grp);
15469 		break;
15470 	}
15471 	return rc;
15472 }
15473 
15474 /**
15475  * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management
15476  * @dev: pointer to device
15477  *
15478  * This routine is to be registered to the kernel's PCI subsystem to support
15479  * system Power Management (PM). When PM invokes this method, it dispatches
15480  * the action to the proper SLI-3 or SLI-4 device resume routine, which will
15481  * resume the device.
15482  *
15483  * Return code
15484  * 	0 - driver suspended the device
15485  * 	Error otherwise
15486  **/
15487 static int __maybe_unused
lpfc_pci_resume_one(struct device * dev)15488 lpfc_pci_resume_one(struct device *dev)
15489 {
15490 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15491 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15492 	int rc = -ENODEV;
15493 
15494 	switch (phba->pci_dev_grp) {
15495 	case LPFC_PCI_DEV_LP:
15496 		rc = lpfc_pci_resume_one_s3(dev);
15497 		break;
15498 	case LPFC_PCI_DEV_OC:
15499 		rc = lpfc_pci_resume_one_s4(dev);
15500 		break;
15501 	default:
15502 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15503 				"1426 Invalid PCI device group: 0x%x\n",
15504 				phba->pci_dev_grp);
15505 		break;
15506 	}
15507 	return rc;
15508 }
15509 
15510 /**
15511  * lpfc_io_error_detected - lpfc method for handling PCI I/O error
15512  * @pdev: pointer to PCI device.
15513  * @state: the current PCI connection state.
15514  *
15515  * This routine is registered to the PCI subsystem for error handling. This
15516  * function is called by the PCI subsystem after a PCI bus error affecting
15517  * this device has been detected. When this routine is invoked, it dispatches
15518  * the action to the proper SLI-3 or SLI-4 device error detected handling
15519  * routine, which will perform the proper error detected operation.
15520  *
15521  * Return codes
15522  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15523  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15524  **/
15525 static pci_ers_result_t
lpfc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)15526 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
15527 {
15528 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15529 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15530 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15531 
15532 	if (phba->link_state == LPFC_HBA_ERROR &&
15533 	    test_bit(HBA_IOQ_FLUSH, &phba->hba_flag))
15534 		return PCI_ERS_RESULT_NEED_RESET;
15535 
15536 	switch (phba->pci_dev_grp) {
15537 	case LPFC_PCI_DEV_LP:
15538 		rc = lpfc_io_error_detected_s3(pdev, state);
15539 		break;
15540 	case LPFC_PCI_DEV_OC:
15541 		rc = lpfc_io_error_detected_s4(pdev, state);
15542 		break;
15543 	default:
15544 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15545 				"1427 Invalid PCI device group: 0x%x\n",
15546 				phba->pci_dev_grp);
15547 		break;
15548 	}
15549 	return rc;
15550 }
15551 
15552 /**
15553  * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch
15554  * @pdev: pointer to PCI device.
15555  *
15556  * This routine is registered to the PCI subsystem for error handling. This
15557  * function is called after PCI bus has been reset to restart the PCI card
15558  * from scratch, as if from a cold-boot. When this routine is invoked, it
15559  * dispatches the action to the proper SLI-3 or SLI-4 device reset handling
15560  * routine, which will perform the proper device reset.
15561  *
15562  * Return codes
15563  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15564  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15565  **/
15566 static pci_ers_result_t
lpfc_io_slot_reset(struct pci_dev * pdev)15567 lpfc_io_slot_reset(struct pci_dev *pdev)
15568 {
15569 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15570 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15571 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15572 
15573 	switch (phba->pci_dev_grp) {
15574 	case LPFC_PCI_DEV_LP:
15575 		rc = lpfc_io_slot_reset_s3(pdev);
15576 		break;
15577 	case LPFC_PCI_DEV_OC:
15578 		rc = lpfc_io_slot_reset_s4(pdev);
15579 		break;
15580 	default:
15581 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15582 				"1428 Invalid PCI device group: 0x%x\n",
15583 				phba->pci_dev_grp);
15584 		break;
15585 	}
15586 	return rc;
15587 }
15588 
15589 /**
15590  * lpfc_io_resume - lpfc method for resuming PCI I/O operation
15591  * @pdev: pointer to PCI device
15592  *
15593  * This routine is registered to the PCI subsystem for error handling. It
15594  * is called when kernel error recovery tells the lpfc driver that it is
15595  * OK to resume normal PCI operation after PCI bus error recovery. When
15596  * this routine is invoked, it dispatches the action to the proper SLI-3
15597  * or SLI-4 device io_resume routine, which will resume the device operation.
15598  **/
15599 static void
lpfc_io_resume(struct pci_dev * pdev)15600 lpfc_io_resume(struct pci_dev *pdev)
15601 {
15602 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15603 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15604 
15605 	switch (phba->pci_dev_grp) {
15606 	case LPFC_PCI_DEV_LP:
15607 		lpfc_io_resume_s3(pdev);
15608 		break;
15609 	case LPFC_PCI_DEV_OC:
15610 		lpfc_io_resume_s4(pdev);
15611 		break;
15612 	default:
15613 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15614 				"1429 Invalid PCI device group: 0x%x\n",
15615 				phba->pci_dev_grp);
15616 		break;
15617 	}
15618 	return;
15619 }
15620 
15621 /**
15622  * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter
15623  * @phba: pointer to lpfc hba data structure.
15624  *
15625  * This routine checks to see if OAS is supported for this adapter. If
15626  * supported, the configure Flash Optimized Fabric flag is set.  Otherwise,
15627  * the enable oas flag is cleared and the pool created for OAS device data
15628  * is destroyed.
15629  *
15630  **/
15631 static void
lpfc_sli4_oas_verify(struct lpfc_hba * phba)15632 lpfc_sli4_oas_verify(struct lpfc_hba *phba)
15633 {
15634 
15635 	if (!phba->cfg_EnableXLane)
15636 		return;
15637 
15638 	if (phba->sli4_hba.pc_sli4_params.oas_supported) {
15639 		phba->cfg_fof = 1;
15640 	} else {
15641 		phba->cfg_fof = 0;
15642 		mempool_destroy(phba->device_data_mem_pool);
15643 		phba->device_data_mem_pool = NULL;
15644 	}
15645 
15646 	return;
15647 }
15648 
15649 /**
15650  * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter
15651  * @phba: pointer to lpfc hba data structure.
15652  *
15653  * This routine checks to see if RAS is supported by the adapter. Check the
15654  * function through which RAS support enablement is to be done.
15655  **/
15656 void
lpfc_sli4_ras_init(struct lpfc_hba * phba)15657 lpfc_sli4_ras_init(struct lpfc_hba *phba)
15658 {
15659 	/* if ASIC_GEN_NUM >= 0xC) */
15660 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
15661 		    LPFC_SLI_INTF_IF_TYPE_6) ||
15662 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
15663 		    LPFC_SLI_INTF_FAMILY_G6)) {
15664 		phba->ras_fwlog.ras_hwsupport = true;
15665 		if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) &&
15666 		    phba->cfg_ras_fwlog_buffsize)
15667 			phba->ras_fwlog.ras_enabled = true;
15668 		else
15669 			phba->ras_fwlog.ras_enabled = false;
15670 	} else {
15671 		phba->ras_fwlog.ras_hwsupport = false;
15672 	}
15673 }
15674 
15675 
15676 MODULE_DEVICE_TABLE(pci, lpfc_id_table);
15677 
15678 static const struct pci_error_handlers lpfc_err_handler = {
15679 	.error_detected = lpfc_io_error_detected,
15680 	.slot_reset = lpfc_io_slot_reset,
15681 	.resume = lpfc_io_resume,
15682 };
15683 
15684 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one,
15685 			 lpfc_pci_suspend_one,
15686 			 lpfc_pci_resume_one);
15687 
15688 static struct pci_driver lpfc_driver = {
15689 	.name		= LPFC_DRIVER_NAME,
15690 	.id_table	= lpfc_id_table,
15691 	.probe		= lpfc_pci_probe_one,
15692 	.remove		= lpfc_pci_remove_one,
15693 	.shutdown	= lpfc_pci_remove_one,
15694 	.driver.pm	= &lpfc_pci_pm_ops_one,
15695 	.err_handler    = &lpfc_err_handler,
15696 };
15697 
15698 static const struct file_operations lpfc_mgmt_fop = {
15699 	.owner = THIS_MODULE,
15700 };
15701 
15702 static struct miscdevice lpfc_mgmt_dev = {
15703 	.minor = MISC_DYNAMIC_MINOR,
15704 	.name = "lpfcmgmt",
15705 	.fops = &lpfc_mgmt_fop,
15706 };
15707 
15708 /**
15709  * lpfc_init - lpfc module initialization routine
15710  *
15711  * This routine is to be invoked when the lpfc module is loaded into the
15712  * kernel. The special kernel macro module_init() is used to indicate the
15713  * role of this routine to the kernel as lpfc module entry point.
15714  *
15715  * Return codes
15716  *   0 - successful
15717  *   -ENOMEM - FC attach transport failed
15718  *   all others - failed
15719  */
15720 static int __init
lpfc_init(void)15721 lpfc_init(void)
15722 {
15723 	int error = 0;
15724 
15725 	pr_info(LPFC_MODULE_DESC "\n");
15726 	pr_info(LPFC_COPYRIGHT "\n");
15727 
15728 	error = misc_register(&lpfc_mgmt_dev);
15729 	if (error)
15730 		printk(KERN_ERR "Could not register lpfcmgmt device, "
15731 			"misc_register returned with status %d", error);
15732 
15733 	error = -ENOMEM;
15734 	lpfc_transport_functions.vport_create = lpfc_vport_create;
15735 	lpfc_transport_functions.vport_delete = lpfc_vport_delete;
15736 	lpfc_transport_template =
15737 				fc_attach_transport(&lpfc_transport_functions);
15738 	if (lpfc_transport_template == NULL)
15739 		goto unregister;
15740 	lpfc_vport_transport_template =
15741 		fc_attach_transport(&lpfc_vport_transport_functions);
15742 	if (lpfc_vport_transport_template == NULL) {
15743 		fc_release_transport(lpfc_transport_template);
15744 		goto unregister;
15745 	}
15746 	lpfc_wqe_cmd_template();
15747 	lpfc_nvmet_cmd_template();
15748 
15749 	/* Initialize in case vector mapping is needed */
15750 	lpfc_present_cpu = num_present_cpus();
15751 
15752 	lpfc_pldv_detect = false;
15753 
15754 	error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
15755 					"lpfc/sli4:online",
15756 					lpfc_cpu_online, lpfc_cpu_offline);
15757 	if (error < 0)
15758 		goto cpuhp_failure;
15759 	lpfc_cpuhp_state = error;
15760 
15761 	error = pci_register_driver(&lpfc_driver);
15762 	if (error)
15763 		goto unwind;
15764 
15765 	return error;
15766 
15767 unwind:
15768 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15769 cpuhp_failure:
15770 	fc_release_transport(lpfc_transport_template);
15771 	fc_release_transport(lpfc_vport_transport_template);
15772 unregister:
15773 	misc_deregister(&lpfc_mgmt_dev);
15774 
15775 	return error;
15776 }
15777 
lpfc_dmp_dbg(struct lpfc_hba * phba)15778 void lpfc_dmp_dbg(struct lpfc_hba *phba)
15779 {
15780 	unsigned int start_idx;
15781 	unsigned int dbg_cnt;
15782 	unsigned int temp_idx;
15783 	int i;
15784 	int j = 0;
15785 	unsigned long rem_nsec;
15786 
15787 	if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0)
15788 		return;
15789 
15790 	start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ;
15791 	dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt);
15792 	if (!dbg_cnt)
15793 		goto out;
15794 	temp_idx = start_idx;
15795 	if (dbg_cnt >= DBG_LOG_SZ) {
15796 		dbg_cnt = DBG_LOG_SZ;
15797 		temp_idx -= 1;
15798 	} else {
15799 		if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) {
15800 			temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ;
15801 		} else {
15802 			if (start_idx < dbg_cnt)
15803 				start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx);
15804 			else
15805 				start_idx -= dbg_cnt;
15806 		}
15807 	}
15808 	dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n",
15809 		 start_idx, temp_idx, dbg_cnt);
15810 
15811 	for (i = 0; i < dbg_cnt; i++) {
15812 		if ((start_idx + i) < DBG_LOG_SZ)
15813 			temp_idx = (start_idx + i) % DBG_LOG_SZ;
15814 		else
15815 			temp_idx = j++;
15816 		rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC);
15817 		dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s",
15818 			 temp_idx,
15819 			 (unsigned long)phba->dbg_log[temp_idx].t_ns,
15820 			 rem_nsec / 1000,
15821 			 phba->dbg_log[temp_idx].log);
15822 	}
15823 out:
15824 	atomic_set(&phba->dbg_log_cnt, 0);
15825 	atomic_set(&phba->dbg_log_dmping, 0);
15826 }
15827 
15828 __printf(2, 3)
lpfc_dbg_print(struct lpfc_hba * phba,const char * fmt,...)15829 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...)
15830 {
15831 	unsigned int idx;
15832 	va_list args;
15833 	int dbg_dmping = atomic_read(&phba->dbg_log_dmping);
15834 	struct va_format vaf;
15835 
15836 
15837 	va_start(args, fmt);
15838 	if (unlikely(dbg_dmping)) {
15839 		vaf.fmt = fmt;
15840 		vaf.va = &args;
15841 		dev_info(&phba->pcidev->dev, "%pV", &vaf);
15842 		va_end(args);
15843 		return;
15844 	}
15845 	idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) %
15846 		DBG_LOG_SZ;
15847 
15848 	atomic_inc(&phba->dbg_log_cnt);
15849 
15850 	vscnprintf(phba->dbg_log[idx].log,
15851 		   sizeof(phba->dbg_log[idx].log), fmt, args);
15852 	va_end(args);
15853 
15854 	phba->dbg_log[idx].t_ns = local_clock();
15855 }
15856 
15857 /**
15858  * lpfc_exit - lpfc module removal routine
15859  *
15860  * This routine is invoked when the lpfc module is removed from the kernel.
15861  * The special kernel macro module_exit() is used to indicate the role of
15862  * this routine to the kernel as lpfc module exit point.
15863  */
15864 static void __exit
lpfc_exit(void)15865 lpfc_exit(void)
15866 {
15867 	misc_deregister(&lpfc_mgmt_dev);
15868 	pci_unregister_driver(&lpfc_driver);
15869 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15870 	fc_release_transport(lpfc_transport_template);
15871 	fc_release_transport(lpfc_vport_transport_template);
15872 	idr_destroy(&lpfc_hba_index);
15873 }
15874 
15875 module_init(lpfc_init);
15876 module_exit(lpfc_exit);
15877 MODULE_LICENSE("GPL");
15878 MODULE_DESCRIPTION(LPFC_MODULE_DESC);
15879 MODULE_AUTHOR("Broadcom");
15880 MODULE_VERSION("0:" LPFC_DRIVER_VERSION);
15881