1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2025 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/delay.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/idr.h> 28 #include <linux/interrupt.h> 29 #include <linux/module.h> 30 #include <linux/kthread.h> 31 #include <linux/pci.h> 32 #include <linux/spinlock.h> 33 #include <linux/sched/clock.h> 34 #include <linux/ctype.h> 35 #include <linux/slab.h> 36 #include <linux/firmware.h> 37 #include <linux/miscdevice.h> 38 #include <linux/percpu.h> 39 #include <linux/irq.h> 40 #include <linux/bitops.h> 41 #include <linux/crash_dump.h> 42 #include <linux/cpu.h> 43 #include <linux/cpuhotplug.h> 44 45 #include <scsi/scsi.h> 46 #include <scsi/scsi_device.h> 47 #include <scsi/scsi_host.h> 48 #include <scsi/scsi_transport_fc.h> 49 #include <scsi/scsi_tcq.h> 50 #include <scsi/fc/fc_fs.h> 51 52 #include "lpfc_hw4.h" 53 #include "lpfc_hw.h" 54 #include "lpfc_sli.h" 55 #include "lpfc_sli4.h" 56 #include "lpfc_nl.h" 57 #include "lpfc_disc.h" 58 #include "lpfc.h" 59 #include "lpfc_scsi.h" 60 #include "lpfc_nvme.h" 61 #include "lpfc_logmsg.h" 62 #include "lpfc_crtn.h" 63 #include "lpfc_vport.h" 64 #include "lpfc_version.h" 65 #include "lpfc_ids.h" 66 67 static enum cpuhp_state lpfc_cpuhp_state; 68 /* Used when mapping IRQ vectors in a driver centric manner */ 69 static uint32_t lpfc_present_cpu; 70 static bool lpfc_pldv_detect; 71 72 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba); 73 static void lpfc_cpuhp_remove(struct lpfc_hba *phba); 74 static void lpfc_cpuhp_add(struct lpfc_hba *phba); 75 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *); 76 static int lpfc_post_rcv_buf(struct lpfc_hba *); 77 static int lpfc_sli4_queue_verify(struct lpfc_hba *); 78 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *); 79 static int lpfc_setup_endian_order(struct lpfc_hba *); 80 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *); 81 static void lpfc_free_els_sgl_list(struct lpfc_hba *); 82 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *); 83 static void lpfc_init_sgl_list(struct lpfc_hba *); 84 static int lpfc_init_active_sgl_array(struct lpfc_hba *); 85 static void lpfc_free_active_sgl(struct lpfc_hba *); 86 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba); 87 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba); 88 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *); 89 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *); 90 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *); 91 static void lpfc_sli4_disable_intr(struct lpfc_hba *); 92 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t); 93 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba); 94 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int); 95 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *); 96 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *); 97 static void lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba); 98 static void lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba); 99 100 static struct scsi_transport_template *lpfc_transport_template = NULL; 101 static struct scsi_transport_template *lpfc_vport_transport_template = NULL; 102 static DEFINE_IDR(lpfc_hba_index); 103 #define LPFC_NVMET_BUF_POST 254 104 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport); 105 static void lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts); 106 107 /** 108 * lpfc_config_port_prep - Perform lpfc initialization prior to config port 109 * @phba: pointer to lpfc hba data structure. 110 * 111 * This routine will do LPFC initialization prior to issuing the CONFIG_PORT 112 * mailbox command. It retrieves the revision information from the HBA and 113 * collects the Vital Product Data (VPD) about the HBA for preparing the 114 * configuration of the HBA. 115 * 116 * Return codes: 117 * 0 - success. 118 * -ERESTART - requests the SLI layer to reset the HBA and try again. 119 * Any other value - indicates an error. 120 **/ 121 int 122 lpfc_config_port_prep(struct lpfc_hba *phba) 123 { 124 lpfc_vpd_t *vp = &phba->vpd; 125 int i = 0, rc; 126 LPFC_MBOXQ_t *pmb; 127 MAILBOX_t *mb; 128 char *lpfc_vpd_data = NULL; 129 uint16_t offset = 0; 130 static char licensed[56] = 131 "key unlock for use with gnu public licensed code only\0"; 132 static int init_key = 1; 133 134 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 135 if (!pmb) { 136 phba->link_state = LPFC_HBA_ERROR; 137 return -ENOMEM; 138 } 139 140 mb = &pmb->u.mb; 141 phba->link_state = LPFC_INIT_MBX_CMDS; 142 143 if (lpfc_is_LC_HBA(phba->pcidev->device)) { 144 if (init_key) { 145 uint32_t *ptext = (uint32_t *) licensed; 146 147 for (i = 0; i < 56; i += sizeof (uint32_t), ptext++) 148 *ptext = cpu_to_be32(*ptext); 149 init_key = 0; 150 } 151 152 lpfc_read_nv(phba, pmb); 153 memset((char*)mb->un.varRDnvp.rsvd3, 0, 154 sizeof (mb->un.varRDnvp.rsvd3)); 155 memcpy((char*)mb->un.varRDnvp.rsvd3, licensed, 156 sizeof (licensed)); 157 158 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 159 160 if (rc != MBX_SUCCESS) { 161 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 162 "0324 Config Port initialization " 163 "error, mbxCmd x%x READ_NVPARM, " 164 "mbxStatus x%x\n", 165 mb->mbxCommand, mb->mbxStatus); 166 mempool_free(pmb, phba->mbox_mem_pool); 167 return -ERESTART; 168 } 169 memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename, 170 sizeof(phba->wwnn)); 171 memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname, 172 sizeof(phba->wwpn)); 173 } 174 175 /* 176 * Clear all option bits except LPFC_SLI3_BG_ENABLED, 177 * which was already set in lpfc_get_cfgparam() 178 */ 179 phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED; 180 181 /* Setup and issue mailbox READ REV command */ 182 lpfc_read_rev(phba, pmb); 183 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 184 if (rc != MBX_SUCCESS) { 185 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 186 "0439 Adapter failed to init, mbxCmd x%x " 187 "READ_REV, mbxStatus x%x\n", 188 mb->mbxCommand, mb->mbxStatus); 189 mempool_free( pmb, phba->mbox_mem_pool); 190 return -ERESTART; 191 } 192 193 194 /* 195 * The value of rr must be 1 since the driver set the cv field to 1. 196 * This setting requires the FW to set all revision fields. 197 */ 198 if (mb->un.varRdRev.rr == 0) { 199 vp->rev.rBit = 0; 200 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 201 "0440 Adapter failed to init, READ_REV has " 202 "missing revision information.\n"); 203 mempool_free(pmb, phba->mbox_mem_pool); 204 return -ERESTART; 205 } 206 207 if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) { 208 mempool_free(pmb, phba->mbox_mem_pool); 209 return -EINVAL; 210 } 211 212 /* Save information as VPD data */ 213 vp->rev.rBit = 1; 214 memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t)); 215 vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev; 216 memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16); 217 vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev; 218 memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16); 219 vp->rev.biuRev = mb->un.varRdRev.biuRev; 220 vp->rev.smRev = mb->un.varRdRev.smRev; 221 vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev; 222 vp->rev.endecRev = mb->un.varRdRev.endecRev; 223 vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh; 224 vp->rev.fcphLow = mb->un.varRdRev.fcphLow; 225 vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh; 226 vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow; 227 vp->rev.postKernRev = mb->un.varRdRev.postKernRev; 228 vp->rev.opFwRev = mb->un.varRdRev.opFwRev; 229 230 /* If the sli feature level is less then 9, we must 231 * tear down all RPIs and VPIs on link down if NPIV 232 * is enabled. 233 */ 234 if (vp->rev.feaLevelHigh < 9) 235 phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN; 236 237 if (lpfc_is_LC_HBA(phba->pcidev->device)) 238 memcpy(phba->RandomData, (char *)&mb->un.varWords[24], 239 sizeof (phba->RandomData)); 240 241 /* Get adapter VPD information */ 242 lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL); 243 if (!lpfc_vpd_data) 244 goto out_free_mbox; 245 do { 246 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD); 247 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 248 249 if (rc != MBX_SUCCESS) { 250 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 251 "0441 VPD not present on adapter, " 252 "mbxCmd x%x DUMP VPD, mbxStatus x%x\n", 253 mb->mbxCommand, mb->mbxStatus); 254 mb->un.varDmp.word_cnt = 0; 255 } 256 /* dump mem may return a zero when finished or we got a 257 * mailbox error, either way we are done. 258 */ 259 if (mb->un.varDmp.word_cnt == 0) 260 break; 261 262 if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset) 263 mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset; 264 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 265 lpfc_vpd_data + offset, 266 mb->un.varDmp.word_cnt); 267 offset += mb->un.varDmp.word_cnt; 268 } while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE); 269 270 lpfc_parse_vpd(phba, lpfc_vpd_data, offset); 271 272 kfree(lpfc_vpd_data); 273 out_free_mbox: 274 mempool_free(pmb, phba->mbox_mem_pool); 275 return 0; 276 } 277 278 /** 279 * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd 280 * @phba: pointer to lpfc hba data structure. 281 * @pmboxq: pointer to the driver internal queue element for mailbox command. 282 * 283 * This is the completion handler for driver's configuring asynchronous event 284 * mailbox command to the device. If the mailbox command returns successfully, 285 * it will set internal async event support flag to 1; otherwise, it will 286 * set internal async event support flag to 0. 287 **/ 288 static void 289 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 290 { 291 if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS) 292 phba->temp_sensor_support = 1; 293 else 294 phba->temp_sensor_support = 0; 295 mempool_free(pmboxq, phba->mbox_mem_pool); 296 return; 297 } 298 299 /** 300 * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler 301 * @phba: pointer to lpfc hba data structure. 302 * @pmboxq: pointer to the driver internal queue element for mailbox command. 303 * 304 * This is the completion handler for dump mailbox command for getting 305 * wake up parameters. When this command complete, the response contain 306 * Option rom version of the HBA. This function translate the version number 307 * into a human readable string and store it in OptionROMVersion. 308 **/ 309 static void 310 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 311 { 312 struct prog_id *prg; 313 uint32_t prog_id_word; 314 char dist = ' '; 315 /* character array used for decoding dist type. */ 316 char dist_char[] = "nabx"; 317 318 if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) { 319 mempool_free(pmboxq, phba->mbox_mem_pool); 320 return; 321 } 322 323 prg = (struct prog_id *) &prog_id_word; 324 325 /* word 7 contain option rom version */ 326 prog_id_word = pmboxq->u.mb.un.varWords[7]; 327 328 /* Decode the Option rom version word to a readable string */ 329 dist = dist_char[prg->dist]; 330 331 if ((prg->dist == 3) && (prg->num == 0)) 332 snprintf(phba->OptionROMVersion, 32, "%d.%d%d", 333 prg->ver, prg->rev, prg->lev); 334 else 335 snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d", 336 prg->ver, prg->rev, prg->lev, 337 dist, prg->num); 338 mempool_free(pmboxq, phba->mbox_mem_pool); 339 return; 340 } 341 342 /** 343 * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname, 344 * @vport: pointer to lpfc vport data structure. 345 * 346 * 347 * Return codes 348 * None. 349 **/ 350 void 351 lpfc_update_vport_wwn(struct lpfc_vport *vport) 352 { 353 struct lpfc_hba *phba = vport->phba; 354 355 /* 356 * If the name is empty or there exists a soft name 357 * then copy the service params name, otherwise use the fc name 358 */ 359 if (vport->fc_nodename.u.wwn[0] == 0) 360 memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName, 361 sizeof(struct lpfc_name)); 362 else 363 memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename, 364 sizeof(struct lpfc_name)); 365 366 /* 367 * If the port name has changed, then set the Param changes flag 368 * to unreg the login 369 */ 370 if (vport->fc_portname.u.wwn[0] != 0 && 371 memcmp(&vport->fc_portname, &vport->fc_sparam.portName, 372 sizeof(struct lpfc_name))) { 373 vport->vport_flag |= FAWWPN_PARAM_CHG; 374 375 if (phba->sli_rev == LPFC_SLI_REV4 && 376 vport->port_type == LPFC_PHYSICAL_PORT && 377 phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_FABRIC) { 378 if (!(phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG)) 379 phba->sli4_hba.fawwpn_flag &= 380 ~LPFC_FAWWPN_FABRIC; 381 lpfc_printf_log(phba, KERN_INFO, 382 LOG_SLI | LOG_DISCOVERY | LOG_ELS, 383 "2701 FA-PWWN change WWPN from %llx to " 384 "%llx: vflag x%x fawwpn_flag x%x\n", 385 wwn_to_u64(vport->fc_portname.u.wwn), 386 wwn_to_u64 387 (vport->fc_sparam.portName.u.wwn), 388 vport->vport_flag, 389 phba->sli4_hba.fawwpn_flag); 390 memcpy(&vport->fc_portname, &vport->fc_sparam.portName, 391 sizeof(struct lpfc_name)); 392 } 393 } 394 395 if (vport->fc_portname.u.wwn[0] == 0) 396 memcpy(&vport->fc_portname, &vport->fc_sparam.portName, 397 sizeof(struct lpfc_name)); 398 else 399 memcpy(&vport->fc_sparam.portName, &vport->fc_portname, 400 sizeof(struct lpfc_name)); 401 } 402 403 /** 404 * lpfc_config_port_post - Perform lpfc initialization after config port 405 * @phba: pointer to lpfc hba data structure. 406 * 407 * This routine will do LPFC initialization after the CONFIG_PORT mailbox 408 * command call. It performs all internal resource and state setups on the 409 * port: post IOCB buffers, enable appropriate host interrupt attentions, 410 * ELS ring timers, etc. 411 * 412 * Return codes 413 * 0 - success. 414 * Any other value - error. 415 **/ 416 int 417 lpfc_config_port_post(struct lpfc_hba *phba) 418 { 419 struct lpfc_vport *vport = phba->pport; 420 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 421 LPFC_MBOXQ_t *pmb; 422 MAILBOX_t *mb; 423 struct lpfc_dmabuf *mp; 424 struct lpfc_sli *psli = &phba->sli; 425 uint32_t status, timeout; 426 int i, j; 427 int rc; 428 429 spin_lock_irq(&phba->hbalock); 430 /* 431 * If the Config port completed correctly the HBA is not 432 * over heated any more. 433 */ 434 if (phba->over_temp_state == HBA_OVER_TEMP) 435 phba->over_temp_state = HBA_NORMAL_TEMP; 436 spin_unlock_irq(&phba->hbalock); 437 438 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 439 if (!pmb) { 440 phba->link_state = LPFC_HBA_ERROR; 441 return -ENOMEM; 442 } 443 mb = &pmb->u.mb; 444 445 /* Get login parameters for NID. */ 446 rc = lpfc_read_sparam(phba, pmb, 0); 447 if (rc) { 448 mempool_free(pmb, phba->mbox_mem_pool); 449 return -ENOMEM; 450 } 451 452 pmb->vport = vport; 453 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 454 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 455 "0448 Adapter failed init, mbxCmd x%x " 456 "READ_SPARM mbxStatus x%x\n", 457 mb->mbxCommand, mb->mbxStatus); 458 phba->link_state = LPFC_HBA_ERROR; 459 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 460 return -EIO; 461 } 462 463 mp = pmb->ctx_buf; 464 465 /* This dmabuf was allocated by lpfc_read_sparam. The dmabuf is no 466 * longer needed. Prevent unintended ctx_buf access as the mbox is 467 * reused. 468 */ 469 memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm)); 470 lpfc_mbuf_free(phba, mp->virt, mp->phys); 471 kfree(mp); 472 pmb->ctx_buf = NULL; 473 lpfc_update_vport_wwn(vport); 474 475 /* Update the fc_host data structures with new wwn. */ 476 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 477 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 478 fc_host_max_npiv_vports(shost) = phba->max_vpi; 479 480 /* If no serial number in VPD data, use low 6 bytes of WWNN */ 481 /* This should be consolidated into parse_vpd ? - mr */ 482 if (phba->SerialNumber[0] == 0) { 483 uint8_t *outptr; 484 485 outptr = &vport->fc_nodename.u.s.IEEE[0]; 486 for (i = 0; i < 12; i++) { 487 status = *outptr++; 488 j = ((status & 0xf0) >> 4); 489 if (j <= 9) 490 phba->SerialNumber[i] = 491 (char)((uint8_t) 0x30 + (uint8_t) j); 492 else 493 phba->SerialNumber[i] = 494 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 495 i++; 496 j = (status & 0xf); 497 if (j <= 9) 498 phba->SerialNumber[i] = 499 (char)((uint8_t) 0x30 + (uint8_t) j); 500 else 501 phba->SerialNumber[i] = 502 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 503 } 504 } 505 506 lpfc_read_config(phba, pmb); 507 pmb->vport = vport; 508 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 509 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 510 "0453 Adapter failed to init, mbxCmd x%x " 511 "READ_CONFIG, mbxStatus x%x\n", 512 mb->mbxCommand, mb->mbxStatus); 513 phba->link_state = LPFC_HBA_ERROR; 514 mempool_free( pmb, phba->mbox_mem_pool); 515 return -EIO; 516 } 517 518 /* Check if the port is disabled */ 519 lpfc_sli_read_link_ste(phba); 520 521 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 522 if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) { 523 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 524 "3359 HBA queue depth changed from %d to %d\n", 525 phba->cfg_hba_queue_depth, 526 mb->un.varRdConfig.max_xri); 527 phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri; 528 } 529 530 phba->lmt = mb->un.varRdConfig.lmt; 531 532 /* Get the default values for Model Name and Description */ 533 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 534 535 phba->link_state = LPFC_LINK_DOWN; 536 537 /* Only process IOCBs on ELS ring till hba_state is READY */ 538 if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr) 539 psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT; 540 if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr) 541 psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT; 542 543 /* Post receive buffers for desired rings */ 544 if (phba->sli_rev != 3) 545 lpfc_post_rcv_buf(phba); 546 547 /* 548 * Configure HBA MSI-X attention conditions to messages if MSI-X mode 549 */ 550 if (phba->intr_type == MSIX) { 551 rc = lpfc_config_msi(phba, pmb); 552 if (rc) { 553 mempool_free(pmb, phba->mbox_mem_pool); 554 return -EIO; 555 } 556 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 557 if (rc != MBX_SUCCESS) { 558 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 559 "0352 Config MSI mailbox command " 560 "failed, mbxCmd x%x, mbxStatus x%x\n", 561 pmb->u.mb.mbxCommand, 562 pmb->u.mb.mbxStatus); 563 mempool_free(pmb, phba->mbox_mem_pool); 564 return -EIO; 565 } 566 } 567 568 spin_lock_irq(&phba->hbalock); 569 /* Initialize ERATT handling flag */ 570 clear_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 571 572 /* Enable appropriate host interrupts */ 573 if (lpfc_readl(phba->HCregaddr, &status)) { 574 spin_unlock_irq(&phba->hbalock); 575 return -EIO; 576 } 577 status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA; 578 if (psli->num_rings > 0) 579 status |= HC_R0INT_ENA; 580 if (psli->num_rings > 1) 581 status |= HC_R1INT_ENA; 582 if (psli->num_rings > 2) 583 status |= HC_R2INT_ENA; 584 if (psli->num_rings > 3) 585 status |= HC_R3INT_ENA; 586 587 if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) && 588 (phba->cfg_poll & DISABLE_FCP_RING_INT)) 589 status &= ~(HC_R0INT_ENA); 590 591 writel(status, phba->HCregaddr); 592 readl(phba->HCregaddr); /* flush */ 593 spin_unlock_irq(&phba->hbalock); 594 595 /* Set up ring-0 (ELS) timer */ 596 timeout = phba->fc_ratov * 2; 597 mod_timer(&vport->els_tmofunc, 598 jiffies + secs_to_jiffies(timeout)); 599 /* Set up heart beat (HB) timer */ 600 mod_timer(&phba->hb_tmofunc, 601 jiffies + secs_to_jiffies(LPFC_HB_MBOX_INTERVAL)); 602 clear_bit(HBA_HBEAT_INP, &phba->hba_flag); 603 clear_bit(HBA_HBEAT_TMO, &phba->hba_flag); 604 phba->last_completion_time = jiffies; 605 /* Set up error attention (ERATT) polling timer */ 606 mod_timer(&phba->eratt_poll, 607 jiffies + secs_to_jiffies(phba->eratt_poll_interval)); 608 609 if (test_bit(LINK_DISABLED, &phba->hba_flag)) { 610 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 611 "2598 Adapter Link is disabled.\n"); 612 lpfc_down_link(phba, pmb); 613 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 614 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 615 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 616 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 617 "2599 Adapter failed to issue DOWN_LINK" 618 " mbox command rc 0x%x\n", rc); 619 620 mempool_free(pmb, phba->mbox_mem_pool); 621 return -EIO; 622 } 623 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 624 mempool_free(pmb, phba->mbox_mem_pool); 625 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 626 if (rc) 627 return rc; 628 } 629 /* MBOX buffer will be freed in mbox compl */ 630 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 631 if (!pmb) { 632 phba->link_state = LPFC_HBA_ERROR; 633 return -ENOMEM; 634 } 635 636 lpfc_config_async(phba, pmb, LPFC_ELS_RING); 637 pmb->mbox_cmpl = lpfc_config_async_cmpl; 638 pmb->vport = phba->pport; 639 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 640 641 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 642 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 643 "0456 Adapter failed to issue " 644 "ASYNCEVT_ENABLE mbox status x%x\n", 645 rc); 646 mempool_free(pmb, phba->mbox_mem_pool); 647 } 648 649 /* Get Option rom version */ 650 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 651 if (!pmb) { 652 phba->link_state = LPFC_HBA_ERROR; 653 return -ENOMEM; 654 } 655 656 lpfc_dump_wakeup_param(phba, pmb); 657 pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl; 658 pmb->vport = phba->pport; 659 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 660 661 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 662 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 663 "0435 Adapter failed " 664 "to get Option ROM version status x%x\n", rc); 665 mempool_free(pmb, phba->mbox_mem_pool); 666 } 667 668 return 0; 669 } 670 671 /** 672 * lpfc_sli4_refresh_params - update driver copy of params. 673 * @phba: Pointer to HBA context object. 674 * 675 * This is called to refresh driver copy of dynamic fields from the 676 * common_get_sli4_parameters descriptor. 677 **/ 678 int 679 lpfc_sli4_refresh_params(struct lpfc_hba *phba) 680 { 681 LPFC_MBOXQ_t *mboxq; 682 struct lpfc_mqe *mqe; 683 struct lpfc_sli4_parameters *mbx_sli4_parameters; 684 int length, rc; 685 686 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 687 if (!mboxq) 688 return -ENOMEM; 689 690 mqe = &mboxq->u.mqe; 691 /* Read the port's SLI4 Config Parameters */ 692 length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - 693 sizeof(struct lpfc_sli4_cfg_mhdr)); 694 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 695 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, 696 length, LPFC_SLI4_MBX_EMBED); 697 698 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 699 if (unlikely(rc)) { 700 mempool_free(mboxq, phba->mbox_mem_pool); 701 return rc; 702 } 703 mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; 704 phba->sli4_hba.pc_sli4_params.mi_cap = 705 bf_get(cfg_mi_ver, mbx_sli4_parameters); 706 707 /* Are we forcing MI off via module parameter? */ 708 if (phba->cfg_enable_mi) 709 phba->sli4_hba.pc_sli4_params.mi_ver = 710 bf_get(cfg_mi_ver, mbx_sli4_parameters); 711 else 712 phba->sli4_hba.pc_sli4_params.mi_ver = 0; 713 714 phba->sli4_hba.pc_sli4_params.cmf = 715 bf_get(cfg_cmf, mbx_sli4_parameters); 716 phba->sli4_hba.pc_sli4_params.pls = 717 bf_get(cfg_pvl, mbx_sli4_parameters); 718 719 mempool_free(mboxq, phba->mbox_mem_pool); 720 return rc; 721 } 722 723 /** 724 * lpfc_hba_init_link - Initialize the FC link 725 * @phba: pointer to lpfc hba data structure. 726 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 727 * 728 * This routine will issue the INIT_LINK mailbox command call. 729 * It is available to other drivers through the lpfc_hba data 730 * structure for use as a delayed link up mechanism with the 731 * module parameter lpfc_suppress_link_up. 732 * 733 * Return code 734 * 0 - success 735 * Any other value - error 736 **/ 737 static int 738 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag) 739 { 740 return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag); 741 } 742 743 /** 744 * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology 745 * @phba: pointer to lpfc hba data structure. 746 * @fc_topology: desired fc topology. 747 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 748 * 749 * This routine will issue the INIT_LINK mailbox command call. 750 * It is available to other drivers through the lpfc_hba data 751 * structure for use as a delayed link up mechanism with the 752 * module parameter lpfc_suppress_link_up. 753 * 754 * Return code 755 * 0 - success 756 * Any other value - error 757 **/ 758 int 759 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology, 760 uint32_t flag) 761 { 762 struct lpfc_vport *vport = phba->pport; 763 LPFC_MBOXQ_t *pmb; 764 MAILBOX_t *mb; 765 int rc; 766 767 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 768 if (!pmb) { 769 phba->link_state = LPFC_HBA_ERROR; 770 return -ENOMEM; 771 } 772 mb = &pmb->u.mb; 773 pmb->vport = vport; 774 775 if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) || 776 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) && 777 !(phba->lmt & LMT_1Gb)) || 778 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) && 779 !(phba->lmt & LMT_2Gb)) || 780 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) && 781 !(phba->lmt & LMT_4Gb)) || 782 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) && 783 !(phba->lmt & LMT_8Gb)) || 784 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) && 785 !(phba->lmt & LMT_10Gb)) || 786 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) && 787 !(phba->lmt & LMT_16Gb)) || 788 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) && 789 !(phba->lmt & LMT_32Gb)) || 790 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) && 791 !(phba->lmt & LMT_64Gb))) { 792 /* Reset link speed to auto */ 793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 794 "1302 Invalid speed for this board:%d " 795 "Reset link speed to auto.\n", 796 phba->cfg_link_speed); 797 phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO; 798 } 799 lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed); 800 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 801 if (phba->sli_rev < LPFC_SLI_REV4) 802 lpfc_set_loopback_flag(phba); 803 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 804 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 805 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 806 "0498 Adapter failed to init, mbxCmd x%x " 807 "INIT_LINK, mbxStatus x%x\n", 808 mb->mbxCommand, mb->mbxStatus); 809 if (phba->sli_rev <= LPFC_SLI_REV3) { 810 /* Clear all interrupt enable conditions */ 811 writel(0, phba->HCregaddr); 812 readl(phba->HCregaddr); /* flush */ 813 /* Clear all pending interrupts */ 814 writel(0xffffffff, phba->HAregaddr); 815 readl(phba->HAregaddr); /* flush */ 816 } 817 phba->link_state = LPFC_HBA_ERROR; 818 if (rc != MBX_BUSY || flag == MBX_POLL) 819 mempool_free(pmb, phba->mbox_mem_pool); 820 return -EIO; 821 } 822 phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK; 823 if (flag == MBX_POLL) 824 mempool_free(pmb, phba->mbox_mem_pool); 825 826 return 0; 827 } 828 829 /** 830 * lpfc_hba_down_link - this routine downs the FC link 831 * @phba: pointer to lpfc hba data structure. 832 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 833 * 834 * This routine will issue the DOWN_LINK mailbox command call. 835 * It is available to other drivers through the lpfc_hba data 836 * structure for use to stop the link. 837 * 838 * Return code 839 * 0 - success 840 * Any other value - error 841 **/ 842 static int 843 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag) 844 { 845 LPFC_MBOXQ_t *pmb; 846 int rc; 847 848 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 849 if (!pmb) { 850 phba->link_state = LPFC_HBA_ERROR; 851 return -ENOMEM; 852 } 853 854 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 855 "0491 Adapter Link is disabled.\n"); 856 lpfc_down_link(phba, pmb); 857 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 858 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 859 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 860 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 861 "2522 Adapter failed to issue DOWN_LINK" 862 " mbox command rc 0x%x\n", rc); 863 864 mempool_free(pmb, phba->mbox_mem_pool); 865 return -EIO; 866 } 867 if (flag == MBX_POLL) 868 mempool_free(pmb, phba->mbox_mem_pool); 869 870 return 0; 871 } 872 873 /** 874 * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset 875 * @phba: pointer to lpfc HBA data structure. 876 * 877 * This routine will do LPFC uninitialization before the HBA is reset when 878 * bringing down the SLI Layer. 879 * 880 * Return codes 881 * 0 - success. 882 * Any other value - error. 883 **/ 884 int 885 lpfc_hba_down_prep(struct lpfc_hba *phba) 886 { 887 struct lpfc_vport **vports; 888 int i; 889 890 if (phba->sli_rev <= LPFC_SLI_REV3) { 891 /* Disable interrupts */ 892 writel(0, phba->HCregaddr); 893 readl(phba->HCregaddr); /* flush */ 894 } 895 896 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 897 lpfc_cleanup_discovery_resources(phba->pport); 898 else { 899 vports = lpfc_create_vport_work_array(phba); 900 if (vports != NULL) 901 for (i = 0; i <= phba->max_vports && 902 vports[i] != NULL; i++) 903 lpfc_cleanup_discovery_resources(vports[i]); 904 lpfc_destroy_vport_work_array(phba, vports); 905 } 906 return 0; 907 } 908 909 /** 910 * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free 911 * rspiocb which got deferred 912 * 913 * @phba: pointer to lpfc HBA data structure. 914 * 915 * This routine will cleanup completed slow path events after HBA is reset 916 * when bringing down the SLI Layer. 917 * 918 * 919 * Return codes 920 * void. 921 **/ 922 static void 923 lpfc_sli4_free_sp_events(struct lpfc_hba *phba) 924 { 925 struct lpfc_iocbq *rspiocbq; 926 struct hbq_dmabuf *dmabuf; 927 struct lpfc_cq_event *cq_event; 928 929 clear_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 930 931 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 932 /* Get the response iocb from the head of work queue */ 933 spin_lock_irq(&phba->hbalock); 934 list_remove_head(&phba->sli4_hba.sp_queue_event, 935 cq_event, struct lpfc_cq_event, list); 936 spin_unlock_irq(&phba->hbalock); 937 938 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 939 case CQE_CODE_COMPL_WQE: 940 rspiocbq = container_of(cq_event, struct lpfc_iocbq, 941 cq_event); 942 lpfc_sli_release_iocbq(phba, rspiocbq); 943 break; 944 case CQE_CODE_RECEIVE: 945 case CQE_CODE_RECEIVE_V1: 946 dmabuf = container_of(cq_event, struct hbq_dmabuf, 947 cq_event); 948 lpfc_in_buf_free(phba, &dmabuf->dbuf); 949 } 950 } 951 } 952 953 /** 954 * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset 955 * @phba: pointer to lpfc HBA data structure. 956 * 957 * This routine will cleanup posted ELS buffers after the HBA is reset 958 * when bringing down the SLI Layer. 959 * 960 * 961 * Return codes 962 * void. 963 **/ 964 static void 965 lpfc_hba_free_post_buf(struct lpfc_hba *phba) 966 { 967 struct lpfc_sli *psli = &phba->sli; 968 struct lpfc_sli_ring *pring; 969 struct lpfc_dmabuf *mp, *next_mp; 970 LIST_HEAD(buflist); 971 int count; 972 973 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) 974 lpfc_sli_hbqbuf_free_all(phba); 975 else { 976 /* Cleanup preposted buffers on the ELS ring */ 977 pring = &psli->sli3_ring[LPFC_ELS_RING]; 978 spin_lock_irq(&phba->hbalock); 979 list_splice_init(&pring->postbufq, &buflist); 980 spin_unlock_irq(&phba->hbalock); 981 982 count = 0; 983 list_for_each_entry_safe(mp, next_mp, &buflist, list) { 984 list_del(&mp->list); 985 count++; 986 lpfc_mbuf_free(phba, mp->virt, mp->phys); 987 kfree(mp); 988 } 989 990 spin_lock_irq(&phba->hbalock); 991 pring->postbufq_cnt -= count; 992 spin_unlock_irq(&phba->hbalock); 993 } 994 } 995 996 /** 997 * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset 998 * @phba: pointer to lpfc HBA data structure. 999 * 1000 * This routine will cleanup the txcmplq after the HBA is reset when bringing 1001 * down the SLI Layer. 1002 * 1003 * Return codes 1004 * void 1005 **/ 1006 static void 1007 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba) 1008 { 1009 struct lpfc_sli *psli = &phba->sli; 1010 struct lpfc_queue *qp = NULL; 1011 struct lpfc_sli_ring *pring; 1012 LIST_HEAD(completions); 1013 int i; 1014 struct lpfc_iocbq *piocb, *next_iocb; 1015 1016 if (phba->sli_rev != LPFC_SLI_REV4) { 1017 for (i = 0; i < psli->num_rings; i++) { 1018 pring = &psli->sli3_ring[i]; 1019 spin_lock_irq(&phba->hbalock); 1020 /* At this point in time the HBA is either reset or DOA 1021 * Nothing should be on txcmplq as it will 1022 * NEVER complete. 1023 */ 1024 list_splice_init(&pring->txcmplq, &completions); 1025 pring->txcmplq_cnt = 0; 1026 spin_unlock_irq(&phba->hbalock); 1027 1028 lpfc_sli_abort_iocb_ring(phba, pring); 1029 } 1030 /* Cancel all the IOCBs from the completions list */ 1031 lpfc_sli_cancel_iocbs(phba, &completions, 1032 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 1033 return; 1034 } 1035 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 1036 pring = qp->pring; 1037 if (!pring) 1038 continue; 1039 spin_lock_irq(&pring->ring_lock); 1040 list_for_each_entry_safe(piocb, next_iocb, 1041 &pring->txcmplq, list) 1042 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 1043 list_splice_init(&pring->txcmplq, &completions); 1044 pring->txcmplq_cnt = 0; 1045 spin_unlock_irq(&pring->ring_lock); 1046 lpfc_sli_abort_iocb_ring(phba, pring); 1047 } 1048 /* Cancel all the IOCBs from the completions list */ 1049 lpfc_sli_cancel_iocbs(phba, &completions, 1050 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 1051 } 1052 1053 /** 1054 * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset 1055 * @phba: pointer to lpfc HBA data structure. 1056 * 1057 * This routine will do uninitialization after the HBA is reset when bring 1058 * down the SLI Layer. 1059 * 1060 * Return codes 1061 * 0 - success. 1062 * Any other value - error. 1063 **/ 1064 static int 1065 lpfc_hba_down_post_s3(struct lpfc_hba *phba) 1066 { 1067 lpfc_hba_free_post_buf(phba); 1068 lpfc_hba_clean_txcmplq(phba); 1069 return 0; 1070 } 1071 1072 /** 1073 * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset 1074 * @phba: pointer to lpfc HBA data structure. 1075 * 1076 * This routine will do uninitialization after the HBA is reset when bring 1077 * down the SLI Layer. 1078 * 1079 * Return codes 1080 * 0 - success. 1081 * Any other value - error. 1082 **/ 1083 static int 1084 lpfc_hba_down_post_s4(struct lpfc_hba *phba) 1085 { 1086 struct lpfc_io_buf *psb, *psb_next; 1087 struct lpfc_async_xchg_ctx *ctxp, *ctxp_next; 1088 struct lpfc_sli4_hdw_queue *qp; 1089 LIST_HEAD(aborts); 1090 LIST_HEAD(nvme_aborts); 1091 LIST_HEAD(nvmet_aborts); 1092 struct lpfc_sglq *sglq_entry = NULL; 1093 int cnt, idx; 1094 1095 1096 lpfc_sli_hbqbuf_free_all(phba); 1097 lpfc_hba_clean_txcmplq(phba); 1098 1099 /* At this point in time the HBA is either reset or DOA. Either 1100 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be 1101 * on the lpfc_els_sgl_list so that it can either be freed if the 1102 * driver is unloading or reposted if the driver is restarting 1103 * the port. 1104 */ 1105 1106 /* sgl_list_lock required because worker thread uses this 1107 * list. 1108 */ 1109 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 1110 list_for_each_entry(sglq_entry, 1111 &phba->sli4_hba.lpfc_abts_els_sgl_list, list) 1112 sglq_entry->state = SGL_FREED; 1113 1114 list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list, 1115 &phba->sli4_hba.lpfc_els_sgl_list); 1116 1117 1118 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 1119 1120 /* abts_xxxx_buf_list_lock required because worker thread uses this 1121 * list. 1122 */ 1123 spin_lock_irq(&phba->hbalock); 1124 cnt = 0; 1125 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 1126 qp = &phba->sli4_hba.hdwq[idx]; 1127 1128 spin_lock(&qp->abts_io_buf_list_lock); 1129 list_splice_init(&qp->lpfc_abts_io_buf_list, 1130 &aborts); 1131 1132 list_for_each_entry_safe(psb, psb_next, &aborts, list) { 1133 psb->pCmd = NULL; 1134 psb->status = IOSTAT_SUCCESS; 1135 cnt++; 1136 } 1137 spin_lock(&qp->io_buf_list_put_lock); 1138 list_splice_init(&aborts, &qp->lpfc_io_buf_list_put); 1139 qp->put_io_bufs += qp->abts_scsi_io_bufs; 1140 qp->put_io_bufs += qp->abts_nvme_io_bufs; 1141 qp->abts_scsi_io_bufs = 0; 1142 qp->abts_nvme_io_bufs = 0; 1143 spin_unlock(&qp->io_buf_list_put_lock); 1144 spin_unlock(&qp->abts_io_buf_list_lock); 1145 } 1146 spin_unlock_irq(&phba->hbalock); 1147 1148 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 1149 spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1150 list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1151 &nvmet_aborts); 1152 spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1153 list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) { 1154 ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP); 1155 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1156 } 1157 } 1158 1159 lpfc_sli4_free_sp_events(phba); 1160 return cnt; 1161 } 1162 1163 /** 1164 * lpfc_hba_down_post - Wrapper func for hba down post routine 1165 * @phba: pointer to lpfc HBA data structure. 1166 * 1167 * This routine wraps the actual SLI3 or SLI4 routine for performing 1168 * uninitialization after the HBA is reset when bring down the SLI Layer. 1169 * 1170 * Return codes 1171 * 0 - success. 1172 * Any other value - error. 1173 **/ 1174 int 1175 lpfc_hba_down_post(struct lpfc_hba *phba) 1176 { 1177 return (*phba->lpfc_hba_down_post)(phba); 1178 } 1179 1180 /** 1181 * lpfc_hb_timeout - The HBA-timer timeout handler 1182 * @t: timer context used to obtain the pointer to lpfc hba data structure. 1183 * 1184 * This is the HBA-timer timeout handler registered to the lpfc driver. When 1185 * this timer fires, a HBA timeout event shall be posted to the lpfc driver 1186 * work-port-events bitmap and the worker thread is notified. This timeout 1187 * event will be used by the worker thread to invoke the actual timeout 1188 * handler routine, lpfc_hb_timeout_handler. Any periodical operations will 1189 * be performed in the timeout handler and the HBA timeout event bit shall 1190 * be cleared by the worker thread after it has taken the event bitmap out. 1191 **/ 1192 static void 1193 lpfc_hb_timeout(struct timer_list *t) 1194 { 1195 struct lpfc_hba *phba; 1196 uint32_t tmo_posted; 1197 unsigned long iflag; 1198 1199 phba = timer_container_of(phba, t, hb_tmofunc); 1200 1201 /* Check for heart beat timeout conditions */ 1202 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 1203 tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO; 1204 if (!tmo_posted) 1205 phba->pport->work_port_events |= WORKER_HB_TMO; 1206 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 1207 1208 /* Tell the worker thread there is work to do */ 1209 if (!tmo_posted) 1210 lpfc_worker_wake_up(phba); 1211 return; 1212 } 1213 1214 /** 1215 * lpfc_rrq_timeout - The RRQ-timer timeout handler 1216 * @t: timer context used to obtain the pointer to lpfc hba data structure. 1217 * 1218 * This is the RRQ-timer timeout handler registered to the lpfc driver. When 1219 * this timer fires, a RRQ timeout event shall be posted to the lpfc driver 1220 * work-port-events bitmap and the worker thread is notified. This timeout 1221 * event will be used by the worker thread to invoke the actual timeout 1222 * handler routine, lpfc_rrq_handler. Any periodical operations will 1223 * be performed in the timeout handler and the RRQ timeout event bit shall 1224 * be cleared by the worker thread after it has taken the event bitmap out. 1225 **/ 1226 static void 1227 lpfc_rrq_timeout(struct timer_list *t) 1228 { 1229 struct lpfc_hba *phba; 1230 1231 phba = timer_container_of(phba, t, rrq_tmr); 1232 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 1233 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1234 return; 1235 } 1236 1237 set_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1238 lpfc_worker_wake_up(phba); 1239 } 1240 1241 /** 1242 * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function 1243 * @phba: pointer to lpfc hba data structure. 1244 * @pmboxq: pointer to the driver internal queue element for mailbox command. 1245 * 1246 * This is the callback function to the lpfc heart-beat mailbox command. 1247 * If configured, the lpfc driver issues the heart-beat mailbox command to 1248 * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the 1249 * heart-beat mailbox command is issued, the driver shall set up heart-beat 1250 * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks 1251 * heart-beat outstanding state. Once the mailbox command comes back and 1252 * no error conditions detected, the heart-beat mailbox command timer is 1253 * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding 1254 * state is cleared for the next heart-beat. If the timer expired with the 1255 * heart-beat outstanding state set, the driver will put the HBA offline. 1256 **/ 1257 static void 1258 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 1259 { 1260 clear_bit(HBA_HBEAT_INP, &phba->hba_flag); 1261 clear_bit(HBA_HBEAT_TMO, &phba->hba_flag); 1262 1263 /* Check and reset heart-beat timer if necessary */ 1264 mempool_free(pmboxq, phba->mbox_mem_pool); 1265 if (!test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag) && 1266 !(phba->link_state == LPFC_HBA_ERROR) && 1267 !test_bit(FC_UNLOADING, &phba->pport->load_flag)) 1268 mod_timer(&phba->hb_tmofunc, 1269 jiffies + 1270 secs_to_jiffies(LPFC_HB_MBOX_INTERVAL)); 1271 return; 1272 } 1273 1274 /* 1275 * lpfc_idle_stat_delay_work - idle_stat tracking 1276 * 1277 * This routine tracks per-eq idle_stat and determines polling decisions. 1278 * 1279 * Return codes: 1280 * None 1281 **/ 1282 static void 1283 lpfc_idle_stat_delay_work(struct work_struct *work) 1284 { 1285 struct lpfc_hba *phba = container_of(to_delayed_work(work), 1286 struct lpfc_hba, 1287 idle_stat_delay_work); 1288 struct lpfc_queue *eq; 1289 struct lpfc_sli4_hdw_queue *hdwq; 1290 struct lpfc_idle_stat *idle_stat; 1291 u32 i, idle_percent; 1292 u64 wall, wall_idle, diff_wall, diff_idle, busy_time; 1293 1294 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 1295 return; 1296 1297 if (phba->link_state == LPFC_HBA_ERROR || 1298 test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag) || 1299 phba->cmf_active_mode != LPFC_CFG_OFF) 1300 goto requeue; 1301 1302 for_each_present_cpu(i) { 1303 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 1304 eq = hdwq->hba_eq; 1305 1306 /* Skip if we've already handled this eq's primary CPU */ 1307 if (eq->chann != i) 1308 continue; 1309 1310 idle_stat = &phba->sli4_hba.idle_stat[i]; 1311 1312 /* get_cpu_idle_time returns values as running counters. Thus, 1313 * to know the amount for this period, the prior counter values 1314 * need to be subtracted from the current counter values. 1315 * From there, the idle time stat can be calculated as a 1316 * percentage of 100 - the sum of the other consumption times. 1317 */ 1318 wall_idle = get_cpu_idle_time(i, &wall, 1); 1319 diff_idle = wall_idle - idle_stat->prev_idle; 1320 diff_wall = wall - idle_stat->prev_wall; 1321 1322 if (diff_wall <= diff_idle) 1323 busy_time = 0; 1324 else 1325 busy_time = diff_wall - diff_idle; 1326 1327 idle_percent = div64_u64(100 * busy_time, diff_wall); 1328 idle_percent = 100 - idle_percent; 1329 1330 if (idle_percent < 15) 1331 eq->poll_mode = LPFC_QUEUE_WORK; 1332 else 1333 eq->poll_mode = LPFC_THREADED_IRQ; 1334 1335 idle_stat->prev_idle = wall_idle; 1336 idle_stat->prev_wall = wall; 1337 } 1338 1339 requeue: 1340 schedule_delayed_work(&phba->idle_stat_delay_work, 1341 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 1342 } 1343 1344 static void 1345 lpfc_hb_eq_delay_work(struct work_struct *work) 1346 { 1347 struct lpfc_hba *phba = container_of(to_delayed_work(work), 1348 struct lpfc_hba, eq_delay_work); 1349 struct lpfc_eq_intr_info *eqi, *eqi_new; 1350 struct lpfc_queue *eq, *eq_next; 1351 unsigned char *ena_delay = NULL; 1352 uint32_t usdelay; 1353 int i; 1354 1355 if (!phba->cfg_auto_imax || 1356 test_bit(FC_UNLOADING, &phba->pport->load_flag)) 1357 return; 1358 1359 if (phba->link_state == LPFC_HBA_ERROR || 1360 test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag)) 1361 goto requeue; 1362 1363 ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay), 1364 GFP_KERNEL); 1365 if (!ena_delay) 1366 goto requeue; 1367 1368 for (i = 0; i < phba->cfg_irq_chann; i++) { 1369 /* Get the EQ corresponding to the IRQ vector */ 1370 eq = phba->sli4_hba.hba_eq_hdl[i].eq; 1371 if (!eq) 1372 continue; 1373 if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) { 1374 eq->q_flag &= ~HBA_EQ_DELAY_CHK; 1375 ena_delay[eq->last_cpu] = 1; 1376 } 1377 } 1378 1379 for_each_present_cpu(i) { 1380 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i); 1381 if (ena_delay[i]) { 1382 usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP; 1383 if (usdelay > LPFC_MAX_AUTO_EQ_DELAY) 1384 usdelay = LPFC_MAX_AUTO_EQ_DELAY; 1385 } else { 1386 usdelay = 0; 1387 } 1388 1389 eqi->icnt = 0; 1390 1391 list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) { 1392 if (unlikely(eq->last_cpu != i)) { 1393 eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info, 1394 eq->last_cpu); 1395 list_move_tail(&eq->cpu_list, &eqi_new->list); 1396 continue; 1397 } 1398 if (usdelay != eq->q_mode) 1399 lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1, 1400 usdelay); 1401 } 1402 } 1403 1404 kfree(ena_delay); 1405 1406 requeue: 1407 queue_delayed_work(phba->wq, &phba->eq_delay_work, 1408 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 1409 } 1410 1411 /** 1412 * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution 1413 * @phba: pointer to lpfc hba data structure. 1414 * 1415 * For each heartbeat, this routine does some heuristic methods to adjust 1416 * XRI distribution. The goal is to fully utilize free XRIs. 1417 **/ 1418 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba) 1419 { 1420 u32 i; 1421 u32 hwq_count; 1422 1423 hwq_count = phba->cfg_hdw_queue; 1424 for (i = 0; i < hwq_count; i++) { 1425 /* Adjust XRIs in private pool */ 1426 lpfc_adjust_pvt_pool_count(phba, i); 1427 1428 /* Adjust high watermark */ 1429 lpfc_adjust_high_watermark(phba, i); 1430 1431 #ifdef LPFC_MXP_STAT 1432 /* Snapshot pbl, pvt and busy count */ 1433 lpfc_snapshot_mxp(phba, i); 1434 #endif 1435 } 1436 } 1437 1438 /** 1439 * lpfc_issue_hb_mbox - Issues heart-beat mailbox command 1440 * @phba: pointer to lpfc hba data structure. 1441 * 1442 * If a HB mbox is not already in progrees, this routine will allocate 1443 * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command, 1444 * and issue it. The HBA_HBEAT_INP flag means the command is in progress. 1445 **/ 1446 int 1447 lpfc_issue_hb_mbox(struct lpfc_hba *phba) 1448 { 1449 LPFC_MBOXQ_t *pmboxq; 1450 int retval; 1451 1452 /* Is a Heartbeat mbox already in progress */ 1453 if (test_bit(HBA_HBEAT_INP, &phba->hba_flag)) 1454 return 0; 1455 1456 pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1457 if (!pmboxq) 1458 return -ENOMEM; 1459 1460 lpfc_heart_beat(phba, pmboxq); 1461 pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl; 1462 pmboxq->vport = phba->pport; 1463 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 1464 1465 if (retval != MBX_BUSY && retval != MBX_SUCCESS) { 1466 mempool_free(pmboxq, phba->mbox_mem_pool); 1467 return -ENXIO; 1468 } 1469 set_bit(HBA_HBEAT_INP, &phba->hba_flag); 1470 1471 return 0; 1472 } 1473 1474 /** 1475 * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command 1476 * @phba: pointer to lpfc hba data structure. 1477 * 1478 * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO 1479 * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless 1480 * of the value of lpfc_enable_hba_heartbeat. 1481 * If lpfc_enable_hba_heartbeat is set, the timeout routine will always 1482 * try to issue a MBX_HEARTBEAT mbox command. 1483 **/ 1484 void 1485 lpfc_issue_hb_tmo(struct lpfc_hba *phba) 1486 { 1487 if (phba->cfg_enable_hba_heartbeat) 1488 return; 1489 set_bit(HBA_HBEAT_TMO, &phba->hba_flag); 1490 } 1491 1492 /** 1493 * lpfc_hb_timeout_handler - The HBA-timer timeout handler 1494 * @phba: pointer to lpfc hba data structure. 1495 * 1496 * This is the actual HBA-timer timeout handler to be invoked by the worker 1497 * thread whenever the HBA timer fired and HBA-timeout event posted. This 1498 * handler performs any periodic operations needed for the device. If such 1499 * periodic event has already been attended to either in the interrupt handler 1500 * or by processing slow-ring or fast-ring events within the HBA-timer 1501 * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets 1502 * the timer for the next timeout period. If lpfc heart-beat mailbox command 1503 * is configured and there is no heart-beat mailbox command outstanding, a 1504 * heart-beat mailbox is issued and timer set properly. Otherwise, if there 1505 * has been a heart-beat mailbox command outstanding, the HBA shall be put 1506 * to offline. 1507 **/ 1508 void 1509 lpfc_hb_timeout_handler(struct lpfc_hba *phba) 1510 { 1511 struct lpfc_vport **vports; 1512 struct lpfc_dmabuf *buf_ptr; 1513 int retval = 0; 1514 int i, tmo; 1515 struct lpfc_sli *psli = &phba->sli; 1516 LIST_HEAD(completions); 1517 1518 if (phba->cfg_xri_rebalancing) { 1519 /* Multi-XRI pools handler */ 1520 lpfc_hb_mxp_handler(phba); 1521 } 1522 1523 vports = lpfc_create_vport_work_array(phba); 1524 if (vports != NULL) 1525 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 1526 lpfc_rcv_seq_check_edtov(vports[i]); 1527 lpfc_fdmi_change_check(vports[i]); 1528 } 1529 lpfc_destroy_vport_work_array(phba, vports); 1530 1531 if (phba->link_state == LPFC_HBA_ERROR || 1532 test_bit(FC_UNLOADING, &phba->pport->load_flag) || 1533 test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag)) 1534 return; 1535 1536 if (phba->elsbuf_cnt && 1537 (phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) { 1538 spin_lock_irq(&phba->hbalock); 1539 list_splice_init(&phba->elsbuf, &completions); 1540 phba->elsbuf_cnt = 0; 1541 phba->elsbuf_prev_cnt = 0; 1542 spin_unlock_irq(&phba->hbalock); 1543 1544 while (!list_empty(&completions)) { 1545 list_remove_head(&completions, buf_ptr, 1546 struct lpfc_dmabuf, list); 1547 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 1548 kfree(buf_ptr); 1549 } 1550 } 1551 phba->elsbuf_prev_cnt = phba->elsbuf_cnt; 1552 1553 /* If there is no heart beat outstanding, issue a heartbeat command */ 1554 if (phba->cfg_enable_hba_heartbeat) { 1555 /* If IOs are completing, no need to issue a MBX_HEARTBEAT */ 1556 spin_lock_irq(&phba->pport->work_port_lock); 1557 if (time_after(phba->last_completion_time + 1558 secs_to_jiffies(LPFC_HB_MBOX_INTERVAL), 1559 jiffies)) { 1560 spin_unlock_irq(&phba->pport->work_port_lock); 1561 if (test_bit(HBA_HBEAT_INP, &phba->hba_flag)) 1562 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1563 else 1564 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1565 goto out; 1566 } 1567 spin_unlock_irq(&phba->pport->work_port_lock); 1568 1569 /* Check if a MBX_HEARTBEAT is already in progress */ 1570 if (test_bit(HBA_HBEAT_INP, &phba->hba_flag)) { 1571 /* 1572 * If heart beat timeout called with HBA_HBEAT_INP set 1573 * we need to give the hb mailbox cmd a chance to 1574 * complete or TMO. 1575 */ 1576 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 1577 "0459 Adapter heartbeat still outstanding: " 1578 "last compl time was %d ms.\n", 1579 jiffies_to_msecs(jiffies 1580 - phba->last_completion_time)); 1581 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1582 } else { 1583 if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) && 1584 (list_empty(&psli->mboxq))) { 1585 1586 retval = lpfc_issue_hb_mbox(phba); 1587 if (retval) { 1588 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1589 goto out; 1590 } 1591 phba->skipped_hb = 0; 1592 } else if (time_before_eq(phba->last_completion_time, 1593 phba->skipped_hb)) { 1594 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 1595 "2857 Last completion time not " 1596 " updated in %d ms\n", 1597 jiffies_to_msecs(jiffies 1598 - phba->last_completion_time)); 1599 } else 1600 phba->skipped_hb = jiffies; 1601 1602 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1603 goto out; 1604 } 1605 } else { 1606 /* Check to see if we want to force a MBX_HEARTBEAT */ 1607 if (test_bit(HBA_HBEAT_TMO, &phba->hba_flag)) { 1608 retval = lpfc_issue_hb_mbox(phba); 1609 if (retval) 1610 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1611 else 1612 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1613 goto out; 1614 } 1615 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1616 } 1617 out: 1618 mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo)); 1619 } 1620 1621 /** 1622 * lpfc_offline_eratt - Bring lpfc offline on hardware error attention 1623 * @phba: pointer to lpfc hba data structure. 1624 * 1625 * This routine is called to bring the HBA offline when HBA hardware error 1626 * other than Port Error 6 has been detected. 1627 **/ 1628 static void 1629 lpfc_offline_eratt(struct lpfc_hba *phba) 1630 { 1631 struct lpfc_sli *psli = &phba->sli; 1632 1633 spin_lock_irq(&phba->hbalock); 1634 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1635 spin_unlock_irq(&phba->hbalock); 1636 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1637 1638 lpfc_offline(phba); 1639 lpfc_reset_barrier(phba); 1640 spin_lock_irq(&phba->hbalock); 1641 lpfc_sli_brdreset(phba); 1642 spin_unlock_irq(&phba->hbalock); 1643 lpfc_hba_down_post(phba); 1644 lpfc_sli_brdready(phba, HS_MBRDY); 1645 lpfc_unblock_mgmt_io(phba); 1646 phba->link_state = LPFC_HBA_ERROR; 1647 return; 1648 } 1649 1650 /** 1651 * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention 1652 * @phba: pointer to lpfc hba data structure. 1653 * 1654 * This routine is called to bring a SLI4 HBA offline when HBA hardware error 1655 * other than Port Error 6 has been detected. 1656 **/ 1657 void 1658 lpfc_sli4_offline_eratt(struct lpfc_hba *phba) 1659 { 1660 spin_lock_irq(&phba->hbalock); 1661 if (phba->link_state == LPFC_HBA_ERROR && 1662 test_bit(HBA_PCI_ERR, &phba->bit_flags)) { 1663 spin_unlock_irq(&phba->hbalock); 1664 return; 1665 } 1666 phba->link_state = LPFC_HBA_ERROR; 1667 spin_unlock_irq(&phba->hbalock); 1668 1669 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1670 lpfc_sli_flush_io_rings(phba); 1671 lpfc_offline(phba); 1672 lpfc_hba_down_post(phba); 1673 lpfc_unblock_mgmt_io(phba); 1674 } 1675 1676 /** 1677 * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler 1678 * @phba: pointer to lpfc hba data structure. 1679 * 1680 * This routine is invoked to handle the deferred HBA hardware error 1681 * conditions. This type of error is indicated by HBA by setting ER1 1682 * and another ER bit in the host status register. The driver will 1683 * wait until the ER1 bit clears before handling the error condition. 1684 **/ 1685 static void 1686 lpfc_handle_deferred_eratt(struct lpfc_hba *phba) 1687 { 1688 uint32_t old_host_status = phba->work_hs; 1689 struct lpfc_sli *psli = &phba->sli; 1690 1691 /* If the pci channel is offline, ignore possible errors, 1692 * since we cannot communicate with the pci card anyway. 1693 */ 1694 if (pci_channel_offline(phba->pcidev)) { 1695 clear_bit(DEFER_ERATT, &phba->hba_flag); 1696 return; 1697 } 1698 1699 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1700 "0479 Deferred Adapter Hardware Error " 1701 "Data: x%x x%x x%x\n", 1702 phba->work_hs, phba->work_status[0], 1703 phba->work_status[1]); 1704 1705 spin_lock_irq(&phba->hbalock); 1706 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1707 spin_unlock_irq(&phba->hbalock); 1708 1709 1710 /* 1711 * Firmware stops when it triggred erratt. That could cause the I/Os 1712 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the 1713 * SCSI layer retry it after re-establishing link. 1714 */ 1715 lpfc_sli_abort_fcp_rings(phba); 1716 1717 /* 1718 * There was a firmware error. Take the hba offline and then 1719 * attempt to restart it. 1720 */ 1721 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 1722 lpfc_offline(phba); 1723 1724 /* Wait for the ER1 bit to clear.*/ 1725 while (phba->work_hs & HS_FFER1) { 1726 msleep(100); 1727 if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) { 1728 phba->work_hs = UNPLUG_ERR ; 1729 break; 1730 } 1731 /* If driver is unloading let the worker thread continue */ 1732 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 1733 phba->work_hs = 0; 1734 break; 1735 } 1736 } 1737 1738 /* 1739 * This is to ptrotect against a race condition in which 1740 * first write to the host attention register clear the 1741 * host status register. 1742 */ 1743 if (!phba->work_hs && !test_bit(FC_UNLOADING, &phba->pport->load_flag)) 1744 phba->work_hs = old_host_status & ~HS_FFER1; 1745 1746 clear_bit(DEFER_ERATT, &phba->hba_flag); 1747 phba->work_status[0] = readl(phba->MBslimaddr + 0xa8); 1748 phba->work_status[1] = readl(phba->MBslimaddr + 0xac); 1749 } 1750 1751 static void 1752 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba) 1753 { 1754 struct lpfc_board_event_header board_event; 1755 struct Scsi_Host *shost; 1756 1757 board_event.event_type = FC_REG_BOARD_EVENT; 1758 board_event.subcategory = LPFC_EVENT_PORTINTERR; 1759 shost = lpfc_shost_from_vport(phba->pport); 1760 fc_host_post_vendor_event(shost, fc_get_event_number(), 1761 sizeof(board_event), 1762 (char *) &board_event, 1763 LPFC_NL_VENDOR_ID); 1764 } 1765 1766 /** 1767 * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler 1768 * @phba: pointer to lpfc hba data structure. 1769 * 1770 * This routine is invoked to handle the following HBA hardware error 1771 * conditions: 1772 * 1 - HBA error attention interrupt 1773 * 2 - DMA ring index out of range 1774 * 3 - Mailbox command came back as unknown 1775 **/ 1776 static void 1777 lpfc_handle_eratt_s3(struct lpfc_hba *phba) 1778 { 1779 struct lpfc_vport *vport = phba->pport; 1780 struct lpfc_sli *psli = &phba->sli; 1781 uint32_t event_data; 1782 unsigned long temperature; 1783 struct temp_event temp_event_data; 1784 struct Scsi_Host *shost; 1785 1786 /* If the pci channel is offline, ignore possible errors, 1787 * since we cannot communicate with the pci card anyway. 1788 */ 1789 if (pci_channel_offline(phba->pcidev)) { 1790 clear_bit(DEFER_ERATT, &phba->hba_flag); 1791 return; 1792 } 1793 1794 /* If resets are disabled then leave the HBA alone and return */ 1795 if (!phba->cfg_enable_hba_reset) 1796 return; 1797 1798 /* Send an internal error event to mgmt application */ 1799 lpfc_board_errevt_to_mgmt(phba); 1800 1801 if (test_bit(DEFER_ERATT, &phba->hba_flag)) 1802 lpfc_handle_deferred_eratt(phba); 1803 1804 if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) { 1805 if (phba->work_hs & HS_FFER6) 1806 /* Re-establishing Link */ 1807 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1808 "1301 Re-establishing Link " 1809 "Data: x%x x%x x%x\n", 1810 phba->work_hs, phba->work_status[0], 1811 phba->work_status[1]); 1812 if (phba->work_hs & HS_FFER8) 1813 /* Device Zeroization */ 1814 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1815 "2861 Host Authentication device " 1816 "zeroization Data:x%x x%x x%x\n", 1817 phba->work_hs, phba->work_status[0], 1818 phba->work_status[1]); 1819 1820 spin_lock_irq(&phba->hbalock); 1821 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1822 spin_unlock_irq(&phba->hbalock); 1823 1824 /* 1825 * Firmware stops when it triggled erratt with HS_FFER6. 1826 * That could cause the I/Os dropped by the firmware. 1827 * Error iocb (I/O) on txcmplq and let the SCSI layer 1828 * retry it after re-establishing link. 1829 */ 1830 lpfc_sli_abort_fcp_rings(phba); 1831 1832 /* 1833 * There was a firmware error. Take the hba offline and then 1834 * attempt to restart it. 1835 */ 1836 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1837 lpfc_offline(phba); 1838 lpfc_sli_brdrestart(phba); 1839 if (lpfc_online(phba) == 0) { /* Initialize the HBA */ 1840 lpfc_unblock_mgmt_io(phba); 1841 return; 1842 } 1843 lpfc_unblock_mgmt_io(phba); 1844 } else if (phba->work_hs & HS_CRIT_TEMP) { 1845 temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET); 1846 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 1847 temp_event_data.event_code = LPFC_CRIT_TEMP; 1848 temp_event_data.data = (uint32_t)temperature; 1849 1850 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1851 "0406 Adapter maximum temperature exceeded " 1852 "(%ld), taking this port offline " 1853 "Data: x%x x%x x%x\n", 1854 temperature, phba->work_hs, 1855 phba->work_status[0], phba->work_status[1]); 1856 1857 shost = lpfc_shost_from_vport(phba->pport); 1858 fc_host_post_vendor_event(shost, fc_get_event_number(), 1859 sizeof(temp_event_data), 1860 (char *) &temp_event_data, 1861 SCSI_NL_VID_TYPE_PCI 1862 | PCI_VENDOR_ID_EMULEX); 1863 1864 spin_lock_irq(&phba->hbalock); 1865 phba->over_temp_state = HBA_OVER_TEMP; 1866 spin_unlock_irq(&phba->hbalock); 1867 lpfc_offline_eratt(phba); 1868 1869 } else { 1870 /* The if clause above forces this code path when the status 1871 * failure is a value other than FFER6. Do not call the offline 1872 * twice. This is the adapter hardware error path. 1873 */ 1874 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1875 "0457 Adapter Hardware Error " 1876 "Data: x%x x%x x%x\n", 1877 phba->work_hs, 1878 phba->work_status[0], phba->work_status[1]); 1879 1880 event_data = FC_REG_DUMP_EVENT; 1881 shost = lpfc_shost_from_vport(vport); 1882 fc_host_post_vendor_event(shost, fc_get_event_number(), 1883 sizeof(event_data), (char *) &event_data, 1884 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 1885 1886 lpfc_offline_eratt(phba); 1887 } 1888 return; 1889 } 1890 1891 /** 1892 * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg 1893 * @phba: pointer to lpfc hba data structure. 1894 * @mbx_action: flag for mailbox shutdown action. 1895 * @en_rn_msg: send reset/port recovery message. 1896 * This routine is invoked to perform an SLI4 port PCI function reset in 1897 * response to port status register polling attention. It waits for port 1898 * status register (ERR, RDY, RN) bits before proceeding with function reset. 1899 * During this process, interrupt vectors are freed and later requested 1900 * for handling possible port resource change. 1901 **/ 1902 static int 1903 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action, 1904 bool en_rn_msg) 1905 { 1906 int rc; 1907 uint32_t intr_mode; 1908 LPFC_MBOXQ_t *mboxq; 1909 1910 /* Notifying the transport that the targets are going offline. */ 1911 lpfc_scsi_dev_block(phba); 1912 1913 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 1914 LPFC_SLI_INTF_IF_TYPE_2) { 1915 /* 1916 * On error status condition, driver need to wait for port 1917 * ready before performing reset. 1918 */ 1919 rc = lpfc_sli4_pdev_status_reg_wait(phba); 1920 if (rc) 1921 return rc; 1922 } 1923 1924 /* need reset: attempt for port recovery */ 1925 if (en_rn_msg) 1926 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1927 "2887 Reset Needed: Attempting Port " 1928 "Recovery...\n"); 1929 1930 /* If we are no wait, the HBA has been reset and is not 1931 * functional, thus we should clear 1932 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags. 1933 */ 1934 if (mbx_action == LPFC_MBX_NO_WAIT) { 1935 spin_lock_irq(&phba->hbalock); 1936 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 1937 if (phba->sli.mbox_active) { 1938 mboxq = phba->sli.mbox_active; 1939 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 1940 __lpfc_mbox_cmpl_put(phba, mboxq); 1941 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 1942 phba->sli.mbox_active = NULL; 1943 } 1944 spin_unlock_irq(&phba->hbalock); 1945 } 1946 1947 lpfc_offline_prep(phba, mbx_action); 1948 lpfc_sli_flush_io_rings(phba); 1949 lpfc_nvmels_flush_cmd(phba); 1950 lpfc_offline(phba); 1951 /* release interrupt for possible resource change */ 1952 lpfc_sli4_disable_intr(phba); 1953 rc = lpfc_sli_brdrestart(phba); 1954 if (rc) { 1955 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1956 "6309 Failed to restart board\n"); 1957 return rc; 1958 } 1959 /* request and enable interrupt */ 1960 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 1961 if (intr_mode == LPFC_INTR_ERROR) { 1962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1963 "3175 Failed to enable interrupt\n"); 1964 return -EIO; 1965 } 1966 phba->intr_mode = intr_mode; 1967 rc = lpfc_online(phba); 1968 if (rc == 0) 1969 lpfc_unblock_mgmt_io(phba); 1970 1971 return rc; 1972 } 1973 1974 /** 1975 * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler 1976 * @phba: pointer to lpfc hba data structure. 1977 * 1978 * This routine is invoked to handle the SLI4 HBA hardware error attention 1979 * conditions. 1980 **/ 1981 static void 1982 lpfc_handle_eratt_s4(struct lpfc_hba *phba) 1983 { 1984 struct lpfc_vport *vport = phba->pport; 1985 uint32_t event_data; 1986 struct Scsi_Host *shost; 1987 uint32_t if_type; 1988 struct lpfc_register portstat_reg = {0}; 1989 uint32_t reg_err1, reg_err2; 1990 uint32_t uerrlo_reg, uemasklo_reg; 1991 uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2; 1992 bool en_rn_msg = true; 1993 struct temp_event temp_event_data; 1994 struct lpfc_register portsmphr_reg; 1995 int rc, i; 1996 1997 /* If the pci channel is offline, ignore possible errors, since 1998 * we cannot communicate with the pci card anyway. 1999 */ 2000 if (pci_channel_offline(phba->pcidev)) { 2001 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2002 "3166 pci channel is offline\n"); 2003 lpfc_sli_flush_io_rings(phba); 2004 return; 2005 } 2006 2007 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 2008 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 2009 switch (if_type) { 2010 case LPFC_SLI_INTF_IF_TYPE_0: 2011 pci_rd_rc1 = lpfc_readl( 2012 phba->sli4_hba.u.if_type0.UERRLOregaddr, 2013 &uerrlo_reg); 2014 pci_rd_rc2 = lpfc_readl( 2015 phba->sli4_hba.u.if_type0.UEMASKLOregaddr, 2016 &uemasklo_reg); 2017 /* consider PCI bus read error as pci_channel_offline */ 2018 if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO) 2019 return; 2020 if (!test_bit(HBA_RECOVERABLE_UE, &phba->hba_flag)) { 2021 lpfc_sli4_offline_eratt(phba); 2022 return; 2023 } 2024 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2025 "7623 Checking UE recoverable"); 2026 2027 for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) { 2028 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 2029 &portsmphr_reg.word0)) 2030 continue; 2031 2032 smphr_port_status = bf_get(lpfc_port_smphr_port_status, 2033 &portsmphr_reg); 2034 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 2035 LPFC_PORT_SEM_UE_RECOVERABLE) 2036 break; 2037 /*Sleep for 1Sec, before checking SEMAPHORE */ 2038 msleep(1000); 2039 } 2040 2041 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2042 "4827 smphr_port_status x%x : Waited %dSec", 2043 smphr_port_status, i); 2044 2045 /* Recoverable UE, reset the HBA device */ 2046 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 2047 LPFC_PORT_SEM_UE_RECOVERABLE) { 2048 for (i = 0; i < 20; i++) { 2049 msleep(1000); 2050 if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 2051 &portsmphr_reg.word0) && 2052 (LPFC_POST_STAGE_PORT_READY == 2053 bf_get(lpfc_port_smphr_port_status, 2054 &portsmphr_reg))) { 2055 rc = lpfc_sli4_port_sta_fn_reset(phba, 2056 LPFC_MBX_NO_WAIT, en_rn_msg); 2057 if (rc == 0) 2058 return; 2059 lpfc_printf_log(phba, KERN_ERR, 2060 LOG_TRACE_EVENT, 2061 "4215 Failed to recover UE"); 2062 break; 2063 } 2064 } 2065 } 2066 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2067 "7624 Firmware not ready: Failing UE recovery," 2068 " waited %dSec", i); 2069 phba->link_state = LPFC_HBA_ERROR; 2070 break; 2071 2072 case LPFC_SLI_INTF_IF_TYPE_2: 2073 case LPFC_SLI_INTF_IF_TYPE_6: 2074 pci_rd_rc1 = lpfc_readl( 2075 phba->sli4_hba.u.if_type2.STATUSregaddr, 2076 &portstat_reg.word0); 2077 /* consider PCI bus read error as pci_channel_offline */ 2078 if (pci_rd_rc1 == -EIO) { 2079 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2080 "3151 PCI bus read access failure: x%x\n", 2081 readl(phba->sli4_hba.u.if_type2.STATUSregaddr)); 2082 lpfc_sli4_offline_eratt(phba); 2083 return; 2084 } 2085 reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 2086 reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 2087 if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) { 2088 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2089 "2889 Port Overtemperature event, " 2090 "taking port offline Data: x%x x%x\n", 2091 reg_err1, reg_err2); 2092 2093 phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 2094 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 2095 temp_event_data.event_code = LPFC_CRIT_TEMP; 2096 temp_event_data.data = 0xFFFFFFFF; 2097 2098 shost = lpfc_shost_from_vport(phba->pport); 2099 fc_host_post_vendor_event(shost, fc_get_event_number(), 2100 sizeof(temp_event_data), 2101 (char *)&temp_event_data, 2102 SCSI_NL_VID_TYPE_PCI 2103 | PCI_VENDOR_ID_EMULEX); 2104 2105 spin_lock_irq(&phba->hbalock); 2106 phba->over_temp_state = HBA_OVER_TEMP; 2107 spin_unlock_irq(&phba->hbalock); 2108 lpfc_sli4_offline_eratt(phba); 2109 return; 2110 } 2111 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2112 reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) { 2113 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2114 "3143 Port Down: Firmware Update " 2115 "Detected\n"); 2116 en_rn_msg = false; 2117 } else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2118 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 2119 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2120 "3144 Port Down: Debug Dump\n"); 2121 else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2122 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON) 2123 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2124 "3145 Port Down: Provisioning\n"); 2125 2126 /* If resets are disabled then leave the HBA alone and return */ 2127 if (!phba->cfg_enable_hba_reset) 2128 return; 2129 2130 /* Check port status register for function reset */ 2131 rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT, 2132 en_rn_msg); 2133 if (rc == 0) { 2134 /* don't report event on forced debug dump */ 2135 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2136 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 2137 return; 2138 else 2139 break; 2140 } 2141 /* fall through for not able to recover */ 2142 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2143 "3152 Unrecoverable error\n"); 2144 lpfc_sli4_offline_eratt(phba); 2145 break; 2146 case LPFC_SLI_INTF_IF_TYPE_1: 2147 default: 2148 break; 2149 } 2150 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 2151 "3123 Report dump event to upper layer\n"); 2152 /* Send an internal error event to mgmt application */ 2153 lpfc_board_errevt_to_mgmt(phba); 2154 2155 event_data = FC_REG_DUMP_EVENT; 2156 shost = lpfc_shost_from_vport(vport); 2157 fc_host_post_vendor_event(shost, fc_get_event_number(), 2158 sizeof(event_data), (char *) &event_data, 2159 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 2160 } 2161 2162 /** 2163 * lpfc_handle_eratt - Wrapper func for handling hba error attention 2164 * @phba: pointer to lpfc HBA data structure. 2165 * 2166 * This routine wraps the actual SLI3 or SLI4 hba error attention handling 2167 * routine from the API jump table function pointer from the lpfc_hba struct. 2168 * 2169 * Return codes 2170 * 0 - success. 2171 * Any other value - error. 2172 **/ 2173 void 2174 lpfc_handle_eratt(struct lpfc_hba *phba) 2175 { 2176 (*phba->lpfc_handle_eratt)(phba); 2177 } 2178 2179 /** 2180 * lpfc_handle_latt - The HBA link event handler 2181 * @phba: pointer to lpfc hba data structure. 2182 * 2183 * This routine is invoked from the worker thread to handle a HBA host 2184 * attention link event. SLI3 only. 2185 **/ 2186 void 2187 lpfc_handle_latt(struct lpfc_hba *phba) 2188 { 2189 struct lpfc_vport *vport = phba->pport; 2190 struct lpfc_sli *psli = &phba->sli; 2191 LPFC_MBOXQ_t *pmb; 2192 volatile uint32_t control; 2193 int rc = 0; 2194 2195 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 2196 if (!pmb) { 2197 rc = 1; 2198 goto lpfc_handle_latt_err_exit; 2199 } 2200 2201 rc = lpfc_mbox_rsrc_prep(phba, pmb); 2202 if (rc) { 2203 rc = 2; 2204 mempool_free(pmb, phba->mbox_mem_pool); 2205 goto lpfc_handle_latt_err_exit; 2206 } 2207 2208 /* Cleanup any outstanding ELS commands */ 2209 lpfc_els_flush_all_cmd(phba); 2210 psli->slistat.link_event++; 2211 lpfc_read_topology(phba, pmb, pmb->ctx_buf); 2212 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 2213 pmb->vport = vport; 2214 /* Block ELS IOCBs until we have processed this mbox command */ 2215 phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT; 2216 rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT); 2217 if (rc == MBX_NOT_FINISHED) { 2218 rc = 4; 2219 goto lpfc_handle_latt_free_mbuf; 2220 } 2221 2222 /* Clear Link Attention in HA REG */ 2223 spin_lock_irq(&phba->hbalock); 2224 writel(HA_LATT, phba->HAregaddr); 2225 readl(phba->HAregaddr); /* flush */ 2226 spin_unlock_irq(&phba->hbalock); 2227 2228 return; 2229 2230 lpfc_handle_latt_free_mbuf: 2231 phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT; 2232 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2233 lpfc_handle_latt_err_exit: 2234 /* Enable Link attention interrupts */ 2235 spin_lock_irq(&phba->hbalock); 2236 psli->sli_flag |= LPFC_PROCESS_LA; 2237 control = readl(phba->HCregaddr); 2238 control |= HC_LAINT_ENA; 2239 writel(control, phba->HCregaddr); 2240 readl(phba->HCregaddr); /* flush */ 2241 2242 /* Clear Link Attention in HA REG */ 2243 writel(HA_LATT, phba->HAregaddr); 2244 readl(phba->HAregaddr); /* flush */ 2245 spin_unlock_irq(&phba->hbalock); 2246 lpfc_linkdown(phba); 2247 phba->link_state = LPFC_HBA_ERROR; 2248 2249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2250 "0300 LATT: Cannot issue READ_LA: Data:%d\n", rc); 2251 2252 return; 2253 } 2254 2255 static void 2256 lpfc_fill_vpd(struct lpfc_hba *phba, uint8_t *vpd, int length, int *pindex) 2257 { 2258 int i, j; 2259 2260 while (length > 0) { 2261 /* Look for Serial Number */ 2262 if ((vpd[*pindex] == 'S') && (vpd[*pindex + 1] == 'N')) { 2263 *pindex += 2; 2264 i = vpd[*pindex]; 2265 *pindex += 1; 2266 j = 0; 2267 length -= (3+i); 2268 while (i--) { 2269 phba->SerialNumber[j++] = vpd[(*pindex)++]; 2270 if (j == 31) 2271 break; 2272 } 2273 phba->SerialNumber[j] = 0; 2274 continue; 2275 } else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '1')) { 2276 phba->vpd_flag |= VPD_MODEL_DESC; 2277 *pindex += 2; 2278 i = vpd[*pindex]; 2279 *pindex += 1; 2280 j = 0; 2281 length -= (3+i); 2282 while (i--) { 2283 phba->ModelDesc[j++] = vpd[(*pindex)++]; 2284 if (j == 255) 2285 break; 2286 } 2287 phba->ModelDesc[j] = 0; 2288 continue; 2289 } else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '2')) { 2290 phba->vpd_flag |= VPD_MODEL_NAME; 2291 *pindex += 2; 2292 i = vpd[*pindex]; 2293 *pindex += 1; 2294 j = 0; 2295 length -= (3+i); 2296 while (i--) { 2297 phba->ModelName[j++] = vpd[(*pindex)++]; 2298 if (j == 79) 2299 break; 2300 } 2301 phba->ModelName[j] = 0; 2302 continue; 2303 } else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '3')) { 2304 phba->vpd_flag |= VPD_PROGRAM_TYPE; 2305 *pindex += 2; 2306 i = vpd[*pindex]; 2307 *pindex += 1; 2308 j = 0; 2309 length -= (3+i); 2310 while (i--) { 2311 phba->ProgramType[j++] = vpd[(*pindex)++]; 2312 if (j == 255) 2313 break; 2314 } 2315 phba->ProgramType[j] = 0; 2316 continue; 2317 } else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '4')) { 2318 phba->vpd_flag |= VPD_PORT; 2319 *pindex += 2; 2320 i = vpd[*pindex]; 2321 *pindex += 1; 2322 j = 0; 2323 length -= (3 + i); 2324 while (i--) { 2325 if ((phba->sli_rev == LPFC_SLI_REV4) && 2326 (phba->sli4_hba.pport_name_sta == 2327 LPFC_SLI4_PPNAME_GET)) { 2328 j++; 2329 (*pindex)++; 2330 } else 2331 phba->Port[j++] = vpd[(*pindex)++]; 2332 if (j == 19) 2333 break; 2334 } 2335 if ((phba->sli_rev != LPFC_SLI_REV4) || 2336 (phba->sli4_hba.pport_name_sta == 2337 LPFC_SLI4_PPNAME_NON)) 2338 phba->Port[j] = 0; 2339 continue; 2340 } else { 2341 *pindex += 2; 2342 i = vpd[*pindex]; 2343 *pindex += 1; 2344 *pindex += i; 2345 length -= (3 + i); 2346 } 2347 } 2348 } 2349 2350 /** 2351 * lpfc_parse_vpd - Parse VPD (Vital Product Data) 2352 * @phba: pointer to lpfc hba data structure. 2353 * @vpd: pointer to the vital product data. 2354 * @len: length of the vital product data in bytes. 2355 * 2356 * This routine parses the Vital Product Data (VPD). The VPD is treated as 2357 * an array of characters. In this routine, the ModelName, ProgramType, and 2358 * ModelDesc, etc. fields of the phba data structure will be populated. 2359 * 2360 * Return codes 2361 * 0 - pointer to the VPD passed in is NULL 2362 * 1 - success 2363 **/ 2364 int 2365 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len) 2366 { 2367 uint8_t lenlo, lenhi; 2368 int Length; 2369 int i; 2370 int finished = 0; 2371 int index = 0; 2372 2373 if (!vpd) 2374 return 0; 2375 2376 /* Vital Product */ 2377 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 2378 "0455 Vital Product Data: x%x x%x x%x x%x\n", 2379 (uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2], 2380 (uint32_t) vpd[3]); 2381 while (!finished && (index < (len - 4))) { 2382 switch (vpd[index]) { 2383 case 0x82: 2384 case 0x91: 2385 index += 1; 2386 lenlo = vpd[index]; 2387 index += 1; 2388 lenhi = vpd[index]; 2389 index += 1; 2390 i = ((((unsigned short)lenhi) << 8) + lenlo); 2391 index += i; 2392 break; 2393 case 0x90: 2394 index += 1; 2395 lenlo = vpd[index]; 2396 index += 1; 2397 lenhi = vpd[index]; 2398 index += 1; 2399 Length = ((((unsigned short)lenhi) << 8) + lenlo); 2400 if (Length > len - index) 2401 Length = len - index; 2402 2403 lpfc_fill_vpd(phba, vpd, Length, &index); 2404 finished = 0; 2405 break; 2406 case 0x78: 2407 finished = 1; 2408 break; 2409 default: 2410 index ++; 2411 break; 2412 } 2413 } 2414 2415 return(1); 2416 } 2417 2418 /** 2419 * lpfc_get_atto_model_desc - Retrieve ATTO HBA device model name and description 2420 * @phba: pointer to lpfc hba data structure. 2421 * @mdp: pointer to the data structure to hold the derived model name. 2422 * @descp: pointer to the data structure to hold the derived description. 2423 * 2424 * This routine retrieves HBA's description based on its registered PCI device 2425 * ID. The @descp passed into this function points to an array of 256 chars. It 2426 * shall be returned with the model name, maximum speed, and the host bus type. 2427 * The @mdp passed into this function points to an array of 80 chars. When the 2428 * function returns, the @mdp will be filled with the model name. 2429 **/ 2430 static void 2431 lpfc_get_atto_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp) 2432 { 2433 uint16_t sub_dev_id = phba->pcidev->subsystem_device; 2434 char *model = "<Unknown>"; 2435 int tbolt = 0; 2436 2437 switch (sub_dev_id) { 2438 case PCI_DEVICE_ID_CLRY_161E: 2439 model = "161E"; 2440 break; 2441 case PCI_DEVICE_ID_CLRY_162E: 2442 model = "162E"; 2443 break; 2444 case PCI_DEVICE_ID_CLRY_164E: 2445 model = "164E"; 2446 break; 2447 case PCI_DEVICE_ID_CLRY_161P: 2448 model = "161P"; 2449 break; 2450 case PCI_DEVICE_ID_CLRY_162P: 2451 model = "162P"; 2452 break; 2453 case PCI_DEVICE_ID_CLRY_164P: 2454 model = "164P"; 2455 break; 2456 case PCI_DEVICE_ID_CLRY_321E: 2457 model = "321E"; 2458 break; 2459 case PCI_DEVICE_ID_CLRY_322E: 2460 model = "322E"; 2461 break; 2462 case PCI_DEVICE_ID_CLRY_324E: 2463 model = "324E"; 2464 break; 2465 case PCI_DEVICE_ID_CLRY_321P: 2466 model = "321P"; 2467 break; 2468 case PCI_DEVICE_ID_CLRY_322P: 2469 model = "322P"; 2470 break; 2471 case PCI_DEVICE_ID_CLRY_324P: 2472 model = "324P"; 2473 break; 2474 case PCI_DEVICE_ID_TLFC_2XX2: 2475 model = "2XX2"; 2476 tbolt = 1; 2477 break; 2478 case PCI_DEVICE_ID_TLFC_3162: 2479 model = "3162"; 2480 tbolt = 1; 2481 break; 2482 case PCI_DEVICE_ID_TLFC_3322: 2483 model = "3322"; 2484 tbolt = 1; 2485 break; 2486 default: 2487 model = "Unknown"; 2488 break; 2489 } 2490 2491 if (mdp && mdp[0] == '\0') 2492 snprintf(mdp, 79, "%s", model); 2493 2494 if (descp && descp[0] == '\0') 2495 snprintf(descp, 255, 2496 "ATTO %s%s, Fibre Channel Adapter Initiator, Port %s", 2497 (tbolt) ? "ThunderLink FC " : "Celerity FC-", 2498 model, 2499 phba->Port); 2500 } 2501 2502 /** 2503 * lpfc_get_hba_model_desc - Retrieve HBA device model name and description 2504 * @phba: pointer to lpfc hba data structure. 2505 * @mdp: pointer to the data structure to hold the derived model name. 2506 * @descp: pointer to the data structure to hold the derived description. 2507 * 2508 * This routine retrieves HBA's description based on its registered PCI device 2509 * ID. The @descp passed into this function points to an array of 256 chars. It 2510 * shall be returned with the model name, maximum speed, and the host bus type. 2511 * The @mdp passed into this function points to an array of 80 chars. When the 2512 * function returns, the @mdp will be filled with the model name. 2513 **/ 2514 static void 2515 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp) 2516 { 2517 lpfc_vpd_t *vp; 2518 uint16_t dev_id = phba->pcidev->device; 2519 int max_speed; 2520 int GE = 0; 2521 int oneConnect = 0; /* default is not a oneConnect */ 2522 struct { 2523 char *name; 2524 char *bus; 2525 char *function; 2526 } m = {"<Unknown>", "", ""}; 2527 2528 if (mdp && mdp[0] != '\0' 2529 && descp && descp[0] != '\0') 2530 return; 2531 2532 if (phba->pcidev->vendor == PCI_VENDOR_ID_ATTO) { 2533 lpfc_get_atto_model_desc(phba, mdp, descp); 2534 return; 2535 } 2536 2537 if (phba->lmt & LMT_64Gb) 2538 max_speed = 64; 2539 else if (phba->lmt & LMT_32Gb) 2540 max_speed = 32; 2541 else if (phba->lmt & LMT_16Gb) 2542 max_speed = 16; 2543 else if (phba->lmt & LMT_10Gb) 2544 max_speed = 10; 2545 else if (phba->lmt & LMT_8Gb) 2546 max_speed = 8; 2547 else if (phba->lmt & LMT_4Gb) 2548 max_speed = 4; 2549 else if (phba->lmt & LMT_2Gb) 2550 max_speed = 2; 2551 else if (phba->lmt & LMT_1Gb) 2552 max_speed = 1; 2553 else 2554 max_speed = 0; 2555 2556 vp = &phba->vpd; 2557 2558 switch (dev_id) { 2559 case PCI_DEVICE_ID_FIREFLY: 2560 m = (typeof(m)){"LP6000", "PCI", 2561 "Obsolete, Unsupported Fibre Channel Adapter"}; 2562 break; 2563 case PCI_DEVICE_ID_SUPERFLY: 2564 if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3) 2565 m = (typeof(m)){"LP7000", "PCI", ""}; 2566 else 2567 m = (typeof(m)){"LP7000E", "PCI", ""}; 2568 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2569 break; 2570 case PCI_DEVICE_ID_DRAGONFLY: 2571 m = (typeof(m)){"LP8000", "PCI", 2572 "Obsolete, Unsupported Fibre Channel Adapter"}; 2573 break; 2574 case PCI_DEVICE_ID_CENTAUR: 2575 if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID) 2576 m = (typeof(m)){"LP9002", "PCI", ""}; 2577 else 2578 m = (typeof(m)){"LP9000", "PCI", ""}; 2579 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2580 break; 2581 case PCI_DEVICE_ID_RFLY: 2582 m = (typeof(m)){"LP952", "PCI", 2583 "Obsolete, Unsupported Fibre Channel Adapter"}; 2584 break; 2585 case PCI_DEVICE_ID_PEGASUS: 2586 m = (typeof(m)){"LP9802", "PCI-X", 2587 "Obsolete, Unsupported Fibre Channel Adapter"}; 2588 break; 2589 case PCI_DEVICE_ID_THOR: 2590 m = (typeof(m)){"LP10000", "PCI-X", 2591 "Obsolete, Unsupported Fibre Channel Adapter"}; 2592 break; 2593 case PCI_DEVICE_ID_VIPER: 2594 m = (typeof(m)){"LPX1000", "PCI-X", 2595 "Obsolete, Unsupported Fibre Channel Adapter"}; 2596 break; 2597 case PCI_DEVICE_ID_PFLY: 2598 m = (typeof(m)){"LP982", "PCI-X", 2599 "Obsolete, Unsupported Fibre Channel Adapter"}; 2600 break; 2601 case PCI_DEVICE_ID_TFLY: 2602 m = (typeof(m)){"LP1050", "PCI-X", 2603 "Obsolete, Unsupported Fibre Channel Adapter"}; 2604 break; 2605 case PCI_DEVICE_ID_HELIOS: 2606 m = (typeof(m)){"LP11000", "PCI-X2", 2607 "Obsolete, Unsupported Fibre Channel Adapter"}; 2608 break; 2609 case PCI_DEVICE_ID_HELIOS_SCSP: 2610 m = (typeof(m)){"LP11000-SP", "PCI-X2", 2611 "Obsolete, Unsupported Fibre Channel Adapter"}; 2612 break; 2613 case PCI_DEVICE_ID_HELIOS_DCSP: 2614 m = (typeof(m)){"LP11002-SP", "PCI-X2", 2615 "Obsolete, Unsupported Fibre Channel Adapter"}; 2616 break; 2617 case PCI_DEVICE_ID_NEPTUNE: 2618 m = (typeof(m)){"LPe1000", "PCIe", 2619 "Obsolete, Unsupported Fibre Channel Adapter"}; 2620 break; 2621 case PCI_DEVICE_ID_NEPTUNE_SCSP: 2622 m = (typeof(m)){"LPe1000-SP", "PCIe", 2623 "Obsolete, Unsupported Fibre Channel Adapter"}; 2624 break; 2625 case PCI_DEVICE_ID_NEPTUNE_DCSP: 2626 m = (typeof(m)){"LPe1002-SP", "PCIe", 2627 "Obsolete, Unsupported Fibre Channel Adapter"}; 2628 break; 2629 case PCI_DEVICE_ID_BMID: 2630 m = (typeof(m)){"LP1150", "PCI-X2", 2631 "Obsolete, Unsupported Fibre Channel Adapter"}; 2632 break; 2633 case PCI_DEVICE_ID_BSMB: 2634 m = (typeof(m)){"LP111", "PCI-X2", 2635 "Obsolete, Unsupported Fibre Channel Adapter"}; 2636 break; 2637 case PCI_DEVICE_ID_ZEPHYR: 2638 m = (typeof(m)){"LPe11000", "PCIe", 2639 "Obsolete, Unsupported Fibre Channel Adapter"}; 2640 break; 2641 case PCI_DEVICE_ID_ZEPHYR_SCSP: 2642 m = (typeof(m)){"LPe11000", "PCIe", 2643 "Obsolete, Unsupported Fibre Channel Adapter"}; 2644 break; 2645 case PCI_DEVICE_ID_ZEPHYR_DCSP: 2646 m = (typeof(m)){"LP2105", "PCIe", 2647 "Obsolete, Unsupported FCoE Adapter"}; 2648 GE = 1; 2649 break; 2650 case PCI_DEVICE_ID_ZMID: 2651 m = (typeof(m)){"LPe1150", "PCIe", 2652 "Obsolete, Unsupported Fibre Channel Adapter"}; 2653 break; 2654 case PCI_DEVICE_ID_ZSMB: 2655 m = (typeof(m)){"LPe111", "PCIe", 2656 "Obsolete, Unsupported Fibre Channel Adapter"}; 2657 break; 2658 case PCI_DEVICE_ID_LP101: 2659 m = (typeof(m)){"LP101", "PCI-X", 2660 "Obsolete, Unsupported Fibre Channel Adapter"}; 2661 break; 2662 case PCI_DEVICE_ID_LP10000S: 2663 m = (typeof(m)){"LP10000-S", "PCI", 2664 "Obsolete, Unsupported Fibre Channel Adapter"}; 2665 break; 2666 case PCI_DEVICE_ID_LP11000S: 2667 m = (typeof(m)){"LP11000-S", "PCI-X2", 2668 "Obsolete, Unsupported Fibre Channel Adapter"}; 2669 break; 2670 case PCI_DEVICE_ID_LPE11000S: 2671 m = (typeof(m)){"LPe11000-S", "PCIe", 2672 "Obsolete, Unsupported Fibre Channel Adapter"}; 2673 break; 2674 case PCI_DEVICE_ID_SAT: 2675 m = (typeof(m)){"LPe12000", "PCIe", 2676 "Obsolete, Unsupported Fibre Channel Adapter"}; 2677 break; 2678 case PCI_DEVICE_ID_SAT_MID: 2679 m = (typeof(m)){"LPe1250", "PCIe", 2680 "Obsolete, Unsupported Fibre Channel Adapter"}; 2681 break; 2682 case PCI_DEVICE_ID_SAT_SMB: 2683 m = (typeof(m)){"LPe121", "PCIe", 2684 "Obsolete, Unsupported Fibre Channel Adapter"}; 2685 break; 2686 case PCI_DEVICE_ID_SAT_DCSP: 2687 m = (typeof(m)){"LPe12002-SP", "PCIe", 2688 "Obsolete, Unsupported Fibre Channel Adapter"}; 2689 break; 2690 case PCI_DEVICE_ID_SAT_SCSP: 2691 m = (typeof(m)){"LPe12000-SP", "PCIe", 2692 "Obsolete, Unsupported Fibre Channel Adapter"}; 2693 break; 2694 case PCI_DEVICE_ID_SAT_S: 2695 m = (typeof(m)){"LPe12000-S", "PCIe", 2696 "Obsolete, Unsupported Fibre Channel Adapter"}; 2697 break; 2698 case PCI_DEVICE_ID_PROTEUS_VF: 2699 m = (typeof(m)){"LPev12000", "PCIe IOV", 2700 "Obsolete, Unsupported Fibre Channel Adapter"}; 2701 break; 2702 case PCI_DEVICE_ID_PROTEUS_PF: 2703 m = (typeof(m)){"LPev12000", "PCIe IOV", 2704 "Obsolete, Unsupported Fibre Channel Adapter"}; 2705 break; 2706 case PCI_DEVICE_ID_PROTEUS_S: 2707 m = (typeof(m)){"LPemv12002-S", "PCIe IOV", 2708 "Obsolete, Unsupported Fibre Channel Adapter"}; 2709 break; 2710 case PCI_DEVICE_ID_TIGERSHARK: 2711 oneConnect = 1; 2712 m = (typeof(m)){"OCe10100", "PCIe", 2713 "Obsolete, Unsupported FCoE Adapter"}; 2714 break; 2715 case PCI_DEVICE_ID_TOMCAT: 2716 oneConnect = 1; 2717 m = (typeof(m)){"OCe11100", "PCIe", 2718 "Obsolete, Unsupported FCoE Adapter"}; 2719 break; 2720 case PCI_DEVICE_ID_FALCON: 2721 m = (typeof(m)){"LPSe12002-ML1-E", "PCIe", 2722 "Obsolete, Unsupported Fibre Channel Adapter"}; 2723 break; 2724 case PCI_DEVICE_ID_BALIUS: 2725 m = (typeof(m)){"LPVe12002", "PCIe Shared I/O", 2726 "Obsolete, Unsupported Fibre Channel Adapter"}; 2727 break; 2728 case PCI_DEVICE_ID_LANCER_FC: 2729 m = (typeof(m)){"LPe16000", "PCIe", 2730 "Obsolete, Unsupported Fibre Channel Adapter"}; 2731 break; 2732 case PCI_DEVICE_ID_LANCER_FC_VF: 2733 m = (typeof(m)){"LPe16000", "PCIe", 2734 "Obsolete, Unsupported Fibre Channel Adapter"}; 2735 break; 2736 case PCI_DEVICE_ID_LANCER_FCOE: 2737 oneConnect = 1; 2738 m = (typeof(m)){"OCe15100", "PCIe", 2739 "Obsolete, Unsupported FCoE Adapter"}; 2740 break; 2741 case PCI_DEVICE_ID_LANCER_FCOE_VF: 2742 oneConnect = 1; 2743 m = (typeof(m)){"OCe15100", "PCIe", 2744 "Obsolete, Unsupported FCoE Adapter"}; 2745 break; 2746 case PCI_DEVICE_ID_LANCER_G6_FC: 2747 m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"}; 2748 break; 2749 case PCI_DEVICE_ID_LANCER_G7_FC: 2750 m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"}; 2751 break; 2752 case PCI_DEVICE_ID_LANCER_G7P_FC: 2753 m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"}; 2754 break; 2755 case PCI_DEVICE_ID_SKYHAWK: 2756 case PCI_DEVICE_ID_SKYHAWK_VF: 2757 oneConnect = 1; 2758 m = (typeof(m)){"OCe14000", "PCIe", 2759 "Obsolete, Unsupported FCoE Adapter"}; 2760 break; 2761 default: 2762 m = (typeof(m)){"Unknown", "", ""}; 2763 break; 2764 } 2765 2766 if (mdp && mdp[0] == '\0') 2767 snprintf(mdp, 79,"%s", m.name); 2768 /* 2769 * oneConnect hba requires special processing, they are all initiators 2770 * and we put the port number on the end 2771 */ 2772 if (descp && descp[0] == '\0') { 2773 if (oneConnect) 2774 snprintf(descp, 255, 2775 "Emulex OneConnect %s, %s Initiator %s", 2776 m.name, m.function, 2777 phba->Port); 2778 else if (max_speed == 0) 2779 snprintf(descp, 255, 2780 "Emulex %s %s %s", 2781 m.name, m.bus, m.function); 2782 else 2783 snprintf(descp, 255, 2784 "Emulex %s %d%s %s %s", 2785 m.name, max_speed, (GE) ? "GE" : "Gb", 2786 m.bus, m.function); 2787 } 2788 } 2789 2790 /** 2791 * lpfc_sli3_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring 2792 * @phba: pointer to lpfc hba data structure. 2793 * @pring: pointer to a IOCB ring. 2794 * @cnt: the number of IOCBs to be posted to the IOCB ring. 2795 * 2796 * This routine posts a given number of IOCBs with the associated DMA buffer 2797 * descriptors specified by the cnt argument to the given IOCB ring. 2798 * 2799 * Return codes 2800 * The number of IOCBs NOT able to be posted to the IOCB ring. 2801 **/ 2802 int 2803 lpfc_sli3_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt) 2804 { 2805 IOCB_t *icmd; 2806 struct lpfc_iocbq *iocb; 2807 struct lpfc_dmabuf *mp1, *mp2; 2808 2809 cnt += pring->missbufcnt; 2810 2811 /* While there are buffers to post */ 2812 while (cnt > 0) { 2813 /* Allocate buffer for command iocb */ 2814 iocb = lpfc_sli_get_iocbq(phba); 2815 if (iocb == NULL) { 2816 pring->missbufcnt = cnt; 2817 return cnt; 2818 } 2819 icmd = &iocb->iocb; 2820 2821 /* 2 buffers can be posted per command */ 2822 /* Allocate buffer to post */ 2823 mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2824 if (mp1) 2825 mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys); 2826 if (!mp1 || !mp1->virt) { 2827 kfree(mp1); 2828 lpfc_sli_release_iocbq(phba, iocb); 2829 pring->missbufcnt = cnt; 2830 return cnt; 2831 } 2832 2833 INIT_LIST_HEAD(&mp1->list); 2834 /* Allocate buffer to post */ 2835 if (cnt > 1) { 2836 mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2837 if (mp2) 2838 mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI, 2839 &mp2->phys); 2840 if (!mp2 || !mp2->virt) { 2841 kfree(mp2); 2842 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2843 kfree(mp1); 2844 lpfc_sli_release_iocbq(phba, iocb); 2845 pring->missbufcnt = cnt; 2846 return cnt; 2847 } 2848 2849 INIT_LIST_HEAD(&mp2->list); 2850 } else { 2851 mp2 = NULL; 2852 } 2853 2854 icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys); 2855 icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys); 2856 icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE; 2857 icmd->ulpBdeCount = 1; 2858 cnt--; 2859 if (mp2) { 2860 icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys); 2861 icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys); 2862 icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE; 2863 cnt--; 2864 icmd->ulpBdeCount = 2; 2865 } 2866 2867 icmd->ulpCommand = CMD_QUE_RING_BUF64_CN; 2868 icmd->ulpLe = 1; 2869 2870 if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) == 2871 IOCB_ERROR) { 2872 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2873 kfree(mp1); 2874 cnt++; 2875 if (mp2) { 2876 lpfc_mbuf_free(phba, mp2->virt, mp2->phys); 2877 kfree(mp2); 2878 cnt++; 2879 } 2880 lpfc_sli_release_iocbq(phba, iocb); 2881 pring->missbufcnt = cnt; 2882 return cnt; 2883 } 2884 lpfc_sli_ringpostbuf_put(phba, pring, mp1); 2885 if (mp2) 2886 lpfc_sli_ringpostbuf_put(phba, pring, mp2); 2887 } 2888 pring->missbufcnt = 0; 2889 return 0; 2890 } 2891 2892 /** 2893 * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring 2894 * @phba: pointer to lpfc hba data structure. 2895 * 2896 * This routine posts initial receive IOCB buffers to the ELS ring. The 2897 * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is 2898 * set to 64 IOCBs. SLI3 only. 2899 * 2900 * Return codes 2901 * 0 - success (currently always success) 2902 **/ 2903 static int 2904 lpfc_post_rcv_buf(struct lpfc_hba *phba) 2905 { 2906 struct lpfc_sli *psli = &phba->sli; 2907 2908 /* Ring 0, ELS / CT buffers */ 2909 lpfc_sli3_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0); 2910 /* Ring 2 - FCP no buffers needed */ 2911 2912 return 0; 2913 } 2914 2915 #define S(N,V) (((V)<<(N))|((V)>>(32-(N)))) 2916 2917 /** 2918 * lpfc_sha_init - Set up initial array of hash table entries 2919 * @HashResultPointer: pointer to an array as hash table. 2920 * 2921 * This routine sets up the initial values to the array of hash table entries 2922 * for the LC HBAs. 2923 **/ 2924 static void 2925 lpfc_sha_init(uint32_t * HashResultPointer) 2926 { 2927 HashResultPointer[0] = 0x67452301; 2928 HashResultPointer[1] = 0xEFCDAB89; 2929 HashResultPointer[2] = 0x98BADCFE; 2930 HashResultPointer[3] = 0x10325476; 2931 HashResultPointer[4] = 0xC3D2E1F0; 2932 } 2933 2934 /** 2935 * lpfc_sha_iterate - Iterate initial hash table with the working hash table 2936 * @HashResultPointer: pointer to an initial/result hash table. 2937 * @HashWorkingPointer: pointer to an working hash table. 2938 * 2939 * This routine iterates an initial hash table pointed by @HashResultPointer 2940 * with the values from the working hash table pointeed by @HashWorkingPointer. 2941 * The results are putting back to the initial hash table, returned through 2942 * the @HashResultPointer as the result hash table. 2943 **/ 2944 static void 2945 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer) 2946 { 2947 int t; 2948 uint32_t TEMP; 2949 uint32_t A, B, C, D, E; 2950 t = 16; 2951 do { 2952 HashWorkingPointer[t] = 2953 S(1, 2954 HashWorkingPointer[t - 3] ^ HashWorkingPointer[t - 2955 8] ^ 2956 HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]); 2957 } while (++t <= 79); 2958 t = 0; 2959 A = HashResultPointer[0]; 2960 B = HashResultPointer[1]; 2961 C = HashResultPointer[2]; 2962 D = HashResultPointer[3]; 2963 E = HashResultPointer[4]; 2964 2965 do { 2966 if (t < 20) { 2967 TEMP = ((B & C) | ((~B) & D)) + 0x5A827999; 2968 } else if (t < 40) { 2969 TEMP = (B ^ C ^ D) + 0x6ED9EBA1; 2970 } else if (t < 60) { 2971 TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC; 2972 } else { 2973 TEMP = (B ^ C ^ D) + 0xCA62C1D6; 2974 } 2975 TEMP += S(5, A) + E + HashWorkingPointer[t]; 2976 E = D; 2977 D = C; 2978 C = S(30, B); 2979 B = A; 2980 A = TEMP; 2981 } while (++t <= 79); 2982 2983 HashResultPointer[0] += A; 2984 HashResultPointer[1] += B; 2985 HashResultPointer[2] += C; 2986 HashResultPointer[3] += D; 2987 HashResultPointer[4] += E; 2988 2989 } 2990 2991 /** 2992 * lpfc_challenge_key - Create challenge key based on WWPN of the HBA 2993 * @RandomChallenge: pointer to the entry of host challenge random number array. 2994 * @HashWorking: pointer to the entry of the working hash array. 2995 * 2996 * This routine calculates the working hash array referred by @HashWorking 2997 * from the challenge random numbers associated with the host, referred by 2998 * @RandomChallenge. The result is put into the entry of the working hash 2999 * array and returned by reference through @HashWorking. 3000 **/ 3001 static void 3002 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking) 3003 { 3004 *HashWorking = (*RandomChallenge ^ *HashWorking); 3005 } 3006 3007 /** 3008 * lpfc_hba_init - Perform special handling for LC HBA initialization 3009 * @phba: pointer to lpfc hba data structure. 3010 * @hbainit: pointer to an array of unsigned 32-bit integers. 3011 * 3012 * This routine performs the special handling for LC HBA initialization. 3013 **/ 3014 void 3015 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit) 3016 { 3017 int t; 3018 uint32_t *HashWorking; 3019 uint32_t *pwwnn = (uint32_t *) phba->wwnn; 3020 3021 HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL); 3022 if (!HashWorking) 3023 return; 3024 3025 HashWorking[0] = HashWorking[78] = *pwwnn++; 3026 HashWorking[1] = HashWorking[79] = *pwwnn; 3027 3028 for (t = 0; t < 7; t++) 3029 lpfc_challenge_key(phba->RandomData + t, HashWorking + t); 3030 3031 lpfc_sha_init(hbainit); 3032 lpfc_sha_iterate(hbainit, HashWorking); 3033 kfree(HashWorking); 3034 } 3035 3036 /** 3037 * lpfc_cleanup - Performs vport cleanups before deleting a vport 3038 * @vport: pointer to a virtual N_Port data structure. 3039 * 3040 * This routine performs the necessary cleanups before deleting the @vport. 3041 * It invokes the discovery state machine to perform necessary state 3042 * transitions and to release the ndlps associated with the @vport. Note, 3043 * the physical port is treated as @vport 0. 3044 **/ 3045 void 3046 lpfc_cleanup(struct lpfc_vport *vport) 3047 { 3048 struct lpfc_hba *phba = vport->phba; 3049 struct lpfc_nodelist *ndlp, *next_ndlp; 3050 int i = 0; 3051 3052 if (phba->link_state > LPFC_LINK_DOWN) 3053 lpfc_port_link_failure(vport); 3054 3055 /* Clean up VMID resources */ 3056 if (lpfc_is_vmid_enabled(phba)) 3057 lpfc_vmid_vport_cleanup(vport); 3058 3059 list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) { 3060 /* Fabric Ports not in UNMAPPED state are cleaned up in the 3061 * DEVICE_RM event. 3062 */ 3063 if (ndlp->nlp_type & NLP_FABRIC && 3064 ndlp->nlp_state == NLP_STE_UNMAPPED_NODE) 3065 lpfc_disc_state_machine(vport, ndlp, NULL, 3066 NLP_EVT_DEVICE_RECOVERY); 3067 3068 if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD))) 3069 lpfc_disc_state_machine(vport, ndlp, NULL, 3070 NLP_EVT_DEVICE_RM); 3071 } 3072 3073 /* This is a special case flush to return all 3074 * IOs before entering this loop. There are 3075 * two points in the code where a flush is 3076 * avoided if the FC_UNLOADING flag is set. 3077 * one is in the multipool destroy, 3078 * (this prevents a crash) and the other is 3079 * in the nvme abort handler, ( also prevents 3080 * a crash). Both of these exceptions are 3081 * cases where the slot is still accessible. 3082 * The flush here is only when the pci slot 3083 * is offline. 3084 */ 3085 if (test_bit(FC_UNLOADING, &vport->load_flag) && 3086 pci_channel_offline(phba->pcidev)) 3087 lpfc_sli_flush_io_rings(vport->phba); 3088 3089 /* At this point, ALL ndlp's should be gone 3090 * because of the previous NLP_EVT_DEVICE_RM. 3091 * Lets wait for this to happen, if needed. 3092 */ 3093 while (!list_empty(&vport->fc_nodes)) { 3094 if (i++ > 3000) { 3095 lpfc_printf_vlog(vport, KERN_ERR, 3096 LOG_TRACE_EVENT, 3097 "0233 Nodelist not empty\n"); 3098 list_for_each_entry_safe(ndlp, next_ndlp, 3099 &vport->fc_nodes, nlp_listp) { 3100 lpfc_printf_vlog(ndlp->vport, KERN_ERR, 3101 LOG_DISCOVERY, 3102 "0282 did:x%x ndlp:x%px " 3103 "refcnt:%d xflags x%x " 3104 "nflag x%lx\n", 3105 ndlp->nlp_DID, (void *)ndlp, 3106 kref_read(&ndlp->kref), 3107 ndlp->fc4_xpt_flags, 3108 ndlp->nlp_flag); 3109 } 3110 break; 3111 } 3112 3113 /* Wait for any activity on ndlps to settle */ 3114 msleep(10); 3115 } 3116 lpfc_cleanup_vports_rrqs(vport, NULL); 3117 } 3118 3119 /** 3120 * lpfc_stop_vport_timers - Stop all the timers associated with a vport 3121 * @vport: pointer to a virtual N_Port data structure. 3122 * 3123 * This routine stops all the timers associated with a @vport. This function 3124 * is invoked before disabling or deleting a @vport. Note that the physical 3125 * port is treated as @vport 0. 3126 **/ 3127 void 3128 lpfc_stop_vport_timers(struct lpfc_vport *vport) 3129 { 3130 timer_delete_sync(&vport->els_tmofunc); 3131 timer_delete_sync(&vport->delayed_disc_tmo); 3132 lpfc_can_disctmo(vport); 3133 return; 3134 } 3135 3136 /** 3137 * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 3138 * @phba: pointer to lpfc hba data structure. 3139 * 3140 * This routine stops the SLI4 FCF rediscover wait timer if it's on. The 3141 * caller of this routine should already hold the host lock. 3142 **/ 3143 void 3144 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 3145 { 3146 /* Clear pending FCF rediscovery wait flag */ 3147 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 3148 3149 /* Now, try to stop the timer */ 3150 timer_delete(&phba->fcf.redisc_wait); 3151 } 3152 3153 /** 3154 * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 3155 * @phba: pointer to lpfc hba data structure. 3156 * 3157 * This routine stops the SLI4 FCF rediscover wait timer if it's on. It 3158 * checks whether the FCF rediscovery wait timer is pending with the host 3159 * lock held before proceeding with disabling the timer and clearing the 3160 * wait timer pendig flag. 3161 **/ 3162 void 3163 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 3164 { 3165 spin_lock_irq(&phba->hbalock); 3166 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 3167 /* FCF rediscovery timer already fired or stopped */ 3168 spin_unlock_irq(&phba->hbalock); 3169 return; 3170 } 3171 __lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 3172 /* Clear failover in progress flags */ 3173 phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC); 3174 spin_unlock_irq(&phba->hbalock); 3175 } 3176 3177 /** 3178 * lpfc_cmf_stop - Stop CMF processing 3179 * @phba: pointer to lpfc hba data structure. 3180 * 3181 * This is called when the link goes down or if CMF mode is turned OFF. 3182 * It is also called when going offline or unloaded just before the 3183 * congestion info buffer is unregistered. 3184 **/ 3185 void 3186 lpfc_cmf_stop(struct lpfc_hba *phba) 3187 { 3188 int cpu; 3189 struct lpfc_cgn_stat *cgs; 3190 3191 /* We only do something if CMF is enabled */ 3192 if (!phba->sli4_hba.pc_sli4_params.cmf) 3193 return; 3194 3195 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 3196 "6221 Stop CMF / Cancel Timer\n"); 3197 3198 /* Cancel the CMF timer */ 3199 hrtimer_cancel(&phba->cmf_stats_timer); 3200 hrtimer_cancel(&phba->cmf_timer); 3201 3202 /* Zero CMF counters */ 3203 atomic_set(&phba->cmf_busy, 0); 3204 for_each_present_cpu(cpu) { 3205 cgs = per_cpu_ptr(phba->cmf_stat, cpu); 3206 atomic64_set(&cgs->total_bytes, 0); 3207 atomic64_set(&cgs->rcv_bytes, 0); 3208 atomic_set(&cgs->rx_io_cnt, 0); 3209 atomic64_set(&cgs->rx_latency, 0); 3210 } 3211 atomic_set(&phba->cmf_bw_wait, 0); 3212 3213 /* Resume any blocked IO - Queue unblock on workqueue */ 3214 queue_work(phba->wq, &phba->unblock_request_work); 3215 } 3216 3217 static inline uint64_t 3218 lpfc_get_max_line_rate(struct lpfc_hba *phba) 3219 { 3220 uint64_t rate = lpfc_sli_port_speed_get(phba); 3221 3222 return ((((unsigned long)rate) * 1024 * 1024) / 10); 3223 } 3224 3225 void 3226 lpfc_cmf_signal_init(struct lpfc_hba *phba) 3227 { 3228 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 3229 "6223 Signal CMF init\n"); 3230 3231 /* Use the new fc_linkspeed to recalculate */ 3232 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 3233 phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba); 3234 phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate * 3235 phba->cmf_interval_rate, 1000); 3236 phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count; 3237 3238 /* This is a signal to firmware to sync up CMF BW with link speed */ 3239 lpfc_issue_cmf_sync_wqe(phba, 0, 0); 3240 } 3241 3242 /** 3243 * lpfc_cmf_start - Start CMF processing 3244 * @phba: pointer to lpfc hba data structure. 3245 * 3246 * This is called when the link comes up or if CMF mode is turned OFF 3247 * to Monitor or Managed. 3248 **/ 3249 void 3250 lpfc_cmf_start(struct lpfc_hba *phba) 3251 { 3252 struct lpfc_cgn_stat *cgs; 3253 int cpu; 3254 3255 /* We only do something if CMF is enabled */ 3256 if (!phba->sli4_hba.pc_sli4_params.cmf || 3257 phba->cmf_active_mode == LPFC_CFG_OFF) 3258 return; 3259 3260 /* Reinitialize congestion buffer info */ 3261 lpfc_init_congestion_buf(phba); 3262 3263 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 3264 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 3265 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 3266 atomic_set(&phba->cgn_sync_warn_cnt, 0); 3267 3268 atomic_set(&phba->cmf_busy, 0); 3269 for_each_present_cpu(cpu) { 3270 cgs = per_cpu_ptr(phba->cmf_stat, cpu); 3271 atomic64_set(&cgs->total_bytes, 0); 3272 atomic64_set(&cgs->rcv_bytes, 0); 3273 atomic_set(&cgs->rx_io_cnt, 0); 3274 atomic64_set(&cgs->rx_latency, 0); 3275 } 3276 phba->cmf_latency.tv_sec = 0; 3277 phba->cmf_latency.tv_nsec = 0; 3278 3279 lpfc_cmf_signal_init(phba); 3280 3281 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 3282 "6222 Start CMF / Timer\n"); 3283 3284 phba->cmf_timer_cnt = 0; 3285 hrtimer_start(&phba->cmf_timer, 3286 ktime_set(0, LPFC_CMF_INTERVAL * NSEC_PER_MSEC), 3287 HRTIMER_MODE_REL); 3288 hrtimer_start(&phba->cmf_stats_timer, 3289 ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC), 3290 HRTIMER_MODE_REL); 3291 /* Setup for latency check in IO cmpl routines */ 3292 ktime_get_real_ts64(&phba->cmf_latency); 3293 3294 atomic_set(&phba->cmf_bw_wait, 0); 3295 atomic_set(&phba->cmf_stop_io, 0); 3296 } 3297 3298 /** 3299 * lpfc_stop_hba_timers - Stop all the timers associated with an HBA 3300 * @phba: pointer to lpfc hba data structure. 3301 * 3302 * This routine stops all the timers associated with a HBA. This function is 3303 * invoked before either putting a HBA offline or unloading the driver. 3304 **/ 3305 void 3306 lpfc_stop_hba_timers(struct lpfc_hba *phba) 3307 { 3308 if (phba->pport) 3309 lpfc_stop_vport_timers(phba->pport); 3310 cancel_delayed_work_sync(&phba->eq_delay_work); 3311 cancel_delayed_work_sync(&phba->idle_stat_delay_work); 3312 timer_delete_sync(&phba->sli.mbox_tmo); 3313 timer_delete_sync(&phba->fabric_block_timer); 3314 timer_delete_sync(&phba->eratt_poll); 3315 timer_delete_sync(&phba->hb_tmofunc); 3316 if (phba->sli_rev == LPFC_SLI_REV4) { 3317 timer_delete_sync(&phba->rrq_tmr); 3318 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 3319 } 3320 clear_bit(HBA_HBEAT_INP, &phba->hba_flag); 3321 clear_bit(HBA_HBEAT_TMO, &phba->hba_flag); 3322 3323 switch (phba->pci_dev_grp) { 3324 case LPFC_PCI_DEV_LP: 3325 /* Stop any LightPulse device specific driver timers */ 3326 timer_delete_sync(&phba->fcp_poll_timer); 3327 break; 3328 case LPFC_PCI_DEV_OC: 3329 /* Stop any OneConnect device specific driver timers */ 3330 lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 3331 break; 3332 default: 3333 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3334 "0297 Invalid device group (x%x)\n", 3335 phba->pci_dev_grp); 3336 break; 3337 } 3338 return; 3339 } 3340 3341 /** 3342 * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked 3343 * @phba: pointer to lpfc hba data structure. 3344 * @mbx_action: flag for mailbox no wait action. 3345 * 3346 * This routine marks a HBA's management interface as blocked. Once the HBA's 3347 * management interface is marked as blocked, all the user space access to 3348 * the HBA, whether they are from sysfs interface or libdfc interface will 3349 * all be blocked. The HBA is set to block the management interface when the 3350 * driver prepares the HBA interface for online or offline. 3351 **/ 3352 static void 3353 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action) 3354 { 3355 unsigned long iflag; 3356 uint8_t actcmd = MBX_HEARTBEAT; 3357 unsigned long timeout; 3358 3359 spin_lock_irqsave(&phba->hbalock, iflag); 3360 phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO; 3361 spin_unlock_irqrestore(&phba->hbalock, iflag); 3362 if (mbx_action == LPFC_MBX_NO_WAIT) 3363 return; 3364 timeout = secs_to_jiffies(LPFC_MBOX_TMO) + jiffies; 3365 spin_lock_irqsave(&phba->hbalock, iflag); 3366 if (phba->sli.mbox_active) { 3367 actcmd = phba->sli.mbox_active->u.mb.mbxCommand; 3368 /* Determine how long we might wait for the active mailbox 3369 * command to be gracefully completed by firmware. 3370 */ 3371 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, 3372 phba->sli.mbox_active)) + jiffies; 3373 } 3374 spin_unlock_irqrestore(&phba->hbalock, iflag); 3375 3376 /* Wait for the outstnading mailbox command to complete */ 3377 while (phba->sli.mbox_active) { 3378 /* Check active mailbox complete status every 2ms */ 3379 msleep(2); 3380 if (time_after(jiffies, timeout)) { 3381 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3382 "2813 Mgmt IO is Blocked %x " 3383 "- mbox cmd %x still active\n", 3384 phba->sli.sli_flag, actcmd); 3385 break; 3386 } 3387 } 3388 } 3389 3390 /** 3391 * lpfc_sli4_node_rpi_restore - Recover assigned RPIs for active nodes. 3392 * @phba: pointer to lpfc hba data structure. 3393 * 3394 * Allocate RPIs for all active remote nodes. This is needed whenever 3395 * an SLI4 adapter is reset and the driver is not unloading. Its purpose 3396 * is to fixup the temporary rpi assignments. 3397 **/ 3398 void 3399 lpfc_sli4_node_rpi_restore(struct lpfc_hba *phba) 3400 { 3401 struct lpfc_nodelist *ndlp, *next_ndlp; 3402 struct lpfc_vport **vports; 3403 int i, rpi; 3404 3405 if (phba->sli_rev != LPFC_SLI_REV4) 3406 return; 3407 3408 vports = lpfc_create_vport_work_array(phba); 3409 if (!vports) 3410 return; 3411 3412 for (i = 0; i <= phba->max_vports && vports[i]; i++) { 3413 if (test_bit(FC_UNLOADING, &vports[i]->load_flag)) 3414 continue; 3415 3416 list_for_each_entry_safe(ndlp, next_ndlp, 3417 &vports[i]->fc_nodes, 3418 nlp_listp) { 3419 rpi = lpfc_sli4_alloc_rpi(phba); 3420 if (rpi == LPFC_RPI_ALLOC_ERROR) { 3421 lpfc_printf_vlog(ndlp->vport, KERN_INFO, 3422 LOG_NODE | LOG_DISCOVERY, 3423 "0099 RPI alloc error for " 3424 "ndlp x%px DID:x%06x " 3425 "flg:x%lx\n", 3426 ndlp, ndlp->nlp_DID, 3427 ndlp->nlp_flag); 3428 continue; 3429 } 3430 ndlp->nlp_rpi = rpi; 3431 lpfc_printf_vlog(ndlp->vport, KERN_INFO, 3432 LOG_NODE | LOG_DISCOVERY, 3433 "0009 Assign RPI x%x to ndlp x%px " 3434 "DID:x%06x flg:x%lx\n", 3435 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID, 3436 ndlp->nlp_flag); 3437 } 3438 } 3439 lpfc_destroy_vport_work_array(phba, vports); 3440 } 3441 3442 /** 3443 * lpfc_create_expedite_pool - create expedite pool 3444 * @phba: pointer to lpfc hba data structure. 3445 * 3446 * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0 3447 * to expedite pool. Mark them as expedite. 3448 **/ 3449 static void lpfc_create_expedite_pool(struct lpfc_hba *phba) 3450 { 3451 struct lpfc_sli4_hdw_queue *qp; 3452 struct lpfc_io_buf *lpfc_ncmd; 3453 struct lpfc_io_buf *lpfc_ncmd_next; 3454 struct lpfc_epd_pool *epd_pool; 3455 unsigned long iflag; 3456 3457 epd_pool = &phba->epd_pool; 3458 qp = &phba->sli4_hba.hdwq[0]; 3459 3460 spin_lock_init(&epd_pool->lock); 3461 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3462 spin_lock(&epd_pool->lock); 3463 INIT_LIST_HEAD(&epd_pool->list); 3464 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3465 &qp->lpfc_io_buf_list_put, list) { 3466 list_move_tail(&lpfc_ncmd->list, &epd_pool->list); 3467 lpfc_ncmd->expedite = true; 3468 qp->put_io_bufs--; 3469 epd_pool->count++; 3470 if (epd_pool->count >= XRI_BATCH) 3471 break; 3472 } 3473 spin_unlock(&epd_pool->lock); 3474 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3475 } 3476 3477 /** 3478 * lpfc_destroy_expedite_pool - destroy expedite pool 3479 * @phba: pointer to lpfc hba data structure. 3480 * 3481 * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put 3482 * of HWQ 0. Clear the mark. 3483 **/ 3484 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba) 3485 { 3486 struct lpfc_sli4_hdw_queue *qp; 3487 struct lpfc_io_buf *lpfc_ncmd; 3488 struct lpfc_io_buf *lpfc_ncmd_next; 3489 struct lpfc_epd_pool *epd_pool; 3490 unsigned long iflag; 3491 3492 epd_pool = &phba->epd_pool; 3493 qp = &phba->sli4_hba.hdwq[0]; 3494 3495 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3496 spin_lock(&epd_pool->lock); 3497 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3498 &epd_pool->list, list) { 3499 list_move_tail(&lpfc_ncmd->list, 3500 &qp->lpfc_io_buf_list_put); 3501 lpfc_ncmd->flags = false; 3502 qp->put_io_bufs++; 3503 epd_pool->count--; 3504 } 3505 spin_unlock(&epd_pool->lock); 3506 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3507 } 3508 3509 /** 3510 * lpfc_create_multixri_pools - create multi-XRI pools 3511 * @phba: pointer to lpfc hba data structure. 3512 * 3513 * This routine initialize public, private per HWQ. Then, move XRIs from 3514 * lpfc_io_buf_list_put to public pool. High and low watermark are also 3515 * Initialized. 3516 **/ 3517 void lpfc_create_multixri_pools(struct lpfc_hba *phba) 3518 { 3519 u32 i, j; 3520 u32 hwq_count; 3521 u32 count_per_hwq; 3522 struct lpfc_io_buf *lpfc_ncmd; 3523 struct lpfc_io_buf *lpfc_ncmd_next; 3524 unsigned long iflag; 3525 struct lpfc_sli4_hdw_queue *qp; 3526 struct lpfc_multixri_pool *multixri_pool; 3527 struct lpfc_pbl_pool *pbl_pool; 3528 struct lpfc_pvt_pool *pvt_pool; 3529 3530 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3531 "1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n", 3532 phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu, 3533 phba->sli4_hba.io_xri_cnt); 3534 3535 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3536 lpfc_create_expedite_pool(phba); 3537 3538 hwq_count = phba->cfg_hdw_queue; 3539 count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count; 3540 3541 for (i = 0; i < hwq_count; i++) { 3542 multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL); 3543 3544 if (!multixri_pool) { 3545 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3546 "1238 Failed to allocate memory for " 3547 "multixri_pool\n"); 3548 3549 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3550 lpfc_destroy_expedite_pool(phba); 3551 3552 j = 0; 3553 while (j < i) { 3554 qp = &phba->sli4_hba.hdwq[j]; 3555 kfree(qp->p_multixri_pool); 3556 j++; 3557 } 3558 phba->cfg_xri_rebalancing = 0; 3559 return; 3560 } 3561 3562 qp = &phba->sli4_hba.hdwq[i]; 3563 qp->p_multixri_pool = multixri_pool; 3564 3565 multixri_pool->xri_limit = count_per_hwq; 3566 multixri_pool->rrb_next_hwqid = i; 3567 3568 /* Deal with public free xri pool */ 3569 pbl_pool = &multixri_pool->pbl_pool; 3570 spin_lock_init(&pbl_pool->lock); 3571 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3572 spin_lock(&pbl_pool->lock); 3573 INIT_LIST_HEAD(&pbl_pool->list); 3574 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3575 &qp->lpfc_io_buf_list_put, list) { 3576 list_move_tail(&lpfc_ncmd->list, &pbl_pool->list); 3577 qp->put_io_bufs--; 3578 pbl_pool->count++; 3579 } 3580 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3581 "1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n", 3582 pbl_pool->count, i); 3583 spin_unlock(&pbl_pool->lock); 3584 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3585 3586 /* Deal with private free xri pool */ 3587 pvt_pool = &multixri_pool->pvt_pool; 3588 pvt_pool->high_watermark = multixri_pool->xri_limit / 2; 3589 pvt_pool->low_watermark = XRI_BATCH; 3590 spin_lock_init(&pvt_pool->lock); 3591 spin_lock_irqsave(&pvt_pool->lock, iflag); 3592 INIT_LIST_HEAD(&pvt_pool->list); 3593 pvt_pool->count = 0; 3594 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 3595 } 3596 } 3597 3598 /** 3599 * lpfc_destroy_multixri_pools - destroy multi-XRI pools 3600 * @phba: pointer to lpfc hba data structure. 3601 * 3602 * This routine returns XRIs from public/private to lpfc_io_buf_list_put. 3603 **/ 3604 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba) 3605 { 3606 u32 i; 3607 u32 hwq_count; 3608 struct lpfc_io_buf *lpfc_ncmd; 3609 struct lpfc_io_buf *lpfc_ncmd_next; 3610 unsigned long iflag; 3611 struct lpfc_sli4_hdw_queue *qp; 3612 struct lpfc_multixri_pool *multixri_pool; 3613 struct lpfc_pbl_pool *pbl_pool; 3614 struct lpfc_pvt_pool *pvt_pool; 3615 3616 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3617 lpfc_destroy_expedite_pool(phba); 3618 3619 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) 3620 lpfc_sli_flush_io_rings(phba); 3621 3622 hwq_count = phba->cfg_hdw_queue; 3623 3624 for (i = 0; i < hwq_count; i++) { 3625 qp = &phba->sli4_hba.hdwq[i]; 3626 multixri_pool = qp->p_multixri_pool; 3627 if (!multixri_pool) 3628 continue; 3629 3630 qp->p_multixri_pool = NULL; 3631 3632 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3633 3634 /* Deal with public free xri pool */ 3635 pbl_pool = &multixri_pool->pbl_pool; 3636 spin_lock(&pbl_pool->lock); 3637 3638 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3639 "1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n", 3640 pbl_pool->count, i); 3641 3642 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3643 &pbl_pool->list, list) { 3644 list_move_tail(&lpfc_ncmd->list, 3645 &qp->lpfc_io_buf_list_put); 3646 qp->put_io_bufs++; 3647 pbl_pool->count--; 3648 } 3649 3650 INIT_LIST_HEAD(&pbl_pool->list); 3651 pbl_pool->count = 0; 3652 3653 spin_unlock(&pbl_pool->lock); 3654 3655 /* Deal with private free xri pool */ 3656 pvt_pool = &multixri_pool->pvt_pool; 3657 spin_lock(&pvt_pool->lock); 3658 3659 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3660 "1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n", 3661 pvt_pool->count, i); 3662 3663 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3664 &pvt_pool->list, list) { 3665 list_move_tail(&lpfc_ncmd->list, 3666 &qp->lpfc_io_buf_list_put); 3667 qp->put_io_bufs++; 3668 pvt_pool->count--; 3669 } 3670 3671 INIT_LIST_HEAD(&pvt_pool->list); 3672 pvt_pool->count = 0; 3673 3674 spin_unlock(&pvt_pool->lock); 3675 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3676 3677 kfree(multixri_pool); 3678 } 3679 } 3680 3681 /** 3682 * lpfc_online - Initialize and bring a HBA online 3683 * @phba: pointer to lpfc hba data structure. 3684 * 3685 * This routine initializes the HBA and brings a HBA online. During this 3686 * process, the management interface is blocked to prevent user space access 3687 * to the HBA interfering with the driver initialization. 3688 * 3689 * Return codes 3690 * 0 - successful 3691 * 1 - failed 3692 **/ 3693 int 3694 lpfc_online(struct lpfc_hba *phba) 3695 { 3696 struct lpfc_vport *vport; 3697 struct lpfc_vport **vports; 3698 int i, error = 0; 3699 bool vpis_cleared = false; 3700 3701 if (!phba) 3702 return 0; 3703 vport = phba->pport; 3704 3705 if (!test_bit(FC_OFFLINE_MODE, &vport->fc_flag)) 3706 return 0; 3707 3708 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3709 "0458 Bring Adapter online\n"); 3710 3711 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 3712 3713 if (phba->sli_rev == LPFC_SLI_REV4) { 3714 if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */ 3715 lpfc_unblock_mgmt_io(phba); 3716 return 1; 3717 } 3718 spin_lock_irq(&phba->hbalock); 3719 if (!phba->sli4_hba.max_cfg_param.vpi_used) 3720 vpis_cleared = true; 3721 spin_unlock_irq(&phba->hbalock); 3722 3723 /* Reestablish the local initiator port. 3724 * The offline process destroyed the previous lport. 3725 */ 3726 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME && 3727 !phba->nvmet_support) { 3728 error = lpfc_nvme_create_localport(phba->pport); 3729 if (error) 3730 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3731 "6132 NVME restore reg failed " 3732 "on nvmei error x%x\n", error); 3733 } 3734 } else { 3735 lpfc_sli_queue_init(phba); 3736 if (lpfc_sli_hba_setup(phba)) { /* Initialize SLI2/SLI3 HBA */ 3737 lpfc_unblock_mgmt_io(phba); 3738 return 1; 3739 } 3740 } 3741 3742 vports = lpfc_create_vport_work_array(phba); 3743 if (vports != NULL) { 3744 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3745 clear_bit(FC_OFFLINE_MODE, &vports[i]->fc_flag); 3746 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) 3747 set_bit(FC_VPORT_NEEDS_REG_VPI, 3748 &vports[i]->fc_flag); 3749 if (phba->sli_rev == LPFC_SLI_REV4) { 3750 set_bit(FC_VPORT_NEEDS_INIT_VPI, 3751 &vports[i]->fc_flag); 3752 if ((vpis_cleared) && 3753 (vports[i]->port_type != 3754 LPFC_PHYSICAL_PORT)) 3755 vports[i]->vpi = 0; 3756 } 3757 } 3758 } 3759 lpfc_destroy_vport_work_array(phba, vports); 3760 3761 if (phba->cfg_xri_rebalancing) 3762 lpfc_create_multixri_pools(phba); 3763 3764 lpfc_cpuhp_add(phba); 3765 3766 lpfc_unblock_mgmt_io(phba); 3767 return 0; 3768 } 3769 3770 /** 3771 * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked 3772 * @phba: pointer to lpfc hba data structure. 3773 * 3774 * This routine marks a HBA's management interface as not blocked. Once the 3775 * HBA's management interface is marked as not blocked, all the user space 3776 * access to the HBA, whether they are from sysfs interface or libdfc 3777 * interface will be allowed. The HBA is set to block the management interface 3778 * when the driver prepares the HBA interface for online or offline and then 3779 * set to unblock the management interface afterwards. 3780 **/ 3781 void 3782 lpfc_unblock_mgmt_io(struct lpfc_hba * phba) 3783 { 3784 unsigned long iflag; 3785 3786 spin_lock_irqsave(&phba->hbalock, iflag); 3787 phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO; 3788 spin_unlock_irqrestore(&phba->hbalock, iflag); 3789 } 3790 3791 /** 3792 * lpfc_offline_prep - Prepare a HBA to be brought offline 3793 * @phba: pointer to lpfc hba data structure. 3794 * @mbx_action: flag for mailbox shutdown action. 3795 * 3796 * This routine is invoked to prepare a HBA to be brought offline. It performs 3797 * unregistration login to all the nodes on all vports and flushes the mailbox 3798 * queue to make it ready to be brought offline. 3799 **/ 3800 void 3801 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action) 3802 { 3803 struct lpfc_vport *vport = phba->pport; 3804 struct lpfc_nodelist *ndlp, *next_ndlp; 3805 struct lpfc_vport **vports; 3806 struct Scsi_Host *shost; 3807 int i; 3808 int offline; 3809 bool hba_pci_err; 3810 3811 if (test_bit(FC_OFFLINE_MODE, &vport->fc_flag)) 3812 return; 3813 3814 lpfc_block_mgmt_io(phba, mbx_action); 3815 3816 lpfc_linkdown(phba); 3817 3818 offline = pci_channel_offline(phba->pcidev); 3819 hba_pci_err = test_bit(HBA_PCI_ERR, &phba->bit_flags); 3820 3821 /* Issue an unreg_login to all nodes on all vports */ 3822 vports = lpfc_create_vport_work_array(phba); 3823 if (vports != NULL) { 3824 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3825 if (test_bit(FC_UNLOADING, &vports[i]->load_flag)) 3826 continue; 3827 shost = lpfc_shost_from_vport(vports[i]); 3828 spin_lock_irq(shost->host_lock); 3829 vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED; 3830 spin_unlock_irq(shost->host_lock); 3831 set_bit(FC_VPORT_NEEDS_REG_VPI, &vports[i]->fc_flag); 3832 clear_bit(FC_VFI_REGISTERED, &vports[i]->fc_flag); 3833 3834 list_for_each_entry_safe(ndlp, next_ndlp, 3835 &vports[i]->fc_nodes, 3836 nlp_listp) { 3837 3838 clear_bit(NLP_NPR_ADISC, &ndlp->nlp_flag); 3839 if (offline || hba_pci_err) { 3840 clear_bit(NLP_UNREG_INP, 3841 &ndlp->nlp_flag); 3842 clear_bit(NLP_RPI_REGISTERED, 3843 &ndlp->nlp_flag); 3844 } 3845 3846 if (ndlp->nlp_type & NLP_FABRIC) { 3847 lpfc_disc_state_machine(vports[i], ndlp, 3848 NULL, NLP_EVT_DEVICE_RECOVERY); 3849 3850 /* Don't remove the node unless the node 3851 * has been unregistered with the 3852 * transport, and we're not in recovery 3853 * before dev_loss_tmo triggered. 3854 * Otherwise, let dev_loss take care of 3855 * the node. 3856 */ 3857 if (!test_bit(NLP_IN_RECOV_POST_DEV_LOSS, 3858 &ndlp->save_flags) && 3859 !(ndlp->fc4_xpt_flags & 3860 (NVME_XPT_REGD | SCSI_XPT_REGD))) 3861 lpfc_disc_state_machine 3862 (vports[i], ndlp, 3863 NULL, 3864 NLP_EVT_DEVICE_RM); 3865 } 3866 } 3867 } 3868 } 3869 lpfc_destroy_vport_work_array(phba, vports); 3870 3871 lpfc_sli_mbox_sys_shutdown(phba, mbx_action); 3872 3873 if (phba->wq) 3874 flush_workqueue(phba->wq); 3875 } 3876 3877 /** 3878 * lpfc_offline - Bring a HBA offline 3879 * @phba: pointer to lpfc hba data structure. 3880 * 3881 * This routine actually brings a HBA offline. It stops all the timers 3882 * associated with the HBA, brings down the SLI layer, and eventually 3883 * marks the HBA as in offline state for the upper layer protocol. 3884 **/ 3885 void 3886 lpfc_offline(struct lpfc_hba *phba) 3887 { 3888 struct Scsi_Host *shost; 3889 struct lpfc_vport **vports; 3890 int i; 3891 3892 if (test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag)) 3893 return; 3894 3895 /* stop port and all timers associated with this hba */ 3896 lpfc_stop_port(phba); 3897 3898 /* Tear down the local and target port registrations. The 3899 * nvme transports need to cleanup. 3900 */ 3901 lpfc_nvmet_destroy_targetport(phba); 3902 lpfc_nvme_destroy_localport(phba->pport); 3903 3904 vports = lpfc_create_vport_work_array(phba); 3905 if (vports != NULL) 3906 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 3907 lpfc_stop_vport_timers(vports[i]); 3908 lpfc_destroy_vport_work_array(phba, vports); 3909 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3910 "0460 Bring Adapter offline\n"); 3911 /* Bring down the SLI Layer and cleanup. The HBA is offline 3912 now. */ 3913 lpfc_sli_hba_down(phba); 3914 spin_lock_irq(&phba->hbalock); 3915 phba->work_ha = 0; 3916 spin_unlock_irq(&phba->hbalock); 3917 vports = lpfc_create_vport_work_array(phba); 3918 if (vports != NULL) 3919 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3920 shost = lpfc_shost_from_vport(vports[i]); 3921 spin_lock_irq(shost->host_lock); 3922 vports[i]->work_port_events = 0; 3923 spin_unlock_irq(shost->host_lock); 3924 set_bit(FC_OFFLINE_MODE, &vports[i]->fc_flag); 3925 } 3926 lpfc_destroy_vport_work_array(phba, vports); 3927 /* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled 3928 * in hba_unset 3929 */ 3930 if (test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag)) 3931 __lpfc_cpuhp_remove(phba); 3932 3933 if (phba->cfg_xri_rebalancing) 3934 lpfc_destroy_multixri_pools(phba); 3935 } 3936 3937 /** 3938 * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists 3939 * @phba: pointer to lpfc hba data structure. 3940 * 3941 * This routine is to free all the SCSI buffers and IOCBs from the driver 3942 * list back to kernel. It is called from lpfc_pci_remove_one to free 3943 * the internal resources before the device is removed from the system. 3944 **/ 3945 static void 3946 lpfc_scsi_free(struct lpfc_hba *phba) 3947 { 3948 struct lpfc_io_buf *sb, *sb_next; 3949 3950 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 3951 return; 3952 3953 spin_lock_irq(&phba->hbalock); 3954 3955 /* Release all the lpfc_scsi_bufs maintained by this host. */ 3956 3957 spin_lock(&phba->scsi_buf_list_put_lock); 3958 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put, 3959 list) { 3960 list_del(&sb->list); 3961 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3962 sb->dma_handle); 3963 kfree(sb); 3964 phba->total_scsi_bufs--; 3965 } 3966 spin_unlock(&phba->scsi_buf_list_put_lock); 3967 3968 spin_lock(&phba->scsi_buf_list_get_lock); 3969 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get, 3970 list) { 3971 list_del(&sb->list); 3972 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3973 sb->dma_handle); 3974 kfree(sb); 3975 phba->total_scsi_bufs--; 3976 } 3977 spin_unlock(&phba->scsi_buf_list_get_lock); 3978 spin_unlock_irq(&phba->hbalock); 3979 } 3980 3981 /** 3982 * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists 3983 * @phba: pointer to lpfc hba data structure. 3984 * 3985 * This routine is to free all the IO buffers and IOCBs from the driver 3986 * list back to kernel. It is called from lpfc_pci_remove_one to free 3987 * the internal resources before the device is removed from the system. 3988 **/ 3989 void 3990 lpfc_io_free(struct lpfc_hba *phba) 3991 { 3992 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 3993 struct lpfc_sli4_hdw_queue *qp; 3994 int idx; 3995 3996 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 3997 qp = &phba->sli4_hba.hdwq[idx]; 3998 /* Release all the lpfc_nvme_bufs maintained by this host. */ 3999 spin_lock(&qp->io_buf_list_put_lock); 4000 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 4001 &qp->lpfc_io_buf_list_put, 4002 list) { 4003 list_del(&lpfc_ncmd->list); 4004 qp->put_io_bufs--; 4005 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4006 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4007 if (phba->cfg_xpsgl && !phba->nvmet_support) 4008 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 4009 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 4010 kfree(lpfc_ncmd); 4011 qp->total_io_bufs--; 4012 } 4013 spin_unlock(&qp->io_buf_list_put_lock); 4014 4015 spin_lock(&qp->io_buf_list_get_lock); 4016 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 4017 &qp->lpfc_io_buf_list_get, 4018 list) { 4019 list_del(&lpfc_ncmd->list); 4020 qp->get_io_bufs--; 4021 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4022 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4023 if (phba->cfg_xpsgl && !phba->nvmet_support) 4024 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 4025 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 4026 kfree(lpfc_ncmd); 4027 qp->total_io_bufs--; 4028 } 4029 spin_unlock(&qp->io_buf_list_get_lock); 4030 } 4031 } 4032 4033 /** 4034 * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping 4035 * @phba: pointer to lpfc hba data structure. 4036 * 4037 * This routine first calculates the sizes of the current els and allocated 4038 * scsi sgl lists, and then goes through all sgls to updates the physical 4039 * XRIs assigned due to port function reset. During port initialization, the 4040 * current els and allocated scsi sgl lists are 0s. 4041 * 4042 * Return codes 4043 * 0 - successful (for now, it always returns 0) 4044 **/ 4045 int 4046 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba) 4047 { 4048 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 4049 uint16_t i, lxri, xri_cnt, els_xri_cnt; 4050 LIST_HEAD(els_sgl_list); 4051 int rc; 4052 4053 /* 4054 * update on pci function's els xri-sgl list 4055 */ 4056 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4057 4058 if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) { 4059 /* els xri-sgl expanded */ 4060 xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt; 4061 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4062 "3157 ELS xri-sgl count increased from " 4063 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 4064 els_xri_cnt); 4065 /* allocate the additional els sgls */ 4066 for (i = 0; i < xri_cnt; i++) { 4067 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 4068 GFP_KERNEL); 4069 if (sglq_entry == NULL) { 4070 lpfc_printf_log(phba, KERN_ERR, 4071 LOG_TRACE_EVENT, 4072 "2562 Failure to allocate an " 4073 "ELS sgl entry:%d\n", i); 4074 rc = -ENOMEM; 4075 goto out_free_mem; 4076 } 4077 sglq_entry->buff_type = GEN_BUFF_TYPE; 4078 sglq_entry->virt = lpfc_mbuf_alloc(phba, 0, 4079 &sglq_entry->phys); 4080 if (sglq_entry->virt == NULL) { 4081 kfree(sglq_entry); 4082 lpfc_printf_log(phba, KERN_ERR, 4083 LOG_TRACE_EVENT, 4084 "2563 Failure to allocate an " 4085 "ELS mbuf:%d\n", i); 4086 rc = -ENOMEM; 4087 goto out_free_mem; 4088 } 4089 sglq_entry->sgl = sglq_entry->virt; 4090 memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE); 4091 sglq_entry->state = SGL_FREED; 4092 list_add_tail(&sglq_entry->list, &els_sgl_list); 4093 } 4094 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 4095 list_splice_init(&els_sgl_list, 4096 &phba->sli4_hba.lpfc_els_sgl_list); 4097 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 4098 } else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) { 4099 /* els xri-sgl shrinked */ 4100 xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt; 4101 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4102 "3158 ELS xri-sgl count decreased from " 4103 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 4104 els_xri_cnt); 4105 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 4106 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, 4107 &els_sgl_list); 4108 /* release extra els sgls from list */ 4109 for (i = 0; i < xri_cnt; i++) { 4110 list_remove_head(&els_sgl_list, 4111 sglq_entry, struct lpfc_sglq, list); 4112 if (sglq_entry) { 4113 __lpfc_mbuf_free(phba, sglq_entry->virt, 4114 sglq_entry->phys); 4115 kfree(sglq_entry); 4116 } 4117 } 4118 list_splice_init(&els_sgl_list, 4119 &phba->sli4_hba.lpfc_els_sgl_list); 4120 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 4121 } else 4122 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4123 "3163 ELS xri-sgl count unchanged: %d\n", 4124 els_xri_cnt); 4125 phba->sli4_hba.els_xri_cnt = els_xri_cnt; 4126 4127 /* update xris to els sgls on the list */ 4128 sglq_entry = NULL; 4129 sglq_entry_next = NULL; 4130 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 4131 &phba->sli4_hba.lpfc_els_sgl_list, list) { 4132 lxri = lpfc_sli4_next_xritag(phba); 4133 if (lxri == NO_XRI) { 4134 lpfc_printf_log(phba, KERN_ERR, 4135 LOG_TRACE_EVENT, 4136 "2400 Failed to allocate xri for " 4137 "ELS sgl\n"); 4138 rc = -ENOMEM; 4139 goto out_free_mem; 4140 } 4141 sglq_entry->sli4_lxritag = lxri; 4142 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4143 } 4144 return 0; 4145 4146 out_free_mem: 4147 lpfc_free_els_sgl_list(phba); 4148 return rc; 4149 } 4150 4151 /** 4152 * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping 4153 * @phba: pointer to lpfc hba data structure. 4154 * 4155 * This routine first calculates the sizes of the current els and allocated 4156 * scsi sgl lists, and then goes through all sgls to updates the physical 4157 * XRIs assigned due to port function reset. During port initialization, the 4158 * current els and allocated scsi sgl lists are 0s. 4159 * 4160 * Return codes 4161 * 0 - successful (for now, it always returns 0) 4162 **/ 4163 int 4164 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba) 4165 { 4166 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 4167 uint16_t i, lxri, xri_cnt, els_xri_cnt; 4168 uint16_t nvmet_xri_cnt; 4169 LIST_HEAD(nvmet_sgl_list); 4170 int rc; 4171 4172 /* 4173 * update on pci function's nvmet xri-sgl list 4174 */ 4175 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4176 4177 /* For NVMET, ALL remaining XRIs are dedicated for IO processing */ 4178 nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 4179 if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) { 4180 /* els xri-sgl expanded */ 4181 xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt; 4182 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4183 "6302 NVMET xri-sgl cnt grew from %d to %d\n", 4184 phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt); 4185 /* allocate the additional nvmet sgls */ 4186 for (i = 0; i < xri_cnt; i++) { 4187 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 4188 GFP_KERNEL); 4189 if (sglq_entry == NULL) { 4190 lpfc_printf_log(phba, KERN_ERR, 4191 LOG_TRACE_EVENT, 4192 "6303 Failure to allocate an " 4193 "NVMET sgl entry:%d\n", i); 4194 rc = -ENOMEM; 4195 goto out_free_mem; 4196 } 4197 sglq_entry->buff_type = NVMET_BUFF_TYPE; 4198 sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0, 4199 &sglq_entry->phys); 4200 if (sglq_entry->virt == NULL) { 4201 kfree(sglq_entry); 4202 lpfc_printf_log(phba, KERN_ERR, 4203 LOG_TRACE_EVENT, 4204 "6304 Failure to allocate an " 4205 "NVMET buf:%d\n", i); 4206 rc = -ENOMEM; 4207 goto out_free_mem; 4208 } 4209 sglq_entry->sgl = sglq_entry->virt; 4210 memset(sglq_entry->sgl, 0, 4211 phba->cfg_sg_dma_buf_size); 4212 sglq_entry->state = SGL_FREED; 4213 list_add_tail(&sglq_entry->list, &nvmet_sgl_list); 4214 } 4215 spin_lock_irq(&phba->hbalock); 4216 spin_lock(&phba->sli4_hba.sgl_list_lock); 4217 list_splice_init(&nvmet_sgl_list, 4218 &phba->sli4_hba.lpfc_nvmet_sgl_list); 4219 spin_unlock(&phba->sli4_hba.sgl_list_lock); 4220 spin_unlock_irq(&phba->hbalock); 4221 } else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) { 4222 /* nvmet xri-sgl shrunk */ 4223 xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt; 4224 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4225 "6305 NVMET xri-sgl count decreased from " 4226 "%d to %d\n", phba->sli4_hba.nvmet_xri_cnt, 4227 nvmet_xri_cnt); 4228 spin_lock_irq(&phba->hbalock); 4229 spin_lock(&phba->sli4_hba.sgl_list_lock); 4230 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, 4231 &nvmet_sgl_list); 4232 /* release extra nvmet sgls from list */ 4233 for (i = 0; i < xri_cnt; i++) { 4234 list_remove_head(&nvmet_sgl_list, 4235 sglq_entry, struct lpfc_sglq, list); 4236 if (sglq_entry) { 4237 lpfc_nvmet_buf_free(phba, sglq_entry->virt, 4238 sglq_entry->phys); 4239 kfree(sglq_entry); 4240 } 4241 } 4242 list_splice_init(&nvmet_sgl_list, 4243 &phba->sli4_hba.lpfc_nvmet_sgl_list); 4244 spin_unlock(&phba->sli4_hba.sgl_list_lock); 4245 spin_unlock_irq(&phba->hbalock); 4246 } else 4247 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4248 "6306 NVMET xri-sgl count unchanged: %d\n", 4249 nvmet_xri_cnt); 4250 phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt; 4251 4252 /* update xris to nvmet sgls on the list */ 4253 sglq_entry = NULL; 4254 sglq_entry_next = NULL; 4255 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 4256 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) { 4257 lxri = lpfc_sli4_next_xritag(phba); 4258 if (lxri == NO_XRI) { 4259 lpfc_printf_log(phba, KERN_ERR, 4260 LOG_TRACE_EVENT, 4261 "6307 Failed to allocate xri for " 4262 "NVMET sgl\n"); 4263 rc = -ENOMEM; 4264 goto out_free_mem; 4265 } 4266 sglq_entry->sli4_lxritag = lxri; 4267 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4268 } 4269 return 0; 4270 4271 out_free_mem: 4272 lpfc_free_nvmet_sgl_list(phba); 4273 return rc; 4274 } 4275 4276 int 4277 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf) 4278 { 4279 LIST_HEAD(blist); 4280 struct lpfc_sli4_hdw_queue *qp; 4281 struct lpfc_io_buf *lpfc_cmd; 4282 struct lpfc_io_buf *iobufp, *prev_iobufp; 4283 int idx, cnt, xri, inserted; 4284 4285 cnt = 0; 4286 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 4287 qp = &phba->sli4_hba.hdwq[idx]; 4288 spin_lock_irq(&qp->io_buf_list_get_lock); 4289 spin_lock(&qp->io_buf_list_put_lock); 4290 4291 /* Take everything off the get and put lists */ 4292 list_splice_init(&qp->lpfc_io_buf_list_get, &blist); 4293 list_splice(&qp->lpfc_io_buf_list_put, &blist); 4294 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 4295 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 4296 cnt += qp->get_io_bufs + qp->put_io_bufs; 4297 qp->get_io_bufs = 0; 4298 qp->put_io_bufs = 0; 4299 qp->total_io_bufs = 0; 4300 spin_unlock(&qp->io_buf_list_put_lock); 4301 spin_unlock_irq(&qp->io_buf_list_get_lock); 4302 } 4303 4304 /* 4305 * Take IO buffers off blist and put on cbuf sorted by XRI. 4306 * This is because POST_SGL takes a sequential range of XRIs 4307 * to post to the firmware. 4308 */ 4309 for (idx = 0; idx < cnt; idx++) { 4310 list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list); 4311 if (!lpfc_cmd) 4312 return cnt; 4313 if (idx == 0) { 4314 list_add_tail(&lpfc_cmd->list, cbuf); 4315 continue; 4316 } 4317 xri = lpfc_cmd->cur_iocbq.sli4_xritag; 4318 inserted = 0; 4319 prev_iobufp = NULL; 4320 list_for_each_entry(iobufp, cbuf, list) { 4321 if (xri < iobufp->cur_iocbq.sli4_xritag) { 4322 if (prev_iobufp) 4323 list_add(&lpfc_cmd->list, 4324 &prev_iobufp->list); 4325 else 4326 list_add(&lpfc_cmd->list, cbuf); 4327 inserted = 1; 4328 break; 4329 } 4330 prev_iobufp = iobufp; 4331 } 4332 if (!inserted) 4333 list_add_tail(&lpfc_cmd->list, cbuf); 4334 } 4335 return cnt; 4336 } 4337 4338 int 4339 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf) 4340 { 4341 struct lpfc_sli4_hdw_queue *qp; 4342 struct lpfc_io_buf *lpfc_cmd; 4343 int idx, cnt; 4344 unsigned long iflags; 4345 4346 qp = phba->sli4_hba.hdwq; 4347 cnt = 0; 4348 while (!list_empty(cbuf)) { 4349 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 4350 list_remove_head(cbuf, lpfc_cmd, 4351 struct lpfc_io_buf, list); 4352 if (!lpfc_cmd) 4353 return cnt; 4354 cnt++; 4355 qp = &phba->sli4_hba.hdwq[idx]; 4356 lpfc_cmd->hdwq_no = idx; 4357 lpfc_cmd->hdwq = qp; 4358 lpfc_cmd->cur_iocbq.cmd_cmpl = NULL; 4359 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflags); 4360 list_add_tail(&lpfc_cmd->list, 4361 &qp->lpfc_io_buf_list_put); 4362 qp->put_io_bufs++; 4363 qp->total_io_bufs++; 4364 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 4365 iflags); 4366 } 4367 } 4368 return cnt; 4369 } 4370 4371 /** 4372 * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping 4373 * @phba: pointer to lpfc hba data structure. 4374 * 4375 * This routine first calculates the sizes of the current els and allocated 4376 * scsi sgl lists, and then goes through all sgls to updates the physical 4377 * XRIs assigned due to port function reset. During port initialization, the 4378 * current els and allocated scsi sgl lists are 0s. 4379 * 4380 * Return codes 4381 * 0 - successful (for now, it always returns 0) 4382 **/ 4383 int 4384 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba) 4385 { 4386 struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL; 4387 uint16_t i, lxri, els_xri_cnt; 4388 uint16_t io_xri_cnt, io_xri_max; 4389 LIST_HEAD(io_sgl_list); 4390 int rc, cnt; 4391 4392 /* 4393 * update on pci function's allocated nvme xri-sgl list 4394 */ 4395 4396 /* maximum number of xris available for nvme buffers */ 4397 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4398 io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 4399 phba->sli4_hba.io_xri_max = io_xri_max; 4400 4401 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4402 "6074 Current allocated XRI sgl count:%d, " 4403 "maximum XRI count:%d els_xri_cnt:%d\n\n", 4404 phba->sli4_hba.io_xri_cnt, 4405 phba->sli4_hba.io_xri_max, 4406 els_xri_cnt); 4407 4408 cnt = lpfc_io_buf_flush(phba, &io_sgl_list); 4409 4410 if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) { 4411 /* max nvme xri shrunk below the allocated nvme buffers */ 4412 io_xri_cnt = phba->sli4_hba.io_xri_cnt - 4413 phba->sli4_hba.io_xri_max; 4414 /* release the extra allocated nvme buffers */ 4415 for (i = 0; i < io_xri_cnt; i++) { 4416 list_remove_head(&io_sgl_list, lpfc_ncmd, 4417 struct lpfc_io_buf, list); 4418 if (lpfc_ncmd) { 4419 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4420 lpfc_ncmd->data, 4421 lpfc_ncmd->dma_handle); 4422 kfree(lpfc_ncmd); 4423 } 4424 } 4425 phba->sli4_hba.io_xri_cnt -= io_xri_cnt; 4426 } 4427 4428 /* update xris associated to remaining allocated nvme buffers */ 4429 lpfc_ncmd = NULL; 4430 lpfc_ncmd_next = NULL; 4431 phba->sli4_hba.io_xri_cnt = cnt; 4432 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 4433 &io_sgl_list, list) { 4434 lxri = lpfc_sli4_next_xritag(phba); 4435 if (lxri == NO_XRI) { 4436 lpfc_printf_log(phba, KERN_ERR, 4437 LOG_TRACE_EVENT, 4438 "6075 Failed to allocate xri for " 4439 "nvme buffer\n"); 4440 rc = -ENOMEM; 4441 goto out_free_mem; 4442 } 4443 lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri; 4444 lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4445 } 4446 cnt = lpfc_io_buf_replenish(phba, &io_sgl_list); 4447 return 0; 4448 4449 out_free_mem: 4450 lpfc_io_free(phba); 4451 return rc; 4452 } 4453 4454 /** 4455 * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec 4456 * @phba: Pointer to lpfc hba data structure. 4457 * @num_to_alloc: The requested number of buffers to allocate. 4458 * 4459 * This routine allocates nvme buffers for device with SLI-4 interface spec, 4460 * the nvme buffer contains all the necessary information needed to initiate 4461 * an I/O. After allocating up to @num_to_allocate IO buffers and put 4462 * them on a list, it post them to the port by using SGL block post. 4463 * 4464 * Return codes: 4465 * int - number of IO buffers that were allocated and posted. 4466 * 0 = failure, less than num_to_alloc is a partial failure. 4467 **/ 4468 int 4469 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc) 4470 { 4471 struct lpfc_io_buf *lpfc_ncmd; 4472 struct lpfc_iocbq *pwqeq; 4473 uint16_t iotag, lxri = 0; 4474 int bcnt, num_posted; 4475 LIST_HEAD(prep_nblist); 4476 LIST_HEAD(post_nblist); 4477 LIST_HEAD(nvme_nblist); 4478 4479 phba->sli4_hba.io_xri_cnt = 0; 4480 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 4481 lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL); 4482 if (!lpfc_ncmd) 4483 break; 4484 /* 4485 * Get memory from the pci pool to map the virt space to 4486 * pci bus space for an I/O. The DMA buffer includes the 4487 * number of SGE's necessary to support the sg_tablesize. 4488 */ 4489 lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool, 4490 GFP_KERNEL, 4491 &lpfc_ncmd->dma_handle); 4492 if (!lpfc_ncmd->data) { 4493 kfree(lpfc_ncmd); 4494 break; 4495 } 4496 4497 if (phba->cfg_xpsgl && !phba->nvmet_support) { 4498 INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list); 4499 } else { 4500 /* 4501 * 4K Page alignment is CRITICAL to BlockGuard, double 4502 * check to be sure. 4503 */ 4504 if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 4505 (((unsigned long)(lpfc_ncmd->data) & 4506 (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) { 4507 lpfc_printf_log(phba, KERN_ERR, 4508 LOG_TRACE_EVENT, 4509 "3369 Memory alignment err: " 4510 "addr=%lx\n", 4511 (unsigned long)lpfc_ncmd->data); 4512 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4513 lpfc_ncmd->data, 4514 lpfc_ncmd->dma_handle); 4515 kfree(lpfc_ncmd); 4516 break; 4517 } 4518 } 4519 4520 INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list); 4521 4522 lxri = lpfc_sli4_next_xritag(phba); 4523 if (lxri == NO_XRI) { 4524 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4525 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4526 kfree(lpfc_ncmd); 4527 break; 4528 } 4529 pwqeq = &lpfc_ncmd->cur_iocbq; 4530 4531 /* Allocate iotag for lpfc_ncmd->cur_iocbq. */ 4532 iotag = lpfc_sli_next_iotag(phba, pwqeq); 4533 if (iotag == 0) { 4534 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4535 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4536 kfree(lpfc_ncmd); 4537 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4538 "6121 Failed to allocate IOTAG for" 4539 " XRI:0x%x\n", lxri); 4540 lpfc_sli4_free_xri(phba, lxri); 4541 break; 4542 } 4543 pwqeq->sli4_lxritag = lxri; 4544 pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4545 4546 /* Initialize local short-hand pointers. */ 4547 lpfc_ncmd->dma_sgl = lpfc_ncmd->data; 4548 lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle; 4549 lpfc_ncmd->cur_iocbq.io_buf = lpfc_ncmd; 4550 spin_lock_init(&lpfc_ncmd->buf_lock); 4551 4552 /* add the nvme buffer to a post list */ 4553 list_add_tail(&lpfc_ncmd->list, &post_nblist); 4554 phba->sli4_hba.io_xri_cnt++; 4555 } 4556 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 4557 "6114 Allocate %d out of %d requested new NVME " 4558 "buffers of size x%zu bytes\n", bcnt, num_to_alloc, 4559 sizeof(*lpfc_ncmd)); 4560 4561 4562 /* post the list of nvme buffer sgls to port if available */ 4563 if (!list_empty(&post_nblist)) 4564 num_posted = lpfc_sli4_post_io_sgl_list( 4565 phba, &post_nblist, bcnt); 4566 else 4567 num_posted = 0; 4568 4569 return num_posted; 4570 } 4571 4572 static uint64_t 4573 lpfc_get_wwpn(struct lpfc_hba *phba) 4574 { 4575 uint64_t wwn; 4576 int rc; 4577 LPFC_MBOXQ_t *mboxq; 4578 MAILBOX_t *mb; 4579 4580 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 4581 GFP_KERNEL); 4582 if (!mboxq) 4583 return (uint64_t)-1; 4584 4585 /* First get WWN of HBA instance */ 4586 lpfc_read_nv(phba, mboxq); 4587 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4588 if (rc != MBX_SUCCESS) { 4589 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4590 "6019 Mailbox failed , mbxCmd x%x " 4591 "READ_NV, mbxStatus x%x\n", 4592 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 4593 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 4594 mempool_free(mboxq, phba->mbox_mem_pool); 4595 return (uint64_t) -1; 4596 } 4597 mb = &mboxq->u.mb; 4598 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t)); 4599 /* wwn is WWPN of HBA instance */ 4600 mempool_free(mboxq, phba->mbox_mem_pool); 4601 if (phba->sli_rev == LPFC_SLI_REV4) 4602 return be64_to_cpu(wwn); 4603 else 4604 return rol64(wwn, 32); 4605 } 4606 4607 static unsigned short lpfc_get_sg_tablesize(struct lpfc_hba *phba) 4608 { 4609 if (phba->sli_rev == LPFC_SLI_REV4) 4610 if (phba->cfg_xpsgl && !phba->nvmet_support) 4611 return LPFC_MAX_SG_TABLESIZE; 4612 else 4613 return phba->cfg_scsi_seg_cnt; 4614 else 4615 return phba->cfg_sg_seg_cnt; 4616 } 4617 4618 /** 4619 * lpfc_vmid_res_alloc - Allocates resources for VMID 4620 * @phba: pointer to lpfc hba data structure. 4621 * @vport: pointer to vport data structure 4622 * 4623 * This routine allocated the resources needed for the VMID. 4624 * 4625 * Return codes 4626 * 0 on Success 4627 * Non-0 on Failure 4628 */ 4629 static int 4630 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport) 4631 { 4632 /* VMID feature is supported only on SLI4 */ 4633 if (phba->sli_rev == LPFC_SLI_REV3) { 4634 phba->cfg_vmid_app_header = 0; 4635 phba->cfg_vmid_priority_tagging = 0; 4636 } 4637 4638 if (lpfc_is_vmid_enabled(phba)) { 4639 vport->vmid = 4640 kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid), 4641 GFP_KERNEL); 4642 if (!vport->vmid) 4643 return -ENOMEM; 4644 4645 rwlock_init(&vport->vmid_lock); 4646 4647 /* Set the VMID parameters for the vport */ 4648 vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging; 4649 vport->vmid_inactivity_timeout = 4650 phba->cfg_vmid_inactivity_timeout; 4651 vport->max_vmid = phba->cfg_max_vmid; 4652 vport->cur_vmid_cnt = 0; 4653 4654 vport->vmid_priority_range = bitmap_zalloc 4655 (LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL); 4656 4657 if (!vport->vmid_priority_range) { 4658 kfree(vport->vmid); 4659 return -ENOMEM; 4660 } 4661 4662 hash_init(vport->hash_table); 4663 } 4664 return 0; 4665 } 4666 4667 /** 4668 * lpfc_create_port - Create an FC port 4669 * @phba: pointer to lpfc hba data structure. 4670 * @instance: a unique integer ID to this FC port. 4671 * @dev: pointer to the device data structure. 4672 * 4673 * This routine creates a FC port for the upper layer protocol. The FC port 4674 * can be created on top of either a physical port or a virtual port provided 4675 * by the HBA. This routine also allocates a SCSI host data structure (shost) 4676 * and associates the FC port created before adding the shost into the SCSI 4677 * layer. 4678 * 4679 * Return codes 4680 * @vport - pointer to the virtual N_Port data structure. 4681 * NULL - port create failed. 4682 **/ 4683 struct lpfc_vport * 4684 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev) 4685 { 4686 struct lpfc_vport *vport; 4687 struct Scsi_Host *shost = NULL; 4688 struct scsi_host_template *template; 4689 int error = 0; 4690 int i; 4691 uint64_t wwn; 4692 bool use_no_reset_hba = false; 4693 int rc; 4694 u8 if_type; 4695 4696 if (lpfc_no_hba_reset_cnt) { 4697 if (phba->sli_rev < LPFC_SLI_REV4 && 4698 dev == &phba->pcidev->dev) { 4699 /* Reset the port first */ 4700 lpfc_sli_brdrestart(phba); 4701 rc = lpfc_sli_chipset_init(phba); 4702 if (rc) 4703 return NULL; 4704 } 4705 wwn = lpfc_get_wwpn(phba); 4706 } 4707 4708 for (i = 0; i < lpfc_no_hba_reset_cnt; i++) { 4709 if (wwn == lpfc_no_hba_reset[i]) { 4710 lpfc_printf_log(phba, KERN_ERR, 4711 LOG_TRACE_EVENT, 4712 "6020 Setting use_no_reset port=%llx\n", 4713 wwn); 4714 use_no_reset_hba = true; 4715 break; 4716 } 4717 } 4718 4719 /* Seed template for SCSI host registration */ 4720 if (dev == &phba->pcidev->dev) { 4721 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 4722 /* Seed physical port template */ 4723 template = &lpfc_template; 4724 4725 if (use_no_reset_hba) 4726 /* template is for a no reset SCSI Host */ 4727 template->eh_host_reset_handler = NULL; 4728 4729 /* Seed updated value of sg_tablesize */ 4730 template->sg_tablesize = lpfc_get_sg_tablesize(phba); 4731 } else { 4732 /* NVMET is for physical port only */ 4733 template = &lpfc_template_nvme; 4734 } 4735 } else { 4736 /* Seed vport template */ 4737 template = &lpfc_vport_template; 4738 4739 /* Seed updated value of sg_tablesize */ 4740 template->sg_tablesize = lpfc_get_sg_tablesize(phba); 4741 } 4742 4743 shost = scsi_host_alloc(template, sizeof(struct lpfc_vport)); 4744 if (!shost) 4745 goto out; 4746 4747 vport = (struct lpfc_vport *) shost->hostdata; 4748 vport->phba = phba; 4749 set_bit(FC_LOADING, &vport->load_flag); 4750 set_bit(FC_VPORT_NEEDS_REG_VPI, &vport->fc_flag); 4751 vport->fc_rscn_flush = 0; 4752 atomic_set(&vport->fc_plogi_cnt, 0); 4753 atomic_set(&vport->fc_adisc_cnt, 0); 4754 atomic_set(&vport->fc_reglogin_cnt, 0); 4755 atomic_set(&vport->fc_prli_cnt, 0); 4756 atomic_set(&vport->fc_unmap_cnt, 0); 4757 atomic_set(&vport->fc_map_cnt, 0); 4758 atomic_set(&vport->fc_npr_cnt, 0); 4759 atomic_set(&vport->fc_unused_cnt, 0); 4760 lpfc_get_vport_cfgparam(vport); 4761 4762 /* Adjust value in vport */ 4763 vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type; 4764 4765 shost->unique_id = instance; 4766 shost->max_id = LPFC_MAX_TARGET; 4767 shost->max_lun = vport->cfg_max_luns; 4768 shost->this_id = -1; 4769 4770 /* Set max_cmd_len applicable to ASIC support */ 4771 if (phba->sli_rev == LPFC_SLI_REV4) { 4772 if_type = bf_get(lpfc_sli_intf_if_type, 4773 &phba->sli4_hba.sli_intf); 4774 switch (if_type) { 4775 case LPFC_SLI_INTF_IF_TYPE_2: 4776 fallthrough; 4777 case LPFC_SLI_INTF_IF_TYPE_6: 4778 shost->max_cmd_len = LPFC_FCP_CDB_LEN_32; 4779 break; 4780 default: 4781 shost->max_cmd_len = LPFC_FCP_CDB_LEN; 4782 break; 4783 } 4784 } else { 4785 shost->max_cmd_len = LPFC_FCP_CDB_LEN; 4786 } 4787 4788 if (phba->sli_rev == LPFC_SLI_REV4) { 4789 if (!phba->cfg_fcp_mq_threshold || 4790 phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue) 4791 phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue; 4792 4793 shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(), 4794 phba->cfg_fcp_mq_threshold); 4795 4796 shost->dma_boundary = 4797 phba->sli4_hba.pc_sli4_params.sge_supp_len-1; 4798 } else 4799 /* SLI-3 has a limited number of hardware queues (3), 4800 * thus there is only one for FCP processing. 4801 */ 4802 shost->nr_hw_queues = 1; 4803 4804 /* 4805 * Set initial can_queue value since 0 is no longer supported and 4806 * scsi_add_host will fail. This will be adjusted later based on the 4807 * max xri value determined in hba setup. 4808 */ 4809 shost->can_queue = phba->cfg_hba_queue_depth - 10; 4810 if (dev != &phba->pcidev->dev) { 4811 shost->transportt = lpfc_vport_transport_template; 4812 vport->port_type = LPFC_NPIV_PORT; 4813 } else { 4814 shost->transportt = lpfc_transport_template; 4815 vport->port_type = LPFC_PHYSICAL_PORT; 4816 } 4817 4818 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 4819 "9081 CreatePort TMPLATE type %x TBLsize %d " 4820 "SEGcnt %d/%d\n", 4821 vport->port_type, shost->sg_tablesize, 4822 phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt); 4823 4824 /* Allocate the resources for VMID */ 4825 rc = lpfc_vmid_res_alloc(phba, vport); 4826 4827 if (rc) 4828 goto out_put_shost; 4829 4830 /* Initialize all internally managed lists. */ 4831 INIT_LIST_HEAD(&vport->fc_nodes); 4832 spin_lock_init(&vport->fc_nodes_list_lock); 4833 INIT_LIST_HEAD(&vport->rcv_buffer_list); 4834 spin_lock_init(&vport->work_port_lock); 4835 4836 timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0); 4837 4838 timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0); 4839 4840 timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0); 4841 4842 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) 4843 lpfc_setup_bg(phba, shost); 4844 4845 error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev); 4846 if (error) 4847 goto out_free_vmid; 4848 4849 spin_lock_irq(&phba->port_list_lock); 4850 list_add_tail(&vport->listentry, &phba->port_list); 4851 spin_unlock_irq(&phba->port_list_lock); 4852 return vport; 4853 4854 out_free_vmid: 4855 kfree(vport->vmid); 4856 bitmap_free(vport->vmid_priority_range); 4857 out_put_shost: 4858 scsi_host_put(shost); 4859 out: 4860 return NULL; 4861 } 4862 4863 /** 4864 * destroy_port - destroy an FC port 4865 * @vport: pointer to an lpfc virtual N_Port data structure. 4866 * 4867 * This routine destroys a FC port from the upper layer protocol. All the 4868 * resources associated with the port are released. 4869 **/ 4870 void 4871 destroy_port(struct lpfc_vport *vport) 4872 { 4873 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 4874 struct lpfc_hba *phba = vport->phba; 4875 4876 lpfc_debugfs_terminate(vport); 4877 fc_remove_host(shost); 4878 scsi_remove_host(shost); 4879 4880 spin_lock_irq(&phba->port_list_lock); 4881 list_del_init(&vport->listentry); 4882 spin_unlock_irq(&phba->port_list_lock); 4883 4884 lpfc_cleanup(vport); 4885 return; 4886 } 4887 4888 /** 4889 * lpfc_get_instance - Get a unique integer ID 4890 * 4891 * This routine allocates a unique integer ID from lpfc_hba_index pool. It 4892 * uses the kernel idr facility to perform the task. 4893 * 4894 * Return codes: 4895 * instance - a unique integer ID allocated as the new instance. 4896 * -1 - lpfc get instance failed. 4897 **/ 4898 int 4899 lpfc_get_instance(void) 4900 { 4901 int ret; 4902 4903 ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL); 4904 return ret < 0 ? -1 : ret; 4905 } 4906 4907 /** 4908 * lpfc_scan_finished - method for SCSI layer to detect whether scan is done 4909 * @shost: pointer to SCSI host data structure. 4910 * @time: elapsed time of the scan in jiffies. 4911 * 4912 * This routine is called by the SCSI layer with a SCSI host to determine 4913 * whether the scan host is finished. 4914 * 4915 * Note: there is no scan_start function as adapter initialization will have 4916 * asynchronously kicked off the link initialization. 4917 * 4918 * Return codes 4919 * 0 - SCSI host scan is not over yet. 4920 * 1 - SCSI host scan is over. 4921 **/ 4922 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time) 4923 { 4924 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 4925 struct lpfc_hba *phba = vport->phba; 4926 int stat = 0; 4927 4928 spin_lock_irq(shost->host_lock); 4929 4930 if (test_bit(FC_UNLOADING, &vport->load_flag)) { 4931 stat = 1; 4932 goto finished; 4933 } 4934 if (time >= secs_to_jiffies(30)) { 4935 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4936 "0461 Scanning longer than 30 " 4937 "seconds. Continuing initialization\n"); 4938 stat = 1; 4939 goto finished; 4940 } 4941 if (time >= secs_to_jiffies(15) && 4942 phba->link_state <= LPFC_LINK_DOWN) { 4943 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4944 "0465 Link down longer than 15 " 4945 "seconds. Continuing initialization\n"); 4946 stat = 1; 4947 goto finished; 4948 } 4949 4950 if (vport->port_state != LPFC_VPORT_READY) 4951 goto finished; 4952 if (vport->num_disc_nodes || vport->fc_prli_sent) 4953 goto finished; 4954 if (!atomic_read(&vport->fc_map_cnt) && 4955 time < secs_to_jiffies(2)) 4956 goto finished; 4957 if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0) 4958 goto finished; 4959 4960 stat = 1; 4961 4962 finished: 4963 spin_unlock_irq(shost->host_lock); 4964 return stat; 4965 } 4966 4967 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost) 4968 { 4969 struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata; 4970 struct lpfc_hba *phba = vport->phba; 4971 4972 fc_host_supported_speeds(shost) = 0; 4973 /* 4974 * Avoid reporting supported link speed for FCoE as it can't be 4975 * controlled via FCoE. 4976 */ 4977 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag)) 4978 return; 4979 4980 if (phba->lmt & LMT_256Gb) 4981 fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT; 4982 if (phba->lmt & LMT_128Gb) 4983 fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT; 4984 if (phba->lmt & LMT_64Gb) 4985 fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT; 4986 if (phba->lmt & LMT_32Gb) 4987 fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT; 4988 if (phba->lmt & LMT_16Gb) 4989 fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT; 4990 if (phba->lmt & LMT_10Gb) 4991 fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT; 4992 if (phba->lmt & LMT_8Gb) 4993 fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT; 4994 if (phba->lmt & LMT_4Gb) 4995 fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT; 4996 if (phba->lmt & LMT_2Gb) 4997 fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT; 4998 if (phba->lmt & LMT_1Gb) 4999 fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT; 5000 } 5001 5002 /** 5003 * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port 5004 * @shost: pointer to SCSI host data structure. 5005 * 5006 * This routine initializes a given SCSI host attributes on a FC port. The 5007 * SCSI host can be either on top of a physical port or a virtual port. 5008 **/ 5009 void lpfc_host_attrib_init(struct Scsi_Host *shost) 5010 { 5011 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 5012 struct lpfc_hba *phba = vport->phba; 5013 /* 5014 * Set fixed host attributes. Must done after lpfc_sli_hba_setup(). 5015 */ 5016 5017 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 5018 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 5019 fc_host_supported_classes(shost) = FC_COS_CLASS3; 5020 5021 memset(fc_host_supported_fc4s(shost), 0, 5022 sizeof(fc_host_supported_fc4s(shost))); 5023 fc_host_supported_fc4s(shost)[2] = 1; 5024 fc_host_supported_fc4s(shost)[7] = 1; 5025 5026 lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost), 5027 sizeof fc_host_symbolic_name(shost)); 5028 5029 lpfc_host_supported_speeds_set(shost); 5030 5031 fc_host_maxframe_size(shost) = 5032 (((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) | 5033 (uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb; 5034 5035 fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo; 5036 5037 /* This value is also unchanging */ 5038 memset(fc_host_active_fc4s(shost), 0, 5039 sizeof(fc_host_active_fc4s(shost))); 5040 fc_host_active_fc4s(shost)[2] = 1; 5041 fc_host_active_fc4s(shost)[7] = 1; 5042 5043 fc_host_max_npiv_vports(shost) = phba->max_vpi; 5044 clear_bit(FC_LOADING, &vport->load_flag); 5045 } 5046 5047 /** 5048 * lpfc_stop_port_s3 - Stop SLI3 device port 5049 * @phba: pointer to lpfc hba data structure. 5050 * 5051 * This routine is invoked to stop an SLI3 device port, it stops the device 5052 * from generating interrupts and stops the device driver's timers for the 5053 * device. 5054 **/ 5055 static void 5056 lpfc_stop_port_s3(struct lpfc_hba *phba) 5057 { 5058 /* Clear all interrupt enable conditions */ 5059 writel(0, phba->HCregaddr); 5060 readl(phba->HCregaddr); /* flush */ 5061 /* Clear all pending interrupts */ 5062 writel(0xffffffff, phba->HAregaddr); 5063 readl(phba->HAregaddr); /* flush */ 5064 5065 /* Reset some HBA SLI setup states */ 5066 lpfc_stop_hba_timers(phba); 5067 phba->pport->work_port_events = 0; 5068 } 5069 5070 /** 5071 * lpfc_stop_port_s4 - Stop SLI4 device port 5072 * @phba: pointer to lpfc hba data structure. 5073 * 5074 * This routine is invoked to stop an SLI4 device port, it stops the device 5075 * from generating interrupts and stops the device driver's timers for the 5076 * device. 5077 **/ 5078 static void 5079 lpfc_stop_port_s4(struct lpfc_hba *phba) 5080 { 5081 /* Reset some HBA SLI4 setup states */ 5082 lpfc_stop_hba_timers(phba); 5083 if (phba->pport) 5084 phba->pport->work_port_events = 0; 5085 phba->sli4_hba.intr_enable = 0; 5086 } 5087 5088 /** 5089 * lpfc_stop_port - Wrapper function for stopping hba port 5090 * @phba: Pointer to HBA context object. 5091 * 5092 * This routine wraps the actual SLI3 or SLI4 hba stop port routine from 5093 * the API jump table function pointer from the lpfc_hba struct. 5094 **/ 5095 void 5096 lpfc_stop_port(struct lpfc_hba *phba) 5097 { 5098 phba->lpfc_stop_port(phba); 5099 5100 if (phba->wq) 5101 flush_workqueue(phba->wq); 5102 } 5103 5104 /** 5105 * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer 5106 * @phba: Pointer to hba for which this call is being executed. 5107 * 5108 * This routine starts the timer waiting for the FCF rediscovery to complete. 5109 **/ 5110 void 5111 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba) 5112 { 5113 unsigned long fcf_redisc_wait_tmo = 5114 (jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO)); 5115 /* Start fcf rediscovery wait period timer */ 5116 mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo); 5117 spin_lock_irq(&phba->hbalock); 5118 /* Allow action to new fcf asynchronous event */ 5119 phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE); 5120 /* Mark the FCF rediscovery pending state */ 5121 phba->fcf.fcf_flag |= FCF_REDISC_PEND; 5122 spin_unlock_irq(&phba->hbalock); 5123 } 5124 5125 /** 5126 * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout 5127 * @t: Timer context used to obtain the pointer to lpfc hba data structure. 5128 * 5129 * This routine is invoked when waiting for FCF table rediscover has been 5130 * timed out. If new FCF record(s) has (have) been discovered during the 5131 * wait period, a new FCF event shall be added to the FCOE async event 5132 * list, and then worker thread shall be waked up for processing from the 5133 * worker thread context. 5134 **/ 5135 static void 5136 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t) 5137 { 5138 struct lpfc_hba *phba = timer_container_of(phba, t, fcf.redisc_wait); 5139 5140 /* Don't send FCF rediscovery event if timer cancelled */ 5141 spin_lock_irq(&phba->hbalock); 5142 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 5143 spin_unlock_irq(&phba->hbalock); 5144 return; 5145 } 5146 /* Clear FCF rediscovery timer pending flag */ 5147 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 5148 /* FCF rediscovery event to worker thread */ 5149 phba->fcf.fcf_flag |= FCF_REDISC_EVT; 5150 spin_unlock_irq(&phba->hbalock); 5151 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 5152 "2776 FCF rediscover quiescent timer expired\n"); 5153 /* wake up worker thread */ 5154 lpfc_worker_wake_up(phba); 5155 } 5156 5157 /** 5158 * lpfc_vmid_poll - VMID timeout detection 5159 * @t: Timer context used to obtain the pointer to lpfc hba data structure. 5160 * 5161 * This routine is invoked when there is no I/O on by a VM for the specified 5162 * amount of time. When this situation is detected, the VMID has to be 5163 * deregistered from the switch and all the local resources freed. The VMID 5164 * will be reassigned to the VM once the I/O begins. 5165 **/ 5166 static void 5167 lpfc_vmid_poll(struct timer_list *t) 5168 { 5169 struct lpfc_hba *phba = timer_container_of(phba, t, 5170 inactive_vmid_poll); 5171 u32 wake_up = 0; 5172 5173 /* check if there is a need to issue QFPA */ 5174 if (phba->pport->vmid_priority_tagging) { 5175 wake_up = 1; 5176 phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA; 5177 } 5178 5179 /* Is the vmid inactivity timer enabled */ 5180 if (phba->pport->vmid_inactivity_timeout || 5181 test_bit(FC_DEREGISTER_ALL_APP_ID, &phba->pport->load_flag)) { 5182 wake_up = 1; 5183 phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID; 5184 } 5185 5186 if (wake_up) 5187 lpfc_worker_wake_up(phba); 5188 5189 /* restart the timer for the next iteration */ 5190 mod_timer(&phba->inactive_vmid_poll, 5191 jiffies + secs_to_jiffies(LPFC_VMID_TIMER)); 5192 } 5193 5194 /** 5195 * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code 5196 * @phba: pointer to lpfc hba data structure. 5197 * @acqe_link: pointer to the async link completion queue entry. 5198 * 5199 * This routine is to parse the SLI4 link-attention link fault code. 5200 **/ 5201 static void 5202 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba, 5203 struct lpfc_acqe_link *acqe_link) 5204 { 5205 switch (bf_get(lpfc_acqe_fc_la_att_type, acqe_link)) { 5206 case LPFC_FC_LA_TYPE_LINK_DOWN: 5207 case LPFC_FC_LA_TYPE_TRUNKING_EVENT: 5208 case LPFC_FC_LA_TYPE_ACTIVATE_FAIL: 5209 case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT: 5210 break; 5211 default: 5212 switch (bf_get(lpfc_acqe_link_fault, acqe_link)) { 5213 case LPFC_ASYNC_LINK_FAULT_NONE: 5214 case LPFC_ASYNC_LINK_FAULT_LOCAL: 5215 case LPFC_ASYNC_LINK_FAULT_REMOTE: 5216 case LPFC_ASYNC_LINK_FAULT_LR_LRR: 5217 break; 5218 default: 5219 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5220 "0398 Unknown link fault code: x%x\n", 5221 bf_get(lpfc_acqe_link_fault, acqe_link)); 5222 break; 5223 } 5224 break; 5225 } 5226 } 5227 5228 /** 5229 * lpfc_sli4_parse_latt_type - Parse sli4 link attention type 5230 * @phba: pointer to lpfc hba data structure. 5231 * @acqe_link: pointer to the async link completion queue entry. 5232 * 5233 * This routine is to parse the SLI4 link attention type and translate it 5234 * into the base driver's link attention type coding. 5235 * 5236 * Return: Link attention type in terms of base driver's coding. 5237 **/ 5238 static uint8_t 5239 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba, 5240 struct lpfc_acqe_link *acqe_link) 5241 { 5242 uint8_t att_type; 5243 5244 switch (bf_get(lpfc_acqe_link_status, acqe_link)) { 5245 case LPFC_ASYNC_LINK_STATUS_DOWN: 5246 case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN: 5247 att_type = LPFC_ATT_LINK_DOWN; 5248 break; 5249 case LPFC_ASYNC_LINK_STATUS_UP: 5250 /* Ignore physical link up events - wait for logical link up */ 5251 att_type = LPFC_ATT_RESERVED; 5252 break; 5253 case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP: 5254 att_type = LPFC_ATT_LINK_UP; 5255 break; 5256 default: 5257 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5258 "0399 Invalid link attention type: x%x\n", 5259 bf_get(lpfc_acqe_link_status, acqe_link)); 5260 att_type = LPFC_ATT_RESERVED; 5261 break; 5262 } 5263 return att_type; 5264 } 5265 5266 /** 5267 * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed 5268 * @phba: pointer to lpfc hba data structure. 5269 * 5270 * This routine is to get an SLI3 FC port's link speed in Mbps. 5271 * 5272 * Return: link speed in terms of Mbps. 5273 **/ 5274 uint32_t 5275 lpfc_sli_port_speed_get(struct lpfc_hba *phba) 5276 { 5277 uint32_t link_speed; 5278 5279 if (!lpfc_is_link_up(phba)) 5280 return 0; 5281 5282 if (phba->sli_rev <= LPFC_SLI_REV3) { 5283 switch (phba->fc_linkspeed) { 5284 case LPFC_LINK_SPEED_1GHZ: 5285 link_speed = 1000; 5286 break; 5287 case LPFC_LINK_SPEED_2GHZ: 5288 link_speed = 2000; 5289 break; 5290 case LPFC_LINK_SPEED_4GHZ: 5291 link_speed = 4000; 5292 break; 5293 case LPFC_LINK_SPEED_8GHZ: 5294 link_speed = 8000; 5295 break; 5296 case LPFC_LINK_SPEED_10GHZ: 5297 link_speed = 10000; 5298 break; 5299 case LPFC_LINK_SPEED_16GHZ: 5300 link_speed = 16000; 5301 break; 5302 default: 5303 link_speed = 0; 5304 } 5305 } else { 5306 if (phba->sli4_hba.link_state.logical_speed) 5307 link_speed = 5308 phba->sli4_hba.link_state.logical_speed; 5309 else 5310 link_speed = phba->sli4_hba.link_state.speed; 5311 } 5312 return link_speed; 5313 } 5314 5315 /** 5316 * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed 5317 * @phba: pointer to lpfc hba data structure. 5318 * @evt_code: asynchronous event code. 5319 * @speed_code: asynchronous event link speed code. 5320 * 5321 * This routine is to parse the giving SLI4 async event link speed code into 5322 * value of Mbps for the link speed. 5323 * 5324 * Return: link speed in terms of Mbps. 5325 **/ 5326 static uint32_t 5327 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code, 5328 uint8_t speed_code) 5329 { 5330 uint32_t port_speed; 5331 5332 switch (evt_code) { 5333 case LPFC_TRAILER_CODE_LINK: 5334 switch (speed_code) { 5335 case LPFC_ASYNC_LINK_SPEED_ZERO: 5336 port_speed = 0; 5337 break; 5338 case LPFC_ASYNC_LINK_SPEED_10MBPS: 5339 port_speed = 10; 5340 break; 5341 case LPFC_ASYNC_LINK_SPEED_100MBPS: 5342 port_speed = 100; 5343 break; 5344 case LPFC_ASYNC_LINK_SPEED_1GBPS: 5345 port_speed = 1000; 5346 break; 5347 case LPFC_ASYNC_LINK_SPEED_10GBPS: 5348 port_speed = 10000; 5349 break; 5350 case LPFC_ASYNC_LINK_SPEED_20GBPS: 5351 port_speed = 20000; 5352 break; 5353 case LPFC_ASYNC_LINK_SPEED_25GBPS: 5354 port_speed = 25000; 5355 break; 5356 case LPFC_ASYNC_LINK_SPEED_40GBPS: 5357 port_speed = 40000; 5358 break; 5359 case LPFC_ASYNC_LINK_SPEED_100GBPS: 5360 port_speed = 100000; 5361 break; 5362 default: 5363 port_speed = 0; 5364 } 5365 break; 5366 case LPFC_TRAILER_CODE_FC: 5367 switch (speed_code) { 5368 case LPFC_FC_LA_SPEED_UNKNOWN: 5369 port_speed = 0; 5370 break; 5371 case LPFC_FC_LA_SPEED_1G: 5372 port_speed = 1000; 5373 break; 5374 case LPFC_FC_LA_SPEED_2G: 5375 port_speed = 2000; 5376 break; 5377 case LPFC_FC_LA_SPEED_4G: 5378 port_speed = 4000; 5379 break; 5380 case LPFC_FC_LA_SPEED_8G: 5381 port_speed = 8000; 5382 break; 5383 case LPFC_FC_LA_SPEED_10G: 5384 port_speed = 10000; 5385 break; 5386 case LPFC_FC_LA_SPEED_16G: 5387 port_speed = 16000; 5388 break; 5389 case LPFC_FC_LA_SPEED_32G: 5390 port_speed = 32000; 5391 break; 5392 case LPFC_FC_LA_SPEED_64G: 5393 port_speed = 64000; 5394 break; 5395 case LPFC_FC_LA_SPEED_128G: 5396 port_speed = 128000; 5397 break; 5398 case LPFC_FC_LA_SPEED_256G: 5399 port_speed = 256000; 5400 break; 5401 default: 5402 port_speed = 0; 5403 } 5404 break; 5405 default: 5406 port_speed = 0; 5407 } 5408 return port_speed; 5409 } 5410 5411 /** 5412 * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event 5413 * @phba: pointer to lpfc hba data structure. 5414 * @acqe_link: pointer to the async link completion queue entry. 5415 * 5416 * This routine is to handle the SLI4 asynchronous FCoE link event. 5417 **/ 5418 static void 5419 lpfc_sli4_async_link_evt(struct lpfc_hba *phba, 5420 struct lpfc_acqe_link *acqe_link) 5421 { 5422 LPFC_MBOXQ_t *pmb; 5423 MAILBOX_t *mb; 5424 struct lpfc_mbx_read_top *la; 5425 uint8_t att_type; 5426 int rc; 5427 5428 att_type = lpfc_sli4_parse_latt_type(phba, acqe_link); 5429 if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP) 5430 return; 5431 phba->fcoe_eventtag = acqe_link->event_tag; 5432 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5433 if (!pmb) { 5434 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5435 "0395 The mboxq allocation failed\n"); 5436 return; 5437 } 5438 5439 rc = lpfc_mbox_rsrc_prep(phba, pmb); 5440 if (rc) { 5441 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5442 "0396 mailbox allocation failed\n"); 5443 goto out_free_pmb; 5444 } 5445 5446 /* Cleanup any outstanding ELS commands */ 5447 lpfc_els_flush_all_cmd(phba); 5448 5449 /* Block ELS IOCBs until we have done process link event */ 5450 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 5451 5452 /* Update link event statistics */ 5453 phba->sli.slistat.link_event++; 5454 5455 /* Create lpfc_handle_latt mailbox command from link ACQE */ 5456 lpfc_read_topology(phba, pmb, pmb->ctx_buf); 5457 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 5458 pmb->vport = phba->pport; 5459 5460 /* Keep the link status for extra SLI4 state machine reference */ 5461 phba->sli4_hba.link_state.speed = 5462 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK, 5463 bf_get(lpfc_acqe_link_speed, acqe_link)); 5464 phba->sli4_hba.link_state.duplex = 5465 bf_get(lpfc_acqe_link_duplex, acqe_link); 5466 phba->sli4_hba.link_state.status = 5467 bf_get(lpfc_acqe_link_status, acqe_link); 5468 phba->sli4_hba.link_state.type = 5469 bf_get(lpfc_acqe_link_type, acqe_link); 5470 phba->sli4_hba.link_state.number = 5471 bf_get(lpfc_acqe_link_number, acqe_link); 5472 phba->sli4_hba.link_state.fault = 5473 bf_get(lpfc_acqe_link_fault, acqe_link); 5474 phba->sli4_hba.link_state.logical_speed = 5475 bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10; 5476 5477 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5478 "2900 Async FC/FCoE Link event - Speed:%dGBit " 5479 "duplex:x%x LA Type:x%x Port Type:%d Port Number:%d " 5480 "Logical speed:%dMbps Fault:%d\n", 5481 phba->sli4_hba.link_state.speed, 5482 phba->sli4_hba.link_state.topology, 5483 phba->sli4_hba.link_state.status, 5484 phba->sli4_hba.link_state.type, 5485 phba->sli4_hba.link_state.number, 5486 phba->sli4_hba.link_state.logical_speed, 5487 phba->sli4_hba.link_state.fault); 5488 /* 5489 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch 5490 * topology info. Note: Optional for non FC-AL ports. 5491 */ 5492 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag)) { 5493 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5494 if (rc == MBX_NOT_FINISHED) 5495 goto out_free_pmb; 5496 return; 5497 } 5498 /* 5499 * For FCoE Mode: fill in all the topology information we need and call 5500 * the READ_TOPOLOGY completion routine to continue without actually 5501 * sending the READ_TOPOLOGY mailbox command to the port. 5502 */ 5503 /* Initialize completion status */ 5504 mb = &pmb->u.mb; 5505 mb->mbxStatus = MBX_SUCCESS; 5506 5507 /* Parse port fault information field */ 5508 lpfc_sli4_parse_latt_fault(phba, acqe_link); 5509 5510 /* Parse and translate link attention fields */ 5511 la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop; 5512 la->eventTag = acqe_link->event_tag; 5513 bf_set(lpfc_mbx_read_top_att_type, la, att_type); 5514 bf_set(lpfc_mbx_read_top_link_spd, la, 5515 (bf_get(lpfc_acqe_link_speed, acqe_link))); 5516 5517 /* Fake the following irrelevant fields */ 5518 bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT); 5519 bf_set(lpfc_mbx_read_top_alpa_granted, la, 0); 5520 bf_set(lpfc_mbx_read_top_il, la, 0); 5521 bf_set(lpfc_mbx_read_top_pb, la, 0); 5522 bf_set(lpfc_mbx_read_top_fa, la, 0); 5523 bf_set(lpfc_mbx_read_top_mm, la, 0); 5524 5525 /* Invoke the lpfc_handle_latt mailbox command callback function */ 5526 lpfc_mbx_cmpl_read_topology(phba, pmb); 5527 5528 return; 5529 5530 out_free_pmb: 5531 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 5532 } 5533 5534 /** 5535 * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read 5536 * topology. 5537 * @phba: pointer to lpfc hba data structure. 5538 * @speed_code: asynchronous event link speed code. 5539 * 5540 * This routine is to parse the giving SLI4 async event link speed code into 5541 * value of Read topology link speed. 5542 * 5543 * Return: link speed in terms of Read topology. 5544 **/ 5545 static uint8_t 5546 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code) 5547 { 5548 uint8_t port_speed; 5549 5550 switch (speed_code) { 5551 case LPFC_FC_LA_SPEED_1G: 5552 port_speed = LPFC_LINK_SPEED_1GHZ; 5553 break; 5554 case LPFC_FC_LA_SPEED_2G: 5555 port_speed = LPFC_LINK_SPEED_2GHZ; 5556 break; 5557 case LPFC_FC_LA_SPEED_4G: 5558 port_speed = LPFC_LINK_SPEED_4GHZ; 5559 break; 5560 case LPFC_FC_LA_SPEED_8G: 5561 port_speed = LPFC_LINK_SPEED_8GHZ; 5562 break; 5563 case LPFC_FC_LA_SPEED_16G: 5564 port_speed = LPFC_LINK_SPEED_16GHZ; 5565 break; 5566 case LPFC_FC_LA_SPEED_32G: 5567 port_speed = LPFC_LINK_SPEED_32GHZ; 5568 break; 5569 case LPFC_FC_LA_SPEED_64G: 5570 port_speed = LPFC_LINK_SPEED_64GHZ; 5571 break; 5572 case LPFC_FC_LA_SPEED_128G: 5573 port_speed = LPFC_LINK_SPEED_128GHZ; 5574 break; 5575 case LPFC_FC_LA_SPEED_256G: 5576 port_speed = LPFC_LINK_SPEED_256GHZ; 5577 break; 5578 default: 5579 port_speed = 0; 5580 break; 5581 } 5582 5583 return port_speed; 5584 } 5585 5586 void 5587 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba) 5588 { 5589 if (!phba->rx_monitor) { 5590 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5591 "4411 Rx Monitor Info is empty.\n"); 5592 } else { 5593 lpfc_rx_monitor_report(phba, phba->rx_monitor, NULL, 0, 5594 LPFC_MAX_RXMONITOR_DUMP); 5595 } 5596 } 5597 5598 /** 5599 * lpfc_cgn_update_stat - Save data into congestion stats buffer 5600 * @phba: pointer to lpfc hba data structure. 5601 * @dtag: FPIN descriptor received 5602 * 5603 * Increment the FPIN received counter/time when it happens. 5604 */ 5605 void 5606 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag) 5607 { 5608 struct lpfc_cgn_info *cp; 5609 u32 value; 5610 5611 /* Make sure we have a congestion info buffer */ 5612 if (!phba->cgn_i) 5613 return; 5614 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 5615 5616 /* Update congestion statistics */ 5617 switch (dtag) { 5618 case ELS_DTAG_LNK_INTEGRITY: 5619 le32_add_cpu(&cp->link_integ_notification, 1); 5620 lpfc_cgn_update_tstamp(phba, &cp->stat_lnk); 5621 break; 5622 case ELS_DTAG_DELIVERY: 5623 le32_add_cpu(&cp->delivery_notification, 1); 5624 lpfc_cgn_update_tstamp(phba, &cp->stat_delivery); 5625 break; 5626 case ELS_DTAG_PEER_CONGEST: 5627 le32_add_cpu(&cp->cgn_peer_notification, 1); 5628 lpfc_cgn_update_tstamp(phba, &cp->stat_peer); 5629 break; 5630 case ELS_DTAG_CONGESTION: 5631 le32_add_cpu(&cp->cgn_notification, 1); 5632 lpfc_cgn_update_tstamp(phba, &cp->stat_fpin); 5633 } 5634 if (phba->cgn_fpin_frequency && 5635 phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) { 5636 value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency; 5637 cp->cgn_stat_npm = value; 5638 } 5639 5640 value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, 5641 LPFC_CGN_CRC32_SEED); 5642 cp->cgn_info_crc = cpu_to_le32(value); 5643 } 5644 5645 /** 5646 * lpfc_cgn_update_tstamp - Update cmf timestamp 5647 * @phba: pointer to lpfc hba data structure. 5648 * @ts: structure to write the timestamp to. 5649 */ 5650 void 5651 lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts) 5652 { 5653 struct timespec64 cur_time; 5654 struct tm tm_val; 5655 5656 ktime_get_real_ts64(&cur_time); 5657 time64_to_tm(cur_time.tv_sec, 0, &tm_val); 5658 5659 ts->month = tm_val.tm_mon + 1; 5660 ts->day = tm_val.tm_mday; 5661 ts->year = tm_val.tm_year - 100; 5662 ts->hour = tm_val.tm_hour; 5663 ts->minute = tm_val.tm_min; 5664 ts->second = tm_val.tm_sec; 5665 5666 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5667 "2646 Updated CMF timestamp : " 5668 "%u/%u/%u %u:%u:%u\n", 5669 ts->day, ts->month, 5670 ts->year, ts->hour, 5671 ts->minute, ts->second); 5672 } 5673 5674 /** 5675 * lpfc_cmf_stats_timer - Save data into registered congestion buffer 5676 * @timer: Timer cookie to access lpfc private data 5677 * 5678 * Save the congestion event data every minute. 5679 * On the hour collapse all the minute data into hour data. Every day 5680 * collapse all the hour data into daily data. Separate driver 5681 * and fabrc congestion event counters that will be saved out 5682 * to the registered congestion buffer every minute. 5683 */ 5684 static enum hrtimer_restart 5685 lpfc_cmf_stats_timer(struct hrtimer *timer) 5686 { 5687 struct lpfc_hba *phba; 5688 struct lpfc_cgn_info *cp; 5689 uint32_t i, index; 5690 uint16_t value, mvalue; 5691 uint64_t bps; 5692 uint32_t mbps; 5693 uint32_t dvalue, wvalue, lvalue, avalue; 5694 uint64_t latsum; 5695 __le16 *ptr; 5696 __le32 *lptr; 5697 __le16 *mptr; 5698 5699 phba = container_of(timer, struct lpfc_hba, cmf_stats_timer); 5700 /* Make sure we have a congestion info buffer */ 5701 if (!phba->cgn_i) 5702 return HRTIMER_NORESTART; 5703 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 5704 5705 phba->cgn_evt_timestamp = jiffies + 5706 msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN); 5707 phba->cgn_evt_minute++; 5708 5709 /* We should get to this point in the routine on 1 minute intervals */ 5710 lpfc_cgn_update_tstamp(phba, &cp->base_time); 5711 5712 if (phba->cgn_fpin_frequency && 5713 phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) { 5714 value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency; 5715 cp->cgn_stat_npm = value; 5716 } 5717 5718 /* Read and clear the latency counters for this minute */ 5719 lvalue = atomic_read(&phba->cgn_latency_evt_cnt); 5720 latsum = atomic64_read(&phba->cgn_latency_evt); 5721 atomic_set(&phba->cgn_latency_evt_cnt, 0); 5722 atomic64_set(&phba->cgn_latency_evt, 0); 5723 5724 /* We need to store MB/sec bandwidth in the congestion information. 5725 * block_cnt is count of 512 byte blocks for the entire minute, 5726 * bps will get bytes per sec before finally converting to MB/sec. 5727 */ 5728 bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512; 5729 phba->rx_block_cnt = 0; 5730 mvalue = bps / (1024 * 1024); /* convert to MB/sec */ 5731 5732 /* Every minute */ 5733 /* cgn parameters */ 5734 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; 5735 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; 5736 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; 5737 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; 5738 5739 /* Fill in default LUN qdepth */ 5740 value = (uint16_t)(phba->pport->cfg_lun_queue_depth); 5741 cp->cgn_lunq = cpu_to_le16(value); 5742 5743 /* Record congestion buffer info - every minute 5744 * cgn_driver_evt_cnt (Driver events) 5745 * cgn_fabric_warn_cnt (Congestion Warnings) 5746 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency) 5747 * cgn_fabric_alarm_cnt (Congestion Alarms) 5748 */ 5749 index = ++cp->cgn_index_minute; 5750 if (cp->cgn_index_minute == LPFC_MIN_HOUR) { 5751 cp->cgn_index_minute = 0; 5752 index = 0; 5753 } 5754 5755 /* Get the number of driver events in this sample and reset counter */ 5756 dvalue = atomic_read(&phba->cgn_driver_evt_cnt); 5757 atomic_set(&phba->cgn_driver_evt_cnt, 0); 5758 5759 /* Get the number of warning events - FPIN and Signal for this minute */ 5760 wvalue = 0; 5761 if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) || 5762 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 5763 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) 5764 wvalue = atomic_read(&phba->cgn_fabric_warn_cnt); 5765 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 5766 5767 /* Get the number of alarm events - FPIN and Signal for this minute */ 5768 avalue = 0; 5769 if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) || 5770 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) 5771 avalue = atomic_read(&phba->cgn_fabric_alarm_cnt); 5772 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 5773 5774 /* Collect the driver, warning, alarm and latency counts for this 5775 * minute into the driver congestion buffer. 5776 */ 5777 ptr = &cp->cgn_drvr_min[index]; 5778 value = (uint16_t)dvalue; 5779 *ptr = cpu_to_le16(value); 5780 5781 ptr = &cp->cgn_warn_min[index]; 5782 value = (uint16_t)wvalue; 5783 *ptr = cpu_to_le16(value); 5784 5785 ptr = &cp->cgn_alarm_min[index]; 5786 value = (uint16_t)avalue; 5787 *ptr = cpu_to_le16(value); 5788 5789 lptr = &cp->cgn_latency_min[index]; 5790 if (lvalue) { 5791 lvalue = (uint32_t)div_u64(latsum, lvalue); 5792 *lptr = cpu_to_le32(lvalue); 5793 } else { 5794 *lptr = 0; 5795 } 5796 5797 /* Collect the bandwidth value into the driver's congesion buffer. */ 5798 mptr = &cp->cgn_bw_min[index]; 5799 *mptr = cpu_to_le16(mvalue); 5800 5801 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5802 "2418 Congestion Info - minute (%d): %d %d %d %d %d\n", 5803 index, dvalue, wvalue, *lptr, mvalue, avalue); 5804 5805 /* Every hour */ 5806 if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) { 5807 /* Record congestion buffer info - every hour 5808 * Collapse all minutes into an hour 5809 */ 5810 index = ++cp->cgn_index_hour; 5811 if (cp->cgn_index_hour == LPFC_HOUR_DAY) { 5812 cp->cgn_index_hour = 0; 5813 index = 0; 5814 } 5815 5816 dvalue = 0; 5817 wvalue = 0; 5818 lvalue = 0; 5819 avalue = 0; 5820 mvalue = 0; 5821 mbps = 0; 5822 for (i = 0; i < LPFC_MIN_HOUR; i++) { 5823 dvalue += le16_to_cpu(cp->cgn_drvr_min[i]); 5824 wvalue += le16_to_cpu(cp->cgn_warn_min[i]); 5825 lvalue += le32_to_cpu(cp->cgn_latency_min[i]); 5826 mbps += le16_to_cpu(cp->cgn_bw_min[i]); 5827 avalue += le16_to_cpu(cp->cgn_alarm_min[i]); 5828 } 5829 if (lvalue) /* Avg of latency averages */ 5830 lvalue /= LPFC_MIN_HOUR; 5831 if (mbps) /* Avg of Bandwidth averages */ 5832 mvalue = mbps / LPFC_MIN_HOUR; 5833 5834 lptr = &cp->cgn_drvr_hr[index]; 5835 *lptr = cpu_to_le32(dvalue); 5836 lptr = &cp->cgn_warn_hr[index]; 5837 *lptr = cpu_to_le32(wvalue); 5838 lptr = &cp->cgn_latency_hr[index]; 5839 *lptr = cpu_to_le32(lvalue); 5840 mptr = &cp->cgn_bw_hr[index]; 5841 *mptr = cpu_to_le16(mvalue); 5842 lptr = &cp->cgn_alarm_hr[index]; 5843 *lptr = cpu_to_le32(avalue); 5844 5845 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5846 "2419 Congestion Info - hour " 5847 "(%d): %d %d %d %d %d\n", 5848 index, dvalue, wvalue, lvalue, mvalue, avalue); 5849 } 5850 5851 /* Every day */ 5852 if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) { 5853 /* Record congestion buffer info - every hour 5854 * Collapse all hours into a day. Rotate days 5855 * after LPFC_MAX_CGN_DAYS. 5856 */ 5857 index = ++cp->cgn_index_day; 5858 if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) { 5859 cp->cgn_index_day = 0; 5860 index = 0; 5861 } 5862 5863 dvalue = 0; 5864 wvalue = 0; 5865 lvalue = 0; 5866 mvalue = 0; 5867 mbps = 0; 5868 avalue = 0; 5869 for (i = 0; i < LPFC_HOUR_DAY; i++) { 5870 dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]); 5871 wvalue += le32_to_cpu(cp->cgn_warn_hr[i]); 5872 lvalue += le32_to_cpu(cp->cgn_latency_hr[i]); 5873 mbps += le16_to_cpu(cp->cgn_bw_hr[i]); 5874 avalue += le32_to_cpu(cp->cgn_alarm_hr[i]); 5875 } 5876 if (lvalue) /* Avg of latency averages */ 5877 lvalue /= LPFC_HOUR_DAY; 5878 if (mbps) /* Avg of Bandwidth averages */ 5879 mvalue = mbps / LPFC_HOUR_DAY; 5880 5881 lptr = &cp->cgn_drvr_day[index]; 5882 *lptr = cpu_to_le32(dvalue); 5883 lptr = &cp->cgn_warn_day[index]; 5884 *lptr = cpu_to_le32(wvalue); 5885 lptr = &cp->cgn_latency_day[index]; 5886 *lptr = cpu_to_le32(lvalue); 5887 mptr = &cp->cgn_bw_day[index]; 5888 *mptr = cpu_to_le16(mvalue); 5889 lptr = &cp->cgn_alarm_day[index]; 5890 *lptr = cpu_to_le32(avalue); 5891 5892 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5893 "2420 Congestion Info - daily (%d): " 5894 "%d %d %d %d %d\n", 5895 index, dvalue, wvalue, lvalue, mvalue, avalue); 5896 } 5897 5898 /* Use the frequency found in the last rcv'ed FPIN */ 5899 value = phba->cgn_fpin_frequency; 5900 cp->cgn_warn_freq = cpu_to_le16(value); 5901 cp->cgn_alarm_freq = cpu_to_le16(value); 5902 5903 lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, 5904 LPFC_CGN_CRC32_SEED); 5905 cp->cgn_info_crc = cpu_to_le32(lvalue); 5906 5907 hrtimer_forward_now(timer, ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC)); 5908 5909 return HRTIMER_RESTART; 5910 } 5911 5912 /** 5913 * lpfc_calc_cmf_latency - latency from start of rxate timer interval 5914 * @phba: The Hba for which this call is being executed. 5915 * 5916 * The routine calculates the latency from the beginning of the CMF timer 5917 * interval to the current point in time. It is called from IO completion 5918 * when we exceed our Bandwidth limitation for the time interval. 5919 */ 5920 uint32_t 5921 lpfc_calc_cmf_latency(struct lpfc_hba *phba) 5922 { 5923 struct timespec64 cmpl_time; 5924 uint32_t msec = 0; 5925 5926 ktime_get_real_ts64(&cmpl_time); 5927 5928 /* This routine works on a ms granularity so sec and usec are 5929 * converted accordingly. 5930 */ 5931 if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) { 5932 msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) / 5933 NSEC_PER_MSEC; 5934 } else { 5935 if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) { 5936 msec = (cmpl_time.tv_sec - 5937 phba->cmf_latency.tv_sec) * MSEC_PER_SEC; 5938 msec += ((cmpl_time.tv_nsec - 5939 phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC); 5940 } else { 5941 msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec - 5942 1) * MSEC_PER_SEC; 5943 msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) + 5944 cmpl_time.tv_nsec) / NSEC_PER_MSEC); 5945 } 5946 } 5947 return msec; 5948 } 5949 5950 /** 5951 * lpfc_cmf_timer - This is the timer function for one congestion 5952 * rate interval. 5953 * @timer: Pointer to the high resolution timer that expired 5954 */ 5955 static enum hrtimer_restart 5956 lpfc_cmf_timer(struct hrtimer *timer) 5957 { 5958 struct lpfc_hba *phba = container_of(timer, struct lpfc_hba, 5959 cmf_timer); 5960 struct rx_info_entry entry; 5961 uint32_t io_cnt; 5962 uint32_t busy, max_read; 5963 uint64_t total, rcv, lat, mbpi, extra, cnt; 5964 int timer_interval = LPFC_CMF_INTERVAL; 5965 uint32_t ms; 5966 struct lpfc_cgn_stat *cgs; 5967 int cpu; 5968 5969 /* Only restart the timer if congestion mgmt is on */ 5970 if (phba->cmf_active_mode == LPFC_CFG_OFF || 5971 !phba->cmf_latency.tv_sec) { 5972 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5973 "6224 CMF timer exit: %d %lld\n", 5974 phba->cmf_active_mode, 5975 (uint64_t)phba->cmf_latency.tv_sec); 5976 return HRTIMER_NORESTART; 5977 } 5978 5979 /* If pport is not ready yet, just exit and wait for 5980 * the next timer cycle to hit. 5981 */ 5982 if (!phba->pport) 5983 goto skip; 5984 5985 /* Do not block SCSI IO while in the timer routine since 5986 * total_bytes will be cleared 5987 */ 5988 atomic_set(&phba->cmf_stop_io, 1); 5989 5990 /* First we need to calculate the actual ms between 5991 * the last timer interrupt and this one. We ask for 5992 * LPFC_CMF_INTERVAL, however the actual time may 5993 * vary depending on system overhead. 5994 */ 5995 ms = lpfc_calc_cmf_latency(phba); 5996 5997 5998 /* Immediately after we calculate the time since the last 5999 * timer interrupt, set the start time for the next 6000 * interrupt 6001 */ 6002 ktime_get_real_ts64(&phba->cmf_latency); 6003 6004 phba->cmf_link_byte_count = 6005 div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000); 6006 6007 /* Collect all the stats from the prior timer interval */ 6008 total = 0; 6009 io_cnt = 0; 6010 lat = 0; 6011 rcv = 0; 6012 for_each_present_cpu(cpu) { 6013 cgs = per_cpu_ptr(phba->cmf_stat, cpu); 6014 total += atomic64_xchg(&cgs->total_bytes, 0); 6015 io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0); 6016 lat += atomic64_xchg(&cgs->rx_latency, 0); 6017 rcv += atomic64_xchg(&cgs->rcv_bytes, 0); 6018 } 6019 6020 /* Before we issue another CMF_SYNC_WQE, retrieve the BW 6021 * returned from the last CMF_SYNC_WQE issued, from 6022 * cmf_last_sync_bw. This will be the target BW for 6023 * this next timer interval. 6024 */ 6025 if (phba->cmf_active_mode == LPFC_CFG_MANAGED && 6026 phba->link_state != LPFC_LINK_DOWN && 6027 test_bit(HBA_SETUP, &phba->hba_flag)) { 6028 mbpi = phba->cmf_last_sync_bw; 6029 phba->cmf_last_sync_bw = 0; 6030 extra = 0; 6031 6032 /* Calculate any extra bytes needed to account for the 6033 * timer accuracy. If we are less than LPFC_CMF_INTERVAL 6034 * calculate the adjustment needed for total to reflect 6035 * a full LPFC_CMF_INTERVAL. 6036 */ 6037 if (ms && ms < LPFC_CMF_INTERVAL) { 6038 cnt = div_u64(total, ms); /* bytes per ms */ 6039 cnt *= LPFC_CMF_INTERVAL; /* what total should be */ 6040 extra = cnt - total; 6041 } 6042 lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra); 6043 } else { 6044 /* For Monitor mode or link down we want mbpi 6045 * to be the full link speed 6046 */ 6047 mbpi = phba->cmf_link_byte_count; 6048 extra = 0; 6049 } 6050 phba->cmf_timer_cnt++; 6051 6052 if (io_cnt) { 6053 /* Update congestion info buffer latency in us */ 6054 atomic_add(io_cnt, &phba->cgn_latency_evt_cnt); 6055 atomic64_add(lat, &phba->cgn_latency_evt); 6056 } 6057 busy = atomic_xchg(&phba->cmf_busy, 0); 6058 max_read = atomic_xchg(&phba->rx_max_read_cnt, 0); 6059 6060 /* Calculate MBPI for the next timer interval */ 6061 if (mbpi) { 6062 if (mbpi > phba->cmf_link_byte_count || 6063 phba->cmf_active_mode == LPFC_CFG_MONITOR) 6064 mbpi = phba->cmf_link_byte_count; 6065 6066 /* Change max_bytes_per_interval to what the prior 6067 * CMF_SYNC_WQE cmpl indicated. 6068 */ 6069 if (mbpi != phba->cmf_max_bytes_per_interval) 6070 phba->cmf_max_bytes_per_interval = mbpi; 6071 } 6072 6073 /* Save rxmonitor information for debug */ 6074 if (phba->rx_monitor) { 6075 entry.total_bytes = total; 6076 entry.cmf_bytes = total + extra; 6077 entry.rcv_bytes = rcv; 6078 entry.cmf_busy = busy; 6079 entry.cmf_info = phba->cmf_active_info; 6080 if (io_cnt) { 6081 entry.avg_io_latency = div_u64(lat, io_cnt); 6082 entry.avg_io_size = div_u64(rcv, io_cnt); 6083 } else { 6084 entry.avg_io_latency = 0; 6085 entry.avg_io_size = 0; 6086 } 6087 entry.max_read_cnt = max_read; 6088 entry.io_cnt = io_cnt; 6089 entry.max_bytes_per_interval = mbpi; 6090 if (phba->cmf_active_mode == LPFC_CFG_MANAGED) 6091 entry.timer_utilization = phba->cmf_last_ts; 6092 else 6093 entry.timer_utilization = ms; 6094 entry.timer_interval = ms; 6095 phba->cmf_last_ts = 0; 6096 6097 lpfc_rx_monitor_record(phba->rx_monitor, &entry); 6098 } 6099 6100 if (phba->cmf_active_mode == LPFC_CFG_MONITOR) { 6101 /* If Monitor mode, check if we are oversubscribed 6102 * against the full line rate. 6103 */ 6104 if (mbpi && total > mbpi) 6105 atomic_inc(&phba->cgn_driver_evt_cnt); 6106 } 6107 phba->rx_block_cnt += div_u64(rcv, 512); /* save 512 byte block cnt */ 6108 6109 /* Since total_bytes has already been zero'ed, its okay to unblock 6110 * after max_bytes_per_interval is setup. 6111 */ 6112 if (atomic_xchg(&phba->cmf_bw_wait, 0)) 6113 queue_work(phba->wq, &phba->unblock_request_work); 6114 6115 /* SCSI IO is now unblocked */ 6116 atomic_set(&phba->cmf_stop_io, 0); 6117 6118 skip: 6119 hrtimer_forward_now(timer, 6120 ktime_set(0, timer_interval * NSEC_PER_MSEC)); 6121 return HRTIMER_RESTART; 6122 } 6123 6124 #define trunk_link_status(__idx)\ 6125 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 6126 ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\ 6127 "Link up" : "Link down") : "NA" 6128 /* Did port __idx reported an error */ 6129 #define trunk_port_fault(__idx)\ 6130 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 6131 (port_fault & (1 << __idx) ? "YES" : "NO") : "NA" 6132 6133 static void 6134 lpfc_update_trunk_link_status(struct lpfc_hba *phba, 6135 struct lpfc_acqe_fc_la *acqe_fc) 6136 { 6137 uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc); 6138 uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc); 6139 u8 cnt = 0; 6140 6141 phba->sli4_hba.link_state.speed = 6142 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 6143 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 6144 6145 phba->sli4_hba.link_state.logical_speed = 6146 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 6147 /* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */ 6148 phba->fc_linkspeed = 6149 lpfc_async_link_speed_to_read_top( 6150 phba, 6151 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 6152 6153 if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) { 6154 phba->trunk_link.link0.state = 6155 bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc) 6156 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6157 phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0; 6158 cnt++; 6159 } 6160 if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) { 6161 phba->trunk_link.link1.state = 6162 bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc) 6163 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6164 phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0; 6165 cnt++; 6166 } 6167 if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) { 6168 phba->trunk_link.link2.state = 6169 bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc) 6170 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6171 phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0; 6172 cnt++; 6173 } 6174 if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) { 6175 phba->trunk_link.link3.state = 6176 bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc) 6177 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6178 phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0; 6179 cnt++; 6180 } 6181 6182 if (cnt) 6183 phba->trunk_link.phy_lnk_speed = 6184 phba->sli4_hba.link_state.logical_speed / (cnt * 1000); 6185 else 6186 phba->trunk_link.phy_lnk_speed = LPFC_LINK_SPEED_UNKNOWN; 6187 6188 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6189 "2910 Async FC Trunking Event - Speed:%d\n" 6190 "\tLogical speed:%d " 6191 "port0: %s port1: %s port2: %s port3: %s\n", 6192 phba->sli4_hba.link_state.speed, 6193 phba->sli4_hba.link_state.logical_speed, 6194 trunk_link_status(0), trunk_link_status(1), 6195 trunk_link_status(2), trunk_link_status(3)); 6196 6197 if (phba->cmf_active_mode != LPFC_CFG_OFF) 6198 lpfc_cmf_signal_init(phba); 6199 6200 if (port_fault) 6201 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6202 "3202 trunk error:0x%x (%s) seen on port0:%s " 6203 /* 6204 * SLI-4: We have only 0xA error codes 6205 * defined as of now. print an appropriate 6206 * message in case driver needs to be updated. 6207 */ 6208 "port1:%s port2:%s port3:%s\n", err, err > 0xA ? 6209 "UNDEFINED. update driver." : trunk_errmsg[err], 6210 trunk_port_fault(0), trunk_port_fault(1), 6211 trunk_port_fault(2), trunk_port_fault(3)); 6212 } 6213 6214 6215 /** 6216 * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event 6217 * @phba: pointer to lpfc hba data structure. 6218 * @acqe_fc: pointer to the async fc completion queue entry. 6219 * 6220 * This routine is to handle the SLI4 asynchronous FC event. It will simply log 6221 * that the event was received and then issue a read_topology mailbox command so 6222 * that the rest of the driver will treat it the same as SLI3. 6223 **/ 6224 static void 6225 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc) 6226 { 6227 LPFC_MBOXQ_t *pmb; 6228 MAILBOX_t *mb; 6229 struct lpfc_mbx_read_top *la; 6230 char *log_level; 6231 int rc; 6232 6233 if (bf_get(lpfc_trailer_type, acqe_fc) != 6234 LPFC_FC_LA_EVENT_TYPE_FC_LINK) { 6235 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6236 "2895 Non FC link Event detected.(%d)\n", 6237 bf_get(lpfc_trailer_type, acqe_fc)); 6238 return; 6239 } 6240 6241 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 6242 LPFC_FC_LA_TYPE_TRUNKING_EVENT) { 6243 lpfc_update_trunk_link_status(phba, acqe_fc); 6244 return; 6245 } 6246 6247 /* Keep the link status for extra SLI4 state machine reference */ 6248 phba->sli4_hba.link_state.speed = 6249 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 6250 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 6251 phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL; 6252 phba->sli4_hba.link_state.topology = 6253 bf_get(lpfc_acqe_fc_la_topology, acqe_fc); 6254 phba->sli4_hba.link_state.status = 6255 bf_get(lpfc_acqe_fc_la_att_type, acqe_fc); 6256 phba->sli4_hba.link_state.type = 6257 bf_get(lpfc_acqe_fc_la_port_type, acqe_fc); 6258 phba->sli4_hba.link_state.number = 6259 bf_get(lpfc_acqe_fc_la_port_number, acqe_fc); 6260 phba->sli4_hba.link_state.fault = 6261 bf_get(lpfc_acqe_link_fault, acqe_fc); 6262 phba->sli4_hba.link_state.link_status = 6263 bf_get(lpfc_acqe_fc_la_link_status, acqe_fc); 6264 6265 /* 6266 * Only select attention types need logical speed modification to what 6267 * was previously set. 6268 */ 6269 if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_LINK_UP && 6270 phba->sli4_hba.link_state.status < LPFC_FC_LA_TYPE_ACTIVATE_FAIL) { 6271 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 6272 LPFC_FC_LA_TYPE_LINK_DOWN) 6273 phba->sli4_hba.link_state.logical_speed = 0; 6274 else if (!phba->sli4_hba.conf_trunk) 6275 phba->sli4_hba.link_state.logical_speed = 6276 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 6277 } 6278 6279 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6280 "2896 Async FC event - Speed:%dGBaud Topology:x%x " 6281 "LA Type:x%x Port Type:%d Port Number:%d Logical speed:" 6282 "%dMbps Fault:x%x Link Status:x%x\n", 6283 phba->sli4_hba.link_state.speed, 6284 phba->sli4_hba.link_state.topology, 6285 phba->sli4_hba.link_state.status, 6286 phba->sli4_hba.link_state.type, 6287 phba->sli4_hba.link_state.number, 6288 phba->sli4_hba.link_state.logical_speed, 6289 phba->sli4_hba.link_state.fault, 6290 phba->sli4_hba.link_state.link_status); 6291 6292 /* 6293 * The following attention types are informational only, providing 6294 * further details about link status. Overwrite the value of 6295 * link_state.status appropriately. No further action is required. 6296 */ 6297 if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_ACTIVATE_FAIL) { 6298 switch (phba->sli4_hba.link_state.status) { 6299 case LPFC_FC_LA_TYPE_ACTIVATE_FAIL: 6300 log_level = KERN_WARNING; 6301 phba->sli4_hba.link_state.status = 6302 LPFC_FC_LA_TYPE_LINK_DOWN; 6303 break; 6304 case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT: 6305 /* 6306 * During bb credit recovery establishment, receiving 6307 * this attention type is normal. Link Up attention 6308 * type is expected to occur before this informational 6309 * attention type so keep the Link Up status. 6310 */ 6311 log_level = KERN_INFO; 6312 phba->sli4_hba.link_state.status = 6313 LPFC_FC_LA_TYPE_LINK_UP; 6314 break; 6315 default: 6316 log_level = KERN_INFO; 6317 break; 6318 } 6319 lpfc_log_msg(phba, log_level, LOG_SLI, 6320 "2992 Async FC event - Informational Link " 6321 "Attention Type x%x\n", 6322 bf_get(lpfc_acqe_fc_la_att_type, acqe_fc)); 6323 return; 6324 } 6325 6326 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6327 if (!pmb) { 6328 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6329 "2897 The mboxq allocation failed\n"); 6330 return; 6331 } 6332 rc = lpfc_mbox_rsrc_prep(phba, pmb); 6333 if (rc) { 6334 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6335 "2898 The mboxq prep failed\n"); 6336 goto out_free_pmb; 6337 } 6338 6339 /* Cleanup any outstanding ELS commands */ 6340 lpfc_els_flush_all_cmd(phba); 6341 6342 /* Block ELS IOCBs until we have done process link event */ 6343 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 6344 6345 /* Update link event statistics */ 6346 phba->sli.slistat.link_event++; 6347 6348 /* Create lpfc_handle_latt mailbox command from link ACQE */ 6349 lpfc_read_topology(phba, pmb, pmb->ctx_buf); 6350 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 6351 pmb->vport = phba->pport; 6352 6353 if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) { 6354 phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK); 6355 6356 switch (phba->sli4_hba.link_state.status) { 6357 case LPFC_FC_LA_TYPE_MDS_LINK_DOWN: 6358 phba->link_flag |= LS_MDS_LINK_DOWN; 6359 break; 6360 case LPFC_FC_LA_TYPE_MDS_LOOPBACK: 6361 phba->link_flag |= LS_MDS_LOOPBACK; 6362 break; 6363 default: 6364 break; 6365 } 6366 6367 /* Initialize completion status */ 6368 mb = &pmb->u.mb; 6369 mb->mbxStatus = MBX_SUCCESS; 6370 6371 /* Parse port fault information field */ 6372 lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc); 6373 6374 /* Parse and translate link attention fields */ 6375 la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop; 6376 la->eventTag = acqe_fc->event_tag; 6377 6378 if (phba->sli4_hba.link_state.status == 6379 LPFC_FC_LA_TYPE_UNEXP_WWPN) { 6380 bf_set(lpfc_mbx_read_top_att_type, la, 6381 LPFC_FC_LA_TYPE_UNEXP_WWPN); 6382 } else { 6383 bf_set(lpfc_mbx_read_top_att_type, la, 6384 LPFC_FC_LA_TYPE_LINK_DOWN); 6385 } 6386 /* Invoke the mailbox command callback function */ 6387 lpfc_mbx_cmpl_read_topology(phba, pmb); 6388 6389 return; 6390 } 6391 6392 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 6393 if (rc == MBX_NOT_FINISHED) 6394 goto out_free_pmb; 6395 return; 6396 6397 out_free_pmb: 6398 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 6399 } 6400 6401 /** 6402 * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event 6403 * @phba: pointer to lpfc hba data structure. 6404 * @acqe_sli: pointer to the async SLI completion queue entry. 6405 * 6406 * This routine is to handle the SLI4 asynchronous SLI events. 6407 **/ 6408 static void 6409 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli) 6410 { 6411 char port_name; 6412 char message[128]; 6413 uint8_t status; 6414 uint8_t evt_type; 6415 uint8_t operational = 0; 6416 struct temp_event temp_event_data; 6417 struct lpfc_acqe_misconfigured_event *misconfigured; 6418 struct lpfc_acqe_cgn_signal *cgn_signal; 6419 struct Scsi_Host *shost; 6420 struct lpfc_vport **vports; 6421 int rc, i, cnt; 6422 6423 evt_type = bf_get(lpfc_trailer_type, acqe_sli); 6424 6425 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6426 "2901 Async SLI event - Type:%d, Event Data: x%08x " 6427 "x%08x x%08x x%08x\n", evt_type, 6428 acqe_sli->event_data1, acqe_sli->event_data2, 6429 acqe_sli->event_data3, acqe_sli->trailer); 6430 6431 port_name = phba->Port[0]; 6432 if (port_name == 0x00) 6433 port_name = '?'; /* get port name is empty */ 6434 6435 switch (evt_type) { 6436 case LPFC_SLI_EVENT_TYPE_OVER_TEMP: 6437 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 6438 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 6439 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 6440 6441 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6442 "3190 Over Temperature:%d Celsius- Port Name %c\n", 6443 acqe_sli->event_data1, port_name); 6444 6445 phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 6446 shost = lpfc_shost_from_vport(phba->pport); 6447 fc_host_post_vendor_event(shost, fc_get_event_number(), 6448 sizeof(temp_event_data), 6449 (char *)&temp_event_data, 6450 SCSI_NL_VID_TYPE_PCI 6451 | PCI_VENDOR_ID_EMULEX); 6452 break; 6453 case LPFC_SLI_EVENT_TYPE_NORM_TEMP: 6454 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 6455 temp_event_data.event_code = LPFC_NORMAL_TEMP; 6456 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 6457 6458 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_LDS_EVENT, 6459 "3191 Normal Temperature:%d Celsius - Port Name %c\n", 6460 acqe_sli->event_data1, port_name); 6461 6462 shost = lpfc_shost_from_vport(phba->pport); 6463 fc_host_post_vendor_event(shost, fc_get_event_number(), 6464 sizeof(temp_event_data), 6465 (char *)&temp_event_data, 6466 SCSI_NL_VID_TYPE_PCI 6467 | PCI_VENDOR_ID_EMULEX); 6468 break; 6469 case LPFC_SLI_EVENT_TYPE_MISCONFIGURED: 6470 misconfigured = (struct lpfc_acqe_misconfigured_event *) 6471 &acqe_sli->event_data1; 6472 6473 /* fetch the status for this port */ 6474 switch (phba->sli4_hba.lnk_info.lnk_no) { 6475 case LPFC_LINK_NUMBER_0: 6476 status = bf_get(lpfc_sli_misconfigured_port0_state, 6477 &misconfigured->theEvent); 6478 operational = bf_get(lpfc_sli_misconfigured_port0_op, 6479 &misconfigured->theEvent); 6480 break; 6481 case LPFC_LINK_NUMBER_1: 6482 status = bf_get(lpfc_sli_misconfigured_port1_state, 6483 &misconfigured->theEvent); 6484 operational = bf_get(lpfc_sli_misconfigured_port1_op, 6485 &misconfigured->theEvent); 6486 break; 6487 case LPFC_LINK_NUMBER_2: 6488 status = bf_get(lpfc_sli_misconfigured_port2_state, 6489 &misconfigured->theEvent); 6490 operational = bf_get(lpfc_sli_misconfigured_port2_op, 6491 &misconfigured->theEvent); 6492 break; 6493 case LPFC_LINK_NUMBER_3: 6494 status = bf_get(lpfc_sli_misconfigured_port3_state, 6495 &misconfigured->theEvent); 6496 operational = bf_get(lpfc_sli_misconfigured_port3_op, 6497 &misconfigured->theEvent); 6498 break; 6499 default: 6500 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6501 "3296 " 6502 "LPFC_SLI_EVENT_TYPE_MISCONFIGURED " 6503 "event: Invalid link %d", 6504 phba->sli4_hba.lnk_info.lnk_no); 6505 return; 6506 } 6507 6508 /* Skip if optic state unchanged */ 6509 if (phba->sli4_hba.lnk_info.optic_state == status) 6510 return; 6511 6512 switch (status) { 6513 case LPFC_SLI_EVENT_STATUS_VALID: 6514 sprintf(message, "Physical Link is functional"); 6515 break; 6516 case LPFC_SLI_EVENT_STATUS_NOT_PRESENT: 6517 sprintf(message, "Optics faulted/incorrectly " 6518 "installed/not installed - Reseat optics, " 6519 "if issue not resolved, replace."); 6520 break; 6521 case LPFC_SLI_EVENT_STATUS_WRONG_TYPE: 6522 sprintf(message, 6523 "Optics of two types installed - Remove one " 6524 "optic or install matching pair of optics."); 6525 break; 6526 case LPFC_SLI_EVENT_STATUS_UNSUPPORTED: 6527 sprintf(message, "Incompatible optics - Replace with " 6528 "compatible optics for card to function."); 6529 break; 6530 case LPFC_SLI_EVENT_STATUS_UNQUALIFIED: 6531 sprintf(message, "Unqualified optics - Replace with " 6532 "Avago optics for Warranty and Technical " 6533 "Support - Link is%s operational", 6534 (operational) ? " not" : ""); 6535 break; 6536 case LPFC_SLI_EVENT_STATUS_UNCERTIFIED: 6537 sprintf(message, "Uncertified optics - Replace with " 6538 "Avago-certified optics to enable link " 6539 "operation - Link is%s operational", 6540 (operational) ? " not" : ""); 6541 break; 6542 default: 6543 /* firmware is reporting a status we don't know about */ 6544 sprintf(message, "Unknown event status x%02x", status); 6545 break; 6546 } 6547 6548 /* Issue READ_CONFIG mbox command to refresh supported speeds */ 6549 rc = lpfc_sli4_read_config(phba); 6550 if (rc) { 6551 phba->lmt = 0; 6552 lpfc_printf_log(phba, KERN_ERR, 6553 LOG_TRACE_EVENT, 6554 "3194 Unable to retrieve supported " 6555 "speeds, rc = 0x%x\n", rc); 6556 } 6557 rc = lpfc_sli4_refresh_params(phba); 6558 if (rc) { 6559 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6560 "3174 Unable to update pls support, " 6561 "rc x%x\n", rc); 6562 } 6563 vports = lpfc_create_vport_work_array(phba); 6564 if (vports != NULL) { 6565 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 6566 i++) { 6567 shost = lpfc_shost_from_vport(vports[i]); 6568 lpfc_host_supported_speeds_set(shost); 6569 } 6570 } 6571 lpfc_destroy_vport_work_array(phba, vports); 6572 6573 phba->sli4_hba.lnk_info.optic_state = status; 6574 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6575 "3176 Port Name %c %s\n", port_name, message); 6576 break; 6577 case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT: 6578 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6579 "3192 Remote DPort Test Initiated - " 6580 "Event Data1:x%08x Event Data2: x%08x\n", 6581 acqe_sli->event_data1, acqe_sli->event_data2); 6582 break; 6583 case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG: 6584 /* Call FW to obtain active parms */ 6585 lpfc_sli4_cgn_parm_chg_evt(phba); 6586 break; 6587 case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN: 6588 /* Misconfigured WWN. Reports that the SLI Port is configured 6589 * to use FA-WWN, but the attached device doesn’t support it. 6590 * Event Data1 - N.A, Event Data2 - N.A 6591 * This event only happens on the physical port. 6592 */ 6593 lpfc_log_msg(phba, KERN_WARNING, LOG_SLI | LOG_DISCOVERY, 6594 "2699 Misconfigured FA-PWWN - Attached device " 6595 "does not support FA-PWWN\n"); 6596 phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_FABRIC; 6597 memset(phba->pport->fc_portname.u.wwn, 0, 6598 sizeof(struct lpfc_name)); 6599 break; 6600 case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE: 6601 /* EEPROM failure. No driver action is required */ 6602 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6603 "2518 EEPROM failure - " 6604 "Event Data1: x%08x Event Data2: x%08x\n", 6605 acqe_sli->event_data1, acqe_sli->event_data2); 6606 break; 6607 case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL: 6608 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6609 break; 6610 cgn_signal = (struct lpfc_acqe_cgn_signal *) 6611 &acqe_sli->event_data1; 6612 phba->cgn_acqe_cnt++; 6613 6614 cnt = bf_get(lpfc_warn_acqe, cgn_signal); 6615 atomic64_add(cnt, &phba->cgn_acqe_stat.warn); 6616 atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm); 6617 6618 /* no threshold for CMF, even 1 signal will trigger an event */ 6619 6620 /* Alarm overrides warning, so check that first */ 6621 if (cgn_signal->alarm_cnt) { 6622 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6623 /* Keep track of alarm cnt for CMF_SYNC_WQE */ 6624 atomic_add(cgn_signal->alarm_cnt, 6625 &phba->cgn_sync_alarm_cnt); 6626 } 6627 } else if (cnt) { 6628 /* signal action needs to be taken */ 6629 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 6630 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6631 /* Keep track of warning cnt for CMF_SYNC_WQE */ 6632 atomic_add(cnt, &phba->cgn_sync_warn_cnt); 6633 } 6634 } 6635 break; 6636 case LPFC_SLI_EVENT_TYPE_RD_SIGNAL: 6637 /* May be accompanied by a temperature event */ 6638 lpfc_printf_log(phba, KERN_INFO, 6639 LOG_SLI | LOG_LINK_EVENT | LOG_LDS_EVENT, 6640 "2902 Remote Degrade Signaling: x%08x x%08x " 6641 "x%08x\n", 6642 acqe_sli->event_data1, acqe_sli->event_data2, 6643 acqe_sli->event_data3); 6644 break; 6645 case LPFC_SLI_EVENT_TYPE_RESET_CM_STATS: 6646 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 6647 "2905 Reset CM statistics\n"); 6648 lpfc_sli4_async_cmstat_evt(phba); 6649 break; 6650 default: 6651 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6652 "3193 Unrecognized SLI event, type: 0x%x", 6653 evt_type); 6654 break; 6655 } 6656 } 6657 6658 /** 6659 * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport 6660 * @vport: pointer to vport data structure. 6661 * 6662 * This routine is to perform Clear Virtual Link (CVL) on a vport in 6663 * response to a CVL event. 6664 * 6665 * Return the pointer to the ndlp with the vport if successful, otherwise 6666 * return NULL. 6667 **/ 6668 static struct lpfc_nodelist * 6669 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport) 6670 { 6671 struct lpfc_nodelist *ndlp; 6672 struct Scsi_Host *shost; 6673 struct lpfc_hba *phba; 6674 6675 if (!vport) 6676 return NULL; 6677 phba = vport->phba; 6678 if (!phba) 6679 return NULL; 6680 ndlp = lpfc_findnode_did(vport, Fabric_DID); 6681 if (!ndlp) { 6682 /* Cannot find existing Fabric ndlp, so allocate a new one */ 6683 ndlp = lpfc_nlp_init(vport, Fabric_DID); 6684 if (!ndlp) 6685 return NULL; 6686 /* Set the node type */ 6687 ndlp->nlp_type |= NLP_FABRIC; 6688 /* Put ndlp onto node list */ 6689 lpfc_enqueue_node(vport, ndlp); 6690 } 6691 if ((phba->pport->port_state < LPFC_FLOGI) && 6692 (phba->pport->port_state != LPFC_VPORT_FAILED)) 6693 return NULL; 6694 /* If virtual link is not yet instantiated ignore CVL */ 6695 if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC) 6696 && (vport->port_state != LPFC_VPORT_FAILED)) 6697 return NULL; 6698 shost = lpfc_shost_from_vport(vport); 6699 if (!shost) 6700 return NULL; 6701 lpfc_linkdown_port(vport); 6702 lpfc_cleanup_pending_mbox(vport); 6703 set_bit(FC_VPORT_CVL_RCVD, &vport->fc_flag); 6704 6705 return ndlp; 6706 } 6707 6708 /** 6709 * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports 6710 * @phba: pointer to lpfc hba data structure. 6711 * 6712 * This routine is to perform Clear Virtual Link (CVL) on all vports in 6713 * response to a FCF dead event. 6714 **/ 6715 static void 6716 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba) 6717 { 6718 struct lpfc_vport **vports; 6719 int i; 6720 6721 vports = lpfc_create_vport_work_array(phba); 6722 if (vports) 6723 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 6724 lpfc_sli4_perform_vport_cvl(vports[i]); 6725 lpfc_destroy_vport_work_array(phba, vports); 6726 } 6727 6728 /** 6729 * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event 6730 * @phba: pointer to lpfc hba data structure. 6731 * @acqe_fip: pointer to the async fcoe completion queue entry. 6732 * 6733 * This routine is to handle the SLI4 asynchronous fcoe event. 6734 **/ 6735 static void 6736 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba, 6737 struct lpfc_acqe_fip *acqe_fip) 6738 { 6739 uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip); 6740 int rc; 6741 struct lpfc_vport *vport; 6742 struct lpfc_nodelist *ndlp; 6743 int active_vlink_present; 6744 struct lpfc_vport **vports; 6745 int i; 6746 6747 phba->fc_eventTag = acqe_fip->event_tag; 6748 phba->fcoe_eventtag = acqe_fip->event_tag; 6749 switch (event_type) { 6750 case LPFC_FIP_EVENT_TYPE_NEW_FCF: 6751 case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD: 6752 if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF) 6753 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6754 "2546 New FCF event, evt_tag:x%x, " 6755 "index:x%x\n", 6756 acqe_fip->event_tag, 6757 acqe_fip->index); 6758 else 6759 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP | 6760 LOG_DISCOVERY, 6761 "2788 FCF param modified event, " 6762 "evt_tag:x%x, index:x%x\n", 6763 acqe_fip->event_tag, 6764 acqe_fip->index); 6765 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 6766 /* 6767 * During period of FCF discovery, read the FCF 6768 * table record indexed by the event to update 6769 * FCF roundrobin failover eligible FCF bmask. 6770 */ 6771 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 6772 LOG_DISCOVERY, 6773 "2779 Read FCF (x%x) for updating " 6774 "roundrobin FCF failover bmask\n", 6775 acqe_fip->index); 6776 rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index); 6777 } 6778 6779 /* If the FCF discovery is in progress, do nothing. */ 6780 if (test_bit(FCF_TS_INPROG, &phba->hba_flag)) 6781 break; 6782 spin_lock_irq(&phba->hbalock); 6783 /* If fast FCF failover rescan event is pending, do nothing */ 6784 if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) { 6785 spin_unlock_irq(&phba->hbalock); 6786 break; 6787 } 6788 6789 /* If the FCF has been in discovered state, do nothing. */ 6790 if (phba->fcf.fcf_flag & FCF_SCAN_DONE) { 6791 spin_unlock_irq(&phba->hbalock); 6792 break; 6793 } 6794 spin_unlock_irq(&phba->hbalock); 6795 6796 /* Otherwise, scan the entire FCF table and re-discover SAN */ 6797 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 6798 "2770 Start FCF table scan per async FCF " 6799 "event, evt_tag:x%x, index:x%x\n", 6800 acqe_fip->event_tag, acqe_fip->index); 6801 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, 6802 LPFC_FCOE_FCF_GET_FIRST); 6803 if (rc) 6804 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6805 "2547 Issue FCF scan read FCF mailbox " 6806 "command failed (x%x)\n", rc); 6807 break; 6808 6809 case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL: 6810 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6811 "2548 FCF Table full count 0x%x tag 0x%x\n", 6812 bf_get(lpfc_acqe_fip_fcf_count, acqe_fip), 6813 acqe_fip->event_tag); 6814 break; 6815 6816 case LPFC_FIP_EVENT_TYPE_FCF_DEAD: 6817 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 6818 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6819 "2549 FCF (x%x) disconnected from network, " 6820 "tag:x%x\n", acqe_fip->index, 6821 acqe_fip->event_tag); 6822 /* 6823 * If we are in the middle of FCF failover process, clear 6824 * the corresponding FCF bit in the roundrobin bitmap. 6825 */ 6826 spin_lock_irq(&phba->hbalock); 6827 if ((phba->fcf.fcf_flag & FCF_DISCOVERY) && 6828 (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) { 6829 spin_unlock_irq(&phba->hbalock); 6830 /* Update FLOGI FCF failover eligible FCF bmask */ 6831 lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index); 6832 break; 6833 } 6834 spin_unlock_irq(&phba->hbalock); 6835 6836 /* If the event is not for currently used fcf do nothing */ 6837 if (phba->fcf.current_rec.fcf_indx != acqe_fip->index) 6838 break; 6839 6840 /* 6841 * Otherwise, request the port to rediscover the entire FCF 6842 * table for a fast recovery from case that the current FCF 6843 * is no longer valid as we are not in the middle of FCF 6844 * failover process already. 6845 */ 6846 spin_lock_irq(&phba->hbalock); 6847 /* Mark the fast failover process in progress */ 6848 phba->fcf.fcf_flag |= FCF_DEAD_DISC; 6849 spin_unlock_irq(&phba->hbalock); 6850 6851 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 6852 "2771 Start FCF fast failover process due to " 6853 "FCF DEAD event: evt_tag:x%x, fcf_index:x%x " 6854 "\n", acqe_fip->event_tag, acqe_fip->index); 6855 rc = lpfc_sli4_redisc_fcf_table(phba); 6856 if (rc) { 6857 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 6858 LOG_TRACE_EVENT, 6859 "2772 Issue FCF rediscover mailbox " 6860 "command failed, fail through to FCF " 6861 "dead event\n"); 6862 spin_lock_irq(&phba->hbalock); 6863 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 6864 spin_unlock_irq(&phba->hbalock); 6865 /* 6866 * Last resort will fail over by treating this 6867 * as a link down to FCF registration. 6868 */ 6869 lpfc_sli4_fcf_dead_failthrough(phba); 6870 } else { 6871 /* Reset FCF roundrobin bmask for new discovery */ 6872 lpfc_sli4_clear_fcf_rr_bmask(phba); 6873 /* 6874 * Handling fast FCF failover to a DEAD FCF event is 6875 * considered equalivant to receiving CVL to all vports. 6876 */ 6877 lpfc_sli4_perform_all_vport_cvl(phba); 6878 } 6879 break; 6880 case LPFC_FIP_EVENT_TYPE_CVL: 6881 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 6882 lpfc_printf_log(phba, KERN_ERR, 6883 LOG_TRACE_EVENT, 6884 "2718 Clear Virtual Link Received for VPI 0x%x" 6885 " tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag); 6886 6887 vport = lpfc_find_vport_by_vpid(phba, 6888 acqe_fip->index); 6889 ndlp = lpfc_sli4_perform_vport_cvl(vport); 6890 if (!ndlp) 6891 break; 6892 active_vlink_present = 0; 6893 6894 vports = lpfc_create_vport_work_array(phba); 6895 if (vports) { 6896 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 6897 i++) { 6898 if (!test_bit(FC_VPORT_CVL_RCVD, 6899 &vports[i]->fc_flag) && 6900 vports[i]->port_state > LPFC_FDISC) { 6901 active_vlink_present = 1; 6902 break; 6903 } 6904 } 6905 lpfc_destroy_vport_work_array(phba, vports); 6906 } 6907 6908 /* 6909 * Don't re-instantiate if vport is marked for deletion. 6910 * If we are here first then vport_delete is going to wait 6911 * for discovery to complete. 6912 */ 6913 if (!test_bit(FC_UNLOADING, &vport->load_flag) && 6914 active_vlink_present) { 6915 /* 6916 * If there are other active VLinks present, 6917 * re-instantiate the Vlink using FDISC. 6918 */ 6919 mod_timer(&ndlp->nlp_delayfunc, 6920 jiffies + secs_to_jiffies(1)); 6921 set_bit(NLP_DELAY_TMO, &ndlp->nlp_flag); 6922 ndlp->nlp_last_elscmd = ELS_CMD_FDISC; 6923 vport->port_state = LPFC_FDISC; 6924 } else { 6925 /* 6926 * Otherwise, we request port to rediscover 6927 * the entire FCF table for a fast recovery 6928 * from possible case that the current FCF 6929 * is no longer valid if we are not already 6930 * in the FCF failover process. 6931 */ 6932 spin_lock_irq(&phba->hbalock); 6933 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 6934 spin_unlock_irq(&phba->hbalock); 6935 break; 6936 } 6937 /* Mark the fast failover process in progress */ 6938 phba->fcf.fcf_flag |= FCF_ACVL_DISC; 6939 spin_unlock_irq(&phba->hbalock); 6940 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 6941 LOG_DISCOVERY, 6942 "2773 Start FCF failover per CVL, " 6943 "evt_tag:x%x\n", acqe_fip->event_tag); 6944 rc = lpfc_sli4_redisc_fcf_table(phba); 6945 if (rc) { 6946 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 6947 LOG_TRACE_EVENT, 6948 "2774 Issue FCF rediscover " 6949 "mailbox command failed, " 6950 "through to CVL event\n"); 6951 spin_lock_irq(&phba->hbalock); 6952 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 6953 spin_unlock_irq(&phba->hbalock); 6954 /* 6955 * Last resort will be re-try on the 6956 * the current registered FCF entry. 6957 */ 6958 lpfc_retry_pport_discovery(phba); 6959 } else 6960 /* 6961 * Reset FCF roundrobin bmask for new 6962 * discovery. 6963 */ 6964 lpfc_sli4_clear_fcf_rr_bmask(phba); 6965 } 6966 break; 6967 default: 6968 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6969 "0288 Unknown FCoE event type 0x%x event tag " 6970 "0x%x\n", event_type, acqe_fip->event_tag); 6971 break; 6972 } 6973 } 6974 6975 /** 6976 * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event 6977 * @phba: pointer to lpfc hba data structure. 6978 * @acqe_dcbx: pointer to the async dcbx completion queue entry. 6979 * 6980 * This routine is to handle the SLI4 asynchronous dcbx event. 6981 **/ 6982 static void 6983 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba, 6984 struct lpfc_acqe_dcbx *acqe_dcbx) 6985 { 6986 phba->fc_eventTag = acqe_dcbx->event_tag; 6987 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6988 "0290 The SLI4 DCBX asynchronous event is not " 6989 "handled yet\n"); 6990 } 6991 6992 /** 6993 * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event 6994 * @phba: pointer to lpfc hba data structure. 6995 * @acqe_grp5: pointer to the async grp5 completion queue entry. 6996 * 6997 * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event 6998 * is an asynchronous notified of a logical link speed change. The Port 6999 * reports the logical link speed in units of 10Mbps. 7000 **/ 7001 static void 7002 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba, 7003 struct lpfc_acqe_grp5 *acqe_grp5) 7004 { 7005 uint16_t prev_ll_spd; 7006 7007 phba->fc_eventTag = acqe_grp5->event_tag; 7008 phba->fcoe_eventtag = acqe_grp5->event_tag; 7009 prev_ll_spd = phba->sli4_hba.link_state.logical_speed; 7010 phba->sli4_hba.link_state.logical_speed = 7011 (bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10; 7012 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 7013 "2789 GRP5 Async Event: Updating logical link speed " 7014 "from %dMbps to %dMbps\n", prev_ll_spd, 7015 phba->sli4_hba.link_state.logical_speed); 7016 } 7017 7018 /** 7019 * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event 7020 * @phba: pointer to lpfc hba data structure. 7021 * 7022 * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event 7023 * is an asynchronous notification of a request to reset CM stats. 7024 **/ 7025 static void 7026 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba) 7027 { 7028 if (!phba->cgn_i) 7029 return; 7030 lpfc_init_congestion_stat(phba); 7031 } 7032 7033 /** 7034 * lpfc_cgn_params_val - Validate FW congestion parameters. 7035 * @phba: pointer to lpfc hba data structure. 7036 * @p_cfg_param: pointer to FW provided congestion parameters. 7037 * 7038 * This routine validates the congestion parameters passed 7039 * by the FW to the driver via an ACQE event. 7040 **/ 7041 static void 7042 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param) 7043 { 7044 spin_lock_irq(&phba->hbalock); 7045 7046 if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF, 7047 LPFC_CFG_MONITOR)) { 7048 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 7049 "6225 CMF mode param out of range: %d\n", 7050 p_cfg_param->cgn_param_mode); 7051 p_cfg_param->cgn_param_mode = LPFC_CFG_OFF; 7052 } 7053 7054 spin_unlock_irq(&phba->hbalock); 7055 } 7056 7057 static const char * const lpfc_cmf_mode_to_str[] = { 7058 "OFF", 7059 "MANAGED", 7060 "MONITOR", 7061 }; 7062 7063 /** 7064 * lpfc_cgn_params_parse - Process a FW cong parm change event 7065 * @phba: pointer to lpfc hba data structure. 7066 * @p_cgn_param: pointer to a data buffer with the FW cong params. 7067 * @len: the size of pdata in bytes. 7068 * 7069 * This routine validates the congestion management buffer signature 7070 * from the FW, validates the contents and makes corrections for 7071 * valid, in-range values. If the signature magic is correct and 7072 * after parameter validation, the contents are copied to the driver's 7073 * @phba structure. If the magic is incorrect, an error message is 7074 * logged. 7075 **/ 7076 static void 7077 lpfc_cgn_params_parse(struct lpfc_hba *phba, 7078 struct lpfc_cgn_param *p_cgn_param, uint32_t len) 7079 { 7080 struct lpfc_cgn_info *cp; 7081 uint32_t crc, oldmode; 7082 char acr_string[4] = {0}; 7083 7084 /* Make sure the FW has encoded the correct magic number to 7085 * validate the congestion parameter in FW memory. 7086 */ 7087 if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) { 7088 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, 7089 "4668 FW cgn parm buffer data: " 7090 "magic 0x%x version %d mode %d " 7091 "level0 %d level1 %d " 7092 "level2 %d byte13 %d " 7093 "byte14 %d byte15 %d " 7094 "byte11 %d byte12 %d activeMode %d\n", 7095 p_cgn_param->cgn_param_magic, 7096 p_cgn_param->cgn_param_version, 7097 p_cgn_param->cgn_param_mode, 7098 p_cgn_param->cgn_param_level0, 7099 p_cgn_param->cgn_param_level1, 7100 p_cgn_param->cgn_param_level2, 7101 p_cgn_param->byte13, 7102 p_cgn_param->byte14, 7103 p_cgn_param->byte15, 7104 p_cgn_param->byte11, 7105 p_cgn_param->byte12, 7106 phba->cmf_active_mode); 7107 7108 oldmode = phba->cmf_active_mode; 7109 7110 /* Any parameters out of range are corrected to defaults 7111 * by this routine. No need to fail. 7112 */ 7113 lpfc_cgn_params_val(phba, p_cgn_param); 7114 7115 /* Parameters are verified, move them into driver storage */ 7116 spin_lock_irq(&phba->hbalock); 7117 memcpy(&phba->cgn_p, p_cgn_param, 7118 sizeof(struct lpfc_cgn_param)); 7119 7120 /* Update parameters in congestion info buffer now */ 7121 if (phba->cgn_i) { 7122 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 7123 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; 7124 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; 7125 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; 7126 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; 7127 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, 7128 LPFC_CGN_CRC32_SEED); 7129 cp->cgn_info_crc = cpu_to_le32(crc); 7130 } 7131 spin_unlock_irq(&phba->hbalock); 7132 7133 phba->cmf_active_mode = phba->cgn_p.cgn_param_mode; 7134 7135 switch (oldmode) { 7136 case LPFC_CFG_OFF: 7137 if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) { 7138 /* Turning CMF on */ 7139 lpfc_cmf_start(phba); 7140 7141 if (phba->link_state >= LPFC_LINK_UP) { 7142 phba->cgn_reg_fpin = 7143 phba->cgn_init_reg_fpin; 7144 phba->cgn_reg_signal = 7145 phba->cgn_init_reg_signal; 7146 lpfc_issue_els_edc(phba->pport, 0); 7147 } 7148 } 7149 break; 7150 case LPFC_CFG_MANAGED: 7151 switch (phba->cgn_p.cgn_param_mode) { 7152 case LPFC_CFG_OFF: 7153 /* Turning CMF off */ 7154 lpfc_cmf_stop(phba); 7155 if (phba->link_state >= LPFC_LINK_UP) 7156 lpfc_issue_els_edc(phba->pport, 0); 7157 break; 7158 case LPFC_CFG_MONITOR: 7159 phba->cmf_max_bytes_per_interval = 7160 phba->cmf_link_byte_count; 7161 7162 /* Resume blocked IO - unblock on workqueue */ 7163 queue_work(phba->wq, 7164 &phba->unblock_request_work); 7165 break; 7166 } 7167 break; 7168 case LPFC_CFG_MONITOR: 7169 switch (phba->cgn_p.cgn_param_mode) { 7170 case LPFC_CFG_OFF: 7171 /* Turning CMF off */ 7172 lpfc_cmf_stop(phba); 7173 if (phba->link_state >= LPFC_LINK_UP) 7174 lpfc_issue_els_edc(phba->pport, 0); 7175 break; 7176 case LPFC_CFG_MANAGED: 7177 lpfc_cmf_signal_init(phba); 7178 break; 7179 } 7180 break; 7181 } 7182 if (oldmode != LPFC_CFG_OFF || 7183 oldmode != phba->cgn_p.cgn_param_mode) { 7184 if (phba->cgn_p.cgn_param_mode == LPFC_CFG_MANAGED) 7185 scnprintf(acr_string, sizeof(acr_string), "%u", 7186 phba->cgn_p.cgn_param_level0); 7187 else 7188 scnprintf(acr_string, sizeof(acr_string), "NA"); 7189 7190 dev_info(&phba->pcidev->dev, "%d: " 7191 "4663 CMF: Mode %s acr %s\n", 7192 phba->brd_no, 7193 lpfc_cmf_mode_to_str 7194 [phba->cgn_p.cgn_param_mode], 7195 acr_string); 7196 } 7197 } else { 7198 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7199 "4669 FW cgn parm buf wrong magic 0x%x " 7200 "version %d\n", p_cgn_param->cgn_param_magic, 7201 p_cgn_param->cgn_param_version); 7202 } 7203 } 7204 7205 /** 7206 * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters. 7207 * @phba: pointer to lpfc hba data structure. 7208 * 7209 * This routine issues a read_object mailbox command to 7210 * get the congestion management parameters from the FW 7211 * parses it and updates the driver maintained values. 7212 * 7213 * Returns 7214 * 0 if the object was empty 7215 * -Eval if an error was encountered 7216 * Count if bytes were read from object 7217 **/ 7218 int 7219 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba) 7220 { 7221 int ret = 0; 7222 struct lpfc_cgn_param *p_cgn_param = NULL; 7223 u32 *pdata = NULL; 7224 u32 len = 0; 7225 7226 /* Find out if the FW has a new set of congestion parameters. */ 7227 len = sizeof(struct lpfc_cgn_param); 7228 pdata = kzalloc(len, GFP_KERNEL); 7229 if (!pdata) 7230 return -ENOMEM; 7231 ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME, 7232 pdata, len); 7233 7234 /* 0 means no data. A negative means error. A positive means 7235 * bytes were copied. 7236 */ 7237 if (!ret) { 7238 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7239 "4670 CGN RD OBJ returns no data\n"); 7240 goto rd_obj_err; 7241 } else if (ret < 0) { 7242 /* Some error. Just exit and return it to the caller.*/ 7243 goto rd_obj_err; 7244 } 7245 7246 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, 7247 "6234 READ CGN PARAMS Successful %d\n", len); 7248 7249 /* Parse data pointer over len and update the phba congestion 7250 * parameters with values passed back. The receive rate values 7251 * may have been altered in FW, but take no action here. 7252 */ 7253 p_cgn_param = (struct lpfc_cgn_param *)pdata; 7254 lpfc_cgn_params_parse(phba, p_cgn_param, len); 7255 7256 rd_obj_err: 7257 kfree(pdata); 7258 return ret; 7259 } 7260 7261 /** 7262 * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event 7263 * @phba: pointer to lpfc hba data structure. 7264 * 7265 * The FW generated Async ACQE SLI event calls this routine when 7266 * the event type is an SLI Internal Port Event and the Event Code 7267 * indicates a change to the FW maintained congestion parameters. 7268 * 7269 * This routine executes a Read_Object mailbox call to obtain the 7270 * current congestion parameters maintained in FW and corrects 7271 * the driver's active congestion parameters. 7272 * 7273 * The acqe event is not passed because there is no further data 7274 * required. 7275 * 7276 * Returns nonzero error if event processing encountered an error. 7277 * Zero otherwise for success. 7278 **/ 7279 static int 7280 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba) 7281 { 7282 int ret = 0; 7283 7284 if (!phba->sli4_hba.pc_sli4_params.cmf) { 7285 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7286 "4664 Cgn Evt when E2E off. Drop event\n"); 7287 return -EACCES; 7288 } 7289 7290 /* If the event is claiming an empty object, it's ok. A write 7291 * could have cleared it. Only error is a negative return 7292 * status. 7293 */ 7294 ret = lpfc_sli4_cgn_params_read(phba); 7295 if (ret < 0) { 7296 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7297 "4667 Error reading Cgn Params (%d)\n", 7298 ret); 7299 } else if (!ret) { 7300 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7301 "4673 CGN Event empty object.\n"); 7302 } 7303 return ret; 7304 } 7305 7306 /** 7307 * lpfc_sli4_async_event_proc - Process all the pending asynchronous event 7308 * @phba: pointer to lpfc hba data structure. 7309 * 7310 * This routine is invoked by the worker thread to process all the pending 7311 * SLI4 asynchronous events. 7312 **/ 7313 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba) 7314 { 7315 struct lpfc_cq_event *cq_event; 7316 unsigned long iflags; 7317 7318 /* First, declare the async event has been handled */ 7319 clear_bit(ASYNC_EVENT, &phba->hba_flag); 7320 7321 /* Now, handle all the async events */ 7322 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 7323 while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) { 7324 list_remove_head(&phba->sli4_hba.sp_asynce_work_queue, 7325 cq_event, struct lpfc_cq_event, list); 7326 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, 7327 iflags); 7328 7329 /* Process the asynchronous event */ 7330 switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) { 7331 case LPFC_TRAILER_CODE_LINK: 7332 lpfc_sli4_async_link_evt(phba, 7333 &cq_event->cqe.acqe_link); 7334 break; 7335 case LPFC_TRAILER_CODE_FCOE: 7336 lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip); 7337 break; 7338 case LPFC_TRAILER_CODE_DCBX: 7339 lpfc_sli4_async_dcbx_evt(phba, 7340 &cq_event->cqe.acqe_dcbx); 7341 break; 7342 case LPFC_TRAILER_CODE_GRP5: 7343 lpfc_sli4_async_grp5_evt(phba, 7344 &cq_event->cqe.acqe_grp5); 7345 break; 7346 case LPFC_TRAILER_CODE_FC: 7347 lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc); 7348 break; 7349 case LPFC_TRAILER_CODE_SLI: 7350 lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli); 7351 break; 7352 default: 7353 lpfc_printf_log(phba, KERN_ERR, 7354 LOG_TRACE_EVENT, 7355 "1804 Invalid asynchronous event code: " 7356 "x%x\n", bf_get(lpfc_trailer_code, 7357 &cq_event->cqe.mcqe_cmpl)); 7358 break; 7359 } 7360 7361 /* Free the completion event processed to the free pool */ 7362 lpfc_sli4_cq_event_release(phba, cq_event); 7363 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 7364 } 7365 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 7366 } 7367 7368 /** 7369 * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event 7370 * @phba: pointer to lpfc hba data structure. 7371 * 7372 * This routine is invoked by the worker thread to process FCF table 7373 * rediscovery pending completion event. 7374 **/ 7375 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba) 7376 { 7377 int rc; 7378 7379 spin_lock_irq(&phba->hbalock); 7380 /* Clear FCF rediscovery timeout event */ 7381 phba->fcf.fcf_flag &= ~FCF_REDISC_EVT; 7382 /* Clear driver fast failover FCF record flag */ 7383 phba->fcf.failover_rec.flag = 0; 7384 /* Set state for FCF fast failover */ 7385 phba->fcf.fcf_flag |= FCF_REDISC_FOV; 7386 spin_unlock_irq(&phba->hbalock); 7387 7388 /* Scan FCF table from the first entry to re-discover SAN */ 7389 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 7390 "2777 Start post-quiescent FCF table scan\n"); 7391 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST); 7392 if (rc) 7393 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7394 "2747 Issue FCF scan read FCF mailbox " 7395 "command failed 0x%x\n", rc); 7396 } 7397 7398 /** 7399 * lpfc_api_table_setup - Set up per hba pci-device group func api jump table 7400 * @phba: pointer to lpfc hba data structure. 7401 * @dev_grp: The HBA PCI-Device group number. 7402 * 7403 * This routine is invoked to set up the per HBA PCI-Device group function 7404 * API jump table entries. 7405 * 7406 * Return: 0 if success, otherwise -ENODEV 7407 **/ 7408 int 7409 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 7410 { 7411 int rc; 7412 7413 /* Set up lpfc PCI-device group */ 7414 phba->pci_dev_grp = dev_grp; 7415 7416 /* The LPFC_PCI_DEV_OC uses SLI4 */ 7417 if (dev_grp == LPFC_PCI_DEV_OC) 7418 phba->sli_rev = LPFC_SLI_REV4; 7419 7420 /* Set up device INIT API function jump table */ 7421 rc = lpfc_init_api_table_setup(phba, dev_grp); 7422 if (rc) 7423 return -ENODEV; 7424 /* Set up SCSI API function jump table */ 7425 rc = lpfc_scsi_api_table_setup(phba, dev_grp); 7426 if (rc) 7427 return -ENODEV; 7428 /* Set up SLI API function jump table */ 7429 rc = lpfc_sli_api_table_setup(phba, dev_grp); 7430 if (rc) 7431 return -ENODEV; 7432 /* Set up MBOX API function jump table */ 7433 rc = lpfc_mbox_api_table_setup(phba, dev_grp); 7434 if (rc) 7435 return -ENODEV; 7436 7437 return 0; 7438 } 7439 7440 /** 7441 * lpfc_log_intr_mode - Log the active interrupt mode 7442 * @phba: pointer to lpfc hba data structure. 7443 * @intr_mode: active interrupt mode adopted. 7444 * 7445 * This routine it invoked to log the currently used active interrupt mode 7446 * to the device. 7447 **/ 7448 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode) 7449 { 7450 switch (intr_mode) { 7451 case 0: 7452 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7453 "0470 Enable INTx interrupt mode.\n"); 7454 break; 7455 case 1: 7456 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7457 "0481 Enabled MSI interrupt mode.\n"); 7458 break; 7459 case 2: 7460 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7461 "0480 Enabled MSI-X interrupt mode.\n"); 7462 break; 7463 default: 7464 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7465 "0482 Illegal interrupt mode.\n"); 7466 break; 7467 } 7468 return; 7469 } 7470 7471 /** 7472 * lpfc_enable_pci_dev - Enable a generic PCI device. 7473 * @phba: pointer to lpfc hba data structure. 7474 * 7475 * This routine is invoked to enable the PCI device that is common to all 7476 * PCI devices. 7477 * 7478 * Return codes 7479 * 0 - successful 7480 * other values - error 7481 **/ 7482 static int 7483 lpfc_enable_pci_dev(struct lpfc_hba *phba) 7484 { 7485 struct pci_dev *pdev; 7486 7487 /* Obtain PCI device reference */ 7488 if (!phba->pcidev) 7489 goto out_error; 7490 else 7491 pdev = phba->pcidev; 7492 /* Enable PCI device */ 7493 if (pci_enable_device_mem(pdev)) 7494 goto out_error; 7495 /* Request PCI resource for the device */ 7496 if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME)) 7497 goto out_disable_device; 7498 /* Set up device as PCI master and save state for EEH */ 7499 pci_set_master(pdev); 7500 pci_try_set_mwi(pdev); 7501 pci_save_state(pdev); 7502 7503 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 7504 if (pci_is_pcie(pdev)) 7505 pdev->needs_freset = 1; 7506 7507 return 0; 7508 7509 out_disable_device: 7510 pci_disable_device(pdev); 7511 out_error: 7512 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7513 "1401 Failed to enable pci device\n"); 7514 return -ENODEV; 7515 } 7516 7517 /** 7518 * lpfc_disable_pci_dev - Disable a generic PCI device. 7519 * @phba: pointer to lpfc hba data structure. 7520 * 7521 * This routine is invoked to disable the PCI device that is common to all 7522 * PCI devices. 7523 **/ 7524 static void 7525 lpfc_disable_pci_dev(struct lpfc_hba *phba) 7526 { 7527 struct pci_dev *pdev; 7528 7529 /* Obtain PCI device reference */ 7530 if (!phba->pcidev) 7531 return; 7532 else 7533 pdev = phba->pcidev; 7534 /* Release PCI resource and disable PCI device */ 7535 pci_release_mem_regions(pdev); 7536 pci_disable_device(pdev); 7537 7538 return; 7539 } 7540 7541 /** 7542 * lpfc_reset_hba - Reset a hba 7543 * @phba: pointer to lpfc hba data structure. 7544 * 7545 * This routine is invoked to reset a hba device. It brings the HBA 7546 * offline, performs a board restart, and then brings the board back 7547 * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up 7548 * on outstanding mailbox commands. 7549 **/ 7550 void 7551 lpfc_reset_hba(struct lpfc_hba *phba) 7552 { 7553 int rc = 0; 7554 7555 /* If resets are disabled then set error state and return. */ 7556 if (!phba->cfg_enable_hba_reset) { 7557 phba->link_state = LPFC_HBA_ERROR; 7558 return; 7559 } 7560 7561 /* If not LPFC_SLI_ACTIVE, force all IO to be flushed */ 7562 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) { 7563 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 7564 } else { 7565 if (test_bit(MBX_TMO_ERR, &phba->bit_flags)) { 7566 /* Perform a PCI function reset to start from clean */ 7567 rc = lpfc_pci_function_reset(phba); 7568 lpfc_els_flush_all_cmd(phba); 7569 } 7570 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 7571 lpfc_sli_flush_io_rings(phba); 7572 } 7573 lpfc_offline(phba); 7574 clear_bit(MBX_TMO_ERR, &phba->bit_flags); 7575 if (unlikely(rc)) { 7576 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7577 "8888 PCI function reset failed rc %x\n", 7578 rc); 7579 } else { 7580 lpfc_sli_brdrestart(phba); 7581 lpfc_online(phba); 7582 lpfc_unblock_mgmt_io(phba); 7583 } 7584 } 7585 7586 /** 7587 * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions 7588 * @phba: pointer to lpfc hba data structure. 7589 * 7590 * This function enables the PCI SR-IOV virtual functions to a physical 7591 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 7592 * enable the number of virtual functions to the physical function. As 7593 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 7594 * API call does not considered as an error condition for most of the device. 7595 **/ 7596 uint16_t 7597 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba) 7598 { 7599 struct pci_dev *pdev = phba->pcidev; 7600 uint16_t nr_virtfn; 7601 int pos; 7602 7603 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 7604 if (pos == 0) 7605 return 0; 7606 7607 pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn); 7608 return nr_virtfn; 7609 } 7610 7611 /** 7612 * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions 7613 * @phba: pointer to lpfc hba data structure. 7614 * @nr_vfn: number of virtual functions to be enabled. 7615 * 7616 * This function enables the PCI SR-IOV virtual functions to a physical 7617 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 7618 * enable the number of virtual functions to the physical function. As 7619 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 7620 * API call does not considered as an error condition for most of the device. 7621 **/ 7622 int 7623 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn) 7624 { 7625 struct pci_dev *pdev = phba->pcidev; 7626 uint16_t max_nr_vfn; 7627 int rc; 7628 7629 max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba); 7630 if (nr_vfn > max_nr_vfn) { 7631 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7632 "3057 Requested vfs (%d) greater than " 7633 "supported vfs (%d)", nr_vfn, max_nr_vfn); 7634 return -EINVAL; 7635 } 7636 7637 rc = pci_enable_sriov(pdev, nr_vfn); 7638 if (rc) { 7639 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7640 "2806 Failed to enable sriov on this device " 7641 "with vfn number nr_vf:%d, rc:%d\n", 7642 nr_vfn, rc); 7643 } else 7644 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7645 "2807 Successful enable sriov on this device " 7646 "with vfn number nr_vf:%d\n", nr_vfn); 7647 return rc; 7648 } 7649 7650 static void 7651 lpfc_unblock_requests_work(struct work_struct *work) 7652 { 7653 struct lpfc_hba *phba = container_of(work, struct lpfc_hba, 7654 unblock_request_work); 7655 7656 lpfc_unblock_requests(phba); 7657 } 7658 7659 /** 7660 * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources. 7661 * @phba: pointer to lpfc hba data structure. 7662 * 7663 * This routine is invoked to set up the driver internal resources before the 7664 * device specific resource setup to support the HBA device it attached to. 7665 * 7666 * Return codes 7667 * 0 - successful 7668 * other values - error 7669 **/ 7670 static int 7671 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba) 7672 { 7673 struct lpfc_sli *psli = &phba->sli; 7674 7675 /* 7676 * Driver resources common to all SLI revisions 7677 */ 7678 atomic_set(&phba->fast_event_count, 0); 7679 atomic_set(&phba->dbg_log_idx, 0); 7680 atomic_set(&phba->dbg_log_cnt, 0); 7681 atomic_set(&phba->dbg_log_dmping, 0); 7682 spin_lock_init(&phba->hbalock); 7683 7684 /* Initialize port_list spinlock */ 7685 spin_lock_init(&phba->port_list_lock); 7686 INIT_LIST_HEAD(&phba->port_list); 7687 7688 INIT_LIST_HEAD(&phba->work_list); 7689 7690 /* Initialize the wait queue head for the kernel thread */ 7691 init_waitqueue_head(&phba->work_waitq); 7692 7693 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7694 "1403 Protocols supported %s %s %s\n", 7695 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ? 7696 "SCSI" : " "), 7697 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ? 7698 "NVME" : " "), 7699 (phba->nvmet_support ? "NVMET" : " ")); 7700 7701 /* ras_fwlog state */ 7702 spin_lock_init(&phba->ras_fwlog_lock); 7703 7704 /* Initialize the IO buffer list used by driver for SLI3 SCSI */ 7705 spin_lock_init(&phba->scsi_buf_list_get_lock); 7706 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get); 7707 spin_lock_init(&phba->scsi_buf_list_put_lock); 7708 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put); 7709 7710 /* Initialize the fabric iocb list */ 7711 INIT_LIST_HEAD(&phba->fabric_iocb_list); 7712 7713 /* Initialize list to save ELS buffers */ 7714 INIT_LIST_HEAD(&phba->elsbuf); 7715 7716 /* Initialize FCF connection rec list */ 7717 INIT_LIST_HEAD(&phba->fcf_conn_rec_list); 7718 7719 /* Initialize OAS configuration list */ 7720 spin_lock_init(&phba->devicelock); 7721 INIT_LIST_HEAD(&phba->luns); 7722 7723 /* MBOX heartbeat timer */ 7724 timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0); 7725 /* Fabric block timer */ 7726 timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0); 7727 /* EA polling mode timer */ 7728 timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0); 7729 /* Heartbeat timer */ 7730 timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0); 7731 7732 INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work); 7733 7734 INIT_DELAYED_WORK(&phba->idle_stat_delay_work, 7735 lpfc_idle_stat_delay_work); 7736 INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work); 7737 return 0; 7738 } 7739 7740 /** 7741 * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev 7742 * @phba: pointer to lpfc hba data structure. 7743 * 7744 * This routine is invoked to set up the driver internal resources specific to 7745 * support the SLI-3 HBA device it attached to. 7746 * 7747 * Return codes 7748 * 0 - successful 7749 * other values - error 7750 **/ 7751 static int 7752 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba) 7753 { 7754 int rc, entry_sz; 7755 7756 /* 7757 * Initialize timers used by driver 7758 */ 7759 7760 /* FCP polling mode timer */ 7761 timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0); 7762 7763 /* Host attention work mask setup */ 7764 phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT); 7765 phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4)); 7766 7767 /* Get all the module params for configuring this host */ 7768 lpfc_get_cfgparam(phba); 7769 /* Set up phase-1 common device driver resources */ 7770 7771 rc = lpfc_setup_driver_resource_phase1(phba); 7772 if (rc) 7773 return -ENODEV; 7774 7775 if (!phba->sli.sli3_ring) 7776 phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING, 7777 sizeof(struct lpfc_sli_ring), 7778 GFP_KERNEL); 7779 if (!phba->sli.sli3_ring) 7780 return -ENOMEM; 7781 7782 /* 7783 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size 7784 * used to create the sg_dma_buf_pool must be dynamically calculated. 7785 */ 7786 7787 if (phba->sli_rev == LPFC_SLI_REV4) 7788 entry_sz = sizeof(struct sli4_sge); 7789 else 7790 entry_sz = sizeof(struct ulp_bde64); 7791 7792 /* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */ 7793 if (phba->cfg_enable_bg) { 7794 /* 7795 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd, 7796 * the FCP rsp, and a BDE for each. Sice we have no control 7797 * over how many protection data segments the SCSI Layer 7798 * will hand us (ie: there could be one for every block 7799 * in the IO), we just allocate enough BDEs to accomidate 7800 * our max amount and we need to limit lpfc_sg_seg_cnt to 7801 * minimize the risk of running out. 7802 */ 7803 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 7804 sizeof(struct fcp_rsp) + 7805 (LPFC_MAX_SG_SEG_CNT * entry_sz); 7806 7807 if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF) 7808 phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF; 7809 7810 /* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */ 7811 phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT; 7812 } else { 7813 /* 7814 * The scsi_buf for a regular I/O will hold the FCP cmnd, 7815 * the FCP rsp, a BDE for each, and a BDE for up to 7816 * cfg_sg_seg_cnt data segments. 7817 */ 7818 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 7819 sizeof(struct fcp_rsp) + 7820 ((phba->cfg_sg_seg_cnt + 2) * entry_sz); 7821 7822 /* Total BDEs in BPL for scsi_sg_list */ 7823 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2; 7824 } 7825 7826 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 7827 "9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n", 7828 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 7829 phba->cfg_total_seg_cnt); 7830 7831 phba->max_vpi = LPFC_MAX_VPI; 7832 /* This will be set to correct value after config_port mbox */ 7833 phba->max_vports = 0; 7834 7835 /* 7836 * Initialize the SLI Layer to run with lpfc HBAs. 7837 */ 7838 lpfc_sli_setup(phba); 7839 lpfc_sli_queue_init(phba); 7840 7841 /* Allocate device driver memory */ 7842 if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ)) 7843 return -ENOMEM; 7844 7845 phba->lpfc_sg_dma_buf_pool = 7846 dma_pool_create("lpfc_sg_dma_buf_pool", 7847 &phba->pcidev->dev, phba->cfg_sg_dma_buf_size, 7848 BPL_ALIGN_SZ, 0); 7849 7850 if (!phba->lpfc_sg_dma_buf_pool) 7851 goto fail_free_mem; 7852 7853 phba->lpfc_cmd_rsp_buf_pool = 7854 dma_pool_create("lpfc_cmd_rsp_buf_pool", 7855 &phba->pcidev->dev, 7856 sizeof(struct fcp_cmnd) + 7857 sizeof(struct fcp_rsp), 7858 BPL_ALIGN_SZ, 0); 7859 7860 if (!phba->lpfc_cmd_rsp_buf_pool) 7861 goto fail_free_dma_buf_pool; 7862 7863 /* 7864 * Enable sr-iov virtual functions if supported and configured 7865 * through the module parameter. 7866 */ 7867 if (phba->cfg_sriov_nr_virtfn > 0) { 7868 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 7869 phba->cfg_sriov_nr_virtfn); 7870 if (rc) { 7871 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7872 "2808 Requested number of SR-IOV " 7873 "virtual functions (%d) is not " 7874 "supported\n", 7875 phba->cfg_sriov_nr_virtfn); 7876 phba->cfg_sriov_nr_virtfn = 0; 7877 } 7878 } 7879 7880 return 0; 7881 7882 fail_free_dma_buf_pool: 7883 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 7884 phba->lpfc_sg_dma_buf_pool = NULL; 7885 fail_free_mem: 7886 lpfc_mem_free(phba); 7887 return -ENOMEM; 7888 } 7889 7890 /** 7891 * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev 7892 * @phba: pointer to lpfc hba data structure. 7893 * 7894 * This routine is invoked to unset the driver internal resources set up 7895 * specific for supporting the SLI-3 HBA device it attached to. 7896 **/ 7897 static void 7898 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba) 7899 { 7900 /* Free device driver memory allocated */ 7901 lpfc_mem_free_all(phba); 7902 7903 return; 7904 } 7905 7906 /** 7907 * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev 7908 * @phba: pointer to lpfc hba data structure. 7909 * 7910 * This routine is invoked to set up the driver internal resources specific to 7911 * support the SLI-4 HBA device it attached to. 7912 * 7913 * Return codes 7914 * 0 - successful 7915 * other values - error 7916 **/ 7917 static int 7918 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba) 7919 { 7920 LPFC_MBOXQ_t *mboxq; 7921 MAILBOX_t *mb; 7922 int rc, i, max_buf_size; 7923 int longs; 7924 int extra; 7925 uint64_t wwn; 7926 7927 phba->sli4_hba.num_present_cpu = lpfc_present_cpu; 7928 phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1; 7929 phba->sli4_hba.curr_disp_cpu = 0; 7930 7931 /* Get all the module params for configuring this host */ 7932 lpfc_get_cfgparam(phba); 7933 7934 /* Set up phase-1 common device driver resources */ 7935 rc = lpfc_setup_driver_resource_phase1(phba); 7936 if (rc) 7937 return -ENODEV; 7938 7939 /* Before proceed, wait for POST done and device ready */ 7940 rc = lpfc_sli4_post_status_check(phba); 7941 if (rc) 7942 return -ENODEV; 7943 7944 /* Allocate all driver workqueues here */ 7945 7946 /* The lpfc_wq workqueue for deferred irq use */ 7947 phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM | WQ_PERCPU, 0); 7948 if (!phba->wq) 7949 return -ENOMEM; 7950 7951 /* 7952 * Initialize timers used by driver 7953 */ 7954 7955 timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0); 7956 7957 /* FCF rediscover timer */ 7958 timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0); 7959 7960 /* CMF congestion timer */ 7961 hrtimer_setup(&phba->cmf_timer, lpfc_cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 7962 /* CMF 1 minute stats collection timer */ 7963 hrtimer_setup(&phba->cmf_stats_timer, lpfc_cmf_stats_timer, CLOCK_MONOTONIC, 7964 HRTIMER_MODE_REL); 7965 7966 /* 7967 * Control structure for handling external multi-buffer mailbox 7968 * command pass-through. 7969 */ 7970 memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0, 7971 sizeof(struct lpfc_mbox_ext_buf_ctx)); 7972 INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list); 7973 7974 phba->max_vpi = LPFC_MAX_VPI; 7975 7976 /* This will be set to correct value after the read_config mbox */ 7977 phba->max_vports = 0; 7978 7979 /* Program the default value of vlan_id and fc_map */ 7980 phba->valid_vlan = 0; 7981 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 7982 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 7983 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 7984 7985 /* 7986 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands 7987 * we will associate a new ring, for each EQ/CQ/WQ tuple. 7988 * The WQ create will allocate the ring. 7989 */ 7990 7991 /* Initialize buffer queue management fields */ 7992 INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list); 7993 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc; 7994 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free; 7995 7996 /* for VMID idle timeout if VMID is enabled */ 7997 if (lpfc_is_vmid_enabled(phba)) 7998 timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0); 7999 8000 /* 8001 * Initialize the SLI Layer to run with lpfc SLI4 HBAs. 8002 */ 8003 /* Initialize the Abort buffer list used by driver */ 8004 spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock); 8005 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list); 8006 8007 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 8008 /* Initialize the Abort nvme buffer list used by driver */ 8009 spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock); 8010 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 8011 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list); 8012 spin_lock_init(&phba->sli4_hba.t_active_list_lock); 8013 INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list); 8014 } 8015 8016 /* This abort list used by worker thread */ 8017 spin_lock_init(&phba->sli4_hba.sgl_list_lock); 8018 spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock); 8019 spin_lock_init(&phba->sli4_hba.asynce_list_lock); 8020 spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock); 8021 8022 /* 8023 * Initialize driver internal slow-path work queues 8024 */ 8025 8026 /* Driver internel slow-path CQ Event pool */ 8027 INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool); 8028 /* Response IOCB work queue list */ 8029 INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event); 8030 /* Asynchronous event CQ Event work queue list */ 8031 INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue); 8032 /* Slow-path XRI aborted CQ Event work queue list */ 8033 INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue); 8034 /* Receive queue CQ Event work queue list */ 8035 INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue); 8036 8037 /* Initialize extent block lists. */ 8038 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list); 8039 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list); 8040 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list); 8041 INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list); 8042 8043 /* Initialize mboxq lists. If the early init routines fail 8044 * these lists need to be correctly initialized. 8045 */ 8046 INIT_LIST_HEAD(&phba->sli.mboxq); 8047 INIT_LIST_HEAD(&phba->sli.mboxq_cmpl); 8048 8049 /* initialize optic_state to 0xFF */ 8050 phba->sli4_hba.lnk_info.optic_state = 0xff; 8051 8052 /* Allocate device driver memory */ 8053 rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ); 8054 if (rc) 8055 goto out_destroy_workqueue; 8056 8057 /* IF Type 2 ports get initialized now. */ 8058 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 8059 LPFC_SLI_INTF_IF_TYPE_2) { 8060 rc = lpfc_pci_function_reset(phba); 8061 if (unlikely(rc)) { 8062 rc = -ENODEV; 8063 goto out_free_mem; 8064 } 8065 phba->temp_sensor_support = 1; 8066 } 8067 8068 /* Create the bootstrap mailbox command */ 8069 rc = lpfc_create_bootstrap_mbox(phba); 8070 if (unlikely(rc)) 8071 goto out_free_mem; 8072 8073 /* Set up the host's endian order with the device. */ 8074 rc = lpfc_setup_endian_order(phba); 8075 if (unlikely(rc)) 8076 goto out_free_bsmbx; 8077 8078 /* Set up the hba's configuration parameters. */ 8079 rc = lpfc_sli4_read_config(phba); 8080 if (unlikely(rc)) 8081 goto out_free_bsmbx; 8082 8083 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) { 8084 /* Right now the link is down, if FA-PWWN is configured the 8085 * firmware will try FLOGI before the driver gets a link up. 8086 * If it fails, the driver should get a MISCONFIGURED async 8087 * event which will clear this flag. The only notification 8088 * the driver gets is if it fails, if it succeeds there is no 8089 * notification given. Assume success. 8090 */ 8091 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 8092 } 8093 8094 rc = lpfc_mem_alloc_active_rrq_pool_s4(phba); 8095 if (unlikely(rc)) 8096 goto out_free_bsmbx; 8097 8098 /* IF Type 0 ports get initialized now. */ 8099 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8100 LPFC_SLI_INTF_IF_TYPE_0) { 8101 rc = lpfc_pci_function_reset(phba); 8102 if (unlikely(rc)) 8103 goto out_free_bsmbx; 8104 } 8105 8106 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 8107 GFP_KERNEL); 8108 if (!mboxq) { 8109 rc = -ENOMEM; 8110 goto out_free_bsmbx; 8111 } 8112 8113 /* Check for NVMET being configured */ 8114 phba->nvmet_support = 0; 8115 if (lpfc_enable_nvmet_cnt) { 8116 8117 /* First get WWN of HBA instance */ 8118 lpfc_read_nv(phba, mboxq); 8119 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8120 if (rc != MBX_SUCCESS) { 8121 lpfc_printf_log(phba, KERN_ERR, 8122 LOG_TRACE_EVENT, 8123 "6016 Mailbox failed , mbxCmd x%x " 8124 "READ_NV, mbxStatus x%x\n", 8125 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8126 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 8127 mempool_free(mboxq, phba->mbox_mem_pool); 8128 rc = -EIO; 8129 goto out_free_bsmbx; 8130 } 8131 mb = &mboxq->u.mb; 8132 memcpy(&wwn, (char *)mb->un.varRDnvp.nodename, 8133 sizeof(uint64_t)); 8134 wwn = cpu_to_be64(wwn); 8135 phba->sli4_hba.wwnn.u.name = wwn; 8136 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, 8137 sizeof(uint64_t)); 8138 /* wwn is WWPN of HBA instance */ 8139 wwn = cpu_to_be64(wwn); 8140 phba->sli4_hba.wwpn.u.name = wwn; 8141 8142 /* Check to see if it matches any module parameter */ 8143 for (i = 0; i < lpfc_enable_nvmet_cnt; i++) { 8144 if (wwn == lpfc_enable_nvmet[i]) { 8145 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 8146 if (lpfc_nvmet_mem_alloc(phba)) 8147 break; 8148 8149 phba->nvmet_support = 1; /* a match */ 8150 8151 lpfc_printf_log(phba, KERN_ERR, 8152 LOG_TRACE_EVENT, 8153 "6017 NVME Target %016llx\n", 8154 wwn); 8155 #else 8156 lpfc_printf_log(phba, KERN_ERR, 8157 LOG_TRACE_EVENT, 8158 "6021 Can't enable NVME Target." 8159 " NVME_TARGET_FC infrastructure" 8160 " is not in kernel\n"); 8161 #endif 8162 /* Not supported for NVMET */ 8163 phba->cfg_xri_rebalancing = 0; 8164 if (phba->irq_chann_mode == NHT_MODE) { 8165 phba->cfg_irq_chann = 8166 phba->sli4_hba.num_present_cpu; 8167 phba->cfg_hdw_queue = 8168 phba->sli4_hba.num_present_cpu; 8169 phba->irq_chann_mode = NORMAL_MODE; 8170 } 8171 break; 8172 } 8173 } 8174 } 8175 8176 lpfc_nvme_mod_param_dep(phba); 8177 8178 /* 8179 * Get sli4 parameters that override parameters from Port capabilities. 8180 * If this call fails, it isn't critical unless the SLI4 parameters come 8181 * back in conflict. 8182 */ 8183 rc = lpfc_get_sli4_parameters(phba, mboxq); 8184 if (rc) { 8185 lpfc_log_msg(phba, KERN_WARNING, LOG_INIT, 8186 "2999 Could not get SLI4 parameters\n"); 8187 rc = -EIO; 8188 mempool_free(mboxq, phba->mbox_mem_pool); 8189 goto out_free_bsmbx; 8190 } 8191 8192 /* 8193 * 1 for cmd, 1 for rsp, NVME adds an extra one 8194 * for boundary conditions in its max_sgl_segment template. 8195 */ 8196 extra = 2; 8197 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 8198 extra++; 8199 8200 /* 8201 * It doesn't matter what family our adapter is in, we are 8202 * limited to 2 Pages, 512 SGEs, for our SGL. 8203 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp 8204 */ 8205 max_buf_size = (2 * SLI4_PAGE_SIZE); 8206 8207 /* 8208 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size 8209 * used to create the sg_dma_buf_pool must be calculated. 8210 */ 8211 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8212 /* Both cfg_enable_bg and cfg_external_dif code paths */ 8213 8214 /* 8215 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd, 8216 * the FCP rsp, and a SGE. Sice we have no control 8217 * over how many protection segments the SCSI Layer 8218 * will hand us (ie: there could be one for every block 8219 * in the IO), just allocate enough SGEs to accomidate 8220 * our max amount and we need to limit lpfc_sg_seg_cnt 8221 * to minimize the risk of running out. 8222 */ 8223 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd32) + 8224 sizeof(struct fcp_rsp) + max_buf_size; 8225 8226 /* Total SGEs for scsi_sg_list and scsi_sg_prot_list */ 8227 phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT; 8228 8229 /* 8230 * If supporting DIF, reduce the seg count for scsi to 8231 * allow room for the DIF sges. 8232 */ 8233 if (phba->cfg_enable_bg && 8234 phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF) 8235 phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF; 8236 else 8237 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 8238 8239 } else { 8240 /* 8241 * The scsi_buf for a regular I/O holds the FCP cmnd, 8242 * the FCP rsp, a SGE for each, and a SGE for up to 8243 * cfg_sg_seg_cnt data segments. 8244 */ 8245 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd32) + 8246 sizeof(struct fcp_rsp) + 8247 ((phba->cfg_sg_seg_cnt + extra) * 8248 sizeof(struct sli4_sge)); 8249 8250 /* Total SGEs for scsi_sg_list */ 8251 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra; 8252 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 8253 8254 /* 8255 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only 8256 * need to post 1 page for the SGL. 8257 */ 8258 } 8259 8260 if (phba->cfg_xpsgl && !phba->nvmet_support) 8261 phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE; 8262 else if (phba->cfg_sg_dma_buf_size <= LPFC_MIN_SG_SLI4_BUF_SZ) 8263 phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ; 8264 else 8265 phba->cfg_sg_dma_buf_size = 8266 SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size); 8267 8268 phba->border_sge_num = phba->cfg_sg_dma_buf_size / 8269 sizeof(struct sli4_sge); 8270 8271 /* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */ 8272 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 8273 if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) { 8274 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 8275 "6300 Reducing NVME sg segment " 8276 "cnt to %d\n", 8277 LPFC_MAX_NVME_SEG_CNT); 8278 phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 8279 } else 8280 phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt; 8281 } 8282 8283 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 8284 "9087 sg_seg_cnt:%d dmabuf_size:%d " 8285 "total:%d scsi:%d nvme:%d\n", 8286 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 8287 phba->cfg_total_seg_cnt, phba->cfg_scsi_seg_cnt, 8288 phba->cfg_nvme_seg_cnt); 8289 8290 i = min(phba->cfg_sg_dma_buf_size, SLI4_PAGE_SIZE); 8291 8292 phba->lpfc_sg_dma_buf_pool = 8293 dma_pool_create("lpfc_sg_dma_buf_pool", 8294 &phba->pcidev->dev, 8295 phba->cfg_sg_dma_buf_size, 8296 i, 0); 8297 if (!phba->lpfc_sg_dma_buf_pool) { 8298 rc = -ENOMEM; 8299 goto out_free_bsmbx; 8300 } 8301 8302 phba->lpfc_cmd_rsp_buf_pool = 8303 dma_pool_create("lpfc_cmd_rsp_buf_pool", 8304 &phba->pcidev->dev, 8305 sizeof(struct fcp_cmnd32) + 8306 sizeof(struct fcp_rsp), 8307 i, 0); 8308 if (!phba->lpfc_cmd_rsp_buf_pool) { 8309 rc = -ENOMEM; 8310 goto out_free_sg_dma_buf; 8311 } 8312 8313 mempool_free(mboxq, phba->mbox_mem_pool); 8314 8315 /* Verify OAS is supported */ 8316 lpfc_sli4_oas_verify(phba); 8317 8318 /* Verify RAS support on adapter */ 8319 lpfc_sli4_ras_init(phba); 8320 8321 /* Verify all the SLI4 queues */ 8322 rc = lpfc_sli4_queue_verify(phba); 8323 if (rc) 8324 goto out_free_cmd_rsp_buf; 8325 8326 /* Create driver internal CQE event pool */ 8327 rc = lpfc_sli4_cq_event_pool_create(phba); 8328 if (rc) 8329 goto out_free_cmd_rsp_buf; 8330 8331 /* Initialize sgl lists per host */ 8332 lpfc_init_sgl_list(phba); 8333 8334 /* Allocate and initialize active sgl array */ 8335 rc = lpfc_init_active_sgl_array(phba); 8336 if (rc) { 8337 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8338 "1430 Failed to initialize sgl list.\n"); 8339 goto out_destroy_cq_event_pool; 8340 } 8341 rc = lpfc_sli4_init_rpi_hdrs(phba); 8342 if (rc) { 8343 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8344 "1432 Failed to initialize rpi headers.\n"); 8345 goto out_free_active_sgl; 8346 } 8347 8348 /* Allocate eligible FCF bmask memory for FCF roundrobin failover */ 8349 longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG; 8350 phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long), 8351 GFP_KERNEL); 8352 if (!phba->fcf.fcf_rr_bmask) { 8353 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8354 "2759 Failed allocate memory for FCF round " 8355 "robin failover bmask\n"); 8356 rc = -ENOMEM; 8357 goto out_remove_rpi_hdrs; 8358 } 8359 8360 phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann, 8361 sizeof(struct lpfc_hba_eq_hdl), 8362 GFP_KERNEL); 8363 if (!phba->sli4_hba.hba_eq_hdl) { 8364 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8365 "2572 Failed allocate memory for " 8366 "fast-path per-EQ handle array\n"); 8367 rc = -ENOMEM; 8368 goto out_free_fcf_rr_bmask; 8369 } 8370 8371 phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu, 8372 sizeof(struct lpfc_vector_map_info), 8373 GFP_KERNEL); 8374 if (!phba->sli4_hba.cpu_map) { 8375 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8376 "3327 Failed allocate memory for msi-x " 8377 "interrupt vector mapping\n"); 8378 rc = -ENOMEM; 8379 goto out_free_hba_eq_hdl; 8380 } 8381 8382 phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info); 8383 if (!phba->sli4_hba.eq_info) { 8384 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8385 "3321 Failed allocation for per_cpu stats\n"); 8386 rc = -ENOMEM; 8387 goto out_free_hba_cpu_map; 8388 } 8389 8390 phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu, 8391 sizeof(*phba->sli4_hba.idle_stat), 8392 GFP_KERNEL); 8393 if (!phba->sli4_hba.idle_stat) { 8394 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8395 "3390 Failed allocation for idle_stat\n"); 8396 rc = -ENOMEM; 8397 goto out_free_hba_eq_info; 8398 } 8399 8400 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 8401 phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat); 8402 if (!phba->sli4_hba.c_stat) { 8403 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8404 "3332 Failed allocating per cpu hdwq stats\n"); 8405 rc = -ENOMEM; 8406 goto out_free_hba_idle_stat; 8407 } 8408 #endif 8409 8410 phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat); 8411 if (!phba->cmf_stat) { 8412 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8413 "3331 Failed allocating per cpu cgn stats\n"); 8414 rc = -ENOMEM; 8415 goto out_free_hba_hdwq_info; 8416 } 8417 8418 /* 8419 * Enable sr-iov virtual functions if supported and configured 8420 * through the module parameter. 8421 */ 8422 if (phba->cfg_sriov_nr_virtfn > 0) { 8423 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 8424 phba->cfg_sriov_nr_virtfn); 8425 if (rc) { 8426 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 8427 "3020 Requested number of SR-IOV " 8428 "virtual functions (%d) is not " 8429 "supported\n", 8430 phba->cfg_sriov_nr_virtfn); 8431 phba->cfg_sriov_nr_virtfn = 0; 8432 } 8433 } 8434 8435 return 0; 8436 8437 out_free_hba_hdwq_info: 8438 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 8439 free_percpu(phba->sli4_hba.c_stat); 8440 out_free_hba_idle_stat: 8441 #endif 8442 kfree(phba->sli4_hba.idle_stat); 8443 out_free_hba_eq_info: 8444 free_percpu(phba->sli4_hba.eq_info); 8445 out_free_hba_cpu_map: 8446 kfree(phba->sli4_hba.cpu_map); 8447 out_free_hba_eq_hdl: 8448 kfree(phba->sli4_hba.hba_eq_hdl); 8449 out_free_fcf_rr_bmask: 8450 kfree(phba->fcf.fcf_rr_bmask); 8451 out_remove_rpi_hdrs: 8452 lpfc_sli4_remove_rpi_hdrs(phba); 8453 out_free_active_sgl: 8454 lpfc_free_active_sgl(phba); 8455 out_destroy_cq_event_pool: 8456 lpfc_sli4_cq_event_pool_destroy(phba); 8457 out_free_cmd_rsp_buf: 8458 dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool); 8459 phba->lpfc_cmd_rsp_buf_pool = NULL; 8460 out_free_sg_dma_buf: 8461 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 8462 phba->lpfc_sg_dma_buf_pool = NULL; 8463 out_free_bsmbx: 8464 lpfc_destroy_bootstrap_mbox(phba); 8465 out_free_mem: 8466 lpfc_mem_free(phba); 8467 out_destroy_workqueue: 8468 destroy_workqueue(phba->wq); 8469 phba->wq = NULL; 8470 return rc; 8471 } 8472 8473 /** 8474 * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev 8475 * @phba: pointer to lpfc hba data structure. 8476 * 8477 * This routine is invoked to unset the driver internal resources set up 8478 * specific for supporting the SLI-4 HBA device it attached to. 8479 **/ 8480 static void 8481 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba) 8482 { 8483 struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry; 8484 8485 free_percpu(phba->sli4_hba.eq_info); 8486 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 8487 free_percpu(phba->sli4_hba.c_stat); 8488 #endif 8489 free_percpu(phba->cmf_stat); 8490 kfree(phba->sli4_hba.idle_stat); 8491 8492 /* Free memory allocated for msi-x interrupt vector to CPU mapping */ 8493 kfree(phba->sli4_hba.cpu_map); 8494 phba->sli4_hba.num_possible_cpu = 0; 8495 phba->sli4_hba.num_present_cpu = 0; 8496 phba->sli4_hba.curr_disp_cpu = 0; 8497 cpumask_clear(&phba->sli4_hba.irq_aff_mask); 8498 8499 /* Free memory allocated for fast-path work queue handles */ 8500 kfree(phba->sli4_hba.hba_eq_hdl); 8501 8502 /* Free the allocated rpi headers. */ 8503 lpfc_sli4_remove_rpi_hdrs(phba); 8504 lpfc_sli4_remove_rpis(phba); 8505 8506 /* Free eligible FCF index bmask */ 8507 kfree(phba->fcf.fcf_rr_bmask); 8508 8509 /* Free the ELS sgl list */ 8510 lpfc_free_active_sgl(phba); 8511 lpfc_free_els_sgl_list(phba); 8512 lpfc_free_nvmet_sgl_list(phba); 8513 8514 /* Free the completion queue EQ event pool */ 8515 lpfc_sli4_cq_event_release_all(phba); 8516 lpfc_sli4_cq_event_pool_destroy(phba); 8517 8518 /* Release resource identifiers. */ 8519 lpfc_sli4_dealloc_resource_identifiers(phba); 8520 8521 /* Free the bsmbx region. */ 8522 lpfc_destroy_bootstrap_mbox(phba); 8523 8524 /* Free the SLI Layer memory with SLI4 HBAs */ 8525 lpfc_mem_free_all(phba); 8526 8527 /* Free the current connect table */ 8528 list_for_each_entry_safe(conn_entry, next_conn_entry, 8529 &phba->fcf_conn_rec_list, list) { 8530 list_del_init(&conn_entry->list); 8531 kfree(conn_entry); 8532 } 8533 8534 return; 8535 } 8536 8537 /** 8538 * lpfc_init_api_table_setup - Set up init api function jump table 8539 * @phba: The hba struct for which this call is being executed. 8540 * @dev_grp: The HBA PCI-Device group number. 8541 * 8542 * This routine sets up the device INIT interface API function jump table 8543 * in @phba struct. 8544 * 8545 * Returns: 0 - success, -ENODEV - failure. 8546 **/ 8547 int 8548 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8549 { 8550 phba->lpfc_hba_init_link = lpfc_hba_init_link; 8551 phba->lpfc_hba_down_link = lpfc_hba_down_link; 8552 phba->lpfc_selective_reset = lpfc_selective_reset; 8553 switch (dev_grp) { 8554 case LPFC_PCI_DEV_LP: 8555 phba->lpfc_hba_down_post = lpfc_hba_down_post_s3; 8556 phba->lpfc_handle_eratt = lpfc_handle_eratt_s3; 8557 phba->lpfc_stop_port = lpfc_stop_port_s3; 8558 break; 8559 case LPFC_PCI_DEV_OC: 8560 phba->lpfc_hba_down_post = lpfc_hba_down_post_s4; 8561 phba->lpfc_handle_eratt = lpfc_handle_eratt_s4; 8562 phba->lpfc_stop_port = lpfc_stop_port_s4; 8563 break; 8564 default: 8565 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8566 "1431 Invalid HBA PCI-device group: 0x%x\n", 8567 dev_grp); 8568 return -ENODEV; 8569 } 8570 return 0; 8571 } 8572 8573 /** 8574 * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources. 8575 * @phba: pointer to lpfc hba data structure. 8576 * 8577 * This routine is invoked to set up the driver internal resources after the 8578 * device specific resource setup to support the HBA device it attached to. 8579 * 8580 * Return codes 8581 * 0 - successful 8582 * other values - error 8583 **/ 8584 static int 8585 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba) 8586 { 8587 int error; 8588 8589 /* Startup the kernel thread for this host adapter. */ 8590 phba->worker_thread = kthread_run(lpfc_do_work, phba, 8591 "lpfc_worker_%d", phba->brd_no); 8592 if (IS_ERR(phba->worker_thread)) { 8593 error = PTR_ERR(phba->worker_thread); 8594 return error; 8595 } 8596 8597 return 0; 8598 } 8599 8600 /** 8601 * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources. 8602 * @phba: pointer to lpfc hba data structure. 8603 * 8604 * This routine is invoked to unset the driver internal resources set up after 8605 * the device specific resource setup for supporting the HBA device it 8606 * attached to. 8607 **/ 8608 static void 8609 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba) 8610 { 8611 if (phba->wq) { 8612 destroy_workqueue(phba->wq); 8613 phba->wq = NULL; 8614 } 8615 8616 /* Stop kernel worker thread */ 8617 if (phba->worker_thread) 8618 kthread_stop(phba->worker_thread); 8619 } 8620 8621 /** 8622 * lpfc_free_iocb_list - Free iocb list. 8623 * @phba: pointer to lpfc hba data structure. 8624 * 8625 * This routine is invoked to free the driver's IOCB list and memory. 8626 **/ 8627 void 8628 lpfc_free_iocb_list(struct lpfc_hba *phba) 8629 { 8630 struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL; 8631 8632 spin_lock_irq(&phba->hbalock); 8633 list_for_each_entry_safe(iocbq_entry, iocbq_next, 8634 &phba->lpfc_iocb_list, list) { 8635 list_del(&iocbq_entry->list); 8636 kfree(iocbq_entry); 8637 phba->total_iocbq_bufs--; 8638 } 8639 spin_unlock_irq(&phba->hbalock); 8640 8641 return; 8642 } 8643 8644 /** 8645 * lpfc_init_iocb_list - Allocate and initialize iocb list. 8646 * @phba: pointer to lpfc hba data structure. 8647 * @iocb_count: number of requested iocbs 8648 * 8649 * This routine is invoked to allocate and initizlize the driver's IOCB 8650 * list and set up the IOCB tag array accordingly. 8651 * 8652 * Return codes 8653 * 0 - successful 8654 * other values - error 8655 **/ 8656 int 8657 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count) 8658 { 8659 struct lpfc_iocbq *iocbq_entry = NULL; 8660 uint16_t iotag; 8661 int i; 8662 8663 /* Initialize and populate the iocb list per host. */ 8664 INIT_LIST_HEAD(&phba->lpfc_iocb_list); 8665 for (i = 0; i < iocb_count; i++) { 8666 iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL); 8667 if (iocbq_entry == NULL) { 8668 printk(KERN_ERR "%s: only allocated %d iocbs of " 8669 "expected %d count. Unloading driver.\n", 8670 __func__, i, iocb_count); 8671 goto out_free_iocbq; 8672 } 8673 8674 iotag = lpfc_sli_next_iotag(phba, iocbq_entry); 8675 if (iotag == 0) { 8676 kfree(iocbq_entry); 8677 printk(KERN_ERR "%s: failed to allocate IOTAG. " 8678 "Unloading driver.\n", __func__); 8679 goto out_free_iocbq; 8680 } 8681 iocbq_entry->sli4_lxritag = NO_XRI; 8682 iocbq_entry->sli4_xritag = NO_XRI; 8683 8684 spin_lock_irq(&phba->hbalock); 8685 list_add(&iocbq_entry->list, &phba->lpfc_iocb_list); 8686 phba->total_iocbq_bufs++; 8687 spin_unlock_irq(&phba->hbalock); 8688 } 8689 8690 return 0; 8691 8692 out_free_iocbq: 8693 lpfc_free_iocb_list(phba); 8694 8695 return -ENOMEM; 8696 } 8697 8698 /** 8699 * lpfc_free_sgl_list - Free a given sgl list. 8700 * @phba: pointer to lpfc hba data structure. 8701 * @sglq_list: pointer to the head of sgl list. 8702 * 8703 * This routine is invoked to free a give sgl list and memory. 8704 **/ 8705 void 8706 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list) 8707 { 8708 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 8709 8710 list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) { 8711 list_del(&sglq_entry->list); 8712 lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys); 8713 kfree(sglq_entry); 8714 } 8715 } 8716 8717 /** 8718 * lpfc_free_els_sgl_list - Free els sgl list. 8719 * @phba: pointer to lpfc hba data structure. 8720 * 8721 * This routine is invoked to free the driver's els sgl list and memory. 8722 **/ 8723 static void 8724 lpfc_free_els_sgl_list(struct lpfc_hba *phba) 8725 { 8726 LIST_HEAD(sglq_list); 8727 8728 /* Retrieve all els sgls from driver list */ 8729 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 8730 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list); 8731 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 8732 8733 /* Now free the sgl list */ 8734 lpfc_free_sgl_list(phba, &sglq_list); 8735 } 8736 8737 /** 8738 * lpfc_free_nvmet_sgl_list - Free nvmet sgl list. 8739 * @phba: pointer to lpfc hba data structure. 8740 * 8741 * This routine is invoked to free the driver's nvmet sgl list and memory. 8742 **/ 8743 static void 8744 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba) 8745 { 8746 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 8747 LIST_HEAD(sglq_list); 8748 8749 /* Retrieve all nvmet sgls from driver list */ 8750 spin_lock_irq(&phba->hbalock); 8751 spin_lock(&phba->sli4_hba.sgl_list_lock); 8752 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list); 8753 spin_unlock(&phba->sli4_hba.sgl_list_lock); 8754 spin_unlock_irq(&phba->hbalock); 8755 8756 /* Now free the sgl list */ 8757 list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) { 8758 list_del(&sglq_entry->list); 8759 lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys); 8760 kfree(sglq_entry); 8761 } 8762 8763 /* Update the nvmet_xri_cnt to reflect no current sgls. 8764 * The next initialization cycle sets the count and allocates 8765 * the sgls over again. 8766 */ 8767 phba->sli4_hba.nvmet_xri_cnt = 0; 8768 } 8769 8770 /** 8771 * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs. 8772 * @phba: pointer to lpfc hba data structure. 8773 * 8774 * This routine is invoked to allocate the driver's active sgl memory. 8775 * This array will hold the sglq_entry's for active IOs. 8776 **/ 8777 static int 8778 lpfc_init_active_sgl_array(struct lpfc_hba *phba) 8779 { 8780 int size; 8781 size = sizeof(struct lpfc_sglq *); 8782 size *= phba->sli4_hba.max_cfg_param.max_xri; 8783 8784 phba->sli4_hba.lpfc_sglq_active_list = 8785 kzalloc(size, GFP_KERNEL); 8786 if (!phba->sli4_hba.lpfc_sglq_active_list) 8787 return -ENOMEM; 8788 return 0; 8789 } 8790 8791 /** 8792 * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs. 8793 * @phba: pointer to lpfc hba data structure. 8794 * 8795 * This routine is invoked to walk through the array of active sglq entries 8796 * and free all of the resources. 8797 * This is just a place holder for now. 8798 **/ 8799 static void 8800 lpfc_free_active_sgl(struct lpfc_hba *phba) 8801 { 8802 kfree(phba->sli4_hba.lpfc_sglq_active_list); 8803 } 8804 8805 /** 8806 * lpfc_init_sgl_list - Allocate and initialize sgl list. 8807 * @phba: pointer to lpfc hba data structure. 8808 * 8809 * This routine is invoked to allocate and initizlize the driver's sgl 8810 * list and set up the sgl xritag tag array accordingly. 8811 * 8812 **/ 8813 static void 8814 lpfc_init_sgl_list(struct lpfc_hba *phba) 8815 { 8816 /* Initialize and populate the sglq list per host/VF. */ 8817 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list); 8818 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list); 8819 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list); 8820 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 8821 8822 /* els xri-sgl book keeping */ 8823 phba->sli4_hba.els_xri_cnt = 0; 8824 8825 /* nvme xri-buffer book keeping */ 8826 phba->sli4_hba.io_xri_cnt = 0; 8827 } 8828 8829 /** 8830 * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port 8831 * @phba: pointer to lpfc hba data structure. 8832 * 8833 * This routine is invoked to post rpi header templates to the 8834 * port for those SLI4 ports that do not support extents. This routine 8835 * posts a PAGE_SIZE memory region to the port to hold up to 8836 * PAGE_SIZE modulo 64 rpi context headers. This is an initialization routine 8837 * and should be called only when interrupts are disabled. 8838 * 8839 * Return codes 8840 * 0 - successful 8841 * -ERROR - otherwise. 8842 **/ 8843 int 8844 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba) 8845 { 8846 int rc = 0; 8847 struct lpfc_rpi_hdr *rpi_hdr; 8848 8849 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list); 8850 if (!phba->sli4_hba.rpi_hdrs_in_use) 8851 return rc; 8852 if (phba->sli4_hba.extents_in_use) 8853 return -EIO; 8854 8855 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 8856 if (!rpi_hdr) { 8857 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8858 "0391 Error during rpi post operation\n"); 8859 lpfc_sli4_remove_rpis(phba); 8860 rc = -ENODEV; 8861 } 8862 8863 return rc; 8864 } 8865 8866 /** 8867 * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region 8868 * @phba: pointer to lpfc hba data structure. 8869 * 8870 * This routine is invoked to allocate a single 4KB memory region to 8871 * support rpis and stores them in the phba. This single region 8872 * provides support for up to 64 rpis. The region is used globally 8873 * by the device. 8874 * 8875 * Returns: 8876 * A valid rpi hdr on success. 8877 * A NULL pointer on any failure. 8878 **/ 8879 struct lpfc_rpi_hdr * 8880 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba) 8881 { 8882 uint16_t rpi_limit, curr_rpi_range; 8883 struct lpfc_dmabuf *dmabuf; 8884 struct lpfc_rpi_hdr *rpi_hdr; 8885 8886 /* 8887 * If the SLI4 port supports extents, posting the rpi header isn't 8888 * required. Set the expected maximum count and let the actual value 8889 * get set when extents are fully allocated. 8890 */ 8891 if (!phba->sli4_hba.rpi_hdrs_in_use) 8892 return NULL; 8893 if (phba->sli4_hba.extents_in_use) 8894 return NULL; 8895 8896 /* The limit on the logical index is just the max_rpi count. */ 8897 rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi; 8898 8899 spin_lock_irq(&phba->hbalock); 8900 /* 8901 * Establish the starting RPI in this header block. The starting 8902 * rpi is normalized to a zero base because the physical rpi is 8903 * port based. 8904 */ 8905 curr_rpi_range = phba->sli4_hba.next_rpi; 8906 spin_unlock_irq(&phba->hbalock); 8907 8908 /* Reached full RPI range */ 8909 if (curr_rpi_range == rpi_limit) 8910 return NULL; 8911 8912 /* 8913 * First allocate the protocol header region for the port. The 8914 * port expects a 4KB DMA-mapped memory region that is 4K aligned. 8915 */ 8916 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 8917 if (!dmabuf) 8918 return NULL; 8919 8920 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 8921 LPFC_HDR_TEMPLATE_SIZE, 8922 &dmabuf->phys, GFP_KERNEL); 8923 if (!dmabuf->virt) { 8924 rpi_hdr = NULL; 8925 goto err_free_dmabuf; 8926 } 8927 8928 if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) { 8929 rpi_hdr = NULL; 8930 goto err_free_coherent; 8931 } 8932 8933 /* Save the rpi header data for cleanup later. */ 8934 rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL); 8935 if (!rpi_hdr) 8936 goto err_free_coherent; 8937 8938 rpi_hdr->dmabuf = dmabuf; 8939 rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE; 8940 rpi_hdr->page_count = 1; 8941 spin_lock_irq(&phba->hbalock); 8942 8943 /* The rpi_hdr stores the logical index only. */ 8944 rpi_hdr->start_rpi = curr_rpi_range; 8945 rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT; 8946 list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list); 8947 8948 spin_unlock_irq(&phba->hbalock); 8949 return rpi_hdr; 8950 8951 err_free_coherent: 8952 dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE, 8953 dmabuf->virt, dmabuf->phys); 8954 err_free_dmabuf: 8955 kfree(dmabuf); 8956 return NULL; 8957 } 8958 8959 /** 8960 * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions 8961 * @phba: pointer to lpfc hba data structure. 8962 * 8963 * This routine is invoked to remove all memory resources allocated 8964 * to support rpis for SLI4 ports not supporting extents. This routine 8965 * presumes the caller has released all rpis consumed by fabric or port 8966 * logins and is prepared to have the header pages removed. 8967 **/ 8968 void 8969 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba) 8970 { 8971 struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr; 8972 8973 if (!phba->sli4_hba.rpi_hdrs_in_use) 8974 goto exit; 8975 8976 list_for_each_entry_safe(rpi_hdr, next_rpi_hdr, 8977 &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 8978 list_del(&rpi_hdr->list); 8979 dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len, 8980 rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys); 8981 kfree(rpi_hdr->dmabuf); 8982 kfree(rpi_hdr); 8983 } 8984 exit: 8985 /* There are no rpis available to the port now. */ 8986 phba->sli4_hba.next_rpi = 0; 8987 } 8988 8989 /** 8990 * lpfc_hba_alloc - Allocate driver hba data structure for a device. 8991 * @pdev: pointer to pci device data structure. 8992 * 8993 * This routine is invoked to allocate the driver hba data structure for an 8994 * HBA device. If the allocation is successful, the phba reference to the 8995 * PCI device data structure is set. 8996 * 8997 * Return codes 8998 * pointer to @phba - successful 8999 * NULL - error 9000 **/ 9001 static struct lpfc_hba * 9002 lpfc_hba_alloc(struct pci_dev *pdev) 9003 { 9004 struct lpfc_hba *phba; 9005 9006 /* Allocate memory for HBA structure */ 9007 phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL); 9008 if (!phba) { 9009 dev_err(&pdev->dev, "failed to allocate hba struct\n"); 9010 return NULL; 9011 } 9012 9013 /* Set reference to PCI device in HBA structure */ 9014 phba->pcidev = pdev; 9015 9016 /* Assign an unused board number */ 9017 phba->brd_no = lpfc_get_instance(); 9018 if (phba->brd_no < 0) { 9019 kfree(phba); 9020 return NULL; 9021 } 9022 phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL; 9023 9024 spin_lock_init(&phba->ct_ev_lock); 9025 INIT_LIST_HEAD(&phba->ct_ev_waiters); 9026 9027 return phba; 9028 } 9029 9030 /** 9031 * lpfc_hba_free - Free driver hba data structure with a device. 9032 * @phba: pointer to lpfc hba data structure. 9033 * 9034 * This routine is invoked to free the driver hba data structure with an 9035 * HBA device. 9036 **/ 9037 static void 9038 lpfc_hba_free(struct lpfc_hba *phba) 9039 { 9040 if (phba->sli_rev == LPFC_SLI_REV4) 9041 kfree(phba->sli4_hba.hdwq); 9042 9043 /* Release the driver assigned board number */ 9044 idr_remove(&lpfc_hba_index, phba->brd_no); 9045 9046 /* Free memory allocated with sli3 rings */ 9047 kfree(phba->sli.sli3_ring); 9048 phba->sli.sli3_ring = NULL; 9049 9050 kfree(phba); 9051 return; 9052 } 9053 9054 /** 9055 * lpfc_setup_fdmi_mask - Setup initial FDMI mask for HBA and Port attributes 9056 * @vport: pointer to lpfc vport data structure. 9057 * 9058 * This routine is will setup initial FDMI attribute masks for 9059 * FDMI2 or SmartSAN depending on module parameters. The driver will attempt 9060 * to get these attributes first before falling back, the attribute 9061 * fallback hierarchy is SmartSAN -> FDMI2 -> FMDI1 9062 **/ 9063 void 9064 lpfc_setup_fdmi_mask(struct lpfc_vport *vport) 9065 { 9066 struct lpfc_hba *phba = vport->phba; 9067 9068 set_bit(FC_ALLOW_FDMI, &vport->load_flag); 9069 if (phba->cfg_enable_SmartSAN || 9070 phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT) { 9071 /* Setup appropriate attribute masks */ 9072 vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR; 9073 if (phba->cfg_enable_SmartSAN) 9074 vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR; 9075 else 9076 vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR; 9077 } 9078 9079 lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, 9080 "6077 Setup FDMI mask: hba x%x port x%x\n", 9081 vport->fdmi_hba_mask, vport->fdmi_port_mask); 9082 } 9083 9084 /** 9085 * lpfc_create_shost - Create hba physical port with associated scsi host. 9086 * @phba: pointer to lpfc hba data structure. 9087 * 9088 * This routine is invoked to create HBA physical port and associate a SCSI 9089 * host with it. 9090 * 9091 * Return codes 9092 * 0 - successful 9093 * other values - error 9094 **/ 9095 static int 9096 lpfc_create_shost(struct lpfc_hba *phba) 9097 { 9098 struct lpfc_vport *vport; 9099 struct Scsi_Host *shost; 9100 9101 /* Initialize HBA FC structure */ 9102 phba->fc_edtov = FF_DEF_EDTOV; 9103 phba->fc_ratov = FF_DEF_RATOV; 9104 phba->fc_altov = FF_DEF_ALTOV; 9105 phba->fc_arbtov = FF_DEF_ARBTOV; 9106 9107 atomic_set(&phba->sdev_cnt, 0); 9108 vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev); 9109 if (!vport) 9110 return -ENODEV; 9111 9112 shost = lpfc_shost_from_vport(vport); 9113 phba->pport = vport; 9114 9115 if (phba->nvmet_support) { 9116 /* Only 1 vport (pport) will support NVME target */ 9117 phba->targetport = NULL; 9118 phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME; 9119 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC, 9120 "6076 NVME Target Found\n"); 9121 } 9122 9123 lpfc_debugfs_initialize(vport); 9124 /* Put reference to SCSI host to driver's device private data */ 9125 pci_set_drvdata(phba->pcidev, shost); 9126 9127 lpfc_setup_fdmi_mask(vport); 9128 9129 /* 9130 * At this point we are fully registered with PSA. In addition, 9131 * any initial discovery should be completed. 9132 */ 9133 return 0; 9134 } 9135 9136 /** 9137 * lpfc_destroy_shost - Destroy hba physical port with associated scsi host. 9138 * @phba: pointer to lpfc hba data structure. 9139 * 9140 * This routine is invoked to destroy HBA physical port and the associated 9141 * SCSI host. 9142 **/ 9143 static void 9144 lpfc_destroy_shost(struct lpfc_hba *phba) 9145 { 9146 struct lpfc_vport *vport = phba->pport; 9147 9148 /* Destroy physical port that associated with the SCSI host */ 9149 destroy_port(vport); 9150 9151 return; 9152 } 9153 9154 /** 9155 * lpfc_setup_bg - Setup Block guard structures and debug areas. 9156 * @phba: pointer to lpfc hba data structure. 9157 * @shost: the shost to be used to detect Block guard settings. 9158 * 9159 * This routine sets up the local Block guard protocol settings for @shost. 9160 * This routine also allocates memory for debugging bg buffers. 9161 **/ 9162 static void 9163 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost) 9164 { 9165 uint32_t old_mask; 9166 uint32_t old_guard; 9167 9168 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 9169 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9170 "1478 Registering BlockGuard with the " 9171 "SCSI layer\n"); 9172 9173 old_mask = phba->cfg_prot_mask; 9174 old_guard = phba->cfg_prot_guard; 9175 9176 /* Only allow supported values */ 9177 phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION | 9178 SHOST_DIX_TYPE0_PROTECTION | 9179 SHOST_DIX_TYPE1_PROTECTION); 9180 phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP | 9181 SHOST_DIX_GUARD_CRC); 9182 9183 /* DIF Type 1 protection for profiles AST1/C1 is end to end */ 9184 if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION) 9185 phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION; 9186 9187 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 9188 if ((old_mask != phba->cfg_prot_mask) || 9189 (old_guard != phba->cfg_prot_guard)) 9190 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9191 "1475 Registering BlockGuard with the " 9192 "SCSI layer: mask %d guard %d\n", 9193 phba->cfg_prot_mask, 9194 phba->cfg_prot_guard); 9195 9196 scsi_host_set_prot(shost, phba->cfg_prot_mask); 9197 scsi_host_set_guard(shost, phba->cfg_prot_guard); 9198 } else 9199 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9200 "1479 Not Registering BlockGuard with the SCSI " 9201 "layer, Bad protection parameters: %d %d\n", 9202 old_mask, old_guard); 9203 } 9204 } 9205 9206 /** 9207 * lpfc_post_init_setup - Perform necessary device post initialization setup. 9208 * @phba: pointer to lpfc hba data structure. 9209 * 9210 * This routine is invoked to perform all the necessary post initialization 9211 * setup for the device. 9212 **/ 9213 static void 9214 lpfc_post_init_setup(struct lpfc_hba *phba) 9215 { 9216 struct Scsi_Host *shost; 9217 struct lpfc_adapter_event_header adapter_event; 9218 9219 /* Get the default values for Model Name and Description */ 9220 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 9221 9222 /* 9223 * hba setup may have changed the hba_queue_depth so we need to 9224 * adjust the value of can_queue. 9225 */ 9226 shost = pci_get_drvdata(phba->pcidev); 9227 shost->can_queue = phba->cfg_hba_queue_depth - 10; 9228 9229 lpfc_host_attrib_init(shost); 9230 9231 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 9232 spin_lock_irq(shost->host_lock); 9233 lpfc_poll_start_timer(phba); 9234 spin_unlock_irq(shost->host_lock); 9235 } 9236 9237 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9238 "0428 Perform SCSI scan\n"); 9239 /* Send board arrival event to upper layer */ 9240 adapter_event.event_type = FC_REG_ADAPTER_EVENT; 9241 adapter_event.subcategory = LPFC_EVENT_ARRIVAL; 9242 fc_host_post_vendor_event(shost, fc_get_event_number(), 9243 sizeof(adapter_event), 9244 (char *) &adapter_event, 9245 LPFC_NL_VENDOR_ID); 9246 return; 9247 } 9248 9249 /** 9250 * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space. 9251 * @phba: pointer to lpfc hba data structure. 9252 * 9253 * This routine is invoked to set up the PCI device memory space for device 9254 * with SLI-3 interface spec. 9255 * 9256 * Return codes 9257 * 0 - successful 9258 * other values - error 9259 **/ 9260 static int 9261 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba) 9262 { 9263 struct pci_dev *pdev = phba->pcidev; 9264 unsigned long bar0map_len, bar2map_len; 9265 int i, hbq_count; 9266 void *ptr; 9267 int error; 9268 9269 if (!pdev) 9270 return -ENODEV; 9271 9272 /* Set the device DMA mask size */ 9273 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 9274 if (error) 9275 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 9276 if (error) 9277 return error; 9278 error = -ENODEV; 9279 9280 /* Get the bus address of Bar0 and Bar2 and the number of bytes 9281 * required by each mapping. 9282 */ 9283 phba->pci_bar0_map = pci_resource_start(pdev, 0); 9284 bar0map_len = pci_resource_len(pdev, 0); 9285 9286 phba->pci_bar2_map = pci_resource_start(pdev, 2); 9287 bar2map_len = pci_resource_len(pdev, 2); 9288 9289 /* Map HBA SLIM to a kernel virtual address. */ 9290 phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len); 9291 if (!phba->slim_memmap_p) { 9292 dev_printk(KERN_ERR, &pdev->dev, 9293 "ioremap failed for SLIM memory.\n"); 9294 goto out; 9295 } 9296 9297 /* Map HBA Control Registers to a kernel virtual address. */ 9298 phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len); 9299 if (!phba->ctrl_regs_memmap_p) { 9300 dev_printk(KERN_ERR, &pdev->dev, 9301 "ioremap failed for HBA control registers.\n"); 9302 goto out_iounmap_slim; 9303 } 9304 9305 /* Allocate memory for SLI-2 structures */ 9306 phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE, 9307 &phba->slim2p.phys, GFP_KERNEL); 9308 if (!phba->slim2p.virt) 9309 goto out_iounmap; 9310 9311 phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx); 9312 phba->mbox_ext = (phba->slim2p.virt + 9313 offsetof(struct lpfc_sli2_slim, mbx_ext_words)); 9314 phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb)); 9315 phba->IOCBs = (phba->slim2p.virt + 9316 offsetof(struct lpfc_sli2_slim, IOCBs)); 9317 9318 phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev, 9319 lpfc_sli_hbq_size(), 9320 &phba->hbqslimp.phys, 9321 GFP_KERNEL); 9322 if (!phba->hbqslimp.virt) 9323 goto out_free_slim; 9324 9325 hbq_count = lpfc_sli_hbq_count(); 9326 ptr = phba->hbqslimp.virt; 9327 for (i = 0; i < hbq_count; ++i) { 9328 phba->hbqs[i].hbq_virt = ptr; 9329 INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list); 9330 ptr += (lpfc_hbq_defs[i]->entry_count * 9331 sizeof(struct lpfc_hbq_entry)); 9332 } 9333 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc; 9334 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free; 9335 9336 memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size()); 9337 9338 phba->MBslimaddr = phba->slim_memmap_p; 9339 phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET; 9340 phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET; 9341 phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET; 9342 phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET; 9343 9344 return 0; 9345 9346 out_free_slim: 9347 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 9348 phba->slim2p.virt, phba->slim2p.phys); 9349 out_iounmap: 9350 iounmap(phba->ctrl_regs_memmap_p); 9351 out_iounmap_slim: 9352 iounmap(phba->slim_memmap_p); 9353 out: 9354 return error; 9355 } 9356 9357 /** 9358 * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space. 9359 * @phba: pointer to lpfc hba data structure. 9360 * 9361 * This routine is invoked to unset the PCI device memory space for device 9362 * with SLI-3 interface spec. 9363 **/ 9364 static void 9365 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba) 9366 { 9367 struct pci_dev *pdev; 9368 9369 /* Obtain PCI device reference */ 9370 if (!phba->pcidev) 9371 return; 9372 else 9373 pdev = phba->pcidev; 9374 9375 /* Free coherent DMA memory allocated */ 9376 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 9377 phba->hbqslimp.virt, phba->hbqslimp.phys); 9378 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 9379 phba->slim2p.virt, phba->slim2p.phys); 9380 9381 /* I/O memory unmap */ 9382 iounmap(phba->ctrl_regs_memmap_p); 9383 iounmap(phba->slim_memmap_p); 9384 9385 return; 9386 } 9387 9388 /** 9389 * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status 9390 * @phba: pointer to lpfc hba data structure. 9391 * 9392 * This routine is invoked to wait for SLI4 device Power On Self Test (POST) 9393 * done and check status. 9394 * 9395 * Return 0 if successful, otherwise -ENODEV. 9396 **/ 9397 int 9398 lpfc_sli4_post_status_check(struct lpfc_hba *phba) 9399 { 9400 struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg; 9401 struct lpfc_register reg_data; 9402 int i, port_error = 0; 9403 uint32_t if_type; 9404 9405 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 9406 memset(®_data, 0, sizeof(reg_data)); 9407 if (!phba->sli4_hba.PSMPHRregaddr) 9408 return -ENODEV; 9409 9410 /* Wait up to 30 seconds for the SLI Port POST done and ready */ 9411 for (i = 0; i < 3000; i++) { 9412 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 9413 &portsmphr_reg.word0) || 9414 (bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) { 9415 /* Port has a fatal POST error, break out */ 9416 port_error = -ENODEV; 9417 break; 9418 } 9419 if (LPFC_POST_STAGE_PORT_READY == 9420 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)) 9421 break; 9422 msleep(10); 9423 } 9424 9425 /* 9426 * If there was a port error during POST, then don't proceed with 9427 * other register reads as the data may not be valid. Just exit. 9428 */ 9429 if (port_error) { 9430 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9431 "1408 Port Failed POST - portsmphr=0x%x, " 9432 "perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, " 9433 "scr2=x%x, hscratch=x%x, pstatus=x%x\n", 9434 portsmphr_reg.word0, 9435 bf_get(lpfc_port_smphr_perr, &portsmphr_reg), 9436 bf_get(lpfc_port_smphr_sfi, &portsmphr_reg), 9437 bf_get(lpfc_port_smphr_nip, &portsmphr_reg), 9438 bf_get(lpfc_port_smphr_ipc, &portsmphr_reg), 9439 bf_get(lpfc_port_smphr_scr1, &portsmphr_reg), 9440 bf_get(lpfc_port_smphr_scr2, &portsmphr_reg), 9441 bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg), 9442 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)); 9443 } else { 9444 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9445 "2534 Device Info: SLIFamily=0x%x, " 9446 "SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, " 9447 "SLIHint_2=0x%x, FT=0x%x\n", 9448 bf_get(lpfc_sli_intf_sli_family, 9449 &phba->sli4_hba.sli_intf), 9450 bf_get(lpfc_sli_intf_slirev, 9451 &phba->sli4_hba.sli_intf), 9452 bf_get(lpfc_sli_intf_if_type, 9453 &phba->sli4_hba.sli_intf), 9454 bf_get(lpfc_sli_intf_sli_hint1, 9455 &phba->sli4_hba.sli_intf), 9456 bf_get(lpfc_sli_intf_sli_hint2, 9457 &phba->sli4_hba.sli_intf), 9458 bf_get(lpfc_sli_intf_func_type, 9459 &phba->sli4_hba.sli_intf)); 9460 /* 9461 * Check for other Port errors during the initialization 9462 * process. Fail the load if the port did not come up 9463 * correctly. 9464 */ 9465 if_type = bf_get(lpfc_sli_intf_if_type, 9466 &phba->sli4_hba.sli_intf); 9467 switch (if_type) { 9468 case LPFC_SLI_INTF_IF_TYPE_0: 9469 phba->sli4_hba.ue_mask_lo = 9470 readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr); 9471 phba->sli4_hba.ue_mask_hi = 9472 readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr); 9473 uerrlo_reg.word0 = 9474 readl(phba->sli4_hba.u.if_type0.UERRLOregaddr); 9475 uerrhi_reg.word0 = 9476 readl(phba->sli4_hba.u.if_type0.UERRHIregaddr); 9477 if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) || 9478 (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) { 9479 lpfc_printf_log(phba, KERN_ERR, 9480 LOG_TRACE_EVENT, 9481 "1422 Unrecoverable Error " 9482 "Detected during POST " 9483 "uerr_lo_reg=0x%x, " 9484 "uerr_hi_reg=0x%x, " 9485 "ue_mask_lo_reg=0x%x, " 9486 "ue_mask_hi_reg=0x%x\n", 9487 uerrlo_reg.word0, 9488 uerrhi_reg.word0, 9489 phba->sli4_hba.ue_mask_lo, 9490 phba->sli4_hba.ue_mask_hi); 9491 port_error = -ENODEV; 9492 } 9493 break; 9494 case LPFC_SLI_INTF_IF_TYPE_2: 9495 case LPFC_SLI_INTF_IF_TYPE_6: 9496 /* Final checks. The port status should be clean. */ 9497 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9498 ®_data.word0) || 9499 lpfc_sli4_unrecoverable_port(®_data)) { 9500 phba->work_status[0] = 9501 readl(phba->sli4_hba.u.if_type2. 9502 ERR1regaddr); 9503 phba->work_status[1] = 9504 readl(phba->sli4_hba.u.if_type2. 9505 ERR2regaddr); 9506 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9507 "2888 Unrecoverable port error " 9508 "following POST: port status reg " 9509 "0x%x, port_smphr reg 0x%x, " 9510 "error 1=0x%x, error 2=0x%x\n", 9511 reg_data.word0, 9512 portsmphr_reg.word0, 9513 phba->work_status[0], 9514 phba->work_status[1]); 9515 port_error = -ENODEV; 9516 break; 9517 } 9518 9519 if (lpfc_pldv_detect && 9520 bf_get(lpfc_sli_intf_sli_family, 9521 &phba->sli4_hba.sli_intf) == 9522 LPFC_SLI_INTF_FAMILY_G6) 9523 pci_write_config_byte(phba->pcidev, 9524 LPFC_SLI_INTF, CFG_PLD); 9525 break; 9526 case LPFC_SLI_INTF_IF_TYPE_1: 9527 default: 9528 break; 9529 } 9530 } 9531 return port_error; 9532 } 9533 9534 /** 9535 * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map. 9536 * @phba: pointer to lpfc hba data structure. 9537 * @if_type: The SLI4 interface type getting configured. 9538 * 9539 * This routine is invoked to set up SLI4 BAR0 PCI config space register 9540 * memory map. 9541 **/ 9542 static void 9543 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 9544 { 9545 switch (if_type) { 9546 case LPFC_SLI_INTF_IF_TYPE_0: 9547 phba->sli4_hba.u.if_type0.UERRLOregaddr = 9548 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO; 9549 phba->sli4_hba.u.if_type0.UERRHIregaddr = 9550 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI; 9551 phba->sli4_hba.u.if_type0.UEMASKLOregaddr = 9552 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO; 9553 phba->sli4_hba.u.if_type0.UEMASKHIregaddr = 9554 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI; 9555 phba->sli4_hba.SLIINTFregaddr = 9556 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 9557 break; 9558 case LPFC_SLI_INTF_IF_TYPE_2: 9559 phba->sli4_hba.u.if_type2.EQDregaddr = 9560 phba->sli4_hba.conf_regs_memmap_p + 9561 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 9562 phba->sli4_hba.u.if_type2.ERR1regaddr = 9563 phba->sli4_hba.conf_regs_memmap_p + 9564 LPFC_CTL_PORT_ER1_OFFSET; 9565 phba->sli4_hba.u.if_type2.ERR2regaddr = 9566 phba->sli4_hba.conf_regs_memmap_p + 9567 LPFC_CTL_PORT_ER2_OFFSET; 9568 phba->sli4_hba.u.if_type2.CTRLregaddr = 9569 phba->sli4_hba.conf_regs_memmap_p + 9570 LPFC_CTL_PORT_CTL_OFFSET; 9571 phba->sli4_hba.u.if_type2.STATUSregaddr = 9572 phba->sli4_hba.conf_regs_memmap_p + 9573 LPFC_CTL_PORT_STA_OFFSET; 9574 phba->sli4_hba.SLIINTFregaddr = 9575 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 9576 phba->sli4_hba.PSMPHRregaddr = 9577 phba->sli4_hba.conf_regs_memmap_p + 9578 LPFC_CTL_PORT_SEM_OFFSET; 9579 phba->sli4_hba.RQDBregaddr = 9580 phba->sli4_hba.conf_regs_memmap_p + 9581 LPFC_ULP0_RQ_DOORBELL; 9582 phba->sli4_hba.WQDBregaddr = 9583 phba->sli4_hba.conf_regs_memmap_p + 9584 LPFC_ULP0_WQ_DOORBELL; 9585 phba->sli4_hba.CQDBregaddr = 9586 phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL; 9587 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 9588 phba->sli4_hba.MQDBregaddr = 9589 phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL; 9590 phba->sli4_hba.BMBXregaddr = 9591 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 9592 break; 9593 case LPFC_SLI_INTF_IF_TYPE_6: 9594 phba->sli4_hba.u.if_type2.EQDregaddr = 9595 phba->sli4_hba.conf_regs_memmap_p + 9596 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 9597 phba->sli4_hba.u.if_type2.ERR1regaddr = 9598 phba->sli4_hba.conf_regs_memmap_p + 9599 LPFC_CTL_PORT_ER1_OFFSET; 9600 phba->sli4_hba.u.if_type2.ERR2regaddr = 9601 phba->sli4_hba.conf_regs_memmap_p + 9602 LPFC_CTL_PORT_ER2_OFFSET; 9603 phba->sli4_hba.u.if_type2.CTRLregaddr = 9604 phba->sli4_hba.conf_regs_memmap_p + 9605 LPFC_CTL_PORT_CTL_OFFSET; 9606 phba->sli4_hba.u.if_type2.STATUSregaddr = 9607 phba->sli4_hba.conf_regs_memmap_p + 9608 LPFC_CTL_PORT_STA_OFFSET; 9609 phba->sli4_hba.PSMPHRregaddr = 9610 phba->sli4_hba.conf_regs_memmap_p + 9611 LPFC_CTL_PORT_SEM_OFFSET; 9612 phba->sli4_hba.BMBXregaddr = 9613 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 9614 break; 9615 case LPFC_SLI_INTF_IF_TYPE_1: 9616 default: 9617 dev_printk(KERN_ERR, &phba->pcidev->dev, 9618 "FATAL - unsupported SLI4 interface type - %d\n", 9619 if_type); 9620 break; 9621 } 9622 } 9623 9624 /** 9625 * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map. 9626 * @phba: pointer to lpfc hba data structure. 9627 * @if_type: sli if type to operate on. 9628 * 9629 * This routine is invoked to set up SLI4 BAR1 register memory map. 9630 **/ 9631 static void 9632 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 9633 { 9634 switch (if_type) { 9635 case LPFC_SLI_INTF_IF_TYPE_0: 9636 phba->sli4_hba.PSMPHRregaddr = 9637 phba->sli4_hba.ctrl_regs_memmap_p + 9638 LPFC_SLIPORT_IF0_SMPHR; 9639 phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 9640 LPFC_HST_ISR0; 9641 phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 9642 LPFC_HST_IMR0; 9643 phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 9644 LPFC_HST_ISCR0; 9645 break; 9646 case LPFC_SLI_INTF_IF_TYPE_6: 9647 phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9648 LPFC_IF6_RQ_DOORBELL; 9649 phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9650 LPFC_IF6_WQ_DOORBELL; 9651 phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9652 LPFC_IF6_CQ_DOORBELL; 9653 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9654 LPFC_IF6_EQ_DOORBELL; 9655 phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9656 LPFC_IF6_MQ_DOORBELL; 9657 break; 9658 case LPFC_SLI_INTF_IF_TYPE_2: 9659 case LPFC_SLI_INTF_IF_TYPE_1: 9660 default: 9661 dev_err(&phba->pcidev->dev, 9662 "FATAL - unsupported SLI4 interface type - %d\n", 9663 if_type); 9664 break; 9665 } 9666 } 9667 9668 /** 9669 * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map. 9670 * @phba: pointer to lpfc hba data structure. 9671 * @vf: virtual function number 9672 * 9673 * This routine is invoked to set up SLI4 BAR2 doorbell register memory map 9674 * based on the given viftual function number, @vf. 9675 * 9676 * Return 0 if successful, otherwise -ENODEV. 9677 **/ 9678 static int 9679 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf) 9680 { 9681 if (vf > LPFC_VIR_FUNC_MAX) 9682 return -ENODEV; 9683 9684 phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9685 vf * LPFC_VFR_PAGE_SIZE + 9686 LPFC_ULP0_RQ_DOORBELL); 9687 phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9688 vf * LPFC_VFR_PAGE_SIZE + 9689 LPFC_ULP0_WQ_DOORBELL); 9690 phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9691 vf * LPFC_VFR_PAGE_SIZE + 9692 LPFC_EQCQ_DOORBELL); 9693 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 9694 phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9695 vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL); 9696 phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9697 vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX); 9698 return 0; 9699 } 9700 9701 /** 9702 * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox 9703 * @phba: pointer to lpfc hba data structure. 9704 * 9705 * This routine is invoked to create the bootstrap mailbox 9706 * region consistent with the SLI-4 interface spec. This 9707 * routine allocates all memory necessary to communicate 9708 * mailbox commands to the port and sets up all alignment 9709 * needs. No locks are expected to be held when calling 9710 * this routine. 9711 * 9712 * Return codes 9713 * 0 - successful 9714 * -ENOMEM - could not allocated memory. 9715 **/ 9716 static int 9717 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba) 9718 { 9719 uint32_t bmbx_size; 9720 struct lpfc_dmabuf *dmabuf; 9721 struct dma_address *dma_address; 9722 uint32_t pa_addr; 9723 uint64_t phys_addr; 9724 9725 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 9726 if (!dmabuf) 9727 return -ENOMEM; 9728 9729 /* 9730 * The bootstrap mailbox region is comprised of 2 parts 9731 * plus an alignment restriction of 16 bytes. 9732 */ 9733 bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1); 9734 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size, 9735 &dmabuf->phys, GFP_KERNEL); 9736 if (!dmabuf->virt) { 9737 kfree(dmabuf); 9738 return -ENOMEM; 9739 } 9740 9741 /* 9742 * Initialize the bootstrap mailbox pointers now so that the register 9743 * operations are simple later. The mailbox dma address is required 9744 * to be 16-byte aligned. Also align the virtual memory as each 9745 * maibox is copied into the bmbx mailbox region before issuing the 9746 * command to the port. 9747 */ 9748 phba->sli4_hba.bmbx.dmabuf = dmabuf; 9749 phba->sli4_hba.bmbx.bmbx_size = bmbx_size; 9750 9751 phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt, 9752 LPFC_ALIGN_16_BYTE); 9753 phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys, 9754 LPFC_ALIGN_16_BYTE); 9755 9756 /* 9757 * Set the high and low physical addresses now. The SLI4 alignment 9758 * requirement is 16 bytes and the mailbox is posted to the port 9759 * as two 30-bit addresses. The other data is a bit marking whether 9760 * the 30-bit address is the high or low address. 9761 * Upcast bmbx aphys to 64bits so shift instruction compiles 9762 * clean on 32 bit machines. 9763 */ 9764 dma_address = &phba->sli4_hba.bmbx.dma_address; 9765 phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys; 9766 pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff); 9767 dma_address->addr_hi = (uint32_t) ((pa_addr << 2) | 9768 LPFC_BMBX_BIT1_ADDR_HI); 9769 9770 pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff); 9771 dma_address->addr_lo = (uint32_t) ((pa_addr << 2) | 9772 LPFC_BMBX_BIT1_ADDR_LO); 9773 return 0; 9774 } 9775 9776 /** 9777 * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources 9778 * @phba: pointer to lpfc hba data structure. 9779 * 9780 * This routine is invoked to teardown the bootstrap mailbox 9781 * region and release all host resources. This routine requires 9782 * the caller to ensure all mailbox commands recovered, no 9783 * additional mailbox comands are sent, and interrupts are disabled 9784 * before calling this routine. 9785 * 9786 **/ 9787 static void 9788 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba) 9789 { 9790 dma_free_coherent(&phba->pcidev->dev, 9791 phba->sli4_hba.bmbx.bmbx_size, 9792 phba->sli4_hba.bmbx.dmabuf->virt, 9793 phba->sli4_hba.bmbx.dmabuf->phys); 9794 9795 kfree(phba->sli4_hba.bmbx.dmabuf); 9796 memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx)); 9797 } 9798 9799 static const char * const lpfc_topo_to_str[] = { 9800 "Loop then P2P", 9801 "Loopback", 9802 "P2P Only", 9803 "Unsupported", 9804 "Loop Only", 9805 "Unsupported", 9806 "P2P then Loop", 9807 }; 9808 9809 #define LINK_FLAGS_DEF 0x0 9810 #define LINK_FLAGS_P2P 0x1 9811 #define LINK_FLAGS_LOOP 0x2 9812 /** 9813 * lpfc_map_topology - Map the topology read from READ_CONFIG 9814 * @phba: pointer to lpfc hba data structure. 9815 * @rd_config: pointer to read config data 9816 * 9817 * This routine is invoked to map the topology values as read 9818 * from the read config mailbox command. If the persistent 9819 * topology feature is supported, the firmware will provide the 9820 * saved topology information to be used in INIT_LINK 9821 **/ 9822 static void 9823 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config) 9824 { 9825 u8 ptv, tf, pt; 9826 9827 ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config); 9828 tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config); 9829 pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config); 9830 9831 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9832 "2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x", 9833 ptv, tf, pt); 9834 if (!ptv) { 9835 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9836 "2019 FW does not support persistent topology " 9837 "Using driver parameter defined value [%s]", 9838 lpfc_topo_to_str[phba->cfg_topology]); 9839 return; 9840 } 9841 /* FW supports persistent topology - override module parameter value */ 9842 set_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag); 9843 9844 /* if ASIC_GEN_NUM >= 0xC) */ 9845 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 9846 LPFC_SLI_INTF_IF_TYPE_6) || 9847 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 9848 LPFC_SLI_INTF_FAMILY_G6)) { 9849 if (!tf) 9850 phba->cfg_topology = ((pt == LINK_FLAGS_LOOP) 9851 ? FLAGS_TOPOLOGY_MODE_LOOP 9852 : FLAGS_TOPOLOGY_MODE_PT_PT); 9853 else 9854 clear_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag); 9855 } else { /* G5 */ 9856 if (tf) 9857 /* If topology failover set - pt is '0' or '1' */ 9858 phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP : 9859 FLAGS_TOPOLOGY_MODE_LOOP_PT); 9860 else 9861 phba->cfg_topology = ((pt == LINK_FLAGS_P2P) 9862 ? FLAGS_TOPOLOGY_MODE_PT_PT 9863 : FLAGS_TOPOLOGY_MODE_LOOP); 9864 } 9865 if (test_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag)) 9866 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9867 "2020 Using persistent topology value [%s]", 9868 lpfc_topo_to_str[phba->cfg_topology]); 9869 else 9870 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9871 "2021 Invalid topology values from FW " 9872 "Using driver parameter defined value [%s]", 9873 lpfc_topo_to_str[phba->cfg_topology]); 9874 } 9875 9876 /** 9877 * lpfc_sli4_read_config - Get the config parameters. 9878 * @phba: pointer to lpfc hba data structure. 9879 * 9880 * This routine is invoked to read the configuration parameters from the HBA. 9881 * The configuration parameters are used to set the base and maximum values 9882 * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource 9883 * allocation for the port. 9884 * 9885 * Return codes 9886 * 0 - successful 9887 * -ENOMEM - No available memory 9888 * -EIO - The mailbox failed to complete successfully. 9889 **/ 9890 int 9891 lpfc_sli4_read_config(struct lpfc_hba *phba) 9892 { 9893 LPFC_MBOXQ_t *pmb; 9894 struct lpfc_mbx_read_config *rd_config; 9895 union lpfc_sli4_cfg_shdr *shdr; 9896 uint32_t shdr_status, shdr_add_status; 9897 struct lpfc_mbx_get_func_cfg *get_func_cfg; 9898 struct lpfc_rsrc_desc_fcfcoe *desc; 9899 char *pdesc_0; 9900 uint16_t forced_link_speed; 9901 uint32_t if_type, qmin, fawwpn; 9902 int length, i, rc = 0, rc2; 9903 9904 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 9905 if (!pmb) { 9906 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9907 "2011 Unable to allocate memory for issuing " 9908 "SLI_CONFIG_SPECIAL mailbox command\n"); 9909 return -ENOMEM; 9910 } 9911 9912 lpfc_read_config(phba, pmb); 9913 9914 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 9915 if (rc != MBX_SUCCESS) { 9916 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9917 "2012 Mailbox failed , mbxCmd x%x " 9918 "READ_CONFIG, mbxStatus x%x\n", 9919 bf_get(lpfc_mqe_command, &pmb->u.mqe), 9920 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 9921 rc = -EIO; 9922 } else { 9923 rd_config = &pmb->u.mqe.un.rd_config; 9924 if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) { 9925 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 9926 phba->sli4_hba.lnk_info.lnk_tp = 9927 bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config); 9928 phba->sli4_hba.lnk_info.lnk_no = 9929 bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config); 9930 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9931 "3081 lnk_type:%d, lnk_numb:%d\n", 9932 phba->sli4_hba.lnk_info.lnk_tp, 9933 phba->sli4_hba.lnk_info.lnk_no); 9934 } else 9935 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9936 "3082 Mailbox (x%x) returned ldv:x0\n", 9937 bf_get(lpfc_mqe_command, &pmb->u.mqe)); 9938 if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) { 9939 phba->bbcredit_support = 1; 9940 phba->sli4_hba.bbscn_params.word0 = rd_config->word8; 9941 } 9942 9943 fawwpn = bf_get(lpfc_mbx_rd_conf_fawwpn, rd_config); 9944 9945 if (fawwpn) { 9946 lpfc_printf_log(phba, KERN_INFO, 9947 LOG_INIT | LOG_DISCOVERY, 9948 "2702 READ_CONFIG: FA-PWWN is " 9949 "configured on\n"); 9950 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_CONFIG; 9951 } else { 9952 /* Clear FW configured flag, preserve driver flag */ 9953 phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_CONFIG; 9954 } 9955 9956 phba->sli4_hba.conf_trunk = 9957 bf_get(lpfc_mbx_rd_conf_trunk, rd_config); 9958 phba->sli4_hba.extents_in_use = 9959 bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config); 9960 9961 phba->sli4_hba.max_cfg_param.max_xri = 9962 bf_get(lpfc_mbx_rd_conf_xri_count, rd_config); 9963 /* Reduce resource usage in kdump environment */ 9964 if (is_kdump_kernel() && 9965 phba->sli4_hba.max_cfg_param.max_xri > 512) 9966 phba->sli4_hba.max_cfg_param.max_xri = 512; 9967 phba->sli4_hba.max_cfg_param.xri_base = 9968 bf_get(lpfc_mbx_rd_conf_xri_base, rd_config); 9969 phba->sli4_hba.max_cfg_param.max_vpi = 9970 bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config); 9971 /* Limit the max we support */ 9972 if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS) 9973 phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS; 9974 phba->sli4_hba.max_cfg_param.vpi_base = 9975 bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config); 9976 phba->sli4_hba.max_cfg_param.max_rpi = 9977 bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config); 9978 phba->sli4_hba.max_cfg_param.rpi_base = 9979 bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config); 9980 phba->sli4_hba.max_cfg_param.max_vfi = 9981 bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config); 9982 phba->sli4_hba.max_cfg_param.vfi_base = 9983 bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config); 9984 phba->sli4_hba.max_cfg_param.max_fcfi = 9985 bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config); 9986 phba->sli4_hba.max_cfg_param.max_eq = 9987 bf_get(lpfc_mbx_rd_conf_eq_count, rd_config); 9988 phba->sli4_hba.max_cfg_param.max_rq = 9989 bf_get(lpfc_mbx_rd_conf_rq_count, rd_config); 9990 phba->sli4_hba.max_cfg_param.max_wq = 9991 bf_get(lpfc_mbx_rd_conf_wq_count, rd_config); 9992 phba->sli4_hba.max_cfg_param.max_cq = 9993 bf_get(lpfc_mbx_rd_conf_cq_count, rd_config); 9994 phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config); 9995 phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base; 9996 phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base; 9997 phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base; 9998 phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ? 9999 (phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0; 10000 phba->max_vports = phba->max_vpi; 10001 10002 if (bf_get(lpfc_mbx_rd_conf_fedif, rd_config)) 10003 phba->sli4_hba.encryption_support = true; 10004 else 10005 phba->sli4_hba.encryption_support = false; 10006 10007 /* Next decide on FPIN or Signal E2E CGN support 10008 * For congestion alarms and warnings valid combination are: 10009 * 1. FPIN alarms / FPIN warnings 10010 * 2. Signal alarms / Signal warnings 10011 * 3. FPIN alarms / Signal warnings 10012 * 4. Signal alarms / FPIN warnings 10013 * 10014 * Initialize the adapter frequency to 100 mSecs 10015 */ 10016 phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH; 10017 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 10018 phba->cgn_sig_freq = lpfc_fabric_cgn_frequency; 10019 10020 if (lpfc_use_cgn_signal) { 10021 if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) { 10022 phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY; 10023 phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN; 10024 } 10025 if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) { 10026 /* MUST support both alarm and warning 10027 * because EDC does not support alarm alone. 10028 */ 10029 if (phba->cgn_reg_signal != 10030 EDC_CG_SIG_WARN_ONLY) { 10031 /* Must support both or none */ 10032 phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH; 10033 phba->cgn_reg_signal = 10034 EDC_CG_SIG_NOTSUPPORTED; 10035 } else { 10036 phba->cgn_reg_signal = 10037 EDC_CG_SIG_WARN_ALARM; 10038 phba->cgn_reg_fpin = 10039 LPFC_CGN_FPIN_NONE; 10040 } 10041 } 10042 } 10043 10044 /* Set the congestion initial signal and fpin values. */ 10045 phba->cgn_init_reg_fpin = phba->cgn_reg_fpin; 10046 phba->cgn_init_reg_signal = phba->cgn_reg_signal; 10047 10048 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 10049 "6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n", 10050 phba->cgn_reg_signal, phba->cgn_reg_fpin); 10051 10052 lpfc_map_topology(phba, rd_config); 10053 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10054 "2003 cfg params Extents? %d " 10055 "XRI(B:%d M:%d), " 10056 "VPI(B:%d M:%d) " 10057 "VFI(B:%d M:%d) " 10058 "RPI(B:%d M:%d) " 10059 "FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n", 10060 phba->sli4_hba.extents_in_use, 10061 phba->sli4_hba.max_cfg_param.xri_base, 10062 phba->sli4_hba.max_cfg_param.max_xri, 10063 phba->sli4_hba.max_cfg_param.vpi_base, 10064 phba->sli4_hba.max_cfg_param.max_vpi, 10065 phba->sli4_hba.max_cfg_param.vfi_base, 10066 phba->sli4_hba.max_cfg_param.max_vfi, 10067 phba->sli4_hba.max_cfg_param.rpi_base, 10068 phba->sli4_hba.max_cfg_param.max_rpi, 10069 phba->sli4_hba.max_cfg_param.max_fcfi, 10070 phba->sli4_hba.max_cfg_param.max_eq, 10071 phba->sli4_hba.max_cfg_param.max_cq, 10072 phba->sli4_hba.max_cfg_param.max_wq, 10073 phba->sli4_hba.max_cfg_param.max_rq, 10074 phba->lmt); 10075 10076 /* 10077 * Calculate queue resources based on how 10078 * many WQ/CQ/EQs are available. 10079 */ 10080 qmin = phba->sli4_hba.max_cfg_param.max_wq; 10081 if (phba->sli4_hba.max_cfg_param.max_cq < qmin) 10082 qmin = phba->sli4_hba.max_cfg_param.max_cq; 10083 /* 10084 * Reserve 4 (ELS, NVME LS, MBOX, plus one extra) and 10085 * the remainder can be used for NVME / FCP. 10086 */ 10087 qmin -= 4; 10088 if (phba->sli4_hba.max_cfg_param.max_eq < qmin) 10089 qmin = phba->sli4_hba.max_cfg_param.max_eq; 10090 10091 /* Check to see if there is enough for default cfg */ 10092 if ((phba->cfg_irq_chann > qmin) || 10093 (phba->cfg_hdw_queue > qmin)) { 10094 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10095 "2005 Reducing Queues - " 10096 "FW resource limitation: " 10097 "WQ %d CQ %d EQ %d: min %d: " 10098 "IRQ %d HDWQ %d\n", 10099 phba->sli4_hba.max_cfg_param.max_wq, 10100 phba->sli4_hba.max_cfg_param.max_cq, 10101 phba->sli4_hba.max_cfg_param.max_eq, 10102 qmin, phba->cfg_irq_chann, 10103 phba->cfg_hdw_queue); 10104 10105 if (phba->cfg_irq_chann > qmin) 10106 phba->cfg_irq_chann = qmin; 10107 if (phba->cfg_hdw_queue > qmin) 10108 phba->cfg_hdw_queue = qmin; 10109 } 10110 } 10111 10112 if (rc) 10113 goto read_cfg_out; 10114 10115 /* Update link speed if forced link speed is supported */ 10116 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10117 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10118 forced_link_speed = 10119 bf_get(lpfc_mbx_rd_conf_link_speed, rd_config); 10120 if (forced_link_speed) { 10121 set_bit(HBA_FORCED_LINK_SPEED, &phba->hba_flag); 10122 10123 switch (forced_link_speed) { 10124 case LINK_SPEED_1G: 10125 phba->cfg_link_speed = 10126 LPFC_USER_LINK_SPEED_1G; 10127 break; 10128 case LINK_SPEED_2G: 10129 phba->cfg_link_speed = 10130 LPFC_USER_LINK_SPEED_2G; 10131 break; 10132 case LINK_SPEED_4G: 10133 phba->cfg_link_speed = 10134 LPFC_USER_LINK_SPEED_4G; 10135 break; 10136 case LINK_SPEED_8G: 10137 phba->cfg_link_speed = 10138 LPFC_USER_LINK_SPEED_8G; 10139 break; 10140 case LINK_SPEED_10G: 10141 phba->cfg_link_speed = 10142 LPFC_USER_LINK_SPEED_10G; 10143 break; 10144 case LINK_SPEED_16G: 10145 phba->cfg_link_speed = 10146 LPFC_USER_LINK_SPEED_16G; 10147 break; 10148 case LINK_SPEED_32G: 10149 phba->cfg_link_speed = 10150 LPFC_USER_LINK_SPEED_32G; 10151 break; 10152 case LINK_SPEED_64G: 10153 phba->cfg_link_speed = 10154 LPFC_USER_LINK_SPEED_64G; 10155 break; 10156 case 0xffff: 10157 phba->cfg_link_speed = 10158 LPFC_USER_LINK_SPEED_AUTO; 10159 break; 10160 default: 10161 lpfc_printf_log(phba, KERN_ERR, 10162 LOG_TRACE_EVENT, 10163 "0047 Unrecognized link " 10164 "speed : %d\n", 10165 forced_link_speed); 10166 phba->cfg_link_speed = 10167 LPFC_USER_LINK_SPEED_AUTO; 10168 } 10169 } 10170 } 10171 10172 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 10173 length = phba->sli4_hba.max_cfg_param.max_xri - 10174 lpfc_sli4_get_els_iocb_cnt(phba); 10175 if (phba->cfg_hba_queue_depth > length) { 10176 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 10177 "3361 HBA queue depth changed from %d to %d\n", 10178 phba->cfg_hba_queue_depth, length); 10179 phba->cfg_hba_queue_depth = length; 10180 } 10181 10182 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 10183 LPFC_SLI_INTF_IF_TYPE_2) 10184 goto read_cfg_out; 10185 10186 /* get the pf# and vf# for SLI4 if_type 2 port */ 10187 length = (sizeof(struct lpfc_mbx_get_func_cfg) - 10188 sizeof(struct lpfc_sli4_cfg_mhdr)); 10189 lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON, 10190 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG, 10191 length, LPFC_SLI4_MBX_EMBED); 10192 10193 rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 10194 shdr = (union lpfc_sli4_cfg_shdr *) 10195 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 10196 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 10197 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 10198 if (rc2 || shdr_status || shdr_add_status) { 10199 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10200 "3026 Mailbox failed , mbxCmd x%x " 10201 "GET_FUNCTION_CONFIG, mbxStatus x%x\n", 10202 bf_get(lpfc_mqe_command, &pmb->u.mqe), 10203 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 10204 goto read_cfg_out; 10205 } 10206 10207 /* search for fc_fcoe resrouce descriptor */ 10208 get_func_cfg = &pmb->u.mqe.un.get_func_cfg; 10209 10210 pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0]; 10211 desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0; 10212 length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc); 10213 if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD) 10214 length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH; 10215 else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH) 10216 goto read_cfg_out; 10217 10218 for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) { 10219 desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i); 10220 if (LPFC_RSRC_DESC_TYPE_FCFCOE == 10221 bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) { 10222 phba->sli4_hba.iov.pf_number = 10223 bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc); 10224 phba->sli4_hba.iov.vf_number = 10225 bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc); 10226 break; 10227 } 10228 } 10229 10230 if (i < LPFC_RSRC_DESC_MAX_NUM) 10231 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10232 "3027 GET_FUNCTION_CONFIG: pf_number:%d, " 10233 "vf_number:%d\n", phba->sli4_hba.iov.pf_number, 10234 phba->sli4_hba.iov.vf_number); 10235 else 10236 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10237 "3028 GET_FUNCTION_CONFIG: failed to find " 10238 "Resource Descriptor:x%x\n", 10239 LPFC_RSRC_DESC_TYPE_FCFCOE); 10240 10241 read_cfg_out: 10242 mempool_free(pmb, phba->mbox_mem_pool); 10243 return rc; 10244 } 10245 10246 /** 10247 * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port. 10248 * @phba: pointer to lpfc hba data structure. 10249 * 10250 * This routine is invoked to setup the port-side endian order when 10251 * the port if_type is 0. This routine has no function for other 10252 * if_types. 10253 * 10254 * Return codes 10255 * 0 - successful 10256 * -ENOMEM - No available memory 10257 * -EIO - The mailbox failed to complete successfully. 10258 **/ 10259 static int 10260 lpfc_setup_endian_order(struct lpfc_hba *phba) 10261 { 10262 LPFC_MBOXQ_t *mboxq; 10263 uint32_t if_type, rc = 0; 10264 uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0, 10265 HOST_ENDIAN_HIGH_WORD1}; 10266 10267 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10268 switch (if_type) { 10269 case LPFC_SLI_INTF_IF_TYPE_0: 10270 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 10271 GFP_KERNEL); 10272 if (!mboxq) { 10273 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10274 "0492 Unable to allocate memory for " 10275 "issuing SLI_CONFIG_SPECIAL mailbox " 10276 "command\n"); 10277 return -ENOMEM; 10278 } 10279 10280 /* 10281 * The SLI4_CONFIG_SPECIAL mailbox command requires the first 10282 * two words to contain special data values and no other data. 10283 */ 10284 memset(mboxq, 0, sizeof(LPFC_MBOXQ_t)); 10285 memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data)); 10286 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 10287 if (rc != MBX_SUCCESS) { 10288 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10289 "0493 SLI_CONFIG_SPECIAL mailbox " 10290 "failed with status x%x\n", 10291 rc); 10292 rc = -EIO; 10293 } 10294 mempool_free(mboxq, phba->mbox_mem_pool); 10295 break; 10296 case LPFC_SLI_INTF_IF_TYPE_6: 10297 case LPFC_SLI_INTF_IF_TYPE_2: 10298 case LPFC_SLI_INTF_IF_TYPE_1: 10299 default: 10300 break; 10301 } 10302 return rc; 10303 } 10304 10305 /** 10306 * lpfc_sli4_queue_verify - Verify and update EQ counts 10307 * @phba: pointer to lpfc hba data structure. 10308 * 10309 * This routine is invoked to check the user settable queue counts for EQs. 10310 * After this routine is called the counts will be set to valid values that 10311 * adhere to the constraints of the system's interrupt vectors and the port's 10312 * queue resources. 10313 * 10314 * Return codes 10315 * 0 - successful 10316 * -ENOMEM - No available memory 10317 **/ 10318 static int 10319 lpfc_sli4_queue_verify(struct lpfc_hba *phba) 10320 { 10321 /* 10322 * Sanity check for configured queue parameters against the run-time 10323 * device parameters 10324 */ 10325 10326 if (phba->nvmet_support) { 10327 if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq) 10328 phba->cfg_nvmet_mrq = phba->cfg_hdw_queue; 10329 if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX) 10330 phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX; 10331 } 10332 10333 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10334 "2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n", 10335 phba->cfg_hdw_queue, phba->cfg_irq_chann, 10336 phba->cfg_nvmet_mrq); 10337 10338 /* Get EQ depth from module parameter, fake the default for now */ 10339 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 10340 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 10341 10342 /* Get CQ depth from module parameter, fake the default for now */ 10343 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 10344 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 10345 return 0; 10346 } 10347 10348 static int 10349 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx) 10350 { 10351 struct lpfc_queue *qdesc; 10352 u32 wqesize; 10353 int cpu; 10354 10355 cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ); 10356 /* Create Fast Path IO CQs */ 10357 if (phba->enab_exp_wqcq_pages) 10358 /* Increase the CQ size when WQEs contain an embedded cdb */ 10359 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 10360 phba->sli4_hba.cq_esize, 10361 LPFC_CQE_EXP_COUNT, cpu); 10362 10363 else 10364 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10365 phba->sli4_hba.cq_esize, 10366 phba->sli4_hba.cq_ecount, cpu); 10367 if (!qdesc) { 10368 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10369 "0499 Failed allocate fast-path IO CQ (%d)\n", 10370 idx); 10371 return 1; 10372 } 10373 qdesc->qe_valid = 1; 10374 qdesc->hdwq = idx; 10375 qdesc->chann = cpu; 10376 phba->sli4_hba.hdwq[idx].io_cq = qdesc; 10377 10378 /* Create Fast Path IO WQs */ 10379 if (phba->enab_exp_wqcq_pages) { 10380 /* Increase the WQ size when WQEs contain an embedded cdb */ 10381 wqesize = (phba->fcp_embed_io) ? 10382 LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize; 10383 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 10384 wqesize, 10385 LPFC_WQE_EXP_COUNT, cpu); 10386 } else 10387 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10388 phba->sli4_hba.wq_esize, 10389 phba->sli4_hba.wq_ecount, cpu); 10390 10391 if (!qdesc) { 10392 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10393 "0503 Failed allocate fast-path IO WQ (%d)\n", 10394 idx); 10395 return 1; 10396 } 10397 qdesc->hdwq = idx; 10398 qdesc->chann = cpu; 10399 phba->sli4_hba.hdwq[idx].io_wq = qdesc; 10400 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 10401 return 0; 10402 } 10403 10404 /** 10405 * lpfc_sli4_queue_create - Create all the SLI4 queues 10406 * @phba: pointer to lpfc hba data structure. 10407 * 10408 * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA 10409 * operation. For each SLI4 queue type, the parameters such as queue entry 10410 * count (queue depth) shall be taken from the module parameter. For now, 10411 * we just use some constant number as place holder. 10412 * 10413 * Return codes 10414 * 0 - successful 10415 * -ENOMEM - No availble memory 10416 * -EIO - The mailbox failed to complete successfully. 10417 **/ 10418 int 10419 lpfc_sli4_queue_create(struct lpfc_hba *phba) 10420 { 10421 struct lpfc_queue *qdesc; 10422 int idx, cpu, eqcpu; 10423 struct lpfc_sli4_hdw_queue *qp; 10424 struct lpfc_vector_map_info *cpup; 10425 struct lpfc_vector_map_info *eqcpup; 10426 struct lpfc_eq_intr_info *eqi; 10427 u32 wqesize; 10428 10429 /* 10430 * Create HBA Record arrays. 10431 * Both NVME and FCP will share that same vectors / EQs 10432 */ 10433 phba->sli4_hba.mq_esize = LPFC_MQE_SIZE; 10434 phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT; 10435 phba->sli4_hba.wq_esize = LPFC_WQE_SIZE; 10436 phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT; 10437 phba->sli4_hba.rq_esize = LPFC_RQE_SIZE; 10438 phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT; 10439 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 10440 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 10441 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 10442 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 10443 10444 if (!phba->sli4_hba.hdwq) { 10445 phba->sli4_hba.hdwq = kcalloc( 10446 phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue), 10447 GFP_KERNEL); 10448 if (!phba->sli4_hba.hdwq) { 10449 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10450 "6427 Failed allocate memory for " 10451 "fast-path Hardware Queue array\n"); 10452 goto out_error; 10453 } 10454 /* Prepare hardware queues to take IO buffers */ 10455 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10456 qp = &phba->sli4_hba.hdwq[idx]; 10457 spin_lock_init(&qp->io_buf_list_get_lock); 10458 spin_lock_init(&qp->io_buf_list_put_lock); 10459 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 10460 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 10461 qp->get_io_bufs = 0; 10462 qp->put_io_bufs = 0; 10463 qp->total_io_bufs = 0; 10464 spin_lock_init(&qp->abts_io_buf_list_lock); 10465 INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list); 10466 qp->abts_scsi_io_bufs = 0; 10467 qp->abts_nvme_io_bufs = 0; 10468 INIT_LIST_HEAD(&qp->sgl_list); 10469 INIT_LIST_HEAD(&qp->cmd_rsp_buf_list); 10470 spin_lock_init(&qp->hdwq_lock); 10471 } 10472 } 10473 10474 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10475 if (phba->nvmet_support) { 10476 phba->sli4_hba.nvmet_cqset = kcalloc( 10477 phba->cfg_nvmet_mrq, 10478 sizeof(struct lpfc_queue *), 10479 GFP_KERNEL); 10480 if (!phba->sli4_hba.nvmet_cqset) { 10481 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10482 "3121 Fail allocate memory for " 10483 "fast-path CQ set array\n"); 10484 goto out_error; 10485 } 10486 phba->sli4_hba.nvmet_mrq_hdr = kcalloc( 10487 phba->cfg_nvmet_mrq, 10488 sizeof(struct lpfc_queue *), 10489 GFP_KERNEL); 10490 if (!phba->sli4_hba.nvmet_mrq_hdr) { 10491 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10492 "3122 Fail allocate memory for " 10493 "fast-path RQ set hdr array\n"); 10494 goto out_error; 10495 } 10496 phba->sli4_hba.nvmet_mrq_data = kcalloc( 10497 phba->cfg_nvmet_mrq, 10498 sizeof(struct lpfc_queue *), 10499 GFP_KERNEL); 10500 if (!phba->sli4_hba.nvmet_mrq_data) { 10501 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10502 "3124 Fail allocate memory for " 10503 "fast-path RQ set data array\n"); 10504 goto out_error; 10505 } 10506 } 10507 } 10508 10509 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 10510 10511 /* Create HBA Event Queues (EQs) */ 10512 for_each_present_cpu(cpu) { 10513 /* We only want to create 1 EQ per vector, even though 10514 * multiple CPUs might be using that vector. so only 10515 * selects the CPUs that are LPFC_CPU_FIRST_IRQ. 10516 */ 10517 cpup = &phba->sli4_hba.cpu_map[cpu]; 10518 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 10519 continue; 10520 10521 /* Get a ptr to the Hardware Queue associated with this CPU */ 10522 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 10523 10524 /* Allocate an EQ */ 10525 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10526 phba->sli4_hba.eq_esize, 10527 phba->sli4_hba.eq_ecount, cpu); 10528 if (!qdesc) { 10529 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10530 "0497 Failed allocate EQ (%d)\n", 10531 cpup->hdwq); 10532 goto out_error; 10533 } 10534 qdesc->qe_valid = 1; 10535 qdesc->hdwq = cpup->hdwq; 10536 qdesc->chann = cpu; /* First CPU this EQ is affinitized to */ 10537 qdesc->last_cpu = qdesc->chann; 10538 10539 /* Save the allocated EQ in the Hardware Queue */ 10540 qp->hba_eq = qdesc; 10541 10542 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu); 10543 list_add(&qdesc->cpu_list, &eqi->list); 10544 } 10545 10546 /* Now we need to populate the other Hardware Queues, that share 10547 * an IRQ vector, with the associated EQ ptr. 10548 */ 10549 for_each_present_cpu(cpu) { 10550 cpup = &phba->sli4_hba.cpu_map[cpu]; 10551 10552 /* Check for EQ already allocated in previous loop */ 10553 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 10554 continue; 10555 10556 /* Check for multiple CPUs per hdwq */ 10557 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 10558 if (qp->hba_eq) 10559 continue; 10560 10561 /* We need to share an EQ for this hdwq */ 10562 eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ); 10563 eqcpup = &phba->sli4_hba.cpu_map[eqcpu]; 10564 qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq; 10565 } 10566 10567 /* Allocate IO Path SLI4 CQ/WQs */ 10568 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10569 if (lpfc_alloc_io_wq_cq(phba, idx)) 10570 goto out_error; 10571 } 10572 10573 if (phba->nvmet_support) { 10574 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 10575 cpu = lpfc_find_cpu_handle(phba, idx, 10576 LPFC_FIND_BY_HDWQ); 10577 qdesc = lpfc_sli4_queue_alloc(phba, 10578 LPFC_DEFAULT_PAGE_SIZE, 10579 phba->sli4_hba.cq_esize, 10580 phba->sli4_hba.cq_ecount, 10581 cpu); 10582 if (!qdesc) { 10583 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10584 "3142 Failed allocate NVME " 10585 "CQ Set (%d)\n", idx); 10586 goto out_error; 10587 } 10588 qdesc->qe_valid = 1; 10589 qdesc->hdwq = idx; 10590 qdesc->chann = cpu; 10591 phba->sli4_hba.nvmet_cqset[idx] = qdesc; 10592 } 10593 } 10594 10595 /* 10596 * Create Slow Path Completion Queues (CQs) 10597 */ 10598 10599 cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ); 10600 /* Create slow-path Mailbox Command Complete Queue */ 10601 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10602 phba->sli4_hba.cq_esize, 10603 phba->sli4_hba.cq_ecount, cpu); 10604 if (!qdesc) { 10605 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10606 "0500 Failed allocate slow-path mailbox CQ\n"); 10607 goto out_error; 10608 } 10609 qdesc->qe_valid = 1; 10610 phba->sli4_hba.mbx_cq = qdesc; 10611 10612 /* Create slow-path ELS Complete Queue */ 10613 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10614 phba->sli4_hba.cq_esize, 10615 phba->sli4_hba.cq_ecount, cpu); 10616 if (!qdesc) { 10617 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10618 "0501 Failed allocate slow-path ELS CQ\n"); 10619 goto out_error; 10620 } 10621 qdesc->qe_valid = 1; 10622 qdesc->chann = cpu; 10623 phba->sli4_hba.els_cq = qdesc; 10624 10625 10626 /* 10627 * Create Slow Path Work Queues (WQs) 10628 */ 10629 10630 /* Create Mailbox Command Queue */ 10631 10632 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10633 phba->sli4_hba.mq_esize, 10634 phba->sli4_hba.mq_ecount, cpu); 10635 if (!qdesc) { 10636 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10637 "0505 Failed allocate slow-path MQ\n"); 10638 goto out_error; 10639 } 10640 qdesc->chann = cpu; 10641 phba->sli4_hba.mbx_wq = qdesc; 10642 10643 /* 10644 * Create ELS Work Queues 10645 */ 10646 10647 /* 10648 * Create slow-path ELS Work Queue. 10649 * Increase the ELS WQ size when WQEs contain an embedded cdb 10650 */ 10651 wqesize = (phba->fcp_embed_io) ? 10652 LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize; 10653 10654 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10655 wqesize, 10656 phba->sli4_hba.wq_ecount, cpu); 10657 if (!qdesc) { 10658 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10659 "0504 Failed allocate slow-path ELS WQ\n"); 10660 goto out_error; 10661 } 10662 qdesc->chann = cpu; 10663 phba->sli4_hba.els_wq = qdesc; 10664 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 10665 10666 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10667 /* Create NVME LS Complete Queue */ 10668 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10669 phba->sli4_hba.cq_esize, 10670 phba->sli4_hba.cq_ecount, cpu); 10671 if (!qdesc) { 10672 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10673 "6079 Failed allocate NVME LS CQ\n"); 10674 goto out_error; 10675 } 10676 qdesc->chann = cpu; 10677 qdesc->qe_valid = 1; 10678 phba->sli4_hba.nvmels_cq = qdesc; 10679 10680 /* Create NVME LS Work Queue */ 10681 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10682 phba->sli4_hba.wq_esize, 10683 phba->sli4_hba.wq_ecount, cpu); 10684 if (!qdesc) { 10685 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10686 "6080 Failed allocate NVME LS WQ\n"); 10687 goto out_error; 10688 } 10689 qdesc->chann = cpu; 10690 phba->sli4_hba.nvmels_wq = qdesc; 10691 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 10692 } 10693 10694 /* 10695 * Create Receive Queue (RQ) 10696 */ 10697 10698 /* Create Receive Queue for header */ 10699 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10700 phba->sli4_hba.rq_esize, 10701 phba->sli4_hba.rq_ecount, cpu); 10702 if (!qdesc) { 10703 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10704 "0506 Failed allocate receive HRQ\n"); 10705 goto out_error; 10706 } 10707 phba->sli4_hba.hdr_rq = qdesc; 10708 10709 /* Create Receive Queue for data */ 10710 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10711 phba->sli4_hba.rq_esize, 10712 phba->sli4_hba.rq_ecount, cpu); 10713 if (!qdesc) { 10714 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10715 "0507 Failed allocate receive DRQ\n"); 10716 goto out_error; 10717 } 10718 phba->sli4_hba.dat_rq = qdesc; 10719 10720 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && 10721 phba->nvmet_support) { 10722 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 10723 cpu = lpfc_find_cpu_handle(phba, idx, 10724 LPFC_FIND_BY_HDWQ); 10725 /* Create NVMET Receive Queue for header */ 10726 qdesc = lpfc_sli4_queue_alloc(phba, 10727 LPFC_DEFAULT_PAGE_SIZE, 10728 phba->sli4_hba.rq_esize, 10729 LPFC_NVMET_RQE_DEF_COUNT, 10730 cpu); 10731 if (!qdesc) { 10732 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10733 "3146 Failed allocate " 10734 "receive HRQ\n"); 10735 goto out_error; 10736 } 10737 qdesc->hdwq = idx; 10738 phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc; 10739 10740 /* Only needed for header of RQ pair */ 10741 qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp), 10742 GFP_KERNEL, 10743 cpu_to_node(cpu)); 10744 if (qdesc->rqbp == NULL) { 10745 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10746 "6131 Failed allocate " 10747 "Header RQBP\n"); 10748 goto out_error; 10749 } 10750 10751 /* Put list in known state in case driver load fails. */ 10752 INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list); 10753 10754 /* Create NVMET Receive Queue for data */ 10755 qdesc = lpfc_sli4_queue_alloc(phba, 10756 LPFC_DEFAULT_PAGE_SIZE, 10757 phba->sli4_hba.rq_esize, 10758 LPFC_NVMET_RQE_DEF_COUNT, 10759 cpu); 10760 if (!qdesc) { 10761 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10762 "3156 Failed allocate " 10763 "receive DRQ\n"); 10764 goto out_error; 10765 } 10766 qdesc->hdwq = idx; 10767 phba->sli4_hba.nvmet_mrq_data[idx] = qdesc; 10768 } 10769 } 10770 10771 /* Clear NVME stats */ 10772 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10773 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10774 memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0, 10775 sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat)); 10776 } 10777 } 10778 10779 /* Clear SCSI stats */ 10780 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 10781 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10782 memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0, 10783 sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat)); 10784 } 10785 } 10786 10787 return 0; 10788 10789 out_error: 10790 lpfc_sli4_queue_destroy(phba); 10791 return -ENOMEM; 10792 } 10793 10794 static inline void 10795 __lpfc_sli4_release_queue(struct lpfc_queue **qp) 10796 { 10797 if (*qp != NULL) { 10798 lpfc_sli4_queue_free(*qp); 10799 *qp = NULL; 10800 } 10801 } 10802 10803 static inline void 10804 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max) 10805 { 10806 int idx; 10807 10808 if (*qs == NULL) 10809 return; 10810 10811 for (idx = 0; idx < max; idx++) 10812 __lpfc_sli4_release_queue(&(*qs)[idx]); 10813 10814 kfree(*qs); 10815 *qs = NULL; 10816 } 10817 10818 static inline void 10819 lpfc_sli4_release_hdwq(struct lpfc_hba *phba) 10820 { 10821 struct lpfc_sli4_hdw_queue *hdwq; 10822 struct lpfc_queue *eq; 10823 uint32_t idx; 10824 10825 hdwq = phba->sli4_hba.hdwq; 10826 10827 /* Loop thru all Hardware Queues */ 10828 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10829 /* Free the CQ/WQ corresponding to the Hardware Queue */ 10830 lpfc_sli4_queue_free(hdwq[idx].io_cq); 10831 lpfc_sli4_queue_free(hdwq[idx].io_wq); 10832 hdwq[idx].hba_eq = NULL; 10833 hdwq[idx].io_cq = NULL; 10834 hdwq[idx].io_wq = NULL; 10835 if (phba->cfg_xpsgl && !phba->nvmet_support) 10836 lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]); 10837 lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]); 10838 } 10839 /* Loop thru all IRQ vectors */ 10840 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 10841 /* Free the EQ corresponding to the IRQ vector */ 10842 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 10843 lpfc_sli4_queue_free(eq); 10844 phba->sli4_hba.hba_eq_hdl[idx].eq = NULL; 10845 } 10846 } 10847 10848 /** 10849 * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues 10850 * @phba: pointer to lpfc hba data structure. 10851 * 10852 * This routine is invoked to release all the SLI4 queues with the FCoE HBA 10853 * operation. 10854 * 10855 * Return codes 10856 * 0 - successful 10857 * -ENOMEM - No available memory 10858 * -EIO - The mailbox failed to complete successfully. 10859 **/ 10860 void 10861 lpfc_sli4_queue_destroy(struct lpfc_hba *phba) 10862 { 10863 /* 10864 * Set FREE_INIT before beginning to free the queues. 10865 * Wait until the users of queues to acknowledge to 10866 * release queues by clearing FREE_WAIT. 10867 */ 10868 spin_lock_irq(&phba->hbalock); 10869 phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT; 10870 while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) { 10871 spin_unlock_irq(&phba->hbalock); 10872 msleep(20); 10873 spin_lock_irq(&phba->hbalock); 10874 } 10875 spin_unlock_irq(&phba->hbalock); 10876 10877 lpfc_sli4_cleanup_poll_list(phba); 10878 10879 /* Release HBA eqs */ 10880 if (phba->sli4_hba.hdwq) 10881 lpfc_sli4_release_hdwq(phba); 10882 10883 if (phba->nvmet_support) { 10884 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset, 10885 phba->cfg_nvmet_mrq); 10886 10887 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr, 10888 phba->cfg_nvmet_mrq); 10889 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data, 10890 phba->cfg_nvmet_mrq); 10891 } 10892 10893 /* Release mailbox command work queue */ 10894 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq); 10895 10896 /* Release ELS work queue */ 10897 __lpfc_sli4_release_queue(&phba->sli4_hba.els_wq); 10898 10899 /* Release ELS work queue */ 10900 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq); 10901 10902 /* Release unsolicited receive queue */ 10903 __lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq); 10904 __lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq); 10905 10906 /* Release ELS complete queue */ 10907 __lpfc_sli4_release_queue(&phba->sli4_hba.els_cq); 10908 10909 /* Release NVME LS complete queue */ 10910 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq); 10911 10912 /* Release mailbox command complete queue */ 10913 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq); 10914 10915 /* Everything on this list has been freed */ 10916 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 10917 10918 /* Done with freeing the queues */ 10919 spin_lock_irq(&phba->hbalock); 10920 phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT; 10921 spin_unlock_irq(&phba->hbalock); 10922 } 10923 10924 int 10925 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq) 10926 { 10927 struct lpfc_rqb *rqbp; 10928 struct lpfc_dmabuf *h_buf; 10929 struct rqb_dmabuf *rqb_buffer; 10930 10931 rqbp = rq->rqbp; 10932 while (!list_empty(&rqbp->rqb_buffer_list)) { 10933 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 10934 struct lpfc_dmabuf, list); 10935 10936 rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf); 10937 (rqbp->rqb_free_buffer)(phba, rqb_buffer); 10938 rqbp->buffer_count--; 10939 } 10940 return 1; 10941 } 10942 10943 static int 10944 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq, 10945 struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map, 10946 int qidx, uint32_t qtype) 10947 { 10948 struct lpfc_sli_ring *pring; 10949 int rc; 10950 10951 if (!eq || !cq || !wq) { 10952 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10953 "6085 Fast-path %s (%d) not allocated\n", 10954 ((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx); 10955 return -ENOMEM; 10956 } 10957 10958 /* create the Cq first */ 10959 rc = lpfc_cq_create(phba, cq, eq, 10960 (qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype); 10961 if (rc) { 10962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10963 "6086 Failed setup of CQ (%d), rc = 0x%x\n", 10964 qidx, (uint32_t)rc); 10965 return rc; 10966 } 10967 10968 if (qtype != LPFC_MBOX) { 10969 /* Setup cq_map for fast lookup */ 10970 if (cq_map) 10971 *cq_map = cq->queue_id; 10972 10973 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10974 "6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n", 10975 qidx, cq->queue_id, qidx, eq->queue_id); 10976 10977 /* create the wq */ 10978 rc = lpfc_wq_create(phba, wq, cq, qtype); 10979 if (rc) { 10980 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10981 "4618 Fail setup fastpath WQ (%d), rc = 0x%x\n", 10982 qidx, (uint32_t)rc); 10983 /* no need to tear down cq - caller will do so */ 10984 return rc; 10985 } 10986 10987 /* Bind this CQ/WQ to the NVME ring */ 10988 pring = wq->pring; 10989 pring->sli.sli4.wqp = (void *)wq; 10990 cq->pring = pring; 10991 10992 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10993 "2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n", 10994 qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id); 10995 } else { 10996 rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX); 10997 if (rc) { 10998 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10999 "0539 Failed setup of slow-path MQ: " 11000 "rc = 0x%x\n", rc); 11001 /* no need to tear down cq - caller will do so */ 11002 return rc; 11003 } 11004 11005 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11006 "2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n", 11007 phba->sli4_hba.mbx_wq->queue_id, 11008 phba->sli4_hba.mbx_cq->queue_id); 11009 } 11010 11011 return 0; 11012 } 11013 11014 /** 11015 * lpfc_setup_cq_lookup - Setup the CQ lookup table 11016 * @phba: pointer to lpfc hba data structure. 11017 * 11018 * This routine will populate the cq_lookup table by all 11019 * available CQ queue_id's. 11020 **/ 11021 static void 11022 lpfc_setup_cq_lookup(struct lpfc_hba *phba) 11023 { 11024 struct lpfc_queue *eq, *childq; 11025 int qidx; 11026 11027 memset(phba->sli4_hba.cq_lookup, 0, 11028 (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1))); 11029 /* Loop thru all IRQ vectors */ 11030 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 11031 /* Get the EQ corresponding to the IRQ vector */ 11032 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 11033 if (!eq) 11034 continue; 11035 /* Loop through all CQs associated with that EQ */ 11036 list_for_each_entry(childq, &eq->child_list, list) { 11037 if (childq->queue_id > phba->sli4_hba.cq_max) 11038 continue; 11039 if (childq->subtype == LPFC_IO) 11040 phba->sli4_hba.cq_lookup[childq->queue_id] = 11041 childq; 11042 } 11043 } 11044 } 11045 11046 /** 11047 * lpfc_sli4_queue_setup - Set up all the SLI4 queues 11048 * @phba: pointer to lpfc hba data structure. 11049 * 11050 * This routine is invoked to set up all the SLI4 queues for the FCoE HBA 11051 * operation. 11052 * 11053 * Return codes 11054 * 0 - successful 11055 * -ENOMEM - No available memory 11056 * -EIO - The mailbox failed to complete successfully. 11057 **/ 11058 int 11059 lpfc_sli4_queue_setup(struct lpfc_hba *phba) 11060 { 11061 uint32_t shdr_status, shdr_add_status; 11062 union lpfc_sli4_cfg_shdr *shdr; 11063 struct lpfc_vector_map_info *cpup; 11064 struct lpfc_sli4_hdw_queue *qp; 11065 LPFC_MBOXQ_t *mboxq; 11066 int qidx, cpu; 11067 uint32_t length, usdelay; 11068 int rc = -ENOMEM; 11069 11070 /* Check for dual-ULP support */ 11071 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 11072 if (!mboxq) { 11073 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11074 "3249 Unable to allocate memory for " 11075 "QUERY_FW_CFG mailbox command\n"); 11076 return -ENOMEM; 11077 } 11078 length = (sizeof(struct lpfc_mbx_query_fw_config) - 11079 sizeof(struct lpfc_sli4_cfg_mhdr)); 11080 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 11081 LPFC_MBOX_OPCODE_QUERY_FW_CFG, 11082 length, LPFC_SLI4_MBX_EMBED); 11083 11084 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 11085 11086 shdr = (union lpfc_sli4_cfg_shdr *) 11087 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 11088 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 11089 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 11090 if (shdr_status || shdr_add_status || rc) { 11091 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11092 "3250 QUERY_FW_CFG mailbox failed with status " 11093 "x%x add_status x%x, mbx status x%x\n", 11094 shdr_status, shdr_add_status, rc); 11095 mempool_free(mboxq, phba->mbox_mem_pool); 11096 rc = -ENXIO; 11097 goto out_error; 11098 } 11099 11100 phba->sli4_hba.fw_func_mode = 11101 mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode; 11102 phba->sli4_hba.physical_port = 11103 mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port; 11104 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11105 "3251 QUERY_FW_CFG: func_mode:x%x\n", 11106 phba->sli4_hba.fw_func_mode); 11107 11108 mempool_free(mboxq, phba->mbox_mem_pool); 11109 11110 /* 11111 * Set up HBA Event Queues (EQs) 11112 */ 11113 qp = phba->sli4_hba.hdwq; 11114 11115 /* Set up HBA event queue */ 11116 if (!qp) { 11117 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11118 "3147 Fast-path EQs not allocated\n"); 11119 rc = -ENOMEM; 11120 goto out_error; 11121 } 11122 11123 /* Loop thru all IRQ vectors */ 11124 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 11125 /* Create HBA Event Queues (EQs) in order */ 11126 for_each_present_cpu(cpu) { 11127 cpup = &phba->sli4_hba.cpu_map[cpu]; 11128 11129 /* Look for the CPU thats using that vector with 11130 * LPFC_CPU_FIRST_IRQ set. 11131 */ 11132 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 11133 continue; 11134 if (qidx != cpup->eq) 11135 continue; 11136 11137 /* Create an EQ for that vector */ 11138 rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq, 11139 phba->cfg_fcp_imax); 11140 if (rc) { 11141 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11142 "0523 Failed setup of fast-path" 11143 " EQ (%d), rc = 0x%x\n", 11144 cpup->eq, (uint32_t)rc); 11145 goto out_destroy; 11146 } 11147 11148 /* Save the EQ for that vector in the hba_eq_hdl */ 11149 phba->sli4_hba.hba_eq_hdl[cpup->eq].eq = 11150 qp[cpup->hdwq].hba_eq; 11151 11152 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11153 "2584 HBA EQ setup: queue[%d]-id=%d\n", 11154 cpup->eq, 11155 qp[cpup->hdwq].hba_eq->queue_id); 11156 } 11157 } 11158 11159 /* Loop thru all Hardware Queues */ 11160 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 11161 cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ); 11162 cpup = &phba->sli4_hba.cpu_map[cpu]; 11163 11164 /* Create the CQ/WQ corresponding to the Hardware Queue */ 11165 rc = lpfc_create_wq_cq(phba, 11166 phba->sli4_hba.hdwq[cpup->hdwq].hba_eq, 11167 qp[qidx].io_cq, 11168 qp[qidx].io_wq, 11169 &phba->sli4_hba.hdwq[qidx].io_cq_map, 11170 qidx, 11171 LPFC_IO); 11172 if (rc) { 11173 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11174 "0535 Failed to setup fastpath " 11175 "IO WQ/CQ (%d), rc = 0x%x\n", 11176 qidx, (uint32_t)rc); 11177 goto out_destroy; 11178 } 11179 } 11180 11181 /* 11182 * Set up Slow Path Complete Queues (CQs) 11183 */ 11184 11185 /* Set up slow-path MBOX CQ/MQ */ 11186 11187 if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) { 11188 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11189 "0528 %s not allocated\n", 11190 phba->sli4_hba.mbx_cq ? 11191 "Mailbox WQ" : "Mailbox CQ"); 11192 rc = -ENOMEM; 11193 goto out_destroy; 11194 } 11195 11196 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 11197 phba->sli4_hba.mbx_cq, 11198 phba->sli4_hba.mbx_wq, 11199 NULL, 0, LPFC_MBOX); 11200 if (rc) { 11201 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11202 "0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n", 11203 (uint32_t)rc); 11204 goto out_destroy; 11205 } 11206 if (phba->nvmet_support) { 11207 if (!phba->sli4_hba.nvmet_cqset) { 11208 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11209 "3165 Fast-path NVME CQ Set " 11210 "array not allocated\n"); 11211 rc = -ENOMEM; 11212 goto out_destroy; 11213 } 11214 if (phba->cfg_nvmet_mrq > 1) { 11215 rc = lpfc_cq_create_set(phba, 11216 phba->sli4_hba.nvmet_cqset, 11217 qp, 11218 LPFC_WCQ, LPFC_NVMET); 11219 if (rc) { 11220 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11221 "3164 Failed setup of NVME CQ " 11222 "Set, rc = 0x%x\n", 11223 (uint32_t)rc); 11224 goto out_destroy; 11225 } 11226 } else { 11227 /* Set up NVMET Receive Complete Queue */ 11228 rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0], 11229 qp[0].hba_eq, 11230 LPFC_WCQ, LPFC_NVMET); 11231 if (rc) { 11232 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11233 "6089 Failed setup NVMET CQ: " 11234 "rc = 0x%x\n", (uint32_t)rc); 11235 goto out_destroy; 11236 } 11237 phba->sli4_hba.nvmet_cqset[0]->chann = 0; 11238 11239 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11240 "6090 NVMET CQ setup: cq-id=%d, " 11241 "parent eq-id=%d\n", 11242 phba->sli4_hba.nvmet_cqset[0]->queue_id, 11243 qp[0].hba_eq->queue_id); 11244 } 11245 } 11246 11247 /* Set up slow-path ELS WQ/CQ */ 11248 if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) { 11249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11250 "0530 ELS %s not allocated\n", 11251 phba->sli4_hba.els_cq ? "WQ" : "CQ"); 11252 rc = -ENOMEM; 11253 goto out_destroy; 11254 } 11255 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 11256 phba->sli4_hba.els_cq, 11257 phba->sli4_hba.els_wq, 11258 NULL, 0, LPFC_ELS); 11259 if (rc) { 11260 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11261 "0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n", 11262 (uint32_t)rc); 11263 goto out_destroy; 11264 } 11265 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11266 "2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n", 11267 phba->sli4_hba.els_wq->queue_id, 11268 phba->sli4_hba.els_cq->queue_id); 11269 11270 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11271 /* Set up NVME LS Complete Queue */ 11272 if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) { 11273 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11274 "6091 LS %s not allocated\n", 11275 phba->sli4_hba.nvmels_cq ? "WQ" : "CQ"); 11276 rc = -ENOMEM; 11277 goto out_destroy; 11278 } 11279 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 11280 phba->sli4_hba.nvmels_cq, 11281 phba->sli4_hba.nvmels_wq, 11282 NULL, 0, LPFC_NVME_LS); 11283 if (rc) { 11284 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11285 "0526 Failed setup of NVVME LS WQ/CQ: " 11286 "rc = 0x%x\n", (uint32_t)rc); 11287 goto out_destroy; 11288 } 11289 11290 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11291 "6096 ELS WQ setup: wq-id=%d, " 11292 "parent cq-id=%d\n", 11293 phba->sli4_hba.nvmels_wq->queue_id, 11294 phba->sli4_hba.nvmels_cq->queue_id); 11295 } 11296 11297 /* 11298 * Create NVMET Receive Queue (RQ) 11299 */ 11300 if (phba->nvmet_support) { 11301 if ((!phba->sli4_hba.nvmet_cqset) || 11302 (!phba->sli4_hba.nvmet_mrq_hdr) || 11303 (!phba->sli4_hba.nvmet_mrq_data)) { 11304 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11305 "6130 MRQ CQ Queues not " 11306 "allocated\n"); 11307 rc = -ENOMEM; 11308 goto out_destroy; 11309 } 11310 if (phba->cfg_nvmet_mrq > 1) { 11311 rc = lpfc_mrq_create(phba, 11312 phba->sli4_hba.nvmet_mrq_hdr, 11313 phba->sli4_hba.nvmet_mrq_data, 11314 phba->sli4_hba.nvmet_cqset, 11315 LPFC_NVMET); 11316 if (rc) { 11317 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11318 "6098 Failed setup of NVMET " 11319 "MRQ: rc = 0x%x\n", 11320 (uint32_t)rc); 11321 goto out_destroy; 11322 } 11323 11324 } else { 11325 rc = lpfc_rq_create(phba, 11326 phba->sli4_hba.nvmet_mrq_hdr[0], 11327 phba->sli4_hba.nvmet_mrq_data[0], 11328 phba->sli4_hba.nvmet_cqset[0], 11329 LPFC_NVMET); 11330 if (rc) { 11331 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11332 "6057 Failed setup of NVMET " 11333 "Receive Queue: rc = 0x%x\n", 11334 (uint32_t)rc); 11335 goto out_destroy; 11336 } 11337 11338 lpfc_printf_log( 11339 phba, KERN_INFO, LOG_INIT, 11340 "6099 NVMET RQ setup: hdr-rq-id=%d, " 11341 "dat-rq-id=%d parent cq-id=%d\n", 11342 phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id, 11343 phba->sli4_hba.nvmet_mrq_data[0]->queue_id, 11344 phba->sli4_hba.nvmet_cqset[0]->queue_id); 11345 11346 } 11347 } 11348 11349 if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) { 11350 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11351 "0540 Receive Queue not allocated\n"); 11352 rc = -ENOMEM; 11353 goto out_destroy; 11354 } 11355 11356 rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq, 11357 phba->sli4_hba.els_cq, LPFC_USOL); 11358 if (rc) { 11359 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11360 "0541 Failed setup of Receive Queue: " 11361 "rc = 0x%x\n", (uint32_t)rc); 11362 goto out_destroy; 11363 } 11364 11365 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11366 "2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d " 11367 "parent cq-id=%d\n", 11368 phba->sli4_hba.hdr_rq->queue_id, 11369 phba->sli4_hba.dat_rq->queue_id, 11370 phba->sli4_hba.els_cq->queue_id); 11371 11372 if (phba->cfg_fcp_imax) 11373 usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax; 11374 else 11375 usdelay = 0; 11376 11377 for (qidx = 0; qidx < phba->cfg_irq_chann; 11378 qidx += LPFC_MAX_EQ_DELAY_EQID_CNT) 11379 lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT, 11380 usdelay); 11381 11382 if (phba->sli4_hba.cq_max) { 11383 kfree(phba->sli4_hba.cq_lookup); 11384 phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1), 11385 sizeof(struct lpfc_queue *), GFP_KERNEL); 11386 if (!phba->sli4_hba.cq_lookup) { 11387 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11388 "0549 Failed setup of CQ Lookup table: " 11389 "size 0x%x\n", phba->sli4_hba.cq_max); 11390 rc = -ENOMEM; 11391 goto out_destroy; 11392 } 11393 lpfc_setup_cq_lookup(phba); 11394 } 11395 return 0; 11396 11397 out_destroy: 11398 lpfc_sli4_queue_unset(phba); 11399 out_error: 11400 return rc; 11401 } 11402 11403 /** 11404 * lpfc_sli4_queue_unset - Unset all the SLI4 queues 11405 * @phba: pointer to lpfc hba data structure. 11406 * 11407 * This routine is invoked to unset all the SLI4 queues with the FCoE HBA 11408 * operation. 11409 * 11410 * Return codes 11411 * 0 - successful 11412 * -ENOMEM - No available memory 11413 * -EIO - The mailbox failed to complete successfully. 11414 **/ 11415 void 11416 lpfc_sli4_queue_unset(struct lpfc_hba *phba) 11417 { 11418 struct lpfc_sli4_hdw_queue *qp; 11419 struct lpfc_queue *eq; 11420 int qidx; 11421 11422 /* Unset mailbox command work queue */ 11423 if (phba->sli4_hba.mbx_wq) 11424 lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq); 11425 11426 /* Unset NVME LS work queue */ 11427 if (phba->sli4_hba.nvmels_wq) 11428 lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq); 11429 11430 /* Unset ELS work queue */ 11431 if (phba->sli4_hba.els_wq) 11432 lpfc_wq_destroy(phba, phba->sli4_hba.els_wq); 11433 11434 /* Unset unsolicited receive queue */ 11435 if (phba->sli4_hba.hdr_rq) 11436 lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq, 11437 phba->sli4_hba.dat_rq); 11438 11439 /* Unset mailbox command complete queue */ 11440 if (phba->sli4_hba.mbx_cq) 11441 lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq); 11442 11443 /* Unset ELS complete queue */ 11444 if (phba->sli4_hba.els_cq) 11445 lpfc_cq_destroy(phba, phba->sli4_hba.els_cq); 11446 11447 /* Unset NVME LS complete queue */ 11448 if (phba->sli4_hba.nvmels_cq) 11449 lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq); 11450 11451 if (phba->nvmet_support) { 11452 /* Unset NVMET MRQ queue */ 11453 if (phba->sli4_hba.nvmet_mrq_hdr) { 11454 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 11455 lpfc_rq_destroy( 11456 phba, 11457 phba->sli4_hba.nvmet_mrq_hdr[qidx], 11458 phba->sli4_hba.nvmet_mrq_data[qidx]); 11459 } 11460 11461 /* Unset NVMET CQ Set complete queue */ 11462 if (phba->sli4_hba.nvmet_cqset) { 11463 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 11464 lpfc_cq_destroy( 11465 phba, phba->sli4_hba.nvmet_cqset[qidx]); 11466 } 11467 } 11468 11469 /* Unset fast-path SLI4 queues */ 11470 if (phba->sli4_hba.hdwq) { 11471 /* Loop thru all Hardware Queues */ 11472 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 11473 /* Destroy the CQ/WQ corresponding to Hardware Queue */ 11474 qp = &phba->sli4_hba.hdwq[qidx]; 11475 lpfc_wq_destroy(phba, qp->io_wq); 11476 lpfc_cq_destroy(phba, qp->io_cq); 11477 } 11478 /* Loop thru all IRQ vectors */ 11479 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 11480 /* Destroy the EQ corresponding to the IRQ vector */ 11481 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 11482 lpfc_eq_destroy(phba, eq); 11483 } 11484 } 11485 11486 kfree(phba->sli4_hba.cq_lookup); 11487 phba->sli4_hba.cq_lookup = NULL; 11488 phba->sli4_hba.cq_max = 0; 11489 } 11490 11491 /** 11492 * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool 11493 * @phba: pointer to lpfc hba data structure. 11494 * 11495 * This routine is invoked to allocate and set up a pool of completion queue 11496 * events. The body of the completion queue event is a completion queue entry 11497 * CQE. For now, this pool is used for the interrupt service routine to queue 11498 * the following HBA completion queue events for the worker thread to process: 11499 * - Mailbox asynchronous events 11500 * - Receive queue completion unsolicited events 11501 * Later, this can be used for all the slow-path events. 11502 * 11503 * Return codes 11504 * 0 - successful 11505 * -ENOMEM - No available memory 11506 **/ 11507 static int 11508 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba) 11509 { 11510 struct lpfc_cq_event *cq_event; 11511 int i; 11512 11513 for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) { 11514 cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL); 11515 if (!cq_event) 11516 goto out_pool_create_fail; 11517 list_add_tail(&cq_event->list, 11518 &phba->sli4_hba.sp_cqe_event_pool); 11519 } 11520 return 0; 11521 11522 out_pool_create_fail: 11523 lpfc_sli4_cq_event_pool_destroy(phba); 11524 return -ENOMEM; 11525 } 11526 11527 /** 11528 * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool 11529 * @phba: pointer to lpfc hba data structure. 11530 * 11531 * This routine is invoked to free the pool of completion queue events at 11532 * driver unload time. Note that, it is the responsibility of the driver 11533 * cleanup routine to free all the outstanding completion-queue events 11534 * allocated from this pool back into the pool before invoking this routine 11535 * to destroy the pool. 11536 **/ 11537 static void 11538 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba) 11539 { 11540 struct lpfc_cq_event *cq_event, *next_cq_event; 11541 11542 list_for_each_entry_safe(cq_event, next_cq_event, 11543 &phba->sli4_hba.sp_cqe_event_pool, list) { 11544 list_del(&cq_event->list); 11545 kfree(cq_event); 11546 } 11547 } 11548 11549 /** 11550 * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 11551 * @phba: pointer to lpfc hba data structure. 11552 * 11553 * This routine is the lock free version of the API invoked to allocate a 11554 * completion-queue event from the free pool. 11555 * 11556 * Return: Pointer to the newly allocated completion-queue event if successful 11557 * NULL otherwise. 11558 **/ 11559 struct lpfc_cq_event * 11560 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 11561 { 11562 struct lpfc_cq_event *cq_event = NULL; 11563 11564 list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event, 11565 struct lpfc_cq_event, list); 11566 return cq_event; 11567 } 11568 11569 /** 11570 * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 11571 * @phba: pointer to lpfc hba data structure. 11572 * 11573 * This routine is the lock version of the API invoked to allocate a 11574 * completion-queue event from the free pool. 11575 * 11576 * Return: Pointer to the newly allocated completion-queue event if successful 11577 * NULL otherwise. 11578 **/ 11579 struct lpfc_cq_event * 11580 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 11581 { 11582 struct lpfc_cq_event *cq_event; 11583 unsigned long iflags; 11584 11585 spin_lock_irqsave(&phba->hbalock, iflags); 11586 cq_event = __lpfc_sli4_cq_event_alloc(phba); 11587 spin_unlock_irqrestore(&phba->hbalock, iflags); 11588 return cq_event; 11589 } 11590 11591 /** 11592 * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 11593 * @phba: pointer to lpfc hba data structure. 11594 * @cq_event: pointer to the completion queue event to be freed. 11595 * 11596 * This routine is the lock free version of the API invoked to release a 11597 * completion-queue event back into the free pool. 11598 **/ 11599 void 11600 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 11601 struct lpfc_cq_event *cq_event) 11602 { 11603 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool); 11604 } 11605 11606 /** 11607 * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 11608 * @phba: pointer to lpfc hba data structure. 11609 * @cq_event: pointer to the completion queue event to be freed. 11610 * 11611 * This routine is the lock version of the API invoked to release a 11612 * completion-queue event back into the free pool. 11613 **/ 11614 void 11615 lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 11616 struct lpfc_cq_event *cq_event) 11617 { 11618 unsigned long iflags; 11619 spin_lock_irqsave(&phba->hbalock, iflags); 11620 __lpfc_sli4_cq_event_release(phba, cq_event); 11621 spin_unlock_irqrestore(&phba->hbalock, iflags); 11622 } 11623 11624 /** 11625 * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool 11626 * @phba: pointer to lpfc hba data structure. 11627 * 11628 * This routine is to free all the pending completion-queue events to the 11629 * back into the free pool for device reset. 11630 **/ 11631 static void 11632 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba) 11633 { 11634 LIST_HEAD(cq_event_list); 11635 struct lpfc_cq_event *cq_event; 11636 unsigned long iflags; 11637 11638 /* Retrieve all the pending WCQEs from pending WCQE lists */ 11639 11640 /* Pending ELS XRI abort events */ 11641 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 11642 list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 11643 &cq_event_list); 11644 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 11645 11646 /* Pending asynnc events */ 11647 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 11648 list_splice_init(&phba->sli4_hba.sp_asynce_work_queue, 11649 &cq_event_list); 11650 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 11651 11652 while (!list_empty(&cq_event_list)) { 11653 list_remove_head(&cq_event_list, cq_event, 11654 struct lpfc_cq_event, list); 11655 lpfc_sli4_cq_event_release(phba, cq_event); 11656 } 11657 } 11658 11659 /** 11660 * lpfc_pci_function_reset - Reset pci function. 11661 * @phba: pointer to lpfc hba data structure. 11662 * 11663 * This routine is invoked to request a PCI function reset. It will destroys 11664 * all resources assigned to the PCI function which originates this request. 11665 * 11666 * Return codes 11667 * 0 - successful 11668 * -ENOMEM - No available memory 11669 * -EIO - The mailbox failed to complete successfully. 11670 **/ 11671 int 11672 lpfc_pci_function_reset(struct lpfc_hba *phba) 11673 { 11674 LPFC_MBOXQ_t *mboxq; 11675 uint32_t rc = 0, if_type; 11676 uint32_t shdr_status, shdr_add_status; 11677 uint32_t rdy_chk; 11678 uint32_t port_reset = 0; 11679 union lpfc_sli4_cfg_shdr *shdr; 11680 struct lpfc_register reg_data; 11681 uint16_t devid; 11682 11683 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11684 switch (if_type) { 11685 case LPFC_SLI_INTF_IF_TYPE_0: 11686 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 11687 GFP_KERNEL); 11688 if (!mboxq) { 11689 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11690 "0494 Unable to allocate memory for " 11691 "issuing SLI_FUNCTION_RESET mailbox " 11692 "command\n"); 11693 return -ENOMEM; 11694 } 11695 11696 /* Setup PCI function reset mailbox-ioctl command */ 11697 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 11698 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0, 11699 LPFC_SLI4_MBX_EMBED); 11700 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 11701 shdr = (union lpfc_sli4_cfg_shdr *) 11702 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 11703 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 11704 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 11705 &shdr->response); 11706 mempool_free(mboxq, phba->mbox_mem_pool); 11707 if (shdr_status || shdr_add_status || rc) { 11708 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11709 "0495 SLI_FUNCTION_RESET mailbox " 11710 "failed with status x%x add_status x%x," 11711 " mbx status x%x\n", 11712 shdr_status, shdr_add_status, rc); 11713 rc = -ENXIO; 11714 } 11715 break; 11716 case LPFC_SLI_INTF_IF_TYPE_2: 11717 case LPFC_SLI_INTF_IF_TYPE_6: 11718 wait: 11719 /* 11720 * Poll the Port Status Register and wait for RDY for 11721 * up to 30 seconds. If the port doesn't respond, treat 11722 * it as an error. 11723 */ 11724 for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) { 11725 if (lpfc_readl(phba->sli4_hba.u.if_type2. 11726 STATUSregaddr, ®_data.word0)) { 11727 rc = -ENODEV; 11728 goto out; 11729 } 11730 if (bf_get(lpfc_sliport_status_rdy, ®_data)) 11731 break; 11732 msleep(20); 11733 } 11734 11735 if (!bf_get(lpfc_sliport_status_rdy, ®_data)) { 11736 phba->work_status[0] = readl( 11737 phba->sli4_hba.u.if_type2.ERR1regaddr); 11738 phba->work_status[1] = readl( 11739 phba->sli4_hba.u.if_type2.ERR2regaddr); 11740 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11741 "2890 Port not ready, port status reg " 11742 "0x%x error 1=0x%x, error 2=0x%x\n", 11743 reg_data.word0, 11744 phba->work_status[0], 11745 phba->work_status[1]); 11746 rc = -ENODEV; 11747 goto out; 11748 } 11749 11750 if (bf_get(lpfc_sliport_status_pldv, ®_data)) 11751 lpfc_pldv_detect = true; 11752 11753 if (!port_reset) { 11754 /* 11755 * Reset the port now 11756 */ 11757 reg_data.word0 = 0; 11758 bf_set(lpfc_sliport_ctrl_end, ®_data, 11759 LPFC_SLIPORT_LITTLE_ENDIAN); 11760 bf_set(lpfc_sliport_ctrl_ip, ®_data, 11761 LPFC_SLIPORT_INIT_PORT); 11762 writel(reg_data.word0, phba->sli4_hba.u.if_type2. 11763 CTRLregaddr); 11764 /* flush */ 11765 pci_read_config_word(phba->pcidev, 11766 PCI_DEVICE_ID, &devid); 11767 11768 port_reset = 1; 11769 msleep(20); 11770 goto wait; 11771 } else if (bf_get(lpfc_sliport_status_rn, ®_data)) { 11772 rc = -ENODEV; 11773 goto out; 11774 } 11775 break; 11776 11777 case LPFC_SLI_INTF_IF_TYPE_1: 11778 default: 11779 break; 11780 } 11781 11782 out: 11783 /* Catch the not-ready port failure after a port reset. */ 11784 if (rc) { 11785 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11786 "3317 HBA not functional: IP Reset Failed " 11787 "try: echo fw_reset > board_mode\n"); 11788 rc = -ENODEV; 11789 } 11790 11791 return rc; 11792 } 11793 11794 /** 11795 * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space. 11796 * @phba: pointer to lpfc hba data structure. 11797 * 11798 * This routine is invoked to set up the PCI device memory space for device 11799 * with SLI-4 interface spec. 11800 * 11801 * Return codes 11802 * 0 - successful 11803 * other values - error 11804 **/ 11805 static int 11806 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba) 11807 { 11808 struct pci_dev *pdev = phba->pcidev; 11809 unsigned long bar0map_len, bar1map_len, bar2map_len; 11810 int error; 11811 uint32_t if_type; 11812 11813 if (!pdev) 11814 return -ENODEV; 11815 11816 /* Set the device DMA mask size */ 11817 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 11818 if (error) 11819 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 11820 if (error) 11821 return error; 11822 11823 /* 11824 * The BARs and register set definitions and offset locations are 11825 * dependent on the if_type. 11826 */ 11827 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, 11828 &phba->sli4_hba.sli_intf.word0)) { 11829 return -ENODEV; 11830 } 11831 11832 /* There is no SLI3 failback for SLI4 devices. */ 11833 if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) != 11834 LPFC_SLI_INTF_VALID) { 11835 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11836 "2894 SLI_INTF reg contents invalid " 11837 "sli_intf reg 0x%x\n", 11838 phba->sli4_hba.sli_intf.word0); 11839 return -ENODEV; 11840 } 11841 11842 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11843 /* 11844 * Get the bus address of SLI4 device Bar regions and the 11845 * number of bytes required by each mapping. The mapping of the 11846 * particular PCI BARs regions is dependent on the type of 11847 * SLI4 device. 11848 */ 11849 if (pci_resource_start(pdev, PCI_64BIT_BAR0)) { 11850 phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0); 11851 bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0); 11852 11853 /* 11854 * Map SLI4 PCI Config Space Register base to a kernel virtual 11855 * addr 11856 */ 11857 phba->sli4_hba.conf_regs_memmap_p = 11858 ioremap(phba->pci_bar0_map, bar0map_len); 11859 if (!phba->sli4_hba.conf_regs_memmap_p) { 11860 dev_printk(KERN_ERR, &pdev->dev, 11861 "ioremap failed for SLI4 PCI config " 11862 "registers.\n"); 11863 return -ENODEV; 11864 } 11865 phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p; 11866 /* Set up BAR0 PCI config space register memory map */ 11867 lpfc_sli4_bar0_register_memmap(phba, if_type); 11868 } else { 11869 phba->pci_bar0_map = pci_resource_start(pdev, 1); 11870 bar0map_len = pci_resource_len(pdev, 1); 11871 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 11872 dev_printk(KERN_ERR, &pdev->dev, 11873 "FATAL - No BAR0 mapping for SLI4, if_type 2\n"); 11874 return -ENODEV; 11875 } 11876 phba->sli4_hba.conf_regs_memmap_p = 11877 ioremap(phba->pci_bar0_map, bar0map_len); 11878 if (!phba->sli4_hba.conf_regs_memmap_p) { 11879 dev_printk(KERN_ERR, &pdev->dev, 11880 "ioremap failed for SLI4 PCI config " 11881 "registers.\n"); 11882 return -ENODEV; 11883 } 11884 lpfc_sli4_bar0_register_memmap(phba, if_type); 11885 } 11886 11887 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 11888 if (pci_resource_start(pdev, PCI_64BIT_BAR2)) { 11889 /* 11890 * Map SLI4 if type 0 HBA Control Register base to a 11891 * kernel virtual address and setup the registers. 11892 */ 11893 phba->pci_bar1_map = pci_resource_start(pdev, 11894 PCI_64BIT_BAR2); 11895 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 11896 phba->sli4_hba.ctrl_regs_memmap_p = 11897 ioremap(phba->pci_bar1_map, 11898 bar1map_len); 11899 if (!phba->sli4_hba.ctrl_regs_memmap_p) { 11900 dev_err(&pdev->dev, 11901 "ioremap failed for SLI4 HBA " 11902 "control registers.\n"); 11903 error = -ENOMEM; 11904 goto out_iounmap_conf; 11905 } 11906 phba->pci_bar2_memmap_p = 11907 phba->sli4_hba.ctrl_regs_memmap_p; 11908 lpfc_sli4_bar1_register_memmap(phba, if_type); 11909 } else { 11910 error = -ENOMEM; 11911 goto out_iounmap_conf; 11912 } 11913 } 11914 11915 if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) && 11916 (pci_resource_start(pdev, PCI_64BIT_BAR2))) { 11917 /* 11918 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel 11919 * virtual address and setup the registers. 11920 */ 11921 phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2); 11922 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 11923 phba->sli4_hba.drbl_regs_memmap_p = 11924 ioremap(phba->pci_bar1_map, bar1map_len); 11925 if (!phba->sli4_hba.drbl_regs_memmap_p) { 11926 dev_err(&pdev->dev, 11927 "ioremap failed for SLI4 HBA doorbell registers.\n"); 11928 error = -ENOMEM; 11929 goto out_iounmap_conf; 11930 } 11931 phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p; 11932 lpfc_sli4_bar1_register_memmap(phba, if_type); 11933 } 11934 11935 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 11936 if (pci_resource_start(pdev, PCI_64BIT_BAR4)) { 11937 /* 11938 * Map SLI4 if type 0 HBA Doorbell Register base to 11939 * a kernel virtual address and setup the registers. 11940 */ 11941 phba->pci_bar2_map = pci_resource_start(pdev, 11942 PCI_64BIT_BAR4); 11943 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 11944 phba->sli4_hba.drbl_regs_memmap_p = 11945 ioremap(phba->pci_bar2_map, 11946 bar2map_len); 11947 if (!phba->sli4_hba.drbl_regs_memmap_p) { 11948 dev_err(&pdev->dev, 11949 "ioremap failed for SLI4 HBA" 11950 " doorbell registers.\n"); 11951 error = -ENOMEM; 11952 goto out_iounmap_ctrl; 11953 } 11954 phba->pci_bar4_memmap_p = 11955 phba->sli4_hba.drbl_regs_memmap_p; 11956 error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0); 11957 if (error) 11958 goto out_iounmap_all; 11959 } else { 11960 error = -ENOMEM; 11961 goto out_iounmap_ctrl; 11962 } 11963 } 11964 11965 if (if_type == LPFC_SLI_INTF_IF_TYPE_6 && 11966 pci_resource_start(pdev, PCI_64BIT_BAR4)) { 11967 /* 11968 * Map SLI4 if type 6 HBA DPP Register base to a kernel 11969 * virtual address and setup the registers. 11970 */ 11971 phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4); 11972 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 11973 phba->sli4_hba.dpp_regs_memmap_p = 11974 ioremap(phba->pci_bar2_map, bar2map_len); 11975 if (!phba->sli4_hba.dpp_regs_memmap_p) { 11976 dev_err(&pdev->dev, 11977 "ioremap failed for SLI4 HBA dpp registers.\n"); 11978 error = -ENOMEM; 11979 goto out_iounmap_all; 11980 } 11981 phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p; 11982 } 11983 11984 /* Set up the EQ/CQ register handeling functions now */ 11985 switch (if_type) { 11986 case LPFC_SLI_INTF_IF_TYPE_0: 11987 case LPFC_SLI_INTF_IF_TYPE_2: 11988 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr; 11989 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db; 11990 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db; 11991 break; 11992 case LPFC_SLI_INTF_IF_TYPE_6: 11993 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr; 11994 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db; 11995 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db; 11996 break; 11997 default: 11998 break; 11999 } 12000 12001 return 0; 12002 12003 out_iounmap_all: 12004 if (phba->sli4_hba.drbl_regs_memmap_p) 12005 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 12006 out_iounmap_ctrl: 12007 if (phba->sli4_hba.ctrl_regs_memmap_p) 12008 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 12009 out_iounmap_conf: 12010 iounmap(phba->sli4_hba.conf_regs_memmap_p); 12011 12012 return error; 12013 } 12014 12015 /** 12016 * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space. 12017 * @phba: pointer to lpfc hba data structure. 12018 * 12019 * This routine is invoked to unset the PCI device memory space for device 12020 * with SLI-4 interface spec. 12021 **/ 12022 static void 12023 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba) 12024 { 12025 uint32_t if_type; 12026 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 12027 12028 switch (if_type) { 12029 case LPFC_SLI_INTF_IF_TYPE_0: 12030 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 12031 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 12032 iounmap(phba->sli4_hba.conf_regs_memmap_p); 12033 break; 12034 case LPFC_SLI_INTF_IF_TYPE_2: 12035 iounmap(phba->sli4_hba.conf_regs_memmap_p); 12036 break; 12037 case LPFC_SLI_INTF_IF_TYPE_6: 12038 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 12039 iounmap(phba->sli4_hba.conf_regs_memmap_p); 12040 if (phba->sli4_hba.dpp_regs_memmap_p) 12041 iounmap(phba->sli4_hba.dpp_regs_memmap_p); 12042 break; 12043 case LPFC_SLI_INTF_IF_TYPE_1: 12044 break; 12045 default: 12046 dev_printk(KERN_ERR, &phba->pcidev->dev, 12047 "FATAL - unsupported SLI4 interface type - %d\n", 12048 if_type); 12049 break; 12050 } 12051 } 12052 12053 /** 12054 * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device 12055 * @phba: pointer to lpfc hba data structure. 12056 * 12057 * This routine is invoked to enable the MSI-X interrupt vectors to device 12058 * with SLI-3 interface specs. 12059 * 12060 * Return codes 12061 * 0 - successful 12062 * other values - error 12063 **/ 12064 static int 12065 lpfc_sli_enable_msix(struct lpfc_hba *phba) 12066 { 12067 int rc; 12068 LPFC_MBOXQ_t *pmb; 12069 12070 /* Set up MSI-X multi-message vectors */ 12071 rc = pci_alloc_irq_vectors(phba->pcidev, 12072 LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX); 12073 if (rc < 0) { 12074 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12075 "0420 PCI enable MSI-X failed (%d)\n", rc); 12076 goto vec_fail_out; 12077 } 12078 12079 /* 12080 * Assign MSI-X vectors to interrupt handlers 12081 */ 12082 12083 /* vector-0 is associated to slow-path handler */ 12084 rc = request_irq(pci_irq_vector(phba->pcidev, 0), 12085 &lpfc_sli_sp_intr_handler, 0, 12086 LPFC_SP_DRIVER_HANDLER_NAME, phba); 12087 if (rc) { 12088 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 12089 "0421 MSI-X slow-path request_irq failed " 12090 "(%d)\n", rc); 12091 goto msi_fail_out; 12092 } 12093 12094 /* vector-1 is associated to fast-path handler */ 12095 rc = request_irq(pci_irq_vector(phba->pcidev, 1), 12096 &lpfc_sli_fp_intr_handler, 0, 12097 LPFC_FP_DRIVER_HANDLER_NAME, phba); 12098 12099 if (rc) { 12100 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 12101 "0429 MSI-X fast-path request_irq failed " 12102 "(%d)\n", rc); 12103 goto irq_fail_out; 12104 } 12105 12106 /* 12107 * Configure HBA MSI-X attention conditions to messages 12108 */ 12109 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 12110 12111 if (!pmb) { 12112 rc = -ENOMEM; 12113 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12114 "0474 Unable to allocate memory for issuing " 12115 "MBOX_CONFIG_MSI command\n"); 12116 goto mem_fail_out; 12117 } 12118 rc = lpfc_config_msi(phba, pmb); 12119 if (rc) 12120 goto mbx_fail_out; 12121 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 12122 if (rc != MBX_SUCCESS) { 12123 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX, 12124 "0351 Config MSI mailbox command failed, " 12125 "mbxCmd x%x, mbxStatus x%x\n", 12126 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus); 12127 goto mbx_fail_out; 12128 } 12129 12130 /* Free memory allocated for mailbox command */ 12131 mempool_free(pmb, phba->mbox_mem_pool); 12132 return rc; 12133 12134 mbx_fail_out: 12135 /* Free memory allocated for mailbox command */ 12136 mempool_free(pmb, phba->mbox_mem_pool); 12137 12138 mem_fail_out: 12139 /* free the irq already requested */ 12140 free_irq(pci_irq_vector(phba->pcidev, 1), phba); 12141 12142 irq_fail_out: 12143 /* free the irq already requested */ 12144 free_irq(pci_irq_vector(phba->pcidev, 0), phba); 12145 12146 msi_fail_out: 12147 /* Unconfigure MSI-X capability structure */ 12148 pci_free_irq_vectors(phba->pcidev); 12149 12150 vec_fail_out: 12151 return rc; 12152 } 12153 12154 /** 12155 * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device. 12156 * @phba: pointer to lpfc hba data structure. 12157 * 12158 * This routine is invoked to enable the MSI interrupt mode to device with 12159 * SLI-3 interface spec. The kernel function pci_enable_msi() is called to 12160 * enable the MSI vector. The device driver is responsible for calling the 12161 * request_irq() to register MSI vector with a interrupt the handler, which 12162 * is done in this function. 12163 * 12164 * Return codes 12165 * 0 - successful 12166 * other values - error 12167 */ 12168 static int 12169 lpfc_sli_enable_msi(struct lpfc_hba *phba) 12170 { 12171 int rc; 12172 12173 rc = pci_enable_msi(phba->pcidev); 12174 if (!rc) 12175 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12176 "0012 PCI enable MSI mode success.\n"); 12177 else { 12178 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12179 "0471 PCI enable MSI mode failed (%d)\n", rc); 12180 return rc; 12181 } 12182 12183 rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 12184 0, LPFC_DRIVER_NAME, phba); 12185 if (rc) { 12186 pci_disable_msi(phba->pcidev); 12187 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 12188 "0478 MSI request_irq failed (%d)\n", rc); 12189 } 12190 return rc; 12191 } 12192 12193 /** 12194 * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device. 12195 * @phba: pointer to lpfc hba data structure. 12196 * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X). 12197 * 12198 * This routine is invoked to enable device interrupt and associate driver's 12199 * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface 12200 * spec. Depends on the interrupt mode configured to the driver, the driver 12201 * will try to fallback from the configured interrupt mode to an interrupt 12202 * mode which is supported by the platform, kernel, and device in the order 12203 * of: 12204 * MSI-X -> MSI -> IRQ. 12205 * 12206 * Return codes 12207 * 0 - successful 12208 * other values - error 12209 **/ 12210 static uint32_t 12211 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 12212 { 12213 uint32_t intr_mode = LPFC_INTR_ERROR; 12214 int retval; 12215 12216 /* Need to issue conf_port mbox cmd before conf_msi mbox cmd */ 12217 retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 12218 if (retval) 12219 return intr_mode; 12220 clear_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 12221 12222 if (cfg_mode == 2) { 12223 /* Now, try to enable MSI-X interrupt mode */ 12224 retval = lpfc_sli_enable_msix(phba); 12225 if (!retval) { 12226 /* Indicate initialization to MSI-X mode */ 12227 phba->intr_type = MSIX; 12228 intr_mode = 2; 12229 } 12230 } 12231 12232 /* Fallback to MSI if MSI-X initialization failed */ 12233 if (cfg_mode >= 1 && phba->intr_type == NONE) { 12234 retval = lpfc_sli_enable_msi(phba); 12235 if (!retval) { 12236 /* Indicate initialization to MSI mode */ 12237 phba->intr_type = MSI; 12238 intr_mode = 1; 12239 } 12240 } 12241 12242 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 12243 if (phba->intr_type == NONE) { 12244 retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 12245 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 12246 if (!retval) { 12247 /* Indicate initialization to INTx mode */ 12248 phba->intr_type = INTx; 12249 intr_mode = 0; 12250 } 12251 } 12252 return intr_mode; 12253 } 12254 12255 /** 12256 * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device. 12257 * @phba: pointer to lpfc hba data structure. 12258 * 12259 * This routine is invoked to disable device interrupt and disassociate the 12260 * driver's interrupt handler(s) from interrupt vector(s) to device with 12261 * SLI-3 interface spec. Depending on the interrupt mode, the driver will 12262 * release the interrupt vector(s) for the message signaled interrupt. 12263 **/ 12264 static void 12265 lpfc_sli_disable_intr(struct lpfc_hba *phba) 12266 { 12267 int nr_irqs, i; 12268 12269 if (phba->intr_type == MSIX) 12270 nr_irqs = LPFC_MSIX_VECTORS; 12271 else 12272 nr_irqs = 1; 12273 12274 for (i = 0; i < nr_irqs; i++) 12275 free_irq(pci_irq_vector(phba->pcidev, i), phba); 12276 pci_free_irq_vectors(phba->pcidev); 12277 12278 /* Reset interrupt management states */ 12279 phba->intr_type = NONE; 12280 phba->sli.slistat.sli_intr = 0; 12281 } 12282 12283 /** 12284 * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue 12285 * @phba: pointer to lpfc hba data structure. 12286 * @id: EQ vector index or Hardware Queue index 12287 * @match: LPFC_FIND_BY_EQ = match by EQ 12288 * LPFC_FIND_BY_HDWQ = match by Hardware Queue 12289 * Return the CPU that matches the selection criteria 12290 */ 12291 static uint16_t 12292 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match) 12293 { 12294 struct lpfc_vector_map_info *cpup; 12295 int cpu; 12296 12297 /* Loop through all CPUs */ 12298 for_each_present_cpu(cpu) { 12299 cpup = &phba->sli4_hba.cpu_map[cpu]; 12300 12301 /* If we are matching by EQ, there may be multiple CPUs using 12302 * using the same vector, so select the one with 12303 * LPFC_CPU_FIRST_IRQ set. 12304 */ 12305 if ((match == LPFC_FIND_BY_EQ) && 12306 (cpup->flag & LPFC_CPU_FIRST_IRQ) && 12307 (cpup->eq == id)) 12308 return cpu; 12309 12310 /* If matching by HDWQ, select the first CPU that matches */ 12311 if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id)) 12312 return cpu; 12313 } 12314 return 0; 12315 } 12316 12317 #ifdef CONFIG_X86 12318 /** 12319 * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded 12320 * @phba: pointer to lpfc hba data structure. 12321 * @cpu: CPU map index 12322 * @phys_id: CPU package physical id 12323 * @core_id: CPU core id 12324 */ 12325 static int 12326 lpfc_find_hyper(struct lpfc_hba *phba, int cpu, 12327 uint16_t phys_id, uint16_t core_id) 12328 { 12329 struct lpfc_vector_map_info *cpup; 12330 int idx; 12331 12332 for_each_present_cpu(idx) { 12333 cpup = &phba->sli4_hba.cpu_map[idx]; 12334 /* Does the cpup match the one we are looking for */ 12335 if ((cpup->phys_id == phys_id) && 12336 (cpup->core_id == core_id) && 12337 (cpu != idx)) 12338 return 1; 12339 } 12340 return 0; 12341 } 12342 #endif 12343 12344 /* 12345 * lpfc_assign_eq_map_info - Assigns eq for vector_map structure 12346 * @phba: pointer to lpfc hba data structure. 12347 * @eqidx: index for eq and irq vector 12348 * @flag: flags to set for vector_map structure 12349 * @cpu: cpu used to index vector_map structure 12350 * 12351 * The routine assigns eq info into vector_map structure 12352 */ 12353 static inline void 12354 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag, 12355 unsigned int cpu) 12356 { 12357 struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu]; 12358 struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx); 12359 12360 cpup->eq = eqidx; 12361 cpup->flag |= flag; 12362 12363 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12364 "3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n", 12365 cpu, eqhdl->irq, cpup->eq, cpup->flag); 12366 } 12367 12368 /** 12369 * lpfc_cpu_map_array_init - Initialize cpu_map structure 12370 * @phba: pointer to lpfc hba data structure. 12371 * 12372 * The routine initializes the cpu_map array structure 12373 */ 12374 static void 12375 lpfc_cpu_map_array_init(struct lpfc_hba *phba) 12376 { 12377 struct lpfc_vector_map_info *cpup; 12378 struct lpfc_eq_intr_info *eqi; 12379 int cpu; 12380 12381 for_each_possible_cpu(cpu) { 12382 cpup = &phba->sli4_hba.cpu_map[cpu]; 12383 cpup->phys_id = LPFC_VECTOR_MAP_EMPTY; 12384 cpup->core_id = LPFC_VECTOR_MAP_EMPTY; 12385 cpup->hdwq = LPFC_VECTOR_MAP_EMPTY; 12386 cpup->eq = LPFC_VECTOR_MAP_EMPTY; 12387 cpup->flag = 0; 12388 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu); 12389 INIT_LIST_HEAD(&eqi->list); 12390 eqi->icnt = 0; 12391 } 12392 } 12393 12394 /** 12395 * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure 12396 * @phba: pointer to lpfc hba data structure. 12397 * 12398 * The routine initializes the hba_eq_hdl array structure 12399 */ 12400 static void 12401 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba) 12402 { 12403 struct lpfc_hba_eq_hdl *eqhdl; 12404 int i; 12405 12406 for (i = 0; i < phba->cfg_irq_chann; i++) { 12407 eqhdl = lpfc_get_eq_hdl(i); 12408 eqhdl->irq = LPFC_IRQ_EMPTY; 12409 eqhdl->phba = phba; 12410 } 12411 } 12412 12413 /** 12414 * lpfc_cpu_affinity_check - Check vector CPU affinity mappings 12415 * @phba: pointer to lpfc hba data structure. 12416 * @vectors: number of msix vectors allocated. 12417 * 12418 * The routine will figure out the CPU affinity assignment for every 12419 * MSI-X vector allocated for the HBA. 12420 * In addition, the CPU to IO channel mapping will be calculated 12421 * and the phba->sli4_hba.cpu_map array will reflect this. 12422 */ 12423 static void 12424 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors) 12425 { 12426 int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu; 12427 int max_phys_id, min_phys_id; 12428 int max_core_id, min_core_id; 12429 struct lpfc_vector_map_info *cpup; 12430 struct lpfc_vector_map_info *new_cpup; 12431 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 12432 struct lpfc_hdwq_stat *c_stat; 12433 #endif 12434 12435 max_phys_id = 0; 12436 min_phys_id = LPFC_VECTOR_MAP_EMPTY; 12437 max_core_id = 0; 12438 min_core_id = LPFC_VECTOR_MAP_EMPTY; 12439 12440 /* Update CPU map with physical id and core id of each CPU */ 12441 for_each_present_cpu(cpu) { 12442 cpup = &phba->sli4_hba.cpu_map[cpu]; 12443 #ifdef CONFIG_X86 12444 cpup->phys_id = topology_physical_package_id(cpu); 12445 cpup->core_id = topology_core_id(cpu); 12446 if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id)) 12447 cpup->flag |= LPFC_CPU_MAP_HYPER; 12448 #else 12449 /* No distinction between CPUs for other platforms */ 12450 cpup->phys_id = 0; 12451 cpup->core_id = cpu; 12452 #endif 12453 12454 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12455 "3328 CPU %d physid %d coreid %d flag x%x\n", 12456 cpu, cpup->phys_id, cpup->core_id, cpup->flag); 12457 12458 if (cpup->phys_id > max_phys_id) 12459 max_phys_id = cpup->phys_id; 12460 if (cpup->phys_id < min_phys_id) 12461 min_phys_id = cpup->phys_id; 12462 12463 if (cpup->core_id > max_core_id) 12464 max_core_id = cpup->core_id; 12465 if (cpup->core_id < min_core_id) 12466 min_core_id = cpup->core_id; 12467 } 12468 12469 /* After looking at each irq vector assigned to this pcidev, its 12470 * possible to see that not ALL CPUs have been accounted for. 12471 * Next we will set any unassigned (unaffinitized) cpu map 12472 * entries to a IRQ on the same phys_id. 12473 */ 12474 first_cpu = cpumask_first(cpu_present_mask); 12475 start_cpu = first_cpu; 12476 12477 for_each_present_cpu(cpu) { 12478 cpup = &phba->sli4_hba.cpu_map[cpu]; 12479 12480 /* Is this CPU entry unassigned */ 12481 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 12482 /* Mark CPU as IRQ not assigned by the kernel */ 12483 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 12484 12485 /* If so, find a new_cpup that is on the SAME 12486 * phys_id as cpup. start_cpu will start where we 12487 * left off so all unassigned entries don't get assgined 12488 * the IRQ of the first entry. 12489 */ 12490 new_cpu = start_cpu; 12491 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12492 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12493 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 12494 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) && 12495 (new_cpup->phys_id == cpup->phys_id)) 12496 goto found_same; 12497 new_cpu = lpfc_next_present_cpu(new_cpu); 12498 } 12499 /* At this point, we leave the CPU as unassigned */ 12500 continue; 12501 found_same: 12502 /* We found a matching phys_id, so copy the IRQ info */ 12503 cpup->eq = new_cpup->eq; 12504 12505 /* Bump start_cpu to the next slot to minmize the 12506 * chance of having multiple unassigned CPU entries 12507 * selecting the same IRQ. 12508 */ 12509 start_cpu = lpfc_next_present_cpu(new_cpu); 12510 12511 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12512 "3337 Set Affinity: CPU %d " 12513 "eq %d from peer cpu %d same " 12514 "phys_id (%d)\n", 12515 cpu, cpup->eq, new_cpu, 12516 cpup->phys_id); 12517 } 12518 } 12519 12520 /* Set any unassigned cpu map entries to a IRQ on any phys_id */ 12521 start_cpu = first_cpu; 12522 12523 for_each_present_cpu(cpu) { 12524 cpup = &phba->sli4_hba.cpu_map[cpu]; 12525 12526 /* Is this entry unassigned */ 12527 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 12528 /* Mark it as IRQ not assigned by the kernel */ 12529 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 12530 12531 /* If so, find a new_cpup thats on ANY phys_id 12532 * as the cpup. start_cpu will start where we 12533 * left off so all unassigned entries don't get 12534 * assigned the IRQ of the first entry. 12535 */ 12536 new_cpu = start_cpu; 12537 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12538 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12539 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 12540 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY)) 12541 goto found_any; 12542 new_cpu = lpfc_next_present_cpu(new_cpu); 12543 } 12544 /* We should never leave an entry unassigned */ 12545 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12546 "3339 Set Affinity: CPU %d " 12547 "eq %d UNASSIGNED\n", 12548 cpup->hdwq, cpup->eq); 12549 continue; 12550 found_any: 12551 /* We found an available entry, copy the IRQ info */ 12552 cpup->eq = new_cpup->eq; 12553 12554 /* Bump start_cpu to the next slot to minmize the 12555 * chance of having multiple unassigned CPU entries 12556 * selecting the same IRQ. 12557 */ 12558 start_cpu = lpfc_next_present_cpu(new_cpu); 12559 12560 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12561 "3338 Set Affinity: CPU %d " 12562 "eq %d from peer cpu %d (%d/%d)\n", 12563 cpu, cpup->eq, new_cpu, 12564 new_cpup->phys_id, new_cpup->core_id); 12565 } 12566 } 12567 12568 /* Assign hdwq indices that are unique across all cpus in the map 12569 * that are also FIRST_CPUs. 12570 */ 12571 idx = 0; 12572 for_each_present_cpu(cpu) { 12573 cpup = &phba->sli4_hba.cpu_map[cpu]; 12574 12575 /* Only FIRST IRQs get a hdwq index assignment. */ 12576 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 12577 continue; 12578 12579 /* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */ 12580 cpup->hdwq = idx; 12581 idx++; 12582 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12583 "3333 Set Affinity: CPU %d (phys %d core %d): " 12584 "hdwq %d eq %d flg x%x\n", 12585 cpu, cpup->phys_id, cpup->core_id, 12586 cpup->hdwq, cpup->eq, cpup->flag); 12587 } 12588 /* Associate a hdwq with each cpu_map entry 12589 * This will be 1 to 1 - hdwq to cpu, unless there are less 12590 * hardware queues then CPUs. For that case we will just round-robin 12591 * the available hardware queues as they get assigned to CPUs. 12592 * The next_idx is the idx from the FIRST_CPU loop above to account 12593 * for irq_chann < hdwq. The idx is used for round-robin assignments 12594 * and needs to start at 0. 12595 */ 12596 next_idx = idx; 12597 start_cpu = 0; 12598 idx = 0; 12599 for_each_present_cpu(cpu) { 12600 cpup = &phba->sli4_hba.cpu_map[cpu]; 12601 12602 /* FIRST cpus are already mapped. */ 12603 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 12604 continue; 12605 12606 /* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq 12607 * of the unassigned cpus to the next idx so that all 12608 * hdw queues are fully utilized. 12609 */ 12610 if (next_idx < phba->cfg_hdw_queue) { 12611 cpup->hdwq = next_idx; 12612 next_idx++; 12613 continue; 12614 } 12615 12616 /* Not a First CPU and all hdw_queues are used. Reuse a 12617 * Hardware Queue for another CPU, so be smart about it 12618 * and pick one that has its IRQ/EQ mapped to the same phys_id 12619 * (CPU package) and core_id. 12620 */ 12621 new_cpu = start_cpu; 12622 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12623 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12624 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 12625 new_cpup->phys_id == cpup->phys_id && 12626 new_cpup->core_id == cpup->core_id) { 12627 goto found_hdwq; 12628 } 12629 new_cpu = lpfc_next_present_cpu(new_cpu); 12630 } 12631 12632 /* If we can't match both phys_id and core_id, 12633 * settle for just a phys_id match. 12634 */ 12635 new_cpu = start_cpu; 12636 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12637 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12638 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 12639 new_cpup->phys_id == cpup->phys_id) 12640 goto found_hdwq; 12641 new_cpu = lpfc_next_present_cpu(new_cpu); 12642 } 12643 12644 /* Otherwise just round robin on cfg_hdw_queue */ 12645 cpup->hdwq = idx % phba->cfg_hdw_queue; 12646 idx++; 12647 goto logit; 12648 found_hdwq: 12649 /* We found an available entry, copy the IRQ info */ 12650 start_cpu = lpfc_next_present_cpu(new_cpu); 12651 cpup->hdwq = new_cpup->hdwq; 12652 logit: 12653 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12654 "3335 Set Affinity: CPU %d (phys %d core %d): " 12655 "hdwq %d eq %d flg x%x\n", 12656 cpu, cpup->phys_id, cpup->core_id, 12657 cpup->hdwq, cpup->eq, cpup->flag); 12658 } 12659 12660 /* 12661 * Initialize the cpu_map slots for not-present cpus in case 12662 * a cpu is hot-added. Perform a simple hdwq round robin assignment. 12663 */ 12664 idx = 0; 12665 for_each_possible_cpu(cpu) { 12666 cpup = &phba->sli4_hba.cpu_map[cpu]; 12667 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 12668 c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu); 12669 c_stat->hdwq_no = cpup->hdwq; 12670 #endif 12671 if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY) 12672 continue; 12673 12674 cpup->hdwq = idx++ % phba->cfg_hdw_queue; 12675 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 12676 c_stat->hdwq_no = cpup->hdwq; 12677 #endif 12678 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12679 "3340 Set Affinity: not present " 12680 "CPU %d hdwq %d\n", 12681 cpu, cpup->hdwq); 12682 } 12683 12684 /* The cpu_map array will be used later during initialization 12685 * when EQ / CQ / WQs are allocated and configured. 12686 */ 12687 return; 12688 } 12689 12690 /** 12691 * lpfc_cpuhp_get_eq 12692 * 12693 * @phba: pointer to lpfc hba data structure. 12694 * @cpu: cpu going offline 12695 * @eqlist: eq list to append to 12696 */ 12697 static int 12698 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu, 12699 struct list_head *eqlist) 12700 { 12701 const struct cpumask *maskp; 12702 struct lpfc_queue *eq; 12703 struct cpumask *tmp; 12704 u16 idx; 12705 12706 tmp = kzalloc(cpumask_size(), GFP_KERNEL); 12707 if (!tmp) 12708 return -ENOMEM; 12709 12710 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 12711 maskp = pci_irq_get_affinity(phba->pcidev, idx); 12712 if (!maskp) 12713 continue; 12714 /* 12715 * if irq is not affinitized to the cpu going 12716 * then we don't need to poll the eq attached 12717 * to it. 12718 */ 12719 if (!cpumask_and(tmp, maskp, cpumask_of(cpu))) 12720 continue; 12721 /* get the cpus that are online and are affini- 12722 * tized to this irq vector. If the count is 12723 * more than 1 then cpuhp is not going to shut- 12724 * down this vector. Since this cpu has not 12725 * gone offline yet, we need >1. 12726 */ 12727 cpumask_and(tmp, maskp, cpu_online_mask); 12728 if (cpumask_weight(tmp) > 1) 12729 continue; 12730 12731 /* Now that we have an irq to shutdown, get the eq 12732 * mapped to this irq. Note: multiple hdwq's in 12733 * the software can share an eq, but eventually 12734 * only eq will be mapped to this vector 12735 */ 12736 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 12737 list_add(&eq->_poll_list, eqlist); 12738 } 12739 kfree(tmp); 12740 return 0; 12741 } 12742 12743 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba) 12744 { 12745 if (phba->sli_rev != LPFC_SLI_REV4) 12746 return; 12747 12748 cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state, 12749 &phba->cpuhp); 12750 /* 12751 * unregistering the instance doesn't stop the polling 12752 * timer. Wait for the poll timer to retire. 12753 */ 12754 synchronize_rcu(); 12755 timer_delete_sync(&phba->cpuhp_poll_timer); 12756 } 12757 12758 static void lpfc_cpuhp_remove(struct lpfc_hba *phba) 12759 { 12760 if (phba->pport && 12761 test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag)) 12762 return; 12763 12764 __lpfc_cpuhp_remove(phba); 12765 } 12766 12767 static void lpfc_cpuhp_add(struct lpfc_hba *phba) 12768 { 12769 if (phba->sli_rev != LPFC_SLI_REV4) 12770 return; 12771 12772 rcu_read_lock(); 12773 12774 if (!list_empty(&phba->poll_list)) 12775 mod_timer(&phba->cpuhp_poll_timer, 12776 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 12777 12778 rcu_read_unlock(); 12779 12780 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, 12781 &phba->cpuhp); 12782 } 12783 12784 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval) 12785 { 12786 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 12787 *retval = -EAGAIN; 12788 return true; 12789 } 12790 12791 if (phba->sli_rev != LPFC_SLI_REV4) { 12792 *retval = 0; 12793 return true; 12794 } 12795 12796 /* proceed with the hotplug */ 12797 return false; 12798 } 12799 12800 /** 12801 * lpfc_irq_set_aff - set IRQ affinity 12802 * @eqhdl: EQ handle 12803 * @cpu: cpu to set affinity 12804 * 12805 **/ 12806 static inline void 12807 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu) 12808 { 12809 cpumask_clear(&eqhdl->aff_mask); 12810 cpumask_set_cpu(cpu, &eqhdl->aff_mask); 12811 irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 12812 irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask); 12813 } 12814 12815 /** 12816 * lpfc_irq_clear_aff - clear IRQ affinity 12817 * @eqhdl: EQ handle 12818 * 12819 **/ 12820 static inline void 12821 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl) 12822 { 12823 cpumask_clear(&eqhdl->aff_mask); 12824 irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 12825 } 12826 12827 /** 12828 * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event 12829 * @phba: pointer to HBA context object. 12830 * @cpu: cpu going offline/online 12831 * @offline: true, cpu is going offline. false, cpu is coming online. 12832 * 12833 * If cpu is going offline, we'll try our best effort to find the next 12834 * online cpu on the phba's original_mask and migrate all offlining IRQ 12835 * affinities. 12836 * 12837 * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu. 12838 * 12839 * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on 12840 * PCI_IRQ_AFFINITY to auto-manage IRQ affinity. 12841 * 12842 **/ 12843 static void 12844 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline) 12845 { 12846 struct lpfc_vector_map_info *cpup; 12847 struct cpumask *aff_mask; 12848 unsigned int cpu_select, cpu_next, idx; 12849 const struct cpumask *orig_mask; 12850 12851 if (phba->irq_chann_mode == NORMAL_MODE) 12852 return; 12853 12854 orig_mask = &phba->sli4_hba.irq_aff_mask; 12855 12856 if (!cpumask_test_cpu(cpu, orig_mask)) 12857 return; 12858 12859 cpup = &phba->sli4_hba.cpu_map[cpu]; 12860 12861 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 12862 return; 12863 12864 if (offline) { 12865 /* Find next online CPU on original mask */ 12866 cpu_next = cpumask_next_wrap(cpu, orig_mask); 12867 cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next); 12868 12869 /* Found a valid CPU */ 12870 if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) { 12871 /* Go through each eqhdl and ensure offlining 12872 * cpu aff_mask is migrated 12873 */ 12874 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 12875 aff_mask = lpfc_get_aff_mask(idx); 12876 12877 /* Migrate affinity */ 12878 if (cpumask_test_cpu(cpu, aff_mask)) 12879 lpfc_irq_set_aff(lpfc_get_eq_hdl(idx), 12880 cpu_select); 12881 } 12882 } else { 12883 /* Rely on irqbalance if no online CPUs left on NUMA */ 12884 for (idx = 0; idx < phba->cfg_irq_chann; idx++) 12885 lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx)); 12886 } 12887 } else { 12888 /* Migrate affinity back to this CPU */ 12889 lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu); 12890 } 12891 } 12892 12893 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node) 12894 { 12895 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 12896 struct lpfc_queue *eq, *next; 12897 LIST_HEAD(eqlist); 12898 int retval; 12899 12900 if (!phba) { 12901 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 12902 return 0; 12903 } 12904 12905 if (__lpfc_cpuhp_checks(phba, &retval)) 12906 return retval; 12907 12908 lpfc_irq_rebalance(phba, cpu, true); 12909 12910 retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist); 12911 if (retval) 12912 return retval; 12913 12914 /* start polling on these eq's */ 12915 list_for_each_entry_safe(eq, next, &eqlist, _poll_list) { 12916 list_del_init(&eq->_poll_list); 12917 lpfc_sli4_start_polling(eq); 12918 } 12919 12920 return 0; 12921 } 12922 12923 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node) 12924 { 12925 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 12926 struct lpfc_queue *eq, *next; 12927 unsigned int n; 12928 int retval; 12929 12930 if (!phba) { 12931 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 12932 return 0; 12933 } 12934 12935 if (__lpfc_cpuhp_checks(phba, &retval)) 12936 return retval; 12937 12938 lpfc_irq_rebalance(phba, cpu, false); 12939 12940 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) { 12941 n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ); 12942 if (n == cpu) 12943 lpfc_sli4_stop_polling(eq); 12944 } 12945 12946 return 0; 12947 } 12948 12949 /** 12950 * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device 12951 * @phba: pointer to lpfc hba data structure. 12952 * 12953 * This routine is invoked to enable the MSI-X interrupt vectors to device 12954 * with SLI-4 interface spec. It also allocates MSI-X vectors and maps them 12955 * to cpus on the system. 12956 * 12957 * When cfg_irq_numa is enabled, the adapter will only allocate vectors for 12958 * the number of cpus on the same numa node as this adapter. The vectors are 12959 * allocated without requesting OS affinity mapping. A vector will be 12960 * allocated and assigned to each online and offline cpu. If the cpu is 12961 * online, then affinity will be set to that cpu. If the cpu is offline, then 12962 * affinity will be set to the nearest peer cpu within the numa node that is 12963 * online. If there are no online cpus within the numa node, affinity is not 12964 * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping 12965 * is consistent with the way cpu online/offline is handled when cfg_irq_numa is 12966 * configured. 12967 * 12968 * If numa mode is not enabled and there is more than 1 vector allocated, then 12969 * the driver relies on the managed irq interface where the OS assigns vector to 12970 * cpu affinity. The driver will then use that affinity mapping to setup its 12971 * cpu mapping table. 12972 * 12973 * Return codes 12974 * 0 - successful 12975 * other values - error 12976 **/ 12977 static int 12978 lpfc_sli4_enable_msix(struct lpfc_hba *phba) 12979 { 12980 int vectors, rc, index; 12981 char *name; 12982 const struct cpumask *aff_mask = NULL; 12983 unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids; 12984 struct lpfc_vector_map_info *cpup; 12985 struct lpfc_hba_eq_hdl *eqhdl; 12986 const struct cpumask *maskp; 12987 unsigned int flags = PCI_IRQ_MSIX; 12988 12989 /* Set up MSI-X multi-message vectors */ 12990 vectors = phba->cfg_irq_chann; 12991 12992 if (phba->irq_chann_mode != NORMAL_MODE) 12993 aff_mask = &phba->sli4_hba.irq_aff_mask; 12994 12995 if (aff_mask) { 12996 cpu_cnt = cpumask_weight(aff_mask); 12997 vectors = min(phba->cfg_irq_chann, cpu_cnt); 12998 12999 /* cpu: iterates over aff_mask including offline or online 13000 * cpu_select: iterates over online aff_mask to set affinity 13001 */ 13002 cpu = cpumask_first(aff_mask); 13003 cpu_select = lpfc_next_online_cpu(aff_mask, cpu); 13004 } else { 13005 flags |= PCI_IRQ_AFFINITY; 13006 } 13007 13008 rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags); 13009 if (rc < 0) { 13010 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13011 "0484 PCI enable MSI-X failed (%d)\n", rc); 13012 goto vec_fail_out; 13013 } 13014 vectors = rc; 13015 13016 /* Assign MSI-X vectors to interrupt handlers */ 13017 for (index = 0; index < vectors; index++) { 13018 eqhdl = lpfc_get_eq_hdl(index); 13019 name = eqhdl->handler_name; 13020 memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ); 13021 snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ, 13022 LPFC_DRIVER_HANDLER_NAME"%d", index); 13023 13024 eqhdl->idx = index; 13025 rc = pci_irq_vector(phba->pcidev, index); 13026 if (rc < 0) { 13027 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13028 "0489 MSI-X fast-path (%d) " 13029 "pci_irq_vec failed (%d)\n", index, rc); 13030 goto cfg_fail_out; 13031 } 13032 eqhdl->irq = rc; 13033 13034 rc = request_threaded_irq(eqhdl->irq, 13035 &lpfc_sli4_hba_intr_handler, 13036 &lpfc_sli4_hba_intr_handler_th, 13037 0, name, eqhdl); 13038 if (rc) { 13039 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13040 "0486 MSI-X fast-path (%d) " 13041 "request_irq failed (%d)\n", index, rc); 13042 goto cfg_fail_out; 13043 } 13044 13045 if (aff_mask) { 13046 /* If found a neighboring online cpu, set affinity */ 13047 if (cpu_select < nr_cpu_ids) 13048 lpfc_irq_set_aff(eqhdl, cpu_select); 13049 13050 /* Assign EQ to cpu_map */ 13051 lpfc_assign_eq_map_info(phba, index, 13052 LPFC_CPU_FIRST_IRQ, 13053 cpu); 13054 13055 /* Iterate to next offline or online cpu in aff_mask */ 13056 cpu = cpumask_next(cpu, aff_mask); 13057 13058 /* Find next online cpu in aff_mask to set affinity */ 13059 cpu_select = lpfc_next_online_cpu(aff_mask, cpu); 13060 } else if (vectors == 1) { 13061 cpu = cpumask_first(cpu_present_mask); 13062 lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ, 13063 cpu); 13064 } else { 13065 maskp = pci_irq_get_affinity(phba->pcidev, index); 13066 13067 /* Loop through all CPUs associated with vector index */ 13068 for_each_cpu_and(cpu, maskp, cpu_present_mask) { 13069 cpup = &phba->sli4_hba.cpu_map[cpu]; 13070 13071 /* If this is the first CPU thats assigned to 13072 * this vector, set LPFC_CPU_FIRST_IRQ. 13073 * 13074 * With certain platforms its possible that irq 13075 * vectors are affinitized to all the cpu's. 13076 * This can result in each cpu_map.eq to be set 13077 * to the last vector, resulting in overwrite 13078 * of all the previous cpu_map.eq. Ensure that 13079 * each vector receives a place in cpu_map. 13080 * Later call to lpfc_cpu_affinity_check will 13081 * ensure we are nicely balanced out. 13082 */ 13083 if (cpup->eq != LPFC_VECTOR_MAP_EMPTY) 13084 continue; 13085 lpfc_assign_eq_map_info(phba, index, 13086 LPFC_CPU_FIRST_IRQ, 13087 cpu); 13088 break; 13089 } 13090 } 13091 } 13092 13093 if (vectors != phba->cfg_irq_chann) { 13094 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13095 "3238 Reducing IO channels to match number of " 13096 "MSI-X vectors, requested %d got %d\n", 13097 phba->cfg_irq_chann, vectors); 13098 if (phba->cfg_irq_chann > vectors) 13099 phba->cfg_irq_chann = vectors; 13100 } 13101 13102 return rc; 13103 13104 cfg_fail_out: 13105 /* free the irq already requested */ 13106 for (--index; index >= 0; index--) { 13107 eqhdl = lpfc_get_eq_hdl(index); 13108 lpfc_irq_clear_aff(eqhdl); 13109 free_irq(eqhdl->irq, eqhdl); 13110 } 13111 13112 /* Unconfigure MSI-X capability structure */ 13113 pci_free_irq_vectors(phba->pcidev); 13114 13115 vec_fail_out: 13116 return rc; 13117 } 13118 13119 /** 13120 * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device 13121 * @phba: pointer to lpfc hba data structure. 13122 * 13123 * This routine is invoked to enable the MSI interrupt mode to device with 13124 * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is 13125 * called to enable the MSI vector. The device driver is responsible for 13126 * calling the request_irq() to register MSI vector with a interrupt the 13127 * handler, which is done in this function. 13128 * 13129 * Return codes 13130 * 0 - successful 13131 * other values - error 13132 **/ 13133 static int 13134 lpfc_sli4_enable_msi(struct lpfc_hba *phba) 13135 { 13136 int rc, index; 13137 unsigned int cpu; 13138 struct lpfc_hba_eq_hdl *eqhdl; 13139 13140 rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1, 13141 PCI_IRQ_MSI | PCI_IRQ_AFFINITY); 13142 if (rc > 0) 13143 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13144 "0487 PCI enable MSI mode success.\n"); 13145 else { 13146 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13147 "0488 PCI enable MSI mode failed (%d)\n", rc); 13148 return rc ? rc : -1; 13149 } 13150 13151 rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 13152 0, LPFC_DRIVER_NAME, phba); 13153 if (rc) { 13154 pci_free_irq_vectors(phba->pcidev); 13155 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13156 "0490 MSI request_irq failed (%d)\n", rc); 13157 return rc; 13158 } 13159 13160 eqhdl = lpfc_get_eq_hdl(0); 13161 rc = pci_irq_vector(phba->pcidev, 0); 13162 if (rc < 0) { 13163 free_irq(phba->pcidev->irq, phba); 13164 pci_free_irq_vectors(phba->pcidev); 13165 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13166 "0496 MSI pci_irq_vec failed (%d)\n", rc); 13167 return rc; 13168 } 13169 eqhdl->irq = rc; 13170 13171 cpu = cpumask_first(cpu_present_mask); 13172 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu); 13173 13174 for (index = 0; index < phba->cfg_irq_chann; index++) { 13175 eqhdl = lpfc_get_eq_hdl(index); 13176 eqhdl->idx = index; 13177 } 13178 13179 return 0; 13180 } 13181 13182 /** 13183 * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device 13184 * @phba: pointer to lpfc hba data structure. 13185 * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X). 13186 * 13187 * This routine is invoked to enable device interrupt and associate driver's 13188 * interrupt handler(s) to interrupt vector(s) to device with SLI-4 13189 * interface spec. Depends on the interrupt mode configured to the driver, 13190 * the driver will try to fallback from the configured interrupt mode to an 13191 * interrupt mode which is supported by the platform, kernel, and device in 13192 * the order of: 13193 * MSI-X -> MSI -> IRQ. 13194 * 13195 * Return codes 13196 * Interrupt mode (2, 1, 0) - successful 13197 * LPFC_INTR_ERROR - error 13198 **/ 13199 static uint32_t 13200 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 13201 { 13202 uint32_t intr_mode = LPFC_INTR_ERROR; 13203 int retval, idx; 13204 13205 if (cfg_mode == 2) { 13206 /* Preparation before conf_msi mbox cmd */ 13207 retval = 0; 13208 if (!retval) { 13209 /* Now, try to enable MSI-X interrupt mode */ 13210 retval = lpfc_sli4_enable_msix(phba); 13211 if (!retval) { 13212 /* Indicate initialization to MSI-X mode */ 13213 phba->intr_type = MSIX; 13214 intr_mode = 2; 13215 } 13216 } 13217 } 13218 13219 /* Fallback to MSI if MSI-X initialization failed */ 13220 if (cfg_mode >= 1 && phba->intr_type == NONE) { 13221 retval = lpfc_sli4_enable_msi(phba); 13222 if (!retval) { 13223 /* Indicate initialization to MSI mode */ 13224 phba->intr_type = MSI; 13225 intr_mode = 1; 13226 } 13227 } 13228 13229 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 13230 if (phba->intr_type == NONE) { 13231 retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 13232 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 13233 if (!retval) { 13234 struct lpfc_hba_eq_hdl *eqhdl; 13235 unsigned int cpu; 13236 13237 /* Indicate initialization to INTx mode */ 13238 phba->intr_type = INTx; 13239 intr_mode = 0; 13240 13241 eqhdl = lpfc_get_eq_hdl(0); 13242 retval = pci_irq_vector(phba->pcidev, 0); 13243 if (retval < 0) { 13244 free_irq(phba->pcidev->irq, phba); 13245 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13246 "0502 INTR pci_irq_vec failed (%d)\n", 13247 retval); 13248 return LPFC_INTR_ERROR; 13249 } 13250 eqhdl->irq = retval; 13251 13252 cpu = cpumask_first(cpu_present_mask); 13253 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, 13254 cpu); 13255 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 13256 eqhdl = lpfc_get_eq_hdl(idx); 13257 eqhdl->idx = idx; 13258 } 13259 } 13260 } 13261 return intr_mode; 13262 } 13263 13264 /** 13265 * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device 13266 * @phba: pointer to lpfc hba data structure. 13267 * 13268 * This routine is invoked to disable device interrupt and disassociate 13269 * the driver's interrupt handler(s) from interrupt vector(s) to device 13270 * with SLI-4 interface spec. Depending on the interrupt mode, the driver 13271 * will release the interrupt vector(s) for the message signaled interrupt. 13272 **/ 13273 static void 13274 lpfc_sli4_disable_intr(struct lpfc_hba *phba) 13275 { 13276 /* Disable the currently initialized interrupt mode */ 13277 if (phba->intr_type == MSIX) { 13278 int index; 13279 struct lpfc_hba_eq_hdl *eqhdl; 13280 13281 /* Free up MSI-X multi-message vectors */ 13282 for (index = 0; index < phba->cfg_irq_chann; index++) { 13283 eqhdl = lpfc_get_eq_hdl(index); 13284 lpfc_irq_clear_aff(eqhdl); 13285 free_irq(eqhdl->irq, eqhdl); 13286 } 13287 } else { 13288 free_irq(phba->pcidev->irq, phba); 13289 } 13290 13291 pci_free_irq_vectors(phba->pcidev); 13292 13293 /* Reset interrupt management states */ 13294 phba->intr_type = NONE; 13295 phba->sli.slistat.sli_intr = 0; 13296 } 13297 13298 /** 13299 * lpfc_unset_hba - Unset SLI3 hba device initialization 13300 * @phba: pointer to lpfc hba data structure. 13301 * 13302 * This routine is invoked to unset the HBA device initialization steps to 13303 * a device with SLI-3 interface spec. 13304 **/ 13305 static void 13306 lpfc_unset_hba(struct lpfc_hba *phba) 13307 { 13308 set_bit(FC_UNLOADING, &phba->pport->load_flag); 13309 13310 kfree(phba->vpi_bmask); 13311 kfree(phba->vpi_ids); 13312 13313 lpfc_stop_hba_timers(phba); 13314 13315 phba->pport->work_port_events = 0; 13316 13317 lpfc_sli_hba_down(phba); 13318 13319 lpfc_sli_brdrestart(phba); 13320 13321 lpfc_sli_disable_intr(phba); 13322 13323 return; 13324 } 13325 13326 /** 13327 * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy 13328 * @phba: Pointer to HBA context object. 13329 * 13330 * This function is called in the SLI4 code path to wait for completion 13331 * of device's XRIs exchange busy. It will check the XRI exchange busy 13332 * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after 13333 * that, it will check the XRI exchange busy on outstanding FCP and ELS 13334 * I/Os every 30 seconds, log error message, and wait forever. Only when 13335 * all XRI exchange busy complete, the driver unload shall proceed with 13336 * invoking the function reset ioctl mailbox command to the CNA and the 13337 * the rest of the driver unload resource release. 13338 **/ 13339 static void 13340 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba) 13341 { 13342 struct lpfc_sli4_hdw_queue *qp; 13343 int idx, ccnt; 13344 int wait_time = 0; 13345 int io_xri_cmpl = 1; 13346 int nvmet_xri_cmpl = 1; 13347 int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 13348 13349 /* Driver just aborted IOs during the hba_unset process. Pause 13350 * here to give the HBA time to complete the IO and get entries 13351 * into the abts lists. 13352 */ 13353 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5); 13354 13355 /* Wait for NVME pending IO to flush back to transport. */ 13356 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 13357 lpfc_nvme_wait_for_io_drain(phba); 13358 13359 ccnt = 0; 13360 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 13361 qp = &phba->sli4_hba.hdwq[idx]; 13362 io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list); 13363 if (!io_xri_cmpl) /* if list is NOT empty */ 13364 ccnt++; 13365 } 13366 if (ccnt) 13367 io_xri_cmpl = 0; 13368 13369 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13370 nvmet_xri_cmpl = 13371 list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 13372 } 13373 13374 while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) { 13375 if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) { 13376 if (!nvmet_xri_cmpl) 13377 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13378 "6424 NVMET XRI exchange busy " 13379 "wait time: %d seconds.\n", 13380 wait_time/1000); 13381 if (!io_xri_cmpl) 13382 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13383 "6100 IO XRI exchange busy " 13384 "wait time: %d seconds.\n", 13385 wait_time/1000); 13386 if (!els_xri_cmpl) 13387 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13388 "2878 ELS XRI exchange busy " 13389 "wait time: %d seconds.\n", 13390 wait_time/1000); 13391 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2); 13392 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2; 13393 } else { 13394 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1); 13395 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1; 13396 } 13397 13398 ccnt = 0; 13399 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 13400 qp = &phba->sli4_hba.hdwq[idx]; 13401 io_xri_cmpl = list_empty( 13402 &qp->lpfc_abts_io_buf_list); 13403 if (!io_xri_cmpl) /* if list is NOT empty */ 13404 ccnt++; 13405 } 13406 if (ccnt) 13407 io_xri_cmpl = 0; 13408 13409 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13410 nvmet_xri_cmpl = list_empty( 13411 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 13412 } 13413 els_xri_cmpl = 13414 list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 13415 13416 } 13417 } 13418 13419 /** 13420 * lpfc_sli4_hba_unset - Unset the fcoe hba 13421 * @phba: Pointer to HBA context object. 13422 * 13423 * This function is called in the SLI4 code path to reset the HBA's FCoE 13424 * function. The caller is not required to hold any lock. This routine 13425 * issues PCI function reset mailbox command to reset the FCoE function. 13426 * At the end of the function, it calls lpfc_hba_down_post function to 13427 * free any pending commands. 13428 **/ 13429 static void 13430 lpfc_sli4_hba_unset(struct lpfc_hba *phba) 13431 { 13432 int wait_cnt = 0; 13433 LPFC_MBOXQ_t *mboxq; 13434 struct pci_dev *pdev = phba->pcidev; 13435 13436 lpfc_stop_hba_timers(phba); 13437 hrtimer_cancel(&phba->cmf_stats_timer); 13438 hrtimer_cancel(&phba->cmf_timer); 13439 13440 if (phba->pport) 13441 phba->sli4_hba.intr_enable = 0; 13442 13443 /* 13444 * Gracefully wait out the potential current outstanding asynchronous 13445 * mailbox command. 13446 */ 13447 13448 /* First, block any pending async mailbox command from posted */ 13449 spin_lock_irq(&phba->hbalock); 13450 phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13451 spin_unlock_irq(&phba->hbalock); 13452 /* Now, trying to wait it out if we can */ 13453 while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 13454 msleep(10); 13455 if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT) 13456 break; 13457 } 13458 /* Forcefully release the outstanding mailbox command if timed out */ 13459 if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 13460 spin_lock_irq(&phba->hbalock); 13461 mboxq = phba->sli.mbox_active; 13462 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 13463 __lpfc_mbox_cmpl_put(phba, mboxq); 13464 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13465 phba->sli.mbox_active = NULL; 13466 spin_unlock_irq(&phba->hbalock); 13467 } 13468 13469 /* Abort all iocbs associated with the hba */ 13470 lpfc_sli_hba_iocb_abort(phba); 13471 13472 if (!pci_channel_offline(phba->pcidev)) 13473 /* Wait for completion of device XRI exchange busy */ 13474 lpfc_sli4_xri_exchange_busy_wait(phba); 13475 13476 /* per-phba callback de-registration for hotplug event */ 13477 if (phba->pport) 13478 lpfc_cpuhp_remove(phba); 13479 13480 /* Disable PCI subsystem interrupt */ 13481 lpfc_sli4_disable_intr(phba); 13482 13483 /* Disable SR-IOV if enabled */ 13484 if (phba->cfg_sriov_nr_virtfn) 13485 pci_disable_sriov(pdev); 13486 13487 /* Stop kthread signal shall trigger work_done one more time */ 13488 kthread_stop(phba->worker_thread); 13489 13490 /* Disable FW logging to host memory */ 13491 lpfc_ras_stop_fwlog(phba); 13492 13493 lpfc_sli4_queue_unset(phba); 13494 13495 /* Reset SLI4 HBA FCoE function */ 13496 lpfc_pci_function_reset(phba); 13497 13498 /* release all queue allocated resources. */ 13499 lpfc_sli4_queue_destroy(phba); 13500 13501 /* Free RAS DMA memory */ 13502 if (phba->ras_fwlog.ras_enabled) 13503 lpfc_sli4_ras_dma_free(phba); 13504 13505 /* Stop the SLI4 device port */ 13506 if (phba->pport) 13507 phba->pport->work_port_events = 0; 13508 } 13509 13510 static uint32_t 13511 lpfc_cgn_crc32(uint32_t crc, u8 byte) 13512 { 13513 uint32_t msb = 0; 13514 uint32_t bit; 13515 13516 for (bit = 0; bit < 8; bit++) { 13517 msb = (crc >> 31) & 1; 13518 crc <<= 1; 13519 13520 if (msb ^ (byte & 1)) { 13521 crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER; 13522 crc |= 1; 13523 } 13524 byte >>= 1; 13525 } 13526 return crc; 13527 } 13528 13529 static uint32_t 13530 lpfc_cgn_reverse_bits(uint32_t wd) 13531 { 13532 uint32_t result = 0; 13533 uint32_t i; 13534 13535 for (i = 0; i < 32; i++) { 13536 result <<= 1; 13537 result |= (1 & (wd >> i)); 13538 } 13539 return result; 13540 } 13541 13542 /* 13543 * The routine corresponds with the algorithm the HBA firmware 13544 * uses to validate the data integrity. 13545 */ 13546 uint32_t 13547 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc) 13548 { 13549 uint32_t i; 13550 uint32_t result; 13551 uint8_t *data = (uint8_t *)ptr; 13552 13553 for (i = 0; i < byteLen; ++i) 13554 crc = lpfc_cgn_crc32(crc, data[i]); 13555 13556 result = ~lpfc_cgn_reverse_bits(crc); 13557 return result; 13558 } 13559 13560 void 13561 lpfc_init_congestion_buf(struct lpfc_hba *phba) 13562 { 13563 struct lpfc_cgn_info *cp; 13564 uint16_t size; 13565 uint32_t crc; 13566 13567 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 13568 "6235 INIT Congestion Buffer %p\n", phba->cgn_i); 13569 13570 if (!phba->cgn_i) 13571 return; 13572 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 13573 13574 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 13575 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 13576 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 13577 atomic_set(&phba->cgn_sync_warn_cnt, 0); 13578 13579 atomic_set(&phba->cgn_driver_evt_cnt, 0); 13580 atomic_set(&phba->cgn_latency_evt_cnt, 0); 13581 atomic64_set(&phba->cgn_latency_evt, 0); 13582 phba->cgn_evt_minute = 0; 13583 13584 memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat)); 13585 cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ); 13586 cp->cgn_info_version = LPFC_CGN_INFO_V4; 13587 13588 /* cgn parameters */ 13589 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; 13590 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; 13591 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; 13592 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; 13593 13594 lpfc_cgn_update_tstamp(phba, &cp->base_time); 13595 13596 /* Fill in default LUN qdepth */ 13597 if (phba->pport) { 13598 size = (uint16_t)(phba->pport->cfg_lun_queue_depth); 13599 cp->cgn_lunq = cpu_to_le16(size); 13600 } 13601 13602 /* last used Index initialized to 0xff already */ 13603 13604 cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ); 13605 cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ); 13606 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED); 13607 cp->cgn_info_crc = cpu_to_le32(crc); 13608 13609 phba->cgn_evt_timestamp = jiffies + 13610 msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN); 13611 } 13612 13613 void 13614 lpfc_init_congestion_stat(struct lpfc_hba *phba) 13615 { 13616 struct lpfc_cgn_info *cp; 13617 uint32_t crc; 13618 13619 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 13620 "6236 INIT Congestion Stat %p\n", phba->cgn_i); 13621 13622 if (!phba->cgn_i) 13623 return; 13624 13625 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 13626 memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat)); 13627 13628 lpfc_cgn_update_tstamp(phba, &cp->stat_start); 13629 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED); 13630 cp->cgn_info_crc = cpu_to_le32(crc); 13631 } 13632 13633 /** 13634 * __lpfc_reg_congestion_buf - register congestion info buffer with HBA 13635 * @phba: Pointer to hba context object. 13636 * @reg: flag to determine register or unregister. 13637 */ 13638 static int 13639 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg) 13640 { 13641 struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf; 13642 union lpfc_sli4_cfg_shdr *shdr; 13643 uint32_t shdr_status, shdr_add_status; 13644 LPFC_MBOXQ_t *mboxq; 13645 int length, rc; 13646 13647 if (!phba->cgn_i) 13648 return -ENXIO; 13649 13650 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13651 if (!mboxq) { 13652 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 13653 "2641 REG_CONGESTION_BUF mbox allocation fail: " 13654 "HBA state x%x reg %d\n", 13655 phba->pport->port_state, reg); 13656 return -ENOMEM; 13657 } 13658 13659 length = (sizeof(struct lpfc_mbx_reg_congestion_buf) - 13660 sizeof(struct lpfc_sli4_cfg_mhdr)); 13661 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 13662 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length, 13663 LPFC_SLI4_MBX_EMBED); 13664 reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf; 13665 bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1); 13666 if (reg > 0) 13667 bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1); 13668 else 13669 bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0); 13670 reg_congestion_buf->length = sizeof(struct lpfc_cgn_info); 13671 reg_congestion_buf->addr_lo = 13672 putPaddrLow(phba->cgn_i->phys); 13673 reg_congestion_buf->addr_hi = 13674 putPaddrHigh(phba->cgn_i->phys); 13675 13676 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 13677 shdr = (union lpfc_sli4_cfg_shdr *) 13678 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 13679 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13680 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 13681 &shdr->response); 13682 mempool_free(mboxq, phba->mbox_mem_pool); 13683 if (shdr_status || shdr_add_status || rc) { 13684 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13685 "2642 REG_CONGESTION_BUF mailbox " 13686 "failed with status x%x add_status x%x," 13687 " mbx status x%x reg %d\n", 13688 shdr_status, shdr_add_status, rc, reg); 13689 return -ENXIO; 13690 } 13691 return 0; 13692 } 13693 13694 int 13695 lpfc_unreg_congestion_buf(struct lpfc_hba *phba) 13696 { 13697 lpfc_cmf_stop(phba); 13698 return __lpfc_reg_congestion_buf(phba, 0); 13699 } 13700 13701 int 13702 lpfc_reg_congestion_buf(struct lpfc_hba *phba) 13703 { 13704 return __lpfc_reg_congestion_buf(phba, 1); 13705 } 13706 13707 /** 13708 * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS. 13709 * @phba: Pointer to HBA context object. 13710 * @mboxq: Pointer to the mailboxq memory for the mailbox command response. 13711 * 13712 * This function is called in the SLI4 code path to read the port's 13713 * sli4 capabilities. 13714 * 13715 * This function may be be called from any context that can block-wait 13716 * for the completion. The expectation is that this routine is called 13717 * typically from probe_one or from the online routine. 13718 **/ 13719 int 13720 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 13721 { 13722 int rc; 13723 struct lpfc_mqe *mqe = &mboxq->u.mqe; 13724 struct lpfc_pc_sli4_params *sli4_params; 13725 uint32_t mbox_tmo; 13726 int length; 13727 bool exp_wqcq_pages = true; 13728 struct lpfc_sli4_parameters *mbx_sli4_parameters; 13729 13730 /* 13731 * By default, the driver assumes the SLI4 port requires RPI 13732 * header postings. The SLI4_PARAM response will correct this 13733 * assumption. 13734 */ 13735 phba->sli4_hba.rpi_hdrs_in_use = 1; 13736 13737 /* Read the port's SLI4 Config Parameters */ 13738 length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - 13739 sizeof(struct lpfc_sli4_cfg_mhdr)); 13740 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 13741 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, 13742 length, LPFC_SLI4_MBX_EMBED); 13743 if (!phba->sli4_hba.intr_enable) 13744 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 13745 else { 13746 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 13747 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 13748 } 13749 if (unlikely(rc)) 13750 return rc; 13751 sli4_params = &phba->sli4_hba.pc_sli4_params; 13752 mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; 13753 sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters); 13754 sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters); 13755 sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters); 13756 sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1, 13757 mbx_sli4_parameters); 13758 sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2, 13759 mbx_sli4_parameters); 13760 if (bf_get(cfg_phwq, mbx_sli4_parameters)) 13761 phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED; 13762 else 13763 phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED; 13764 sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len; 13765 sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope, 13766 mbx_sli4_parameters); 13767 sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters); 13768 sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters); 13769 sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters); 13770 sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters); 13771 sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters); 13772 sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters); 13773 sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters); 13774 sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters); 13775 sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters); 13776 sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters); 13777 sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt, 13778 mbx_sli4_parameters); 13779 sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters); 13780 sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align, 13781 mbx_sli4_parameters); 13782 phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters); 13783 phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters); 13784 sli4_params->mi_cap = bf_get(cfg_mi_ver, mbx_sli4_parameters); 13785 13786 /* Check for Extended Pre-Registered SGL support */ 13787 phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters); 13788 13789 /* Check for firmware nvme support */ 13790 rc = (bf_get(cfg_nvme, mbx_sli4_parameters) && 13791 bf_get(cfg_xib, mbx_sli4_parameters)); 13792 13793 if (rc) { 13794 /* Save this to indicate the Firmware supports NVME */ 13795 sli4_params->nvme = 1; 13796 13797 /* Firmware NVME support, check driver FC4 NVME support */ 13798 if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) { 13799 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 13800 "6133 Disabling NVME support: " 13801 "FC4 type not supported: x%x\n", 13802 phba->cfg_enable_fc4_type); 13803 goto fcponly; 13804 } 13805 } else { 13806 /* No firmware NVME support, check driver FC4 NVME support */ 13807 sli4_params->nvme = 0; 13808 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13809 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME, 13810 "6101 Disabling NVME support: Not " 13811 "supported by firmware (%d %d) x%x\n", 13812 bf_get(cfg_nvme, mbx_sli4_parameters), 13813 bf_get(cfg_xib, mbx_sli4_parameters), 13814 phba->cfg_enable_fc4_type); 13815 fcponly: 13816 phba->nvmet_support = 0; 13817 phba->cfg_nvmet_mrq = 0; 13818 phba->cfg_nvme_seg_cnt = 0; 13819 13820 /* If no FC4 type support, move to just SCSI support */ 13821 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 13822 return -ENODEV; 13823 phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP; 13824 } 13825 } 13826 13827 /* If the NVME FC4 type is enabled, scale the sg_seg_cnt to 13828 * accommodate 512K and 1M IOs in a single nvme buf. 13829 */ 13830 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 13831 phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 13832 13833 /* Enable embedded Payload BDE if support is indicated */ 13834 if (bf_get(cfg_pbde, mbx_sli4_parameters)) 13835 phba->cfg_enable_pbde = 1; 13836 else 13837 phba->cfg_enable_pbde = 0; 13838 13839 /* 13840 * To support Suppress Response feature we must satisfy 3 conditions. 13841 * lpfc_suppress_rsp module parameter must be set (default). 13842 * In SLI4-Parameters Descriptor: 13843 * Extended Inline Buffers (XIB) must be supported. 13844 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported 13845 * (double negative). 13846 */ 13847 if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) && 13848 !(bf_get(cfg_nosr, mbx_sli4_parameters))) 13849 phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP; 13850 else 13851 phba->cfg_suppress_rsp = 0; 13852 13853 if (bf_get(cfg_eqdr, mbx_sli4_parameters)) 13854 phba->sli.sli_flag |= LPFC_SLI_USE_EQDR; 13855 13856 /* Make sure that sge_supp_len can be handled by the driver */ 13857 if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE) 13858 sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE; 13859 13860 dma_set_max_seg_size(&phba->pcidev->dev, sli4_params->sge_supp_len); 13861 13862 /* 13863 * Check whether the adapter supports an embedded copy of the 13864 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order 13865 * to use this option, 128-byte WQEs must be used. 13866 */ 13867 if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters)) 13868 phba->fcp_embed_io = 1; 13869 else 13870 phba->fcp_embed_io = 0; 13871 13872 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 13873 "6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n", 13874 bf_get(cfg_xib, mbx_sli4_parameters), 13875 phba->cfg_enable_pbde, 13876 phba->fcp_embed_io, sli4_params->nvme, 13877 phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp); 13878 13879 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 13880 LPFC_SLI_INTF_IF_TYPE_2) && 13881 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 13882 LPFC_SLI_INTF_FAMILY_LNCR_A0)) 13883 exp_wqcq_pages = false; 13884 13885 if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) && 13886 (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) && 13887 exp_wqcq_pages && 13888 (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT)) 13889 phba->enab_exp_wqcq_pages = 1; 13890 else 13891 phba->enab_exp_wqcq_pages = 0; 13892 /* 13893 * Check if the SLI port supports MDS Diagnostics 13894 */ 13895 if (bf_get(cfg_mds_diags, mbx_sli4_parameters)) 13896 phba->mds_diags_support = 1; 13897 else 13898 phba->mds_diags_support = 0; 13899 13900 /* 13901 * Check if the SLI port supports NSLER 13902 */ 13903 if (bf_get(cfg_nsler, mbx_sli4_parameters)) 13904 phba->nsler = 1; 13905 else 13906 phba->nsler = 0; 13907 13908 return 0; 13909 } 13910 13911 /** 13912 * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem. 13913 * @pdev: pointer to PCI device 13914 * @pid: pointer to PCI device identifier 13915 * 13916 * This routine is to be called to attach a device with SLI-3 interface spec 13917 * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 13918 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 13919 * information of the device and driver to see if the driver state that it can 13920 * support this kind of device. If the match is successful, the driver core 13921 * invokes this routine. If this routine determines it can claim the HBA, it 13922 * does all the initialization that it needs to do to handle the HBA properly. 13923 * 13924 * Return code 13925 * 0 - driver can claim the device 13926 * negative value - driver can not claim the device 13927 **/ 13928 static int 13929 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid) 13930 { 13931 struct lpfc_hba *phba; 13932 struct lpfc_vport *vport = NULL; 13933 struct Scsi_Host *shost = NULL; 13934 int error; 13935 uint32_t cfg_mode, intr_mode; 13936 13937 /* Allocate memory for HBA structure */ 13938 phba = lpfc_hba_alloc(pdev); 13939 if (!phba) 13940 return -ENOMEM; 13941 13942 /* Perform generic PCI device enabling operation */ 13943 error = lpfc_enable_pci_dev(phba); 13944 if (error) 13945 goto out_free_phba; 13946 13947 /* Set up SLI API function jump table for PCI-device group-0 HBAs */ 13948 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP); 13949 if (error) 13950 goto out_disable_pci_dev; 13951 13952 /* Set up SLI-3 specific device PCI memory space */ 13953 error = lpfc_sli_pci_mem_setup(phba); 13954 if (error) { 13955 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13956 "1402 Failed to set up pci memory space.\n"); 13957 goto out_disable_pci_dev; 13958 } 13959 13960 /* Set up SLI-3 specific device driver resources */ 13961 error = lpfc_sli_driver_resource_setup(phba); 13962 if (error) { 13963 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13964 "1404 Failed to set up driver resource.\n"); 13965 goto out_unset_pci_mem_s3; 13966 } 13967 13968 /* Initialize and populate the iocb list per host */ 13969 13970 error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT); 13971 if (error) { 13972 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13973 "1405 Failed to initialize iocb list.\n"); 13974 goto out_unset_driver_resource_s3; 13975 } 13976 13977 /* Set up common device driver resources */ 13978 error = lpfc_setup_driver_resource_phase2(phba); 13979 if (error) { 13980 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13981 "1406 Failed to set up driver resource.\n"); 13982 goto out_free_iocb_list; 13983 } 13984 13985 /* Get the default values for Model Name and Description */ 13986 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 13987 13988 /* Create SCSI host to the physical port */ 13989 error = lpfc_create_shost(phba); 13990 if (error) { 13991 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13992 "1407 Failed to create scsi host.\n"); 13993 goto out_unset_driver_resource; 13994 } 13995 13996 /* Configure sysfs attributes */ 13997 vport = phba->pport; 13998 error = lpfc_alloc_sysfs_attr(vport); 13999 if (error) { 14000 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14001 "1476 Failed to allocate sysfs attr\n"); 14002 goto out_destroy_shost; 14003 } 14004 14005 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 14006 /* Now, trying to enable interrupt and bring up the device */ 14007 cfg_mode = phba->cfg_use_msi; 14008 while (true) { 14009 /* Put device to a known state before enabling interrupt */ 14010 lpfc_stop_port(phba); 14011 /* Configure and enable interrupt */ 14012 intr_mode = lpfc_sli_enable_intr(phba, cfg_mode); 14013 if (intr_mode == LPFC_INTR_ERROR) { 14014 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14015 "0431 Failed to enable interrupt.\n"); 14016 error = -ENODEV; 14017 goto out_free_sysfs_attr; 14018 } 14019 /* SLI-3 HBA setup */ 14020 if (lpfc_sli_hba_setup(phba)) { 14021 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14022 "1477 Failed to set up hba\n"); 14023 error = -ENODEV; 14024 goto out_remove_device; 14025 } 14026 14027 /* Wait 50ms for the interrupts of previous mailbox commands */ 14028 msleep(50); 14029 /* Check active interrupts on message signaled interrupts */ 14030 if (intr_mode == 0 || 14031 phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) { 14032 /* Log the current active interrupt mode */ 14033 phba->intr_mode = intr_mode; 14034 lpfc_log_intr_mode(phba, intr_mode); 14035 break; 14036 } else { 14037 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14038 "0447 Configure interrupt mode (%d) " 14039 "failed active interrupt test.\n", 14040 intr_mode); 14041 /* Disable the current interrupt mode */ 14042 lpfc_sli_disable_intr(phba); 14043 /* Try next level of interrupt mode */ 14044 cfg_mode = --intr_mode; 14045 } 14046 } 14047 14048 /* Perform post initialization setup */ 14049 lpfc_post_init_setup(phba); 14050 14051 /* Check if there are static vports to be created. */ 14052 lpfc_create_static_vport(phba); 14053 14054 return 0; 14055 14056 out_remove_device: 14057 lpfc_unset_hba(phba); 14058 out_free_sysfs_attr: 14059 lpfc_free_sysfs_attr(vport); 14060 out_destroy_shost: 14061 lpfc_destroy_shost(phba); 14062 out_unset_driver_resource: 14063 lpfc_unset_driver_resource_phase2(phba); 14064 out_free_iocb_list: 14065 lpfc_free_iocb_list(phba); 14066 out_unset_driver_resource_s3: 14067 lpfc_sli_driver_resource_unset(phba); 14068 out_unset_pci_mem_s3: 14069 lpfc_sli_pci_mem_unset(phba); 14070 out_disable_pci_dev: 14071 lpfc_disable_pci_dev(phba); 14072 if (shost) 14073 scsi_host_put(shost); 14074 out_free_phba: 14075 lpfc_hba_free(phba); 14076 return error; 14077 } 14078 14079 /** 14080 * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem. 14081 * @pdev: pointer to PCI device 14082 * 14083 * This routine is to be called to disattach a device with SLI-3 interface 14084 * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 14085 * removed from PCI bus, it performs all the necessary cleanup for the HBA 14086 * device to be removed from the PCI subsystem properly. 14087 **/ 14088 static void 14089 lpfc_pci_remove_one_s3(struct pci_dev *pdev) 14090 { 14091 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14092 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 14093 struct lpfc_vport **vports; 14094 struct lpfc_hba *phba = vport->phba; 14095 int i; 14096 14097 set_bit(FC_UNLOADING, &vport->load_flag); 14098 14099 lpfc_free_sysfs_attr(vport); 14100 14101 /* Release all the vports against this physical port */ 14102 vports = lpfc_create_vport_work_array(phba); 14103 if (vports != NULL) 14104 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 14105 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 14106 continue; 14107 fc_vport_terminate(vports[i]->fc_vport); 14108 } 14109 lpfc_destroy_vport_work_array(phba, vports); 14110 14111 /* Remove FC host with the physical port */ 14112 fc_remove_host(shost); 14113 scsi_remove_host(shost); 14114 14115 /* Clean up all nodes, mailboxes and IOs. */ 14116 lpfc_cleanup(vport); 14117 14118 /* 14119 * Bring down the SLI Layer. This step disable all interrupts, 14120 * clears the rings, discards all mailbox commands, and resets 14121 * the HBA. 14122 */ 14123 14124 /* HBA interrupt will be disabled after this call */ 14125 lpfc_sli_hba_down(phba); 14126 /* Stop kthread signal shall trigger work_done one more time */ 14127 kthread_stop(phba->worker_thread); 14128 /* Final cleanup of txcmplq and reset the HBA */ 14129 lpfc_sli_brdrestart(phba); 14130 14131 kfree(phba->vpi_bmask); 14132 kfree(phba->vpi_ids); 14133 14134 lpfc_stop_hba_timers(phba); 14135 spin_lock_irq(&phba->port_list_lock); 14136 list_del_init(&vport->listentry); 14137 spin_unlock_irq(&phba->port_list_lock); 14138 14139 lpfc_debugfs_terminate(vport); 14140 14141 /* Disable SR-IOV if enabled */ 14142 if (phba->cfg_sriov_nr_virtfn) 14143 pci_disable_sriov(pdev); 14144 14145 /* Disable interrupt */ 14146 lpfc_sli_disable_intr(phba); 14147 14148 scsi_host_put(shost); 14149 14150 /* 14151 * Call scsi_free before mem_free since scsi bufs are released to their 14152 * corresponding pools here. 14153 */ 14154 lpfc_scsi_free(phba); 14155 lpfc_free_iocb_list(phba); 14156 14157 lpfc_mem_free_all(phba); 14158 14159 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 14160 phba->hbqslimp.virt, phba->hbqslimp.phys); 14161 14162 /* Free resources associated with SLI2 interface */ 14163 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 14164 phba->slim2p.virt, phba->slim2p.phys); 14165 14166 /* unmap adapter SLIM and Control Registers */ 14167 iounmap(phba->ctrl_regs_memmap_p); 14168 iounmap(phba->slim_memmap_p); 14169 14170 lpfc_hba_free(phba); 14171 14172 pci_release_mem_regions(pdev); 14173 pci_disable_device(pdev); 14174 } 14175 14176 /** 14177 * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt 14178 * @dev_d: pointer to device 14179 * 14180 * This routine is to be called from the kernel's PCI subsystem to support 14181 * system Power Management (PM) to device with SLI-3 interface spec. When 14182 * PM invokes this method, it quiesces the device by stopping the driver's 14183 * worker thread for the device, turning off device's interrupt and DMA, 14184 * and bring the device offline. Note that as the driver implements the 14185 * minimum PM requirements to a power-aware driver's PM support for the 14186 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 14187 * to the suspend() method call will be treated as SUSPEND and the driver will 14188 * fully reinitialize its device during resume() method call, the driver will 14189 * set device to PCI_D3hot state in PCI config space instead of setting it 14190 * according to the @msg provided by the PM. 14191 * 14192 * Return code 14193 * 0 - driver suspended the device 14194 * Error otherwise 14195 **/ 14196 static int __maybe_unused 14197 lpfc_pci_suspend_one_s3(struct device *dev_d) 14198 { 14199 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 14200 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14201 14202 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14203 "0473 PCI device Power Management suspend.\n"); 14204 14205 /* Bring down the device */ 14206 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 14207 lpfc_offline(phba); 14208 kthread_stop(phba->worker_thread); 14209 14210 /* Disable interrupt from device */ 14211 lpfc_sli_disable_intr(phba); 14212 14213 return 0; 14214 } 14215 14216 /** 14217 * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt 14218 * @dev_d: pointer to device 14219 * 14220 * This routine is to be called from the kernel's PCI subsystem to support 14221 * system Power Management (PM) to device with SLI-3 interface spec. When PM 14222 * invokes this method, it restores the device's PCI config space state and 14223 * fully reinitializes the device and brings it online. Note that as the 14224 * driver implements the minimum PM requirements to a power-aware driver's 14225 * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, 14226 * FREEZE) to the suspend() method call will be treated as SUSPEND and the 14227 * driver will fully reinitialize its device during resume() method call, 14228 * the device will be set to PCI_D0 directly in PCI config space before 14229 * restoring the state. 14230 * 14231 * Return code 14232 * 0 - driver suspended the device 14233 * Error otherwise 14234 **/ 14235 static int __maybe_unused 14236 lpfc_pci_resume_one_s3(struct device *dev_d) 14237 { 14238 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 14239 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14240 uint32_t intr_mode; 14241 int error; 14242 14243 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14244 "0452 PCI device Power Management resume.\n"); 14245 14246 /* Startup the kernel thread for this host adapter. */ 14247 phba->worker_thread = kthread_run(lpfc_do_work, phba, 14248 "lpfc_worker_%d", phba->brd_no); 14249 if (IS_ERR(phba->worker_thread)) { 14250 error = PTR_ERR(phba->worker_thread); 14251 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14252 "0434 PM resume failed to start worker " 14253 "thread: error=x%x.\n", error); 14254 return error; 14255 } 14256 14257 /* Init cpu_map array */ 14258 lpfc_cpu_map_array_init(phba); 14259 /* Init hba_eq_hdl array */ 14260 lpfc_hba_eq_hdl_array_init(phba); 14261 /* Configure and enable interrupt */ 14262 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 14263 if (intr_mode == LPFC_INTR_ERROR) { 14264 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14265 "0430 PM resume Failed to enable interrupt\n"); 14266 return -EIO; 14267 } else 14268 phba->intr_mode = intr_mode; 14269 14270 /* Restart HBA and bring it online */ 14271 lpfc_sli_brdrestart(phba); 14272 lpfc_online(phba); 14273 14274 /* Log the current active interrupt mode */ 14275 lpfc_log_intr_mode(phba, phba->intr_mode); 14276 14277 return 0; 14278 } 14279 14280 /** 14281 * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover 14282 * @phba: pointer to lpfc hba data structure. 14283 * 14284 * This routine is called to prepare the SLI3 device for PCI slot recover. It 14285 * aborts all the outstanding SCSI I/Os to the pci device. 14286 **/ 14287 static void 14288 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba) 14289 { 14290 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14291 "2723 PCI channel I/O abort preparing for recovery\n"); 14292 14293 /* 14294 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 14295 * and let the SCSI mid-layer to retry them to recover. 14296 */ 14297 lpfc_sli_abort_fcp_rings(phba); 14298 } 14299 14300 /** 14301 * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset 14302 * @phba: pointer to lpfc hba data structure. 14303 * 14304 * This routine is called to prepare the SLI3 device for PCI slot reset. It 14305 * disables the device interrupt and pci device, and aborts the internal FCP 14306 * pending I/Os. 14307 **/ 14308 static void 14309 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba) 14310 { 14311 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14312 "2710 PCI channel disable preparing for reset\n"); 14313 14314 /* Block any management I/Os to the device */ 14315 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 14316 14317 /* Block all SCSI devices' I/Os on the host */ 14318 lpfc_scsi_dev_block(phba); 14319 14320 /* Flush all driver's outstanding SCSI I/Os as we are to reset */ 14321 lpfc_sli_flush_io_rings(phba); 14322 14323 /* stop all timers */ 14324 lpfc_stop_hba_timers(phba); 14325 14326 /* Disable interrupt and pci device */ 14327 lpfc_sli_disable_intr(phba); 14328 pci_disable_device(phba->pcidev); 14329 } 14330 14331 /** 14332 * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable 14333 * @phba: pointer to lpfc hba data structure. 14334 * 14335 * This routine is called to prepare the SLI3 device for PCI slot permanently 14336 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 14337 * pending I/Os. 14338 **/ 14339 static void 14340 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba) 14341 { 14342 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14343 "2711 PCI channel permanent disable for failure\n"); 14344 /* Block all SCSI devices' I/Os on the host */ 14345 lpfc_scsi_dev_block(phba); 14346 lpfc_sli4_prep_dev_for_reset(phba); 14347 14348 /* stop all timers */ 14349 lpfc_stop_hba_timers(phba); 14350 14351 /* Clean up all driver's outstanding SCSI I/Os */ 14352 lpfc_sli_flush_io_rings(phba); 14353 } 14354 14355 /** 14356 * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error 14357 * @pdev: pointer to PCI device. 14358 * @state: the current PCI connection state. 14359 * 14360 * This routine is called from the PCI subsystem for I/O error handling to 14361 * device with SLI-3 interface spec. This function is called by the PCI 14362 * subsystem after a PCI bus error affecting this device has been detected. 14363 * When this function is invoked, it will need to stop all the I/Os and 14364 * interrupt(s) to the device. Once that is done, it will return 14365 * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery 14366 * as desired. 14367 * 14368 * Return codes 14369 * PCI_ERS_RESULT_CAN_RECOVER - can be recovered without reset 14370 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 14371 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 14372 **/ 14373 static pci_ers_result_t 14374 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state) 14375 { 14376 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14377 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14378 14379 switch (state) { 14380 case pci_channel_io_normal: 14381 /* Non-fatal error, prepare for recovery */ 14382 lpfc_sli_prep_dev_for_recover(phba); 14383 return PCI_ERS_RESULT_CAN_RECOVER; 14384 case pci_channel_io_frozen: 14385 /* Fatal error, prepare for slot reset */ 14386 lpfc_sli_prep_dev_for_reset(phba); 14387 return PCI_ERS_RESULT_NEED_RESET; 14388 case pci_channel_io_perm_failure: 14389 /* Permanent failure, prepare for device down */ 14390 lpfc_sli_prep_dev_for_perm_failure(phba); 14391 return PCI_ERS_RESULT_DISCONNECT; 14392 default: 14393 /* Unknown state, prepare and request slot reset */ 14394 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14395 "0472 Unknown PCI error state: x%x\n", state); 14396 lpfc_sli_prep_dev_for_reset(phba); 14397 return PCI_ERS_RESULT_NEED_RESET; 14398 } 14399 } 14400 14401 /** 14402 * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch. 14403 * @pdev: pointer to PCI device. 14404 * 14405 * This routine is called from the PCI subsystem for error handling to 14406 * device with SLI-3 interface spec. This is called after PCI bus has been 14407 * reset to restart the PCI card from scratch, as if from a cold-boot. 14408 * During the PCI subsystem error recovery, after driver returns 14409 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 14410 * recovery and then call this routine before calling the .resume method 14411 * to recover the device. This function will initialize the HBA device, 14412 * enable the interrupt, but it will just put the HBA to offline state 14413 * without passing any I/O traffic. 14414 * 14415 * Return codes 14416 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 14417 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 14418 */ 14419 static pci_ers_result_t 14420 lpfc_io_slot_reset_s3(struct pci_dev *pdev) 14421 { 14422 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14423 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14424 struct lpfc_sli *psli = &phba->sli; 14425 uint32_t intr_mode; 14426 14427 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 14428 if (pci_enable_device_mem(pdev)) { 14429 printk(KERN_ERR "lpfc: Cannot re-enable " 14430 "PCI device after reset.\n"); 14431 return PCI_ERS_RESULT_DISCONNECT; 14432 } 14433 14434 pci_restore_state(pdev); 14435 14436 if (pdev->is_busmaster) 14437 pci_set_master(pdev); 14438 14439 spin_lock_irq(&phba->hbalock); 14440 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 14441 spin_unlock_irq(&phba->hbalock); 14442 14443 /* Configure and enable interrupt */ 14444 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 14445 if (intr_mode == LPFC_INTR_ERROR) { 14446 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14447 "0427 Cannot re-enable interrupt after " 14448 "slot reset.\n"); 14449 return PCI_ERS_RESULT_DISCONNECT; 14450 } else 14451 phba->intr_mode = intr_mode; 14452 14453 /* Take device offline, it will perform cleanup */ 14454 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 14455 lpfc_offline(phba); 14456 lpfc_sli_brdrestart(phba); 14457 14458 /* Log the current active interrupt mode */ 14459 lpfc_log_intr_mode(phba, phba->intr_mode); 14460 14461 return PCI_ERS_RESULT_RECOVERED; 14462 } 14463 14464 /** 14465 * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device. 14466 * @pdev: pointer to PCI device 14467 * 14468 * This routine is called from the PCI subsystem for error handling to device 14469 * with SLI-3 interface spec. It is called when kernel error recovery tells 14470 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 14471 * error recovery. After this call, traffic can start to flow from this device 14472 * again. 14473 */ 14474 static void 14475 lpfc_io_resume_s3(struct pci_dev *pdev) 14476 { 14477 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14478 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14479 14480 /* Bring device online, it will be no-op for non-fatal error resume */ 14481 lpfc_online(phba); 14482 } 14483 14484 /** 14485 * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve 14486 * @phba: pointer to lpfc hba data structure. 14487 * 14488 * returns the number of ELS/CT IOCBs to reserve 14489 **/ 14490 int 14491 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba) 14492 { 14493 int max_xri = phba->sli4_hba.max_cfg_param.max_xri; 14494 14495 if (phba->sli_rev == LPFC_SLI_REV4) { 14496 if (max_xri <= 100) 14497 return 10; 14498 else if (max_xri <= 256) 14499 return 25; 14500 else if (max_xri <= 512) 14501 return 50; 14502 else if (max_xri <= 1024) 14503 return 100; 14504 else if (max_xri <= 1536) 14505 return 150; 14506 else if (max_xri <= 2048) 14507 return 200; 14508 else 14509 return 250; 14510 } else 14511 return 0; 14512 } 14513 14514 /** 14515 * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve 14516 * @phba: pointer to lpfc hba data structure. 14517 * 14518 * returns the number of ELS/CT + NVMET IOCBs to reserve 14519 **/ 14520 int 14521 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba) 14522 { 14523 int max_xri = lpfc_sli4_get_els_iocb_cnt(phba); 14524 14525 if (phba->nvmet_support) 14526 max_xri += LPFC_NVMET_BUF_POST; 14527 return max_xri; 14528 } 14529 14530 14531 static int 14532 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset, 14533 uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize, 14534 const struct firmware *fw) 14535 { 14536 int rc; 14537 u8 sli_family; 14538 14539 sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf); 14540 /* Three cases: (1) FW was not supported on the detected adapter. 14541 * (2) FW update has been locked out administratively. 14542 * (3) Some other error during FW update. 14543 * In each case, an unmaskable message is written to the console 14544 * for admin diagnosis. 14545 */ 14546 if (offset == ADD_STATUS_FW_NOT_SUPPORTED || 14547 (sli_family == LPFC_SLI_INTF_FAMILY_G6 && 14548 magic_number != MAGIC_NUMBER_G6) || 14549 (sli_family == LPFC_SLI_INTF_FAMILY_G7 && 14550 magic_number != MAGIC_NUMBER_G7) || 14551 (sli_family == LPFC_SLI_INTF_FAMILY_G7P && 14552 magic_number != MAGIC_NUMBER_G7P)) { 14553 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14554 "3030 This firmware version is not supported on" 14555 " this HBA model. Device:%x Magic:%x Type:%x " 14556 "ID:%x Size %d %zd\n", 14557 phba->pcidev->device, magic_number, ftype, fid, 14558 fsize, fw->size); 14559 rc = -EINVAL; 14560 } else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) { 14561 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14562 "3021 Firmware downloads have been prohibited " 14563 "by a system configuration setting on " 14564 "Device:%x Magic:%x Type:%x ID:%x Size %d " 14565 "%zd\n", 14566 phba->pcidev->device, magic_number, ftype, fid, 14567 fsize, fw->size); 14568 rc = -EACCES; 14569 } else { 14570 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14571 "3022 FW Download failed. Add Status x%x " 14572 "Device:%x Magic:%x Type:%x ID:%x Size %d " 14573 "%zd\n", 14574 offset, phba->pcidev->device, magic_number, 14575 ftype, fid, fsize, fw->size); 14576 rc = -EIO; 14577 } 14578 return rc; 14579 } 14580 14581 /** 14582 * lpfc_write_firmware - attempt to write a firmware image to the port 14583 * @fw: pointer to firmware image returned from request_firmware. 14584 * @context: pointer to firmware image returned from request_firmware. 14585 * 14586 **/ 14587 static void 14588 lpfc_write_firmware(const struct firmware *fw, void *context) 14589 { 14590 struct lpfc_hba *phba = (struct lpfc_hba *)context; 14591 char fwrev[FW_REV_STR_SIZE]; 14592 struct lpfc_grp_hdr *image; 14593 struct list_head dma_buffer_list; 14594 int i, rc = 0; 14595 struct lpfc_dmabuf *dmabuf, *next; 14596 uint32_t offset = 0, temp_offset = 0; 14597 uint32_t magic_number, ftype, fid, fsize; 14598 14599 /* It can be null in no-wait mode, sanity check */ 14600 if (!fw) { 14601 rc = -ENXIO; 14602 goto out; 14603 } 14604 image = (struct lpfc_grp_hdr *)fw->data; 14605 14606 magic_number = be32_to_cpu(image->magic_number); 14607 ftype = bf_get_be32(lpfc_grp_hdr_file_type, image); 14608 fid = bf_get_be32(lpfc_grp_hdr_id, image); 14609 fsize = be32_to_cpu(image->size); 14610 14611 INIT_LIST_HEAD(&dma_buffer_list); 14612 lpfc_decode_firmware_rev(phba, fwrev, 1); 14613 if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) { 14614 lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI, 14615 "3023 Updating Firmware, Current Version:%s " 14616 "New Version:%s\n", 14617 fwrev, image->revision); 14618 for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) { 14619 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 14620 GFP_KERNEL); 14621 if (!dmabuf) { 14622 rc = -ENOMEM; 14623 goto release_out; 14624 } 14625 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 14626 SLI4_PAGE_SIZE, 14627 &dmabuf->phys, 14628 GFP_KERNEL); 14629 if (!dmabuf->virt) { 14630 kfree(dmabuf); 14631 rc = -ENOMEM; 14632 goto release_out; 14633 } 14634 list_add_tail(&dmabuf->list, &dma_buffer_list); 14635 } 14636 while (offset < fw->size) { 14637 temp_offset = offset; 14638 list_for_each_entry(dmabuf, &dma_buffer_list, list) { 14639 if (temp_offset + SLI4_PAGE_SIZE > fw->size) { 14640 memcpy(dmabuf->virt, 14641 fw->data + temp_offset, 14642 fw->size - temp_offset); 14643 temp_offset = fw->size; 14644 break; 14645 } 14646 memcpy(dmabuf->virt, fw->data + temp_offset, 14647 SLI4_PAGE_SIZE); 14648 temp_offset += SLI4_PAGE_SIZE; 14649 } 14650 rc = lpfc_wr_object(phba, &dma_buffer_list, 14651 (fw->size - offset), &offset); 14652 if (rc) { 14653 rc = lpfc_log_write_firmware_error(phba, offset, 14654 magic_number, 14655 ftype, 14656 fid, 14657 fsize, 14658 fw); 14659 goto release_out; 14660 } 14661 } 14662 rc = offset; 14663 } else 14664 lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI, 14665 "3029 Skipped Firmware update, Current " 14666 "Version:%s New Version:%s\n", 14667 fwrev, image->revision); 14668 14669 release_out: 14670 list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) { 14671 list_del(&dmabuf->list); 14672 dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE, 14673 dmabuf->virt, dmabuf->phys); 14674 kfree(dmabuf); 14675 } 14676 release_firmware(fw); 14677 out: 14678 if (rc < 0) 14679 lpfc_log_msg(phba, KERN_ERR, LOG_INIT | LOG_SLI, 14680 "3062 Firmware update error, status %d.\n", rc); 14681 else 14682 lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI, 14683 "3024 Firmware update success: size %d.\n", rc); 14684 } 14685 14686 /** 14687 * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade 14688 * @phba: pointer to lpfc hba data structure. 14689 * @fw_upgrade: which firmware to update. 14690 * 14691 * This routine is called to perform Linux generic firmware upgrade on device 14692 * that supports such feature. 14693 **/ 14694 int 14695 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade) 14696 { 14697 char file_name[ELX_FW_NAME_SIZE] = {0}; 14698 int ret; 14699 const struct firmware *fw; 14700 14701 /* Only supported on SLI4 interface type 2 for now */ 14702 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 14703 LPFC_SLI_INTF_IF_TYPE_2) 14704 return -EPERM; 14705 14706 scnprintf(file_name, sizeof(file_name), "%s.grp", phba->ModelName); 14707 14708 if (fw_upgrade == INT_FW_UPGRADE) { 14709 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT, 14710 file_name, &phba->pcidev->dev, 14711 GFP_KERNEL, (void *)phba, 14712 lpfc_write_firmware); 14713 } else if (fw_upgrade == RUN_FW_UPGRADE) { 14714 ret = request_firmware(&fw, file_name, &phba->pcidev->dev); 14715 if (!ret) 14716 lpfc_write_firmware(fw, (void *)phba); 14717 } else { 14718 ret = -EINVAL; 14719 } 14720 14721 return ret; 14722 } 14723 14724 /** 14725 * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys 14726 * @pdev: pointer to PCI device 14727 * @pid: pointer to PCI device identifier 14728 * 14729 * This routine is called from the kernel's PCI subsystem to device with 14730 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 14731 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 14732 * information of the device and driver to see if the driver state that it 14733 * can support this kind of device. If the match is successful, the driver 14734 * core invokes this routine. If this routine determines it can claim the HBA, 14735 * it does all the initialization that it needs to do to handle the HBA 14736 * properly. 14737 * 14738 * Return code 14739 * 0 - driver can claim the device 14740 * negative value - driver can not claim the device 14741 **/ 14742 static int 14743 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid) 14744 { 14745 struct lpfc_hba *phba; 14746 struct lpfc_vport *vport = NULL; 14747 struct Scsi_Host *shost = NULL; 14748 int error; 14749 uint32_t cfg_mode, intr_mode; 14750 14751 /* Allocate memory for HBA structure */ 14752 phba = lpfc_hba_alloc(pdev); 14753 if (!phba) 14754 return -ENOMEM; 14755 14756 INIT_LIST_HEAD(&phba->poll_list); 14757 14758 /* Perform generic PCI device enabling operation */ 14759 error = lpfc_enable_pci_dev(phba); 14760 if (error) 14761 goto out_free_phba; 14762 14763 /* Set up SLI API function jump table for PCI-device group-1 HBAs */ 14764 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC); 14765 if (error) 14766 goto out_disable_pci_dev; 14767 14768 /* Set up SLI-4 specific device PCI memory space */ 14769 error = lpfc_sli4_pci_mem_setup(phba); 14770 if (error) { 14771 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14772 "1410 Failed to set up pci memory space.\n"); 14773 goto out_disable_pci_dev; 14774 } 14775 14776 /* Set up SLI-4 Specific device driver resources */ 14777 error = lpfc_sli4_driver_resource_setup(phba); 14778 if (error) { 14779 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14780 "1412 Failed to set up driver resource.\n"); 14781 goto out_unset_pci_mem_s4; 14782 } 14783 14784 spin_lock_init(&phba->rrq_list_lock); 14785 INIT_LIST_HEAD(&phba->active_rrq_list); 14786 INIT_LIST_HEAD(&phba->fcf.fcf_pri_list); 14787 14788 /* Set up common device driver resources */ 14789 error = lpfc_setup_driver_resource_phase2(phba); 14790 if (error) { 14791 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14792 "1414 Failed to set up driver resource.\n"); 14793 goto out_unset_driver_resource_s4; 14794 } 14795 14796 /* Get the default values for Model Name and Description */ 14797 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 14798 14799 /* Now, trying to enable interrupt and bring up the device */ 14800 cfg_mode = phba->cfg_use_msi; 14801 14802 /* Put device to a known state before enabling interrupt */ 14803 phba->pport = NULL; 14804 lpfc_stop_port(phba); 14805 14806 /* Init cpu_map array */ 14807 lpfc_cpu_map_array_init(phba); 14808 14809 /* Init hba_eq_hdl array */ 14810 lpfc_hba_eq_hdl_array_init(phba); 14811 14812 /* Configure and enable interrupt */ 14813 intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode); 14814 if (intr_mode == LPFC_INTR_ERROR) { 14815 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14816 "0426 Failed to enable interrupt.\n"); 14817 error = -ENODEV; 14818 goto out_unset_driver_resource; 14819 } 14820 /* Default to single EQ for non-MSI-X */ 14821 if (phba->intr_type != MSIX) { 14822 phba->cfg_irq_chann = 1; 14823 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14824 if (phba->nvmet_support) 14825 phba->cfg_nvmet_mrq = 1; 14826 } 14827 } 14828 lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann); 14829 14830 /* Create SCSI host to the physical port */ 14831 error = lpfc_create_shost(phba); 14832 if (error) { 14833 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14834 "1415 Failed to create scsi host.\n"); 14835 goto out_disable_intr; 14836 } 14837 vport = phba->pport; 14838 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 14839 14840 /* Configure sysfs attributes */ 14841 error = lpfc_alloc_sysfs_attr(vport); 14842 if (error) { 14843 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14844 "1416 Failed to allocate sysfs attr\n"); 14845 goto out_destroy_shost; 14846 } 14847 14848 /* Set up SLI-4 HBA */ 14849 if (lpfc_sli4_hba_setup(phba)) { 14850 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14851 "1421 Failed to set up hba\n"); 14852 error = -ENODEV; 14853 goto out_free_sysfs_attr; 14854 } 14855 14856 /* Log the current active interrupt mode */ 14857 phba->intr_mode = intr_mode; 14858 lpfc_log_intr_mode(phba, intr_mode); 14859 14860 /* Perform post initialization setup */ 14861 lpfc_post_init_setup(phba); 14862 14863 /* NVME support in FW earlier in the driver load corrects the 14864 * FC4 type making a check for nvme_support unnecessary. 14865 */ 14866 if (phba->nvmet_support == 0) { 14867 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14868 /* Create NVME binding with nvme_fc_transport. This 14869 * ensures the vport is initialized. If the localport 14870 * create fails, it should not unload the driver to 14871 * support field issues. 14872 */ 14873 error = lpfc_nvme_create_localport(vport); 14874 if (error) { 14875 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14876 "6004 NVME registration " 14877 "failed, error x%x\n", 14878 error); 14879 } 14880 } 14881 } 14882 14883 /* check for firmware upgrade or downgrade */ 14884 if (phba->cfg_request_firmware_upgrade) 14885 lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE); 14886 14887 /* Check if there are static vports to be created. */ 14888 lpfc_create_static_vport(phba); 14889 14890 timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0); 14891 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp); 14892 14893 return 0; 14894 14895 out_free_sysfs_attr: 14896 lpfc_free_sysfs_attr(vport); 14897 out_destroy_shost: 14898 lpfc_destroy_shost(phba); 14899 out_disable_intr: 14900 lpfc_sli4_disable_intr(phba); 14901 out_unset_driver_resource: 14902 lpfc_unset_driver_resource_phase2(phba); 14903 out_unset_driver_resource_s4: 14904 lpfc_sli4_driver_resource_unset(phba); 14905 out_unset_pci_mem_s4: 14906 lpfc_sli4_pci_mem_unset(phba); 14907 out_disable_pci_dev: 14908 lpfc_disable_pci_dev(phba); 14909 if (shost) 14910 scsi_host_put(shost); 14911 out_free_phba: 14912 lpfc_hba_free(phba); 14913 return error; 14914 } 14915 14916 /** 14917 * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem 14918 * @pdev: pointer to PCI device 14919 * 14920 * This routine is called from the kernel's PCI subsystem to device with 14921 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 14922 * removed from PCI bus, it performs all the necessary cleanup for the HBA 14923 * device to be removed from the PCI subsystem properly. 14924 **/ 14925 static void 14926 lpfc_pci_remove_one_s4(struct pci_dev *pdev) 14927 { 14928 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14929 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 14930 struct lpfc_vport **vports; 14931 struct lpfc_hba *phba = vport->phba; 14932 int i; 14933 14934 /* Mark the device unloading flag */ 14935 set_bit(FC_UNLOADING, &vport->load_flag); 14936 if (phba->cgn_i) 14937 lpfc_unreg_congestion_buf(phba); 14938 14939 lpfc_free_sysfs_attr(vport); 14940 14941 /* Release all the vports against this physical port */ 14942 vports = lpfc_create_vport_work_array(phba); 14943 if (vports != NULL) 14944 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 14945 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 14946 continue; 14947 fc_vport_terminate(vports[i]->fc_vport); 14948 } 14949 lpfc_destroy_vport_work_array(phba, vports); 14950 14951 /* Remove FC host with the physical port */ 14952 fc_remove_host(shost); 14953 scsi_remove_host(shost); 14954 14955 /* Perform ndlp cleanup on the physical port. The nvme and nvmet 14956 * localports are destroyed after to cleanup all transport memory. 14957 */ 14958 lpfc_cleanup(vport); 14959 lpfc_nvmet_destroy_targetport(phba); 14960 lpfc_nvme_destroy_localport(vport); 14961 14962 /* De-allocate multi-XRI pools */ 14963 if (phba->cfg_xri_rebalancing) 14964 lpfc_destroy_multixri_pools(phba); 14965 14966 /* 14967 * Bring down the SLI Layer. This step disables all interrupts, 14968 * clears the rings, discards all mailbox commands, and resets 14969 * the HBA FCoE function. 14970 */ 14971 lpfc_debugfs_terminate(vport); 14972 14973 lpfc_stop_hba_timers(phba); 14974 spin_lock_irq(&phba->port_list_lock); 14975 list_del_init(&vport->listentry); 14976 spin_unlock_irq(&phba->port_list_lock); 14977 14978 /* Perform scsi free before driver resource_unset since scsi 14979 * buffers are released to their corresponding pools here. 14980 */ 14981 lpfc_io_free(phba); 14982 lpfc_free_iocb_list(phba); 14983 lpfc_sli4_hba_unset(phba); 14984 14985 lpfc_unset_driver_resource_phase2(phba); 14986 lpfc_sli4_driver_resource_unset(phba); 14987 14988 /* Unmap adapter Control and Doorbell registers */ 14989 lpfc_sli4_pci_mem_unset(phba); 14990 14991 /* Release PCI resources and disable device's PCI function */ 14992 scsi_host_put(shost); 14993 lpfc_disable_pci_dev(phba); 14994 14995 /* Finally, free the driver's device data structure */ 14996 lpfc_hba_free(phba); 14997 14998 return; 14999 } 15000 15001 /** 15002 * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt 15003 * @dev_d: pointer to device 15004 * 15005 * This routine is called from the kernel's PCI subsystem to support system 15006 * Power Management (PM) to device with SLI-4 interface spec. When PM invokes 15007 * this method, it quiesces the device by stopping the driver's worker 15008 * thread for the device, turning off device's interrupt and DMA, and bring 15009 * the device offline. Note that as the driver implements the minimum PM 15010 * requirements to a power-aware driver's PM support for suspend/resume -- all 15011 * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend() 15012 * method call will be treated as SUSPEND and the driver will fully 15013 * reinitialize its device during resume() method call, the driver will set 15014 * device to PCI_D3hot state in PCI config space instead of setting it 15015 * according to the @msg provided by the PM. 15016 * 15017 * Return code 15018 * 0 - driver suspended the device 15019 * Error otherwise 15020 **/ 15021 static int __maybe_unused 15022 lpfc_pci_suspend_one_s4(struct device *dev_d) 15023 { 15024 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 15025 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15026 15027 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15028 "2843 PCI device Power Management suspend.\n"); 15029 15030 /* Bring down the device */ 15031 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 15032 lpfc_offline(phba); 15033 kthread_stop(phba->worker_thread); 15034 15035 /* Disable interrupt from device */ 15036 lpfc_sli4_disable_intr(phba); 15037 lpfc_sli4_queue_destroy(phba); 15038 15039 return 0; 15040 } 15041 15042 /** 15043 * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt 15044 * @dev_d: pointer to device 15045 * 15046 * This routine is called from the kernel's PCI subsystem to support system 15047 * Power Management (PM) to device with SLI-4 interface spac. When PM invokes 15048 * this method, it restores the device's PCI config space state and fully 15049 * reinitializes the device and brings it online. Note that as the driver 15050 * implements the minimum PM requirements to a power-aware driver's PM for 15051 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 15052 * to the suspend() method call will be treated as SUSPEND and the driver 15053 * will fully reinitialize its device during resume() method call, the device 15054 * will be set to PCI_D0 directly in PCI config space before restoring the 15055 * state. 15056 * 15057 * Return code 15058 * 0 - driver suspended the device 15059 * Error otherwise 15060 **/ 15061 static int __maybe_unused 15062 lpfc_pci_resume_one_s4(struct device *dev_d) 15063 { 15064 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 15065 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15066 uint32_t intr_mode; 15067 int error; 15068 15069 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15070 "0292 PCI device Power Management resume.\n"); 15071 15072 /* Startup the kernel thread for this host adapter. */ 15073 phba->worker_thread = kthread_run(lpfc_do_work, phba, 15074 "lpfc_worker_%d", phba->brd_no); 15075 if (IS_ERR(phba->worker_thread)) { 15076 error = PTR_ERR(phba->worker_thread); 15077 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15078 "0293 PM resume failed to start worker " 15079 "thread: error=x%x.\n", error); 15080 return error; 15081 } 15082 15083 /* Configure and enable interrupt */ 15084 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 15085 if (intr_mode == LPFC_INTR_ERROR) { 15086 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15087 "0294 PM resume Failed to enable interrupt\n"); 15088 return -EIO; 15089 } else 15090 phba->intr_mode = intr_mode; 15091 15092 /* Restart HBA and bring it online */ 15093 lpfc_sli_brdrestart(phba); 15094 lpfc_online(phba); 15095 15096 /* Log the current active interrupt mode */ 15097 lpfc_log_intr_mode(phba, phba->intr_mode); 15098 15099 return 0; 15100 } 15101 15102 /** 15103 * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover 15104 * @phba: pointer to lpfc hba data structure. 15105 * 15106 * This routine is called to prepare the SLI4 device for PCI slot recover. It 15107 * aborts all the outstanding SCSI I/Os to the pci device. 15108 **/ 15109 static void 15110 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba) 15111 { 15112 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15113 "2828 PCI channel I/O abort preparing for recovery\n"); 15114 /* 15115 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 15116 * and let the SCSI mid-layer to retry them to recover. 15117 */ 15118 lpfc_sli_abort_fcp_rings(phba); 15119 } 15120 15121 /** 15122 * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset 15123 * @phba: pointer to lpfc hba data structure. 15124 * 15125 * This routine is called to prepare the SLI4 device for PCI slot reset. It 15126 * disables the device interrupt and pci device, and aborts the internal FCP 15127 * pending I/Os. 15128 **/ 15129 static void 15130 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba) 15131 { 15132 int offline = pci_channel_offline(phba->pcidev); 15133 15134 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15135 "2826 PCI channel disable preparing for reset offline" 15136 " %d\n", offline); 15137 15138 /* Block any management I/Os to the device */ 15139 lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT); 15140 15141 15142 /* HBA_PCI_ERR was set in io_error_detect */ 15143 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 15144 /* Flush all driver's outstanding I/Os as we are to reset */ 15145 lpfc_sli_flush_io_rings(phba); 15146 lpfc_offline(phba); 15147 15148 /* stop all timers */ 15149 lpfc_stop_hba_timers(phba); 15150 15151 lpfc_sli4_queue_destroy(phba); 15152 /* Disable interrupt and pci device */ 15153 lpfc_sli4_disable_intr(phba); 15154 pci_disable_device(phba->pcidev); 15155 } 15156 15157 /** 15158 * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable 15159 * @phba: pointer to lpfc hba data structure. 15160 * 15161 * This routine is called to prepare the SLI4 device for PCI slot permanently 15162 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 15163 * pending I/Os. 15164 **/ 15165 static void 15166 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba) 15167 { 15168 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15169 "2827 PCI channel permanent disable for failure\n"); 15170 15171 /* Block all SCSI devices' I/Os on the host */ 15172 lpfc_scsi_dev_block(phba); 15173 15174 /* stop all timers */ 15175 lpfc_stop_hba_timers(phba); 15176 15177 /* Clean up all driver's outstanding I/Os */ 15178 lpfc_sli_flush_io_rings(phba); 15179 } 15180 15181 /** 15182 * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device 15183 * @pdev: pointer to PCI device. 15184 * @state: the current PCI connection state. 15185 * 15186 * This routine is called from the PCI subsystem for error handling to device 15187 * with SLI-4 interface spec. This function is called by the PCI subsystem 15188 * after a PCI bus error affecting this device has been detected. When this 15189 * function is invoked, it will need to stop all the I/Os and interrupt(s) 15190 * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET 15191 * for the PCI subsystem to perform proper recovery as desired. 15192 * 15193 * Return codes 15194 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 15195 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15196 **/ 15197 static pci_ers_result_t 15198 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state) 15199 { 15200 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15201 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15202 bool hba_pci_err; 15203 15204 switch (state) { 15205 case pci_channel_io_normal: 15206 /* Non-fatal error, prepare for recovery */ 15207 lpfc_sli4_prep_dev_for_recover(phba); 15208 return PCI_ERS_RESULT_CAN_RECOVER; 15209 case pci_channel_io_frozen: 15210 hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags); 15211 /* Fatal error, prepare for slot reset */ 15212 if (!hba_pci_err) 15213 lpfc_sli4_prep_dev_for_reset(phba); 15214 else 15215 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15216 "2832 Already handling PCI error " 15217 "state: x%x\n", state); 15218 return PCI_ERS_RESULT_NEED_RESET; 15219 case pci_channel_io_perm_failure: 15220 set_bit(HBA_PCI_ERR, &phba->bit_flags); 15221 /* Permanent failure, prepare for device down */ 15222 lpfc_sli4_prep_dev_for_perm_failure(phba); 15223 return PCI_ERS_RESULT_DISCONNECT; 15224 default: 15225 hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags); 15226 if (!hba_pci_err) 15227 lpfc_sli4_prep_dev_for_reset(phba); 15228 /* Unknown state, prepare and request slot reset */ 15229 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15230 "2825 Unknown PCI error state: x%x\n", state); 15231 lpfc_sli4_prep_dev_for_reset(phba); 15232 return PCI_ERS_RESULT_NEED_RESET; 15233 } 15234 } 15235 15236 /** 15237 * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch 15238 * @pdev: pointer to PCI device. 15239 * 15240 * This routine is called from the PCI subsystem for error handling to device 15241 * with SLI-4 interface spec. It is called after PCI bus has been reset to 15242 * restart the PCI card from scratch, as if from a cold-boot. During the 15243 * PCI subsystem error recovery, after the driver returns 15244 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 15245 * recovery and then call this routine before calling the .resume method to 15246 * recover the device. This function will initialize the HBA device, enable 15247 * the interrupt, but it will just put the HBA to offline state without 15248 * passing any I/O traffic. 15249 * 15250 * Return codes 15251 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 15252 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15253 */ 15254 static pci_ers_result_t 15255 lpfc_io_slot_reset_s4(struct pci_dev *pdev) 15256 { 15257 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15258 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15259 struct lpfc_sli *psli = &phba->sli; 15260 uint32_t intr_mode; 15261 bool hba_pci_err; 15262 15263 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 15264 if (pci_enable_device_mem(pdev)) { 15265 printk(KERN_ERR "lpfc: Cannot re-enable " 15266 "PCI device after reset.\n"); 15267 return PCI_ERS_RESULT_DISCONNECT; 15268 } 15269 15270 pci_restore_state(pdev); 15271 15272 hba_pci_err = test_and_clear_bit(HBA_PCI_ERR, &phba->bit_flags); 15273 if (!hba_pci_err) 15274 dev_info(&pdev->dev, 15275 "hba_pci_err was not set, recovering slot reset.\n"); 15276 /* 15277 * As the new kernel behavior of pci_restore_state() API call clears 15278 * device saved_state flag, need to save the restored state again. 15279 */ 15280 pci_save_state(pdev); 15281 15282 if (pdev->is_busmaster) 15283 pci_set_master(pdev); 15284 15285 spin_lock_irq(&phba->hbalock); 15286 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 15287 spin_unlock_irq(&phba->hbalock); 15288 15289 /* Init cpu_map array */ 15290 lpfc_cpu_map_array_init(phba); 15291 /* Configure and enable interrupt */ 15292 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 15293 if (intr_mode == LPFC_INTR_ERROR) { 15294 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15295 "2824 Cannot re-enable interrupt after " 15296 "slot reset.\n"); 15297 return PCI_ERS_RESULT_DISCONNECT; 15298 } else 15299 phba->intr_mode = intr_mode; 15300 lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann); 15301 15302 /* Log the current active interrupt mode */ 15303 lpfc_log_intr_mode(phba, phba->intr_mode); 15304 15305 return PCI_ERS_RESULT_RECOVERED; 15306 } 15307 15308 /** 15309 * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device 15310 * @pdev: pointer to PCI device 15311 * 15312 * This routine is called from the PCI subsystem for error handling to device 15313 * with SLI-4 interface spec. It is called when kernel error recovery tells 15314 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 15315 * error recovery. After this call, traffic can start to flow from this device 15316 * again. 15317 **/ 15318 static void 15319 lpfc_io_resume_s4(struct pci_dev *pdev) 15320 { 15321 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15322 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15323 15324 /* 15325 * In case of slot reset, as function reset is performed through 15326 * mailbox command which needs DMA to be enabled, this operation 15327 * has to be moved to the io resume phase. Taking device offline 15328 * will perform the necessary cleanup. 15329 */ 15330 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) { 15331 /* Perform device reset */ 15332 lpfc_sli_brdrestart(phba); 15333 /* Bring the device back online */ 15334 lpfc_online(phba); 15335 } 15336 } 15337 15338 /** 15339 * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem 15340 * @pdev: pointer to PCI device 15341 * @pid: pointer to PCI device identifier 15342 * 15343 * This routine is to be registered to the kernel's PCI subsystem. When an 15344 * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks 15345 * at PCI device-specific information of the device and driver to see if the 15346 * driver state that it can support this kind of device. If the match is 15347 * successful, the driver core invokes this routine. This routine dispatches 15348 * the action to the proper SLI-3 or SLI-4 device probing routine, which will 15349 * do all the initialization that it needs to do to handle the HBA device 15350 * properly. 15351 * 15352 * Return code 15353 * 0 - driver can claim the device 15354 * negative value - driver can not claim the device 15355 **/ 15356 static int 15357 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid) 15358 { 15359 int rc; 15360 struct lpfc_sli_intf intf; 15361 15362 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0)) 15363 return -ENODEV; 15364 15365 if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) && 15366 (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4)) 15367 rc = lpfc_pci_probe_one_s4(pdev, pid); 15368 else 15369 rc = lpfc_pci_probe_one_s3(pdev, pid); 15370 15371 return rc; 15372 } 15373 15374 /** 15375 * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem 15376 * @pdev: pointer to PCI device 15377 * 15378 * This routine is to be registered to the kernel's PCI subsystem. When an 15379 * Emulex HBA is removed from PCI bus, the driver core invokes this routine. 15380 * This routine dispatches the action to the proper SLI-3 or SLI-4 device 15381 * remove routine, which will perform all the necessary cleanup for the 15382 * device to be removed from the PCI subsystem properly. 15383 **/ 15384 static void 15385 lpfc_pci_remove_one(struct pci_dev *pdev) 15386 { 15387 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15388 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15389 15390 switch (phba->pci_dev_grp) { 15391 case LPFC_PCI_DEV_LP: 15392 lpfc_pci_remove_one_s3(pdev); 15393 break; 15394 case LPFC_PCI_DEV_OC: 15395 lpfc_pci_remove_one_s4(pdev); 15396 break; 15397 default: 15398 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15399 "1424 Invalid PCI device group: 0x%x\n", 15400 phba->pci_dev_grp); 15401 break; 15402 } 15403 return; 15404 } 15405 15406 /** 15407 * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management 15408 * @dev: pointer to device 15409 * 15410 * This routine is to be registered to the kernel's PCI subsystem to support 15411 * system Power Management (PM). When PM invokes this method, it dispatches 15412 * the action to the proper SLI-3 or SLI-4 device suspend routine, which will 15413 * suspend the device. 15414 * 15415 * Return code 15416 * 0 - driver suspended the device 15417 * Error otherwise 15418 **/ 15419 static int __maybe_unused 15420 lpfc_pci_suspend_one(struct device *dev) 15421 { 15422 struct Scsi_Host *shost = dev_get_drvdata(dev); 15423 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15424 int rc = -ENODEV; 15425 15426 switch (phba->pci_dev_grp) { 15427 case LPFC_PCI_DEV_LP: 15428 rc = lpfc_pci_suspend_one_s3(dev); 15429 break; 15430 case LPFC_PCI_DEV_OC: 15431 rc = lpfc_pci_suspend_one_s4(dev); 15432 break; 15433 default: 15434 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15435 "1425 Invalid PCI device group: 0x%x\n", 15436 phba->pci_dev_grp); 15437 break; 15438 } 15439 return rc; 15440 } 15441 15442 /** 15443 * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management 15444 * @dev: pointer to device 15445 * 15446 * This routine is to be registered to the kernel's PCI subsystem to support 15447 * system Power Management (PM). When PM invokes this method, it dispatches 15448 * the action to the proper SLI-3 or SLI-4 device resume routine, which will 15449 * resume the device. 15450 * 15451 * Return code 15452 * 0 - driver suspended the device 15453 * Error otherwise 15454 **/ 15455 static int __maybe_unused 15456 lpfc_pci_resume_one(struct device *dev) 15457 { 15458 struct Scsi_Host *shost = dev_get_drvdata(dev); 15459 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15460 int rc = -ENODEV; 15461 15462 switch (phba->pci_dev_grp) { 15463 case LPFC_PCI_DEV_LP: 15464 rc = lpfc_pci_resume_one_s3(dev); 15465 break; 15466 case LPFC_PCI_DEV_OC: 15467 rc = lpfc_pci_resume_one_s4(dev); 15468 break; 15469 default: 15470 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15471 "1426 Invalid PCI device group: 0x%x\n", 15472 phba->pci_dev_grp); 15473 break; 15474 } 15475 return rc; 15476 } 15477 15478 /** 15479 * lpfc_io_error_detected - lpfc method for handling PCI I/O error 15480 * @pdev: pointer to PCI device. 15481 * @state: the current PCI connection state. 15482 * 15483 * This routine is registered to the PCI subsystem for error handling. This 15484 * function is called by the PCI subsystem after a PCI bus error affecting 15485 * this device has been detected. When this routine is invoked, it dispatches 15486 * the action to the proper SLI-3 or SLI-4 device error detected handling 15487 * routine, which will perform the proper error detected operation. 15488 * 15489 * Return codes 15490 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 15491 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15492 **/ 15493 static pci_ers_result_t 15494 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 15495 { 15496 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15497 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15498 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 15499 15500 if (phba->link_state == LPFC_HBA_ERROR && 15501 test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) 15502 return PCI_ERS_RESULT_NEED_RESET; 15503 15504 switch (phba->pci_dev_grp) { 15505 case LPFC_PCI_DEV_LP: 15506 rc = lpfc_io_error_detected_s3(pdev, state); 15507 break; 15508 case LPFC_PCI_DEV_OC: 15509 rc = lpfc_io_error_detected_s4(pdev, state); 15510 break; 15511 default: 15512 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15513 "1427 Invalid PCI device group: 0x%x\n", 15514 phba->pci_dev_grp); 15515 break; 15516 } 15517 return rc; 15518 } 15519 15520 /** 15521 * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch 15522 * @pdev: pointer to PCI device. 15523 * 15524 * This routine is registered to the PCI subsystem for error handling. This 15525 * function is called after PCI bus has been reset to restart the PCI card 15526 * from scratch, as if from a cold-boot. When this routine is invoked, it 15527 * dispatches the action to the proper SLI-3 or SLI-4 device reset handling 15528 * routine, which will perform the proper device reset. 15529 * 15530 * Return codes 15531 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 15532 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15533 **/ 15534 static pci_ers_result_t 15535 lpfc_io_slot_reset(struct pci_dev *pdev) 15536 { 15537 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15538 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15539 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 15540 15541 switch (phba->pci_dev_grp) { 15542 case LPFC_PCI_DEV_LP: 15543 rc = lpfc_io_slot_reset_s3(pdev); 15544 break; 15545 case LPFC_PCI_DEV_OC: 15546 rc = lpfc_io_slot_reset_s4(pdev); 15547 break; 15548 default: 15549 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15550 "1428 Invalid PCI device group: 0x%x\n", 15551 phba->pci_dev_grp); 15552 break; 15553 } 15554 return rc; 15555 } 15556 15557 /** 15558 * lpfc_io_resume - lpfc method for resuming PCI I/O operation 15559 * @pdev: pointer to PCI device 15560 * 15561 * This routine is registered to the PCI subsystem for error handling. It 15562 * is called when kernel error recovery tells the lpfc driver that it is 15563 * OK to resume normal PCI operation after PCI bus error recovery. When 15564 * this routine is invoked, it dispatches the action to the proper SLI-3 15565 * or SLI-4 device io_resume routine, which will resume the device operation. 15566 **/ 15567 static void 15568 lpfc_io_resume(struct pci_dev *pdev) 15569 { 15570 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15571 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15572 15573 switch (phba->pci_dev_grp) { 15574 case LPFC_PCI_DEV_LP: 15575 lpfc_io_resume_s3(pdev); 15576 break; 15577 case LPFC_PCI_DEV_OC: 15578 lpfc_io_resume_s4(pdev); 15579 break; 15580 default: 15581 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15582 "1429 Invalid PCI device group: 0x%x\n", 15583 phba->pci_dev_grp); 15584 break; 15585 } 15586 return; 15587 } 15588 15589 /** 15590 * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter 15591 * @phba: pointer to lpfc hba data structure. 15592 * 15593 * This routine checks to see if OAS is supported for this adapter. If 15594 * supported, the configure Flash Optimized Fabric flag is set. Otherwise, 15595 * the enable oas flag is cleared and the pool created for OAS device data 15596 * is destroyed. 15597 * 15598 **/ 15599 static void 15600 lpfc_sli4_oas_verify(struct lpfc_hba *phba) 15601 { 15602 15603 if (!phba->cfg_EnableXLane) 15604 return; 15605 15606 if (phba->sli4_hba.pc_sli4_params.oas_supported) { 15607 phba->cfg_fof = 1; 15608 } else { 15609 phba->cfg_fof = 0; 15610 mempool_destroy(phba->device_data_mem_pool); 15611 phba->device_data_mem_pool = NULL; 15612 } 15613 15614 return; 15615 } 15616 15617 /** 15618 * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter 15619 * @phba: pointer to lpfc hba data structure. 15620 * 15621 * This routine checks to see if RAS is supported by the adapter. Check the 15622 * function through which RAS support enablement is to be done. 15623 **/ 15624 void 15625 lpfc_sli4_ras_init(struct lpfc_hba *phba) 15626 { 15627 /* if ASIC_GEN_NUM >= 0xC) */ 15628 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 15629 LPFC_SLI_INTF_IF_TYPE_6) || 15630 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 15631 LPFC_SLI_INTF_FAMILY_G6)) { 15632 phba->ras_fwlog.ras_hwsupport = true; 15633 if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) && 15634 phba->cfg_ras_fwlog_buffsize) 15635 phba->ras_fwlog.ras_enabled = true; 15636 else 15637 phba->ras_fwlog.ras_enabled = false; 15638 } else { 15639 phba->ras_fwlog.ras_hwsupport = false; 15640 } 15641 } 15642 15643 15644 MODULE_DEVICE_TABLE(pci, lpfc_id_table); 15645 15646 static const struct pci_error_handlers lpfc_err_handler = { 15647 .error_detected = lpfc_io_error_detected, 15648 .slot_reset = lpfc_io_slot_reset, 15649 .resume = lpfc_io_resume, 15650 }; 15651 15652 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one, 15653 lpfc_pci_suspend_one, 15654 lpfc_pci_resume_one); 15655 15656 static struct pci_driver lpfc_driver = { 15657 .name = LPFC_DRIVER_NAME, 15658 .id_table = lpfc_id_table, 15659 .probe = lpfc_pci_probe_one, 15660 .remove = lpfc_pci_remove_one, 15661 .shutdown = lpfc_pci_remove_one, 15662 .driver.pm = &lpfc_pci_pm_ops_one, 15663 .err_handler = &lpfc_err_handler, 15664 }; 15665 15666 static const struct file_operations lpfc_mgmt_fop = { 15667 .owner = THIS_MODULE, 15668 }; 15669 15670 static struct miscdevice lpfc_mgmt_dev = { 15671 .minor = MISC_DYNAMIC_MINOR, 15672 .name = "lpfcmgmt", 15673 .fops = &lpfc_mgmt_fop, 15674 }; 15675 15676 /** 15677 * lpfc_init - lpfc module initialization routine 15678 * 15679 * This routine is to be invoked when the lpfc module is loaded into the 15680 * kernel. The special kernel macro module_init() is used to indicate the 15681 * role of this routine to the kernel as lpfc module entry point. 15682 * 15683 * Return codes 15684 * 0 - successful 15685 * -ENOMEM - FC attach transport failed 15686 * all others - failed 15687 */ 15688 static int __init 15689 lpfc_init(void) 15690 { 15691 int error = 0; 15692 15693 pr_info(LPFC_MODULE_DESC "\n"); 15694 pr_info(LPFC_COPYRIGHT "\n"); 15695 15696 error = misc_register(&lpfc_mgmt_dev); 15697 if (error) 15698 printk(KERN_ERR "Could not register lpfcmgmt device, " 15699 "misc_register returned with status %d", error); 15700 15701 error = -ENOMEM; 15702 lpfc_transport_functions.vport_create = lpfc_vport_create; 15703 lpfc_transport_functions.vport_delete = lpfc_vport_delete; 15704 lpfc_transport_template = 15705 fc_attach_transport(&lpfc_transport_functions); 15706 if (lpfc_transport_template == NULL) 15707 goto unregister; 15708 lpfc_vport_transport_template = 15709 fc_attach_transport(&lpfc_vport_transport_functions); 15710 if (lpfc_vport_transport_template == NULL) { 15711 fc_release_transport(lpfc_transport_template); 15712 goto unregister; 15713 } 15714 lpfc_wqe_cmd_template(); 15715 lpfc_nvmet_cmd_template(); 15716 15717 /* Initialize in case vector mapping is needed */ 15718 lpfc_present_cpu = num_present_cpus(); 15719 15720 lpfc_pldv_detect = false; 15721 15722 error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 15723 "lpfc/sli4:online", 15724 lpfc_cpu_online, lpfc_cpu_offline); 15725 if (error < 0) 15726 goto cpuhp_failure; 15727 lpfc_cpuhp_state = error; 15728 15729 error = pci_register_driver(&lpfc_driver); 15730 if (error) 15731 goto unwind; 15732 15733 return error; 15734 15735 unwind: 15736 cpuhp_remove_multi_state(lpfc_cpuhp_state); 15737 cpuhp_failure: 15738 fc_release_transport(lpfc_transport_template); 15739 fc_release_transport(lpfc_vport_transport_template); 15740 unregister: 15741 misc_deregister(&lpfc_mgmt_dev); 15742 15743 return error; 15744 } 15745 15746 void lpfc_dmp_dbg(struct lpfc_hba *phba) 15747 { 15748 unsigned int start_idx; 15749 unsigned int dbg_cnt; 15750 unsigned int temp_idx; 15751 int i; 15752 int j = 0; 15753 unsigned long rem_nsec; 15754 15755 if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0) 15756 return; 15757 15758 start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ; 15759 dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt); 15760 if (!dbg_cnt) 15761 goto out; 15762 temp_idx = start_idx; 15763 if (dbg_cnt >= DBG_LOG_SZ) { 15764 dbg_cnt = DBG_LOG_SZ; 15765 temp_idx -= 1; 15766 } else { 15767 if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) { 15768 temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ; 15769 } else { 15770 if (start_idx < dbg_cnt) 15771 start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx); 15772 else 15773 start_idx -= dbg_cnt; 15774 } 15775 } 15776 dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n", 15777 start_idx, temp_idx, dbg_cnt); 15778 15779 for (i = 0; i < dbg_cnt; i++) { 15780 if ((start_idx + i) < DBG_LOG_SZ) 15781 temp_idx = (start_idx + i) % DBG_LOG_SZ; 15782 else 15783 temp_idx = j++; 15784 rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC); 15785 dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s", 15786 temp_idx, 15787 (unsigned long)phba->dbg_log[temp_idx].t_ns, 15788 rem_nsec / 1000, 15789 phba->dbg_log[temp_idx].log); 15790 } 15791 out: 15792 atomic_set(&phba->dbg_log_cnt, 0); 15793 atomic_set(&phba->dbg_log_dmping, 0); 15794 } 15795 15796 __printf(2, 3) 15797 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...) 15798 { 15799 unsigned int idx; 15800 va_list args; 15801 int dbg_dmping = atomic_read(&phba->dbg_log_dmping); 15802 struct va_format vaf; 15803 15804 15805 va_start(args, fmt); 15806 if (unlikely(dbg_dmping)) { 15807 vaf.fmt = fmt; 15808 vaf.va = &args; 15809 dev_info(&phba->pcidev->dev, "%pV", &vaf); 15810 va_end(args); 15811 return; 15812 } 15813 idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) % 15814 DBG_LOG_SZ; 15815 15816 atomic_inc(&phba->dbg_log_cnt); 15817 15818 vscnprintf(phba->dbg_log[idx].log, 15819 sizeof(phba->dbg_log[idx].log), fmt, args); 15820 va_end(args); 15821 15822 phba->dbg_log[idx].t_ns = local_clock(); 15823 } 15824 15825 /** 15826 * lpfc_exit - lpfc module removal routine 15827 * 15828 * This routine is invoked when the lpfc module is removed from the kernel. 15829 * The special kernel macro module_exit() is used to indicate the role of 15830 * this routine to the kernel as lpfc module exit point. 15831 */ 15832 static void __exit 15833 lpfc_exit(void) 15834 { 15835 misc_deregister(&lpfc_mgmt_dev); 15836 pci_unregister_driver(&lpfc_driver); 15837 cpuhp_remove_multi_state(lpfc_cpuhp_state); 15838 fc_release_transport(lpfc_transport_template); 15839 fc_release_transport(lpfc_vport_transport_template); 15840 idr_destroy(&lpfc_hba_index); 15841 } 15842 15843 module_init(lpfc_init); 15844 module_exit(lpfc_exit); 15845 MODULE_LICENSE("GPL"); 15846 MODULE_DESCRIPTION(LPFC_MODULE_DESC); 15847 MODULE_AUTHOR("Broadcom"); 15848 MODULE_VERSION("0:" LPFC_DRIVER_VERSION); 15849