1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channel Host Bus Adapters. *
4 * Copyright (C) 2017-2025 Broadcom. All Rights Reserved. The term *
5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. *
6 * Copyright (C) 2004-2016 Emulex. All rights reserved. *
7 * EMULEX and SLI are trademarks of Emulex. *
8 * www.broadcom.com *
9 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
10 * *
11 * This program is free software; you can redistribute it and/or *
12 * modify it under the terms of version 2 of the GNU General *
13 * Public License as published by the Free Software Foundation. *
14 * This program is distributed in the hope that it will be useful. *
15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19 * TO BE LEGALLY INVALID. See the GNU General Public License for *
20 * more details, a copy of which can be found in the file COPYING *
21 * included with this package. *
22 *******************************************************************/
23
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30 #include <linux/dmi.h>
31 #include <linux/of.h>
32
33 #include <scsi/scsi.h>
34 #include <scsi/scsi_cmnd.h>
35 #include <scsi/scsi_device.h>
36 #include <scsi/scsi_host.h>
37 #include <scsi/scsi_transport_fc.h>
38 #include <scsi/fc/fc_fs.h>
39 #include <linux/crash_dump.h>
40 #ifdef CONFIG_X86
41 #include <asm/set_memory.h>
42 #endif
43
44 #include "lpfc_hw4.h"
45 #include "lpfc_hw.h"
46 #include "lpfc_sli.h"
47 #include "lpfc_sli4.h"
48 #include "lpfc_nl.h"
49 #include "lpfc_disc.h"
50 #include "lpfc.h"
51 #include "lpfc_scsi.h"
52 #include "lpfc_nvme.h"
53 #include "lpfc_crtn.h"
54 #include "lpfc_logmsg.h"
55 #include "lpfc_compat.h"
56 #include "lpfc_debugfs.h"
57 #include "lpfc_vport.h"
58 #include "lpfc_version.h"
59
60 /* There are only four IOCB completion types. */
61 typedef enum _lpfc_iocb_type {
62 LPFC_UNKNOWN_IOCB,
63 LPFC_UNSOL_IOCB,
64 LPFC_SOL_IOCB,
65 LPFC_ABORT_IOCB
66 } lpfc_iocb_type;
67
68
69 /* Provide function prototypes local to this module. */
70 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
71 uint32_t);
72 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
73 uint8_t *, uint32_t *);
74 static struct lpfc_iocbq *
75 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba,
76 struct lpfc_iocbq *rspiocbq);
77 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
78 struct hbq_dmabuf *);
79 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
80 struct hbq_dmabuf *dmabuf);
81 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
82 struct lpfc_queue *cq, struct lpfc_cqe *cqe);
83 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
84 int);
85 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
86 struct lpfc_queue *eq,
87 struct lpfc_eqe *eqe,
88 enum lpfc_poll_mode poll_mode);
89 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
90 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
91 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q);
92 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba,
93 struct lpfc_queue *cq,
94 struct lpfc_cqe *cqe);
95 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba,
96 struct lpfc_iocbq *pwqeq,
97 struct lpfc_sglq *sglq);
98
99 union lpfc_wqe128 lpfc_iread_cmd_template;
100 union lpfc_wqe128 lpfc_iwrite_cmd_template;
101 union lpfc_wqe128 lpfc_icmnd_cmd_template;
102
103 /* Setup WQE templates for IOs */
lpfc_wqe_cmd_template(void)104 void lpfc_wqe_cmd_template(void)
105 {
106 union lpfc_wqe128 *wqe;
107
108 /* IREAD template */
109 wqe = &lpfc_iread_cmd_template;
110 memset(wqe, 0, sizeof(union lpfc_wqe128));
111
112 /* Word 0, 1, 2 - BDE is variable */
113
114 /* Word 3 - cmd_buff_len, payload_offset_len is zero */
115
116 /* Word 4 - total_xfer_len is variable */
117
118 /* Word 5 - is zero */
119
120 /* Word 6 - ctxt_tag, xri_tag is variable */
121
122 /* Word 7 */
123 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE);
124 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK);
125 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3);
126 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI);
127
128 /* Word 8 - abort_tag is variable */
129
130 /* Word 9 - reqtag is variable */
131
132 /* Word 10 - dbde, wqes is variable */
133 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0);
134 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
135 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4);
136 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
137 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
138
139 /* Word 11 - pbde is variable */
140 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN);
141 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
142 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
143
144 /* Word 12 - is zero */
145
146 /* Word 13, 14, 15 - PBDE is variable */
147
148 /* IWRITE template */
149 wqe = &lpfc_iwrite_cmd_template;
150 memset(wqe, 0, sizeof(union lpfc_wqe128));
151
152 /* Word 0, 1, 2 - BDE is variable */
153
154 /* Word 3 - cmd_buff_len, payload_offset_len is zero */
155
156 /* Word 4 - total_xfer_len is variable */
157
158 /* Word 5 - initial_xfer_len is variable */
159
160 /* Word 6 - ctxt_tag, xri_tag is variable */
161
162 /* Word 7 */
163 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE);
164 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK);
165 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3);
166 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI);
167
168 /* Word 8 - abort_tag is variable */
169
170 /* Word 9 - reqtag is variable */
171
172 /* Word 10 - dbde, wqes is variable */
173 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0);
174 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
175 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4);
176 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
177 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
178
179 /* Word 11 - pbde is variable */
180 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT);
181 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
182 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
183
184 /* Word 12 - is zero */
185
186 /* Word 13, 14, 15 - PBDE is variable */
187
188 /* ICMND template */
189 wqe = &lpfc_icmnd_cmd_template;
190 memset(wqe, 0, sizeof(union lpfc_wqe128));
191
192 /* Word 0, 1, 2 - BDE is variable */
193
194 /* Word 3 - payload_offset_len is variable */
195
196 /* Word 4, 5 - is zero */
197
198 /* Word 6 - ctxt_tag, xri_tag is variable */
199
200 /* Word 7 */
201 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE);
202 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
203 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3);
204 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI);
205
206 /* Word 8 - abort_tag is variable */
207
208 /* Word 9 - reqtag is variable */
209
210 /* Word 10 - dbde, wqes is variable */
211 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
212 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE);
213 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE);
214 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
215 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
216
217 /* Word 11 */
218 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN);
219 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
220 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0);
221
222 /* Word 12, 13, 14, 15 - is zero */
223 }
224
225 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
226 /**
227 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
228 * @srcp: Source memory pointer.
229 * @destp: Destination memory pointer.
230 * @cnt: Number of words required to be copied.
231 * Must be a multiple of sizeof(uint64_t)
232 *
233 * This function is used for copying data between driver memory
234 * and the SLI WQ. This function also changes the endianness
235 * of each word if native endianness is different from SLI
236 * endianness. This function can be called with or without
237 * lock.
238 **/
239 static void
lpfc_sli4_pcimem_bcopy(void * srcp,void * destp,uint32_t cnt)240 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
241 {
242 uint64_t *src = srcp;
243 uint64_t *dest = destp;
244 int i;
245
246 for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
247 *dest++ = *src++;
248 }
249 #else
250 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
251 #endif
252
253 /**
254 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
255 * @q: The Work Queue to operate on.
256 * @wqe: The work Queue Entry to put on the Work queue.
257 *
258 * This routine will copy the contents of @wqe to the next available entry on
259 * the @q. This function will then ring the Work Queue Doorbell to signal the
260 * HBA to start processing the Work Queue Entry. This function returns 0 if
261 * successful. If no entries are available on @q then this function will return
262 * -ENOMEM.
263 * The caller is expected to hold the hbalock when calling this routine.
264 **/
265 static int
lpfc_sli4_wq_put(struct lpfc_queue * q,union lpfc_wqe128 * wqe)266 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
267 {
268 union lpfc_wqe *temp_wqe;
269 struct lpfc_register doorbell;
270 uint32_t host_index;
271 uint32_t idx;
272 uint32_t i = 0;
273 uint8_t *tmp;
274 u32 if_type;
275
276 /* sanity check on queue memory */
277 if (unlikely(!q))
278 return -ENOMEM;
279
280 temp_wqe = lpfc_sli4_qe(q, q->host_index);
281
282 /* If the host has not yet processed the next entry then we are done */
283 idx = ((q->host_index + 1) % q->entry_count);
284 if (idx == q->hba_index) {
285 q->WQ_overflow++;
286 return -EBUSY;
287 }
288 q->WQ_posted++;
289 /* set consumption flag every once in a while */
290 if (!((q->host_index + 1) % q->notify_interval))
291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
292 else
293 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
294 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
295 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
296 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
297 if (q->dpp_enable && q->phba->cfg_enable_dpp) {
298 /* write to DPP aperture taking advatage of Combined Writes */
299 tmp = (uint8_t *)temp_wqe;
300 #ifdef __raw_writeq
301 for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
302 __raw_writeq(*((uint64_t *)(tmp + i)),
303 q->dpp_regaddr + i);
304 #else
305 for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
306 __raw_writel(*((uint32_t *)(tmp + i)),
307 q->dpp_regaddr + i);
308 #endif
309 }
310 /* ensure WQE bcopy and DPP flushed before doorbell write */
311 wmb();
312
313 /* Update the host index before invoking device */
314 host_index = q->host_index;
315
316 q->host_index = idx;
317
318 /* Ring Doorbell */
319 doorbell.word0 = 0;
320 if (q->db_format == LPFC_DB_LIST_FORMAT) {
321 if (q->dpp_enable && q->phba->cfg_enable_dpp) {
322 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
323 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
324 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
325 q->dpp_id);
326 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
327 q->queue_id);
328 } else {
329 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
330 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
331
332 /* Leave bits <23:16> clear for if_type 6 dpp */
333 if_type = bf_get(lpfc_sli_intf_if_type,
334 &q->phba->sli4_hba.sli_intf);
335 if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
336 bf_set(lpfc_wq_db_list_fm_index, &doorbell,
337 host_index);
338 }
339 } else if (q->db_format == LPFC_DB_RING_FORMAT) {
340 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
341 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
342 } else {
343 return -EINVAL;
344 }
345 writel(doorbell.word0, q->db_regaddr);
346
347 return 0;
348 }
349
350 /**
351 * lpfc_sli4_wq_release - Updates internal hba index for WQ
352 * @q: The Work Queue to operate on.
353 * @index: The index to advance the hba index to.
354 *
355 * This routine will update the HBA index of a queue to reflect consumption of
356 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
357 * an entry the host calls this function to update the queue's internal
358 * pointers.
359 **/
360 static void
lpfc_sli4_wq_release(struct lpfc_queue * q,uint32_t index)361 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
362 {
363 /* sanity check on queue memory */
364 if (unlikely(!q))
365 return;
366
367 q->hba_index = index;
368 }
369
370 /**
371 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
372 * @q: The Mailbox Queue to operate on.
373 * @mqe: The Mailbox Queue Entry to put on the Work queue.
374 *
375 * This routine will copy the contents of @mqe to the next available entry on
376 * the @q. This function will then ring the Work Queue Doorbell to signal the
377 * HBA to start processing the Work Queue Entry. This function returns 0 if
378 * successful. If no entries are available on @q then this function will return
379 * -ENOMEM.
380 * The caller is expected to hold the hbalock when calling this routine.
381 **/
382 static uint32_t
lpfc_sli4_mq_put(struct lpfc_queue * q,struct lpfc_mqe * mqe)383 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
384 {
385 struct lpfc_mqe *temp_mqe;
386 struct lpfc_register doorbell;
387
388 /* sanity check on queue memory */
389 if (unlikely(!q))
390 return -ENOMEM;
391 temp_mqe = lpfc_sli4_qe(q, q->host_index);
392
393 /* If the host has not yet processed the next entry then we are done */
394 if (((q->host_index + 1) % q->entry_count) == q->hba_index)
395 return -ENOMEM;
396 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
397 /* Save off the mailbox pointer for completion */
398 q->phba->mbox = (MAILBOX_t *)temp_mqe;
399
400 /* Update the host index before invoking device */
401 q->host_index = ((q->host_index + 1) % q->entry_count);
402
403 /* Ring Doorbell */
404 doorbell.word0 = 0;
405 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
406 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
407 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
408 return 0;
409 }
410
411 /**
412 * lpfc_sli4_mq_release - Updates internal hba index for MQ
413 * @q: The Mailbox Queue to operate on.
414 *
415 * This routine will update the HBA index of a queue to reflect consumption of
416 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
417 * an entry the host calls this function to update the queue's internal
418 * pointers. This routine returns the number of entries that were consumed by
419 * the HBA.
420 **/
421 static uint32_t
lpfc_sli4_mq_release(struct lpfc_queue * q)422 lpfc_sli4_mq_release(struct lpfc_queue *q)
423 {
424 /* sanity check on queue memory */
425 if (unlikely(!q))
426 return 0;
427
428 /* Clear the mailbox pointer for completion */
429 q->phba->mbox = NULL;
430 q->hba_index = ((q->hba_index + 1) % q->entry_count);
431 return 1;
432 }
433
434 /**
435 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
436 * @q: The Event Queue to get the first valid EQE from
437 *
438 * This routine will get the first valid Event Queue Entry from @q, update
439 * the queue's internal hba index, and return the EQE. If no valid EQEs are in
440 * the Queue (no more work to do), or the Queue is full of EQEs that have been
441 * processed, but not popped back to the HBA then this routine will return NULL.
442 **/
443 static struct lpfc_eqe *
lpfc_sli4_eq_get(struct lpfc_queue * q)444 lpfc_sli4_eq_get(struct lpfc_queue *q)
445 {
446 struct lpfc_eqe *eqe;
447
448 /* sanity check on queue memory */
449 if (unlikely(!q))
450 return NULL;
451 eqe = lpfc_sli4_qe(q, q->host_index);
452
453 /* If the next EQE is not valid then we are done */
454 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
455 return NULL;
456
457 /*
458 * insert barrier for instruction interlock : data from the hardware
459 * must have the valid bit checked before it can be copied and acted
460 * upon. Speculative instructions were allowing a bcopy at the start
461 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
462 * after our return, to copy data before the valid bit check above
463 * was done. As such, some of the copied data was stale. The barrier
464 * ensures the check is before any data is copied.
465 */
466 mb();
467 return eqe;
468 }
469
470 /**
471 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
472 * @q: The Event Queue to disable interrupts
473 *
474 **/
475 void
lpfc_sli4_eq_clr_intr(struct lpfc_queue * q)476 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
477 {
478 struct lpfc_register doorbell;
479
480 doorbell.word0 = 0;
481 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
482 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
483 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
484 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
485 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
486 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
487 }
488
489 /**
490 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
491 * @q: The Event Queue to disable interrupts
492 *
493 **/
494 void
lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue * q)495 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
496 {
497 struct lpfc_register doorbell;
498
499 doorbell.word0 = 0;
500 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
501 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
502 }
503
504 /**
505 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
506 * @phba: adapter with EQ
507 * @q: The Event Queue that the host has completed processing for.
508 * @count: Number of elements that have been consumed
509 * @arm: Indicates whether the host wants to arms this CQ.
510 *
511 * This routine will notify the HBA, by ringing the doorbell, that count
512 * number of EQEs have been processed. The @arm parameter indicates whether
513 * the queue should be rearmed when ringing the doorbell.
514 **/
515 void
lpfc_sli4_write_eq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)516 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
517 uint32_t count, bool arm)
518 {
519 struct lpfc_register doorbell;
520
521 /* sanity check on queue memory */
522 if (unlikely(!q || (count == 0 && !arm)))
523 return;
524
525 /* ring doorbell for number popped */
526 doorbell.word0 = 0;
527 if (arm) {
528 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
529 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
530 }
531 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
532 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
533 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
534 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
535 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
536 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
537 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
538 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
539 readl(q->phba->sli4_hba.EQDBregaddr);
540 }
541
542 /**
543 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
544 * @phba: adapter with EQ
545 * @q: The Event Queue that the host has completed processing for.
546 * @count: Number of elements that have been consumed
547 * @arm: Indicates whether the host wants to arms this CQ.
548 *
549 * This routine will notify the HBA, by ringing the doorbell, that count
550 * number of EQEs have been processed. The @arm parameter indicates whether
551 * the queue should be rearmed when ringing the doorbell.
552 **/
553 void
lpfc_sli4_if6_write_eq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)554 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
555 uint32_t count, bool arm)
556 {
557 struct lpfc_register doorbell;
558
559 /* sanity check on queue memory */
560 if (unlikely(!q || (count == 0 && !arm)))
561 return;
562
563 /* ring doorbell for number popped */
564 doorbell.word0 = 0;
565 if (arm)
566 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
567 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
568 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
569 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
570 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
571 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
572 readl(q->phba->sli4_hba.EQDBregaddr);
573 }
574
575 static void
__lpfc_sli4_consume_eqe(struct lpfc_hba * phba,struct lpfc_queue * eq,struct lpfc_eqe * eqe)576 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
577 struct lpfc_eqe *eqe)
578 {
579 if (!phba->sli4_hba.pc_sli4_params.eqav)
580 bf_set_le32(lpfc_eqe_valid, eqe, 0);
581
582 eq->host_index = ((eq->host_index + 1) % eq->entry_count);
583
584 /* if the index wrapped around, toggle the valid bit */
585 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
586 eq->qe_valid = (eq->qe_valid) ? 0 : 1;
587 }
588
589 static void
lpfc_sli4_eqcq_flush(struct lpfc_hba * phba,struct lpfc_queue * eq)590 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
591 {
592 struct lpfc_eqe *eqe = NULL;
593 u32 eq_count = 0, cq_count = 0;
594 struct lpfc_cqe *cqe = NULL;
595 struct lpfc_queue *cq = NULL, *childq = NULL;
596 int cqid = 0;
597
598 /* walk all the EQ entries and drop on the floor */
599 eqe = lpfc_sli4_eq_get(eq);
600 while (eqe) {
601 /* Get the reference to the corresponding CQ */
602 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
603 cq = NULL;
604
605 list_for_each_entry(childq, &eq->child_list, list) {
606 if (childq->queue_id == cqid) {
607 cq = childq;
608 break;
609 }
610 }
611 /* If CQ is valid, iterate through it and drop all the CQEs */
612 if (cq) {
613 cqe = lpfc_sli4_cq_get(cq);
614 while (cqe) {
615 __lpfc_sli4_consume_cqe(phba, cq, cqe);
616 cq_count++;
617 cqe = lpfc_sli4_cq_get(cq);
618 }
619 /* Clear and re-arm the CQ */
620 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count,
621 LPFC_QUEUE_REARM);
622 cq_count = 0;
623 }
624 __lpfc_sli4_consume_eqe(phba, eq, eqe);
625 eq_count++;
626 eqe = lpfc_sli4_eq_get(eq);
627 }
628
629 /* Clear and re-arm the EQ */
630 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM);
631 }
632
633 static int
lpfc_sli4_process_eq(struct lpfc_hba * phba,struct lpfc_queue * eq,u8 rearm,enum lpfc_poll_mode poll_mode)634 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq,
635 u8 rearm, enum lpfc_poll_mode poll_mode)
636 {
637 struct lpfc_eqe *eqe;
638 int count = 0, consumed = 0;
639
640 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
641 goto rearm_and_exit;
642
643 eqe = lpfc_sli4_eq_get(eq);
644 while (eqe) {
645 lpfc_sli4_hba_handle_eqe(phba, eq, eqe, poll_mode);
646 __lpfc_sli4_consume_eqe(phba, eq, eqe);
647
648 consumed++;
649 if (!(++count % eq->max_proc_limit))
650 break;
651
652 if (!(count % eq->notify_interval)) {
653 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
654 LPFC_QUEUE_NOARM);
655 consumed = 0;
656 }
657
658 eqe = lpfc_sli4_eq_get(eq);
659 }
660 eq->EQ_processed += count;
661
662 /* Track the max number of EQEs processed in 1 intr */
663 if (count > eq->EQ_max_eqe)
664 eq->EQ_max_eqe = count;
665
666 xchg(&eq->queue_claimed, 0);
667
668 rearm_and_exit:
669 /* Always clear the EQ. */
670 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm);
671
672 return count;
673 }
674
675 /**
676 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
677 * @q: The Completion Queue to get the first valid CQE from
678 *
679 * This routine will get the first valid Completion Queue Entry from @q, update
680 * the queue's internal hba index, and return the CQE. If no valid CQEs are in
681 * the Queue (no more work to do), or the Queue is full of CQEs that have been
682 * processed, but not popped back to the HBA then this routine will return NULL.
683 **/
684 static struct lpfc_cqe *
lpfc_sli4_cq_get(struct lpfc_queue * q)685 lpfc_sli4_cq_get(struct lpfc_queue *q)
686 {
687 struct lpfc_cqe *cqe;
688
689 /* sanity check on queue memory */
690 if (unlikely(!q))
691 return NULL;
692 cqe = lpfc_sli4_qe(q, q->host_index);
693
694 /* If the next CQE is not valid then we are done */
695 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
696 return NULL;
697
698 /*
699 * insert barrier for instruction interlock : data from the hardware
700 * must have the valid bit checked before it can be copied and acted
701 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
702 * instructions allowing action on content before valid bit checked,
703 * add barrier here as well. May not be needed as "content" is a
704 * single 32-bit entity here (vs multi word structure for cq's).
705 */
706 mb();
707 return cqe;
708 }
709
710 static void
__lpfc_sli4_consume_cqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)711 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
712 struct lpfc_cqe *cqe)
713 {
714 if (!phba->sli4_hba.pc_sli4_params.cqav)
715 bf_set_le32(lpfc_cqe_valid, cqe, 0);
716
717 cq->host_index = ((cq->host_index + 1) % cq->entry_count);
718
719 /* if the index wrapped around, toggle the valid bit */
720 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
721 cq->qe_valid = (cq->qe_valid) ? 0 : 1;
722 }
723
724 /**
725 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
726 * @phba: the adapter with the CQ
727 * @q: The Completion Queue that the host has completed processing for.
728 * @count: the number of elements that were consumed
729 * @arm: Indicates whether the host wants to arms this CQ.
730 *
731 * This routine will notify the HBA, by ringing the doorbell, that the
732 * CQEs have been processed. The @arm parameter specifies whether the
733 * queue should be rearmed when ringing the doorbell.
734 **/
735 void
lpfc_sli4_write_cq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)736 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
737 uint32_t count, bool arm)
738 {
739 struct lpfc_register doorbell;
740
741 /* sanity check on queue memory */
742 if (unlikely(!q || (count == 0 && !arm)))
743 return;
744
745 /* ring doorbell for number popped */
746 doorbell.word0 = 0;
747 if (arm)
748 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
749 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
750 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
751 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
752 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
753 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
754 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
755 }
756
757 /**
758 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
759 * @phba: the adapter with the CQ
760 * @q: The Completion Queue that the host has completed processing for.
761 * @count: the number of elements that were consumed
762 * @arm: Indicates whether the host wants to arms this CQ.
763 *
764 * This routine will notify the HBA, by ringing the doorbell, that the
765 * CQEs have been processed. The @arm parameter specifies whether the
766 * queue should be rearmed when ringing the doorbell.
767 **/
768 void
lpfc_sli4_if6_write_cq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)769 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
770 uint32_t count, bool arm)
771 {
772 struct lpfc_register doorbell;
773
774 /* sanity check on queue memory */
775 if (unlikely(!q || (count == 0 && !arm)))
776 return;
777
778 /* ring doorbell for number popped */
779 doorbell.word0 = 0;
780 if (arm)
781 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
782 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
783 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
784 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
785 }
786
787 /*
788 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
789 *
790 * This routine will copy the contents of @wqe to the next available entry on
791 * the @q. This function will then ring the Receive Queue Doorbell to signal the
792 * HBA to start processing the Receive Queue Entry. This function returns the
793 * index that the rqe was copied to if successful. If no entries are available
794 * on @q then this function will return -ENOMEM.
795 * The caller is expected to hold the hbalock when calling this routine.
796 **/
797 int
lpfc_sli4_rq_put(struct lpfc_queue * hq,struct lpfc_queue * dq,struct lpfc_rqe * hrqe,struct lpfc_rqe * drqe)798 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
799 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
800 {
801 struct lpfc_rqe *temp_hrqe;
802 struct lpfc_rqe *temp_drqe;
803 struct lpfc_register doorbell;
804 int hq_put_index;
805 int dq_put_index;
806
807 /* sanity check on queue memory */
808 if (unlikely(!hq) || unlikely(!dq))
809 return -ENOMEM;
810 hq_put_index = hq->host_index;
811 dq_put_index = dq->host_index;
812 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
813 temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
814
815 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
816 return -EINVAL;
817 if (hq_put_index != dq_put_index)
818 return -EINVAL;
819 /* If the host has not yet processed the next entry then we are done */
820 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
821 return -EBUSY;
822 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
823 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
824
825 /* Update the host index to point to the next slot */
826 hq->host_index = ((hq_put_index + 1) % hq->entry_count);
827 dq->host_index = ((dq_put_index + 1) % dq->entry_count);
828 hq->RQ_buf_posted++;
829
830 /* Ring The Header Receive Queue Doorbell */
831 if (!(hq->host_index % hq->notify_interval)) {
832 doorbell.word0 = 0;
833 if (hq->db_format == LPFC_DB_RING_FORMAT) {
834 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
835 hq->notify_interval);
836 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
837 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
838 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
839 hq->notify_interval);
840 bf_set(lpfc_rq_db_list_fm_index, &doorbell,
841 hq->host_index);
842 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
843 } else {
844 return -EINVAL;
845 }
846 writel(doorbell.word0, hq->db_regaddr);
847 }
848 return hq_put_index;
849 }
850
851 /*
852 * lpfc_sli4_rq_release - Updates internal hba index for RQ
853 *
854 * This routine will update the HBA index of a queue to reflect consumption of
855 * one Receive Queue Entry by the HBA. When the HBA indicates that it has
856 * consumed an entry the host calls this function to update the queue's
857 * internal pointers. This routine returns the number of entries that were
858 * consumed by the HBA.
859 **/
860 static uint32_t
lpfc_sli4_rq_release(struct lpfc_queue * hq,struct lpfc_queue * dq)861 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
862 {
863 /* sanity check on queue memory */
864 if (unlikely(!hq) || unlikely(!dq))
865 return 0;
866
867 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
868 return 0;
869 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
870 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
871 return 1;
872 }
873
874 /**
875 * lpfc_cmd_iocb - Get next command iocb entry in the ring
876 * @phba: Pointer to HBA context object.
877 * @pring: Pointer to driver SLI ring object.
878 *
879 * This function returns pointer to next command iocb entry
880 * in the command ring. The caller must hold hbalock to prevent
881 * other threads consume the next command iocb.
882 * SLI-2/SLI-3 provide different sized iocbs.
883 **/
884 static inline IOCB_t *
lpfc_cmd_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)885 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
886 {
887 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
888 pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
889 }
890
891 /**
892 * lpfc_resp_iocb - Get next response iocb entry in the ring
893 * @phba: Pointer to HBA context object.
894 * @pring: Pointer to driver SLI ring object.
895 *
896 * This function returns pointer to next response iocb entry
897 * in the response ring. The caller must hold hbalock to make sure
898 * that no other thread consume the next response iocb.
899 * SLI-2/SLI-3 provide different sized iocbs.
900 **/
901 static inline IOCB_t *
lpfc_resp_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)902 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
903 {
904 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
905 pring->sli.sli3.rspidx * phba->iocb_rsp_size);
906 }
907
908 /**
909 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
910 * @phba: Pointer to HBA context object.
911 *
912 * This function is called with hbalock held. This function
913 * allocates a new driver iocb object from the iocb pool. If the
914 * allocation is successful, it returns pointer to the newly
915 * allocated iocb object else it returns NULL.
916 **/
917 struct lpfc_iocbq *
__lpfc_sli_get_iocbq(struct lpfc_hba * phba)918 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
919 {
920 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
921 struct lpfc_iocbq * iocbq = NULL;
922
923 lockdep_assert_held(&phba->hbalock);
924
925 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
926 if (iocbq)
927 phba->iocb_cnt++;
928 if (phba->iocb_cnt > phba->iocb_max)
929 phba->iocb_max = phba->iocb_cnt;
930 return iocbq;
931 }
932
933 /**
934 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
935 * @phba: Pointer to HBA context object.
936 * @xritag: XRI value.
937 *
938 * This function clears the sglq pointer from the array of active
939 * sglq's. The xritag that is passed in is used to index into the
940 * array. Before the xritag can be used it needs to be adjusted
941 * by subtracting the xribase.
942 *
943 * Returns sglq ponter = success, NULL = Failure.
944 **/
945 struct lpfc_sglq *
__lpfc_clear_active_sglq(struct lpfc_hba * phba,uint16_t xritag)946 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
947 {
948 struct lpfc_sglq *sglq;
949
950 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
951 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
952 return sglq;
953 }
954
955 /**
956 * __lpfc_get_active_sglq - Get the active sglq for this XRI.
957 * @phba: Pointer to HBA context object.
958 * @xritag: XRI value.
959 *
960 * This function returns the sglq pointer from the array of active
961 * sglq's. The xritag that is passed in is used to index into the
962 * array. Before the xritag can be used it needs to be adjusted
963 * by subtracting the xribase.
964 *
965 * Returns sglq ponter = success, NULL = Failure.
966 **/
967 struct lpfc_sglq *
__lpfc_get_active_sglq(struct lpfc_hba * phba,uint16_t xritag)968 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
969 {
970 struct lpfc_sglq *sglq;
971
972 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
973 return sglq;
974 }
975
976 /**
977 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
978 * @phba: Pointer to HBA context object.
979 * @xritag: xri used in this exchange.
980 * @rrq: The RRQ to be cleared.
981 *
982 **/
983 void
lpfc_clr_rrq_active(struct lpfc_hba * phba,uint16_t xritag,struct lpfc_node_rrq * rrq)984 lpfc_clr_rrq_active(struct lpfc_hba *phba,
985 uint16_t xritag,
986 struct lpfc_node_rrq *rrq)
987 {
988 struct lpfc_nodelist *ndlp = NULL;
989
990 /* Lookup did to verify if did is still active on this vport */
991 if (rrq->vport)
992 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
993
994 if (!ndlp)
995 goto out;
996
997 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
998 rrq->send_rrq = 0;
999 rrq->xritag = 0;
1000 rrq->rrq_stop_time = 0;
1001 }
1002 out:
1003 mempool_free(rrq, phba->rrq_pool);
1004 }
1005
1006 /**
1007 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
1008 * @phba: Pointer to HBA context object.
1009 *
1010 * This function is called with hbalock held. This function
1011 * Checks if stop_time (ratov from setting rrq active) has
1012 * been reached, if it has and the send_rrq flag is set then
1013 * it will call lpfc_send_rrq. If the send_rrq flag is not set
1014 * then it will just call the routine to clear the rrq and
1015 * free the rrq resource.
1016 * The timer is set to the next rrq that is going to expire before
1017 * leaving the routine.
1018 *
1019 **/
1020 void
lpfc_handle_rrq_active(struct lpfc_hba * phba)1021 lpfc_handle_rrq_active(struct lpfc_hba *phba)
1022 {
1023 struct lpfc_node_rrq *rrq;
1024 struct lpfc_node_rrq *nextrrq;
1025 unsigned long next_time;
1026 unsigned long iflags;
1027 LIST_HEAD(send_rrq);
1028
1029 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag);
1030 next_time = jiffies + secs_to_jiffies(phba->fc_ratov + 1);
1031 spin_lock_irqsave(&phba->rrq_list_lock, iflags);
1032 list_for_each_entry_safe(rrq, nextrrq,
1033 &phba->active_rrq_list, list) {
1034 if (time_after(jiffies, rrq->rrq_stop_time))
1035 list_move(&rrq->list, &send_rrq);
1036 else if (time_before(rrq->rrq_stop_time, next_time))
1037 next_time = rrq->rrq_stop_time;
1038 }
1039 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags);
1040 if ((!list_empty(&phba->active_rrq_list)) &&
1041 (!test_bit(FC_UNLOADING, &phba->pport->load_flag)))
1042 mod_timer(&phba->rrq_tmr, next_time);
1043 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
1044 list_del(&rrq->list);
1045 if (!rrq->send_rrq) {
1046 /* this call will free the rrq */
1047 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1048 } else if (lpfc_send_rrq(phba, rrq)) {
1049 /* if we send the rrq then the completion handler
1050 * will clear the bit in the xribitmap.
1051 */
1052 lpfc_clr_rrq_active(phba, rrq->xritag,
1053 rrq);
1054 }
1055 }
1056 }
1057
1058 /**
1059 * lpfc_get_active_rrq - Get the active RRQ for this exchange.
1060 * @vport: Pointer to vport context object.
1061 * @xri: The xri used in the exchange.
1062 * @did: The targets DID for this exchange.
1063 *
1064 * returns NULL = rrq not found in the phba->active_rrq_list.
1065 * rrq = rrq for this xri and target.
1066 **/
1067 struct lpfc_node_rrq *
lpfc_get_active_rrq(struct lpfc_vport * vport,uint16_t xri,uint32_t did)1068 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
1069 {
1070 struct lpfc_hba *phba = vport->phba;
1071 struct lpfc_node_rrq *rrq;
1072 struct lpfc_node_rrq *nextrrq;
1073 unsigned long iflags;
1074
1075 if (phba->sli_rev != LPFC_SLI_REV4)
1076 return NULL;
1077 spin_lock_irqsave(&phba->rrq_list_lock, iflags);
1078 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
1079 if (rrq->vport == vport && rrq->xritag == xri &&
1080 rrq->nlp_DID == did){
1081 list_del(&rrq->list);
1082 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags);
1083 return rrq;
1084 }
1085 }
1086 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags);
1087 return NULL;
1088 }
1089
1090 /**
1091 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
1092 * @vport: Pointer to vport context object.
1093 * @ndlp: Pointer to the lpfc_node_list structure.
1094 * If ndlp is NULL Remove all active RRQs for this vport from the
1095 * phba->active_rrq_list and clear the rrq.
1096 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
1097 **/
1098 void
lpfc_cleanup_vports_rrqs(struct lpfc_vport * vport,struct lpfc_nodelist * ndlp)1099 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
1100
1101 {
1102 struct lpfc_hba *phba = vport->phba;
1103 struct lpfc_node_rrq *rrq;
1104 struct lpfc_node_rrq *nextrrq;
1105 unsigned long iflags;
1106 LIST_HEAD(rrq_list);
1107
1108 if (phba->sli_rev != LPFC_SLI_REV4)
1109 return;
1110 if (!ndlp) {
1111 lpfc_sli4_vport_delete_els_xri_aborted(vport);
1112 lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
1113 }
1114 spin_lock_irqsave(&phba->rrq_list_lock, iflags);
1115 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
1116 if (rrq->vport != vport)
1117 continue;
1118
1119 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID))
1120 list_move(&rrq->list, &rrq_list);
1121
1122 }
1123 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags);
1124
1125 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
1126 list_del(&rrq->list);
1127 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1128 }
1129 }
1130
1131 /**
1132 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
1133 * @phba: Pointer to HBA context object.
1134 * @ndlp: Targets nodelist pointer for this exchange.
1135 * @xritag: the xri in the bitmap to test.
1136 *
1137 * This function returns:
1138 * 0 = rrq not active for this xri
1139 * 1 = rrq is valid for this xri.
1140 **/
1141 int
lpfc_test_rrq_active(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,uint16_t xritag)1142 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1143 uint16_t xritag)
1144 {
1145 if (!ndlp)
1146 return 0;
1147 if (!ndlp->active_rrqs_xri_bitmap)
1148 return 0;
1149 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1150 return 1;
1151 else
1152 return 0;
1153 }
1154
1155 /**
1156 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1157 * @phba: Pointer to HBA context object.
1158 * @ndlp: nodelist pointer for this target.
1159 * @xritag: xri used in this exchange.
1160 * @rxid: Remote Exchange ID.
1161 * @send_rrq: Flag used to determine if we should send rrq els cmd.
1162 *
1163 * This function takes the hbalock.
1164 * The active bit is always set in the active rrq xri_bitmap even
1165 * if there is no slot avaiable for the other rrq information.
1166 *
1167 * returns 0 rrq actived for this xri
1168 * < 0 No memory or invalid ndlp.
1169 **/
1170 int
lpfc_set_rrq_active(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,uint16_t xritag,uint16_t rxid,uint16_t send_rrq)1171 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1172 uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1173 {
1174 unsigned long iflags;
1175 struct lpfc_node_rrq *rrq;
1176 int empty;
1177
1178 if (!ndlp)
1179 return -EINVAL;
1180
1181 if (!phba->cfg_enable_rrq)
1182 return -EINVAL;
1183
1184 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) {
1185 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag);
1186 goto outnl;
1187 }
1188
1189 spin_lock_irqsave(&phba->hbalock, iflags);
1190 if (ndlp->vport && test_bit(FC_UNLOADING, &ndlp->vport->load_flag))
1191 goto out;
1192
1193 if (!ndlp->active_rrqs_xri_bitmap)
1194 goto out;
1195
1196 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1197 goto out;
1198
1199 spin_unlock_irqrestore(&phba->hbalock, iflags);
1200 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC);
1201 if (!rrq) {
1202 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1203 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1204 " DID:0x%x Send:%d\n",
1205 xritag, rxid, ndlp->nlp_DID, send_rrq);
1206 return -EINVAL;
1207 }
1208 if (phba->cfg_enable_rrq == 1)
1209 rrq->send_rrq = send_rrq;
1210 else
1211 rrq->send_rrq = 0;
1212 rrq->xritag = xritag;
1213 rrq->rrq_stop_time = jiffies + secs_to_jiffies(phba->fc_ratov + 1);
1214 rrq->nlp_DID = ndlp->nlp_DID;
1215 rrq->vport = ndlp->vport;
1216 rrq->rxid = rxid;
1217
1218 spin_lock_irqsave(&phba->rrq_list_lock, iflags);
1219 empty = list_empty(&phba->active_rrq_list);
1220 list_add_tail(&rrq->list, &phba->active_rrq_list);
1221 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags);
1222 set_bit(HBA_RRQ_ACTIVE, &phba->hba_flag);
1223 if (empty)
1224 lpfc_worker_wake_up(phba);
1225 return 0;
1226 out:
1227 spin_unlock_irqrestore(&phba->hbalock, iflags);
1228 outnl:
1229 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1230 "2921 Can't set rrq active xri:0x%x rxid:0x%x"
1231 " DID:0x%x Send:%d\n",
1232 xritag, rxid, ndlp->nlp_DID, send_rrq);
1233 return -EINVAL;
1234 }
1235
1236 /**
1237 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1238 * @phba: Pointer to HBA context object.
1239 * @piocbq: Pointer to the iocbq.
1240 *
1241 * The driver calls this function with either the nvme ls ring lock
1242 * or the fc els ring lock held depending on the iocb usage. This function
1243 * gets a new driver sglq object from the sglq list. If the list is not empty
1244 * then it is successful, it returns pointer to the newly allocated sglq
1245 * object else it returns NULL.
1246 **/
1247 static struct lpfc_sglq *
__lpfc_sli_get_els_sglq(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq)1248 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1249 {
1250 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1251 struct lpfc_sglq *sglq = NULL;
1252 struct lpfc_sglq *start_sglq = NULL;
1253 struct lpfc_io_buf *lpfc_cmd;
1254 struct lpfc_nodelist *ndlp;
1255 int found = 0;
1256 u8 cmnd;
1257
1258 cmnd = get_job_cmnd(phba, piocbq);
1259
1260 if (piocbq->cmd_flag & LPFC_IO_FCP) {
1261 lpfc_cmd = piocbq->io_buf;
1262 ndlp = lpfc_cmd->rdata->pnode;
1263 } else if ((cmnd == CMD_GEN_REQUEST64_CR) &&
1264 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) {
1265 ndlp = piocbq->ndlp;
1266 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) {
1267 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK)
1268 ndlp = NULL;
1269 else
1270 ndlp = piocbq->ndlp;
1271 } else {
1272 ndlp = piocbq->ndlp;
1273 }
1274
1275 spin_lock(&phba->sli4_hba.sgl_list_lock);
1276 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1277 start_sglq = sglq;
1278 while (!found) {
1279 if (!sglq)
1280 break;
1281 if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1282 test_bit(sglq->sli4_lxritag,
1283 ndlp->active_rrqs_xri_bitmap)) {
1284 /* This xri has an rrq outstanding for this DID.
1285 * put it back in the list and get another xri.
1286 */
1287 list_add_tail(&sglq->list, lpfc_els_sgl_list);
1288 sglq = NULL;
1289 list_remove_head(lpfc_els_sgl_list, sglq,
1290 struct lpfc_sglq, list);
1291 if (sglq == start_sglq) {
1292 list_add_tail(&sglq->list, lpfc_els_sgl_list);
1293 sglq = NULL;
1294 break;
1295 } else
1296 continue;
1297 }
1298 sglq->ndlp = ndlp;
1299 found = 1;
1300 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1301 sglq->state = SGL_ALLOCATED;
1302 }
1303 spin_unlock(&phba->sli4_hba.sgl_list_lock);
1304 return sglq;
1305 }
1306
1307 /**
1308 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1309 * @phba: Pointer to HBA context object.
1310 * @piocbq: Pointer to the iocbq.
1311 *
1312 * This function is called with the sgl_list lock held. This function
1313 * gets a new driver sglq object from the sglq list. If the
1314 * list is not empty then it is successful, it returns pointer to the newly
1315 * allocated sglq object else it returns NULL.
1316 **/
1317 struct lpfc_sglq *
__lpfc_sli_get_nvmet_sglq(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq)1318 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1319 {
1320 struct list_head *lpfc_nvmet_sgl_list;
1321 struct lpfc_sglq *sglq = NULL;
1322
1323 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1324
1325 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1326
1327 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1328 if (!sglq)
1329 return NULL;
1330 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1331 sglq->state = SGL_ALLOCATED;
1332 return sglq;
1333 }
1334
1335 /**
1336 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1337 * @phba: Pointer to HBA context object.
1338 *
1339 * This function is called with no lock held. This function
1340 * allocates a new driver iocb object from the iocb pool. If the
1341 * allocation is successful, it returns pointer to the newly
1342 * allocated iocb object else it returns NULL.
1343 **/
1344 struct lpfc_iocbq *
lpfc_sli_get_iocbq(struct lpfc_hba * phba)1345 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1346 {
1347 struct lpfc_iocbq * iocbq = NULL;
1348 unsigned long iflags;
1349
1350 spin_lock_irqsave(&phba->hbalock, iflags);
1351 iocbq = __lpfc_sli_get_iocbq(phba);
1352 spin_unlock_irqrestore(&phba->hbalock, iflags);
1353 return iocbq;
1354 }
1355
1356 /**
1357 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1358 * @phba: Pointer to HBA context object.
1359 * @iocbq: Pointer to driver iocb object.
1360 *
1361 * This function is called to release the driver iocb object
1362 * to the iocb pool. The iotag in the iocb object
1363 * does not change for each use of the iocb object. This function
1364 * clears all other fields of the iocb object when it is freed.
1365 * The sqlq structure that holds the xritag and phys and virtual
1366 * mappings for the scatter gather list is retrieved from the
1367 * active array of sglq. The get of the sglq pointer also clears
1368 * the entry in the array. If the status of the IO indiactes that
1369 * this IO was aborted then the sglq entry it put on the
1370 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1371 * IO has good status or fails for any other reason then the sglq
1372 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is
1373 * asserted held in the code path calling this routine.
1374 **/
1375 static void
__lpfc_sli_release_iocbq_s4(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1376 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1377 {
1378 struct lpfc_sglq *sglq;
1379 unsigned long iflag = 0;
1380 struct lpfc_sli_ring *pring;
1381
1382 if (iocbq->sli4_xritag == NO_XRI)
1383 sglq = NULL;
1384 else
1385 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1386
1387
1388 if (sglq) {
1389 if (iocbq->cmd_flag & LPFC_IO_NVMET) {
1390 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1391 iflag);
1392 sglq->state = SGL_FREED;
1393 sglq->ndlp = NULL;
1394 list_add_tail(&sglq->list,
1395 &phba->sli4_hba.lpfc_nvmet_sgl_list);
1396 spin_unlock_irqrestore(
1397 &phba->sli4_hba.sgl_list_lock, iflag);
1398 goto out;
1399 }
1400
1401 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) &&
1402 (!(unlikely(pci_channel_offline(phba->pcidev)))) &&
1403 sglq->state != SGL_XRI_ABORTED) {
1404 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1405 iflag);
1406
1407 /* Check if we can get a reference on ndlp */
1408 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp))
1409 sglq->ndlp = NULL;
1410
1411 list_add(&sglq->list,
1412 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1413 spin_unlock_irqrestore(
1414 &phba->sli4_hba.sgl_list_lock, iflag);
1415 } else {
1416 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1417 iflag);
1418 sglq->state = SGL_FREED;
1419 sglq->ndlp = NULL;
1420 list_add_tail(&sglq->list,
1421 &phba->sli4_hba.lpfc_els_sgl_list);
1422 spin_unlock_irqrestore(
1423 &phba->sli4_hba.sgl_list_lock, iflag);
1424 pring = lpfc_phba_elsring(phba);
1425 /* Check if TXQ queue needs to be serviced */
1426 if (pring && (!list_empty(&pring->txq)))
1427 lpfc_worker_wake_up(phba);
1428 }
1429 }
1430
1431 out:
1432 /*
1433 * Clean all volatile data fields, preserve iotag and node struct.
1434 */
1435 memset_startat(iocbq, 0, wqe);
1436 iocbq->sli4_lxritag = NO_XRI;
1437 iocbq->sli4_xritag = NO_XRI;
1438 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF |
1439 LPFC_IO_NVME_LS);
1440 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1441 }
1442
1443
1444 /**
1445 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1446 * @phba: Pointer to HBA context object.
1447 * @iocbq: Pointer to driver iocb object.
1448 *
1449 * This function is called to release the driver iocb object to the
1450 * iocb pool. The iotag in the iocb object does not change for each
1451 * use of the iocb object. This function clears all other fields of
1452 * the iocb object when it is freed. The hbalock is asserted held in
1453 * the code path calling this routine.
1454 **/
1455 static void
__lpfc_sli_release_iocbq_s3(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1456 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1457 {
1458
1459 /*
1460 * Clean all volatile data fields, preserve iotag and node struct.
1461 */
1462 memset_startat(iocbq, 0, iocb);
1463 iocbq->sli4_xritag = NO_XRI;
1464 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1465 }
1466
1467 /**
1468 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1469 * @phba: Pointer to HBA context object.
1470 * @iocbq: Pointer to driver iocb object.
1471 *
1472 * This function is called with hbalock held to release driver
1473 * iocb object to the iocb pool. The iotag in the iocb object
1474 * does not change for each use of the iocb object. This function
1475 * clears all other fields of the iocb object when it is freed.
1476 **/
1477 static void
__lpfc_sli_release_iocbq(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1478 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1479 {
1480 lockdep_assert_held(&phba->hbalock);
1481
1482 phba->__lpfc_sli_release_iocbq(phba, iocbq);
1483 phba->iocb_cnt--;
1484 }
1485
1486 /**
1487 * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1488 * @phba: Pointer to HBA context object.
1489 * @iocbq: Pointer to driver iocb object.
1490 *
1491 * This function is called with no lock held to release the iocb to
1492 * iocb pool.
1493 **/
1494 void
lpfc_sli_release_iocbq(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1495 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1496 {
1497 unsigned long iflags;
1498
1499 /*
1500 * Clean all volatile data fields, preserve iotag and node struct.
1501 */
1502 spin_lock_irqsave(&phba->hbalock, iflags);
1503 __lpfc_sli_release_iocbq(phba, iocbq);
1504 spin_unlock_irqrestore(&phba->hbalock, iflags);
1505 }
1506
1507 /**
1508 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1509 * @phba: Pointer to HBA context object.
1510 * @iocblist: List of IOCBs.
1511 * @ulpstatus: ULP status in IOCB command field.
1512 * @ulpWord4: ULP word-4 in IOCB command field.
1513 *
1514 * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1515 * on the list by invoking the complete callback function associated with the
1516 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1517 * fields.
1518 **/
1519 void
lpfc_sli_cancel_iocbs(struct lpfc_hba * phba,struct list_head * iocblist,uint32_t ulpstatus,uint32_t ulpWord4)1520 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1521 uint32_t ulpstatus, uint32_t ulpWord4)
1522 {
1523 struct lpfc_iocbq *piocb;
1524
1525 while (!list_empty(iocblist)) {
1526 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1527 if (piocb->cmd_cmpl) {
1528 if (piocb->cmd_flag & LPFC_IO_NVME) {
1529 lpfc_nvme_cancel_iocb(phba, piocb,
1530 ulpstatus, ulpWord4);
1531 } else {
1532 if (phba->sli_rev == LPFC_SLI_REV4) {
1533 bf_set(lpfc_wcqe_c_status,
1534 &piocb->wcqe_cmpl, ulpstatus);
1535 piocb->wcqe_cmpl.parameter = ulpWord4;
1536 } else {
1537 piocb->iocb.ulpStatus = ulpstatus;
1538 piocb->iocb.un.ulpWord[4] = ulpWord4;
1539 }
1540 (piocb->cmd_cmpl) (phba, piocb, piocb);
1541 }
1542 } else {
1543 lpfc_sli_release_iocbq(phba, piocb);
1544 }
1545 }
1546 return;
1547 }
1548
1549 /**
1550 * lpfc_sli_iocb_cmd_type - Get the iocb type
1551 * @iocb_cmnd: iocb command code.
1552 *
1553 * This function is called by ring event handler function to get the iocb type.
1554 * This function translates the iocb command to an iocb command type used to
1555 * decide the final disposition of each completed IOCB.
1556 * The function returns
1557 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1558 * LPFC_SOL_IOCB if it is a solicited iocb completion
1559 * LPFC_ABORT_IOCB if it is an abort iocb
1560 * LPFC_UNSOL_IOCB if it is an unsolicited iocb
1561 *
1562 * The caller is not required to hold any lock.
1563 **/
1564 static lpfc_iocb_type
lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)1565 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1566 {
1567 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1568
1569 if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1570 return 0;
1571
1572 switch (iocb_cmnd) {
1573 case CMD_XMIT_SEQUENCE_CR:
1574 case CMD_XMIT_SEQUENCE_CX:
1575 case CMD_XMIT_BCAST_CN:
1576 case CMD_XMIT_BCAST_CX:
1577 case CMD_ELS_REQUEST_CR:
1578 case CMD_ELS_REQUEST_CX:
1579 case CMD_CREATE_XRI_CR:
1580 case CMD_CREATE_XRI_CX:
1581 case CMD_GET_RPI_CN:
1582 case CMD_XMIT_ELS_RSP_CX:
1583 case CMD_GET_RPI_CR:
1584 case CMD_FCP_IWRITE_CR:
1585 case CMD_FCP_IWRITE_CX:
1586 case CMD_FCP_IREAD_CR:
1587 case CMD_FCP_IREAD_CX:
1588 case CMD_FCP_ICMND_CR:
1589 case CMD_FCP_ICMND_CX:
1590 case CMD_FCP_TSEND_CX:
1591 case CMD_FCP_TRSP_CX:
1592 case CMD_FCP_TRECEIVE_CX:
1593 case CMD_FCP_AUTO_TRSP_CX:
1594 case CMD_ADAPTER_MSG:
1595 case CMD_ADAPTER_DUMP:
1596 case CMD_XMIT_SEQUENCE64_CR:
1597 case CMD_XMIT_SEQUENCE64_CX:
1598 case CMD_XMIT_BCAST64_CN:
1599 case CMD_XMIT_BCAST64_CX:
1600 case CMD_ELS_REQUEST64_CR:
1601 case CMD_ELS_REQUEST64_CX:
1602 case CMD_FCP_IWRITE64_CR:
1603 case CMD_FCP_IWRITE64_CX:
1604 case CMD_FCP_IREAD64_CR:
1605 case CMD_FCP_IREAD64_CX:
1606 case CMD_FCP_ICMND64_CR:
1607 case CMD_FCP_ICMND64_CX:
1608 case CMD_FCP_TSEND64_CX:
1609 case CMD_FCP_TRSP64_CX:
1610 case CMD_FCP_TRECEIVE64_CX:
1611 case CMD_GEN_REQUEST64_CR:
1612 case CMD_GEN_REQUEST64_CX:
1613 case CMD_XMIT_ELS_RSP64_CX:
1614 case DSSCMD_IWRITE64_CR:
1615 case DSSCMD_IWRITE64_CX:
1616 case DSSCMD_IREAD64_CR:
1617 case DSSCMD_IREAD64_CX:
1618 case CMD_SEND_FRAME:
1619 type = LPFC_SOL_IOCB;
1620 break;
1621 case CMD_ABORT_XRI_CN:
1622 case CMD_ABORT_XRI_CX:
1623 case CMD_CLOSE_XRI_CN:
1624 case CMD_CLOSE_XRI_CX:
1625 case CMD_XRI_ABORTED_CX:
1626 case CMD_ABORT_MXRI64_CN:
1627 case CMD_XMIT_BLS_RSP64_CX:
1628 type = LPFC_ABORT_IOCB;
1629 break;
1630 case CMD_RCV_SEQUENCE_CX:
1631 case CMD_RCV_ELS_REQ_CX:
1632 case CMD_RCV_SEQUENCE64_CX:
1633 case CMD_RCV_ELS_REQ64_CX:
1634 case CMD_ASYNC_STATUS:
1635 case CMD_IOCB_RCV_SEQ64_CX:
1636 case CMD_IOCB_RCV_ELS64_CX:
1637 case CMD_IOCB_RCV_CONT64_CX:
1638 case CMD_IOCB_RET_XRI64_CX:
1639 type = LPFC_UNSOL_IOCB;
1640 break;
1641 case CMD_IOCB_XMIT_MSEQ64_CR:
1642 case CMD_IOCB_XMIT_MSEQ64_CX:
1643 case CMD_IOCB_RCV_SEQ_LIST64_CX:
1644 case CMD_IOCB_RCV_ELS_LIST64_CX:
1645 case CMD_IOCB_CLOSE_EXTENDED_CN:
1646 case CMD_IOCB_ABORT_EXTENDED_CN:
1647 case CMD_IOCB_RET_HBQE64_CN:
1648 case CMD_IOCB_FCP_IBIDIR64_CR:
1649 case CMD_IOCB_FCP_IBIDIR64_CX:
1650 case CMD_IOCB_FCP_ITASKMGT64_CX:
1651 case CMD_IOCB_LOGENTRY_CN:
1652 case CMD_IOCB_LOGENTRY_ASYNC_CN:
1653 printk("%s - Unhandled SLI-3 Command x%x\n",
1654 __func__, iocb_cmnd);
1655 type = LPFC_UNKNOWN_IOCB;
1656 break;
1657 default:
1658 type = LPFC_UNKNOWN_IOCB;
1659 break;
1660 }
1661
1662 return type;
1663 }
1664
1665 /**
1666 * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1667 * @phba: Pointer to HBA context object.
1668 *
1669 * This function is called from SLI initialization code
1670 * to configure every ring of the HBA's SLI interface. The
1671 * caller is not required to hold any lock. This function issues
1672 * a config_ring mailbox command for each ring.
1673 * This function returns zero if successful else returns a negative
1674 * error code.
1675 **/
1676 static int
lpfc_sli_ring_map(struct lpfc_hba * phba)1677 lpfc_sli_ring_map(struct lpfc_hba *phba)
1678 {
1679 struct lpfc_sli *psli = &phba->sli;
1680 LPFC_MBOXQ_t *pmb;
1681 MAILBOX_t *pmbox;
1682 int i, rc, ret = 0;
1683
1684 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1685 if (!pmb)
1686 return -ENOMEM;
1687 pmbox = &pmb->u.mb;
1688 phba->link_state = LPFC_INIT_MBX_CMDS;
1689 for (i = 0; i < psli->num_rings; i++) {
1690 lpfc_config_ring(phba, i, pmb);
1691 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1692 if (rc != MBX_SUCCESS) {
1693 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1694 "0446 Adapter failed to init (%d), "
1695 "mbxCmd x%x CFG_RING, mbxStatus x%x, "
1696 "ring %d\n",
1697 rc, pmbox->mbxCommand,
1698 pmbox->mbxStatus, i);
1699 phba->link_state = LPFC_HBA_ERROR;
1700 ret = -ENXIO;
1701 break;
1702 }
1703 }
1704 mempool_free(pmb, phba->mbox_mem_pool);
1705 return ret;
1706 }
1707
1708 /**
1709 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1710 * @phba: Pointer to HBA context object.
1711 * @pring: Pointer to driver SLI ring object.
1712 * @piocb: Pointer to the driver iocb object.
1713 *
1714 * The driver calls this function with the hbalock held for SLI3 ports or
1715 * the ring lock held for SLI4 ports. The function adds the
1716 * new iocb to txcmplq of the given ring. This function always returns
1717 * 0. If this function is called for ELS ring, this function checks if
1718 * there is a vport associated with the ELS command. This function also
1719 * starts els_tmofunc timer if this is an ELS command.
1720 **/
1721 static int
lpfc_sli_ringtxcmpl_put(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * piocb)1722 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1723 struct lpfc_iocbq *piocb)
1724 {
1725 u32 ulp_command = 0;
1726
1727 BUG_ON(!piocb);
1728 ulp_command = get_job_cmnd(phba, piocb);
1729
1730 list_add_tail(&piocb->list, &pring->txcmplq);
1731 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ;
1732 pring->txcmplq_cnt++;
1733 if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1734 (ulp_command != CMD_ABORT_XRI_WQE) &&
1735 (ulp_command != CMD_ABORT_XRI_CN) &&
1736 (ulp_command != CMD_CLOSE_XRI_CN)) {
1737 BUG_ON(!piocb->vport);
1738 if (!test_bit(FC_UNLOADING, &piocb->vport->load_flag))
1739 mod_timer(&piocb->vport->els_tmofunc,
1740 jiffies + secs_to_jiffies(phba->fc_ratov << 1));
1741 }
1742
1743 return 0;
1744 }
1745
1746 /**
1747 * lpfc_sli_ringtx_get - Get first element of the txq
1748 * @phba: Pointer to HBA context object.
1749 * @pring: Pointer to driver SLI ring object.
1750 *
1751 * This function is called with hbalock held to get next
1752 * iocb in txq of the given ring. If there is any iocb in
1753 * the txq, the function returns first iocb in the list after
1754 * removing the iocb from the list, else it returns NULL.
1755 **/
1756 struct lpfc_iocbq *
lpfc_sli_ringtx_get(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)1757 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1758 {
1759 struct lpfc_iocbq *cmd_iocb;
1760
1761 lockdep_assert_held(&phba->hbalock);
1762
1763 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1764 return cmd_iocb;
1765 }
1766
1767 /**
1768 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl
1769 * @phba: Pointer to HBA context object.
1770 * @cmdiocb: Pointer to driver command iocb object.
1771 * @rspiocb: Pointer to driver response iocb object.
1772 *
1773 * This routine will inform the driver of any BW adjustments we need
1774 * to make. These changes will be picked up during the next CMF
1775 * timer interrupt. In addition, any BW changes will be logged
1776 * with LOG_CGN_MGMT.
1777 **/
1778 static void
lpfc_cmf_sync_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)1779 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
1780 struct lpfc_iocbq *rspiocb)
1781 {
1782 union lpfc_wqe128 *wqe;
1783 uint32_t status, info;
1784 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl;
1785 uint64_t bw, bwdif, slop;
1786 uint64_t pcent, bwpcent;
1787 int asig, afpin, sigcnt, fpincnt;
1788 int wsigmax, wfpinmax, cg, tdp;
1789 char *s;
1790
1791 /* First check for error */
1792 status = bf_get(lpfc_wcqe_c_status, wcqe);
1793 if (status) {
1794 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1795 "6211 CMF_SYNC_WQE Error "
1796 "req_tag x%x status x%x hwstatus x%x "
1797 "tdatap x%x parm x%x\n",
1798 bf_get(lpfc_wcqe_c_request_tag, wcqe),
1799 bf_get(lpfc_wcqe_c_status, wcqe),
1800 bf_get(lpfc_wcqe_c_hw_status, wcqe),
1801 wcqe->total_data_placed,
1802 wcqe->parameter);
1803 goto out;
1804 }
1805
1806 /* Gather congestion information on a successful cmpl */
1807 info = wcqe->parameter;
1808 phba->cmf_active_info = info;
1809
1810 /* See if firmware info count is valid or has changed */
1811 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info)
1812 info = 0;
1813 else
1814 phba->cmf_info_per_interval = info;
1815
1816 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe);
1817 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe);
1818
1819 /* Get BW requirement from firmware */
1820 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE;
1821 if (!bw) {
1822 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1823 "6212 CMF_SYNC_WQE x%x: NULL bw\n",
1824 bf_get(lpfc_wcqe_c_request_tag, wcqe));
1825 goto out;
1826 }
1827
1828 /* Gather information needed for logging if a BW change is required */
1829 wqe = &cmdiocb->wqe;
1830 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync);
1831 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync);
1832 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync);
1833 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync);
1834 if (phba->cmf_max_bytes_per_interval != bw ||
1835 (asig || afpin || sigcnt || fpincnt)) {
1836 /* Are we increasing or decreasing BW */
1837 if (phba->cmf_max_bytes_per_interval < bw) {
1838 bwdif = bw - phba->cmf_max_bytes_per_interval;
1839 s = "Increase";
1840 } else {
1841 bwdif = phba->cmf_max_bytes_per_interval - bw;
1842 s = "Decrease";
1843 }
1844
1845 /* What is the change percentage */
1846 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/
1847 pcent = div64_u64(bwdif * 100 + slop,
1848 phba->cmf_link_byte_count);
1849 bwpcent = div64_u64(bw * 100 + slop,
1850 phba->cmf_link_byte_count);
1851 /* Because of bytes adjustment due to shorter timer in
1852 * lpfc_cmf_timer() the cmf_link_byte_count can be shorter and
1853 * may seem like BW is above 100%.
1854 */
1855 if (bwpcent > 100)
1856 bwpcent = 100;
1857
1858 if (phba->cmf_max_bytes_per_interval < bw &&
1859 bwpcent > 95)
1860 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1861 "6208 Congestion bandwidth "
1862 "limits removed\n");
1863 else if ((phba->cmf_max_bytes_per_interval > bw) &&
1864 ((bwpcent + pcent) <= 100) && ((bwpcent + pcent) > 95))
1865 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1866 "6209 Congestion bandwidth "
1867 "limits in effect\n");
1868
1869 if (asig) {
1870 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1871 "6237 BW Threshold %lld%% (%lld): "
1872 "%lld%% %s: Signal Alarm: cg:%d "
1873 "Info:%u\n",
1874 bwpcent, bw, pcent, s, cg,
1875 phba->cmf_active_info);
1876 } else if (afpin) {
1877 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1878 "6238 BW Threshold %lld%% (%lld): "
1879 "%lld%% %s: FPIN Alarm: cg:%d "
1880 "Info:%u\n",
1881 bwpcent, bw, pcent, s, cg,
1882 phba->cmf_active_info);
1883 } else if (sigcnt) {
1884 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync);
1885 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1886 "6239 BW Threshold %lld%% (%lld): "
1887 "%lld%% %s: Signal Warning: "
1888 "Cnt %d Max %d: cg:%d Info:%u\n",
1889 bwpcent, bw, pcent, s, sigcnt,
1890 wsigmax, cg, phba->cmf_active_info);
1891 } else if (fpincnt) {
1892 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync);
1893 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1894 "6240 BW Threshold %lld%% (%lld): "
1895 "%lld%% %s: FPIN Warning: "
1896 "Cnt %d Max %d: cg:%d Info:%u\n",
1897 bwpcent, bw, pcent, s, fpincnt,
1898 wfpinmax, cg, phba->cmf_active_info);
1899 } else {
1900 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1901 "6241 BW Threshold %lld%% (%lld): "
1902 "CMF %lld%% %s: cg:%d Info:%u\n",
1903 bwpcent, bw, pcent, s, cg,
1904 phba->cmf_active_info);
1905 }
1906 } else if (info) {
1907 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1908 "6246 Info Threshold %u\n", info);
1909 }
1910
1911 /* Save BW change to be picked up during next timer interrupt */
1912 phba->cmf_last_sync_bw = bw;
1913 out:
1914 lpfc_sli_release_iocbq(phba, cmdiocb);
1915 }
1916
1917 /**
1918 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE
1919 * @phba: Pointer to HBA context object.
1920 * @ms: ms to set in WQE interval, 0 means use init op
1921 * @total: Total rcv bytes for this interval
1922 *
1923 * This routine is called every CMF timer interrupt. Its purpose is
1924 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events
1925 * that may indicate we have congestion (FPINs or Signals). Upon
1926 * completion, the firmware will indicate any BW restrictions the
1927 * driver may need to take.
1928 **/
1929 int
lpfc_issue_cmf_sync_wqe(struct lpfc_hba * phba,u32 ms,u64 total)1930 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total)
1931 {
1932 union lpfc_wqe128 *wqe;
1933 struct lpfc_iocbq *sync_buf;
1934 unsigned long iflags;
1935 u32 ret_val, cgn_sig_freq;
1936 u32 atot, wtot, max;
1937 u8 warn_sync_period = 0;
1938
1939 /* First address any alarm / warning activity */
1940 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0);
1941 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0);
1942
1943 spin_lock_irqsave(&phba->hbalock, iflags);
1944
1945 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */
1946 if (phba->cmf_active_mode != LPFC_CFG_MANAGED ||
1947 phba->link_state < LPFC_LINK_UP) {
1948 ret_val = 0;
1949 goto out_unlock;
1950 }
1951
1952 sync_buf = __lpfc_sli_get_iocbq(phba);
1953 if (!sync_buf) {
1954 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
1955 "6244 No available WQEs for CMF_SYNC_WQE\n");
1956 ret_val = ENOMEM;
1957 goto out_unlock;
1958 }
1959
1960 wqe = &sync_buf->wqe;
1961
1962 /* WQEs are reused. Clear stale data and set key fields to zero */
1963 memset(wqe, 0, sizeof(*wqe));
1964
1965 /* If this is the very first CMF_SYNC_WQE, issue an init operation */
1966 if (!ms) {
1967 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1968 "6441 CMF Init %d - CMF_SYNC_WQE\n",
1969 phba->fc_eventTag);
1970 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */
1971 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL);
1972 goto initpath;
1973 }
1974
1975 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */
1976 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms);
1977
1978 /* Check for alarms / warnings */
1979 if (atot) {
1980 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
1981 /* We hit an Signal alarm condition */
1982 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1);
1983 } else {
1984 /* We hit a FPIN alarm condition */
1985 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1);
1986 }
1987 } else if (wtot) {
1988 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
1989 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
1990 cgn_sig_freq = phba->cgn_sig_freq ? phba->cgn_sig_freq :
1991 lpfc_fabric_cgn_frequency;
1992 /* We hit an Signal warning condition */
1993 max = LPFC_SEC_TO_MSEC / cgn_sig_freq *
1994 lpfc_acqe_cgn_frequency;
1995 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max);
1996 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot);
1997 warn_sync_period = lpfc_acqe_cgn_frequency;
1998 } else {
1999 /* We hit a FPIN warning condition */
2000 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1);
2001 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1);
2002 if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ)
2003 warn_sync_period =
2004 LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency);
2005 }
2006 }
2007
2008 /* Update total read blocks during previous timer interval */
2009 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE);
2010
2011 initpath:
2012 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER);
2013 wqe->cmf_sync.event_tag = phba->fc_eventTag;
2014 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE);
2015
2016 /* Setup reqtag to match the wqe completion. */
2017 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag);
2018
2019 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1);
2020 bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period);
2021
2022 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND);
2023 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1);
2024 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT);
2025
2026 sync_buf->vport = phba->pport;
2027 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl;
2028 sync_buf->cmd_dmabuf = NULL;
2029 sync_buf->rsp_dmabuf = NULL;
2030 sync_buf->bpl_dmabuf = NULL;
2031 sync_buf->sli4_xritag = NO_XRI;
2032
2033 sync_buf->cmd_flag |= LPFC_IO_CMF;
2034 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf);
2035 if (ret_val) {
2036 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
2037 "6214 Cannot issue CMF_SYNC_WQE: x%x\n",
2038 ret_val);
2039 __lpfc_sli_release_iocbq(phba, sync_buf);
2040 }
2041 out_unlock:
2042 spin_unlock_irqrestore(&phba->hbalock, iflags);
2043 return ret_val;
2044 }
2045
2046 /**
2047 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
2048 * @phba: Pointer to HBA context object.
2049 * @pring: Pointer to driver SLI ring object.
2050 *
2051 * This function is called with hbalock held and the caller must post the
2052 * iocb without releasing the lock. If the caller releases the lock,
2053 * iocb slot returned by the function is not guaranteed to be available.
2054 * The function returns pointer to the next available iocb slot if there
2055 * is available slot in the ring, else it returns NULL.
2056 * If the get index of the ring is ahead of the put index, the function
2057 * will post an error attention event to the worker thread to take the
2058 * HBA to offline state.
2059 **/
2060 static IOCB_t *
lpfc_sli_next_iocb_slot(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)2061 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2062 {
2063 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
2064 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb;
2065
2066 lockdep_assert_held(&phba->hbalock);
2067
2068 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
2069 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
2070 pring->sli.sli3.next_cmdidx = 0;
2071
2072 if (unlikely(pring->sli.sli3.local_getidx ==
2073 pring->sli.sli3.next_cmdidx)) {
2074
2075 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
2076
2077 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
2078 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2079 "0315 Ring %d issue: portCmdGet %d "
2080 "is bigger than cmd ring %d\n",
2081 pring->ringno,
2082 pring->sli.sli3.local_getidx,
2083 max_cmd_idx);
2084
2085 phba->link_state = LPFC_HBA_ERROR;
2086 /*
2087 * All error attention handlers are posted to
2088 * worker thread
2089 */
2090 phba->work_ha |= HA_ERATT;
2091 phba->work_hs = HS_FFER3;
2092
2093 lpfc_worker_wake_up(phba);
2094
2095 return NULL;
2096 }
2097
2098 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
2099 return NULL;
2100 }
2101
2102 return lpfc_cmd_iocb(phba, pring);
2103 }
2104
2105 /**
2106 * lpfc_sli_next_iotag - Get an iotag for the iocb
2107 * @phba: Pointer to HBA context object.
2108 * @iocbq: Pointer to driver iocb object.
2109 *
2110 * This function gets an iotag for the iocb. If there is no unused iotag and
2111 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
2112 * array and assigns a new iotag.
2113 * The function returns the allocated iotag if successful, else returns zero.
2114 * Zero is not a valid iotag.
2115 * The caller is not required to hold any lock.
2116 **/
2117 uint16_t
lpfc_sli_next_iotag(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)2118 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
2119 {
2120 struct lpfc_iocbq **new_arr;
2121 struct lpfc_iocbq **old_arr;
2122 size_t new_len;
2123 struct lpfc_sli *psli = &phba->sli;
2124 uint16_t iotag;
2125
2126 spin_lock_irq(&phba->hbalock);
2127 iotag = psli->last_iotag;
2128 if(++iotag < psli->iocbq_lookup_len) {
2129 psli->last_iotag = iotag;
2130 psli->iocbq_lookup[iotag] = iocbq;
2131 spin_unlock_irq(&phba->hbalock);
2132 iocbq->iotag = iotag;
2133 return iotag;
2134 } else if (psli->iocbq_lookup_len < (0xffff
2135 - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
2136 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
2137 spin_unlock_irq(&phba->hbalock);
2138 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
2139 GFP_KERNEL);
2140 if (new_arr) {
2141 spin_lock_irq(&phba->hbalock);
2142 old_arr = psli->iocbq_lookup;
2143 if (new_len <= psli->iocbq_lookup_len) {
2144 /* highly unprobable case */
2145 kfree(new_arr);
2146 iotag = psli->last_iotag;
2147 if(++iotag < psli->iocbq_lookup_len) {
2148 psli->last_iotag = iotag;
2149 psli->iocbq_lookup[iotag] = iocbq;
2150 spin_unlock_irq(&phba->hbalock);
2151 iocbq->iotag = iotag;
2152 return iotag;
2153 }
2154 spin_unlock_irq(&phba->hbalock);
2155 return 0;
2156 }
2157 if (psli->iocbq_lookup)
2158 memcpy(new_arr, old_arr,
2159 ((psli->last_iotag + 1) *
2160 sizeof (struct lpfc_iocbq *)));
2161 psli->iocbq_lookup = new_arr;
2162 psli->iocbq_lookup_len = new_len;
2163 psli->last_iotag = iotag;
2164 psli->iocbq_lookup[iotag] = iocbq;
2165 spin_unlock_irq(&phba->hbalock);
2166 iocbq->iotag = iotag;
2167 kfree(old_arr);
2168 return iotag;
2169 }
2170 } else
2171 spin_unlock_irq(&phba->hbalock);
2172
2173 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2174 "0318 Failed to allocate IOTAG.last IOTAG is %d\n",
2175 psli->last_iotag);
2176
2177 return 0;
2178 }
2179
2180 /**
2181 * lpfc_sli_submit_iocb - Submit an iocb to the firmware
2182 * @phba: Pointer to HBA context object.
2183 * @pring: Pointer to driver SLI ring object.
2184 * @iocb: Pointer to iocb slot in the ring.
2185 * @nextiocb: Pointer to driver iocb object which need to be
2186 * posted to firmware.
2187 *
2188 * This function is called to post a new iocb to the firmware. This
2189 * function copies the new iocb to ring iocb slot and updates the
2190 * ring pointers. It adds the new iocb to txcmplq if there is
2191 * a completion call back for this iocb else the function will free the
2192 * iocb object. The hbalock is asserted held in the code path calling
2193 * this routine.
2194 **/
2195 static void
lpfc_sli_submit_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,IOCB_t * iocb,struct lpfc_iocbq * nextiocb)2196 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2197 IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
2198 {
2199 /*
2200 * Set up an iotag
2201 */
2202 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0;
2203
2204
2205 if (pring->ringno == LPFC_ELS_RING) {
2206 lpfc_debugfs_slow_ring_trc(phba,
2207 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x",
2208 *(((uint32_t *) &nextiocb->iocb) + 4),
2209 *(((uint32_t *) &nextiocb->iocb) + 6),
2210 *(((uint32_t *) &nextiocb->iocb) + 7));
2211 }
2212
2213 /*
2214 * Issue iocb command to adapter
2215 */
2216 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
2217 wmb();
2218 pring->stats.iocb_cmd++;
2219
2220 /*
2221 * If there is no completion routine to call, we can release the
2222 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
2223 * that have no rsp ring completion, cmd_cmpl MUST be NULL.
2224 */
2225 if (nextiocb->cmd_cmpl)
2226 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
2227 else
2228 __lpfc_sli_release_iocbq(phba, nextiocb);
2229
2230 /*
2231 * Let the HBA know what IOCB slot will be the next one the
2232 * driver will put a command into.
2233 */
2234 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
2235 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
2236 }
2237
2238 /**
2239 * lpfc_sli_update_full_ring - Update the chip attention register
2240 * @phba: Pointer to HBA context object.
2241 * @pring: Pointer to driver SLI ring object.
2242 *
2243 * The caller is not required to hold any lock for calling this function.
2244 * This function updates the chip attention bits for the ring to inform firmware
2245 * that there are pending work to be done for this ring and requests an
2246 * interrupt when there is space available in the ring. This function is
2247 * called when the driver is unable to post more iocbs to the ring due
2248 * to unavailability of space in the ring.
2249 **/
2250 static void
lpfc_sli_update_full_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)2251 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2252 {
2253 int ringno = pring->ringno;
2254
2255 pring->flag |= LPFC_CALL_RING_AVAILABLE;
2256
2257 wmb();
2258
2259 /*
2260 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
2261 * The HBA will tell us when an IOCB entry is available.
2262 */
2263 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
2264 readl(phba->CAregaddr); /* flush */
2265
2266 pring->stats.iocb_cmd_full++;
2267 }
2268
2269 /**
2270 * lpfc_sli_update_ring - Update chip attention register
2271 * @phba: Pointer to HBA context object.
2272 * @pring: Pointer to driver SLI ring object.
2273 *
2274 * This function updates the chip attention register bit for the
2275 * given ring to inform HBA that there is more work to be done
2276 * in this ring. The caller is not required to hold any lock.
2277 **/
2278 static void
lpfc_sli_update_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)2279 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2280 {
2281 int ringno = pring->ringno;
2282
2283 /*
2284 * Tell the HBA that there is work to do in this ring.
2285 */
2286 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
2287 wmb();
2288 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
2289 readl(phba->CAregaddr); /* flush */
2290 }
2291 }
2292
2293 /**
2294 * lpfc_sli_resume_iocb - Process iocbs in the txq
2295 * @phba: Pointer to HBA context object.
2296 * @pring: Pointer to driver SLI ring object.
2297 *
2298 * This function is called with hbalock held to post pending iocbs
2299 * in the txq to the firmware. This function is called when driver
2300 * detects space available in the ring.
2301 **/
2302 static void
lpfc_sli_resume_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)2303 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2304 {
2305 IOCB_t *iocb;
2306 struct lpfc_iocbq *nextiocb;
2307
2308 lockdep_assert_held(&phba->hbalock);
2309
2310 /*
2311 * Check to see if:
2312 * (a) there is anything on the txq to send
2313 * (b) link is up
2314 * (c) link attention events can be processed (fcp ring only)
2315 * (d) IOCB processing is not blocked by the outstanding mbox command.
2316 */
2317
2318 if (lpfc_is_link_up(phba) &&
2319 (!list_empty(&pring->txq)) &&
2320 (pring->ringno != LPFC_FCP_RING ||
2321 phba->sli.sli_flag & LPFC_PROCESS_LA)) {
2322
2323 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
2324 (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
2325 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
2326
2327 if (iocb)
2328 lpfc_sli_update_ring(phba, pring);
2329 else
2330 lpfc_sli_update_full_ring(phba, pring);
2331 }
2332
2333 return;
2334 }
2335
2336 /**
2337 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
2338 * @phba: Pointer to HBA context object.
2339 * @hbqno: HBQ number.
2340 *
2341 * This function is called with hbalock held to get the next
2342 * available slot for the given HBQ. If there is free slot
2343 * available for the HBQ it will return pointer to the next available
2344 * HBQ entry else it will return NULL.
2345 **/
2346 static struct lpfc_hbq_entry *
lpfc_sli_next_hbq_slot(struct lpfc_hba * phba,uint32_t hbqno)2347 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
2348 {
2349 struct hbq_s *hbqp = &phba->hbqs[hbqno];
2350
2351 lockdep_assert_held(&phba->hbalock);
2352
2353 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
2354 ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
2355 hbqp->next_hbqPutIdx = 0;
2356
2357 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
2358 uint32_t raw_index = phba->hbq_get[hbqno];
2359 uint32_t getidx = le32_to_cpu(raw_index);
2360
2361 hbqp->local_hbqGetIdx = getidx;
2362
2363 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
2364 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2365 "1802 HBQ %d: local_hbqGetIdx "
2366 "%u is > than hbqp->entry_count %u\n",
2367 hbqno, hbqp->local_hbqGetIdx,
2368 hbqp->entry_count);
2369
2370 phba->link_state = LPFC_HBA_ERROR;
2371 return NULL;
2372 }
2373
2374 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
2375 return NULL;
2376 }
2377
2378 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
2379 hbqp->hbqPutIdx;
2380 }
2381
2382 /**
2383 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
2384 * @phba: Pointer to HBA context object.
2385 *
2386 * This function is called with no lock held to free all the
2387 * hbq buffers while uninitializing the SLI interface. It also
2388 * frees the HBQ buffers returned by the firmware but not yet
2389 * processed by the upper layers.
2390 **/
2391 void
lpfc_sli_hbqbuf_free_all(struct lpfc_hba * phba)2392 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
2393 {
2394 struct lpfc_dmabuf *dmabuf, *next_dmabuf;
2395 struct hbq_dmabuf *hbq_buf;
2396 unsigned long flags;
2397 int i, hbq_count;
2398
2399 hbq_count = lpfc_sli_hbq_count();
2400 /* Return all memory used by all HBQs */
2401 spin_lock_irqsave(&phba->hbalock, flags);
2402 for (i = 0; i < hbq_count; ++i) {
2403 list_for_each_entry_safe(dmabuf, next_dmabuf,
2404 &phba->hbqs[i].hbq_buffer_list, list) {
2405 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
2406 list_del(&hbq_buf->dbuf.list);
2407 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
2408 }
2409 phba->hbqs[i].buffer_count = 0;
2410 }
2411
2412 /* Mark the HBQs not in use */
2413 phba->hbq_in_use = 0;
2414 spin_unlock_irqrestore(&phba->hbalock, flags);
2415 }
2416
2417 /**
2418 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2419 * @phba: Pointer to HBA context object.
2420 * @hbqno: HBQ number.
2421 * @hbq_buf: Pointer to HBQ buffer.
2422 *
2423 * This function is called with the hbalock held to post a
2424 * hbq buffer to the firmware. If the function finds an empty
2425 * slot in the HBQ, it will post the buffer. The function will return
2426 * pointer to the hbq entry if it successfully post the buffer
2427 * else it will return NULL.
2428 **/
2429 static int
lpfc_sli_hbq_to_firmware(struct lpfc_hba * phba,uint32_t hbqno,struct hbq_dmabuf * hbq_buf)2430 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2431 struct hbq_dmabuf *hbq_buf)
2432 {
2433 lockdep_assert_held(&phba->hbalock);
2434 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2435 }
2436
2437 /**
2438 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2439 * @phba: Pointer to HBA context object.
2440 * @hbqno: HBQ number.
2441 * @hbq_buf: Pointer to HBQ buffer.
2442 *
2443 * This function is called with the hbalock held to post a hbq buffer to the
2444 * firmware. If the function finds an empty slot in the HBQ, it will post the
2445 * buffer and place it on the hbq_buffer_list. The function will return zero if
2446 * it successfully post the buffer else it will return an error.
2447 **/
2448 static int
lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba * phba,uint32_t hbqno,struct hbq_dmabuf * hbq_buf)2449 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2450 struct hbq_dmabuf *hbq_buf)
2451 {
2452 struct lpfc_hbq_entry *hbqe;
2453 dma_addr_t physaddr = hbq_buf->dbuf.phys;
2454
2455 lockdep_assert_held(&phba->hbalock);
2456 /* Get next HBQ entry slot to use */
2457 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2458 if (hbqe) {
2459 struct hbq_s *hbqp = &phba->hbqs[hbqno];
2460
2461 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2462 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr));
2463 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2464 hbqe->bde.tus.f.bdeFlags = 0;
2465 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2466 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2467 /* Sync SLIM */
2468 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2469 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2470 /* flush */
2471 readl(phba->hbq_put + hbqno);
2472 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2473 return 0;
2474 } else
2475 return -ENOMEM;
2476 }
2477
2478 /**
2479 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2480 * @phba: Pointer to HBA context object.
2481 * @hbqno: HBQ number.
2482 * @hbq_buf: Pointer to HBQ buffer.
2483 *
2484 * This function is called with the hbalock held to post an RQE to the SLI4
2485 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2486 * the hbq_buffer_list and return zero, otherwise it will return an error.
2487 **/
2488 static int
lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba * phba,uint32_t hbqno,struct hbq_dmabuf * hbq_buf)2489 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2490 struct hbq_dmabuf *hbq_buf)
2491 {
2492 int rc;
2493 struct lpfc_rqe hrqe;
2494 struct lpfc_rqe drqe;
2495 struct lpfc_queue *hrq;
2496 struct lpfc_queue *drq;
2497
2498 if (hbqno != LPFC_ELS_HBQ)
2499 return 1;
2500 hrq = phba->sli4_hba.hdr_rq;
2501 drq = phba->sli4_hba.dat_rq;
2502
2503 lockdep_assert_held(&phba->hbalock);
2504 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2505 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2506 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2507 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2508 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2509 if (rc < 0)
2510 return rc;
2511 hbq_buf->tag = (rc | (hbqno << 16));
2512 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2513 return 0;
2514 }
2515
2516 /* HBQ for ELS and CT traffic. */
2517 static struct lpfc_hbq_init lpfc_els_hbq = {
2518 .rn = 1,
2519 .entry_count = 256,
2520 .mask_count = 0,
2521 .profile = 0,
2522 .ring_mask = (1 << LPFC_ELS_RING),
2523 .buffer_count = 0,
2524 .init_count = 40,
2525 .add_count = 40,
2526 };
2527
2528 /* Array of HBQs */
2529 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2530 &lpfc_els_hbq,
2531 };
2532
2533 /**
2534 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2535 * @phba: Pointer to HBA context object.
2536 * @hbqno: HBQ number.
2537 * @count: Number of HBQ buffers to be posted.
2538 *
2539 * This function is called with no lock held to post more hbq buffers to the
2540 * given HBQ. The function returns the number of HBQ buffers successfully
2541 * posted.
2542 **/
2543 static int
lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba * phba,uint32_t hbqno,uint32_t count)2544 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2545 {
2546 uint32_t i, posted = 0;
2547 unsigned long flags;
2548 struct hbq_dmabuf *hbq_buffer;
2549 LIST_HEAD(hbq_buf_list);
2550 if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2551 return 0;
2552
2553 if ((phba->hbqs[hbqno].buffer_count + count) >
2554 lpfc_hbq_defs[hbqno]->entry_count)
2555 count = lpfc_hbq_defs[hbqno]->entry_count -
2556 phba->hbqs[hbqno].buffer_count;
2557 if (!count)
2558 return 0;
2559 /* Allocate HBQ entries */
2560 for (i = 0; i < count; i++) {
2561 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2562 if (!hbq_buffer)
2563 break;
2564 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2565 }
2566 /* Check whether HBQ is still in use */
2567 spin_lock_irqsave(&phba->hbalock, flags);
2568 if (!phba->hbq_in_use)
2569 goto err;
2570 while (!list_empty(&hbq_buf_list)) {
2571 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2572 dbuf.list);
2573 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2574 (hbqno << 16));
2575 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2576 phba->hbqs[hbqno].buffer_count++;
2577 posted++;
2578 } else
2579 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2580 }
2581 spin_unlock_irqrestore(&phba->hbalock, flags);
2582 return posted;
2583 err:
2584 spin_unlock_irqrestore(&phba->hbalock, flags);
2585 while (!list_empty(&hbq_buf_list)) {
2586 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2587 dbuf.list);
2588 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2589 }
2590 return 0;
2591 }
2592
2593 /**
2594 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2595 * @phba: Pointer to HBA context object.
2596 * @qno: HBQ number.
2597 *
2598 * This function posts more buffers to the HBQ. This function
2599 * is called with no lock held. The function returns the number of HBQ entries
2600 * successfully allocated.
2601 **/
2602 int
lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba * phba,uint32_t qno)2603 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2604 {
2605 if (phba->sli_rev == LPFC_SLI_REV4)
2606 return 0;
2607 else
2608 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2609 lpfc_hbq_defs[qno]->add_count);
2610 }
2611
2612 /**
2613 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2614 * @phba: Pointer to HBA context object.
2615 * @qno: HBQ queue number.
2616 *
2617 * This function is called from SLI initialization code path with
2618 * no lock held to post initial HBQ buffers to firmware. The
2619 * function returns the number of HBQ entries successfully allocated.
2620 **/
2621 static int
lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba * phba,uint32_t qno)2622 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2623 {
2624 if (phba->sli_rev == LPFC_SLI_REV4)
2625 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2626 lpfc_hbq_defs[qno]->entry_count);
2627 else
2628 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2629 lpfc_hbq_defs[qno]->init_count);
2630 }
2631
2632 /*
2633 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2634 *
2635 * This function removes the first hbq buffer on an hbq list and returns a
2636 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2637 **/
2638 static struct hbq_dmabuf *
lpfc_sli_hbqbuf_get(struct list_head * rb_list)2639 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2640 {
2641 struct lpfc_dmabuf *d_buf;
2642
2643 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2644 if (!d_buf)
2645 return NULL;
2646 return container_of(d_buf, struct hbq_dmabuf, dbuf);
2647 }
2648
2649 /**
2650 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2651 * @phba: Pointer to HBA context object.
2652 * @hrq: HBQ number.
2653 *
2654 * This function removes the first RQ buffer on an RQ buffer list and returns a
2655 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2656 **/
2657 static struct rqb_dmabuf *
lpfc_sli_rqbuf_get(struct lpfc_hba * phba,struct lpfc_queue * hrq)2658 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2659 {
2660 struct lpfc_dmabuf *h_buf;
2661 struct lpfc_rqb *rqbp;
2662
2663 rqbp = hrq->rqbp;
2664 list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2665 struct lpfc_dmabuf, list);
2666 if (!h_buf)
2667 return NULL;
2668 rqbp->buffer_count--;
2669 return container_of(h_buf, struct rqb_dmabuf, hbuf);
2670 }
2671
2672 /**
2673 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2674 * @phba: Pointer to HBA context object.
2675 * @tag: Tag of the hbq buffer.
2676 *
2677 * This function searches for the hbq buffer associated with the given tag in
2678 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2679 * otherwise it returns NULL.
2680 **/
2681 static struct hbq_dmabuf *
lpfc_sli_hbqbuf_find(struct lpfc_hba * phba,uint32_t tag)2682 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2683 {
2684 struct lpfc_dmabuf *d_buf;
2685 struct hbq_dmabuf *hbq_buf;
2686 uint32_t hbqno;
2687
2688 hbqno = tag >> 16;
2689 if (hbqno >= LPFC_MAX_HBQS)
2690 return NULL;
2691
2692 spin_lock_irq(&phba->hbalock);
2693 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2694 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2695 if (hbq_buf->tag == tag) {
2696 spin_unlock_irq(&phba->hbalock);
2697 return hbq_buf;
2698 }
2699 }
2700 spin_unlock_irq(&phba->hbalock);
2701 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2702 "1803 Bad hbq tag. Data: x%x x%x\n",
2703 tag, phba->hbqs[tag >> 16].buffer_count);
2704 return NULL;
2705 }
2706
2707 /**
2708 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2709 * @phba: Pointer to HBA context object.
2710 * @hbq_buffer: Pointer to HBQ buffer.
2711 *
2712 * This function is called with hbalock. This function gives back
2713 * the hbq buffer to firmware. If the HBQ does not have space to
2714 * post the buffer, it will free the buffer.
2715 **/
2716 void
lpfc_sli_free_hbq(struct lpfc_hba * phba,struct hbq_dmabuf * hbq_buffer)2717 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2718 {
2719 uint32_t hbqno;
2720
2721 if (hbq_buffer) {
2722 hbqno = hbq_buffer->tag >> 16;
2723 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2724 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2725 }
2726 }
2727
2728 /**
2729 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2730 * @mbxCommand: mailbox command code.
2731 *
2732 * This function is called by the mailbox event handler function to verify
2733 * that the completed mailbox command is a legitimate mailbox command. If the
2734 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2735 * and the mailbox event handler will take the HBA offline.
2736 **/
2737 static int
lpfc_sli_chk_mbx_command(uint8_t mbxCommand)2738 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2739 {
2740 uint8_t ret;
2741
2742 switch (mbxCommand) {
2743 case MBX_LOAD_SM:
2744 case MBX_READ_NV:
2745 case MBX_WRITE_NV:
2746 case MBX_WRITE_VPARMS:
2747 case MBX_RUN_BIU_DIAG:
2748 case MBX_INIT_LINK:
2749 case MBX_DOWN_LINK:
2750 case MBX_CONFIG_LINK:
2751 case MBX_CONFIG_RING:
2752 case MBX_RESET_RING:
2753 case MBX_READ_CONFIG:
2754 case MBX_READ_RCONFIG:
2755 case MBX_READ_SPARM:
2756 case MBX_READ_STATUS:
2757 case MBX_READ_RPI:
2758 case MBX_READ_XRI:
2759 case MBX_READ_REV:
2760 case MBX_READ_LNK_STAT:
2761 case MBX_REG_LOGIN:
2762 case MBX_UNREG_LOGIN:
2763 case MBX_CLEAR_LA:
2764 case MBX_DUMP_MEMORY:
2765 case MBX_DUMP_CONTEXT:
2766 case MBX_RUN_DIAGS:
2767 case MBX_RESTART:
2768 case MBX_UPDATE_CFG:
2769 case MBX_DOWN_LOAD:
2770 case MBX_DEL_LD_ENTRY:
2771 case MBX_RUN_PROGRAM:
2772 case MBX_SET_MASK:
2773 case MBX_SET_VARIABLE:
2774 case MBX_UNREG_D_ID:
2775 case MBX_KILL_BOARD:
2776 case MBX_CONFIG_FARP:
2777 case MBX_BEACON:
2778 case MBX_LOAD_AREA:
2779 case MBX_RUN_BIU_DIAG64:
2780 case MBX_CONFIG_PORT:
2781 case MBX_READ_SPARM64:
2782 case MBX_READ_RPI64:
2783 case MBX_REG_LOGIN64:
2784 case MBX_READ_TOPOLOGY:
2785 case MBX_WRITE_WWN:
2786 case MBX_SET_DEBUG:
2787 case MBX_LOAD_EXP_ROM:
2788 case MBX_ASYNCEVT_ENABLE:
2789 case MBX_REG_VPI:
2790 case MBX_UNREG_VPI:
2791 case MBX_HEARTBEAT:
2792 case MBX_PORT_CAPABILITIES:
2793 case MBX_PORT_IOV_CONTROL:
2794 case MBX_SLI4_CONFIG:
2795 case MBX_SLI4_REQ_FTRS:
2796 case MBX_REG_FCFI:
2797 case MBX_UNREG_FCFI:
2798 case MBX_REG_VFI:
2799 case MBX_UNREG_VFI:
2800 case MBX_INIT_VPI:
2801 case MBX_INIT_VFI:
2802 case MBX_RESUME_RPI:
2803 case MBX_READ_EVENT_LOG_STATUS:
2804 case MBX_READ_EVENT_LOG:
2805 case MBX_SECURITY_MGMT:
2806 case MBX_AUTH_PORT:
2807 case MBX_ACCESS_VDATA:
2808 ret = mbxCommand;
2809 break;
2810 default:
2811 ret = MBX_SHUTDOWN;
2812 break;
2813 }
2814 return ret;
2815 }
2816
2817 /**
2818 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2819 * @phba: Pointer to HBA context object.
2820 * @pmboxq: Pointer to mailbox command.
2821 *
2822 * This is completion handler function for mailbox commands issued from
2823 * lpfc_sli_issue_mbox_wait function. This function is called by the
2824 * mailbox event handler function with no lock held. This function
2825 * will wake up thread waiting on the wait queue pointed by context1
2826 * of the mailbox.
2827 **/
2828 void
lpfc_sli_wake_mbox_wait(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq)2829 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2830 {
2831 unsigned long drvr_flag;
2832 struct completion *pmbox_done;
2833
2834 /*
2835 * If pmbox_done is empty, the driver thread gave up waiting and
2836 * continued running.
2837 */
2838 pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2839 spin_lock_irqsave(&phba->hbalock, drvr_flag);
2840 pmbox_done = pmboxq->ctx_u.mbox_wait;
2841 if (pmbox_done)
2842 complete(pmbox_done);
2843 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2844 return;
2845 }
2846
2847 /**
2848 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2849 * @phba: Pointer to HBA context object.
2850 * @pmb: Pointer to mailbox object.
2851 *
2852 * This function is the default mailbox completion handler. It
2853 * frees the memory resources associated with the completed mailbox
2854 * command. If the completed command is a REG_LOGIN mailbox command,
2855 * this function will issue a UREG_LOGIN to re-claim the RPI.
2856 **/
2857 void
lpfc_sli_def_mbox_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)2858 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2859 {
2860 struct lpfc_vport *vport = pmb->vport;
2861 struct lpfc_dmabuf *mp;
2862 struct lpfc_nodelist *ndlp;
2863 struct Scsi_Host *shost;
2864 uint16_t rpi, vpi;
2865 int rc;
2866
2867 /*
2868 * If a REG_LOGIN succeeded after node is destroyed or node
2869 * is in re-discovery driver need to cleanup the RPI.
2870 */
2871 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag) &&
2872 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2873 !pmb->u.mb.mbxStatus) {
2874 mp = pmb->ctx_buf;
2875 if (mp) {
2876 pmb->ctx_buf = NULL;
2877 lpfc_mbuf_free(phba, mp->virt, mp->phys);
2878 kfree(mp);
2879 }
2880 rpi = pmb->u.mb.un.varWords[0];
2881 vpi = pmb->u.mb.un.varRegLogin.vpi;
2882 if (phba->sli_rev == LPFC_SLI_REV4)
2883 vpi -= phba->sli4_hba.max_cfg_param.vpi_base;
2884 lpfc_unreg_login(phba, vpi, rpi, pmb);
2885 pmb->vport = vport;
2886 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2887 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2888 if (rc != MBX_NOT_FINISHED)
2889 return;
2890 }
2891
2892 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2893 !test_bit(FC_UNLOADING, &phba->pport->load_flag) &&
2894 !pmb->u.mb.mbxStatus) {
2895 shost = lpfc_shost_from_vport(vport);
2896 spin_lock_irq(shost->host_lock);
2897 vport->vpi_state |= LPFC_VPI_REGISTERED;
2898 spin_unlock_irq(shost->host_lock);
2899 clear_bit(FC_VPORT_NEEDS_REG_VPI, &vport->fc_flag);
2900 }
2901
2902 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2903 ndlp = pmb->ctx_ndlp;
2904 lpfc_nlp_put(ndlp);
2905 }
2906
2907 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2908 ndlp = pmb->ctx_ndlp;
2909
2910 /* Check to see if there are any deferred events to process */
2911 if (ndlp) {
2912 lpfc_printf_vlog(
2913 vport,
2914 KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2915 "1438 UNREG cmpl deferred mbox x%x "
2916 "on NPort x%x Data: x%lx x%x x%px x%lx x%x\n",
2917 ndlp->nlp_rpi, ndlp->nlp_DID,
2918 ndlp->nlp_flag, ndlp->nlp_defer_did,
2919 ndlp, vport->load_flag, kref_read(&ndlp->kref));
2920
2921 if (test_bit(NLP_UNREG_INP, &ndlp->nlp_flag) &&
2922 ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING) {
2923 clear_bit(NLP_UNREG_INP, &ndlp->nlp_flag);
2924 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2925 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2926 } else {
2927 clear_bit(NLP_UNREG_INP, &ndlp->nlp_flag);
2928 }
2929
2930 /* The unreg_login mailbox is complete and had a
2931 * reference that has to be released. The PLOGI
2932 * got its own ref.
2933 */
2934 lpfc_nlp_put(ndlp);
2935 pmb->ctx_ndlp = NULL;
2936 }
2937 }
2938
2939 /* This nlp_put pairs with lpfc_sli4_resume_rpi */
2940 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) {
2941 ndlp = pmb->ctx_ndlp;
2942 lpfc_nlp_put(ndlp);
2943 }
2944
2945 /* Check security permission status on INIT_LINK mailbox command */
2946 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2947 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2948 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2949 "2860 SLI authentication is required "
2950 "for INIT_LINK but has not done yet\n");
2951
2952 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2953 lpfc_sli4_mbox_cmd_free(phba, pmb);
2954 else
2955 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
2956 }
2957 /**
2958 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2959 * @phba: Pointer to HBA context object.
2960 * @pmb: Pointer to mailbox object.
2961 *
2962 * This function is the unreg rpi mailbox completion handler. It
2963 * frees the memory resources associated with the completed mailbox
2964 * command. An additional reference is put on the ndlp to prevent
2965 * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2966 * the unreg mailbox command completes, this routine puts the
2967 * reference back.
2968 *
2969 **/
2970 void
lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)2971 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2972 {
2973 struct lpfc_vport *vport = pmb->vport;
2974 struct lpfc_nodelist *ndlp;
2975 bool unreg_inp;
2976
2977 ndlp = pmb->ctx_ndlp;
2978 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2979 if (phba->sli_rev == LPFC_SLI_REV4 &&
2980 (bf_get(lpfc_sli_intf_if_type,
2981 &phba->sli4_hba.sli_intf) >=
2982 LPFC_SLI_INTF_IF_TYPE_2)) {
2983 if (ndlp) {
2984 lpfc_printf_vlog(
2985 vport, KERN_INFO,
2986 LOG_MBOX | LOG_SLI | LOG_NODE,
2987 "0010 UNREG_LOGIN vpi:x%x "
2988 "rpi:%x DID:%x defer x%x flg x%lx "
2989 "x%px\n",
2990 vport->vpi, ndlp->nlp_rpi,
2991 ndlp->nlp_DID, ndlp->nlp_defer_did,
2992 ndlp->nlp_flag,
2993 ndlp);
2994
2995 /* Cleanup the nlp_flag now that the UNREG RPI
2996 * has completed.
2997 */
2998 unreg_inp = test_and_clear_bit(NLP_UNREG_INP,
2999 &ndlp->nlp_flag);
3000 clear_bit(NLP_LOGO_ACC, &ndlp->nlp_flag);
3001
3002 /* Check to see if there are any deferred
3003 * events to process
3004 */
3005 if (unreg_inp &&
3006 ndlp->nlp_defer_did !=
3007 NLP_EVT_NOTHING_PENDING) {
3008 lpfc_printf_vlog(
3009 vport, KERN_INFO,
3010 LOG_MBOX | LOG_SLI | LOG_NODE,
3011 "4111 UNREG cmpl deferred "
3012 "clr x%x on "
3013 "NPort x%x Data: x%x x%px\n",
3014 ndlp->nlp_rpi, ndlp->nlp_DID,
3015 ndlp->nlp_defer_did, ndlp);
3016 ndlp->nlp_defer_did =
3017 NLP_EVT_NOTHING_PENDING;
3018 lpfc_issue_els_plogi(
3019 vport, ndlp->nlp_DID, 0);
3020 }
3021
3022 lpfc_nlp_put(ndlp);
3023 }
3024 }
3025 }
3026
3027 mempool_free(pmb, phba->mbox_mem_pool);
3028 }
3029
3030 /**
3031 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
3032 * @phba: Pointer to HBA context object.
3033 *
3034 * This function is called with no lock held. This function processes all
3035 * the completed mailbox commands and gives it to upper layers. The interrupt
3036 * service routine processes mailbox completion interrupt and adds completed
3037 * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
3038 * Worker thread call lpfc_sli_handle_mb_event, which will return the
3039 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
3040 * function returns the mailbox commands to the upper layer by calling the
3041 * completion handler function of each mailbox.
3042 **/
3043 int
lpfc_sli_handle_mb_event(struct lpfc_hba * phba)3044 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
3045 {
3046 MAILBOX_t *pmbox;
3047 LPFC_MBOXQ_t *pmb;
3048 int rc;
3049 LIST_HEAD(cmplq);
3050
3051 phba->sli.slistat.mbox_event++;
3052
3053 /* Get all completed mailboxe buffers into the cmplq */
3054 spin_lock_irq(&phba->hbalock);
3055 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
3056 spin_unlock_irq(&phba->hbalock);
3057
3058 /* Get a Mailbox buffer to setup mailbox commands for callback */
3059 do {
3060 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
3061 if (pmb == NULL)
3062 break;
3063
3064 pmbox = &pmb->u.mb;
3065
3066 if (pmbox->mbxCommand != MBX_HEARTBEAT) {
3067 if (pmb->vport) {
3068 lpfc_debugfs_disc_trc(pmb->vport,
3069 LPFC_DISC_TRC_MBOX_VPORT,
3070 "MBOX cmpl vport: cmd:x%x mb:x%x x%x",
3071 (uint32_t)pmbox->mbxCommand,
3072 pmbox->un.varWords[0],
3073 pmbox->un.varWords[1]);
3074 }
3075 else {
3076 lpfc_debugfs_disc_trc(phba->pport,
3077 LPFC_DISC_TRC_MBOX,
3078 "MBOX cmpl: cmd:x%x mb:x%x x%x",
3079 (uint32_t)pmbox->mbxCommand,
3080 pmbox->un.varWords[0],
3081 pmbox->un.varWords[1]);
3082 }
3083 }
3084
3085 /*
3086 * It is a fatal error if unknown mbox command completion.
3087 */
3088 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
3089 MBX_SHUTDOWN) {
3090 /* Unknown mailbox command compl */
3091 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3092 "(%d):0323 Unknown Mailbox command "
3093 "x%x (x%x/x%x) Cmpl\n",
3094 pmb->vport ? pmb->vport->vpi :
3095 LPFC_VPORT_UNKNOWN,
3096 pmbox->mbxCommand,
3097 lpfc_sli_config_mbox_subsys_get(phba,
3098 pmb),
3099 lpfc_sli_config_mbox_opcode_get(phba,
3100 pmb));
3101 phba->link_state = LPFC_HBA_ERROR;
3102 phba->work_hs = HS_FFER3;
3103 lpfc_handle_eratt(phba);
3104 continue;
3105 }
3106
3107 if (pmbox->mbxStatus) {
3108 phba->sli.slistat.mbox_stat_err++;
3109 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
3110 /* Mbox cmd cmpl error - RETRYing */
3111 lpfc_printf_log(phba, KERN_INFO,
3112 LOG_MBOX | LOG_SLI,
3113 "(%d):0305 Mbox cmd cmpl "
3114 "error - RETRYing Data: x%x "
3115 "(x%x/x%x) x%x x%x x%x\n",
3116 pmb->vport ? pmb->vport->vpi :
3117 LPFC_VPORT_UNKNOWN,
3118 pmbox->mbxCommand,
3119 lpfc_sli_config_mbox_subsys_get(phba,
3120 pmb),
3121 lpfc_sli_config_mbox_opcode_get(phba,
3122 pmb),
3123 pmbox->mbxStatus,
3124 pmbox->un.varWords[0],
3125 pmb->vport ? pmb->vport->port_state :
3126 LPFC_VPORT_UNKNOWN);
3127 pmbox->mbxStatus = 0;
3128 pmbox->mbxOwner = OWN_HOST;
3129 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
3130 if (rc != MBX_NOT_FINISHED)
3131 continue;
3132 }
3133 }
3134
3135 /* Mailbox cmd <cmd> Cmpl <cmpl> */
3136 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
3137 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps "
3138 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
3139 "x%x x%x x%x\n",
3140 pmb->vport ? pmb->vport->vpi : 0,
3141 pmbox->mbxCommand,
3142 lpfc_sli_config_mbox_subsys_get(phba, pmb),
3143 lpfc_sli_config_mbox_opcode_get(phba, pmb),
3144 pmb->mbox_cmpl,
3145 *((uint32_t *) pmbox),
3146 pmbox->un.varWords[0],
3147 pmbox->un.varWords[1],
3148 pmbox->un.varWords[2],
3149 pmbox->un.varWords[3],
3150 pmbox->un.varWords[4],
3151 pmbox->un.varWords[5],
3152 pmbox->un.varWords[6],
3153 pmbox->un.varWords[7],
3154 pmbox->un.varWords[8],
3155 pmbox->un.varWords[9],
3156 pmbox->un.varWords[10]);
3157
3158 if (pmb->mbox_cmpl)
3159 pmb->mbox_cmpl(phba,pmb);
3160 } while (1);
3161 return 0;
3162 }
3163
3164 /**
3165 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
3166 * @phba: Pointer to HBA context object.
3167 * @pring: Pointer to driver SLI ring object.
3168 * @tag: buffer tag.
3169 *
3170 * This function is called with no lock held. When QUE_BUFTAG_BIT bit
3171 * is set in the tag the buffer is posted for a particular exchange,
3172 * the function will return the buffer without replacing the buffer.
3173 * If the buffer is for unsolicited ELS or CT traffic, this function
3174 * returns the buffer and also posts another buffer to the firmware.
3175 **/
3176 static struct lpfc_dmabuf *
lpfc_sli_get_buff(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t tag)3177 lpfc_sli_get_buff(struct lpfc_hba *phba,
3178 struct lpfc_sli_ring *pring,
3179 uint32_t tag)
3180 {
3181 struct hbq_dmabuf *hbq_entry;
3182
3183 if (tag & QUE_BUFTAG_BIT)
3184 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
3185 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
3186 if (!hbq_entry)
3187 return NULL;
3188 return &hbq_entry->dbuf;
3189 }
3190
3191 /**
3192 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer
3193 * containing a NVME LS request.
3194 * @phba: pointer to lpfc hba data structure.
3195 * @piocb: pointer to the iocbq struct representing the sequence starting
3196 * frame.
3197 *
3198 * This routine initially validates the NVME LS, validates there is a login
3199 * with the port that sent the LS, and then calls the appropriate nvme host
3200 * or target LS request handler.
3201 **/
3202 static void
lpfc_nvme_unsol_ls_handler(struct lpfc_hba * phba,struct lpfc_iocbq * piocb)3203 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
3204 {
3205 struct lpfc_nodelist *ndlp;
3206 struct lpfc_dmabuf *d_buf;
3207 struct hbq_dmabuf *nvmebuf;
3208 struct fc_frame_header *fc_hdr;
3209 struct lpfc_async_xchg_ctx *axchg = NULL;
3210 char *failwhy = NULL;
3211 uint32_t oxid, sid, did, fctl, size;
3212 int ret = 1;
3213
3214 d_buf = piocb->cmd_dmabuf;
3215
3216 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
3217 fc_hdr = nvmebuf->hbuf.virt;
3218 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
3219 sid = sli4_sid_from_fc_hdr(fc_hdr);
3220 did = sli4_did_from_fc_hdr(fc_hdr);
3221 fctl = (fc_hdr->fh_f_ctl[0] << 16 |
3222 fc_hdr->fh_f_ctl[1] << 8 |
3223 fc_hdr->fh_f_ctl[2]);
3224 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl);
3225
3226 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n",
3227 oxid, size, sid);
3228
3229 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) {
3230 failwhy = "Driver Unloading";
3231 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) {
3232 failwhy = "NVME FC4 Disabled";
3233 } else if (!phba->nvmet_support && !phba->pport->localport) {
3234 failwhy = "No Localport";
3235 } else if (phba->nvmet_support && !phba->targetport) {
3236 failwhy = "No Targetport";
3237 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) {
3238 failwhy = "Bad NVME LS R_CTL";
3239 } else if (unlikely((fctl & 0x00FF0000) !=
3240 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) {
3241 failwhy = "Bad NVME LS F_CTL";
3242 } else {
3243 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC);
3244 if (!axchg)
3245 failwhy = "No CTX memory";
3246 }
3247
3248 if (unlikely(failwhy)) {
3249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3250 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n",
3251 sid, oxid, failwhy);
3252 goto out_fail;
3253 }
3254
3255 /* validate the source of the LS is logged in */
3256 ndlp = lpfc_findnode_did(phba->pport, sid);
3257 if (!ndlp ||
3258 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
3259 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
3260 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
3261 "6216 NVME Unsol rcv: No ndlp: "
3262 "NPort_ID x%x oxid x%x\n",
3263 sid, oxid);
3264 goto out_fail;
3265 }
3266
3267 axchg->phba = phba;
3268 axchg->ndlp = ndlp;
3269 axchg->size = size;
3270 axchg->oxid = oxid;
3271 axchg->sid = sid;
3272 axchg->wqeq = NULL;
3273 axchg->state = LPFC_NVME_STE_LS_RCV;
3274 axchg->entry_cnt = 1;
3275 axchg->rqb_buffer = (void *)nvmebuf;
3276 axchg->hdwq = &phba->sli4_hba.hdwq[0];
3277 axchg->payload = nvmebuf->dbuf.virt;
3278 INIT_LIST_HEAD(&axchg->list);
3279
3280 if (phba->nvmet_support) {
3281 ret = lpfc_nvmet_handle_lsreq(phba, axchg);
3282 spin_lock_irq(&ndlp->lock);
3283 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) {
3284 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH;
3285 spin_unlock_irq(&ndlp->lock);
3286
3287 /* This reference is a single occurrence to hold the
3288 * node valid until the nvmet transport calls
3289 * host_release.
3290 */
3291 if (!lpfc_nlp_get(ndlp))
3292 goto out_fail;
3293
3294 lpfc_printf_log(phba, KERN_ERR, LOG_NODE,
3295 "6206 NVMET unsol ls_req ndlp x%px "
3296 "DID x%x xflags x%x refcnt %d\n",
3297 ndlp, ndlp->nlp_DID,
3298 ndlp->fc4_xpt_flags,
3299 kref_read(&ndlp->kref));
3300 } else {
3301 spin_unlock_irq(&ndlp->lock);
3302 }
3303 } else {
3304 ret = lpfc_nvme_handle_lsreq(phba, axchg);
3305 }
3306
3307 /* if zero, LS was successfully handled. If non-zero, LS not handled */
3308 if (!ret)
3309 return;
3310
3311 out_fail:
3312 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3313 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X "
3314 "NVMe%s handler failed %d\n",
3315 did, sid, oxid,
3316 (phba->nvmet_support) ? "T" : "I", ret);
3317
3318 /* recycle receive buffer */
3319 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
3320
3321 /* If start of new exchange, abort it */
3322 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX)))
3323 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid);
3324
3325 if (ret)
3326 kfree(axchg);
3327 }
3328
3329 /**
3330 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
3331 * @phba: Pointer to HBA context object.
3332 * @pring: Pointer to driver SLI ring object.
3333 * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
3334 * @fch_r_ctl: the r_ctl for the first frame of the sequence.
3335 * @fch_type: the type for the first frame of the sequence.
3336 *
3337 * This function is called with no lock held. This function uses the r_ctl and
3338 * type of the received sequence to find the correct callback function to call
3339 * to process the sequence.
3340 **/
3341 static int
lpfc_complete_unsol_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * saveq,uint32_t fch_r_ctl,uint32_t fch_type)3342 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3343 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
3344 uint32_t fch_type)
3345 {
3346 int i;
3347
3348 switch (fch_type) {
3349 case FC_TYPE_NVME:
3350 lpfc_nvme_unsol_ls_handler(phba, saveq);
3351 return 1;
3352 default:
3353 break;
3354 }
3355
3356 /* unSolicited Responses */
3357 if (pring->prt[0].profile) {
3358 if (pring->prt[0].lpfc_sli_rcv_unsol_event)
3359 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
3360 saveq);
3361 return 1;
3362 }
3363 /* We must search, based on rctl / type
3364 for the right routine */
3365 for (i = 0; i < pring->num_mask; i++) {
3366 if ((pring->prt[i].rctl == fch_r_ctl) &&
3367 (pring->prt[i].type == fch_type)) {
3368 if (pring->prt[i].lpfc_sli_rcv_unsol_event)
3369 (pring->prt[i].lpfc_sli_rcv_unsol_event)
3370 (phba, pring, saveq);
3371 return 1;
3372 }
3373 }
3374 return 0;
3375 }
3376
3377 static void
lpfc_sli_prep_unsol_wqe(struct lpfc_hba * phba,struct lpfc_iocbq * saveq)3378 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba,
3379 struct lpfc_iocbq *saveq)
3380 {
3381 IOCB_t *irsp;
3382 union lpfc_wqe128 *wqe;
3383 u16 i = 0;
3384
3385 irsp = &saveq->iocb;
3386 wqe = &saveq->wqe;
3387
3388 /* Fill wcqe with the IOCB status fields */
3389 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus);
3390 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount;
3391 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4];
3392 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len;
3393
3394 /* Source ID */
3395 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo);
3396
3397 /* rx-id of the response frame */
3398 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext);
3399
3400 /* ox-id of the frame */
3401 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
3402 irsp->unsli3.rcvsli3.ox_id);
3403
3404 /* DID */
3405 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
3406 irsp->un.rcvels.remoteID);
3407
3408 /* unsol data len */
3409 for (i = 0; i < irsp->ulpBdeCount; i++) {
3410 struct lpfc_hbq_entry *hbqe = NULL;
3411
3412 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
3413 if (i == 0) {
3414 hbqe = (struct lpfc_hbq_entry *)
3415 &irsp->un.ulpWord[0];
3416 saveq->wqe.gen_req.bde.tus.f.bdeSize =
3417 hbqe->bde.tus.f.bdeSize;
3418 } else if (i == 1) {
3419 hbqe = (struct lpfc_hbq_entry *)
3420 &irsp->unsli3.sli3Words[4];
3421 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize;
3422 }
3423 }
3424 }
3425 }
3426
3427 /**
3428 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
3429 * @phba: Pointer to HBA context object.
3430 * @pring: Pointer to driver SLI ring object.
3431 * @saveq: Pointer to the unsolicited iocb.
3432 *
3433 * This function is called with no lock held by the ring event handler
3434 * when there is an unsolicited iocb posted to the response ring by the
3435 * firmware. This function gets the buffer associated with the iocbs
3436 * and calls the event handler for the ring. This function handles both
3437 * qring buffers and hbq buffers.
3438 * When the function returns 1 the caller can free the iocb object otherwise
3439 * upper layer functions will free the iocb objects.
3440 **/
3441 static int
lpfc_sli_process_unsol_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * saveq)3442 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3443 struct lpfc_iocbq *saveq)
3444 {
3445 IOCB_t * irsp;
3446 WORD5 * w5p;
3447 dma_addr_t paddr;
3448 uint32_t Rctl, Type;
3449 struct lpfc_iocbq *iocbq;
3450 struct lpfc_dmabuf *dmzbuf;
3451
3452 irsp = &saveq->iocb;
3453 saveq->vport = phba->pport;
3454
3455 if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
3456 if (pring->lpfc_sli_rcv_async_status)
3457 pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
3458 else
3459 lpfc_printf_log(phba,
3460 KERN_WARNING,
3461 LOG_SLI,
3462 "0316 Ring %d handler: unexpected "
3463 "ASYNC_STATUS iocb received evt_code "
3464 "0x%x\n",
3465 pring->ringno,
3466 irsp->un.asyncstat.evt_code);
3467 return 1;
3468 }
3469
3470 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
3471 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
3472 if (irsp->ulpBdeCount > 0) {
3473 dmzbuf = lpfc_sli_get_buff(phba, pring,
3474 irsp->un.ulpWord[3]);
3475 lpfc_in_buf_free(phba, dmzbuf);
3476 }
3477
3478 if (irsp->ulpBdeCount > 1) {
3479 dmzbuf = lpfc_sli_get_buff(phba, pring,
3480 irsp->unsli3.sli3Words[3]);
3481 lpfc_in_buf_free(phba, dmzbuf);
3482 }
3483
3484 if (irsp->ulpBdeCount > 2) {
3485 dmzbuf = lpfc_sli_get_buff(phba, pring,
3486 irsp->unsli3.sli3Words[7]);
3487 lpfc_in_buf_free(phba, dmzbuf);
3488 }
3489
3490 return 1;
3491 }
3492
3493 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
3494 if (irsp->ulpBdeCount != 0) {
3495 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring,
3496 irsp->un.ulpWord[3]);
3497 if (!saveq->cmd_dmabuf)
3498 lpfc_printf_log(phba,
3499 KERN_ERR,
3500 LOG_SLI,
3501 "0341 Ring %d Cannot find buffer for "
3502 "an unsolicited iocb. tag 0x%x\n",
3503 pring->ringno,
3504 irsp->un.ulpWord[3]);
3505 }
3506 if (irsp->ulpBdeCount == 2) {
3507 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring,
3508 irsp->unsli3.sli3Words[7]);
3509 if (!saveq->bpl_dmabuf)
3510 lpfc_printf_log(phba,
3511 KERN_ERR,
3512 LOG_SLI,
3513 "0342 Ring %d Cannot find buffer for an"
3514 " unsolicited iocb. tag 0x%x\n",
3515 pring->ringno,
3516 irsp->unsli3.sli3Words[7]);
3517 }
3518 list_for_each_entry(iocbq, &saveq->list, list) {
3519 irsp = &iocbq->iocb;
3520 if (irsp->ulpBdeCount != 0) {
3521 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba,
3522 pring,
3523 irsp->un.ulpWord[3]);
3524 if (!iocbq->cmd_dmabuf)
3525 lpfc_printf_log(phba,
3526 KERN_ERR,
3527 LOG_SLI,
3528 "0343 Ring %d Cannot find "
3529 "buffer for an unsolicited iocb"
3530 ". tag 0x%x\n", pring->ringno,
3531 irsp->un.ulpWord[3]);
3532 }
3533 if (irsp->ulpBdeCount == 2) {
3534 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba,
3535 pring,
3536 irsp->unsli3.sli3Words[7]);
3537 if (!iocbq->bpl_dmabuf)
3538 lpfc_printf_log(phba,
3539 KERN_ERR,
3540 LOG_SLI,
3541 "0344 Ring %d Cannot find "
3542 "buffer for an unsolicited "
3543 "iocb. tag 0x%x\n",
3544 pring->ringno,
3545 irsp->unsli3.sli3Words[7]);
3546 }
3547 }
3548 } else {
3549 paddr = getPaddr(irsp->un.cont64[0].addrHigh,
3550 irsp->un.cont64[0].addrLow);
3551 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring,
3552 paddr);
3553 if (irsp->ulpBdeCount == 2) {
3554 paddr = getPaddr(irsp->un.cont64[1].addrHigh,
3555 irsp->un.cont64[1].addrLow);
3556 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba,
3557 pring,
3558 paddr);
3559 }
3560 }
3561
3562 if (irsp->ulpBdeCount != 0 &&
3563 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
3564 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
3565 int found = 0;
3566
3567 /* search continue save q for same XRI */
3568 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
3569 if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
3570 saveq->iocb.unsli3.rcvsli3.ox_id) {
3571 list_add_tail(&saveq->list, &iocbq->list);
3572 found = 1;
3573 break;
3574 }
3575 }
3576 if (!found)
3577 list_add_tail(&saveq->clist,
3578 &pring->iocb_continue_saveq);
3579
3580 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
3581 list_del_init(&iocbq->clist);
3582 saveq = iocbq;
3583 irsp = &saveq->iocb;
3584 } else {
3585 return 0;
3586 }
3587 }
3588 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
3589 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
3590 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
3591 Rctl = FC_RCTL_ELS_REQ;
3592 Type = FC_TYPE_ELS;
3593 } else {
3594 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
3595 Rctl = w5p->hcsw.Rctl;
3596 Type = w5p->hcsw.Type;
3597
3598 /* Firmware Workaround */
3599 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
3600 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
3601 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3602 Rctl = FC_RCTL_ELS_REQ;
3603 Type = FC_TYPE_ELS;
3604 w5p->hcsw.Rctl = Rctl;
3605 w5p->hcsw.Type = Type;
3606 }
3607 }
3608
3609 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) &&
3610 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX ||
3611 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3612 if (irsp->unsli3.rcvsli3.vpi == 0xffff)
3613 saveq->vport = phba->pport;
3614 else
3615 saveq->vport = lpfc_find_vport_by_vpid(phba,
3616 irsp->unsli3.rcvsli3.vpi);
3617 }
3618
3619 /* Prepare WQE with Unsol frame */
3620 lpfc_sli_prep_unsol_wqe(phba, saveq);
3621
3622 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
3623 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3624 "0313 Ring %d handler: unexpected Rctl x%x "
3625 "Type x%x received\n",
3626 pring->ringno, Rctl, Type);
3627
3628 return 1;
3629 }
3630
3631 /**
3632 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
3633 * @phba: Pointer to HBA context object.
3634 * @pring: Pointer to driver SLI ring object.
3635 * @prspiocb: Pointer to response iocb object.
3636 *
3637 * This function looks up the iocb_lookup table to get the command iocb
3638 * corresponding to the given response iocb using the iotag of the
3639 * response iocb. The driver calls this function with the hbalock held
3640 * for SLI3 ports or the ring lock held for SLI4 ports.
3641 * This function returns the command iocb object if it finds the command
3642 * iocb else returns NULL.
3643 **/
3644 static struct lpfc_iocbq *
lpfc_sli_iocbq_lookup(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * prspiocb)3645 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
3646 struct lpfc_sli_ring *pring,
3647 struct lpfc_iocbq *prspiocb)
3648 {
3649 struct lpfc_iocbq *cmd_iocb = NULL;
3650 u16 iotag;
3651
3652 if (phba->sli_rev == LPFC_SLI_REV4)
3653 iotag = get_wqe_reqtag(prspiocb);
3654 else
3655 iotag = prspiocb->iocb.ulpIoTag;
3656
3657 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3658 cmd_iocb = phba->sli.iocbq_lookup[iotag];
3659 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) {
3660 /* remove from txcmpl queue list */
3661 list_del_init(&cmd_iocb->list);
3662 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
3663 pring->txcmplq_cnt--;
3664 return cmd_iocb;
3665 }
3666 }
3667
3668 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3669 "0317 iotag x%x is out of "
3670 "range: max iotag x%x\n",
3671 iotag, phba->sli.last_iotag);
3672 return NULL;
3673 }
3674
3675 /**
3676 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3677 * @phba: Pointer to HBA context object.
3678 * @pring: Pointer to driver SLI ring object.
3679 * @iotag: IOCB tag.
3680 *
3681 * This function looks up the iocb_lookup table to get the command iocb
3682 * corresponding to the given iotag. The driver calls this function with
3683 * the ring lock held because this function is an SLI4 port only helper.
3684 * This function returns the command iocb object if it finds the command
3685 * iocb else returns NULL.
3686 **/
3687 static struct lpfc_iocbq *
lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint16_t iotag)3688 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3689 struct lpfc_sli_ring *pring, uint16_t iotag)
3690 {
3691 struct lpfc_iocbq *cmd_iocb = NULL;
3692
3693 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3694 cmd_iocb = phba->sli.iocbq_lookup[iotag];
3695 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) {
3696 /* remove from txcmpl queue list */
3697 list_del_init(&cmd_iocb->list);
3698 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
3699 pring->txcmplq_cnt--;
3700 return cmd_iocb;
3701 }
3702 }
3703
3704 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3705 "0372 iotag x%x lookup error: max iotag (x%x) "
3706 "cmd_flag x%x\n",
3707 iotag, phba->sli.last_iotag,
3708 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff);
3709 return NULL;
3710 }
3711
3712 /**
3713 * lpfc_sli_process_sol_iocb - process solicited iocb completion
3714 * @phba: Pointer to HBA context object.
3715 * @pring: Pointer to driver SLI ring object.
3716 * @saveq: Pointer to the response iocb to be processed.
3717 *
3718 * This function is called by the ring event handler for non-fcp
3719 * rings when there is a new response iocb in the response ring.
3720 * The caller is not required to hold any locks. This function
3721 * gets the command iocb associated with the response iocb and
3722 * calls the completion handler for the command iocb. If there
3723 * is no completion handler, the function will free the resources
3724 * associated with command iocb. If the response iocb is for
3725 * an already aborted command iocb, the status of the completion
3726 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3727 * This function always returns 1.
3728 **/
3729 static int
lpfc_sli_process_sol_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * saveq)3730 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3731 struct lpfc_iocbq *saveq)
3732 {
3733 struct lpfc_iocbq *cmdiocbp;
3734 unsigned long iflag;
3735 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag;
3736
3737 if (phba->sli_rev == LPFC_SLI_REV4)
3738 spin_lock_irqsave(&pring->ring_lock, iflag);
3739 else
3740 spin_lock_irqsave(&phba->hbalock, iflag);
3741 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3742 if (phba->sli_rev == LPFC_SLI_REV4)
3743 spin_unlock_irqrestore(&pring->ring_lock, iflag);
3744 else
3745 spin_unlock_irqrestore(&phba->hbalock, iflag);
3746
3747 ulp_command = get_job_cmnd(phba, saveq);
3748 ulp_status = get_job_ulpstatus(phba, saveq);
3749 ulp_word4 = get_job_word4(phba, saveq);
3750 ulp_context = get_job_ulpcontext(phba, saveq);
3751 if (phba->sli_rev == LPFC_SLI_REV4)
3752 iotag = get_wqe_reqtag(saveq);
3753 else
3754 iotag = saveq->iocb.ulpIoTag;
3755
3756 if (cmdiocbp) {
3757 ulp_command = get_job_cmnd(phba, cmdiocbp);
3758 if (cmdiocbp->cmd_cmpl) {
3759 /*
3760 * If an ELS command failed send an event to mgmt
3761 * application.
3762 */
3763 if (ulp_status &&
3764 (pring->ringno == LPFC_ELS_RING) &&
3765 (ulp_command == CMD_ELS_REQUEST64_CR))
3766 lpfc_send_els_failure_event(phba,
3767 cmdiocbp, saveq);
3768
3769 /*
3770 * Post all ELS completions to the worker thread.
3771 * All other are passed to the completion callback.
3772 */
3773 if (pring->ringno == LPFC_ELS_RING) {
3774 if ((phba->sli_rev < LPFC_SLI_REV4) &&
3775 (cmdiocbp->cmd_flag &
3776 LPFC_DRIVER_ABORTED)) {
3777 spin_lock_irqsave(&phba->hbalock,
3778 iflag);
3779 cmdiocbp->cmd_flag &=
3780 ~LPFC_DRIVER_ABORTED;
3781 spin_unlock_irqrestore(&phba->hbalock,
3782 iflag);
3783 saveq->iocb.ulpStatus =
3784 IOSTAT_LOCAL_REJECT;
3785 saveq->iocb.un.ulpWord[4] =
3786 IOERR_SLI_ABORTED;
3787
3788 /* Firmware could still be in progress
3789 * of DMAing payload, so don't free data
3790 * buffer till after a hbeat.
3791 */
3792 spin_lock_irqsave(&phba->hbalock,
3793 iflag);
3794 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE;
3795 spin_unlock_irqrestore(&phba->hbalock,
3796 iflag);
3797 }
3798 if (phba->sli_rev == LPFC_SLI_REV4) {
3799 if (saveq->cmd_flag &
3800 LPFC_EXCHANGE_BUSY) {
3801 /* Set cmdiocb flag for the
3802 * exchange busy so sgl (xri)
3803 * will not be released until
3804 * the abort xri is received
3805 * from hba.
3806 */
3807 spin_lock_irqsave(
3808 &phba->hbalock, iflag);
3809 cmdiocbp->cmd_flag |=
3810 LPFC_EXCHANGE_BUSY;
3811 spin_unlock_irqrestore(
3812 &phba->hbalock, iflag);
3813 }
3814 if (cmdiocbp->cmd_flag &
3815 LPFC_DRIVER_ABORTED) {
3816 /*
3817 * Clear LPFC_DRIVER_ABORTED
3818 * bit in case it was driver
3819 * initiated abort.
3820 */
3821 spin_lock_irqsave(
3822 &phba->hbalock, iflag);
3823 cmdiocbp->cmd_flag &=
3824 ~LPFC_DRIVER_ABORTED;
3825 spin_unlock_irqrestore(
3826 &phba->hbalock, iflag);
3827 set_job_ulpstatus(cmdiocbp,
3828 IOSTAT_LOCAL_REJECT);
3829 set_job_ulpword4(cmdiocbp,
3830 IOERR_ABORT_REQUESTED);
3831 /*
3832 * For SLI4, irspiocb contains
3833 * NO_XRI in sli_xritag, it
3834 * shall not affect releasing
3835 * sgl (xri) process.
3836 */
3837 set_job_ulpstatus(saveq,
3838 IOSTAT_LOCAL_REJECT);
3839 set_job_ulpword4(saveq,
3840 IOERR_SLI_ABORTED);
3841 spin_lock_irqsave(
3842 &phba->hbalock, iflag);
3843 saveq->cmd_flag |=
3844 LPFC_DELAY_MEM_FREE;
3845 spin_unlock_irqrestore(
3846 &phba->hbalock, iflag);
3847 }
3848 }
3849 }
3850 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq);
3851 } else
3852 lpfc_sli_release_iocbq(phba, cmdiocbp);
3853 } else {
3854 /*
3855 * Unknown initiating command based on the response iotag.
3856 * This could be the case on the ELS ring because of
3857 * lpfc_els_abort().
3858 */
3859 if (pring->ringno != LPFC_ELS_RING) {
3860 /*
3861 * Ring <ringno> handler: unexpected completion IoTag
3862 * <IoTag>
3863 */
3864 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3865 "0322 Ring %d handler: "
3866 "unexpected completion IoTag x%x "
3867 "Data: x%x x%x x%x x%x\n",
3868 pring->ringno, iotag, ulp_status,
3869 ulp_word4, ulp_command, ulp_context);
3870 }
3871 }
3872
3873 return 1;
3874 }
3875
3876 /**
3877 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3878 * @phba: Pointer to HBA context object.
3879 * @pring: Pointer to driver SLI ring object.
3880 *
3881 * This function is called from the iocb ring event handlers when
3882 * put pointer is ahead of the get pointer for a ring. This function signal
3883 * an error attention condition to the worker thread and the worker
3884 * thread will transition the HBA to offline state.
3885 **/
3886 static void
lpfc_sli_rsp_pointers_error(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)3887 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3888 {
3889 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3890 /*
3891 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3892 * rsp ring <portRspMax>
3893 */
3894 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3895 "0312 Ring %d handler: portRspPut %d "
3896 "is bigger than rsp ring %d\n",
3897 pring->ringno, le32_to_cpu(pgp->rspPutInx),
3898 pring->sli.sli3.numRiocb);
3899
3900 phba->link_state = LPFC_HBA_ERROR;
3901
3902 /*
3903 * All error attention handlers are posted to
3904 * worker thread
3905 */
3906 phba->work_ha |= HA_ERATT;
3907 phba->work_hs = HS_FFER3;
3908
3909 lpfc_worker_wake_up(phba);
3910
3911 return;
3912 }
3913
3914 /**
3915 * lpfc_poll_eratt - Error attention polling timer timeout handler
3916 * @t: Context to fetch pointer to address of HBA context object from.
3917 *
3918 * This function is invoked by the Error Attention polling timer when the
3919 * timer times out. It will check the SLI Error Attention register for
3920 * possible attention events. If so, it will post an Error Attention event
3921 * and wake up worker thread to process it. Otherwise, it will set up the
3922 * Error Attention polling timer for the next poll.
3923 **/
lpfc_poll_eratt(struct timer_list * t)3924 void lpfc_poll_eratt(struct timer_list *t)
3925 {
3926 struct lpfc_hba *phba;
3927 uint32_t eratt = 0;
3928 uint64_t sli_intr, cnt;
3929
3930 phba = timer_container_of(phba, t, eratt_poll);
3931
3932 if (test_bit(FC_UNLOADING, &phba->pport->load_flag))
3933 return;
3934
3935 if (phba->sli_rev == LPFC_SLI_REV4 &&
3936 !test_bit(HBA_SETUP, &phba->hba_flag)) {
3937 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3938 "0663 HBA still initializing 0x%lx, restart "
3939 "timer\n",
3940 phba->hba_flag);
3941 goto restart_timer;
3942 }
3943
3944 /* Here we will also keep track of interrupts per sec of the hba */
3945 sli_intr = phba->sli.slistat.sli_intr;
3946
3947 if (phba->sli.slistat.sli_prev_intr > sli_intr)
3948 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3949 sli_intr);
3950 else
3951 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3952
3953 /* 64-bit integer division not supported on 32-bit x86 - use do_div */
3954 do_div(cnt, phba->eratt_poll_interval);
3955 phba->sli.slistat.sli_ips = cnt;
3956
3957 phba->sli.slistat.sli_prev_intr = sli_intr;
3958
3959 /* Check chip HA register for error event */
3960 eratt = lpfc_sli_check_eratt(phba);
3961
3962 if (eratt) {
3963 /* Tell the worker thread there is work to do */
3964 lpfc_worker_wake_up(phba);
3965 return;
3966 }
3967
3968 restart_timer:
3969 /* Restart the timer for next eratt poll */
3970 mod_timer(&phba->eratt_poll,
3971 jiffies + secs_to_jiffies(phba->eratt_poll_interval));
3972 return;
3973 }
3974
3975
3976 /**
3977 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3978 * @phba: Pointer to HBA context object.
3979 * @pring: Pointer to driver SLI ring object.
3980 * @mask: Host attention register mask for this ring.
3981 *
3982 * This function is called from the interrupt context when there is a ring
3983 * event for the fcp ring. The caller does not hold any lock.
3984 * The function processes each response iocb in the response ring until it
3985 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3986 * LE bit set. The function will call the completion handler of the command iocb
3987 * if the response iocb indicates a completion for a command iocb or it is
3988 * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3989 * function if this is an unsolicited iocb.
3990 * This routine presumes LPFC_FCP_RING handling and doesn't bother
3991 * to check it explicitly.
3992 */
3993 int
lpfc_sli_handle_fast_ring_event(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)3994 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3995 struct lpfc_sli_ring *pring, uint32_t mask)
3996 {
3997 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3998 IOCB_t *irsp = NULL;
3999 IOCB_t *entry = NULL;
4000 struct lpfc_iocbq *cmdiocbq = NULL;
4001 struct lpfc_iocbq rspiocbq;
4002 uint32_t status;
4003 uint32_t portRspPut, portRspMax;
4004 int rc = 1;
4005 lpfc_iocb_type type;
4006 unsigned long iflag;
4007 uint32_t rsp_cmpl = 0;
4008
4009 spin_lock_irqsave(&phba->hbalock, iflag);
4010 pring->stats.iocb_event++;
4011
4012 /*
4013 * The next available response entry should never exceed the maximum
4014 * entries. If it does, treat it as an adapter hardware error.
4015 */
4016 portRspMax = pring->sli.sli3.numRiocb;
4017 portRspPut = le32_to_cpu(pgp->rspPutInx);
4018 if (unlikely(portRspPut >= portRspMax)) {
4019 lpfc_sli_rsp_pointers_error(phba, pring);
4020 spin_unlock_irqrestore(&phba->hbalock, iflag);
4021 return 1;
4022 }
4023 if (phba->fcp_ring_in_use) {
4024 spin_unlock_irqrestore(&phba->hbalock, iflag);
4025 return 1;
4026 } else
4027 phba->fcp_ring_in_use = 1;
4028
4029 rmb();
4030 while (pring->sli.sli3.rspidx != portRspPut) {
4031 /*
4032 * Fetch an entry off the ring and copy it into a local data
4033 * structure. The copy involves a byte-swap since the
4034 * network byte order and pci byte orders are different.
4035 */
4036 entry = lpfc_resp_iocb(phba, pring);
4037 phba->last_completion_time = jiffies;
4038
4039 if (++pring->sli.sli3.rspidx >= portRspMax)
4040 pring->sli.sli3.rspidx = 0;
4041
4042 lpfc_sli_pcimem_bcopy((uint32_t *) entry,
4043 (uint32_t *) &rspiocbq.iocb,
4044 phba->iocb_rsp_size);
4045 INIT_LIST_HEAD(&(rspiocbq.list));
4046 irsp = &rspiocbq.iocb;
4047
4048 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
4049 pring->stats.iocb_rsp++;
4050 rsp_cmpl++;
4051
4052 if (unlikely(irsp->ulpStatus)) {
4053 /*
4054 * If resource errors reported from HBA, reduce
4055 * queuedepths of the SCSI device.
4056 */
4057 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
4058 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
4059 IOERR_NO_RESOURCES)) {
4060 spin_unlock_irqrestore(&phba->hbalock, iflag);
4061 phba->lpfc_rampdown_queue_depth(phba);
4062 spin_lock_irqsave(&phba->hbalock, iflag);
4063 }
4064
4065 /* Rsp ring <ringno> error: IOCB */
4066 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4067 "0336 Rsp Ring %d error: IOCB Data: "
4068 "x%x x%x x%x x%x x%x x%x x%x x%x\n",
4069 pring->ringno,
4070 irsp->un.ulpWord[0],
4071 irsp->un.ulpWord[1],
4072 irsp->un.ulpWord[2],
4073 irsp->un.ulpWord[3],
4074 irsp->un.ulpWord[4],
4075 irsp->un.ulpWord[5],
4076 *(uint32_t *)&irsp->un1,
4077 *((uint32_t *)&irsp->un1 + 1));
4078 }
4079
4080 switch (type) {
4081 case LPFC_ABORT_IOCB:
4082 case LPFC_SOL_IOCB:
4083 /*
4084 * Idle exchange closed via ABTS from port. No iocb
4085 * resources need to be recovered.
4086 */
4087 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
4088 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4089 "0333 IOCB cmd 0x%x"
4090 " processed. Skipping"
4091 " completion\n",
4092 irsp->ulpCommand);
4093 break;
4094 }
4095
4096 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
4097 &rspiocbq);
4098 if (unlikely(!cmdiocbq))
4099 break;
4100 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED)
4101 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED;
4102 if (cmdiocbq->cmd_cmpl) {
4103 spin_unlock_irqrestore(&phba->hbalock, iflag);
4104 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq);
4105 spin_lock_irqsave(&phba->hbalock, iflag);
4106 }
4107 break;
4108 case LPFC_UNSOL_IOCB:
4109 spin_unlock_irqrestore(&phba->hbalock, iflag);
4110 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
4111 spin_lock_irqsave(&phba->hbalock, iflag);
4112 break;
4113 default:
4114 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
4115 char adaptermsg[LPFC_MAX_ADPTMSG];
4116 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
4117 memcpy(&adaptermsg[0], (uint8_t *) irsp,
4118 MAX_MSG_DATA);
4119 dev_warn(&((phba->pcidev)->dev),
4120 "lpfc%d: %s\n",
4121 phba->brd_no, adaptermsg);
4122 } else {
4123 /* Unknown IOCB command */
4124 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4125 "0334 Unknown IOCB command "
4126 "Data: x%x, x%x x%x x%x x%x\n",
4127 type, irsp->ulpCommand,
4128 irsp->ulpStatus,
4129 irsp->ulpIoTag,
4130 irsp->ulpContext);
4131 }
4132 break;
4133 }
4134
4135 /*
4136 * The response IOCB has been processed. Update the ring
4137 * pointer in SLIM. If the port response put pointer has not
4138 * been updated, sync the pgp->rspPutInx and fetch the new port
4139 * response put pointer.
4140 */
4141 writel(pring->sli.sli3.rspidx,
4142 &phba->host_gp[pring->ringno].rspGetInx);
4143
4144 if (pring->sli.sli3.rspidx == portRspPut)
4145 portRspPut = le32_to_cpu(pgp->rspPutInx);
4146 }
4147
4148 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
4149 pring->stats.iocb_rsp_full++;
4150 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
4151 writel(status, phba->CAregaddr);
4152 readl(phba->CAregaddr);
4153 }
4154 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
4155 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
4156 pring->stats.iocb_cmd_empty++;
4157
4158 /* Force update of the local copy of cmdGetInx */
4159 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
4160 lpfc_sli_resume_iocb(phba, pring);
4161
4162 if ((pring->lpfc_sli_cmd_available))
4163 (pring->lpfc_sli_cmd_available) (phba, pring);
4164
4165 }
4166
4167 phba->fcp_ring_in_use = 0;
4168 spin_unlock_irqrestore(&phba->hbalock, iflag);
4169 return rc;
4170 }
4171
4172 /**
4173 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
4174 * @phba: Pointer to HBA context object.
4175 * @pring: Pointer to driver SLI ring object.
4176 * @rspiocbp: Pointer to driver response IOCB object.
4177 *
4178 * This function is called from the worker thread when there is a slow-path
4179 * response IOCB to process. This function chains all the response iocbs until
4180 * seeing the iocb with the LE bit set. The function will call
4181 * lpfc_sli_process_sol_iocb function if the response iocb indicates a
4182 * completion of a command iocb. The function will call the
4183 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
4184 * The function frees the resources or calls the completion handler if this
4185 * iocb is an abort completion. The function returns NULL when the response
4186 * iocb has the LE bit set and all the chained iocbs are processed, otherwise
4187 * this function shall chain the iocb on to the iocb_continueq and return the
4188 * response iocb passed in.
4189 **/
4190 static struct lpfc_iocbq *
lpfc_sli_sp_handle_rspiocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * rspiocbp)4191 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
4192 struct lpfc_iocbq *rspiocbp)
4193 {
4194 struct lpfc_iocbq *saveq;
4195 struct lpfc_iocbq *cmdiocb;
4196 struct lpfc_iocbq *next_iocb;
4197 IOCB_t *irsp;
4198 uint32_t free_saveq;
4199 u8 cmd_type;
4200 lpfc_iocb_type type;
4201 unsigned long iflag;
4202 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp);
4203 u32 ulp_word4 = get_job_word4(phba, rspiocbp);
4204 u32 ulp_command = get_job_cmnd(phba, rspiocbp);
4205 int rc;
4206
4207 spin_lock_irqsave(&phba->hbalock, iflag);
4208 /* First add the response iocb to the countinueq list */
4209 list_add_tail(&rspiocbp->list, &pring->iocb_continueq);
4210 pring->iocb_continueq_cnt++;
4211
4212 /*
4213 * By default, the driver expects to free all resources
4214 * associated with this iocb completion.
4215 */
4216 free_saveq = 1;
4217 saveq = list_get_first(&pring->iocb_continueq,
4218 struct lpfc_iocbq, list);
4219 list_del_init(&pring->iocb_continueq);
4220 pring->iocb_continueq_cnt = 0;
4221
4222 pring->stats.iocb_rsp++;
4223
4224 /*
4225 * If resource errors reported from HBA, reduce
4226 * queuedepths of the SCSI device.
4227 */
4228 if (ulp_status == IOSTAT_LOCAL_REJECT &&
4229 ((ulp_word4 & IOERR_PARAM_MASK) ==
4230 IOERR_NO_RESOURCES)) {
4231 spin_unlock_irqrestore(&phba->hbalock, iflag);
4232 phba->lpfc_rampdown_queue_depth(phba);
4233 spin_lock_irqsave(&phba->hbalock, iflag);
4234 }
4235
4236 if (ulp_status) {
4237 /* Rsp ring <ringno> error: IOCB */
4238 if (phba->sli_rev < LPFC_SLI_REV4) {
4239 irsp = &rspiocbp->iocb;
4240 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4241 "0328 Rsp Ring %d error: ulp_status x%x "
4242 "IOCB Data: "
4243 "x%08x x%08x x%08x x%08x "
4244 "x%08x x%08x x%08x x%08x "
4245 "x%08x x%08x x%08x x%08x "
4246 "x%08x x%08x x%08x x%08x\n",
4247 pring->ringno, ulp_status,
4248 get_job_ulpword(rspiocbp, 0),
4249 get_job_ulpword(rspiocbp, 1),
4250 get_job_ulpword(rspiocbp, 2),
4251 get_job_ulpword(rspiocbp, 3),
4252 get_job_ulpword(rspiocbp, 4),
4253 get_job_ulpword(rspiocbp, 5),
4254 *(((uint32_t *)irsp) + 6),
4255 *(((uint32_t *)irsp) + 7),
4256 *(((uint32_t *)irsp) + 8),
4257 *(((uint32_t *)irsp) + 9),
4258 *(((uint32_t *)irsp) + 10),
4259 *(((uint32_t *)irsp) + 11),
4260 *(((uint32_t *)irsp) + 12),
4261 *(((uint32_t *)irsp) + 13),
4262 *(((uint32_t *)irsp) + 14),
4263 *(((uint32_t *)irsp) + 15));
4264 } else {
4265 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4266 "0321 Rsp Ring %d error: "
4267 "IOCB Data: "
4268 "x%x x%x x%x x%x\n",
4269 pring->ringno,
4270 rspiocbp->wcqe_cmpl.word0,
4271 rspiocbp->wcqe_cmpl.total_data_placed,
4272 rspiocbp->wcqe_cmpl.parameter,
4273 rspiocbp->wcqe_cmpl.word3);
4274 }
4275 }
4276
4277
4278 /*
4279 * Fetch the iocb command type and call the correct completion
4280 * routine. Solicited and Unsolicited IOCBs on the ELS ring
4281 * get freed back to the lpfc_iocb_list by the discovery
4282 * kernel thread.
4283 */
4284 cmd_type = ulp_command & CMD_IOCB_MASK;
4285 type = lpfc_sli_iocb_cmd_type(cmd_type);
4286 switch (type) {
4287 case LPFC_SOL_IOCB:
4288 spin_unlock_irqrestore(&phba->hbalock, iflag);
4289 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
4290 spin_lock_irqsave(&phba->hbalock, iflag);
4291 break;
4292 case LPFC_UNSOL_IOCB:
4293 spin_unlock_irqrestore(&phba->hbalock, iflag);
4294 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
4295 spin_lock_irqsave(&phba->hbalock, iflag);
4296 if (!rc)
4297 free_saveq = 0;
4298 break;
4299 case LPFC_ABORT_IOCB:
4300 cmdiocb = NULL;
4301 if (ulp_command != CMD_XRI_ABORTED_CX)
4302 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring,
4303 saveq);
4304 if (cmdiocb) {
4305 /* Call the specified completion routine */
4306 if (cmdiocb->cmd_cmpl) {
4307 spin_unlock_irqrestore(&phba->hbalock, iflag);
4308 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq);
4309 spin_lock_irqsave(&phba->hbalock, iflag);
4310 } else {
4311 __lpfc_sli_release_iocbq(phba, cmdiocb);
4312 }
4313 }
4314 break;
4315 case LPFC_UNKNOWN_IOCB:
4316 if (ulp_command == CMD_ADAPTER_MSG) {
4317 char adaptermsg[LPFC_MAX_ADPTMSG];
4318
4319 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
4320 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe,
4321 MAX_MSG_DATA);
4322 dev_warn(&((phba->pcidev)->dev),
4323 "lpfc%d: %s\n",
4324 phba->brd_no, adaptermsg);
4325 } else {
4326 /* Unknown command */
4327 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4328 "0335 Unknown IOCB "
4329 "command Data: x%x "
4330 "x%x x%x x%x\n",
4331 ulp_command,
4332 ulp_status,
4333 get_wqe_reqtag(rspiocbp),
4334 get_job_ulpcontext(phba, rspiocbp));
4335 }
4336 break;
4337 }
4338
4339 if (free_saveq) {
4340 list_for_each_entry_safe(rspiocbp, next_iocb,
4341 &saveq->list, list) {
4342 list_del_init(&rspiocbp->list);
4343 __lpfc_sli_release_iocbq(phba, rspiocbp);
4344 }
4345 __lpfc_sli_release_iocbq(phba, saveq);
4346 }
4347 rspiocbp = NULL;
4348 spin_unlock_irqrestore(&phba->hbalock, iflag);
4349 return rspiocbp;
4350 }
4351
4352 /**
4353 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
4354 * @phba: Pointer to HBA context object.
4355 * @pring: Pointer to driver SLI ring object.
4356 * @mask: Host attention register mask for this ring.
4357 *
4358 * This routine wraps the actual slow_ring event process routine from the
4359 * API jump table function pointer from the lpfc_hba struct.
4360 **/
4361 void
lpfc_sli_handle_slow_ring_event(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)4362 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
4363 struct lpfc_sli_ring *pring, uint32_t mask)
4364 {
4365 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
4366 }
4367
4368 /**
4369 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
4370 * @phba: Pointer to HBA context object.
4371 * @pring: Pointer to driver SLI ring object.
4372 * @mask: Host attention register mask for this ring.
4373 *
4374 * This function is called from the worker thread when there is a ring event
4375 * for non-fcp rings. The caller does not hold any lock. The function will
4376 * remove each response iocb in the response ring and calls the handle
4377 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
4378 **/
4379 static void
lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)4380 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
4381 struct lpfc_sli_ring *pring, uint32_t mask)
4382 {
4383 struct lpfc_pgp *pgp;
4384 IOCB_t *entry;
4385 IOCB_t *irsp = NULL;
4386 struct lpfc_iocbq *rspiocbp = NULL;
4387 uint32_t portRspPut, portRspMax;
4388 unsigned long iflag;
4389 uint32_t status;
4390
4391 pgp = &phba->port_gp[pring->ringno];
4392 spin_lock_irqsave(&phba->hbalock, iflag);
4393 pring->stats.iocb_event++;
4394
4395 /*
4396 * The next available response entry should never exceed the maximum
4397 * entries. If it does, treat it as an adapter hardware error.
4398 */
4399 portRspMax = pring->sli.sli3.numRiocb;
4400 portRspPut = le32_to_cpu(pgp->rspPutInx);
4401 if (portRspPut >= portRspMax) {
4402 /*
4403 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
4404 * rsp ring <portRspMax>
4405 */
4406 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4407 "0303 Ring %d handler: portRspPut %d "
4408 "is bigger than rsp ring %d\n",
4409 pring->ringno, portRspPut, portRspMax);
4410
4411 phba->link_state = LPFC_HBA_ERROR;
4412 spin_unlock_irqrestore(&phba->hbalock, iflag);
4413
4414 phba->work_hs = HS_FFER3;
4415 lpfc_handle_eratt(phba);
4416
4417 return;
4418 }
4419
4420 rmb();
4421 while (pring->sli.sli3.rspidx != portRspPut) {
4422 /*
4423 * Build a completion list and call the appropriate handler.
4424 * The process is to get the next available response iocb, get
4425 * a free iocb from the list, copy the response data into the
4426 * free iocb, insert to the continuation list, and update the
4427 * next response index to slim. This process makes response
4428 * iocb's in the ring available to DMA as fast as possible but
4429 * pays a penalty for a copy operation. Since the iocb is
4430 * only 32 bytes, this penalty is considered small relative to
4431 * the PCI reads for register values and a slim write. When
4432 * the ulpLe field is set, the entire Command has been
4433 * received.
4434 */
4435 entry = lpfc_resp_iocb(phba, pring);
4436
4437 phba->last_completion_time = jiffies;
4438 rspiocbp = __lpfc_sli_get_iocbq(phba);
4439 if (rspiocbp == NULL) {
4440 printk(KERN_ERR "%s: out of buffers! Failing "
4441 "completion.\n", __func__);
4442 break;
4443 }
4444
4445 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
4446 phba->iocb_rsp_size);
4447 irsp = &rspiocbp->iocb;
4448
4449 if (++pring->sli.sli3.rspidx >= portRspMax)
4450 pring->sli.sli3.rspidx = 0;
4451
4452 if (pring->ringno == LPFC_ELS_RING) {
4453 lpfc_debugfs_slow_ring_trc(phba,
4454 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x",
4455 *(((uint32_t *) irsp) + 4),
4456 *(((uint32_t *) irsp) + 6),
4457 *(((uint32_t *) irsp) + 7));
4458 }
4459
4460 writel(pring->sli.sli3.rspidx,
4461 &phba->host_gp[pring->ringno].rspGetInx);
4462
4463 spin_unlock_irqrestore(&phba->hbalock, iflag);
4464 /* Handle the response IOCB */
4465 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
4466 spin_lock_irqsave(&phba->hbalock, iflag);
4467
4468 /*
4469 * If the port response put pointer has not been updated, sync
4470 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
4471 * response put pointer.
4472 */
4473 if (pring->sli.sli3.rspidx == portRspPut) {
4474 portRspPut = le32_to_cpu(pgp->rspPutInx);
4475 }
4476 } /* while (pring->sli.sli3.rspidx != portRspPut) */
4477
4478 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
4479 /* At least one response entry has been freed */
4480 pring->stats.iocb_rsp_full++;
4481 /* SET RxRE_RSP in Chip Att register */
4482 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
4483 writel(status, phba->CAregaddr);
4484 readl(phba->CAregaddr); /* flush */
4485 }
4486 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
4487 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
4488 pring->stats.iocb_cmd_empty++;
4489
4490 /* Force update of the local copy of cmdGetInx */
4491 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
4492 lpfc_sli_resume_iocb(phba, pring);
4493
4494 if ((pring->lpfc_sli_cmd_available))
4495 (pring->lpfc_sli_cmd_available) (phba, pring);
4496
4497 }
4498
4499 spin_unlock_irqrestore(&phba->hbalock, iflag);
4500 return;
4501 }
4502
4503 /**
4504 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
4505 * @phba: Pointer to HBA context object.
4506 * @pring: Pointer to driver SLI ring object.
4507 * @mask: Host attention register mask for this ring.
4508 *
4509 * This function is called from the worker thread when there is a pending
4510 * ELS response iocb on the driver internal slow-path response iocb worker
4511 * queue. The caller does not hold any lock. The function will remove each
4512 * response iocb from the response worker queue and calls the handle
4513 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
4514 **/
4515 static void
lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)4516 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
4517 struct lpfc_sli_ring *pring, uint32_t mask)
4518 {
4519 struct lpfc_iocbq *irspiocbq;
4520 struct hbq_dmabuf *dmabuf;
4521 struct lpfc_cq_event *cq_event;
4522 unsigned long iflag;
4523 int count = 0;
4524
4525 clear_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag);
4526 while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
4527 /* Get the response iocb from the head of work queue */
4528 spin_lock_irqsave(&phba->hbalock, iflag);
4529 list_remove_head(&phba->sli4_hba.sp_queue_event,
4530 cq_event, struct lpfc_cq_event, list);
4531 spin_unlock_irqrestore(&phba->hbalock, iflag);
4532
4533 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
4534 case CQE_CODE_COMPL_WQE:
4535 irspiocbq = container_of(cq_event, struct lpfc_iocbq,
4536 cq_event);
4537 /* Translate ELS WCQE to response IOCBQ */
4538 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba,
4539 irspiocbq);
4540 if (irspiocbq)
4541 lpfc_sli_sp_handle_rspiocb(phba, pring,
4542 irspiocbq);
4543 count++;
4544 break;
4545 case CQE_CODE_RECEIVE:
4546 case CQE_CODE_RECEIVE_V1:
4547 dmabuf = container_of(cq_event, struct hbq_dmabuf,
4548 cq_event);
4549 lpfc_sli4_handle_received_buffer(phba, dmabuf);
4550 count++;
4551 break;
4552 default:
4553 break;
4554 }
4555
4556 /* Limit the number of events to 64 to avoid soft lockups */
4557 if (count == 64)
4558 break;
4559 }
4560 }
4561
4562 /**
4563 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
4564 * @phba: Pointer to HBA context object.
4565 * @pring: Pointer to driver SLI ring object.
4566 *
4567 * This function aborts all iocbs in the given ring and frees all the iocb
4568 * objects in txq. This function issues an abort iocb for all the iocb commands
4569 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4570 * the return of this function. The caller is not required to hold any locks.
4571 **/
4572 void
lpfc_sli_abort_iocb_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)4573 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
4574 {
4575 LIST_HEAD(tx_completions);
4576 LIST_HEAD(txcmplq_completions);
4577 struct lpfc_iocbq *iocb, *next_iocb;
4578 int offline;
4579
4580 if (pring->ringno == LPFC_ELS_RING) {
4581 lpfc_fabric_abort_hba(phba);
4582 }
4583 offline = pci_channel_offline(phba->pcidev);
4584
4585 /* Error everything on txq and txcmplq
4586 * First do the txq.
4587 */
4588 if (phba->sli_rev >= LPFC_SLI_REV4) {
4589 spin_lock_irq(&pring->ring_lock);
4590 list_splice_init(&pring->txq, &tx_completions);
4591 pring->txq_cnt = 0;
4592
4593 if (offline) {
4594 list_splice_init(&pring->txcmplq,
4595 &txcmplq_completions);
4596 } else {
4597 /* Next issue ABTS for everything on the txcmplq */
4598 list_for_each_entry_safe(iocb, next_iocb,
4599 &pring->txcmplq, list)
4600 lpfc_sli_issue_abort_iotag(phba, pring,
4601 iocb, NULL);
4602 }
4603 spin_unlock_irq(&pring->ring_lock);
4604 } else {
4605 spin_lock_irq(&phba->hbalock);
4606 list_splice_init(&pring->txq, &tx_completions);
4607 pring->txq_cnt = 0;
4608
4609 if (offline) {
4610 list_splice_init(&pring->txcmplq, &txcmplq_completions);
4611 } else {
4612 /* Next issue ABTS for everything on the txcmplq */
4613 list_for_each_entry_safe(iocb, next_iocb,
4614 &pring->txcmplq, list)
4615 lpfc_sli_issue_abort_iotag(phba, pring,
4616 iocb, NULL);
4617 }
4618 spin_unlock_irq(&phba->hbalock);
4619 }
4620
4621 if (offline) {
4622 /* Cancel all the IOCBs from the completions list */
4623 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions,
4624 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
4625 } else {
4626 /* Make sure HBA is alive */
4627 lpfc_issue_hb_tmo(phba);
4628 }
4629 /* Cancel all the IOCBs from the completions list */
4630 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT,
4631 IOERR_SLI_ABORTED);
4632 }
4633
4634 /**
4635 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
4636 * @phba: Pointer to HBA context object.
4637 *
4638 * This function aborts all iocbs in FCP rings and frees all the iocb
4639 * objects in txq. This function issues an abort iocb for all the iocb commands
4640 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4641 * the return of this function. The caller is not required to hold any locks.
4642 **/
4643 void
lpfc_sli_abort_fcp_rings(struct lpfc_hba * phba)4644 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
4645 {
4646 struct lpfc_sli *psli = &phba->sli;
4647 struct lpfc_sli_ring *pring;
4648 uint32_t i;
4649
4650 /* Look on all the FCP Rings for the iotag */
4651 if (phba->sli_rev >= LPFC_SLI_REV4) {
4652 for (i = 0; i < phba->cfg_hdw_queue; i++) {
4653 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4654 lpfc_sli_abort_iocb_ring(phba, pring);
4655 }
4656 } else {
4657 pring = &psli->sli3_ring[LPFC_FCP_RING];
4658 lpfc_sli_abort_iocb_ring(phba, pring);
4659 }
4660 }
4661
4662 /**
4663 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring
4664 * @phba: Pointer to HBA context object.
4665 *
4666 * This function flushes all iocbs in the IO ring and frees all the iocb
4667 * objects in txq and txcmplq. This function will not issue abort iocbs
4668 * for all the iocb commands in txcmplq, they will just be returned with
4669 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4670 * slot has been permanently disabled.
4671 **/
4672 void
lpfc_sli_flush_io_rings(struct lpfc_hba * phba)4673 lpfc_sli_flush_io_rings(struct lpfc_hba *phba)
4674 {
4675 LIST_HEAD(txq);
4676 LIST_HEAD(txcmplq);
4677 struct lpfc_sli *psli = &phba->sli;
4678 struct lpfc_sli_ring *pring;
4679 uint32_t i;
4680 struct lpfc_iocbq *piocb, *next_iocb;
4681
4682 /* Indicate the I/O queues are flushed */
4683 set_bit(HBA_IOQ_FLUSH, &phba->hba_flag);
4684
4685 /* Look on all the FCP Rings for the iotag */
4686 if (phba->sli_rev >= LPFC_SLI_REV4) {
4687 for (i = 0; i < phba->cfg_hdw_queue; i++) {
4688 if (!phba->sli4_hba.hdwq ||
4689 !phba->sli4_hba.hdwq[i].io_wq) {
4690 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4691 "7777 hdwq's deleted %lx "
4692 "%lx %x %x\n",
4693 phba->pport->load_flag,
4694 phba->hba_flag,
4695 phba->link_state,
4696 phba->sli.sli_flag);
4697 return;
4698 }
4699 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4700
4701 spin_lock_irq(&pring->ring_lock);
4702 /* Retrieve everything on txq */
4703 list_splice_init(&pring->txq, &txq);
4704 list_for_each_entry_safe(piocb, next_iocb,
4705 &pring->txcmplq, list)
4706 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
4707 /* Retrieve everything on the txcmplq */
4708 list_splice_init(&pring->txcmplq, &txcmplq);
4709 pring->txq_cnt = 0;
4710 pring->txcmplq_cnt = 0;
4711 spin_unlock_irq(&pring->ring_lock);
4712
4713 /* Flush the txq */
4714 lpfc_sli_cancel_iocbs(phba, &txq,
4715 IOSTAT_LOCAL_REJECT,
4716 IOERR_SLI_DOWN);
4717 /* Flush the txcmplq */
4718 lpfc_sli_cancel_iocbs(phba, &txcmplq,
4719 IOSTAT_LOCAL_REJECT,
4720 IOERR_SLI_DOWN);
4721 if (unlikely(pci_channel_offline(phba->pcidev)))
4722 lpfc_sli4_io_xri_aborted(phba, NULL, 0);
4723 }
4724 } else {
4725 pring = &psli->sli3_ring[LPFC_FCP_RING];
4726
4727 spin_lock_irq(&phba->hbalock);
4728 /* Retrieve everything on txq */
4729 list_splice_init(&pring->txq, &txq);
4730 list_for_each_entry_safe(piocb, next_iocb,
4731 &pring->txcmplq, list)
4732 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
4733 /* Retrieve everything on the txcmplq */
4734 list_splice_init(&pring->txcmplq, &txcmplq);
4735 pring->txq_cnt = 0;
4736 pring->txcmplq_cnt = 0;
4737 spin_unlock_irq(&phba->hbalock);
4738
4739 /* Flush the txq */
4740 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4741 IOERR_SLI_DOWN);
4742 /* Flush the txcmpq */
4743 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4744 IOERR_SLI_DOWN);
4745 }
4746 }
4747
4748 /**
4749 * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4750 * @phba: Pointer to HBA context object.
4751 * @mask: Bit mask to be checked.
4752 *
4753 * This function reads the host status register and compares
4754 * with the provided bit mask to check if HBA completed
4755 * the restart. This function will wait in a loop for the
4756 * HBA to complete restart. If the HBA does not restart within
4757 * 15 iterations, the function will reset the HBA again. The
4758 * function returns 1 when HBA fail to restart otherwise returns
4759 * zero.
4760 **/
4761 static int
lpfc_sli_brdready_s3(struct lpfc_hba * phba,uint32_t mask)4762 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4763 {
4764 uint32_t status;
4765 int i = 0;
4766 int retval = 0;
4767
4768 /* Read the HBA Host Status Register */
4769 if (lpfc_readl(phba->HSregaddr, &status))
4770 return 1;
4771
4772 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag);
4773
4774 /*
4775 * Check status register every 100ms for 5 retries, then every
4776 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4777 * every 2.5 sec for 4.
4778 * Break our of the loop if errors occurred during init.
4779 */
4780 while (((status & mask) != mask) &&
4781 !(status & HS_FFERM) &&
4782 i++ < 20) {
4783
4784 if (i <= 5)
4785 msleep(10);
4786 else if (i <= 10)
4787 msleep(500);
4788 else
4789 msleep(2500);
4790
4791 if (i == 15) {
4792 /* Do post */
4793 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4794 lpfc_sli_brdrestart(phba);
4795 }
4796 /* Read the HBA Host Status Register */
4797 if (lpfc_readl(phba->HSregaddr, &status)) {
4798 retval = 1;
4799 break;
4800 }
4801 }
4802
4803 /* Check to see if any errors occurred during init */
4804 if ((status & HS_FFERM) || (i >= 20)) {
4805 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4806 "2751 Adapter failed to restart, "
4807 "status reg x%x, FW Data: A8 x%x AC x%x\n",
4808 status,
4809 readl(phba->MBslimaddr + 0xa8),
4810 readl(phba->MBslimaddr + 0xac));
4811 phba->link_state = LPFC_HBA_ERROR;
4812 retval = 1;
4813 }
4814
4815 return retval;
4816 }
4817
4818 /**
4819 * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4820 * @phba: Pointer to HBA context object.
4821 * @mask: Bit mask to be checked.
4822 *
4823 * This function checks the host status register to check if HBA is
4824 * ready. This function will wait in a loop for the HBA to be ready
4825 * If the HBA is not ready , the function will will reset the HBA PCI
4826 * function again. The function returns 1 when HBA fail to be ready
4827 * otherwise returns zero.
4828 **/
4829 static int
lpfc_sli_brdready_s4(struct lpfc_hba * phba,uint32_t mask)4830 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4831 {
4832 uint32_t status;
4833 int retval = 0;
4834
4835 /* Read the HBA Host Status Register */
4836 status = lpfc_sli4_post_status_check(phba);
4837
4838 if (status) {
4839 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4840 lpfc_sli_brdrestart(phba);
4841 status = lpfc_sli4_post_status_check(phba);
4842 }
4843
4844 /* Check to see if any errors occurred during init */
4845 if (status) {
4846 phba->link_state = LPFC_HBA_ERROR;
4847 retval = 1;
4848 } else
4849 phba->sli4_hba.intr_enable = 0;
4850
4851 clear_bit(HBA_SETUP, &phba->hba_flag);
4852 return retval;
4853 }
4854
4855 /**
4856 * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4857 * @phba: Pointer to HBA context object.
4858 * @mask: Bit mask to be checked.
4859 *
4860 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4861 * from the API jump table function pointer from the lpfc_hba struct.
4862 **/
4863 int
lpfc_sli_brdready(struct lpfc_hba * phba,uint32_t mask)4864 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4865 {
4866 return phba->lpfc_sli_brdready(phba, mask);
4867 }
4868
4869 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4870
4871 /**
4872 * lpfc_reset_barrier - Make HBA ready for HBA reset
4873 * @phba: Pointer to HBA context object.
4874 *
4875 * This function is called before resetting an HBA. This function is called
4876 * with hbalock held and requests HBA to quiesce DMAs before a reset.
4877 **/
lpfc_reset_barrier(struct lpfc_hba * phba)4878 void lpfc_reset_barrier(struct lpfc_hba *phba)
4879 {
4880 uint32_t __iomem *resp_buf;
4881 uint32_t __iomem *mbox_buf;
4882 volatile struct MAILBOX_word0 mbox;
4883 uint32_t hc_copy, ha_copy, resp_data;
4884 int i;
4885 uint8_t hdrtype;
4886
4887 lockdep_assert_held(&phba->hbalock);
4888
4889 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4890 if (hdrtype != PCI_HEADER_TYPE_MFD ||
4891 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4892 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4893 return;
4894
4895 /*
4896 * Tell the other part of the chip to suspend temporarily all
4897 * its DMA activity.
4898 */
4899 resp_buf = phba->MBslimaddr;
4900
4901 /* Disable the error attention */
4902 if (lpfc_readl(phba->HCregaddr, &hc_copy))
4903 return;
4904 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4905 readl(phba->HCregaddr); /* flush */
4906 phba->link_flag |= LS_IGNORE_ERATT;
4907
4908 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4909 return;
4910 if (ha_copy & HA_ERATT) {
4911 /* Clear Chip error bit */
4912 writel(HA_ERATT, phba->HAregaddr);
4913 phba->pport->stopped = 1;
4914 }
4915
4916 mbox.word0 = 0;
4917 mbox.mbxCommand = MBX_KILL_BOARD;
4918 mbox.mbxOwner = OWN_CHIP;
4919
4920 writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4921 mbox_buf = phba->MBslimaddr;
4922 writel(mbox.word0, mbox_buf);
4923
4924 for (i = 0; i < 50; i++) {
4925 if (lpfc_readl((resp_buf + 1), &resp_data))
4926 return;
4927 if (resp_data != ~(BARRIER_TEST_PATTERN))
4928 mdelay(1);
4929 else
4930 break;
4931 }
4932 resp_data = 0;
4933 if (lpfc_readl((resp_buf + 1), &resp_data))
4934 return;
4935 if (resp_data != ~(BARRIER_TEST_PATTERN)) {
4936 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4937 phba->pport->stopped)
4938 goto restore_hc;
4939 else
4940 goto clear_errat;
4941 }
4942
4943 mbox.mbxOwner = OWN_HOST;
4944 resp_data = 0;
4945 for (i = 0; i < 500; i++) {
4946 if (lpfc_readl(resp_buf, &resp_data))
4947 return;
4948 if (resp_data != mbox.word0)
4949 mdelay(1);
4950 else
4951 break;
4952 }
4953
4954 clear_errat:
4955
4956 while (++i < 500) {
4957 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4958 return;
4959 if (!(ha_copy & HA_ERATT))
4960 mdelay(1);
4961 else
4962 break;
4963 }
4964
4965 if (readl(phba->HAregaddr) & HA_ERATT) {
4966 writel(HA_ERATT, phba->HAregaddr);
4967 phba->pport->stopped = 1;
4968 }
4969
4970 restore_hc:
4971 phba->link_flag &= ~LS_IGNORE_ERATT;
4972 writel(hc_copy, phba->HCregaddr);
4973 readl(phba->HCregaddr); /* flush */
4974 }
4975
4976 /**
4977 * lpfc_sli_brdkill - Issue a kill_board mailbox command
4978 * @phba: Pointer to HBA context object.
4979 *
4980 * This function issues a kill_board mailbox command and waits for
4981 * the error attention interrupt. This function is called for stopping
4982 * the firmware processing. The caller is not required to hold any
4983 * locks. This function calls lpfc_hba_down_post function to free
4984 * any pending commands after the kill. The function will return 1 when it
4985 * fails to kill the board else will return 0.
4986 **/
4987 int
lpfc_sli_brdkill(struct lpfc_hba * phba)4988 lpfc_sli_brdkill(struct lpfc_hba *phba)
4989 {
4990 struct lpfc_sli *psli;
4991 LPFC_MBOXQ_t *pmb;
4992 uint32_t status;
4993 uint32_t ha_copy;
4994 int retval;
4995 int i = 0;
4996
4997 psli = &phba->sli;
4998
4999 /* Kill HBA */
5000 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5001 "0329 Kill HBA Data: x%x x%x\n",
5002 phba->pport->port_state, psli->sli_flag);
5003
5004 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5005 if (!pmb)
5006 return 1;
5007
5008 /* Disable the error attention */
5009 spin_lock_irq(&phba->hbalock);
5010 if (lpfc_readl(phba->HCregaddr, &status)) {
5011 spin_unlock_irq(&phba->hbalock);
5012 mempool_free(pmb, phba->mbox_mem_pool);
5013 return 1;
5014 }
5015 status &= ~HC_ERINT_ENA;
5016 writel(status, phba->HCregaddr);
5017 readl(phba->HCregaddr); /* flush */
5018 phba->link_flag |= LS_IGNORE_ERATT;
5019 spin_unlock_irq(&phba->hbalock);
5020
5021 lpfc_kill_board(phba, pmb);
5022 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
5023 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5024
5025 if (retval != MBX_SUCCESS) {
5026 if (retval != MBX_BUSY)
5027 mempool_free(pmb, phba->mbox_mem_pool);
5028 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5029 "2752 KILL_BOARD command failed retval %d\n",
5030 retval);
5031 spin_lock_irq(&phba->hbalock);
5032 phba->link_flag &= ~LS_IGNORE_ERATT;
5033 spin_unlock_irq(&phba->hbalock);
5034 return 1;
5035 }
5036
5037 spin_lock_irq(&phba->hbalock);
5038 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
5039 spin_unlock_irq(&phba->hbalock);
5040
5041 mempool_free(pmb, phba->mbox_mem_pool);
5042
5043 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error
5044 * attention every 100ms for 3 seconds. If we don't get ERATT after
5045 * 3 seconds we still set HBA_ERROR state because the status of the
5046 * board is now undefined.
5047 */
5048 if (lpfc_readl(phba->HAregaddr, &ha_copy))
5049 return 1;
5050 while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
5051 mdelay(100);
5052 if (lpfc_readl(phba->HAregaddr, &ha_copy))
5053 return 1;
5054 }
5055
5056 timer_delete_sync(&psli->mbox_tmo);
5057 if (ha_copy & HA_ERATT) {
5058 writel(HA_ERATT, phba->HAregaddr);
5059 phba->pport->stopped = 1;
5060 }
5061 spin_lock_irq(&phba->hbalock);
5062 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5063 psli->mbox_active = NULL;
5064 phba->link_flag &= ~LS_IGNORE_ERATT;
5065 spin_unlock_irq(&phba->hbalock);
5066
5067 lpfc_hba_down_post(phba);
5068 phba->link_state = LPFC_HBA_ERROR;
5069
5070 return ha_copy & HA_ERATT ? 0 : 1;
5071 }
5072
5073 /**
5074 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
5075 * @phba: Pointer to HBA context object.
5076 *
5077 * This function resets the HBA by writing HC_INITFF to the control
5078 * register. After the HBA resets, this function resets all the iocb ring
5079 * indices. This function disables PCI layer parity checking during
5080 * the reset.
5081 * This function returns 0 always.
5082 * The caller is not required to hold any locks.
5083 **/
5084 int
lpfc_sli_brdreset(struct lpfc_hba * phba)5085 lpfc_sli_brdreset(struct lpfc_hba *phba)
5086 {
5087 struct lpfc_sli *psli;
5088 struct lpfc_sli_ring *pring;
5089 uint16_t cfg_value;
5090 int i;
5091
5092 psli = &phba->sli;
5093
5094 /* Reset HBA */
5095 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5096 "0325 Reset HBA Data: x%x x%x\n",
5097 (phba->pport) ? phba->pport->port_state : 0,
5098 psli->sli_flag);
5099
5100 /* perform board reset */
5101 phba->fc_eventTag = 0;
5102 phba->link_events = 0;
5103 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag);
5104 if (phba->pport) {
5105 phba->pport->fc_myDID = 0;
5106 phba->pport->fc_prevDID = 0;
5107 }
5108
5109 /* Turn off parity checking and serr during the physical reset */
5110 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
5111 return -EIO;
5112
5113 pci_write_config_word(phba->pcidev, PCI_COMMAND,
5114 (cfg_value &
5115 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
5116
5117 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
5118
5119 /* Now toggle INITFF bit in the Host Control Register */
5120 writel(HC_INITFF, phba->HCregaddr);
5121 mdelay(1);
5122 readl(phba->HCregaddr); /* flush */
5123 writel(0, phba->HCregaddr);
5124 readl(phba->HCregaddr); /* flush */
5125
5126 /* Restore PCI cmd register */
5127 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
5128
5129 /* Initialize relevant SLI info */
5130 for (i = 0; i < psli->num_rings; i++) {
5131 pring = &psli->sli3_ring[i];
5132 pring->flag = 0;
5133 pring->sli.sli3.rspidx = 0;
5134 pring->sli.sli3.next_cmdidx = 0;
5135 pring->sli.sli3.local_getidx = 0;
5136 pring->sli.sli3.cmdidx = 0;
5137 pring->missbufcnt = 0;
5138 }
5139
5140 phba->link_state = LPFC_WARM_START;
5141 return 0;
5142 }
5143
5144 /**
5145 * lpfc_sli4_brdreset - Reset a sli-4 HBA
5146 * @phba: Pointer to HBA context object.
5147 *
5148 * This function resets a SLI4 HBA. This function disables PCI layer parity
5149 * checking during resets the device. The caller is not required to hold
5150 * any locks.
5151 *
5152 * This function returns 0 on success else returns negative error code.
5153 **/
5154 int
lpfc_sli4_brdreset(struct lpfc_hba * phba)5155 lpfc_sli4_brdreset(struct lpfc_hba *phba)
5156 {
5157 struct lpfc_sli *psli = &phba->sli;
5158 uint16_t cfg_value;
5159 int rc = 0;
5160
5161 /* Reset HBA */
5162 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5163 "0295 Reset HBA Data: x%x x%x x%lx\n",
5164 phba->pport->port_state, psli->sli_flag,
5165 phba->hba_flag);
5166
5167 /* perform board reset */
5168 phba->fc_eventTag = 0;
5169 phba->link_events = 0;
5170 phba->pport->fc_myDID = 0;
5171 phba->pport->fc_prevDID = 0;
5172
5173 spin_lock_irq(&phba->hbalock);
5174 psli->sli_flag &= ~(LPFC_PROCESS_LA);
5175 phba->fcf.fcf_flag = 0;
5176 spin_unlock_irq(&phba->hbalock);
5177
5178 /* Now physically reset the device */
5179 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5180 "0389 Performing PCI function reset!\n");
5181
5182 /* Turn off parity checking and serr during the physical reset */
5183 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
5184 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5185 "3205 PCI read Config failed\n");
5186 return -EIO;
5187 }
5188
5189 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
5190 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
5191
5192 /* Perform FCoE PCI function reset before freeing queue memory */
5193 rc = lpfc_pci_function_reset(phba);
5194
5195 /* Restore PCI cmd register */
5196 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
5197
5198 return rc;
5199 }
5200
5201 /**
5202 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
5203 * @phba: Pointer to HBA context object.
5204 *
5205 * This function is called in the SLI initialization code path to
5206 * restart the HBA. The caller is not required to hold any lock.
5207 * This function writes MBX_RESTART mailbox command to the SLIM and
5208 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
5209 * function to free any pending commands. The function enables
5210 * POST only during the first initialization. The function returns zero.
5211 * The function does not guarantee completion of MBX_RESTART mailbox
5212 * command before the return of this function.
5213 **/
5214 static int
lpfc_sli_brdrestart_s3(struct lpfc_hba * phba)5215 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
5216 {
5217 volatile struct MAILBOX_word0 mb;
5218 struct lpfc_sli *psli;
5219 void __iomem *to_slim;
5220
5221 spin_lock_irq(&phba->hbalock);
5222
5223 psli = &phba->sli;
5224
5225 /* Restart HBA */
5226 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5227 "0337 Restart HBA Data: x%x x%x\n",
5228 (phba->pport) ? phba->pport->port_state : 0,
5229 psli->sli_flag);
5230
5231 mb.word0 = 0;
5232 mb.mbxCommand = MBX_RESTART;
5233 mb.mbxHc = 1;
5234
5235 lpfc_reset_barrier(phba);
5236
5237 to_slim = phba->MBslimaddr;
5238 writel(mb.word0, to_slim);
5239 readl(to_slim); /* flush */
5240
5241 /* Only skip post after fc_ffinit is completed */
5242 if (phba->pport && phba->pport->port_state)
5243 mb.word0 = 1; /* This is really setting up word1 */
5244 else
5245 mb.word0 = 0; /* This is really setting up word1 */
5246 to_slim = phba->MBslimaddr + sizeof (uint32_t);
5247 writel(mb.word0, to_slim);
5248 readl(to_slim); /* flush */
5249
5250 lpfc_sli_brdreset(phba);
5251 if (phba->pport)
5252 phba->pport->stopped = 0;
5253 phba->link_state = LPFC_INIT_START;
5254 phba->hba_flag = 0;
5255 spin_unlock_irq(&phba->hbalock);
5256
5257 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
5258 psli->stats_start = ktime_get_seconds();
5259
5260 /* Give the INITFF and Post time to settle. */
5261 mdelay(100);
5262
5263 lpfc_hba_down_post(phba);
5264
5265 return 0;
5266 }
5267
5268 /**
5269 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
5270 * @phba: Pointer to HBA context object.
5271 *
5272 * This function is called in the SLI initialization code path to restart
5273 * a SLI4 HBA. The caller is not required to hold any lock.
5274 * At the end of the function, it calls lpfc_hba_down_post function to
5275 * free any pending commands.
5276 **/
5277 static int
lpfc_sli_brdrestart_s4(struct lpfc_hba * phba)5278 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
5279 {
5280 struct lpfc_sli *psli = &phba->sli;
5281 int rc;
5282
5283 /* Restart HBA */
5284 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5285 "0296 Restart HBA Data: x%x x%x\n",
5286 phba->pport->port_state, psli->sli_flag);
5287
5288 clear_bit(HBA_SETUP, &phba->hba_flag);
5289 lpfc_sli4_queue_unset(phba);
5290
5291 rc = lpfc_sli4_brdreset(phba);
5292 if (rc) {
5293 phba->link_state = LPFC_HBA_ERROR;
5294 goto hba_down_queue;
5295 }
5296
5297 spin_lock_irq(&phba->hbalock);
5298 phba->pport->stopped = 0;
5299 phba->link_state = LPFC_INIT_START;
5300 phba->hba_flag = 0;
5301 /* Preserve FA-PWWN expectation */
5302 phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC;
5303 spin_unlock_irq(&phba->hbalock);
5304
5305 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
5306 psli->stats_start = ktime_get_seconds();
5307
5308 hba_down_queue:
5309 lpfc_hba_down_post(phba);
5310 lpfc_sli4_queue_destroy(phba);
5311
5312 return rc;
5313 }
5314
5315 /**
5316 * lpfc_sli_brdrestart - Wrapper func for restarting hba
5317 * @phba: Pointer to HBA context object.
5318 *
5319 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
5320 * API jump table function pointer from the lpfc_hba struct.
5321 **/
5322 int
lpfc_sli_brdrestart(struct lpfc_hba * phba)5323 lpfc_sli_brdrestart(struct lpfc_hba *phba)
5324 {
5325 return phba->lpfc_sli_brdrestart(phba);
5326 }
5327
5328 /**
5329 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
5330 * @phba: Pointer to HBA context object.
5331 *
5332 * This function is called after a HBA restart to wait for successful
5333 * restart of the HBA. Successful restart of the HBA is indicated by
5334 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
5335 * iteration, the function will restart the HBA again. The function returns
5336 * zero if HBA successfully restarted else returns negative error code.
5337 **/
5338 int
lpfc_sli_chipset_init(struct lpfc_hba * phba)5339 lpfc_sli_chipset_init(struct lpfc_hba *phba)
5340 {
5341 uint32_t status, i = 0;
5342
5343 /* Read the HBA Host Status Register */
5344 if (lpfc_readl(phba->HSregaddr, &status))
5345 return -EIO;
5346
5347 /* Check status register to see what current state is */
5348 i = 0;
5349 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
5350
5351 /* Check every 10ms for 10 retries, then every 100ms for 90
5352 * retries, then every 1 sec for 50 retires for a total of
5353 * ~60 seconds before reset the board again and check every
5354 * 1 sec for 50 retries. The up to 60 seconds before the
5355 * board ready is required by the Falcon FIPS zeroization
5356 * complete, and any reset the board in between shall cause
5357 * restart of zeroization, further delay the board ready.
5358 */
5359 if (i++ >= 200) {
5360 /* Adapter failed to init, timeout, status reg
5361 <status> */
5362 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5363 "0436 Adapter failed to init, "
5364 "timeout, status reg x%x, "
5365 "FW Data: A8 x%x AC x%x\n", status,
5366 readl(phba->MBslimaddr + 0xa8),
5367 readl(phba->MBslimaddr + 0xac));
5368 phba->link_state = LPFC_HBA_ERROR;
5369 return -ETIMEDOUT;
5370 }
5371
5372 /* Check to see if any errors occurred during init */
5373 if (status & HS_FFERM) {
5374 /* ERROR: During chipset initialization */
5375 /* Adapter failed to init, chipset, status reg
5376 <status> */
5377 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5378 "0437 Adapter failed to init, "
5379 "chipset, status reg x%x, "
5380 "FW Data: A8 x%x AC x%x\n", status,
5381 readl(phba->MBslimaddr + 0xa8),
5382 readl(phba->MBslimaddr + 0xac));
5383 phba->link_state = LPFC_HBA_ERROR;
5384 return -EIO;
5385 }
5386
5387 if (i <= 10)
5388 msleep(10);
5389 else if (i <= 100)
5390 msleep(100);
5391 else
5392 msleep(1000);
5393
5394 if (i == 150) {
5395 /* Do post */
5396 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5397 lpfc_sli_brdrestart(phba);
5398 }
5399 /* Read the HBA Host Status Register */
5400 if (lpfc_readl(phba->HSregaddr, &status))
5401 return -EIO;
5402 }
5403
5404 /* Check to see if any errors occurred during init */
5405 if (status & HS_FFERM) {
5406 /* ERROR: During chipset initialization */
5407 /* Adapter failed to init, chipset, status reg <status> */
5408 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5409 "0438 Adapter failed to init, chipset, "
5410 "status reg x%x, "
5411 "FW Data: A8 x%x AC x%x\n", status,
5412 readl(phba->MBslimaddr + 0xa8),
5413 readl(phba->MBslimaddr + 0xac));
5414 phba->link_state = LPFC_HBA_ERROR;
5415 return -EIO;
5416 }
5417
5418 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag);
5419
5420 /* Clear all interrupt enable conditions */
5421 writel(0, phba->HCregaddr);
5422 readl(phba->HCregaddr); /* flush */
5423
5424 /* setup host attn register */
5425 writel(0xffffffff, phba->HAregaddr);
5426 readl(phba->HAregaddr); /* flush */
5427 return 0;
5428 }
5429
5430 /**
5431 * lpfc_sli_hbq_count - Get the number of HBQs to be configured
5432 *
5433 * This function calculates and returns the number of HBQs required to be
5434 * configured.
5435 **/
5436 int
lpfc_sli_hbq_count(void)5437 lpfc_sli_hbq_count(void)
5438 {
5439 return ARRAY_SIZE(lpfc_hbq_defs);
5440 }
5441
5442 /**
5443 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
5444 *
5445 * This function adds the number of hbq entries in every HBQ to get
5446 * the total number of hbq entries required for the HBA and returns
5447 * the total count.
5448 **/
5449 static int
lpfc_sli_hbq_entry_count(void)5450 lpfc_sli_hbq_entry_count(void)
5451 {
5452 int hbq_count = lpfc_sli_hbq_count();
5453 int count = 0;
5454 int i;
5455
5456 for (i = 0; i < hbq_count; ++i)
5457 count += lpfc_hbq_defs[i]->entry_count;
5458 return count;
5459 }
5460
5461 /**
5462 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
5463 *
5464 * This function calculates amount of memory required for all hbq entries
5465 * to be configured and returns the total memory required.
5466 **/
5467 int
lpfc_sli_hbq_size(void)5468 lpfc_sli_hbq_size(void)
5469 {
5470 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
5471 }
5472
5473 /**
5474 * lpfc_sli_hbq_setup - configure and initialize HBQs
5475 * @phba: Pointer to HBA context object.
5476 *
5477 * This function is called during the SLI initialization to configure
5478 * all the HBQs and post buffers to the HBQ. The caller is not
5479 * required to hold any locks. This function will return zero if successful
5480 * else it will return negative error code.
5481 **/
5482 static int
lpfc_sli_hbq_setup(struct lpfc_hba * phba)5483 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
5484 {
5485 int hbq_count = lpfc_sli_hbq_count();
5486 LPFC_MBOXQ_t *pmb;
5487 MAILBOX_t *pmbox;
5488 uint32_t hbqno;
5489 uint32_t hbq_entry_index;
5490
5491 /* Get a Mailbox buffer to setup mailbox
5492 * commands for HBA initialization
5493 */
5494 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5495
5496 if (!pmb)
5497 return -ENOMEM;
5498
5499 pmbox = &pmb->u.mb;
5500
5501 /* Initialize the struct lpfc_sli_hbq structure for each hbq */
5502 phba->link_state = LPFC_INIT_MBX_CMDS;
5503 phba->hbq_in_use = 1;
5504
5505 hbq_entry_index = 0;
5506 for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
5507 phba->hbqs[hbqno].next_hbqPutIdx = 0;
5508 phba->hbqs[hbqno].hbqPutIdx = 0;
5509 phba->hbqs[hbqno].local_hbqGetIdx = 0;
5510 phba->hbqs[hbqno].entry_count =
5511 lpfc_hbq_defs[hbqno]->entry_count;
5512 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
5513 hbq_entry_index, pmb);
5514 hbq_entry_index += phba->hbqs[hbqno].entry_count;
5515
5516 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
5517 /* Adapter failed to init, mbxCmd <cmd> CFG_RING,
5518 mbxStatus <status>, ring <num> */
5519
5520 lpfc_printf_log(phba, KERN_ERR,
5521 LOG_SLI | LOG_VPORT,
5522 "1805 Adapter failed to init. "
5523 "Data: x%x x%x x%x\n",
5524 pmbox->mbxCommand,
5525 pmbox->mbxStatus, hbqno);
5526
5527 phba->link_state = LPFC_HBA_ERROR;
5528 mempool_free(pmb, phba->mbox_mem_pool);
5529 return -ENXIO;
5530 }
5531 }
5532 phba->hbq_count = hbq_count;
5533
5534 mempool_free(pmb, phba->mbox_mem_pool);
5535
5536 /* Initially populate or replenish the HBQs */
5537 for (hbqno = 0; hbqno < hbq_count; ++hbqno)
5538 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
5539 return 0;
5540 }
5541
5542 /**
5543 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
5544 * @phba: Pointer to HBA context object.
5545 *
5546 * This function is called during the SLI initialization to configure
5547 * all the HBQs and post buffers to the HBQ. The caller is not
5548 * required to hold any locks. This function will return zero if successful
5549 * else it will return negative error code.
5550 **/
5551 static int
lpfc_sli4_rb_setup(struct lpfc_hba * phba)5552 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
5553 {
5554 phba->hbq_in_use = 1;
5555 /**
5556 * Specific case when the MDS diagnostics is enabled and supported.
5557 * The receive buffer count is truncated to manage the incoming
5558 * traffic.
5559 **/
5560 if (phba->cfg_enable_mds_diags && phba->mds_diags_support)
5561 phba->hbqs[LPFC_ELS_HBQ].entry_count =
5562 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1;
5563 else
5564 phba->hbqs[LPFC_ELS_HBQ].entry_count =
5565 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
5566 phba->hbq_count = 1;
5567 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
5568 /* Initially populate or replenish the HBQs */
5569 return 0;
5570 }
5571
5572 /**
5573 * lpfc_sli_config_port - Issue config port mailbox command
5574 * @phba: Pointer to HBA context object.
5575 * @sli_mode: sli mode - 2/3
5576 *
5577 * This function is called by the sli initialization code path
5578 * to issue config_port mailbox command. This function restarts the
5579 * HBA firmware and issues a config_port mailbox command to configure
5580 * the SLI interface in the sli mode specified by sli_mode
5581 * variable. The caller is not required to hold any locks.
5582 * The function returns 0 if successful, else returns negative error
5583 * code.
5584 **/
5585 int
lpfc_sli_config_port(struct lpfc_hba * phba,int sli_mode)5586 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
5587 {
5588 LPFC_MBOXQ_t *pmb;
5589 uint32_t resetcount = 0, rc = 0, done = 0;
5590
5591 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5592 if (!pmb) {
5593 phba->link_state = LPFC_HBA_ERROR;
5594 return -ENOMEM;
5595 }
5596
5597 phba->sli_rev = sli_mode;
5598 while (resetcount < 2 && !done) {
5599 spin_lock_irq(&phba->hbalock);
5600 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
5601 spin_unlock_irq(&phba->hbalock);
5602 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5603 lpfc_sli_brdrestart(phba);
5604 rc = lpfc_sli_chipset_init(phba);
5605 if (rc)
5606 break;
5607
5608 spin_lock_irq(&phba->hbalock);
5609 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5610 spin_unlock_irq(&phba->hbalock);
5611 resetcount++;
5612
5613 /* Call pre CONFIG_PORT mailbox command initialization. A
5614 * value of 0 means the call was successful. Any other
5615 * nonzero value is a failure, but if ERESTART is returned,
5616 * the driver may reset the HBA and try again.
5617 */
5618 rc = lpfc_config_port_prep(phba);
5619 if (rc == -ERESTART) {
5620 phba->link_state = LPFC_LINK_UNKNOWN;
5621 continue;
5622 } else if (rc)
5623 break;
5624
5625 phba->link_state = LPFC_INIT_MBX_CMDS;
5626 lpfc_config_port(phba, pmb);
5627 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
5628 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
5629 LPFC_SLI3_HBQ_ENABLED |
5630 LPFC_SLI3_CRP_ENABLED |
5631 LPFC_SLI3_DSS_ENABLED);
5632 if (rc != MBX_SUCCESS) {
5633 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5634 "0442 Adapter failed to init, mbxCmd x%x "
5635 "CONFIG_PORT, mbxStatus x%x Data: x%x\n",
5636 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
5637 spin_lock_irq(&phba->hbalock);
5638 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
5639 spin_unlock_irq(&phba->hbalock);
5640 rc = -ENXIO;
5641 } else {
5642 /* Allow asynchronous mailbox command to go through */
5643 spin_lock_irq(&phba->hbalock);
5644 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
5645 spin_unlock_irq(&phba->hbalock);
5646 done = 1;
5647
5648 if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
5649 (pmb->u.mb.un.varCfgPort.gasabt == 0))
5650 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
5651 "3110 Port did not grant ASABT\n");
5652 }
5653 }
5654 if (!done) {
5655 rc = -EINVAL;
5656 goto do_prep_failed;
5657 }
5658 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
5659 if (!pmb->u.mb.un.varCfgPort.cMA) {
5660 rc = -ENXIO;
5661 goto do_prep_failed;
5662 }
5663 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5664 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5665 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5666 phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5667 phba->max_vpi : phba->max_vports;
5668
5669 } else
5670 phba->max_vpi = 0;
5671 if (pmb->u.mb.un.varCfgPort.gerbm)
5672 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5673 if (pmb->u.mb.un.varCfgPort.gcrp)
5674 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5675
5676 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5677 phba->port_gp = phba->mbox->us.s3_pgp.port;
5678
5679 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5680 if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5681 phba->cfg_enable_bg = 0;
5682 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5683 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5684 "0443 Adapter did not grant "
5685 "BlockGuard\n");
5686 }
5687 }
5688 } else {
5689 phba->hbq_get = NULL;
5690 phba->port_gp = phba->mbox->us.s2.port;
5691 phba->max_vpi = 0;
5692 }
5693 do_prep_failed:
5694 mempool_free(pmb, phba->mbox_mem_pool);
5695 return rc;
5696 }
5697
5698
5699 /**
5700 * lpfc_sli_hba_setup - SLI initialization function
5701 * @phba: Pointer to HBA context object.
5702 *
5703 * This function is the main SLI initialization function. This function
5704 * is called by the HBA initialization code, HBA reset code and HBA
5705 * error attention handler code. Caller is not required to hold any
5706 * locks. This function issues config_port mailbox command to configure
5707 * the SLI, setup iocb rings and HBQ rings. In the end the function
5708 * calls the config_port_post function to issue init_link mailbox
5709 * command and to start the discovery. The function will return zero
5710 * if successful, else it will return negative error code.
5711 **/
5712 int
lpfc_sli_hba_setup(struct lpfc_hba * phba)5713 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5714 {
5715 uint32_t rc;
5716 int i;
5717 int longs;
5718
5719 /* Enable ISR already does config_port because of config_msi mbx */
5720 if (test_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag)) {
5721 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
5722 if (rc)
5723 return -EIO;
5724 clear_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag);
5725 }
5726 phba->fcp_embed_io = 0; /* SLI4 FC support only */
5727
5728 if (phba->sli_rev == 3) {
5729 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5730 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5731 } else {
5732 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5733 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5734 phba->sli3_options = 0;
5735 }
5736
5737 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5738 "0444 Firmware in SLI %x mode. Max_vpi %d\n",
5739 phba->sli_rev, phba->max_vpi);
5740 rc = lpfc_sli_ring_map(phba);
5741
5742 if (rc)
5743 goto lpfc_sli_hba_setup_error;
5744
5745 /* Initialize VPIs. */
5746 if (phba->sli_rev == LPFC_SLI_REV3) {
5747 /*
5748 * The VPI bitmask and physical ID array are allocated
5749 * and initialized once only - at driver load. A port
5750 * reset doesn't need to reinitialize this memory.
5751 */
5752 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5753 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5754 phba->vpi_bmask = kcalloc(longs,
5755 sizeof(unsigned long),
5756 GFP_KERNEL);
5757 if (!phba->vpi_bmask) {
5758 rc = -ENOMEM;
5759 goto lpfc_sli_hba_setup_error;
5760 }
5761
5762 phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5763 sizeof(uint16_t),
5764 GFP_KERNEL);
5765 if (!phba->vpi_ids) {
5766 kfree(phba->vpi_bmask);
5767 rc = -ENOMEM;
5768 goto lpfc_sli_hba_setup_error;
5769 }
5770 for (i = 0; i < phba->max_vpi; i++)
5771 phba->vpi_ids[i] = i;
5772 }
5773 }
5774
5775 /* Init HBQs */
5776 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5777 rc = lpfc_sli_hbq_setup(phba);
5778 if (rc)
5779 goto lpfc_sli_hba_setup_error;
5780 }
5781 spin_lock_irq(&phba->hbalock);
5782 phba->sli.sli_flag |= LPFC_PROCESS_LA;
5783 spin_unlock_irq(&phba->hbalock);
5784
5785 rc = lpfc_config_port_post(phba);
5786 if (rc)
5787 goto lpfc_sli_hba_setup_error;
5788
5789 return rc;
5790
5791 lpfc_sli_hba_setup_error:
5792 phba->link_state = LPFC_HBA_ERROR;
5793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5794 "0445 Firmware initialization failed\n");
5795 return rc;
5796 }
5797
5798 /**
5799 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5800 * @phba: Pointer to HBA context object.
5801 *
5802 * This function issue a dump mailbox command to read config region
5803 * 23 and parse the records in the region and populate driver
5804 * data structure.
5805 **/
5806 static int
lpfc_sli4_read_fcoe_params(struct lpfc_hba * phba)5807 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5808 {
5809 LPFC_MBOXQ_t *mboxq;
5810 struct lpfc_dmabuf *mp;
5811 struct lpfc_mqe *mqe;
5812 uint32_t data_length;
5813 int rc;
5814
5815 /* Program the default value of vlan_id and fc_map */
5816 phba->valid_vlan = 0;
5817 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5818 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5819 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5820
5821 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5822 if (!mboxq)
5823 return -ENOMEM;
5824
5825 mqe = &mboxq->u.mqe;
5826 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5827 rc = -ENOMEM;
5828 goto out_free_mboxq;
5829 }
5830
5831 mp = mboxq->ctx_buf;
5832 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5833
5834 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5835 "(%d):2571 Mailbox cmd x%x Status x%x "
5836 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5837 "x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5838 "CQ: x%x x%x x%x x%x\n",
5839 mboxq->vport ? mboxq->vport->vpi : 0,
5840 bf_get(lpfc_mqe_command, mqe),
5841 bf_get(lpfc_mqe_status, mqe),
5842 mqe->un.mb_words[0], mqe->un.mb_words[1],
5843 mqe->un.mb_words[2], mqe->un.mb_words[3],
5844 mqe->un.mb_words[4], mqe->un.mb_words[5],
5845 mqe->un.mb_words[6], mqe->un.mb_words[7],
5846 mqe->un.mb_words[8], mqe->un.mb_words[9],
5847 mqe->un.mb_words[10], mqe->un.mb_words[11],
5848 mqe->un.mb_words[12], mqe->un.mb_words[13],
5849 mqe->un.mb_words[14], mqe->un.mb_words[15],
5850 mqe->un.mb_words[16], mqe->un.mb_words[50],
5851 mboxq->mcqe.word0,
5852 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
5853 mboxq->mcqe.trailer);
5854
5855 if (rc) {
5856 rc = -EIO;
5857 goto out_free_mboxq;
5858 }
5859 data_length = mqe->un.mb_words[5];
5860 if (data_length > DMP_RGN23_SIZE) {
5861 rc = -EIO;
5862 goto out_free_mboxq;
5863 }
5864
5865 lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5866 rc = 0;
5867
5868 out_free_mboxq:
5869 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED);
5870 return rc;
5871 }
5872
5873 /**
5874 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5875 * @phba: pointer to lpfc hba data structure.
5876 * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5877 * @vpd: pointer to the memory to hold resulting port vpd data.
5878 * @vpd_size: On input, the number of bytes allocated to @vpd.
5879 * On output, the number of data bytes in @vpd.
5880 *
5881 * This routine executes a READ_REV SLI4 mailbox command. In
5882 * addition, this routine gets the port vpd data.
5883 *
5884 * Return codes
5885 * 0 - successful
5886 * -ENOMEM - could not allocated memory.
5887 **/
5888 static int
lpfc_sli4_read_rev(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq,uint8_t * vpd,uint32_t * vpd_size)5889 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5890 uint8_t *vpd, uint32_t *vpd_size)
5891 {
5892 int rc = 0;
5893 uint32_t dma_size;
5894 struct lpfc_dmabuf *dmabuf;
5895 struct lpfc_mqe *mqe;
5896
5897 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5898 if (!dmabuf)
5899 return -ENOMEM;
5900
5901 /*
5902 * Get a DMA buffer for the vpd data resulting from the READ_REV
5903 * mailbox command.
5904 */
5905 dma_size = *vpd_size;
5906 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5907 &dmabuf->phys, GFP_KERNEL);
5908 if (!dmabuf->virt) {
5909 kfree(dmabuf);
5910 return -ENOMEM;
5911 }
5912
5913 /*
5914 * The SLI4 implementation of READ_REV conflicts at word1,
5915 * bits 31:16 and SLI4 adds vpd functionality not present
5916 * in SLI3. This code corrects the conflicts.
5917 */
5918 lpfc_read_rev(phba, mboxq);
5919 mqe = &mboxq->u.mqe;
5920 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5921 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5922 mqe->un.read_rev.word1 &= 0x0000FFFF;
5923 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5924 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5925
5926 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5927 if (rc) {
5928 dma_free_coherent(&phba->pcidev->dev, dma_size,
5929 dmabuf->virt, dmabuf->phys);
5930 kfree(dmabuf);
5931 return -EIO;
5932 }
5933
5934 /*
5935 * The available vpd length cannot be bigger than the
5936 * DMA buffer passed to the port. Catch the less than
5937 * case and update the caller's size.
5938 */
5939 if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5940 *vpd_size = mqe->un.read_rev.avail_vpd_len;
5941
5942 memcpy(vpd, dmabuf->virt, *vpd_size);
5943
5944 dma_free_coherent(&phba->pcidev->dev, dma_size,
5945 dmabuf->virt, dmabuf->phys);
5946 kfree(dmabuf);
5947 return 0;
5948 }
5949
5950 /**
5951 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5952 * @phba: pointer to lpfc hba data structure.
5953 *
5954 * This routine retrieves SLI4 device physical port name this PCI function
5955 * is attached to.
5956 *
5957 * Return codes
5958 * 0 - successful
5959 * otherwise - failed to retrieve controller attributes
5960 **/
5961 static int
lpfc_sli4_get_ctl_attr(struct lpfc_hba * phba)5962 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5963 {
5964 LPFC_MBOXQ_t *mboxq;
5965 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5966 struct lpfc_controller_attribute *cntl_attr;
5967 void *virtaddr = NULL;
5968 uint32_t alloclen, reqlen;
5969 uint32_t shdr_status, shdr_add_status;
5970 union lpfc_sli4_cfg_shdr *shdr;
5971 int rc;
5972
5973 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5974 if (!mboxq)
5975 return -ENOMEM;
5976
5977 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5978 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5979 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5980 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5981 LPFC_SLI4_MBX_NEMBED);
5982
5983 if (alloclen < reqlen) {
5984 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5985 "3084 Allocated DMA memory size (%d) is "
5986 "less than the requested DMA memory size "
5987 "(%d)\n", alloclen, reqlen);
5988 rc = -ENOMEM;
5989 goto out_free_mboxq;
5990 }
5991 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5992 virtaddr = mboxq->sge_array->addr[0];
5993 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5994 shdr = &mbx_cntl_attr->cfg_shdr;
5995 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5996 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5997 if (shdr_status || shdr_add_status || rc) {
5998 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5999 "3085 Mailbox x%x (x%x/x%x) failed, "
6000 "rc:x%x, status:x%x, add_status:x%x\n",
6001 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
6002 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
6003 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
6004 rc, shdr_status, shdr_add_status);
6005 rc = -ENXIO;
6006 goto out_free_mboxq;
6007 }
6008
6009 cntl_attr = &mbx_cntl_attr->cntl_attr;
6010 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
6011 phba->sli4_hba.lnk_info.lnk_tp =
6012 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
6013 phba->sli4_hba.lnk_info.lnk_no =
6014 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
6015 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr);
6016 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr);
6017
6018 memcpy(phba->BIOSVersion, cntl_attr->bios_ver_str,
6019 sizeof(phba->BIOSVersion));
6020 phba->BIOSVersion[sizeof(phba->BIOSVersion) - 1] = '\0';
6021
6022 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6023 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, "
6024 "flash_id: x%02x, asic_rev: x%02x\n",
6025 phba->sli4_hba.lnk_info.lnk_tp,
6026 phba->sli4_hba.lnk_info.lnk_no,
6027 phba->BIOSVersion, phba->sli4_hba.flash_id,
6028 phba->sli4_hba.asic_rev);
6029 out_free_mboxq:
6030 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
6031 lpfc_sli4_mbox_cmd_free(phba, mboxq);
6032 else
6033 mempool_free(mboxq, phba->mbox_mem_pool);
6034 return rc;
6035 }
6036
6037 /**
6038 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
6039 * @phba: pointer to lpfc hba data structure.
6040 *
6041 * This routine retrieves SLI4 device physical port name this PCI function
6042 * is attached to.
6043 *
6044 * Return codes
6045 * 0 - successful
6046 * otherwise - failed to retrieve physical port name
6047 **/
6048 static int
lpfc_sli4_retrieve_pport_name(struct lpfc_hba * phba)6049 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
6050 {
6051 LPFC_MBOXQ_t *mboxq;
6052 struct lpfc_mbx_get_port_name *get_port_name;
6053 uint32_t shdr_status, shdr_add_status;
6054 union lpfc_sli4_cfg_shdr *shdr;
6055 char cport_name = 0;
6056 int rc;
6057
6058 /* We assume nothing at this point */
6059 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
6060 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
6061
6062 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6063 if (!mboxq)
6064 return -ENOMEM;
6065 /* obtain link type and link number via READ_CONFIG */
6066 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
6067 lpfc_sli4_read_config(phba);
6068
6069 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG)
6070 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC;
6071
6072 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
6073 goto retrieve_ppname;
6074
6075 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
6076 rc = lpfc_sli4_get_ctl_attr(phba);
6077 if (rc)
6078 goto out_free_mboxq;
6079
6080 retrieve_ppname:
6081 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
6082 LPFC_MBOX_OPCODE_GET_PORT_NAME,
6083 sizeof(struct lpfc_mbx_get_port_name) -
6084 sizeof(struct lpfc_sli4_cfg_mhdr),
6085 LPFC_SLI4_MBX_EMBED);
6086 get_port_name = &mboxq->u.mqe.un.get_port_name;
6087 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
6088 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
6089 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
6090 phba->sli4_hba.lnk_info.lnk_tp);
6091 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6092 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6093 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6094 if (shdr_status || shdr_add_status || rc) {
6095 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6096 "3087 Mailbox x%x (x%x/x%x) failed: "
6097 "rc:x%x, status:x%x, add_status:x%x\n",
6098 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
6099 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
6100 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
6101 rc, shdr_status, shdr_add_status);
6102 rc = -ENXIO;
6103 goto out_free_mboxq;
6104 }
6105 switch (phba->sli4_hba.lnk_info.lnk_no) {
6106 case LPFC_LINK_NUMBER_0:
6107 cport_name = bf_get(lpfc_mbx_get_port_name_name0,
6108 &get_port_name->u.response);
6109 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6110 break;
6111 case LPFC_LINK_NUMBER_1:
6112 cport_name = bf_get(lpfc_mbx_get_port_name_name1,
6113 &get_port_name->u.response);
6114 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6115 break;
6116 case LPFC_LINK_NUMBER_2:
6117 cport_name = bf_get(lpfc_mbx_get_port_name_name2,
6118 &get_port_name->u.response);
6119 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6120 break;
6121 case LPFC_LINK_NUMBER_3:
6122 cport_name = bf_get(lpfc_mbx_get_port_name_name3,
6123 &get_port_name->u.response);
6124 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6125 break;
6126 default:
6127 break;
6128 }
6129
6130 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
6131 phba->Port[0] = cport_name;
6132 phba->Port[1] = '\0';
6133 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6134 "3091 SLI get port name: %s\n", phba->Port);
6135 }
6136
6137 out_free_mboxq:
6138 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
6139 lpfc_sli4_mbox_cmd_free(phba, mboxq);
6140 else
6141 mempool_free(mboxq, phba->mbox_mem_pool);
6142 return rc;
6143 }
6144
6145 /**
6146 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
6147 * @phba: pointer to lpfc hba data structure.
6148 *
6149 * This routine is called to explicitly arm the SLI4 device's completion and
6150 * event queues
6151 **/
6152 static void
lpfc_sli4_arm_cqeq_intr(struct lpfc_hba * phba)6153 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
6154 {
6155 int qidx;
6156 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
6157 struct lpfc_sli4_hdw_queue *qp;
6158 struct lpfc_queue *eq;
6159
6160 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
6161 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
6162 if (sli4_hba->nvmels_cq)
6163 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
6164 LPFC_QUEUE_REARM);
6165
6166 if (sli4_hba->hdwq) {
6167 /* Loop thru all Hardware Queues */
6168 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
6169 qp = &sli4_hba->hdwq[qidx];
6170 /* ARM the corresponding CQ */
6171 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0,
6172 LPFC_QUEUE_REARM);
6173 }
6174
6175 /* Loop thru all IRQ vectors */
6176 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
6177 eq = sli4_hba->hba_eq_hdl[qidx].eq;
6178 /* ARM the corresponding EQ */
6179 sli4_hba->sli4_write_eq_db(phba, eq,
6180 0, LPFC_QUEUE_REARM);
6181 }
6182 }
6183
6184 if (phba->nvmet_support) {
6185 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
6186 sli4_hba->sli4_write_cq_db(phba,
6187 sli4_hba->nvmet_cqset[qidx], 0,
6188 LPFC_QUEUE_REARM);
6189 }
6190 }
6191 }
6192
6193 /**
6194 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
6195 * @phba: Pointer to HBA context object.
6196 * @type: The resource extent type.
6197 * @extnt_count: buffer to hold port available extent count.
6198 * @extnt_size: buffer to hold element count per extent.
6199 *
6200 * This function calls the port and retrievs the number of available
6201 * extents and their size for a particular extent type.
6202 *
6203 * Returns: 0 if successful. Nonzero otherwise.
6204 **/
6205 int
lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba * phba,uint16_t type,uint16_t * extnt_count,uint16_t * extnt_size)6206 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
6207 uint16_t *extnt_count, uint16_t *extnt_size)
6208 {
6209 int rc = 0;
6210 uint32_t length;
6211 uint32_t mbox_tmo;
6212 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
6213 LPFC_MBOXQ_t *mbox;
6214
6215 *extnt_count = 0;
6216 *extnt_size = 0;
6217
6218 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6219 if (!mbox)
6220 return -ENOMEM;
6221
6222 /* Find out how many extents are available for this resource type */
6223 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
6224 sizeof(struct lpfc_sli4_cfg_mhdr));
6225 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6226 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
6227 length, LPFC_SLI4_MBX_EMBED);
6228
6229 /* Send an extents count of 0 - the GET doesn't use it. */
6230 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6231 LPFC_SLI4_MBX_EMBED);
6232 if (unlikely(rc)) {
6233 rc = -EIO;
6234 goto err_exit;
6235 }
6236
6237 if (!phba->sli4_hba.intr_enable)
6238 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6239 else {
6240 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6241 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6242 }
6243 if (unlikely(rc)) {
6244 rc = -EIO;
6245 goto err_exit;
6246 }
6247
6248 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
6249 if (bf_get(lpfc_mbox_hdr_status,
6250 &rsrc_info->header.cfg_shdr.response)) {
6251 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6252 "2930 Failed to get resource extents "
6253 "Status 0x%x Add'l Status 0x%x\n",
6254 bf_get(lpfc_mbox_hdr_status,
6255 &rsrc_info->header.cfg_shdr.response),
6256 bf_get(lpfc_mbox_hdr_add_status,
6257 &rsrc_info->header.cfg_shdr.response));
6258 rc = -EIO;
6259 goto err_exit;
6260 }
6261
6262 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
6263 &rsrc_info->u.rsp);
6264 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
6265 &rsrc_info->u.rsp);
6266
6267 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6268 "3162 Retrieved extents type-%d from port: count:%d, "
6269 "size:%d\n", type, *extnt_count, *extnt_size);
6270
6271 err_exit:
6272 mempool_free(mbox, phba->mbox_mem_pool);
6273 return rc;
6274 }
6275
6276 /**
6277 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
6278 * @phba: Pointer to HBA context object.
6279 * @type: The extent type to check.
6280 *
6281 * This function reads the current available extents from the port and checks
6282 * if the extent count or extent size has changed since the last access.
6283 * Callers use this routine post port reset to understand if there is a
6284 * extent reprovisioning requirement.
6285 *
6286 * Returns:
6287 * -Error: error indicates problem.
6288 * 1: Extent count or size has changed.
6289 * 0: No changes.
6290 **/
6291 static int
lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba * phba,uint16_t type)6292 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
6293 {
6294 uint16_t curr_ext_cnt, rsrc_ext_cnt;
6295 uint16_t size_diff, rsrc_ext_size;
6296 int rc = 0;
6297 struct lpfc_rsrc_blks *rsrc_entry;
6298 struct list_head *rsrc_blk_list = NULL;
6299
6300 size_diff = 0;
6301 curr_ext_cnt = 0;
6302 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
6303 &rsrc_ext_cnt,
6304 &rsrc_ext_size);
6305 if (unlikely(rc))
6306 return -EIO;
6307
6308 switch (type) {
6309 case LPFC_RSC_TYPE_FCOE_RPI:
6310 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6311 break;
6312 case LPFC_RSC_TYPE_FCOE_VPI:
6313 rsrc_blk_list = &phba->lpfc_vpi_blk_list;
6314 break;
6315 case LPFC_RSC_TYPE_FCOE_XRI:
6316 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6317 break;
6318 case LPFC_RSC_TYPE_FCOE_VFI:
6319 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6320 break;
6321 default:
6322 break;
6323 }
6324
6325 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
6326 curr_ext_cnt++;
6327 if (rsrc_entry->rsrc_size != rsrc_ext_size)
6328 size_diff++;
6329 }
6330
6331 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
6332 rc = 1;
6333
6334 return rc;
6335 }
6336
6337 /**
6338 * lpfc_sli4_cfg_post_extnts -
6339 * @phba: Pointer to HBA context object.
6340 * @extnt_cnt: number of available extents.
6341 * @type: the extent type (rpi, xri, vfi, vpi).
6342 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation.
6343 * @mbox: pointer to the caller's allocated mailbox structure.
6344 *
6345 * This function executes the extents allocation request. It also
6346 * takes care of the amount of memory needed to allocate or get the
6347 * allocated extents. It is the caller's responsibility to evaluate
6348 * the response.
6349 *
6350 * Returns:
6351 * -Error: Error value describes the condition found.
6352 * 0: if successful
6353 **/
6354 static int
lpfc_sli4_cfg_post_extnts(struct lpfc_hba * phba,uint16_t extnt_cnt,uint16_t type,bool * emb,LPFC_MBOXQ_t * mbox)6355 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
6356 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
6357 {
6358 int rc = 0;
6359 uint32_t req_len;
6360 uint32_t emb_len;
6361 uint32_t alloc_len, mbox_tmo;
6362
6363 /* Calculate the total requested length of the dma memory */
6364 req_len = extnt_cnt * sizeof(uint16_t);
6365
6366 /*
6367 * Calculate the size of an embedded mailbox. The uint32_t
6368 * accounts for extents-specific word.
6369 */
6370 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6371 sizeof(uint32_t);
6372
6373 /*
6374 * Presume the allocation and response will fit into an embedded
6375 * mailbox. If not true, reconfigure to a non-embedded mailbox.
6376 */
6377 *emb = LPFC_SLI4_MBX_EMBED;
6378 if (req_len > emb_len) {
6379 req_len = extnt_cnt * sizeof(uint16_t) +
6380 sizeof(union lpfc_sli4_cfg_shdr) +
6381 sizeof(uint32_t);
6382 *emb = LPFC_SLI4_MBX_NEMBED;
6383 }
6384
6385 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6386 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
6387 req_len, *emb);
6388 if (alloc_len < req_len) {
6389 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6390 "2982 Allocated DMA memory size (x%x) is "
6391 "less than the requested DMA memory "
6392 "size (x%x)\n", alloc_len, req_len);
6393 return -ENOMEM;
6394 }
6395 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
6396 if (unlikely(rc))
6397 return -EIO;
6398
6399 if (!phba->sli4_hba.intr_enable)
6400 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6401 else {
6402 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6403 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6404 }
6405
6406 if (unlikely(rc))
6407 rc = -EIO;
6408 return rc;
6409 }
6410
6411 /**
6412 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
6413 * @phba: Pointer to HBA context object.
6414 * @type: The resource extent type to allocate.
6415 *
6416 * This function allocates the number of elements for the specified
6417 * resource type.
6418 **/
6419 static int
lpfc_sli4_alloc_extent(struct lpfc_hba * phba,uint16_t type)6420 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
6421 {
6422 bool emb = false;
6423 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
6424 uint16_t rsrc_id, rsrc_start, j, k;
6425 uint16_t *ids;
6426 int i, rc;
6427 unsigned long longs;
6428 unsigned long *bmask;
6429 struct lpfc_rsrc_blks *rsrc_blks;
6430 LPFC_MBOXQ_t *mbox;
6431 uint32_t length;
6432 struct lpfc_id_range *id_array = NULL;
6433 void *virtaddr = NULL;
6434 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6435 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6436 struct list_head *ext_blk_list;
6437
6438 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
6439 &rsrc_cnt,
6440 &rsrc_size);
6441 if (unlikely(rc))
6442 return -EIO;
6443
6444 if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
6445 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6446 "3009 No available Resource Extents "
6447 "for resource type 0x%x: Count: 0x%x, "
6448 "Size 0x%x\n", type, rsrc_cnt,
6449 rsrc_size);
6450 return -ENOMEM;
6451 }
6452
6453 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
6454 "2903 Post resource extents type-0x%x: "
6455 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
6456
6457 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6458 if (!mbox)
6459 return -ENOMEM;
6460
6461 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
6462 if (unlikely(rc)) {
6463 rc = -EIO;
6464 goto err_exit;
6465 }
6466
6467 /*
6468 * Figure out where the response is located. Then get local pointers
6469 * to the response data. The port does not guarantee to respond to
6470 * all extents counts request so update the local variable with the
6471 * allocated count from the port.
6472 */
6473 if (emb == LPFC_SLI4_MBX_EMBED) {
6474 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6475 id_array = &rsrc_ext->u.rsp.id[0];
6476 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6477 } else {
6478 virtaddr = mbox->sge_array->addr[0];
6479 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6480 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6481 id_array = &n_rsrc->id;
6482 }
6483
6484 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
6485 rsrc_id_cnt = rsrc_cnt * rsrc_size;
6486
6487 /*
6488 * Based on the resource size and count, correct the base and max
6489 * resource values.
6490 */
6491 length = sizeof(struct lpfc_rsrc_blks);
6492 switch (type) {
6493 case LPFC_RSC_TYPE_FCOE_RPI:
6494 phba->sli4_hba.rpi_bmask = kcalloc(longs,
6495 sizeof(unsigned long),
6496 GFP_KERNEL);
6497 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6498 rc = -ENOMEM;
6499 goto err_exit;
6500 }
6501 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
6502 sizeof(uint16_t),
6503 GFP_KERNEL);
6504 if (unlikely(!phba->sli4_hba.rpi_ids)) {
6505 kfree(phba->sli4_hba.rpi_bmask);
6506 rc = -ENOMEM;
6507 goto err_exit;
6508 }
6509
6510 /*
6511 * The next_rpi was initialized with the maximum available
6512 * count but the port may allocate a smaller number. Catch
6513 * that case and update the next_rpi.
6514 */
6515 phba->sli4_hba.next_rpi = rsrc_id_cnt;
6516
6517 /* Initialize local ptrs for common extent processing later. */
6518 bmask = phba->sli4_hba.rpi_bmask;
6519 ids = phba->sli4_hba.rpi_ids;
6520 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6521 break;
6522 case LPFC_RSC_TYPE_FCOE_VPI:
6523 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6524 GFP_KERNEL);
6525 if (unlikely(!phba->vpi_bmask)) {
6526 rc = -ENOMEM;
6527 goto err_exit;
6528 }
6529 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
6530 GFP_KERNEL);
6531 if (unlikely(!phba->vpi_ids)) {
6532 kfree(phba->vpi_bmask);
6533 rc = -ENOMEM;
6534 goto err_exit;
6535 }
6536
6537 /* Initialize local ptrs for common extent processing later. */
6538 bmask = phba->vpi_bmask;
6539 ids = phba->vpi_ids;
6540 ext_blk_list = &phba->lpfc_vpi_blk_list;
6541 break;
6542 case LPFC_RSC_TYPE_FCOE_XRI:
6543 phba->sli4_hba.xri_bmask = kcalloc(longs,
6544 sizeof(unsigned long),
6545 GFP_KERNEL);
6546 if (unlikely(!phba->sli4_hba.xri_bmask)) {
6547 rc = -ENOMEM;
6548 goto err_exit;
6549 }
6550 phba->sli4_hba.max_cfg_param.xri_used = 0;
6551 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
6552 sizeof(uint16_t),
6553 GFP_KERNEL);
6554 if (unlikely(!phba->sli4_hba.xri_ids)) {
6555 kfree(phba->sli4_hba.xri_bmask);
6556 rc = -ENOMEM;
6557 goto err_exit;
6558 }
6559
6560 /* Initialize local ptrs for common extent processing later. */
6561 bmask = phba->sli4_hba.xri_bmask;
6562 ids = phba->sli4_hba.xri_ids;
6563 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6564 break;
6565 case LPFC_RSC_TYPE_FCOE_VFI:
6566 phba->sli4_hba.vfi_bmask = kcalloc(longs,
6567 sizeof(unsigned long),
6568 GFP_KERNEL);
6569 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6570 rc = -ENOMEM;
6571 goto err_exit;
6572 }
6573 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
6574 sizeof(uint16_t),
6575 GFP_KERNEL);
6576 if (unlikely(!phba->sli4_hba.vfi_ids)) {
6577 kfree(phba->sli4_hba.vfi_bmask);
6578 rc = -ENOMEM;
6579 goto err_exit;
6580 }
6581
6582 /* Initialize local ptrs for common extent processing later. */
6583 bmask = phba->sli4_hba.vfi_bmask;
6584 ids = phba->sli4_hba.vfi_ids;
6585 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6586 break;
6587 default:
6588 /* Unsupported Opcode. Fail call. */
6589 id_array = NULL;
6590 bmask = NULL;
6591 ids = NULL;
6592 ext_blk_list = NULL;
6593 goto err_exit;
6594 }
6595
6596 /*
6597 * Complete initializing the extent configuration with the
6598 * allocated ids assigned to this function. The bitmask serves
6599 * as an index into the array and manages the available ids. The
6600 * array just stores the ids communicated to the port via the wqes.
6601 */
6602 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
6603 if ((i % 2) == 0)
6604 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
6605 &id_array[k]);
6606 else
6607 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
6608 &id_array[k]);
6609
6610 rsrc_blks = kzalloc(length, GFP_KERNEL);
6611 if (unlikely(!rsrc_blks)) {
6612 rc = -ENOMEM;
6613 kfree(bmask);
6614 kfree(ids);
6615 goto err_exit;
6616 }
6617 rsrc_blks->rsrc_start = rsrc_id;
6618 rsrc_blks->rsrc_size = rsrc_size;
6619 list_add_tail(&rsrc_blks->list, ext_blk_list);
6620 rsrc_start = rsrc_id;
6621 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6622 phba->sli4_hba.io_xri_start = rsrc_start +
6623 lpfc_sli4_get_iocb_cnt(phba);
6624 }
6625
6626 while (rsrc_id < (rsrc_start + rsrc_size)) {
6627 ids[j] = rsrc_id;
6628 rsrc_id++;
6629 j++;
6630 }
6631 /* Entire word processed. Get next word.*/
6632 if ((i % 2) == 1)
6633 k++;
6634 }
6635 err_exit:
6636 lpfc_sli4_mbox_cmd_free(phba, mbox);
6637 return rc;
6638 }
6639
6640
6641
6642 /**
6643 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6644 * @phba: Pointer to HBA context object.
6645 * @type: the extent's type.
6646 *
6647 * This function deallocates all extents of a particular resource type.
6648 * SLI4 does not allow for deallocating a particular extent range. It
6649 * is the caller's responsibility to release all kernel memory resources.
6650 **/
6651 static int
lpfc_sli4_dealloc_extent(struct lpfc_hba * phba,uint16_t type)6652 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6653 {
6654 int rc;
6655 uint32_t length, mbox_tmo = 0;
6656 LPFC_MBOXQ_t *mbox;
6657 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6658 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6659
6660 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6661 if (!mbox)
6662 return -ENOMEM;
6663
6664 /*
6665 * This function sends an embedded mailbox because it only sends the
6666 * the resource type. All extents of this type are released by the
6667 * port.
6668 */
6669 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6670 sizeof(struct lpfc_sli4_cfg_mhdr));
6671 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6672 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6673 length, LPFC_SLI4_MBX_EMBED);
6674
6675 /* Send an extents count of 0 - the dealloc doesn't use it. */
6676 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6677 LPFC_SLI4_MBX_EMBED);
6678 if (unlikely(rc)) {
6679 rc = -EIO;
6680 goto out_free_mbox;
6681 }
6682 if (!phba->sli4_hba.intr_enable)
6683 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6684 else {
6685 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6686 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6687 }
6688 if (unlikely(rc)) {
6689 rc = -EIO;
6690 goto out_free_mbox;
6691 }
6692
6693 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6694 if (bf_get(lpfc_mbox_hdr_status,
6695 &dealloc_rsrc->header.cfg_shdr.response)) {
6696 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6697 "2919 Failed to release resource extents "
6698 "for type %d - Status 0x%x Add'l Status 0x%x. "
6699 "Resource memory not released.\n",
6700 type,
6701 bf_get(lpfc_mbox_hdr_status,
6702 &dealloc_rsrc->header.cfg_shdr.response),
6703 bf_get(lpfc_mbox_hdr_add_status,
6704 &dealloc_rsrc->header.cfg_shdr.response));
6705 rc = -EIO;
6706 goto out_free_mbox;
6707 }
6708
6709 /* Release kernel memory resources for the specific type. */
6710 switch (type) {
6711 case LPFC_RSC_TYPE_FCOE_VPI:
6712 kfree(phba->vpi_bmask);
6713 kfree(phba->vpi_ids);
6714 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6715 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6716 &phba->lpfc_vpi_blk_list, list) {
6717 list_del_init(&rsrc_blk->list);
6718 kfree(rsrc_blk);
6719 }
6720 phba->sli4_hba.max_cfg_param.vpi_used = 0;
6721 break;
6722 case LPFC_RSC_TYPE_FCOE_XRI:
6723 kfree(phba->sli4_hba.xri_bmask);
6724 kfree(phba->sli4_hba.xri_ids);
6725 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6726 &phba->sli4_hba.lpfc_xri_blk_list, list) {
6727 list_del_init(&rsrc_blk->list);
6728 kfree(rsrc_blk);
6729 }
6730 break;
6731 case LPFC_RSC_TYPE_FCOE_VFI:
6732 kfree(phba->sli4_hba.vfi_bmask);
6733 kfree(phba->sli4_hba.vfi_ids);
6734 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6735 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6736 &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6737 list_del_init(&rsrc_blk->list);
6738 kfree(rsrc_blk);
6739 }
6740 break;
6741 case LPFC_RSC_TYPE_FCOE_RPI:
6742 /* RPI bitmask and physical id array are cleaned up earlier. */
6743 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6744 &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6745 list_del_init(&rsrc_blk->list);
6746 kfree(rsrc_blk);
6747 }
6748 break;
6749 default:
6750 break;
6751 }
6752
6753 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6754
6755 out_free_mbox:
6756 mempool_free(mbox, phba->mbox_mem_pool);
6757 return rc;
6758 }
6759
6760 static void
lpfc_set_features(struct lpfc_hba * phba,LPFC_MBOXQ_t * mbox,uint32_t feature)6761 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6762 uint32_t feature)
6763 {
6764 uint32_t len;
6765 u32 sig_freq = 0;
6766
6767 len = sizeof(struct lpfc_mbx_set_feature) -
6768 sizeof(struct lpfc_sli4_cfg_mhdr);
6769 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6770 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6771 LPFC_SLI4_MBX_EMBED);
6772
6773 switch (feature) {
6774 case LPFC_SET_UE_RECOVERY:
6775 bf_set(lpfc_mbx_set_feature_UER,
6776 &mbox->u.mqe.un.set_feature, 1);
6777 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6778 mbox->u.mqe.un.set_feature.param_len = 8;
6779 break;
6780 case LPFC_SET_MDS_DIAGS:
6781 bf_set(lpfc_mbx_set_feature_mds,
6782 &mbox->u.mqe.un.set_feature, 1);
6783 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6784 &mbox->u.mqe.un.set_feature, 1);
6785 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6786 mbox->u.mqe.un.set_feature.param_len = 8;
6787 break;
6788 case LPFC_SET_CGN_SIGNAL:
6789 if (phba->cmf_active_mode == LPFC_CFG_OFF)
6790 sig_freq = 0;
6791 else
6792 sig_freq = phba->cgn_sig_freq;
6793
6794 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6795 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq,
6796 &mbox->u.mqe.un.set_feature, sig_freq);
6797 bf_set(lpfc_mbx_set_feature_CGN_warn_freq,
6798 &mbox->u.mqe.un.set_feature, sig_freq);
6799 }
6800
6801 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY)
6802 bf_set(lpfc_mbx_set_feature_CGN_warn_freq,
6803 &mbox->u.mqe.un.set_feature, sig_freq);
6804
6805 if (phba->cmf_active_mode == LPFC_CFG_OFF ||
6806 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED)
6807 sig_freq = 0;
6808 else
6809 sig_freq = lpfc_acqe_cgn_frequency;
6810
6811 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq,
6812 &mbox->u.mqe.un.set_feature, sig_freq);
6813
6814 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL;
6815 mbox->u.mqe.un.set_feature.param_len = 12;
6816 break;
6817 case LPFC_SET_DUAL_DUMP:
6818 bf_set(lpfc_mbx_set_feature_dd,
6819 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP);
6820 bf_set(lpfc_mbx_set_feature_ddquery,
6821 &mbox->u.mqe.un.set_feature, 0);
6822 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP;
6823 mbox->u.mqe.un.set_feature.param_len = 4;
6824 break;
6825 case LPFC_SET_ENABLE_MI:
6826 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI;
6827 mbox->u.mqe.un.set_feature.param_len = 4;
6828 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature,
6829 phba->pport->cfg_lun_queue_depth);
6830 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature,
6831 phba->sli4_hba.pc_sli4_params.mi_ver);
6832 break;
6833 case LPFC_SET_LD_SIGNAL:
6834 mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL;
6835 mbox->u.mqe.un.set_feature.param_len = 16;
6836 bf_set(lpfc_mbx_set_feature_lds_qry,
6837 &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP);
6838 break;
6839 case LPFC_SET_ENABLE_CMF:
6840 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF;
6841 mbox->u.mqe.un.set_feature.param_len = 4;
6842 bf_set(lpfc_mbx_set_feature_cmf,
6843 &mbox->u.mqe.un.set_feature, 1);
6844 break;
6845 }
6846 return;
6847 }
6848
6849 /**
6850 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6851 * @phba: Pointer to HBA context object.
6852 *
6853 * Disable FW logging into host memory on the adapter. To
6854 * be done before reading logs from the host memory.
6855 **/
6856 void
lpfc_ras_stop_fwlog(struct lpfc_hba * phba)6857 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6858 {
6859 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6860
6861 spin_lock_irq(&phba->ras_fwlog_lock);
6862 ras_fwlog->state = INACTIVE;
6863 spin_unlock_irq(&phba->ras_fwlog_lock);
6864
6865 /* Disable FW logging to host memory */
6866 writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6867 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6868
6869 /* Wait 10ms for firmware to stop using DMA buffer */
6870 usleep_range(10 * 1000, 20 * 1000);
6871 }
6872
6873 /**
6874 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6875 * @phba: Pointer to HBA context object.
6876 *
6877 * This function is called to free memory allocated for RAS FW logging
6878 * support in the driver.
6879 **/
6880 void
lpfc_sli4_ras_dma_free(struct lpfc_hba * phba)6881 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6882 {
6883 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6884 struct lpfc_dmabuf *dmabuf, *next;
6885
6886 if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6887 list_for_each_entry_safe(dmabuf, next,
6888 &ras_fwlog->fwlog_buff_list,
6889 list) {
6890 list_del(&dmabuf->list);
6891 dma_free_coherent(&phba->pcidev->dev,
6892 LPFC_RAS_MAX_ENTRY_SIZE,
6893 dmabuf->virt, dmabuf->phys);
6894 kfree(dmabuf);
6895 }
6896 }
6897
6898 if (ras_fwlog->lwpd.virt) {
6899 dma_free_coherent(&phba->pcidev->dev,
6900 sizeof(uint32_t) * 2,
6901 ras_fwlog->lwpd.virt,
6902 ras_fwlog->lwpd.phys);
6903 ras_fwlog->lwpd.virt = NULL;
6904 }
6905
6906 spin_lock_irq(&phba->ras_fwlog_lock);
6907 ras_fwlog->state = INACTIVE;
6908 spin_unlock_irq(&phba->ras_fwlog_lock);
6909 }
6910
6911 /**
6912 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6913 * @phba: Pointer to HBA context object.
6914 * @fwlog_buff_count: Count of buffers to be created.
6915 *
6916 * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6917 * to update FW log is posted to the adapter.
6918 * Buffer count is calculated based on module param ras_fwlog_buffsize
6919 * Size of each buffer posted to FW is 64K.
6920 **/
6921
6922 static int
lpfc_sli4_ras_dma_alloc(struct lpfc_hba * phba,uint32_t fwlog_buff_count)6923 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6924 uint32_t fwlog_buff_count)
6925 {
6926 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6927 struct lpfc_dmabuf *dmabuf;
6928 int rc = 0, i = 0;
6929
6930 /* Initialize List */
6931 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6932
6933 /* Allocate memory for the LWPD */
6934 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6935 sizeof(uint32_t) * 2,
6936 &ras_fwlog->lwpd.phys,
6937 GFP_KERNEL);
6938 if (!ras_fwlog->lwpd.virt) {
6939 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6940 "6185 LWPD Memory Alloc Failed\n");
6941
6942 return -ENOMEM;
6943 }
6944
6945 ras_fwlog->fw_buffcount = fwlog_buff_count;
6946 for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6947 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6948 GFP_KERNEL);
6949 if (!dmabuf) {
6950 rc = -ENOMEM;
6951 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6952 "6186 Memory Alloc failed FW logging");
6953 goto free_mem;
6954 }
6955
6956 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6957 LPFC_RAS_MAX_ENTRY_SIZE,
6958 &dmabuf->phys, GFP_KERNEL);
6959 if (!dmabuf->virt) {
6960 kfree(dmabuf);
6961 rc = -ENOMEM;
6962 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6963 "6187 DMA Alloc Failed FW logging");
6964 goto free_mem;
6965 }
6966 dmabuf->buffer_tag = i;
6967 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6968 }
6969
6970 free_mem:
6971 if (rc)
6972 lpfc_sli4_ras_dma_free(phba);
6973
6974 return rc;
6975 }
6976
6977 /**
6978 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6979 * @phba: pointer to lpfc hba data structure.
6980 * @pmb: pointer to the driver internal queue element for mailbox command.
6981 *
6982 * Completion handler for driver's RAS MBX command to the device.
6983 **/
6984 static void
lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)6985 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6986 {
6987 MAILBOX_t *mb;
6988 union lpfc_sli4_cfg_shdr *shdr;
6989 uint32_t shdr_status, shdr_add_status;
6990 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6991
6992 mb = &pmb->u.mb;
6993
6994 shdr = (union lpfc_sli4_cfg_shdr *)
6995 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6996 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6997 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6998
6999 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
7000 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7001 "6188 FW LOG mailbox "
7002 "completed with status x%x add_status x%x,"
7003 " mbx status x%x\n",
7004 shdr_status, shdr_add_status, mb->mbxStatus);
7005
7006 ras_fwlog->ras_hwsupport = false;
7007 goto disable_ras;
7008 }
7009
7010 spin_lock_irq(&phba->ras_fwlog_lock);
7011 ras_fwlog->state = ACTIVE;
7012 spin_unlock_irq(&phba->ras_fwlog_lock);
7013 mempool_free(pmb, phba->mbox_mem_pool);
7014
7015 return;
7016
7017 disable_ras:
7018 /* Free RAS DMA memory */
7019 lpfc_sli4_ras_dma_free(phba);
7020 mempool_free(pmb, phba->mbox_mem_pool);
7021 }
7022
7023 /**
7024 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
7025 * @phba: pointer to lpfc hba data structure.
7026 * @fwlog_level: Logging verbosity level.
7027 * @fwlog_enable: Enable/Disable logging.
7028 *
7029 * Initialize memory and post mailbox command to enable FW logging in host
7030 * memory.
7031 **/
7032 int
lpfc_sli4_ras_fwlog_init(struct lpfc_hba * phba,uint32_t fwlog_level,uint32_t fwlog_enable)7033 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
7034 uint32_t fwlog_level,
7035 uint32_t fwlog_enable)
7036 {
7037 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
7038 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
7039 struct lpfc_dmabuf *dmabuf;
7040 LPFC_MBOXQ_t *mbox;
7041 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
7042 int rc = 0;
7043
7044 spin_lock_irq(&phba->ras_fwlog_lock);
7045 ras_fwlog->state = INACTIVE;
7046 spin_unlock_irq(&phba->ras_fwlog_lock);
7047
7048 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
7049 phba->cfg_ras_fwlog_buffsize);
7050 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
7051
7052 /*
7053 * If re-enabling FW logging support use earlier allocated
7054 * DMA buffers while posting MBX command.
7055 **/
7056 if (!ras_fwlog->lwpd.virt) {
7057 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
7058 if (rc) {
7059 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7060 "6189 FW Log Memory Allocation Failed");
7061 return rc;
7062 }
7063 }
7064
7065 /* Setup Mailbox command */
7066 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7067 if (!mbox) {
7068 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7069 "6190 RAS MBX Alloc Failed");
7070 rc = -ENOMEM;
7071 goto mem_free;
7072 }
7073
7074 ras_fwlog->fw_loglevel = fwlog_level;
7075 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
7076 sizeof(struct lpfc_sli4_cfg_mhdr));
7077
7078 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
7079 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
7080 len, LPFC_SLI4_MBX_EMBED);
7081
7082 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
7083 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
7084 fwlog_enable);
7085 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
7086 ras_fwlog->fw_loglevel);
7087 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
7088 ras_fwlog->fw_buffcount);
7089 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
7090 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
7091
7092 /* Update DMA buffer address */
7093 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
7094 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
7095
7096 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
7097 putPaddrLow(dmabuf->phys);
7098
7099 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
7100 putPaddrHigh(dmabuf->phys);
7101 }
7102
7103 /* Update LPWD address */
7104 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
7105 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
7106
7107 spin_lock_irq(&phba->ras_fwlog_lock);
7108 ras_fwlog->state = REG_INPROGRESS;
7109 spin_unlock_irq(&phba->ras_fwlog_lock);
7110 mbox->vport = phba->pport;
7111 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
7112
7113 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
7114
7115 if (rc == MBX_NOT_FINISHED) {
7116 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7117 "6191 FW-Log Mailbox failed. "
7118 "status %d mbxStatus : x%x", rc,
7119 bf_get(lpfc_mqe_status, &mbox->u.mqe));
7120 mempool_free(mbox, phba->mbox_mem_pool);
7121 rc = -EIO;
7122 goto mem_free;
7123 } else
7124 rc = 0;
7125 mem_free:
7126 if (rc)
7127 lpfc_sli4_ras_dma_free(phba);
7128
7129 return rc;
7130 }
7131
7132 /**
7133 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
7134 * @phba: Pointer to HBA context object.
7135 *
7136 * Check if RAS is supported on the adapter and initialize it.
7137 **/
7138 void
lpfc_sli4_ras_setup(struct lpfc_hba * phba)7139 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
7140 {
7141 /* Check RAS FW Log needs to be enabled or not */
7142 if (lpfc_check_fwlog_support(phba))
7143 return;
7144
7145 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
7146 LPFC_RAS_ENABLE_LOGGING);
7147 }
7148
7149 /**
7150 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
7151 * @phba: Pointer to HBA context object.
7152 *
7153 * This function allocates all SLI4 resource identifiers.
7154 **/
7155 int
lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba * phba)7156 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
7157 {
7158 int i, rc, error = 0;
7159 uint16_t count, base;
7160 unsigned long longs;
7161
7162 if (!phba->sli4_hba.rpi_hdrs_in_use)
7163 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
7164 if (phba->sli4_hba.extents_in_use) {
7165 /*
7166 * The port supports resource extents. The XRI, VPI, VFI, RPI
7167 * resource extent count must be read and allocated before
7168 * provisioning the resource id arrays.
7169 */
7170 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
7171 LPFC_IDX_RSRC_RDY) {
7172 /*
7173 * Extent-based resources are set - the driver could
7174 * be in a port reset. Figure out if any corrective
7175 * actions need to be taken.
7176 */
7177 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7178 LPFC_RSC_TYPE_FCOE_VFI);
7179 if (rc != 0)
7180 error++;
7181 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7182 LPFC_RSC_TYPE_FCOE_VPI);
7183 if (rc != 0)
7184 error++;
7185 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7186 LPFC_RSC_TYPE_FCOE_XRI);
7187 if (rc != 0)
7188 error++;
7189 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7190 LPFC_RSC_TYPE_FCOE_RPI);
7191 if (rc != 0)
7192 error++;
7193
7194 /*
7195 * It's possible that the number of resources
7196 * provided to this port instance changed between
7197 * resets. Detect this condition and reallocate
7198 * resources. Otherwise, there is no action.
7199 */
7200 if (error) {
7201 lpfc_printf_log(phba, KERN_INFO,
7202 LOG_MBOX | LOG_INIT,
7203 "2931 Detected extent resource "
7204 "change. Reallocating all "
7205 "extents.\n");
7206 rc = lpfc_sli4_dealloc_extent(phba,
7207 LPFC_RSC_TYPE_FCOE_VFI);
7208 rc = lpfc_sli4_dealloc_extent(phba,
7209 LPFC_RSC_TYPE_FCOE_VPI);
7210 rc = lpfc_sli4_dealloc_extent(phba,
7211 LPFC_RSC_TYPE_FCOE_XRI);
7212 rc = lpfc_sli4_dealloc_extent(phba,
7213 LPFC_RSC_TYPE_FCOE_RPI);
7214 } else
7215 return 0;
7216 }
7217
7218 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
7219 if (unlikely(rc))
7220 goto err_exit;
7221
7222 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
7223 if (unlikely(rc))
7224 goto err_exit;
7225
7226 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
7227 if (unlikely(rc))
7228 goto err_exit;
7229
7230 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
7231 if (unlikely(rc))
7232 goto err_exit;
7233 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
7234 LPFC_IDX_RSRC_RDY);
7235 return rc;
7236 } else {
7237 /*
7238 * The port does not support resource extents. The XRI, VPI,
7239 * VFI, RPI resource ids were determined from READ_CONFIG.
7240 * Just allocate the bitmasks and provision the resource id
7241 * arrays. If a port reset is active, the resources don't
7242 * need any action - just exit.
7243 */
7244 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
7245 LPFC_IDX_RSRC_RDY) {
7246 lpfc_sli4_dealloc_resource_identifiers(phba);
7247 lpfc_sli4_remove_rpis(phba);
7248 }
7249 /* RPIs. */
7250 count = phba->sli4_hba.max_cfg_param.max_rpi;
7251 if (count <= 0) {
7252 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7253 "3279 Invalid provisioning of "
7254 "rpi:%d\n", count);
7255 rc = -EINVAL;
7256 goto err_exit;
7257 }
7258 base = phba->sli4_hba.max_cfg_param.rpi_base;
7259 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7260 phba->sli4_hba.rpi_bmask = kcalloc(longs,
7261 sizeof(unsigned long),
7262 GFP_KERNEL);
7263 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
7264 rc = -ENOMEM;
7265 goto err_exit;
7266 }
7267 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
7268 GFP_KERNEL);
7269 if (unlikely(!phba->sli4_hba.rpi_ids)) {
7270 rc = -ENOMEM;
7271 goto free_rpi_bmask;
7272 }
7273
7274 for (i = 0; i < count; i++)
7275 phba->sli4_hba.rpi_ids[i] = base + i;
7276
7277 /* VPIs. */
7278 count = phba->sli4_hba.max_cfg_param.max_vpi;
7279 if (count <= 0) {
7280 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7281 "3280 Invalid provisioning of "
7282 "vpi:%d\n", count);
7283 rc = -EINVAL;
7284 goto free_rpi_ids;
7285 }
7286 base = phba->sli4_hba.max_cfg_param.vpi_base;
7287 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7288 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
7289 GFP_KERNEL);
7290 if (unlikely(!phba->vpi_bmask)) {
7291 rc = -ENOMEM;
7292 goto free_rpi_ids;
7293 }
7294 phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
7295 GFP_KERNEL);
7296 if (unlikely(!phba->vpi_ids)) {
7297 rc = -ENOMEM;
7298 goto free_vpi_bmask;
7299 }
7300
7301 for (i = 0; i < count; i++)
7302 phba->vpi_ids[i] = base + i;
7303
7304 /* XRIs. */
7305 count = phba->sli4_hba.max_cfg_param.max_xri;
7306 if (count <= 0) {
7307 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7308 "3281 Invalid provisioning of "
7309 "xri:%d\n", count);
7310 rc = -EINVAL;
7311 goto free_vpi_ids;
7312 }
7313 base = phba->sli4_hba.max_cfg_param.xri_base;
7314 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7315 phba->sli4_hba.xri_bmask = kcalloc(longs,
7316 sizeof(unsigned long),
7317 GFP_KERNEL);
7318 if (unlikely(!phba->sli4_hba.xri_bmask)) {
7319 rc = -ENOMEM;
7320 goto free_vpi_ids;
7321 }
7322 phba->sli4_hba.max_cfg_param.xri_used = 0;
7323 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
7324 GFP_KERNEL);
7325 if (unlikely(!phba->sli4_hba.xri_ids)) {
7326 rc = -ENOMEM;
7327 goto free_xri_bmask;
7328 }
7329
7330 for (i = 0; i < count; i++)
7331 phba->sli4_hba.xri_ids[i] = base + i;
7332
7333 /* VFIs. */
7334 count = phba->sli4_hba.max_cfg_param.max_vfi;
7335 if (count <= 0) {
7336 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7337 "3282 Invalid provisioning of "
7338 "vfi:%d\n", count);
7339 rc = -EINVAL;
7340 goto free_xri_ids;
7341 }
7342 base = phba->sli4_hba.max_cfg_param.vfi_base;
7343 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7344 phba->sli4_hba.vfi_bmask = kcalloc(longs,
7345 sizeof(unsigned long),
7346 GFP_KERNEL);
7347 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
7348 rc = -ENOMEM;
7349 goto free_xri_ids;
7350 }
7351 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
7352 GFP_KERNEL);
7353 if (unlikely(!phba->sli4_hba.vfi_ids)) {
7354 rc = -ENOMEM;
7355 goto free_vfi_bmask;
7356 }
7357
7358 for (i = 0; i < count; i++)
7359 phba->sli4_hba.vfi_ids[i] = base + i;
7360
7361 /*
7362 * Mark all resources ready. An HBA reset doesn't need
7363 * to reset the initialization.
7364 */
7365 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
7366 LPFC_IDX_RSRC_RDY);
7367 return 0;
7368 }
7369
7370 free_vfi_bmask:
7371 kfree(phba->sli4_hba.vfi_bmask);
7372 phba->sli4_hba.vfi_bmask = NULL;
7373 free_xri_ids:
7374 kfree(phba->sli4_hba.xri_ids);
7375 phba->sli4_hba.xri_ids = NULL;
7376 free_xri_bmask:
7377 kfree(phba->sli4_hba.xri_bmask);
7378 phba->sli4_hba.xri_bmask = NULL;
7379 free_vpi_ids:
7380 kfree(phba->vpi_ids);
7381 phba->vpi_ids = NULL;
7382 free_vpi_bmask:
7383 kfree(phba->vpi_bmask);
7384 phba->vpi_bmask = NULL;
7385 free_rpi_ids:
7386 kfree(phba->sli4_hba.rpi_ids);
7387 phba->sli4_hba.rpi_ids = NULL;
7388 free_rpi_bmask:
7389 kfree(phba->sli4_hba.rpi_bmask);
7390 phba->sli4_hba.rpi_bmask = NULL;
7391 err_exit:
7392 return rc;
7393 }
7394
7395 /**
7396 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
7397 * @phba: Pointer to HBA context object.
7398 *
7399 * This function allocates the number of elements for the specified
7400 * resource type.
7401 **/
7402 int
lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba * phba)7403 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
7404 {
7405 if (phba->sli4_hba.extents_in_use) {
7406 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
7407 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
7408 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
7409 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
7410 } else {
7411 kfree(phba->vpi_bmask);
7412 phba->sli4_hba.max_cfg_param.vpi_used = 0;
7413 kfree(phba->vpi_ids);
7414 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7415 kfree(phba->sli4_hba.xri_bmask);
7416 kfree(phba->sli4_hba.xri_ids);
7417 kfree(phba->sli4_hba.vfi_bmask);
7418 kfree(phba->sli4_hba.vfi_ids);
7419 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7420 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7421 }
7422
7423 return 0;
7424 }
7425
7426 /**
7427 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
7428 * @phba: Pointer to HBA context object.
7429 * @type: The resource extent type.
7430 * @extnt_cnt: buffer to hold port extent count response
7431 * @extnt_size: buffer to hold port extent size response.
7432 *
7433 * This function calls the port to read the host allocated extents
7434 * for a particular type.
7435 **/
7436 int
lpfc_sli4_get_allocated_extnts(struct lpfc_hba * phba,uint16_t type,uint16_t * extnt_cnt,uint16_t * extnt_size)7437 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
7438 uint16_t *extnt_cnt, uint16_t *extnt_size)
7439 {
7440 bool emb;
7441 int rc = 0;
7442 uint16_t curr_blks = 0;
7443 uint32_t req_len, emb_len;
7444 uint32_t alloc_len, mbox_tmo;
7445 struct list_head *blk_list_head;
7446 struct lpfc_rsrc_blks *rsrc_blk;
7447 LPFC_MBOXQ_t *mbox;
7448 void *virtaddr = NULL;
7449 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
7450 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
7451 union lpfc_sli4_cfg_shdr *shdr;
7452
7453 switch (type) {
7454 case LPFC_RSC_TYPE_FCOE_VPI:
7455 blk_list_head = &phba->lpfc_vpi_blk_list;
7456 break;
7457 case LPFC_RSC_TYPE_FCOE_XRI:
7458 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
7459 break;
7460 case LPFC_RSC_TYPE_FCOE_VFI:
7461 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
7462 break;
7463 case LPFC_RSC_TYPE_FCOE_RPI:
7464 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
7465 break;
7466 default:
7467 return -EIO;
7468 }
7469
7470 /* Count the number of extents currently allocatd for this type. */
7471 list_for_each_entry(rsrc_blk, blk_list_head, list) {
7472 if (curr_blks == 0) {
7473 /*
7474 * The GET_ALLOCATED mailbox does not return the size,
7475 * just the count. The size should be just the size
7476 * stored in the current allocated block and all sizes
7477 * for an extent type are the same so set the return
7478 * value now.
7479 */
7480 *extnt_size = rsrc_blk->rsrc_size;
7481 }
7482 curr_blks++;
7483 }
7484
7485 /*
7486 * Calculate the size of an embedded mailbox. The uint32_t
7487 * accounts for extents-specific word.
7488 */
7489 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
7490 sizeof(uint32_t);
7491
7492 /*
7493 * Presume the allocation and response will fit into an embedded
7494 * mailbox. If not true, reconfigure to a non-embedded mailbox.
7495 */
7496 emb = LPFC_SLI4_MBX_EMBED;
7497 req_len = emb_len;
7498 if (req_len > emb_len) {
7499 req_len = curr_blks * sizeof(uint16_t) +
7500 sizeof(union lpfc_sli4_cfg_shdr) +
7501 sizeof(uint32_t);
7502 emb = LPFC_SLI4_MBX_NEMBED;
7503 }
7504
7505 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7506 if (!mbox)
7507 return -ENOMEM;
7508 memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
7509
7510 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7511 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
7512 req_len, emb);
7513 if (alloc_len < req_len) {
7514 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7515 "2983 Allocated DMA memory size (x%x) is "
7516 "less than the requested DMA memory "
7517 "size (x%x)\n", alloc_len, req_len);
7518 rc = -ENOMEM;
7519 goto err_exit;
7520 }
7521 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
7522 if (unlikely(rc)) {
7523 rc = -EIO;
7524 goto err_exit;
7525 }
7526
7527 if (!phba->sli4_hba.intr_enable)
7528 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
7529 else {
7530 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
7531 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
7532 }
7533
7534 if (unlikely(rc)) {
7535 rc = -EIO;
7536 goto err_exit;
7537 }
7538
7539 /*
7540 * Figure out where the response is located. Then get local pointers
7541 * to the response data. The port does not guarantee to respond to
7542 * all extents counts request so update the local variable with the
7543 * allocated count from the port.
7544 */
7545 if (emb == LPFC_SLI4_MBX_EMBED) {
7546 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
7547 shdr = &rsrc_ext->header.cfg_shdr;
7548 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
7549 } else {
7550 virtaddr = mbox->sge_array->addr[0];
7551 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
7552 shdr = &n_rsrc->cfg_shdr;
7553 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
7554 }
7555
7556 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
7557 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7558 "2984 Failed to read allocated resources "
7559 "for type %d - Status 0x%x Add'l Status 0x%x.\n",
7560 type,
7561 bf_get(lpfc_mbox_hdr_status, &shdr->response),
7562 bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
7563 rc = -EIO;
7564 goto err_exit;
7565 }
7566 err_exit:
7567 lpfc_sli4_mbox_cmd_free(phba, mbox);
7568 return rc;
7569 }
7570
7571 /**
7572 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
7573 * @phba: pointer to lpfc hba data structure.
7574 * @sgl_list: linked link of sgl buffers to post
7575 * @cnt: number of linked list buffers
7576 *
7577 * This routine walks the list of buffers that have been allocated and
7578 * repost them to the port by using SGL block post. This is needed after a
7579 * pci_function_reset/warm_start or start. It attempts to construct blocks
7580 * of buffer sgls which contains contiguous xris and uses the non-embedded
7581 * SGL block post mailbox commands to post them to the port. For single
7582 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
7583 * mailbox command for posting.
7584 *
7585 * Returns: 0 = success, non-zero failure.
7586 **/
7587 static int
lpfc_sli4_repost_sgl_list(struct lpfc_hba * phba,struct list_head * sgl_list,int cnt)7588 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
7589 struct list_head *sgl_list, int cnt)
7590 {
7591 struct lpfc_sglq *sglq_entry = NULL;
7592 struct lpfc_sglq *sglq_entry_next = NULL;
7593 struct lpfc_sglq *sglq_entry_first = NULL;
7594 int status = 0, total_cnt;
7595 int post_cnt = 0, num_posted = 0, block_cnt = 0;
7596 int last_xritag = NO_XRI;
7597 LIST_HEAD(prep_sgl_list);
7598 LIST_HEAD(blck_sgl_list);
7599 LIST_HEAD(allc_sgl_list);
7600 LIST_HEAD(post_sgl_list);
7601 LIST_HEAD(free_sgl_list);
7602
7603 spin_lock_irq(&phba->hbalock);
7604 spin_lock(&phba->sli4_hba.sgl_list_lock);
7605 list_splice_init(sgl_list, &allc_sgl_list);
7606 spin_unlock(&phba->sli4_hba.sgl_list_lock);
7607 spin_unlock_irq(&phba->hbalock);
7608
7609 total_cnt = cnt;
7610 list_for_each_entry_safe(sglq_entry, sglq_entry_next,
7611 &allc_sgl_list, list) {
7612 list_del_init(&sglq_entry->list);
7613 block_cnt++;
7614 if ((last_xritag != NO_XRI) &&
7615 (sglq_entry->sli4_xritag != last_xritag + 1)) {
7616 /* a hole in xri block, form a sgl posting block */
7617 list_splice_init(&prep_sgl_list, &blck_sgl_list);
7618 post_cnt = block_cnt - 1;
7619 /* prepare list for next posting block */
7620 list_add_tail(&sglq_entry->list, &prep_sgl_list);
7621 block_cnt = 1;
7622 } else {
7623 /* prepare list for next posting block */
7624 list_add_tail(&sglq_entry->list, &prep_sgl_list);
7625 /* enough sgls for non-embed sgl mbox command */
7626 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
7627 list_splice_init(&prep_sgl_list,
7628 &blck_sgl_list);
7629 post_cnt = block_cnt;
7630 block_cnt = 0;
7631 }
7632 }
7633 num_posted++;
7634
7635 /* keep track of last sgl's xritag */
7636 last_xritag = sglq_entry->sli4_xritag;
7637
7638 /* end of repost sgl list condition for buffers */
7639 if (num_posted == total_cnt) {
7640 if (post_cnt == 0) {
7641 list_splice_init(&prep_sgl_list,
7642 &blck_sgl_list);
7643 post_cnt = block_cnt;
7644 } else if (block_cnt == 1) {
7645 status = lpfc_sli4_post_sgl(phba,
7646 sglq_entry->phys, 0,
7647 sglq_entry->sli4_xritag);
7648 if (!status) {
7649 /* successful, put sgl to posted list */
7650 list_add_tail(&sglq_entry->list,
7651 &post_sgl_list);
7652 } else {
7653 /* Failure, put sgl to free list */
7654 lpfc_printf_log(phba, KERN_WARNING,
7655 LOG_SLI,
7656 "3159 Failed to post "
7657 "sgl, xritag:x%x\n",
7658 sglq_entry->sli4_xritag);
7659 list_add_tail(&sglq_entry->list,
7660 &free_sgl_list);
7661 total_cnt--;
7662 }
7663 }
7664 }
7665
7666 /* continue until a nembed page worth of sgls */
7667 if (post_cnt == 0)
7668 continue;
7669
7670 /* post the buffer list sgls as a block */
7671 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
7672 post_cnt);
7673
7674 if (!status) {
7675 /* success, put sgl list to posted sgl list */
7676 list_splice_init(&blck_sgl_list, &post_sgl_list);
7677 } else {
7678 /* Failure, put sgl list to free sgl list */
7679 sglq_entry_first = list_first_entry(&blck_sgl_list,
7680 struct lpfc_sglq,
7681 list);
7682 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
7683 "3160 Failed to post sgl-list, "
7684 "xritag:x%x-x%x\n",
7685 sglq_entry_first->sli4_xritag,
7686 (sglq_entry_first->sli4_xritag +
7687 post_cnt - 1));
7688 list_splice_init(&blck_sgl_list, &free_sgl_list);
7689 total_cnt -= post_cnt;
7690 }
7691
7692 /* don't reset xirtag due to hole in xri block */
7693 if (block_cnt == 0)
7694 last_xritag = NO_XRI;
7695
7696 /* reset sgl post count for next round of posting */
7697 post_cnt = 0;
7698 }
7699
7700 /* free the sgls failed to post */
7701 lpfc_free_sgl_list(phba, &free_sgl_list);
7702
7703 /* push sgls posted to the available list */
7704 if (!list_empty(&post_sgl_list)) {
7705 spin_lock_irq(&phba->hbalock);
7706 spin_lock(&phba->sli4_hba.sgl_list_lock);
7707 list_splice_init(&post_sgl_list, sgl_list);
7708 spin_unlock(&phba->sli4_hba.sgl_list_lock);
7709 spin_unlock_irq(&phba->hbalock);
7710 } else {
7711 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7712 "3161 Failure to post sgl to port,status %x "
7713 "blkcnt %d totalcnt %d postcnt %d\n",
7714 status, block_cnt, total_cnt, post_cnt);
7715 return -EIO;
7716 }
7717
7718 /* return the number of XRIs actually posted */
7719 return total_cnt;
7720 }
7721
7722 /**
7723 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7724 * @phba: pointer to lpfc hba data structure.
7725 *
7726 * This routine walks the list of nvme buffers that have been allocated and
7727 * repost them to the port by using SGL block post. This is needed after a
7728 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7729 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7730 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7731 *
7732 * Returns: 0 = success, non-zero failure.
7733 **/
7734 static int
lpfc_sli4_repost_io_sgl_list(struct lpfc_hba * phba)7735 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7736 {
7737 LIST_HEAD(post_nblist);
7738 int num_posted, rc = 0;
7739
7740 /* get all NVME buffers need to repost to a local list */
7741 lpfc_io_buf_flush(phba, &post_nblist);
7742
7743 /* post the list of nvme buffer sgls to port if available */
7744 if (!list_empty(&post_nblist)) {
7745 num_posted = lpfc_sli4_post_io_sgl_list(
7746 phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7747 /* failed to post any nvme buffer, return error */
7748 if (num_posted == 0)
7749 rc = -EIO;
7750 }
7751 return rc;
7752 }
7753
7754 static void
lpfc_set_host_data(struct lpfc_hba * phba,LPFC_MBOXQ_t * mbox)7755 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7756 {
7757 uint32_t len;
7758
7759 len = sizeof(struct lpfc_mbx_set_host_data) -
7760 sizeof(struct lpfc_sli4_cfg_mhdr);
7761 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7762 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7763 LPFC_SLI4_MBX_EMBED);
7764
7765 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7766 mbox->u.mqe.un.set_host_data.param_len =
7767 LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7768 snprintf(mbox->u.mqe.un.set_host_data.un.data,
7769 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7770 "Linux %s v"LPFC_DRIVER_VERSION,
7771 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? "FCoE" : "FC");
7772 }
7773
7774 int
lpfc_post_rq_buffer(struct lpfc_hba * phba,struct lpfc_queue * hrq,struct lpfc_queue * drq,int count,int idx)7775 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7776 struct lpfc_queue *drq, int count, int idx)
7777 {
7778 int rc, i;
7779 struct lpfc_rqe hrqe;
7780 struct lpfc_rqe drqe;
7781 struct lpfc_rqb *rqbp;
7782 unsigned long flags;
7783 struct rqb_dmabuf *rqb_buffer;
7784 LIST_HEAD(rqb_buf_list);
7785
7786 rqbp = hrq->rqbp;
7787 for (i = 0; i < count; i++) {
7788 spin_lock_irqsave(&phba->hbalock, flags);
7789 /* IF RQ is already full, don't bother */
7790 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) {
7791 spin_unlock_irqrestore(&phba->hbalock, flags);
7792 break;
7793 }
7794 spin_unlock_irqrestore(&phba->hbalock, flags);
7795
7796 rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7797 if (!rqb_buffer)
7798 break;
7799 rqb_buffer->hrq = hrq;
7800 rqb_buffer->drq = drq;
7801 rqb_buffer->idx = idx;
7802 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7803 }
7804
7805 spin_lock_irqsave(&phba->hbalock, flags);
7806 while (!list_empty(&rqb_buf_list)) {
7807 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7808 hbuf.list);
7809
7810 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7811 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7812 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7813 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7814 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7815 if (rc < 0) {
7816 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7817 "6421 Cannot post to HRQ %d: %x %x %x "
7818 "DRQ %x %x\n",
7819 hrq->queue_id,
7820 hrq->host_index,
7821 hrq->hba_index,
7822 hrq->entry_count,
7823 drq->host_index,
7824 drq->hba_index);
7825 rqbp->rqb_free_buffer(phba, rqb_buffer);
7826 } else {
7827 list_add_tail(&rqb_buffer->hbuf.list,
7828 &rqbp->rqb_buffer_list);
7829 rqbp->buffer_count++;
7830 }
7831 }
7832 spin_unlock_irqrestore(&phba->hbalock, flags);
7833 return 1;
7834 }
7835
7836 static void
lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)7837 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
7838 {
7839 union lpfc_sli4_cfg_shdr *shdr;
7840 u32 shdr_status, shdr_add_status;
7841
7842 shdr = (union lpfc_sli4_cfg_shdr *)
7843 &pmb->u.mqe.un.sli4_config.header.cfg_shdr;
7844 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
7845 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
7846 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) {
7847 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX,
7848 "4622 SET_FEATURE (x%x) mbox failed, "
7849 "status x%x add_status x%x, mbx status x%x\n",
7850 LPFC_SET_LD_SIGNAL, shdr_status,
7851 shdr_add_status, pmb->u.mb.mbxStatus);
7852 phba->degrade_activate_threshold = 0;
7853 phba->degrade_deactivate_threshold = 0;
7854 phba->fec_degrade_interval = 0;
7855 goto out;
7856 }
7857
7858 phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7;
7859 phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8;
7860 phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10;
7861
7862 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT,
7863 "4624 Success: da x%x dd x%x interval x%x\n",
7864 phba->degrade_activate_threshold,
7865 phba->degrade_deactivate_threshold,
7866 phba->fec_degrade_interval);
7867 out:
7868 mempool_free(pmb, phba->mbox_mem_pool);
7869 }
7870
7871 int
lpfc_read_lds_params(struct lpfc_hba * phba)7872 lpfc_read_lds_params(struct lpfc_hba *phba)
7873 {
7874 LPFC_MBOXQ_t *mboxq;
7875 int rc;
7876
7877 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7878 if (!mboxq)
7879 return -ENOMEM;
7880
7881 lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL);
7882 mboxq->vport = phba->pport;
7883 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params;
7884 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
7885 if (rc == MBX_NOT_FINISHED) {
7886 mempool_free(mboxq, phba->mbox_mem_pool);
7887 return -EIO;
7888 }
7889 return 0;
7890 }
7891
7892 static void
lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)7893 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
7894 {
7895 struct lpfc_vport *vport = pmb->vport;
7896 union lpfc_sli4_cfg_shdr *shdr;
7897 u32 shdr_status, shdr_add_status;
7898 u32 sig, acqe;
7899
7900 /* Two outcomes. (1) Set featurs was successul and EDC negotiation
7901 * is done. (2) Mailbox failed and send FPIN support only.
7902 */
7903 shdr = (union lpfc_sli4_cfg_shdr *)
7904 &pmb->u.mqe.un.sli4_config.header.cfg_shdr;
7905 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
7906 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
7907 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) {
7908 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
7909 "2516 CGN SET_FEATURE mbox failed with "
7910 "status x%x add_status x%x, mbx status x%x "
7911 "Reset Congestion to FPINs only\n",
7912 shdr_status, shdr_add_status,
7913 pmb->u.mb.mbxStatus);
7914 /* If there is a mbox error, move on to RDF */
7915 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
7916 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM;
7917 goto out;
7918 }
7919
7920 /* Zero out Congestion Signal ACQE counter */
7921 phba->cgn_acqe_cnt = 0;
7922
7923 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq,
7924 &pmb->u.mqe.un.set_feature);
7925 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq,
7926 &pmb->u.mqe.un.set_feature);
7927 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7928 "4620 SET_FEATURES Success: Freq: %ds %dms "
7929 " Reg: x%x x%x\n", acqe, sig,
7930 phba->cgn_reg_signal, phba->cgn_reg_fpin);
7931 out:
7932 mempool_free(pmb, phba->mbox_mem_pool);
7933
7934 /* Register for FPIN events from the fabric now that the
7935 * EDC common_set_features has completed.
7936 */
7937 lpfc_issue_els_rdf(vport, 0);
7938 }
7939
7940 int
lpfc_config_cgn_signal(struct lpfc_hba * phba)7941 lpfc_config_cgn_signal(struct lpfc_hba *phba)
7942 {
7943 LPFC_MBOXQ_t *mboxq;
7944 u32 rc;
7945
7946 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7947 if (!mboxq)
7948 goto out_rdf;
7949
7950 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL);
7951 mboxq->vport = phba->pport;
7952 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs;
7953
7954 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7955 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: "
7956 "Reg: x%x x%x\n",
7957 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency,
7958 phba->cgn_reg_signal, phba->cgn_reg_fpin);
7959
7960 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
7961 if (rc == MBX_NOT_FINISHED)
7962 goto out;
7963 return 0;
7964
7965 out:
7966 mempool_free(mboxq, phba->mbox_mem_pool);
7967 out_rdf:
7968 /* If there is a mbox error, move on to RDF */
7969 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM;
7970 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
7971 lpfc_issue_els_rdf(phba->pport, 0);
7972 return -EIO;
7973 }
7974
7975 /**
7976 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking
7977 * @phba: pointer to lpfc hba data structure.
7978 *
7979 * This routine initializes the per-eq idle_stat to dynamically dictate
7980 * polling decisions.
7981 *
7982 * Return codes:
7983 * None
7984 **/
lpfc_init_idle_stat_hb(struct lpfc_hba * phba)7985 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba)
7986 {
7987 int i;
7988 struct lpfc_sli4_hdw_queue *hdwq;
7989 struct lpfc_queue *eq;
7990 struct lpfc_idle_stat *idle_stat;
7991 u64 wall;
7992
7993 for_each_present_cpu(i) {
7994 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
7995 eq = hdwq->hba_eq;
7996
7997 /* Skip if we've already handled this eq's primary CPU */
7998 if (eq->chann != i)
7999 continue;
8000
8001 idle_stat = &phba->sli4_hba.idle_stat[i];
8002
8003 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1);
8004 idle_stat->prev_wall = wall;
8005
8006 if (phba->nvmet_support ||
8007 phba->cmf_active_mode != LPFC_CFG_OFF ||
8008 phba->intr_type != MSIX)
8009 eq->poll_mode = LPFC_QUEUE_WORK;
8010 else
8011 eq->poll_mode = LPFC_THREADED_IRQ;
8012 }
8013
8014 if (!phba->nvmet_support && phba->intr_type == MSIX)
8015 schedule_delayed_work(&phba->idle_stat_delay_work,
8016 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
8017 }
8018
lpfc_sli4_dip(struct lpfc_hba * phba)8019 static void lpfc_sli4_dip(struct lpfc_hba *phba)
8020 {
8021 uint32_t if_type;
8022
8023 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
8024 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 ||
8025 if_type == LPFC_SLI_INTF_IF_TYPE_6) {
8026 struct lpfc_register reg_data;
8027
8028 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
8029 ®_data.word0))
8030 return;
8031
8032 if (bf_get(lpfc_sliport_status_dip, ®_data))
8033 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8034 "2904 Firmware Dump Image Present"
8035 " on Adapter");
8036 }
8037 }
8038
8039 /**
8040 * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor
8041 * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8042 * @entries: Number of rx_info_entry objects to allocate in ring
8043 *
8044 * Return:
8045 * 0 - Success
8046 * ENOMEM - Failure to kmalloc
8047 **/
lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor * rx_monitor,u32 entries)8048 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor,
8049 u32 entries)
8050 {
8051 rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry),
8052 GFP_KERNEL);
8053 if (!rx_monitor->ring)
8054 return -ENOMEM;
8055
8056 rx_monitor->head_idx = 0;
8057 rx_monitor->tail_idx = 0;
8058 spin_lock_init(&rx_monitor->lock);
8059 rx_monitor->entries = entries;
8060
8061 return 0;
8062 }
8063
8064 /**
8065 * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor
8066 * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8067 *
8068 * Called after cancellation of cmf_timer.
8069 **/
lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor * rx_monitor)8070 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor)
8071 {
8072 kfree(rx_monitor->ring);
8073 rx_monitor->ring = NULL;
8074 rx_monitor->entries = 0;
8075 rx_monitor->head_idx = 0;
8076 rx_monitor->tail_idx = 0;
8077 }
8078
8079 /**
8080 * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring
8081 * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8082 * @entry: Pointer to rx_info_entry
8083 *
8084 * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a
8085 * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr.
8086 *
8087 * This is called from lpfc_cmf_timer, which is in timer/softirq context.
8088 *
8089 * In cases of old data overflow, we do a best effort of FIFO order.
8090 **/
lpfc_rx_monitor_record(struct lpfc_rx_info_monitor * rx_monitor,struct rx_info_entry * entry)8091 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor,
8092 struct rx_info_entry *entry)
8093 {
8094 struct rx_info_entry *ring = rx_monitor->ring;
8095 u32 *head_idx = &rx_monitor->head_idx;
8096 u32 *tail_idx = &rx_monitor->tail_idx;
8097 spinlock_t *ring_lock = &rx_monitor->lock;
8098 u32 ring_size = rx_monitor->entries;
8099
8100 spin_lock(ring_lock);
8101 memcpy(&ring[*tail_idx], entry, sizeof(*entry));
8102 *tail_idx = (*tail_idx + 1) % ring_size;
8103
8104 /* Best effort of FIFO saved data */
8105 if (*tail_idx == *head_idx)
8106 *head_idx = (*head_idx + 1) % ring_size;
8107
8108 spin_unlock(ring_lock);
8109 }
8110
8111 /**
8112 * lpfc_rx_monitor_report - Read out rx_monitor's ring
8113 * @phba: Pointer to lpfc_hba object
8114 * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8115 * @buf: Pointer to char buffer that will contain rx monitor info data
8116 * @buf_len: Length buf including null char
8117 * @max_read_entries: Maximum number of entries to read out of ring
8118 *
8119 * Used to dump/read what's in rx_monitor's ring buffer.
8120 *
8121 * If buf is NULL || buf_len == 0, then it is implied that we want to log the
8122 * information to kmsg instead of filling out buf.
8123 *
8124 * Return:
8125 * Number of entries read out of the ring
8126 **/
lpfc_rx_monitor_report(struct lpfc_hba * phba,struct lpfc_rx_info_monitor * rx_monitor,char * buf,u32 buf_len,u32 max_read_entries)8127 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba,
8128 struct lpfc_rx_info_monitor *rx_monitor, char *buf,
8129 u32 buf_len, u32 max_read_entries)
8130 {
8131 struct rx_info_entry *ring = rx_monitor->ring;
8132 struct rx_info_entry *entry;
8133 u32 *head_idx = &rx_monitor->head_idx;
8134 u32 *tail_idx = &rx_monitor->tail_idx;
8135 spinlock_t *ring_lock = &rx_monitor->lock;
8136 u32 ring_size = rx_monitor->entries;
8137 u32 cnt = 0;
8138 char tmp[DBG_LOG_STR_SZ] = {0};
8139 bool log_to_kmsg = (!buf || !buf_len) ? true : false;
8140
8141 if (!log_to_kmsg) {
8142 /* clear the buffer to be sure */
8143 memset(buf, 0, buf_len);
8144
8145 scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s"
8146 "%-8s%-8s%-8s%-16s\n",
8147 "MaxBPI", "Tot_Data_CMF",
8148 "Tot_Data_Cmd", "Tot_Data_Cmpl",
8149 "Lat(us)", "Avg_IO", "Max_IO", "Bsy",
8150 "IO_cnt", "Info", "BWutil(ms)");
8151 }
8152
8153 /* Needs to be _irq because record is called from timer interrupt
8154 * context
8155 */
8156 spin_lock_irq(ring_lock);
8157 while (*head_idx != *tail_idx) {
8158 entry = &ring[*head_idx];
8159
8160 /* Read out this entry's data. */
8161 if (!log_to_kmsg) {
8162 /* If !log_to_kmsg, then store to buf. */
8163 scnprintf(tmp, sizeof(tmp),
8164 "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu"
8165 "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n",
8166 *head_idx, entry->max_bytes_per_interval,
8167 entry->cmf_bytes, entry->total_bytes,
8168 entry->rcv_bytes, entry->avg_io_latency,
8169 entry->avg_io_size, entry->max_read_cnt,
8170 entry->cmf_busy, entry->io_cnt,
8171 entry->cmf_info, entry->timer_utilization,
8172 entry->timer_interval);
8173
8174 /* Check for buffer overflow */
8175 if ((strlen(buf) + strlen(tmp)) >= buf_len)
8176 break;
8177
8178 /* Append entry's data to buffer */
8179 strlcat(buf, tmp, buf_len);
8180 } else {
8181 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
8182 "4410 %02u: MBPI %llu Xmit %llu "
8183 "Cmpl %llu Lat %llu ASz %llu Info %02u "
8184 "BWUtil %u Int %u slot %u\n",
8185 cnt, entry->max_bytes_per_interval,
8186 entry->total_bytes, entry->rcv_bytes,
8187 entry->avg_io_latency,
8188 entry->avg_io_size, entry->cmf_info,
8189 entry->timer_utilization,
8190 entry->timer_interval, *head_idx);
8191 }
8192
8193 *head_idx = (*head_idx + 1) % ring_size;
8194
8195 /* Don't feed more than max_read_entries */
8196 cnt++;
8197 if (cnt >= max_read_entries)
8198 break;
8199 }
8200 spin_unlock_irq(ring_lock);
8201
8202 return cnt;
8203 }
8204
8205 /**
8206 * lpfc_cmf_setup - Initialize idle_stat tracking
8207 * @phba: Pointer to HBA context object.
8208 *
8209 * This is called from HBA setup during driver load or when the HBA
8210 * comes online. this does all the initialization to support CMF and MI.
8211 **/
8212 static int
lpfc_cmf_setup(struct lpfc_hba * phba)8213 lpfc_cmf_setup(struct lpfc_hba *phba)
8214 {
8215 LPFC_MBOXQ_t *mboxq;
8216 struct lpfc_dmabuf *mp;
8217 struct lpfc_pc_sli4_params *sli4_params;
8218 int rc, cmf, mi_ver;
8219
8220 rc = lpfc_sli4_refresh_params(phba);
8221 if (unlikely(rc))
8222 return rc;
8223
8224 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8225 if (!mboxq)
8226 return -ENOMEM;
8227
8228 sli4_params = &phba->sli4_hba.pc_sli4_params;
8229
8230 /* Always try to enable MI feature if we can */
8231 if (sli4_params->mi_ver) {
8232 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI);
8233 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8234 mi_ver = bf_get(lpfc_mbx_set_feature_mi,
8235 &mboxq->u.mqe.un.set_feature);
8236
8237 if (rc == MBX_SUCCESS) {
8238 if (mi_ver) {
8239 lpfc_printf_log(phba,
8240 KERN_WARNING, LOG_CGN_MGMT,
8241 "6215 MI is enabled\n");
8242 sli4_params->mi_ver = mi_ver;
8243 } else {
8244 lpfc_printf_log(phba,
8245 KERN_WARNING, LOG_CGN_MGMT,
8246 "6338 MI is disabled\n");
8247 sli4_params->mi_ver = 0;
8248 }
8249 } else {
8250 /* mi_ver is already set from GET_SLI4_PARAMETERS */
8251 lpfc_printf_log(phba, KERN_INFO,
8252 LOG_CGN_MGMT | LOG_INIT,
8253 "6245 Enable MI Mailbox x%x (x%x/x%x) "
8254 "failed, rc:x%x mi:x%x\n",
8255 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8256 lpfc_sli_config_mbox_subsys_get
8257 (phba, mboxq),
8258 lpfc_sli_config_mbox_opcode_get
8259 (phba, mboxq),
8260 rc, sli4_params->mi_ver);
8261 }
8262 } else {
8263 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8264 "6217 MI is disabled\n");
8265 }
8266
8267 /* Ensure FDMI is enabled for MI if enable_mi is set */
8268 if (sli4_params->mi_ver)
8269 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT;
8270
8271 /* Always try to enable CMF feature if we can */
8272 if (sli4_params->cmf) {
8273 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF);
8274 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8275 cmf = bf_get(lpfc_mbx_set_feature_cmf,
8276 &mboxq->u.mqe.un.set_feature);
8277 if (rc == MBX_SUCCESS && cmf) {
8278 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8279 "6218 CMF is enabled: mode %d\n",
8280 phba->cmf_active_mode);
8281 } else {
8282 lpfc_printf_log(phba, KERN_WARNING,
8283 LOG_CGN_MGMT | LOG_INIT,
8284 "6219 Enable CMF Mailbox x%x (x%x/x%x) "
8285 "failed, rc:x%x dd:x%x\n",
8286 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8287 lpfc_sli_config_mbox_subsys_get
8288 (phba, mboxq),
8289 lpfc_sli_config_mbox_opcode_get
8290 (phba, mboxq),
8291 rc, cmf);
8292 sli4_params->cmf = 0;
8293 phba->cmf_active_mode = LPFC_CFG_OFF;
8294 goto no_cmf;
8295 }
8296
8297 /* Allocate Congestion Information Buffer */
8298 if (!phba->cgn_i) {
8299 mp = kmalloc(sizeof(*mp), GFP_KERNEL);
8300 if (mp)
8301 mp->virt = dma_alloc_coherent
8302 (&phba->pcidev->dev,
8303 sizeof(struct lpfc_cgn_info),
8304 &mp->phys, GFP_KERNEL);
8305 if (!mp || !mp->virt) {
8306 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8307 "2640 Failed to alloc memory "
8308 "for Congestion Info\n");
8309 kfree(mp);
8310 sli4_params->cmf = 0;
8311 phba->cmf_active_mode = LPFC_CFG_OFF;
8312 goto no_cmf;
8313 }
8314 phba->cgn_i = mp;
8315
8316 /* initialize congestion buffer info */
8317 lpfc_init_congestion_buf(phba);
8318 lpfc_init_congestion_stat(phba);
8319
8320 /* Zero out Congestion Signal counters */
8321 atomic64_set(&phba->cgn_acqe_stat.alarm, 0);
8322 atomic64_set(&phba->cgn_acqe_stat.warn, 0);
8323 }
8324
8325 rc = lpfc_sli4_cgn_params_read(phba);
8326 if (rc < 0) {
8327 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
8328 "6242 Error reading Cgn Params (%d)\n",
8329 rc);
8330 /* Ensure CGN Mode is off */
8331 sli4_params->cmf = 0;
8332 } else if (!rc) {
8333 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
8334 "6243 CGN Event empty object.\n");
8335 /* Ensure CGN Mode is off */
8336 sli4_params->cmf = 0;
8337 }
8338 } else {
8339 no_cmf:
8340 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8341 "6220 CMF is disabled\n");
8342 }
8343
8344 /* Only register congestion buffer with firmware if BOTH
8345 * CMF and E2E are enabled.
8346 */
8347 if (sli4_params->cmf && sli4_params->mi_ver) {
8348 rc = lpfc_reg_congestion_buf(phba);
8349 if (rc) {
8350 dma_free_coherent(&phba->pcidev->dev,
8351 sizeof(struct lpfc_cgn_info),
8352 phba->cgn_i->virt, phba->cgn_i->phys);
8353 kfree(phba->cgn_i);
8354 phba->cgn_i = NULL;
8355 /* Ensure CGN Mode is off */
8356 phba->cmf_active_mode = LPFC_CFG_OFF;
8357 sli4_params->cmf = 0;
8358 return 0;
8359 }
8360 }
8361 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8362 "6470 Setup MI version %d CMF %d mode %d\n",
8363 sli4_params->mi_ver, sli4_params->cmf,
8364 phba->cmf_active_mode);
8365
8366 mempool_free(mboxq, phba->mbox_mem_pool);
8367
8368 /* Initialize atomic counters */
8369 atomic_set(&phba->cgn_fabric_warn_cnt, 0);
8370 atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
8371 atomic_set(&phba->cgn_sync_alarm_cnt, 0);
8372 atomic_set(&phba->cgn_sync_warn_cnt, 0);
8373 atomic_set(&phba->cgn_driver_evt_cnt, 0);
8374 atomic_set(&phba->cgn_latency_evt_cnt, 0);
8375 atomic64_set(&phba->cgn_latency_evt, 0);
8376
8377 phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
8378
8379 /* Allocate RX Monitor Buffer */
8380 if (!phba->rx_monitor) {
8381 phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor),
8382 GFP_KERNEL);
8383
8384 if (!phba->rx_monitor) {
8385 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8386 "2644 Failed to alloc memory "
8387 "for RX Monitor Buffer\n");
8388 return -ENOMEM;
8389 }
8390
8391 /* Instruct the rx_monitor object to instantiate its ring */
8392 if (lpfc_rx_monitor_create_ring(phba->rx_monitor,
8393 LPFC_MAX_RXMONITOR_ENTRY)) {
8394 kfree(phba->rx_monitor);
8395 phba->rx_monitor = NULL;
8396 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8397 "2645 Failed to alloc memory "
8398 "for RX Monitor's Ring\n");
8399 return -ENOMEM;
8400 }
8401 }
8402
8403 return 0;
8404 }
8405
8406 static int
lpfc_set_host_tm(struct lpfc_hba * phba)8407 lpfc_set_host_tm(struct lpfc_hba *phba)
8408 {
8409 LPFC_MBOXQ_t *mboxq;
8410 uint32_t len, rc;
8411 struct timespec64 cur_time;
8412 struct tm broken;
8413 uint32_t month, day, year;
8414 uint32_t hour, minute, second;
8415 struct lpfc_mbx_set_host_date_time *tm;
8416
8417 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8418 if (!mboxq)
8419 return -ENOMEM;
8420
8421 len = sizeof(struct lpfc_mbx_set_host_data) -
8422 sizeof(struct lpfc_sli4_cfg_mhdr);
8423 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
8424 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
8425 LPFC_SLI4_MBX_EMBED);
8426
8427 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME;
8428 mboxq->u.mqe.un.set_host_data.param_len =
8429 sizeof(struct lpfc_mbx_set_host_date_time);
8430 tm = &mboxq->u.mqe.un.set_host_data.un.tm;
8431 ktime_get_real_ts64(&cur_time);
8432 time64_to_tm(cur_time.tv_sec, 0, &broken);
8433 month = broken.tm_mon + 1;
8434 day = broken.tm_mday;
8435 year = broken.tm_year - 100;
8436 hour = broken.tm_hour;
8437 minute = broken.tm_min;
8438 second = broken.tm_sec;
8439 bf_set(lpfc_mbx_set_host_month, tm, month);
8440 bf_set(lpfc_mbx_set_host_day, tm, day);
8441 bf_set(lpfc_mbx_set_host_year, tm, year);
8442 bf_set(lpfc_mbx_set_host_hour, tm, hour);
8443 bf_set(lpfc_mbx_set_host_min, tm, minute);
8444 bf_set(lpfc_mbx_set_host_sec, tm, second);
8445
8446 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8447 mempool_free(mboxq, phba->mbox_mem_pool);
8448 return rc;
8449 }
8450
8451 /**
8452 * lpfc_get_platform_uuid - Attempts to extract a platform uuid
8453 * @phba: pointer to lpfc hba data structure.
8454 *
8455 * This routine attempts to first read SMBIOS DMI data for the System
8456 * Information structure offset 08h called System UUID. Else, no platform
8457 * UUID will be advertised.
8458 **/
8459 static void
lpfc_get_platform_uuid(struct lpfc_hba * phba)8460 lpfc_get_platform_uuid(struct lpfc_hba *phba)
8461 {
8462 int rc;
8463 const char *uuid;
8464 char pni[17] = {0}; /* 16 characters + '\0' */
8465 bool is_ff = true, is_00 = true;
8466 u8 i;
8467
8468 /* First attempt SMBIOS DMI */
8469 uuid = dmi_get_system_info(DMI_PRODUCT_UUID);
8470 if (uuid) {
8471 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8472 "2088 SMBIOS UUID %s\n",
8473 uuid);
8474 } else {
8475 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8476 "2099 Could not extract UUID\n");
8477 }
8478
8479 if (uuid && uuid_is_valid(uuid)) {
8480 /* Generate PNI from UUID format.
8481 *
8482 * 1.) Extract lower 64 bits from UUID format.
8483 * 2.) Set 3h for NAA Locally Assigned Name Identifier format.
8484 *
8485 * e.g. xxxxxxxx-xxxx-xxxx-yyyy-yyyyyyyyyyyy
8486 *
8487 * extract the yyyy-yyyyyyyyyyyy portion
8488 * final PNI 3yyyyyyyyyyyyyyy
8489 */
8490 scnprintf(pni, sizeof(pni), "3%c%c%c%s",
8491 uuid[20], uuid[21], uuid[22], &uuid[24]);
8492
8493 /* Sanitize the converted PNI */
8494 for (i = 1; i < 16 && (is_ff || is_00); i++) {
8495 if (pni[i] != '0')
8496 is_00 = false;
8497 if (pni[i] != 'f' && pni[i] != 'F')
8498 is_ff = false;
8499 }
8500
8501 /* Convert from char* to unsigned long */
8502 rc = kstrtoul(pni, 16, &phba->pni);
8503 if (!rc && !is_ff && !is_00) {
8504 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8505 "2100 PNI 0x%016lx\n", phba->pni);
8506 } else {
8507 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8508 "2101 PNI %s generation status %d\n",
8509 pni, rc);
8510 phba->pni = 0;
8511 }
8512 }
8513 }
8514
8515 /**
8516 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
8517 * @phba: Pointer to HBA context object.
8518 *
8519 * This function is the main SLI4 device initialization PCI function. This
8520 * function is called by the HBA initialization code, HBA reset code and
8521 * HBA error attention handler code. Caller is not required to hold any
8522 * locks.
8523 **/
8524 int
lpfc_sli4_hba_setup(struct lpfc_hba * phba)8525 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
8526 {
8527 int rc, i, cnt, len, dd;
8528 LPFC_MBOXQ_t *mboxq;
8529 struct lpfc_mqe *mqe;
8530 uint8_t *vpd;
8531 uint32_t vpd_size;
8532 uint32_t ftr_rsp = 0;
8533 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
8534 struct lpfc_vport *vport = phba->pport;
8535 struct lpfc_dmabuf *mp;
8536 struct lpfc_rqb *rqbp;
8537 u32 flg;
8538
8539 /* Perform a PCI function reset to start from clean */
8540 rc = lpfc_pci_function_reset(phba);
8541 if (unlikely(rc))
8542 return -ENODEV;
8543
8544 /* Check the HBA Host Status Register for readyness */
8545 rc = lpfc_sli4_post_status_check(phba);
8546 if (unlikely(rc))
8547 return -ENODEV;
8548 else {
8549 spin_lock_irq(&phba->hbalock);
8550 phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
8551 flg = phba->sli.sli_flag;
8552 spin_unlock_irq(&phba->hbalock);
8553 /* Allow a little time after setting SLI_ACTIVE for any polled
8554 * MBX commands to complete via BSG.
8555 */
8556 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) {
8557 msleep(20);
8558 spin_lock_irq(&phba->hbalock);
8559 flg = phba->sli.sli_flag;
8560 spin_unlock_irq(&phba->hbalock);
8561 }
8562 }
8563 clear_bit(HBA_SETUP, &phba->hba_flag);
8564
8565 lpfc_sli4_dip(phba);
8566
8567 /*
8568 * Allocate a single mailbox container for initializing the
8569 * port.
8570 */
8571 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8572 if (!mboxq)
8573 return -ENOMEM;
8574
8575 /* Issue READ_REV to collect vpd and FW information. */
8576 vpd_size = SLI4_PAGE_SIZE;
8577 vpd = kzalloc(vpd_size, GFP_KERNEL);
8578 if (!vpd) {
8579 rc = -ENOMEM;
8580 goto out_free_mbox;
8581 }
8582
8583 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
8584 if (unlikely(rc)) {
8585 kfree(vpd);
8586 goto out_free_mbox;
8587 }
8588
8589 mqe = &mboxq->u.mqe;
8590 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
8591 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
8592 set_bit(HBA_FCOE_MODE, &phba->hba_flag);
8593 phba->fcp_embed_io = 0; /* SLI4 FC support only */
8594 } else {
8595 clear_bit(HBA_FCOE_MODE, &phba->hba_flag);
8596 }
8597
8598 /* Obtain platform UUID, only for SLI4 FC adapters */
8599 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag))
8600 lpfc_get_platform_uuid(phba);
8601
8602 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
8603 LPFC_DCBX_CEE_MODE)
8604 set_bit(HBA_FIP_SUPPORT, &phba->hba_flag);
8605 else
8606 clear_bit(HBA_FIP_SUPPORT, &phba->hba_flag);
8607
8608 clear_bit(HBA_IOQ_FLUSH, &phba->hba_flag);
8609
8610 if (phba->sli_rev != LPFC_SLI_REV4) {
8611 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8612 "0376 READ_REV Error. SLI Level %d "
8613 "FCoE enabled %d\n",
8614 phba->sli_rev,
8615 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? 1 : 0);
8616 rc = -EIO;
8617 kfree(vpd);
8618 goto out_free_mbox;
8619 }
8620
8621 rc = lpfc_set_host_tm(phba);
8622 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
8623 "6468 Set host date / time: Status x%x:\n", rc);
8624
8625 /*
8626 * Continue initialization with default values even if driver failed
8627 * to read FCoE param config regions, only read parameters if the
8628 * board is FCoE
8629 */
8630 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag) &&
8631 lpfc_sli4_read_fcoe_params(phba))
8632 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
8633 "2570 Failed to read FCoE parameters\n");
8634
8635 /*
8636 * Retrieve sli4 device physical port name, failure of doing it
8637 * is considered as non-fatal.
8638 */
8639 rc = lpfc_sli4_retrieve_pport_name(phba);
8640 if (!rc)
8641 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8642 "3080 Successful retrieving SLI4 device "
8643 "physical port name: %s.\n", phba->Port);
8644
8645 rc = lpfc_sli4_get_ctl_attr(phba);
8646 if (!rc)
8647 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8648 "8351 Successful retrieving SLI4 device "
8649 "CTL ATTR\n");
8650
8651 /*
8652 * Evaluate the read rev and vpd data. Populate the driver
8653 * state with the results. If this routine fails, the failure
8654 * is not fatal as the driver will use generic values.
8655 */
8656 rc = lpfc_parse_vpd(phba, vpd, vpd_size);
8657 if (unlikely(!rc))
8658 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8659 "0377 Error %d parsing vpd. "
8660 "Using defaults.\n", rc);
8661 kfree(vpd);
8662
8663 /* Save information as VPD data */
8664 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
8665 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
8666
8667 /*
8668 * This is because first G7 ASIC doesn't support the standard
8669 * 0x5a NVME cmd descriptor type/subtype
8670 */
8671 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8672 LPFC_SLI_INTF_IF_TYPE_6) &&
8673 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
8674 (phba->vpd.rev.smRev == 0) &&
8675 (phba->cfg_nvme_embed_cmd == 1))
8676 phba->cfg_nvme_embed_cmd = 0;
8677
8678 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
8679 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
8680 &mqe->un.read_rev);
8681 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
8682 &mqe->un.read_rev);
8683 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
8684 &mqe->un.read_rev);
8685 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
8686 &mqe->un.read_rev);
8687 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
8688 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
8689 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
8690 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
8691 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
8692 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
8693 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8694 "(%d):0380 READ_REV Status x%x "
8695 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
8696 mboxq->vport ? mboxq->vport->vpi : 0,
8697 bf_get(lpfc_mqe_status, mqe),
8698 phba->vpd.rev.opFwName,
8699 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
8700 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
8701
8702 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8703 LPFC_SLI_INTF_IF_TYPE_0) {
8704 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
8705 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8706 if (rc == MBX_SUCCESS) {
8707 set_bit(HBA_RECOVERABLE_UE, &phba->hba_flag);
8708 /* Set 1Sec interval to detect UE */
8709 phba->eratt_poll_interval = 1;
8710 phba->sli4_hba.ue_to_sr = bf_get(
8711 lpfc_mbx_set_feature_UESR,
8712 &mboxq->u.mqe.un.set_feature);
8713 phba->sli4_hba.ue_to_rp = bf_get(
8714 lpfc_mbx_set_feature_UERP,
8715 &mboxq->u.mqe.un.set_feature);
8716 }
8717 }
8718
8719 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
8720 /* Enable MDS Diagnostics only if the SLI Port supports it */
8721 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
8722 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8723 if (rc != MBX_SUCCESS)
8724 phba->mds_diags_support = 0;
8725 }
8726
8727 /*
8728 * Discover the port's supported feature set and match it against the
8729 * hosts requests.
8730 */
8731 lpfc_request_features(phba, mboxq);
8732 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8733 if (unlikely(rc)) {
8734 rc = -EIO;
8735 goto out_free_mbox;
8736 }
8737
8738 /* Disable VMID if app header is not supported */
8739 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr,
8740 &mqe->un.req_ftrs))) {
8741 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0);
8742 phba->cfg_vmid_app_header = 0;
8743 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI,
8744 "1242 vmid feature not supported\n");
8745 }
8746
8747 /*
8748 * The port must support FCP initiator mode as this is the
8749 * only mode running in the host.
8750 */
8751 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
8752 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8753 "0378 No support for fcpi mode.\n");
8754 ftr_rsp++;
8755 }
8756
8757 /* Performance Hints are ONLY for FCoE */
8758 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag)) {
8759 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
8760 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
8761 else
8762 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
8763 }
8764
8765 /*
8766 * If the port cannot support the host's requested features
8767 * then turn off the global config parameters to disable the
8768 * feature in the driver. This is not a fatal error.
8769 */
8770 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8771 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
8772 phba->cfg_enable_bg = 0;
8773 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
8774 ftr_rsp++;
8775 }
8776 }
8777
8778 if (phba->max_vpi && phba->cfg_enable_npiv &&
8779 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
8780 ftr_rsp++;
8781
8782 if (ftr_rsp) {
8783 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8784 "0379 Feature Mismatch Data: x%08x %08x "
8785 "x%x x%x x%x\n", mqe->un.req_ftrs.word2,
8786 mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
8787 phba->cfg_enable_npiv, phba->max_vpi);
8788 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
8789 phba->cfg_enable_bg = 0;
8790 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
8791 phba->cfg_enable_npiv = 0;
8792 }
8793
8794 /* These SLI3 features are assumed in SLI4 */
8795 spin_lock_irq(&phba->hbalock);
8796 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
8797 spin_unlock_irq(&phba->hbalock);
8798
8799 /* Always try to enable dual dump feature if we can */
8800 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP);
8801 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8802 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature);
8803 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP))
8804 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8805 "6448 Dual Dump is enabled\n");
8806 else
8807 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT,
8808 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, "
8809 "rc:x%x dd:x%x\n",
8810 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8811 lpfc_sli_config_mbox_subsys_get(
8812 phba, mboxq),
8813 lpfc_sli_config_mbox_opcode_get(
8814 phba, mboxq),
8815 rc, dd);
8816
8817 /*
8818 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent
8819 * calls depends on these resources to complete port setup.
8820 */
8821 rc = lpfc_sli4_alloc_resource_identifiers(phba);
8822 if (rc) {
8823 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8824 "2920 Failed to alloc Resource IDs "
8825 "rc = x%x\n", rc);
8826 goto out_free_mbox;
8827 }
8828
8829 lpfc_sli4_node_rpi_restore(phba);
8830
8831 lpfc_set_host_data(phba, mboxq);
8832
8833 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8834 if (rc) {
8835 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8836 "2134 Failed to set host os driver version %x",
8837 rc);
8838 }
8839
8840 /* Read the port's service parameters. */
8841 rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
8842 if (rc) {
8843 phba->link_state = LPFC_HBA_ERROR;
8844 rc = -ENOMEM;
8845 goto out_free_mbox;
8846 }
8847
8848 mboxq->vport = vport;
8849 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8850 mp = mboxq->ctx_buf;
8851 if (rc == MBX_SUCCESS) {
8852 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
8853 rc = 0;
8854 }
8855
8856 /*
8857 * This memory was allocated by the lpfc_read_sparam routine but is
8858 * no longer needed. It is released and ctx_buf NULLed to prevent
8859 * unintended pointer access as the mbox is reused.
8860 */
8861 lpfc_mbuf_free(phba, mp->virt, mp->phys);
8862 kfree(mp);
8863 mboxq->ctx_buf = NULL;
8864 if (unlikely(rc)) {
8865 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8866 "0382 READ_SPARAM command failed "
8867 "status %d, mbxStatus x%x\n",
8868 rc, bf_get(lpfc_mqe_status, mqe));
8869 phba->link_state = LPFC_HBA_ERROR;
8870 rc = -EIO;
8871 goto out_free_mbox;
8872 }
8873
8874 lpfc_update_vport_wwn(vport);
8875
8876 /* Update the fc_host data structures with new wwn. */
8877 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
8878 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
8879
8880 /* Create all the SLI4 queues */
8881 rc = lpfc_sli4_queue_create(phba);
8882 if (rc) {
8883 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8884 "3089 Failed to allocate queues\n");
8885 rc = -ENODEV;
8886 goto out_free_mbox;
8887 }
8888 /* Set up all the queues to the device */
8889 rc = lpfc_sli4_queue_setup(phba);
8890 if (unlikely(rc)) {
8891 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8892 "0381 Error %d during queue setup.\n", rc);
8893 goto out_destroy_queue;
8894 }
8895 /* Initialize the driver internal SLI layer lists. */
8896 lpfc_sli4_setup(phba);
8897 lpfc_sli4_queue_init(phba);
8898
8899 /* update host els xri-sgl sizes and mappings */
8900 rc = lpfc_sli4_els_sgl_update(phba);
8901 if (unlikely(rc)) {
8902 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8903 "1400 Failed to update xri-sgl size and "
8904 "mapping: %d\n", rc);
8905 goto out_destroy_queue;
8906 }
8907
8908 /* register the els sgl pool to the port */
8909 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
8910 phba->sli4_hba.els_xri_cnt);
8911 if (unlikely(rc < 0)) {
8912 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8913 "0582 Error %d during els sgl post "
8914 "operation\n", rc);
8915 rc = -ENODEV;
8916 goto out_destroy_queue;
8917 }
8918 phba->sli4_hba.els_xri_cnt = rc;
8919
8920 if (phba->nvmet_support) {
8921 /* update host nvmet xri-sgl sizes and mappings */
8922 rc = lpfc_sli4_nvmet_sgl_update(phba);
8923 if (unlikely(rc)) {
8924 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8925 "6308 Failed to update nvmet-sgl size "
8926 "and mapping: %d\n", rc);
8927 goto out_destroy_queue;
8928 }
8929
8930 /* register the nvmet sgl pool to the port */
8931 rc = lpfc_sli4_repost_sgl_list(
8932 phba,
8933 &phba->sli4_hba.lpfc_nvmet_sgl_list,
8934 phba->sli4_hba.nvmet_xri_cnt);
8935 if (unlikely(rc < 0)) {
8936 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8937 "3117 Error %d during nvmet "
8938 "sgl post\n", rc);
8939 rc = -ENODEV;
8940 goto out_destroy_queue;
8941 }
8942 phba->sli4_hba.nvmet_xri_cnt = rc;
8943
8944 /* We allocate an iocbq for every receive context SGL.
8945 * The additional allocation is for abort and ls handling.
8946 */
8947 cnt = phba->sli4_hba.nvmet_xri_cnt +
8948 phba->sli4_hba.max_cfg_param.max_xri;
8949 } else {
8950 /* update host common xri-sgl sizes and mappings */
8951 rc = lpfc_sli4_io_sgl_update(phba);
8952 if (unlikely(rc)) {
8953 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8954 "6082 Failed to update nvme-sgl size "
8955 "and mapping: %d\n", rc);
8956 goto out_destroy_queue;
8957 }
8958
8959 /* register the allocated common sgl pool to the port */
8960 rc = lpfc_sli4_repost_io_sgl_list(phba);
8961 if (unlikely(rc)) {
8962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8963 "6116 Error %d during nvme sgl post "
8964 "operation\n", rc);
8965 /* Some NVME buffers were moved to abort nvme list */
8966 /* A pci function reset will repost them */
8967 rc = -ENODEV;
8968 goto out_destroy_queue;
8969 }
8970 /* Each lpfc_io_buf job structure has an iocbq element.
8971 * This cnt provides for abort, els, ct and ls requests.
8972 */
8973 cnt = phba->sli4_hba.max_cfg_param.max_xri;
8974 }
8975
8976 if (!phba->sli.iocbq_lookup) {
8977 /* Initialize and populate the iocb list per host */
8978 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8979 "2821 initialize iocb list with %d entries\n",
8980 cnt);
8981 rc = lpfc_init_iocb_list(phba, cnt);
8982 if (rc) {
8983 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8984 "1413 Failed to init iocb list.\n");
8985 goto out_destroy_queue;
8986 }
8987 }
8988
8989 if (phba->nvmet_support)
8990 lpfc_nvmet_create_targetport(phba);
8991
8992 if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
8993 /* Post initial buffers to all RQs created */
8994 for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
8995 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
8996 INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
8997 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
8998 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
8999 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
9000 rqbp->buffer_count = 0;
9001
9002 lpfc_post_rq_buffer(
9003 phba, phba->sli4_hba.nvmet_mrq_hdr[i],
9004 phba->sli4_hba.nvmet_mrq_data[i],
9005 phba->cfg_nvmet_mrq_post, i);
9006 }
9007 }
9008
9009 /* Post the rpi header region to the device. */
9010 rc = lpfc_sli4_post_all_rpi_hdrs(phba);
9011 if (unlikely(rc)) {
9012 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9013 "0393 Error %d during rpi post operation\n",
9014 rc);
9015 rc = -ENODEV;
9016 goto out_free_iocblist;
9017 }
9018
9019 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag)) {
9020 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
9021 /*
9022 * The FC Port needs to register FCFI (index 0)
9023 */
9024 lpfc_reg_fcfi(phba, mboxq);
9025 mboxq->vport = phba->pport;
9026 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
9027 if (rc != MBX_SUCCESS)
9028 goto out_unset_queue;
9029 rc = 0;
9030 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
9031 &mboxq->u.mqe.un.reg_fcfi);
9032 } else {
9033 /* We are a NVME Target mode with MRQ > 1 */
9034
9035 /* First register the FCFI */
9036 lpfc_reg_fcfi_mrq(phba, mboxq, 0);
9037 mboxq->vport = phba->pport;
9038 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
9039 if (rc != MBX_SUCCESS)
9040 goto out_unset_queue;
9041 rc = 0;
9042 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
9043 &mboxq->u.mqe.un.reg_fcfi_mrq);
9044
9045 /* Next register the MRQs */
9046 lpfc_reg_fcfi_mrq(phba, mboxq, 1);
9047 mboxq->vport = phba->pport;
9048 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
9049 if (rc != MBX_SUCCESS)
9050 goto out_unset_queue;
9051 rc = 0;
9052 }
9053 /* Check if the port is configured to be disabled */
9054 lpfc_sli_read_link_ste(phba);
9055 }
9056
9057 /* Don't post more new bufs if repost already recovered
9058 * the nvme sgls.
9059 */
9060 if (phba->nvmet_support == 0) {
9061 if (phba->sli4_hba.io_xri_cnt == 0) {
9062 len = lpfc_new_io_buf(
9063 phba, phba->sli4_hba.io_xri_max);
9064 if (len == 0) {
9065 rc = -ENOMEM;
9066 goto out_unset_queue;
9067 }
9068
9069 if (phba->cfg_xri_rebalancing)
9070 lpfc_create_multixri_pools(phba);
9071 }
9072 } else {
9073 phba->cfg_xri_rebalancing = 0;
9074 }
9075
9076 /* Allow asynchronous mailbox command to go through */
9077 spin_lock_irq(&phba->hbalock);
9078 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
9079 spin_unlock_irq(&phba->hbalock);
9080
9081 /* Post receive buffers to the device */
9082 lpfc_sli4_rb_setup(phba);
9083
9084 /* Reset HBA FCF states after HBA reset */
9085 phba->fcf.fcf_flag = 0;
9086 phba->fcf.current_rec.flag = 0;
9087
9088 /* Start the ELS watchdog timer */
9089 mod_timer(&vport->els_tmofunc,
9090 jiffies + secs_to_jiffies(phba->fc_ratov * 2));
9091
9092 /* Start heart beat timer */
9093 mod_timer(&phba->hb_tmofunc,
9094 jiffies + secs_to_jiffies(LPFC_HB_MBOX_INTERVAL));
9095 clear_bit(HBA_HBEAT_INP, &phba->hba_flag);
9096 clear_bit(HBA_HBEAT_TMO, &phba->hba_flag);
9097 phba->last_completion_time = jiffies;
9098
9099 /* start eq_delay heartbeat */
9100 if (phba->cfg_auto_imax)
9101 queue_delayed_work(phba->wq, &phba->eq_delay_work,
9102 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
9103
9104 /* start per phba idle_stat_delay heartbeat */
9105 lpfc_init_idle_stat_hb(phba);
9106
9107 /* Start error attention (ERATT) polling timer */
9108 mod_timer(&phba->eratt_poll,
9109 jiffies + secs_to_jiffies(phba->eratt_poll_interval));
9110
9111 /*
9112 * The port is ready, set the host's link state to LINK_DOWN
9113 * in preparation for link interrupts.
9114 */
9115 spin_lock_irq(&phba->hbalock);
9116 phba->link_state = LPFC_LINK_DOWN;
9117
9118 /* Check if physical ports are trunked */
9119 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
9120 phba->trunk_link.link0.state = LPFC_LINK_DOWN;
9121 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
9122 phba->trunk_link.link1.state = LPFC_LINK_DOWN;
9123 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
9124 phba->trunk_link.link2.state = LPFC_LINK_DOWN;
9125 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
9126 phba->trunk_link.link3.state = LPFC_LINK_DOWN;
9127 spin_unlock_irq(&phba->hbalock);
9128
9129 /* Arm the CQs and then EQs on device */
9130 lpfc_sli4_arm_cqeq_intr(phba);
9131
9132 /* Indicate device interrupt mode */
9133 phba->sli4_hba.intr_enable = 1;
9134
9135 /* Setup CMF after HBA is initialized */
9136 lpfc_cmf_setup(phba);
9137
9138 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag) &&
9139 test_bit(LINK_DISABLED, &phba->hba_flag)) {
9140 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9141 "3103 Adapter Link is disabled.\n");
9142 lpfc_down_link(phba, mboxq);
9143 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
9144 if (rc != MBX_SUCCESS) {
9145 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9146 "3104 Adapter failed to issue "
9147 "DOWN_LINK mbox cmd, rc:x%x\n", rc);
9148 goto out_io_buff_free;
9149 }
9150 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
9151 /* don't perform init_link on SLI4 FC port loopback test */
9152 if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
9153 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
9154 if (rc)
9155 goto out_io_buff_free;
9156 }
9157 }
9158 mempool_free(mboxq, phba->mbox_mem_pool);
9159
9160 /* Enable RAS FW log support */
9161 lpfc_sli4_ras_setup(phba);
9162
9163 set_bit(HBA_SETUP, &phba->hba_flag);
9164 return rc;
9165
9166 out_io_buff_free:
9167 /* Free allocated IO Buffers */
9168 lpfc_io_free(phba);
9169 out_unset_queue:
9170 /* Unset all the queues set up in this routine when error out */
9171 lpfc_sli4_queue_unset(phba);
9172 out_free_iocblist:
9173 lpfc_free_iocb_list(phba);
9174 out_destroy_queue:
9175 lpfc_sli4_queue_destroy(phba);
9176 lpfc_stop_hba_timers(phba);
9177 out_free_mbox:
9178 mempool_free(mboxq, phba->mbox_mem_pool);
9179 return rc;
9180 }
9181
9182 /**
9183 * lpfc_mbox_timeout - Timeout call back function for mbox timer
9184 * @t: Context to fetch pointer to hba structure from.
9185 *
9186 * This is the callback function for mailbox timer. The mailbox
9187 * timer is armed when a new mailbox command is issued and the timer
9188 * is deleted when the mailbox complete. The function is called by
9189 * the kernel timer code when a mailbox does not complete within
9190 * expected time. This function wakes up the worker thread to
9191 * process the mailbox timeout and returns. All the processing is
9192 * done by the worker thread function lpfc_mbox_timeout_handler.
9193 **/
9194 void
lpfc_mbox_timeout(struct timer_list * t)9195 lpfc_mbox_timeout(struct timer_list *t)
9196 {
9197 struct lpfc_hba *phba = timer_container_of(phba, t, sli.mbox_tmo);
9198 unsigned long iflag;
9199 uint32_t tmo_posted;
9200
9201 spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
9202 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
9203 if (!tmo_posted)
9204 phba->pport->work_port_events |= WORKER_MBOX_TMO;
9205 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
9206
9207 if (!tmo_posted)
9208 lpfc_worker_wake_up(phba);
9209 return;
9210 }
9211
9212 /**
9213 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
9214 * are pending
9215 * @phba: Pointer to HBA context object.
9216 *
9217 * This function checks if any mailbox completions are present on the mailbox
9218 * completion queue.
9219 **/
9220 static bool
lpfc_sli4_mbox_completions_pending(struct lpfc_hba * phba)9221 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
9222 {
9223
9224 uint32_t idx;
9225 struct lpfc_queue *mcq;
9226 struct lpfc_mcqe *mcqe;
9227 bool pending_completions = false;
9228 uint8_t qe_valid;
9229
9230 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
9231 return false;
9232
9233 /* Check for completions on mailbox completion queue */
9234
9235 mcq = phba->sli4_hba.mbx_cq;
9236 idx = mcq->hba_index;
9237 qe_valid = mcq->qe_valid;
9238 while (bf_get_le32(lpfc_cqe_valid,
9239 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
9240 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
9241 if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
9242 (!bf_get_le32(lpfc_trailer_async, mcqe))) {
9243 pending_completions = true;
9244 break;
9245 }
9246 idx = (idx + 1) % mcq->entry_count;
9247 if (mcq->hba_index == idx)
9248 break;
9249
9250 /* if the index wrapped around, toggle the valid bit */
9251 if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
9252 qe_valid = (qe_valid) ? 0 : 1;
9253 }
9254 return pending_completions;
9255
9256 }
9257
9258 /**
9259 * lpfc_sli4_process_missed_mbox_completions - process mbox completions
9260 * that were missed.
9261 * @phba: Pointer to HBA context object.
9262 *
9263 * For sli4, it is possible to miss an interrupt. As such mbox completions
9264 * maybe missed causing erroneous mailbox timeouts to occur. This function
9265 * checks to see if mbox completions are on the mailbox completion queue
9266 * and will process all the completions associated with the eq for the
9267 * mailbox completion queue.
9268 **/
9269 static bool
lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba * phba)9270 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
9271 {
9272 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
9273 uint32_t eqidx;
9274 struct lpfc_queue *fpeq = NULL;
9275 struct lpfc_queue *eq;
9276 bool mbox_pending;
9277
9278 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
9279 return false;
9280
9281 /* Find the EQ associated with the mbox CQ */
9282 if (sli4_hba->hdwq) {
9283 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) {
9284 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq;
9285 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) {
9286 fpeq = eq;
9287 break;
9288 }
9289 }
9290 }
9291 if (!fpeq)
9292 return false;
9293
9294 /* Turn off interrupts from this EQ */
9295
9296 sli4_hba->sli4_eq_clr_intr(fpeq);
9297
9298 /* Check to see if a mbox completion is pending */
9299
9300 mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
9301
9302 /*
9303 * If a mbox completion is pending, process all the events on EQ
9304 * associated with the mbox completion queue (this could include
9305 * mailbox commands, async events, els commands, receive queue data
9306 * and fcp commands)
9307 */
9308
9309 if (mbox_pending)
9310 /* process and rearm the EQ */
9311 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM,
9312 LPFC_QUEUE_WORK);
9313 else
9314 /* Always clear and re-arm the EQ */
9315 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
9316
9317 return mbox_pending;
9318
9319 }
9320
9321 /**
9322 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
9323 * @phba: Pointer to HBA context object.
9324 *
9325 * This function is called from worker thread when a mailbox command times out.
9326 * The caller is not required to hold any locks. This function will reset the
9327 * HBA and recover all the pending commands.
9328 **/
9329 void
lpfc_mbox_timeout_handler(struct lpfc_hba * phba)9330 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
9331 {
9332 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
9333 MAILBOX_t *mb = NULL;
9334
9335 struct lpfc_sli *psli = &phba->sli;
9336
9337 /* If the mailbox completed, process the completion */
9338 lpfc_sli4_process_missed_mbox_completions(phba);
9339
9340 if (!(psli->sli_flag & LPFC_SLI_ACTIVE))
9341 return;
9342
9343 if (pmbox != NULL)
9344 mb = &pmbox->u.mb;
9345 /* Check the pmbox pointer first. There is a race condition
9346 * between the mbox timeout handler getting executed in the
9347 * worklist and the mailbox actually completing. When this
9348 * race condition occurs, the mbox_active will be NULL.
9349 */
9350 spin_lock_irq(&phba->hbalock);
9351 if (pmbox == NULL) {
9352 lpfc_printf_log(phba, KERN_WARNING,
9353 LOG_MBOX | LOG_SLI,
9354 "0353 Active Mailbox cleared - mailbox timeout "
9355 "exiting\n");
9356 spin_unlock_irq(&phba->hbalock);
9357 return;
9358 }
9359
9360 /* Mbox cmd <mbxCommand> timeout */
9361 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9362 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n",
9363 mb->mbxCommand,
9364 phba->pport->port_state,
9365 phba->sli.sli_flag,
9366 phba->sli.mbox_active);
9367 spin_unlock_irq(&phba->hbalock);
9368
9369 /* Setting state unknown so lpfc_sli_abort_iocb_ring
9370 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
9371 * it to fail all outstanding SCSI IO.
9372 */
9373 set_bit(MBX_TMO_ERR, &phba->bit_flags);
9374 spin_lock_irq(&phba->pport->work_port_lock);
9375 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
9376 spin_unlock_irq(&phba->pport->work_port_lock);
9377 spin_lock_irq(&phba->hbalock);
9378 phba->link_state = LPFC_LINK_UNKNOWN;
9379 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
9380 spin_unlock_irq(&phba->hbalock);
9381
9382 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9383 "0345 Resetting board due to mailbox timeout\n");
9384
9385 /* Reset the HBA device */
9386 lpfc_reset_hba(phba);
9387 }
9388
9389 /**
9390 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
9391 * @phba: Pointer to HBA context object.
9392 * @pmbox: Pointer to mailbox object.
9393 * @flag: Flag indicating how the mailbox need to be processed.
9394 *
9395 * This function is called by discovery code and HBA management code
9396 * to submit a mailbox command to firmware with SLI-3 interface spec. This
9397 * function gets the hbalock to protect the data structures.
9398 * The mailbox command can be submitted in polling mode, in which case
9399 * this function will wait in a polling loop for the completion of the
9400 * mailbox.
9401 * If the mailbox is submitted in no_wait mode (not polling) the
9402 * function will submit the command and returns immediately without waiting
9403 * for the mailbox completion. The no_wait is supported only when HBA
9404 * is in SLI2/SLI3 mode - interrupts are enabled.
9405 * The SLI interface allows only one mailbox pending at a time. If the
9406 * mailbox is issued in polling mode and there is already a mailbox
9407 * pending, then the function will return an error. If the mailbox is issued
9408 * in NO_WAIT mode and there is a mailbox pending already, the function
9409 * will return MBX_BUSY after queuing the mailbox into mailbox queue.
9410 * The sli layer owns the mailbox object until the completion of mailbox
9411 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
9412 * return codes the caller owns the mailbox command after the return of
9413 * the function.
9414 **/
9415 static int
lpfc_sli_issue_mbox_s3(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmbox,uint32_t flag)9416 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
9417 uint32_t flag)
9418 {
9419 MAILBOX_t *mbx;
9420 struct lpfc_sli *psli = &phba->sli;
9421 uint32_t status, evtctr;
9422 uint32_t ha_copy, hc_copy;
9423 int i;
9424 unsigned long timeout;
9425 unsigned long drvr_flag = 0;
9426 uint32_t word0, ldata;
9427 void __iomem *to_slim;
9428 int processing_queue = 0;
9429
9430 spin_lock_irqsave(&phba->hbalock, drvr_flag);
9431 if (!pmbox) {
9432 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9433 /* processing mbox queue from intr_handler */
9434 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9435 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9436 return MBX_SUCCESS;
9437 }
9438 processing_queue = 1;
9439 pmbox = lpfc_mbox_get(phba);
9440 if (!pmbox) {
9441 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9442 return MBX_SUCCESS;
9443 }
9444 }
9445
9446 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
9447 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
9448 if(!pmbox->vport) {
9449 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9450 lpfc_printf_log(phba, KERN_ERR,
9451 LOG_MBOX | LOG_VPORT,
9452 "1806 Mbox x%x failed. No vport\n",
9453 pmbox->u.mb.mbxCommand);
9454 dump_stack();
9455 goto out_not_finished;
9456 }
9457 }
9458
9459 /* If the PCI channel is in offline state, do not post mbox. */
9460 if (unlikely(pci_channel_offline(phba->pcidev))) {
9461 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9462 goto out_not_finished;
9463 }
9464
9465 /* If HBA has a deferred error attention, fail the iocb. */
9466 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) {
9467 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9468 goto out_not_finished;
9469 }
9470
9471 psli = &phba->sli;
9472
9473 mbx = &pmbox->u.mb;
9474 status = MBX_SUCCESS;
9475
9476 if (phba->link_state == LPFC_HBA_ERROR) {
9477 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9478
9479 /* Mbox command <mbxCommand> cannot issue */
9480 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9481 "(%d):0311 Mailbox command x%x cannot "
9482 "issue Data: x%x x%x\n",
9483 pmbox->vport ? pmbox->vport->vpi : 0,
9484 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
9485 goto out_not_finished;
9486 }
9487
9488 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
9489 if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
9490 !(hc_copy & HC_MBINT_ENA)) {
9491 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9492 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9493 "(%d):2528 Mailbox command x%x cannot "
9494 "issue Data: x%x x%x\n",
9495 pmbox->vport ? pmbox->vport->vpi : 0,
9496 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
9497 goto out_not_finished;
9498 }
9499 }
9500
9501 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9502 /* Polling for a mbox command when another one is already active
9503 * is not allowed in SLI. Also, the driver must have established
9504 * SLI2 mode to queue and process multiple mbox commands.
9505 */
9506
9507 if (flag & MBX_POLL) {
9508 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9509
9510 /* Mbox command <mbxCommand> cannot issue */
9511 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9512 "(%d):2529 Mailbox command x%x "
9513 "cannot issue Data: x%x x%x\n",
9514 pmbox->vport ? pmbox->vport->vpi : 0,
9515 pmbox->u.mb.mbxCommand,
9516 psli->sli_flag, flag);
9517 goto out_not_finished;
9518 }
9519
9520 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
9521 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9522 /* Mbox command <mbxCommand> cannot issue */
9523 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9524 "(%d):2530 Mailbox command x%x "
9525 "cannot issue Data: x%x x%x\n",
9526 pmbox->vport ? pmbox->vport->vpi : 0,
9527 pmbox->u.mb.mbxCommand,
9528 psli->sli_flag, flag);
9529 goto out_not_finished;
9530 }
9531
9532 /* Another mailbox command is still being processed, queue this
9533 * command to be processed later.
9534 */
9535 lpfc_mbox_put(phba, pmbox);
9536
9537 /* Mbox cmd issue - BUSY */
9538 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9539 "(%d):0308 Mbox cmd issue - BUSY Data: "
9540 "x%x x%x x%x x%x\n",
9541 pmbox->vport ? pmbox->vport->vpi : 0xffffff,
9542 mbx->mbxCommand,
9543 phba->pport ? phba->pport->port_state : 0xff,
9544 psli->sli_flag, flag);
9545
9546 psli->slistat.mbox_busy++;
9547 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9548
9549 if (pmbox->vport) {
9550 lpfc_debugfs_disc_trc(pmbox->vport,
9551 LPFC_DISC_TRC_MBOX_VPORT,
9552 "MBOX Bsy vport: cmd:x%x mb:x%x x%x",
9553 (uint32_t)mbx->mbxCommand,
9554 mbx->un.varWords[0], mbx->un.varWords[1]);
9555 }
9556 else {
9557 lpfc_debugfs_disc_trc(phba->pport,
9558 LPFC_DISC_TRC_MBOX,
9559 "MBOX Bsy: cmd:x%x mb:x%x x%x",
9560 (uint32_t)mbx->mbxCommand,
9561 mbx->un.varWords[0], mbx->un.varWords[1]);
9562 }
9563
9564 return MBX_BUSY;
9565 }
9566
9567 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9568
9569 /* If we are not polling, we MUST be in SLI2 mode */
9570 if (flag != MBX_POLL) {
9571 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
9572 (mbx->mbxCommand != MBX_KILL_BOARD)) {
9573 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9574 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9575 /* Mbox command <mbxCommand> cannot issue */
9576 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9577 "(%d):2531 Mailbox command x%x "
9578 "cannot issue Data: x%x x%x\n",
9579 pmbox->vport ? pmbox->vport->vpi : 0,
9580 pmbox->u.mb.mbxCommand,
9581 psli->sli_flag, flag);
9582 goto out_not_finished;
9583 }
9584 /* timeout active mbox command */
9585 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox));
9586 mod_timer(&psli->mbox_tmo, jiffies + timeout);
9587 }
9588
9589 /* Mailbox cmd <cmd> issue */
9590 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9591 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
9592 "x%x\n",
9593 pmbox->vport ? pmbox->vport->vpi : 0,
9594 mbx->mbxCommand,
9595 phba->pport ? phba->pport->port_state : 0xff,
9596 psli->sli_flag, flag);
9597
9598 if (mbx->mbxCommand != MBX_HEARTBEAT) {
9599 if (pmbox->vport) {
9600 lpfc_debugfs_disc_trc(pmbox->vport,
9601 LPFC_DISC_TRC_MBOX_VPORT,
9602 "MBOX Send vport: cmd:x%x mb:x%x x%x",
9603 (uint32_t)mbx->mbxCommand,
9604 mbx->un.varWords[0], mbx->un.varWords[1]);
9605 }
9606 else {
9607 lpfc_debugfs_disc_trc(phba->pport,
9608 LPFC_DISC_TRC_MBOX,
9609 "MBOX Send: cmd:x%x mb:x%x x%x",
9610 (uint32_t)mbx->mbxCommand,
9611 mbx->un.varWords[0], mbx->un.varWords[1]);
9612 }
9613 }
9614
9615 psli->slistat.mbox_cmd++;
9616 evtctr = psli->slistat.mbox_event;
9617
9618 /* next set own bit for the adapter and copy over command word */
9619 mbx->mbxOwner = OWN_CHIP;
9620
9621 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9622 /* Populate mbox extension offset word. */
9623 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
9624 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
9625 = (uint8_t *)phba->mbox_ext
9626 - (uint8_t *)phba->mbox;
9627 }
9628
9629 /* Copy the mailbox extension data */
9630 if (pmbox->in_ext_byte_len && pmbox->ext_buf) {
9631 lpfc_sli_pcimem_bcopy(pmbox->ext_buf,
9632 (uint8_t *)phba->mbox_ext,
9633 pmbox->in_ext_byte_len);
9634 }
9635 /* Copy command data to host SLIM area */
9636 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
9637 } else {
9638 /* Populate mbox extension offset word. */
9639 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
9640 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
9641 = MAILBOX_HBA_EXT_OFFSET;
9642
9643 /* Copy the mailbox extension data */
9644 if (pmbox->in_ext_byte_len && pmbox->ext_buf)
9645 lpfc_memcpy_to_slim(phba->MBslimaddr +
9646 MAILBOX_HBA_EXT_OFFSET,
9647 pmbox->ext_buf, pmbox->in_ext_byte_len);
9648
9649 if (mbx->mbxCommand == MBX_CONFIG_PORT)
9650 /* copy command data into host mbox for cmpl */
9651 lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
9652 MAILBOX_CMD_SIZE);
9653
9654 /* First copy mbox command data to HBA SLIM, skip past first
9655 word */
9656 to_slim = phba->MBslimaddr + sizeof (uint32_t);
9657 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
9658 MAILBOX_CMD_SIZE - sizeof (uint32_t));
9659
9660 /* Next copy over first word, with mbxOwner set */
9661 ldata = *((uint32_t *)mbx);
9662 to_slim = phba->MBslimaddr;
9663 writel(ldata, to_slim);
9664 readl(to_slim); /* flush */
9665
9666 if (mbx->mbxCommand == MBX_CONFIG_PORT)
9667 /* switch over to host mailbox */
9668 psli->sli_flag |= LPFC_SLI_ACTIVE;
9669 }
9670
9671 wmb();
9672
9673 switch (flag) {
9674 case MBX_NOWAIT:
9675 /* Set up reference to mailbox command */
9676 psli->mbox_active = pmbox;
9677 /* Interrupt board to do it */
9678 writel(CA_MBATT, phba->CAregaddr);
9679 readl(phba->CAregaddr); /* flush */
9680 /* Don't wait for it to finish, just return */
9681 break;
9682
9683 case MBX_POLL:
9684 /* Set up null reference to mailbox command */
9685 psli->mbox_active = NULL;
9686 /* Interrupt board to do it */
9687 writel(CA_MBATT, phba->CAregaddr);
9688 readl(phba->CAregaddr); /* flush */
9689
9690 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9691 /* First read mbox status word */
9692 word0 = *((uint32_t *)phba->mbox);
9693 word0 = le32_to_cpu(word0);
9694 } else {
9695 /* First read mbox status word */
9696 if (lpfc_readl(phba->MBslimaddr, &word0)) {
9697 spin_unlock_irqrestore(&phba->hbalock,
9698 drvr_flag);
9699 goto out_not_finished;
9700 }
9701 }
9702
9703 /* Read the HBA Host Attention Register */
9704 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
9705 spin_unlock_irqrestore(&phba->hbalock,
9706 drvr_flag);
9707 goto out_not_finished;
9708 }
9709 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox)) + jiffies;
9710 i = 0;
9711 /* Wait for command to complete */
9712 while (((word0 & OWN_CHIP) == OWN_CHIP) ||
9713 (!(ha_copy & HA_MBATT) &&
9714 (phba->link_state > LPFC_WARM_START))) {
9715 if (time_after(jiffies, timeout)) {
9716 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9717 spin_unlock_irqrestore(&phba->hbalock,
9718 drvr_flag);
9719 goto out_not_finished;
9720 }
9721
9722 /* Check if we took a mbox interrupt while we were
9723 polling */
9724 if (((word0 & OWN_CHIP) != OWN_CHIP)
9725 && (evtctr != psli->slistat.mbox_event))
9726 break;
9727
9728 if (i++ > 10) {
9729 spin_unlock_irqrestore(&phba->hbalock,
9730 drvr_flag);
9731 msleep(1);
9732 spin_lock_irqsave(&phba->hbalock, drvr_flag);
9733 }
9734
9735 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9736 /* First copy command data */
9737 word0 = *((uint32_t *)phba->mbox);
9738 word0 = le32_to_cpu(word0);
9739 if (mbx->mbxCommand == MBX_CONFIG_PORT) {
9740 MAILBOX_t *slimmb;
9741 uint32_t slimword0;
9742 /* Check real SLIM for any errors */
9743 slimword0 = readl(phba->MBslimaddr);
9744 slimmb = (MAILBOX_t *) & slimword0;
9745 if (((slimword0 & OWN_CHIP) != OWN_CHIP)
9746 && slimmb->mbxStatus) {
9747 psli->sli_flag &=
9748 ~LPFC_SLI_ACTIVE;
9749 word0 = slimword0;
9750 }
9751 }
9752 } else {
9753 /* First copy command data */
9754 word0 = readl(phba->MBslimaddr);
9755 }
9756 /* Read the HBA Host Attention Register */
9757 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
9758 spin_unlock_irqrestore(&phba->hbalock,
9759 drvr_flag);
9760 goto out_not_finished;
9761 }
9762 }
9763
9764 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9765 /* copy results back to user */
9766 lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
9767 MAILBOX_CMD_SIZE);
9768 /* Copy the mailbox extension data */
9769 if (pmbox->out_ext_byte_len && pmbox->ext_buf) {
9770 lpfc_sli_pcimem_bcopy(phba->mbox_ext,
9771 pmbox->ext_buf,
9772 pmbox->out_ext_byte_len);
9773 }
9774 } else {
9775 /* First copy command data */
9776 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
9777 MAILBOX_CMD_SIZE);
9778 /* Copy the mailbox extension data */
9779 if (pmbox->out_ext_byte_len && pmbox->ext_buf) {
9780 lpfc_memcpy_from_slim(
9781 pmbox->ext_buf,
9782 phba->MBslimaddr +
9783 MAILBOX_HBA_EXT_OFFSET,
9784 pmbox->out_ext_byte_len);
9785 }
9786 }
9787
9788 writel(HA_MBATT, phba->HAregaddr);
9789 readl(phba->HAregaddr); /* flush */
9790
9791 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9792 status = mbx->mbxStatus;
9793 }
9794
9795 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9796 return status;
9797
9798 out_not_finished:
9799 if (processing_queue) {
9800 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
9801 lpfc_mbox_cmpl_put(phba, pmbox);
9802 }
9803 return MBX_NOT_FINISHED;
9804 }
9805
9806 /**
9807 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
9808 * @phba: Pointer to HBA context object.
9809 *
9810 * The function blocks the posting of SLI4 asynchronous mailbox commands from
9811 * the driver internal pending mailbox queue. It will then try to wait out the
9812 * possible outstanding mailbox command before return.
9813 *
9814 * Returns:
9815 * 0 - the outstanding mailbox command completed; otherwise, the wait for
9816 * the outstanding mailbox command timed out.
9817 **/
9818 static int
lpfc_sli4_async_mbox_block(struct lpfc_hba * phba)9819 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
9820 {
9821 struct lpfc_sli *psli = &phba->sli;
9822 LPFC_MBOXQ_t *mboxq;
9823 int rc = 0;
9824 unsigned long timeout = 0;
9825 u32 sli_flag;
9826 u8 cmd, subsys, opcode;
9827
9828 /* Mark the asynchronous mailbox command posting as blocked */
9829 spin_lock_irq(&phba->hbalock);
9830 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
9831 /* Determine how long we might wait for the active mailbox
9832 * command to be gracefully completed by firmware.
9833 */
9834 if (phba->sli.mbox_active)
9835 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba,
9836 phba->sli.mbox_active)) + jiffies;
9837 spin_unlock_irq(&phba->hbalock);
9838
9839 /* Make sure the mailbox is really active */
9840 if (timeout)
9841 lpfc_sli4_process_missed_mbox_completions(phba);
9842
9843 /* Wait for the outstanding mailbox command to complete */
9844 while (phba->sli.mbox_active) {
9845 /* Check active mailbox complete status every 2ms */
9846 msleep(2);
9847 if (time_after(jiffies, timeout)) {
9848 /* Timeout, mark the outstanding cmd not complete */
9849
9850 /* Sanity check sli.mbox_active has not completed or
9851 * cancelled from another context during last 2ms sleep,
9852 * so take hbalock to be sure before logging.
9853 */
9854 spin_lock_irq(&phba->hbalock);
9855 if (phba->sli.mbox_active) {
9856 mboxq = phba->sli.mbox_active;
9857 cmd = mboxq->u.mb.mbxCommand;
9858 subsys = lpfc_sli_config_mbox_subsys_get(phba,
9859 mboxq);
9860 opcode = lpfc_sli_config_mbox_opcode_get(phba,
9861 mboxq);
9862 sli_flag = psli->sli_flag;
9863 spin_unlock_irq(&phba->hbalock);
9864 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9865 "2352 Mailbox command x%x "
9866 "(x%x/x%x) sli_flag x%x could "
9867 "not complete\n",
9868 cmd, subsys, opcode,
9869 sli_flag);
9870 } else {
9871 spin_unlock_irq(&phba->hbalock);
9872 }
9873
9874 rc = 1;
9875 break;
9876 }
9877 }
9878
9879 /* Can not cleanly block async mailbox command, fails it */
9880 if (rc) {
9881 spin_lock_irq(&phba->hbalock);
9882 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
9883 spin_unlock_irq(&phba->hbalock);
9884 }
9885 return rc;
9886 }
9887
9888 /**
9889 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
9890 * @phba: Pointer to HBA context object.
9891 *
9892 * The function unblocks and resume posting of SLI4 asynchronous mailbox
9893 * commands from the driver internal pending mailbox queue. It makes sure
9894 * that there is no outstanding mailbox command before resuming posting
9895 * asynchronous mailbox commands. If, for any reason, there is outstanding
9896 * mailbox command, it will try to wait it out before resuming asynchronous
9897 * mailbox command posting.
9898 **/
9899 static void
lpfc_sli4_async_mbox_unblock(struct lpfc_hba * phba)9900 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
9901 {
9902 struct lpfc_sli *psli = &phba->sli;
9903
9904 spin_lock_irq(&phba->hbalock);
9905 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9906 /* Asynchronous mailbox posting is not blocked, do nothing */
9907 spin_unlock_irq(&phba->hbalock);
9908 return;
9909 }
9910
9911 /* Outstanding synchronous mailbox command is guaranteed to be done,
9912 * successful or timeout, after timing-out the outstanding mailbox
9913 * command shall always be removed, so just unblock posting async
9914 * mailbox command and resume
9915 */
9916 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
9917 spin_unlock_irq(&phba->hbalock);
9918
9919 /* wake up worker thread to post asynchronous mailbox command */
9920 lpfc_worker_wake_up(phba);
9921 }
9922
9923 /**
9924 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
9925 * @phba: Pointer to HBA context object.
9926 * @mboxq: Pointer to mailbox object.
9927 *
9928 * The function waits for the bootstrap mailbox register ready bit from
9929 * port for twice the regular mailbox command timeout value.
9930 *
9931 * 0 - no timeout on waiting for bootstrap mailbox register ready.
9932 * MBXERR_ERROR - wait for bootstrap mailbox register timed out or port
9933 * is in an unrecoverable state.
9934 **/
9935 static int
lpfc_sli4_wait_bmbx_ready(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)9936 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
9937 {
9938 uint32_t db_ready;
9939 unsigned long timeout;
9940 struct lpfc_register bmbx_reg;
9941 struct lpfc_register portstat_reg = {-1};
9942
9943 /* Sanity check - there is no point to wait if the port is in an
9944 * unrecoverable state.
9945 */
9946 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
9947 LPFC_SLI_INTF_IF_TYPE_2) {
9948 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9949 &portstat_reg.word0) ||
9950 lpfc_sli4_unrecoverable_port(&portstat_reg)) {
9951 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9952 "3858 Skipping bmbx ready because "
9953 "Port Status x%x\n",
9954 portstat_reg.word0);
9955 return MBXERR_ERROR;
9956 }
9957 }
9958
9959 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)) + jiffies;
9960
9961 do {
9962 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
9963 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
9964 if (!db_ready)
9965 mdelay(2);
9966
9967 if (time_after(jiffies, timeout))
9968 return MBXERR_ERROR;
9969 } while (!db_ready);
9970
9971 return 0;
9972 }
9973
9974 /**
9975 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
9976 * @phba: Pointer to HBA context object.
9977 * @mboxq: Pointer to mailbox object.
9978 *
9979 * The function posts a mailbox to the port. The mailbox is expected
9980 * to be comletely filled in and ready for the port to operate on it.
9981 * This routine executes a synchronous completion operation on the
9982 * mailbox by polling for its completion.
9983 *
9984 * The caller must not be holding any locks when calling this routine.
9985 *
9986 * Returns:
9987 * MBX_SUCCESS - mailbox posted successfully
9988 * Any of the MBX error values.
9989 **/
9990 static int
lpfc_sli4_post_sync_mbox(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)9991 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
9992 {
9993 int rc = MBX_SUCCESS;
9994 unsigned long iflag;
9995 uint32_t mcqe_status;
9996 uint32_t mbx_cmnd;
9997 struct lpfc_sli *psli = &phba->sli;
9998 struct lpfc_mqe *mb = &mboxq->u.mqe;
9999 struct lpfc_bmbx_create *mbox_rgn;
10000 struct dma_address *dma_address;
10001
10002 /*
10003 * Only one mailbox can be active to the bootstrap mailbox region
10004 * at a time and there is no queueing provided.
10005 */
10006 spin_lock_irqsave(&phba->hbalock, iflag);
10007 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
10008 spin_unlock_irqrestore(&phba->hbalock, iflag);
10009 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10010 "(%d):2532 Mailbox command x%x (x%x/x%x) "
10011 "cannot issue Data: x%x x%x\n",
10012 mboxq->vport ? mboxq->vport->vpi : 0,
10013 mboxq->u.mb.mbxCommand,
10014 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10015 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10016 psli->sli_flag, MBX_POLL);
10017 return MBXERR_ERROR;
10018 }
10019 /* The server grabs the token and owns it until release */
10020 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
10021 phba->sli.mbox_active = mboxq;
10022 spin_unlock_irqrestore(&phba->hbalock, iflag);
10023
10024 /* wait for bootstrap mbox register for readyness */
10025 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
10026 if (rc)
10027 goto exit;
10028 /*
10029 * Initialize the bootstrap memory region to avoid stale data areas
10030 * in the mailbox post. Then copy the caller's mailbox contents to
10031 * the bmbx mailbox region.
10032 */
10033 mbx_cmnd = bf_get(lpfc_mqe_command, mb);
10034 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
10035 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
10036 sizeof(struct lpfc_mqe));
10037
10038 /* Post the high mailbox dma address to the port and wait for ready. */
10039 dma_address = &phba->sli4_hba.bmbx.dma_address;
10040 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
10041
10042 /* wait for bootstrap mbox register for hi-address write done */
10043 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
10044 if (rc)
10045 goto exit;
10046
10047 /* Post the low mailbox dma address to the port. */
10048 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
10049
10050 /* wait for bootstrap mbox register for low address write done */
10051 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
10052 if (rc)
10053 goto exit;
10054
10055 /*
10056 * Read the CQ to ensure the mailbox has completed.
10057 * If so, update the mailbox status so that the upper layers
10058 * can complete the request normally.
10059 */
10060 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
10061 sizeof(struct lpfc_mqe));
10062 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
10063 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
10064 sizeof(struct lpfc_mcqe));
10065 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
10066 /*
10067 * When the CQE status indicates a failure and the mailbox status
10068 * indicates success then copy the CQE status into the mailbox status
10069 * (and prefix it with x4000).
10070 */
10071 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
10072 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
10073 bf_set(lpfc_mqe_status, mb,
10074 (LPFC_MBX_ERROR_RANGE | mcqe_status));
10075 rc = MBXERR_ERROR;
10076 } else
10077 lpfc_sli4_swap_str(phba, mboxq);
10078
10079 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
10080 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
10081 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
10082 " x%x x%x CQ: x%x x%x x%x x%x\n",
10083 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
10084 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10085 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10086 bf_get(lpfc_mqe_status, mb),
10087 mb->un.mb_words[0], mb->un.mb_words[1],
10088 mb->un.mb_words[2], mb->un.mb_words[3],
10089 mb->un.mb_words[4], mb->un.mb_words[5],
10090 mb->un.mb_words[6], mb->un.mb_words[7],
10091 mb->un.mb_words[8], mb->un.mb_words[9],
10092 mb->un.mb_words[10], mb->un.mb_words[11],
10093 mb->un.mb_words[12], mboxq->mcqe.word0,
10094 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
10095 mboxq->mcqe.trailer);
10096 exit:
10097 /* We are holding the token, no needed for lock when release */
10098 spin_lock_irqsave(&phba->hbalock, iflag);
10099 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10100 phba->sli.mbox_active = NULL;
10101 spin_unlock_irqrestore(&phba->hbalock, iflag);
10102 return rc;
10103 }
10104
10105 /**
10106 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
10107 * @phba: Pointer to HBA context object.
10108 * @mboxq: Pointer to mailbox object.
10109 * @flag: Flag indicating how the mailbox need to be processed.
10110 *
10111 * This function is called by discovery code and HBA management code to submit
10112 * a mailbox command to firmware with SLI-4 interface spec.
10113 *
10114 * Return codes the caller owns the mailbox command after the return of the
10115 * function.
10116 **/
10117 static int
lpfc_sli_issue_mbox_s4(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq,uint32_t flag)10118 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
10119 uint32_t flag)
10120 {
10121 struct lpfc_sli *psli = &phba->sli;
10122 unsigned long iflags;
10123 int rc;
10124
10125 /* dump from issue mailbox command if setup */
10126 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
10127
10128 rc = lpfc_mbox_dev_check(phba);
10129 if (unlikely(rc)) {
10130 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10131 "(%d):2544 Mailbox command x%x (x%x/x%x) "
10132 "cannot issue Data: x%x x%x\n",
10133 mboxq->vport ? mboxq->vport->vpi : 0,
10134 mboxq->u.mb.mbxCommand,
10135 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10136 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10137 psli->sli_flag, flag);
10138 goto out_not_finished;
10139 }
10140
10141 /* Detect polling mode and jump to a handler */
10142 if (!phba->sli4_hba.intr_enable) {
10143 if (flag == MBX_POLL)
10144 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
10145 else
10146 rc = -EIO;
10147 if (rc != MBX_SUCCESS)
10148 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
10149 "(%d):2541 Mailbox command x%x "
10150 "(x%x/x%x) failure: "
10151 "mqe_sta: x%x mcqe_sta: x%x/x%x "
10152 "Data: x%x x%x\n",
10153 mboxq->vport ? mboxq->vport->vpi : 0,
10154 mboxq->u.mb.mbxCommand,
10155 lpfc_sli_config_mbox_subsys_get(phba,
10156 mboxq),
10157 lpfc_sli_config_mbox_opcode_get(phba,
10158 mboxq),
10159 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
10160 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
10161 bf_get(lpfc_mcqe_ext_status,
10162 &mboxq->mcqe),
10163 psli->sli_flag, flag);
10164 return rc;
10165 } else if (flag == MBX_POLL) {
10166 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
10167 "(%d):2542 Try to issue mailbox command "
10168 "x%x (x%x/x%x) synchronously ahead of async "
10169 "mailbox command queue: x%x x%x\n",
10170 mboxq->vport ? mboxq->vport->vpi : 0,
10171 mboxq->u.mb.mbxCommand,
10172 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10173 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10174 psli->sli_flag, flag);
10175 /* Try to block the asynchronous mailbox posting */
10176 rc = lpfc_sli4_async_mbox_block(phba);
10177 if (!rc) {
10178 /* Successfully blocked, now issue sync mbox cmd */
10179 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
10180 if (rc != MBX_SUCCESS)
10181 lpfc_printf_log(phba, KERN_WARNING,
10182 LOG_MBOX | LOG_SLI,
10183 "(%d):2597 Sync Mailbox command "
10184 "x%x (x%x/x%x) failure: "
10185 "mqe_sta: x%x mcqe_sta: x%x/x%x "
10186 "Data: x%x x%x\n",
10187 mboxq->vport ? mboxq->vport->vpi : 0,
10188 mboxq->u.mb.mbxCommand,
10189 lpfc_sli_config_mbox_subsys_get(phba,
10190 mboxq),
10191 lpfc_sli_config_mbox_opcode_get(phba,
10192 mboxq),
10193 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
10194 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
10195 bf_get(lpfc_mcqe_ext_status,
10196 &mboxq->mcqe),
10197 psli->sli_flag, flag);
10198 /* Unblock the async mailbox posting afterward */
10199 lpfc_sli4_async_mbox_unblock(phba);
10200 }
10201 return rc;
10202 }
10203
10204 /* Now, interrupt mode asynchronous mailbox command */
10205 rc = lpfc_mbox_cmd_check(phba, mboxq);
10206 if (rc) {
10207 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10208 "(%d):2543 Mailbox command x%x (x%x/x%x) "
10209 "cannot issue Data: x%x x%x\n",
10210 mboxq->vport ? mboxq->vport->vpi : 0,
10211 mboxq->u.mb.mbxCommand,
10212 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10213 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10214 psli->sli_flag, flag);
10215 goto out_not_finished;
10216 }
10217
10218 /* Put the mailbox command to the driver internal FIFO */
10219 psli->slistat.mbox_busy++;
10220 spin_lock_irqsave(&phba->hbalock, iflags);
10221 lpfc_mbox_put(phba, mboxq);
10222 spin_unlock_irqrestore(&phba->hbalock, iflags);
10223 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
10224 "(%d):0354 Mbox cmd issue - Enqueue Data: "
10225 "x%x (x%x/x%x) x%x x%x x%x x%x\n",
10226 mboxq->vport ? mboxq->vport->vpi : 0xffffff,
10227 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
10228 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10229 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10230 mboxq->u.mb.un.varUnregLogin.rpi,
10231 phba->pport->port_state,
10232 psli->sli_flag, MBX_NOWAIT);
10233 /* Wake up worker thread to transport mailbox command from head */
10234 lpfc_worker_wake_up(phba);
10235
10236 return MBX_BUSY;
10237
10238 out_not_finished:
10239 return MBX_NOT_FINISHED;
10240 }
10241
10242 /**
10243 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
10244 * @phba: Pointer to HBA context object.
10245 *
10246 * This function is called by worker thread to send a mailbox command to
10247 * SLI4 HBA firmware.
10248 *
10249 **/
10250 int
lpfc_sli4_post_async_mbox(struct lpfc_hba * phba)10251 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
10252 {
10253 struct lpfc_sli *psli = &phba->sli;
10254 LPFC_MBOXQ_t *mboxq;
10255 int rc = MBX_SUCCESS;
10256 unsigned long iflags;
10257 struct lpfc_mqe *mqe;
10258 uint32_t mbx_cmnd;
10259
10260 /* Check interrupt mode before post async mailbox command */
10261 if (unlikely(!phba->sli4_hba.intr_enable))
10262 return MBX_NOT_FINISHED;
10263
10264 /* Check for mailbox command service token */
10265 spin_lock_irqsave(&phba->hbalock, iflags);
10266 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
10267 spin_unlock_irqrestore(&phba->hbalock, iflags);
10268 return MBX_NOT_FINISHED;
10269 }
10270 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
10271 spin_unlock_irqrestore(&phba->hbalock, iflags);
10272 return MBX_NOT_FINISHED;
10273 }
10274 if (unlikely(phba->sli.mbox_active)) {
10275 spin_unlock_irqrestore(&phba->hbalock, iflags);
10276 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10277 "0384 There is pending active mailbox cmd\n");
10278 return MBX_NOT_FINISHED;
10279 }
10280 /* Take the mailbox command service token */
10281 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
10282
10283 /* Get the next mailbox command from head of queue */
10284 mboxq = lpfc_mbox_get(phba);
10285
10286 /* If no more mailbox command waiting for post, we're done */
10287 if (!mboxq) {
10288 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10289 spin_unlock_irqrestore(&phba->hbalock, iflags);
10290 return MBX_SUCCESS;
10291 }
10292 phba->sli.mbox_active = mboxq;
10293 spin_unlock_irqrestore(&phba->hbalock, iflags);
10294
10295 /* Check device readiness for posting mailbox command */
10296 rc = lpfc_mbox_dev_check(phba);
10297 if (unlikely(rc))
10298 /* Driver clean routine will clean up pending mailbox */
10299 goto out_not_finished;
10300
10301 /* Prepare the mbox command to be posted */
10302 mqe = &mboxq->u.mqe;
10303 mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
10304
10305 /* Start timer for the mbox_tmo and log some mailbox post messages */
10306 mod_timer(&psli->mbox_tmo, (jiffies +
10307 secs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq))));
10308
10309 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
10310 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
10311 "x%x x%x\n",
10312 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
10313 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10314 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10315 phba->pport->port_state, psli->sli_flag);
10316
10317 if (mbx_cmnd != MBX_HEARTBEAT) {
10318 if (mboxq->vport) {
10319 lpfc_debugfs_disc_trc(mboxq->vport,
10320 LPFC_DISC_TRC_MBOX_VPORT,
10321 "MBOX Send vport: cmd:x%x mb:x%x x%x",
10322 mbx_cmnd, mqe->un.mb_words[0],
10323 mqe->un.mb_words[1]);
10324 } else {
10325 lpfc_debugfs_disc_trc(phba->pport,
10326 LPFC_DISC_TRC_MBOX,
10327 "MBOX Send: cmd:x%x mb:x%x x%x",
10328 mbx_cmnd, mqe->un.mb_words[0],
10329 mqe->un.mb_words[1]);
10330 }
10331 }
10332 psli->slistat.mbox_cmd++;
10333
10334 /* Post the mailbox command to the port */
10335 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
10336 if (rc != MBX_SUCCESS) {
10337 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10338 "(%d):2533 Mailbox command x%x (x%x/x%x) "
10339 "cannot issue Data: x%x x%x\n",
10340 mboxq->vport ? mboxq->vport->vpi : 0,
10341 mboxq->u.mb.mbxCommand,
10342 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10343 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10344 psli->sli_flag, MBX_NOWAIT);
10345 goto out_not_finished;
10346 }
10347
10348 return rc;
10349
10350 out_not_finished:
10351 spin_lock_irqsave(&phba->hbalock, iflags);
10352 if (phba->sli.mbox_active) {
10353 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
10354 __lpfc_mbox_cmpl_put(phba, mboxq);
10355 /* Release the token */
10356 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10357 phba->sli.mbox_active = NULL;
10358 }
10359 spin_unlock_irqrestore(&phba->hbalock, iflags);
10360
10361 return MBX_NOT_FINISHED;
10362 }
10363
10364 /**
10365 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
10366 * @phba: Pointer to HBA context object.
10367 * @pmbox: Pointer to mailbox object.
10368 * @flag: Flag indicating how the mailbox need to be processed.
10369 *
10370 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
10371 * the API jump table function pointer from the lpfc_hba struct.
10372 *
10373 * Return codes the caller owns the mailbox command after the return of the
10374 * function.
10375 **/
10376 int
lpfc_sli_issue_mbox(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmbox,uint32_t flag)10377 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
10378 {
10379 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
10380 }
10381
10382 /**
10383 * lpfc_mbox_api_table_setup - Set up mbox api function jump table
10384 * @phba: The hba struct for which this call is being executed.
10385 * @dev_grp: The HBA PCI-Device group number.
10386 *
10387 * This routine sets up the mbox interface API function jump table in @phba
10388 * struct.
10389 * Returns: 0 - success, -ENODEV - failure.
10390 **/
10391 int
lpfc_mbox_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)10392 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
10393 {
10394
10395 switch (dev_grp) {
10396 case LPFC_PCI_DEV_LP:
10397 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
10398 phba->lpfc_sli_handle_slow_ring_event =
10399 lpfc_sli_handle_slow_ring_event_s3;
10400 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
10401 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
10402 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
10403 break;
10404 case LPFC_PCI_DEV_OC:
10405 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
10406 phba->lpfc_sli_handle_slow_ring_event =
10407 lpfc_sli_handle_slow_ring_event_s4;
10408 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
10409 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
10410 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
10411 break;
10412 default:
10413 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10414 "1420 Invalid HBA PCI-device group: 0x%x\n",
10415 dev_grp);
10416 return -ENODEV;
10417 }
10418 return 0;
10419 }
10420
10421 /**
10422 * __lpfc_sli_ringtx_put - Add an iocb to the txq
10423 * @phba: Pointer to HBA context object.
10424 * @pring: Pointer to driver SLI ring object.
10425 * @piocb: Pointer to address of newly added command iocb.
10426 *
10427 * This function is called with hbalock held for SLI3 ports or
10428 * the ring lock held for SLI4 ports to add a command
10429 * iocb to the txq when SLI layer cannot submit the command iocb
10430 * to the ring.
10431 **/
10432 void
__lpfc_sli_ringtx_put(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * piocb)10433 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10434 struct lpfc_iocbq *piocb)
10435 {
10436 if (phba->sli_rev == LPFC_SLI_REV4)
10437 lockdep_assert_held(&pring->ring_lock);
10438 else
10439 lockdep_assert_held(&phba->hbalock);
10440 /* Insert the caller's iocb in the txq tail for later processing. */
10441 list_add_tail(&piocb->list, &pring->txq);
10442 }
10443
10444 /**
10445 * lpfc_sli_next_iocb - Get the next iocb in the txq
10446 * @phba: Pointer to HBA context object.
10447 * @pring: Pointer to driver SLI ring object.
10448 * @piocb: Pointer to address of newly added command iocb.
10449 *
10450 * This function is called with hbalock held before a new
10451 * iocb is submitted to the firmware. This function checks
10452 * txq to flush the iocbs in txq to Firmware before
10453 * submitting new iocbs to the Firmware.
10454 * If there are iocbs in the txq which need to be submitted
10455 * to firmware, lpfc_sli_next_iocb returns the first element
10456 * of the txq after dequeuing it from txq.
10457 * If there is no iocb in the txq then the function will return
10458 * *piocb and *piocb is set to NULL. Caller needs to check
10459 * *piocb to find if there are more commands in the txq.
10460 **/
10461 static struct lpfc_iocbq *
lpfc_sli_next_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq ** piocb)10462 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10463 struct lpfc_iocbq **piocb)
10464 {
10465 struct lpfc_iocbq * nextiocb;
10466
10467 lockdep_assert_held(&phba->hbalock);
10468
10469 nextiocb = lpfc_sli_ringtx_get(phba, pring);
10470 if (!nextiocb) {
10471 nextiocb = *piocb;
10472 *piocb = NULL;
10473 }
10474
10475 return nextiocb;
10476 }
10477
10478 /**
10479 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
10480 * @phba: Pointer to HBA context object.
10481 * @ring_number: SLI ring number to issue iocb on.
10482 * @piocb: Pointer to command iocb.
10483 * @flag: Flag indicating if this command can be put into txq.
10484 *
10485 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
10486 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
10487 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
10488 * flag is turned on, the function returns IOCB_ERROR. When the link is down,
10489 * this function allows only iocbs for posting buffers. This function finds
10490 * next available slot in the command ring and posts the command to the
10491 * available slot and writes the port attention register to request HBA start
10492 * processing new iocb. If there is no slot available in the ring and
10493 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
10494 * the function returns IOCB_BUSY.
10495 *
10496 * This function is called with hbalock held. The function will return success
10497 * after it successfully submit the iocb to firmware or after adding to the
10498 * txq.
10499 **/
10500 static int
__lpfc_sli_issue_iocb_s3(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10501 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
10502 struct lpfc_iocbq *piocb, uint32_t flag)
10503 {
10504 struct lpfc_iocbq *nextiocb;
10505 IOCB_t *iocb;
10506 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
10507
10508 lockdep_assert_held(&phba->hbalock);
10509
10510 if (piocb->cmd_cmpl && (!piocb->vport) &&
10511 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
10512 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
10513 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10514 "1807 IOCB x%x failed. No vport\n",
10515 piocb->iocb.ulpCommand);
10516 dump_stack();
10517 return IOCB_ERROR;
10518 }
10519
10520
10521 /* If the PCI channel is in offline state, do not post iocbs. */
10522 if (unlikely(pci_channel_offline(phba->pcidev)))
10523 return IOCB_ERROR;
10524
10525 /* If HBA has a deferred error attention, fail the iocb. */
10526 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag)))
10527 return IOCB_ERROR;
10528
10529 /*
10530 * We should never get an IOCB if we are in a < LINK_DOWN state
10531 */
10532 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
10533 return IOCB_ERROR;
10534
10535 /*
10536 * Check to see if we are blocking IOCB processing because of a
10537 * outstanding event.
10538 */
10539 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
10540 goto iocb_busy;
10541
10542 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
10543 /*
10544 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
10545 * can be issued if the link is not up.
10546 */
10547 switch (piocb->iocb.ulpCommand) {
10548 case CMD_QUE_RING_BUF_CN:
10549 case CMD_QUE_RING_BUF64_CN:
10550 /*
10551 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
10552 * completion, cmd_cmpl MUST be 0.
10553 */
10554 if (piocb->cmd_cmpl)
10555 piocb->cmd_cmpl = NULL;
10556 fallthrough;
10557 case CMD_CREATE_XRI_CR:
10558 case CMD_CLOSE_XRI_CN:
10559 case CMD_CLOSE_XRI_CX:
10560 break;
10561 default:
10562 goto iocb_busy;
10563 }
10564
10565 /*
10566 * For FCP commands, we must be in a state where we can process link
10567 * attention events.
10568 */
10569 } else if (unlikely(pring->ringno == LPFC_FCP_RING &&
10570 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
10571 goto iocb_busy;
10572 }
10573
10574 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
10575 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
10576 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
10577
10578 if (iocb)
10579 lpfc_sli_update_ring(phba, pring);
10580 else
10581 lpfc_sli_update_full_ring(phba, pring);
10582
10583 if (!piocb)
10584 return IOCB_SUCCESS;
10585
10586 goto out_busy;
10587
10588 iocb_busy:
10589 pring->stats.iocb_cmd_delay++;
10590
10591 out_busy:
10592
10593 if (!(flag & SLI_IOCB_RET_IOCB)) {
10594 __lpfc_sli_ringtx_put(phba, pring, piocb);
10595 return IOCB_SUCCESS;
10596 }
10597
10598 return IOCB_BUSY;
10599 }
10600
10601 /**
10602 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb
10603 * @phba: Pointer to HBA context object.
10604 * @ring_number: SLI ring number to issue wqe on.
10605 * @piocb: Pointer to command iocb.
10606 * @flag: Flag indicating if this command can be put into txq.
10607 *
10608 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to
10609 * send an iocb command to an HBA with SLI-3 interface spec.
10610 *
10611 * This function takes the hbalock before invoking the lockless version.
10612 * The function will return success after it successfully submit the wqe to
10613 * firmware or after adding to the txq.
10614 **/
10615 static int
__lpfc_sli_issue_fcp_io_s3(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10616 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number,
10617 struct lpfc_iocbq *piocb, uint32_t flag)
10618 {
10619 unsigned long iflags;
10620 int rc;
10621
10622 spin_lock_irqsave(&phba->hbalock, iflags);
10623 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag);
10624 spin_unlock_irqrestore(&phba->hbalock, iflags);
10625
10626 return rc;
10627 }
10628
10629 /**
10630 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe
10631 * @phba: Pointer to HBA context object.
10632 * @ring_number: SLI ring number to issue wqe on.
10633 * @piocb: Pointer to command iocb.
10634 * @flag: Flag indicating if this command can be put into txq.
10635 *
10636 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue
10637 * an wqe command to an HBA with SLI-4 interface spec.
10638 *
10639 * This function is a lockless version. The function will return success
10640 * after it successfully submit the wqe to firmware or after adding to the
10641 * txq.
10642 **/
10643 static int
__lpfc_sli_issue_fcp_io_s4(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10644 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number,
10645 struct lpfc_iocbq *piocb, uint32_t flag)
10646 {
10647 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf;
10648
10649 lpfc_prep_embed_io(phba, lpfc_cmd);
10650 return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb);
10651 }
10652
10653 void
lpfc_prep_embed_io(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_cmd)10654 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd)
10655 {
10656 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq;
10657 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe;
10658 struct sli4_sge_le *sgl;
10659 u32 type_size;
10660
10661 /* 128 byte wqe support here */
10662 sgl = (struct sli4_sge_le *)lpfc_cmd->dma_sgl;
10663
10664 if (phba->fcp_embed_io) {
10665 struct fcp_cmnd *fcp_cmnd;
10666 u32 *ptr;
10667
10668 fcp_cmnd = lpfc_cmd->fcp_cmnd;
10669
10670 /* Word 0-2 - FCP_CMND */
10671 type_size = le32_to_cpu(sgl->sge_len);
10672 type_size |= ULP_BDE64_TYPE_BDE_IMMED;
10673 wqe->generic.bde.tus.w = type_size;
10674 wqe->generic.bde.addrHigh = 0;
10675 wqe->generic.bde.addrLow = 72; /* Word 18 */
10676
10677 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
10678 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
10679
10680 /* Word 18-29 FCP CMND Payload */
10681 ptr = &wqe->words[18];
10682 lpfc_sli_pcimem_bcopy(fcp_cmnd, ptr, le32_to_cpu(sgl->sge_len));
10683 } else {
10684 /* Word 0-2 - Inline BDE */
10685 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
10686 wqe->generic.bde.tus.f.bdeSize = le32_to_cpu(sgl->sge_len);
10687 wqe->generic.bde.addrHigh = le32_to_cpu(sgl->addr_hi);
10688 wqe->generic.bde.addrLow = le32_to_cpu(sgl->addr_lo);
10689
10690 /* Word 10 */
10691 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
10692 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0);
10693 }
10694
10695 /* add the VMID tags as per switch response */
10696 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) {
10697 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) {
10698 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
10699 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
10700 (piocb->vmid_tag.cs_ctl_vmid));
10701 } else if (phba->cfg_vmid_app_header) {
10702 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1);
10703 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
10704 wqe->words[31] = piocb->vmid_tag.app_id;
10705 }
10706 }
10707 }
10708
10709 /**
10710 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
10711 * @phba: Pointer to HBA context object.
10712 * @ring_number: SLI ring number to issue iocb on.
10713 * @piocb: Pointer to command iocb.
10714 * @flag: Flag indicating if this command can be put into txq.
10715 *
10716 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
10717 * an iocb command to an HBA with SLI-4 interface spec.
10718 *
10719 * This function is called with ringlock held. The function will return success
10720 * after it successfully submit the iocb to firmware or after adding to the
10721 * txq.
10722 **/
10723 static int
__lpfc_sli_issue_iocb_s4(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10724 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
10725 struct lpfc_iocbq *piocb, uint32_t flag)
10726 {
10727 struct lpfc_sglq *sglq;
10728 union lpfc_wqe128 *wqe;
10729 struct lpfc_queue *wq;
10730 struct lpfc_sli_ring *pring;
10731 u32 ulp_command = get_job_cmnd(phba, piocb);
10732
10733 /* Get the WQ */
10734 if ((piocb->cmd_flag & LPFC_IO_FCP) ||
10735 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) {
10736 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq;
10737 } else {
10738 wq = phba->sli4_hba.els_wq;
10739 }
10740
10741 /* Get corresponding ring */
10742 pring = wq->pring;
10743
10744 /*
10745 * The WQE can be either 64 or 128 bytes,
10746 */
10747
10748 lockdep_assert_held(&pring->ring_lock);
10749 wqe = &piocb->wqe;
10750 if (piocb->sli4_xritag == NO_XRI) {
10751 if (ulp_command == CMD_ABORT_XRI_CX)
10752 sglq = NULL;
10753 else {
10754 sglq = __lpfc_sli_get_els_sglq(phba, piocb);
10755 if (!sglq) {
10756 if (!(flag & SLI_IOCB_RET_IOCB)) {
10757 __lpfc_sli_ringtx_put(phba,
10758 pring,
10759 piocb);
10760 return IOCB_SUCCESS;
10761 } else {
10762 return IOCB_BUSY;
10763 }
10764 }
10765 }
10766 } else if (piocb->cmd_flag & LPFC_IO_FCP) {
10767 /* These IO's already have an XRI and a mapped sgl. */
10768 sglq = NULL;
10769 }
10770 else {
10771 /*
10772 * This is a continuation of a commandi,(CX) so this
10773 * sglq is on the active list
10774 */
10775 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
10776 if (!sglq)
10777 return IOCB_ERROR;
10778 }
10779
10780 if (sglq) {
10781 piocb->sli4_lxritag = sglq->sli4_lxritag;
10782 piocb->sli4_xritag = sglq->sli4_xritag;
10783
10784 /* ABTS sent by initiator to CT exchange, the
10785 * RX_ID field will be filled with the newly
10786 * allocated responder XRI.
10787 */
10788 if (ulp_command == CMD_XMIT_BLS_RSP64_CX &&
10789 piocb->abort_bls == LPFC_ABTS_UNSOL_INT)
10790 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
10791 piocb->sli4_xritag);
10792
10793 bf_set(wqe_xri_tag, &wqe->generic.wqe_com,
10794 piocb->sli4_xritag);
10795
10796 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI)
10797 return IOCB_ERROR;
10798 }
10799
10800 if (lpfc_sli4_wq_put(wq, wqe))
10801 return IOCB_ERROR;
10802
10803 lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
10804
10805 return 0;
10806 }
10807
10808 /*
10809 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o
10810 *
10811 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4
10812 * or IOCB for sli-3 function.
10813 * pointer from the lpfc_hba struct.
10814 *
10815 * Return codes:
10816 * IOCB_ERROR - Error
10817 * IOCB_SUCCESS - Success
10818 * IOCB_BUSY - Busy
10819 **/
10820 int
lpfc_sli_issue_fcp_io(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10821 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number,
10822 struct lpfc_iocbq *piocb, uint32_t flag)
10823 {
10824 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag);
10825 }
10826
10827 /*
10828 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
10829 *
10830 * This routine wraps the actual lockless version for issusing IOCB function
10831 * pointer from the lpfc_hba struct.
10832 *
10833 * Return codes:
10834 * IOCB_ERROR - Error
10835 * IOCB_SUCCESS - Success
10836 * IOCB_BUSY - Busy
10837 **/
10838 int
__lpfc_sli_issue_iocb(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10839 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10840 struct lpfc_iocbq *piocb, uint32_t flag)
10841 {
10842 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10843 }
10844
10845 static void
__lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq * cmdiocbq,struct lpfc_vport * vport,struct lpfc_dmabuf * bmp,u16 cmd_size,u32 did,u32 elscmd,u8 tmo,u8 expect_rsp)10846 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq,
10847 struct lpfc_vport *vport,
10848 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did,
10849 u32 elscmd, u8 tmo, u8 expect_rsp)
10850 {
10851 struct lpfc_hba *phba = vport->phba;
10852 IOCB_t *cmd;
10853
10854 cmd = &cmdiocbq->iocb;
10855 memset(cmd, 0, sizeof(*cmd));
10856
10857 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys);
10858 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys);
10859 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
10860
10861 if (expect_rsp) {
10862 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64));
10863 cmd->un.elsreq64.remoteID = did; /* DID */
10864 cmd->ulpCommand = CMD_ELS_REQUEST64_CR;
10865 cmd->ulpTimeout = tmo;
10866 } else {
10867 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64);
10868 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */
10869 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX;
10870 cmd->ulpPU = PARM_NPIV_DID;
10871 }
10872 cmd->ulpBdeCount = 1;
10873 cmd->ulpLe = 1;
10874 cmd->ulpClass = CLASS3;
10875
10876 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */
10877 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) {
10878 if (expect_rsp) {
10879 cmd->un.elsreq64.myID = vport->fc_myDID;
10880
10881 /* For ELS_REQUEST64_CR, use the VPI by default */
10882 cmd->ulpContext = phba->vpi_ids[vport->vpi];
10883 }
10884
10885 cmd->ulpCt_h = 0;
10886 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */
10887 if (elscmd == ELS_CMD_ECHO)
10888 cmd->ulpCt_l = 0; /* context = invalid RPI */
10889 else
10890 cmd->ulpCt_l = 1; /* context = VPI */
10891 }
10892 }
10893
10894 static void
__lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq * cmdiocbq,struct lpfc_vport * vport,struct lpfc_dmabuf * bmp,u16 cmd_size,u32 did,u32 elscmd,u8 tmo,u8 expect_rsp)10895 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq,
10896 struct lpfc_vport *vport,
10897 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did,
10898 u32 elscmd, u8 tmo, u8 expect_rsp)
10899 {
10900 struct lpfc_hba *phba = vport->phba;
10901 union lpfc_wqe128 *wqe;
10902 struct ulp_bde64_le *bde;
10903 u8 els_id;
10904
10905 wqe = &cmdiocbq->wqe;
10906 memset(wqe, 0, sizeof(*wqe));
10907
10908 /* Word 0 - 2 BDE */
10909 bde = (struct ulp_bde64_le *)&wqe->generic.bde;
10910 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys));
10911 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys));
10912 bde->type_size = cpu_to_le32(cmd_size);
10913 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64);
10914
10915 if (expect_rsp) {
10916 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE);
10917
10918 /* Transfer length */
10919 wqe->els_req.payload_len = cmd_size;
10920 wqe->els_req.max_response_payload_len = FCELSSIZE;
10921
10922 /* DID */
10923 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did);
10924
10925 /* Word 11 - ELS_ID */
10926 switch (elscmd) {
10927 case ELS_CMD_PLOGI:
10928 els_id = LPFC_ELS_ID_PLOGI;
10929 break;
10930 case ELS_CMD_FLOGI:
10931 els_id = LPFC_ELS_ID_FLOGI;
10932 break;
10933 case ELS_CMD_LOGO:
10934 els_id = LPFC_ELS_ID_LOGO;
10935 break;
10936 case ELS_CMD_FDISC:
10937 if (!vport->fc_myDID) {
10938 els_id = LPFC_ELS_ID_FDISC;
10939 break;
10940 }
10941 fallthrough;
10942 default:
10943 els_id = LPFC_ELS_ID_DEFAULT;
10944 break;
10945 }
10946
10947 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
10948 } else {
10949 /* DID */
10950 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did);
10951
10952 /* Transfer length */
10953 wqe->xmit_els_rsp.response_payload_len = cmd_size;
10954
10955 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com,
10956 CMD_XMIT_ELS_RSP64_WQE);
10957 }
10958
10959 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo);
10960 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag);
10961 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3);
10962
10963 /* If we have NPIV enabled, we want to send ELS traffic by VPI.
10964 * For SLI4, since the driver controls VPIs we also want to include
10965 * all ELS pt2pt protocol traffic as well.
10966 */
10967 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) ||
10968 test_bit(FC_PT2PT, &vport->fc_flag)) {
10969 if (expect_rsp) {
10970 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID);
10971
10972 /* For ELS_REQUEST64_WQE, use the VPI by default */
10973 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
10974 phba->vpi_ids[vport->vpi]);
10975 }
10976
10977 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */
10978 if (elscmd == ELS_CMD_ECHO)
10979 bf_set(wqe_ct, &wqe->generic.wqe_com, 0);
10980 else
10981 bf_set(wqe_ct, &wqe->generic.wqe_com, 1);
10982 }
10983 }
10984
10985 void
lpfc_sli_prep_els_req_rsp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,struct lpfc_vport * vport,struct lpfc_dmabuf * bmp,u16 cmd_size,u32 did,u32 elscmd,u8 tmo,u8 expect_rsp)10986 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
10987 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp,
10988 u16 cmd_size, u32 did, u32 elscmd, u8 tmo,
10989 u8 expect_rsp)
10990 {
10991 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did,
10992 elscmd, tmo, expect_rsp);
10993 }
10994
10995 static void
__lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u32 num_entry,u8 tmo)10996 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp,
10997 u16 rpi, u32 num_entry, u8 tmo)
10998 {
10999 IOCB_t *cmd;
11000
11001 cmd = &cmdiocbq->iocb;
11002 memset(cmd, 0, sizeof(*cmd));
11003
11004 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys);
11005 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys);
11006 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
11007 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64);
11008
11009 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL;
11010 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT;
11011 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA);
11012
11013 cmd->ulpContext = rpi;
11014 cmd->ulpClass = CLASS3;
11015 cmd->ulpCommand = CMD_GEN_REQUEST64_CR;
11016 cmd->ulpBdeCount = 1;
11017 cmd->ulpLe = 1;
11018 cmd->ulpOwner = OWN_CHIP;
11019 cmd->ulpTimeout = tmo;
11020 }
11021
11022 static void
__lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u32 num_entry,u8 tmo)11023 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp,
11024 u16 rpi, u32 num_entry, u8 tmo)
11025 {
11026 union lpfc_wqe128 *cmdwqe;
11027 struct ulp_bde64_le *bde, *bpl;
11028 u32 xmit_len = 0, total_len = 0, size, type, i;
11029
11030 cmdwqe = &cmdiocbq->wqe;
11031 memset(cmdwqe, 0, sizeof(*cmdwqe));
11032
11033 /* Calculate total_len and xmit_len */
11034 bpl = (struct ulp_bde64_le *)bmp->virt;
11035 for (i = 0; i < num_entry; i++) {
11036 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK;
11037 total_len += size;
11038 }
11039 for (i = 0; i < num_entry; i++) {
11040 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK;
11041 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK;
11042 if (type != ULP_BDE64_TYPE_BDE_64)
11043 break;
11044 xmit_len += size;
11045 }
11046
11047 /* Words 0 - 2 */
11048 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde;
11049 bde->addr_low = bpl->addr_low;
11050 bde->addr_high = bpl->addr_high;
11051 bde->type_size = cpu_to_le32(xmit_len);
11052 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64);
11053
11054 /* Word 3 */
11055 cmdwqe->gen_req.request_payload_len = xmit_len;
11056
11057 /* Word 5 */
11058 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT);
11059 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL);
11060 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1);
11061 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1);
11062
11063 /* Word 6 */
11064 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi);
11065
11066 /* Word 7 */
11067 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo);
11068 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3);
11069 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR);
11070 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI);
11071
11072 /* Word 12 */
11073 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len;
11074 }
11075
11076 void
lpfc_sli_prep_gen_req(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u32 num_entry,u8 tmo)11077 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
11078 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo)
11079 {
11080 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo);
11081 }
11082
11083 static void
__lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u16 ox_id,u32 num_entry,u8 rctl,u8 last_seq,u8 cr_cx_cmd)11084 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq,
11085 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id,
11086 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd)
11087 {
11088 IOCB_t *icmd;
11089
11090 icmd = &cmdiocbq->iocb;
11091 memset(icmd, 0, sizeof(*icmd));
11092
11093 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys);
11094 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys);
11095 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
11096 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64));
11097 icmd->un.xseq64.w5.hcsw.Fctl = LA;
11098 if (last_seq)
11099 icmd->un.xseq64.w5.hcsw.Fctl |= LS;
11100 icmd->un.xseq64.w5.hcsw.Dfctl = 0;
11101 icmd->un.xseq64.w5.hcsw.Rctl = rctl;
11102 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT;
11103
11104 icmd->ulpBdeCount = 1;
11105 icmd->ulpLe = 1;
11106 icmd->ulpClass = CLASS3;
11107
11108 switch (cr_cx_cmd) {
11109 case CMD_XMIT_SEQUENCE64_CR:
11110 icmd->ulpContext = rpi;
11111 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR;
11112 break;
11113 case CMD_XMIT_SEQUENCE64_CX:
11114 icmd->ulpContext = ox_id;
11115 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX;
11116 break;
11117 default:
11118 break;
11119 }
11120 }
11121
11122 static void
__lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u16 ox_id,u32 full_size,u8 rctl,u8 last_seq,u8 cr_cx_cmd)11123 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq,
11124 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id,
11125 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd)
11126 {
11127 union lpfc_wqe128 *wqe;
11128 struct ulp_bde64 *bpl;
11129
11130 wqe = &cmdiocbq->wqe;
11131 memset(wqe, 0, sizeof(*wqe));
11132
11133 /* Words 0 - 2 */
11134 bpl = (struct ulp_bde64 *)bmp->virt;
11135 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh;
11136 wqe->xmit_sequence.bde.addrLow = bpl->addrLow;
11137 wqe->xmit_sequence.bde.tus.w = bpl->tus.w;
11138
11139 /* Word 5 */
11140 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq);
11141 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1);
11142 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0);
11143 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl);
11144 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT);
11145
11146 /* Word 6 */
11147 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi);
11148
11149 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com,
11150 CMD_XMIT_SEQUENCE64_WQE);
11151
11152 /* Word 7 */
11153 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3);
11154
11155 /* Word 9 */
11156 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id);
11157
11158 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) {
11159 /* Word 10 */
11160 if (cmdiocbq->cmd_flag & LPFC_IO_VMID) {
11161 bf_set(wqe_appid, &wqe->xmit_sequence.wqe_com, 1);
11162 bf_set(wqe_wqes, &wqe->xmit_sequence.wqe_com, 1);
11163 wqe->words[31] = LOOPBACK_SRC_APPID;
11164 }
11165
11166 /* Word 12 */
11167 wqe->xmit_sequence.xmit_len = full_size;
11168 }
11169 else
11170 wqe->xmit_sequence.xmit_len =
11171 wqe->xmit_sequence.bde.tus.f.bdeSize;
11172 }
11173
11174 void
lpfc_sli_prep_xmit_seq64(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u16 ox_id,u32 num_entry,u8 rctl,u8 last_seq,u8 cr_cx_cmd)11175 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
11176 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id,
11177 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd)
11178 {
11179 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry,
11180 rctl, last_seq, cr_cx_cmd);
11181 }
11182
11183 static void
__lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq * cmdiocbq,u16 ulp_context,u16 iotag,u8 ulp_class,u16 cqid,bool ia,bool wqec)11184 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context,
11185 u16 iotag, u8 ulp_class, u16 cqid, bool ia,
11186 bool wqec)
11187 {
11188 IOCB_t *icmd = NULL;
11189
11190 icmd = &cmdiocbq->iocb;
11191 memset(icmd, 0, sizeof(*icmd));
11192
11193 /* Word 5 */
11194 icmd->un.acxri.abortContextTag = ulp_context;
11195 icmd->un.acxri.abortIoTag = iotag;
11196
11197 if (ia) {
11198 /* Word 7 */
11199 icmd->ulpCommand = CMD_CLOSE_XRI_CN;
11200 } else {
11201 /* Word 3 */
11202 icmd->un.acxri.abortType = ABORT_TYPE_ABTS;
11203
11204 /* Word 7 */
11205 icmd->ulpClass = ulp_class;
11206 icmd->ulpCommand = CMD_ABORT_XRI_CN;
11207 }
11208
11209 /* Word 7 */
11210 icmd->ulpLe = 1;
11211 }
11212
11213 static void
__lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq * cmdiocbq,u16 ulp_context,u16 iotag,u8 ulp_class,u16 cqid,bool ia,bool wqec)11214 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context,
11215 u16 iotag, u8 ulp_class, u16 cqid, bool ia,
11216 bool wqec)
11217 {
11218 union lpfc_wqe128 *wqe;
11219
11220 wqe = &cmdiocbq->wqe;
11221 memset(wqe, 0, sizeof(*wqe));
11222
11223 /* Word 3 */
11224 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
11225 if (ia)
11226 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
11227 else
11228 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
11229
11230 /* Word 7 */
11231 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE);
11232
11233 /* Word 8 */
11234 wqe->abort_cmd.wqe_com.abort_tag = ulp_context;
11235
11236 /* Word 9 */
11237 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag);
11238
11239 /* Word 10 */
11240 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
11241
11242 /* Word 11 */
11243 if (wqec)
11244 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1);
11245 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid);
11246 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND);
11247 }
11248
11249 void
lpfc_sli_prep_abort_xri(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,u16 ulp_context,u16 iotag,u8 ulp_class,u16 cqid,bool ia,bool wqec)11250 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
11251 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid,
11252 bool ia, bool wqec)
11253 {
11254 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class,
11255 cqid, ia, wqec);
11256 }
11257
11258 /**
11259 * lpfc_sli_api_table_setup - Set up sli api function jump table
11260 * @phba: The hba struct for which this call is being executed.
11261 * @dev_grp: The HBA PCI-Device group number.
11262 *
11263 * This routine sets up the SLI interface API function jump table in @phba
11264 * struct.
11265 * Returns: 0 - success, -ENODEV - failure.
11266 **/
11267 int
lpfc_sli_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)11268 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
11269 {
11270
11271 switch (dev_grp) {
11272 case LPFC_PCI_DEV_LP:
11273 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
11274 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
11275 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3;
11276 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3;
11277 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3;
11278 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3;
11279 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3;
11280 break;
11281 case LPFC_PCI_DEV_OC:
11282 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
11283 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
11284 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4;
11285 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4;
11286 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4;
11287 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4;
11288 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4;
11289 break;
11290 default:
11291 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11292 "1419 Invalid HBA PCI-device group: 0x%x\n",
11293 dev_grp);
11294 return -ENODEV;
11295 }
11296 return 0;
11297 }
11298
11299 /**
11300 * lpfc_sli4_calc_ring - Calculates which ring to use
11301 * @phba: Pointer to HBA context object.
11302 * @piocb: Pointer to command iocb.
11303 *
11304 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
11305 * hba_wqidx, thus we need to calculate the corresponding ring.
11306 * Since ABORTS must go on the same WQ of the command they are
11307 * aborting, we use command's hba_wqidx.
11308 */
11309 struct lpfc_sli_ring *
lpfc_sli4_calc_ring(struct lpfc_hba * phba,struct lpfc_iocbq * piocb)11310 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
11311 {
11312 struct lpfc_io_buf *lpfc_cmd;
11313
11314 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
11315 if (unlikely(!phba->sli4_hba.hdwq))
11316 return NULL;
11317 /*
11318 * for abort iocb hba_wqidx should already
11319 * be setup based on what work queue we used.
11320 */
11321 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) {
11322 lpfc_cmd = piocb->io_buf;
11323 piocb->hba_wqidx = lpfc_cmd->hdwq_no;
11324 }
11325 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring;
11326 } else {
11327 if (unlikely(!phba->sli4_hba.els_wq))
11328 return NULL;
11329 piocb->hba_wqidx = 0;
11330 return phba->sli4_hba.els_wq->pring;
11331 }
11332 }
11333
lpfc_sli4_poll_eq(struct lpfc_queue * eq)11334 inline void lpfc_sli4_poll_eq(struct lpfc_queue *eq)
11335 {
11336 struct lpfc_hba *phba = eq->phba;
11337
11338 /*
11339 * Unlocking an irq is one of the entry point to check
11340 * for re-schedule, but we are good for io submission
11341 * path as midlayer does a get_cpu to glue us in. Flush
11342 * out the invalidate queue so we can see the updated
11343 * value for flag.
11344 */
11345 smp_rmb();
11346
11347 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL)
11348 /* We will not likely get the completion for the caller
11349 * during this iteration but i guess that's fine.
11350 * Future io's coming on this eq should be able to
11351 * pick it up. As for the case of single io's, they
11352 * will be handled through a sched from polling timer
11353 * function which is currently triggered every 1msec.
11354 */
11355 lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM,
11356 LPFC_QUEUE_WORK);
11357 }
11358
11359 /**
11360 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
11361 * @phba: Pointer to HBA context object.
11362 * @ring_number: Ring number
11363 * @piocb: Pointer to command iocb.
11364 * @flag: Flag indicating if this command can be put into txq.
11365 *
11366 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
11367 * function. This function gets the hbalock and calls
11368 * __lpfc_sli_issue_iocb function and will return the error returned
11369 * by __lpfc_sli_issue_iocb function. This wrapper is used by
11370 * functions which do not hold hbalock.
11371 **/
11372 int
lpfc_sli_issue_iocb(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)11373 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
11374 struct lpfc_iocbq *piocb, uint32_t flag)
11375 {
11376 struct lpfc_sli_ring *pring;
11377 struct lpfc_queue *eq;
11378 unsigned long iflags;
11379 int rc;
11380
11381 /* If the PCI channel is in offline state, do not post iocbs. */
11382 if (unlikely(pci_channel_offline(phba->pcidev)))
11383 return IOCB_ERROR;
11384
11385 if (phba->sli_rev == LPFC_SLI_REV4) {
11386 lpfc_sli_prep_wqe(phba, piocb);
11387
11388 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq;
11389
11390 pring = lpfc_sli4_calc_ring(phba, piocb);
11391 if (unlikely(pring == NULL))
11392 return IOCB_ERROR;
11393
11394 spin_lock_irqsave(&pring->ring_lock, iflags);
11395 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
11396 spin_unlock_irqrestore(&pring->ring_lock, iflags);
11397
11398 lpfc_sli4_poll_eq(eq);
11399 } else {
11400 /* For now, SLI2/3 will still use hbalock */
11401 spin_lock_irqsave(&phba->hbalock, iflags);
11402 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
11403 spin_unlock_irqrestore(&phba->hbalock, iflags);
11404 }
11405 return rc;
11406 }
11407
11408 /**
11409 * lpfc_extra_ring_setup - Extra ring setup function
11410 * @phba: Pointer to HBA context object.
11411 *
11412 * This function is called while driver attaches with the
11413 * HBA to setup the extra ring. The extra ring is used
11414 * only when driver needs to support target mode functionality
11415 * or IP over FC functionalities.
11416 *
11417 * This function is called with no lock held. SLI3 only.
11418 **/
11419 static int
lpfc_extra_ring_setup(struct lpfc_hba * phba)11420 lpfc_extra_ring_setup( struct lpfc_hba *phba)
11421 {
11422 struct lpfc_sli *psli;
11423 struct lpfc_sli_ring *pring;
11424
11425 psli = &phba->sli;
11426
11427 /* Adjust cmd/rsp ring iocb entries more evenly */
11428
11429 /* Take some away from the FCP ring */
11430 pring = &psli->sli3_ring[LPFC_FCP_RING];
11431 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11432 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11433 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11434 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11435
11436 /* and give them to the extra ring */
11437 pring = &psli->sli3_ring[LPFC_EXTRA_RING];
11438
11439 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11440 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11441 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11442 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11443
11444 /* Setup default profile for this ring */
11445 pring->iotag_max = 4096;
11446 pring->num_mask = 1;
11447 pring->prt[0].profile = 0; /* Mask 0 */
11448 pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
11449 pring->prt[0].type = phba->cfg_multi_ring_type;
11450 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
11451 return 0;
11452 }
11453
11454 static void
lpfc_sli_post_recovery_event(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp)11455 lpfc_sli_post_recovery_event(struct lpfc_hba *phba,
11456 struct lpfc_nodelist *ndlp)
11457 {
11458 unsigned long iflags;
11459 struct lpfc_work_evt *evtp = &ndlp->recovery_evt;
11460
11461 /* Hold a node reference for outstanding queued work */
11462 if (!lpfc_nlp_get(ndlp))
11463 return;
11464
11465 spin_lock_irqsave(&phba->hbalock, iflags);
11466 if (!list_empty(&evtp->evt_listp)) {
11467 spin_unlock_irqrestore(&phba->hbalock, iflags);
11468 lpfc_nlp_put(ndlp);
11469 return;
11470 }
11471
11472 evtp->evt_arg1 = ndlp;
11473 evtp->evt = LPFC_EVT_RECOVER_PORT;
11474 list_add_tail(&evtp->evt_listp, &phba->work_list);
11475 spin_unlock_irqrestore(&phba->hbalock, iflags);
11476
11477 lpfc_worker_wake_up(phba);
11478 }
11479
11480 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
11481 * @phba: Pointer to HBA context object.
11482 * @iocbq: Pointer to iocb object.
11483 *
11484 * The async_event handler calls this routine when it receives
11485 * an ASYNC_STATUS_CN event from the port. The port generates
11486 * this event when an Abort Sequence request to an rport fails
11487 * twice in succession. The abort could be originated by the
11488 * driver or by the port. The ABTS could have been for an ELS
11489 * or FCP IO. The port only generates this event when an ABTS
11490 * fails to complete after one retry.
11491 */
11492 static void
lpfc_sli_abts_err_handler(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)11493 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
11494 struct lpfc_iocbq *iocbq)
11495 {
11496 struct lpfc_nodelist *ndlp = NULL;
11497 uint16_t rpi = 0, vpi = 0;
11498 struct lpfc_vport *vport = NULL;
11499
11500 /* The rpi in the ulpContext is vport-sensitive. */
11501 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
11502 rpi = iocbq->iocb.ulpContext;
11503
11504 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11505 "3092 Port generated ABTS async event "
11506 "on vpi %d rpi %d status 0x%x\n",
11507 vpi, rpi, iocbq->iocb.ulpStatus);
11508
11509 vport = lpfc_find_vport_by_vpid(phba, vpi);
11510 if (!vport)
11511 goto err_exit;
11512 ndlp = lpfc_findnode_rpi(vport, rpi);
11513 if (!ndlp)
11514 goto err_exit;
11515
11516 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
11517 lpfc_sli_abts_recover_port(vport, ndlp);
11518 return;
11519
11520 err_exit:
11521 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11522 "3095 Event Context not found, no "
11523 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
11524 vpi, rpi, iocbq->iocb.ulpStatus,
11525 iocbq->iocb.ulpContext);
11526 }
11527
11528 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
11529 * @phba: pointer to HBA context object.
11530 * @ndlp: nodelist pointer for the impacted rport.
11531 * @axri: pointer to the wcqe containing the failed exchange.
11532 *
11533 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
11534 * port. The port generates this event when an abort exchange request to an
11535 * rport fails twice in succession with no reply. The abort could be originated
11536 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO.
11537 */
11538 void
lpfc_sli4_abts_err_handler(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,struct sli4_wcqe_xri_aborted * axri)11539 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
11540 struct lpfc_nodelist *ndlp,
11541 struct sli4_wcqe_xri_aborted *axri)
11542 {
11543 uint32_t ext_status = 0;
11544
11545 if (!ndlp) {
11546 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11547 "3115 Node Context not found, driver "
11548 "ignoring abts err event\n");
11549 return;
11550 }
11551
11552 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11553 "3116 Port generated FCP XRI ABORT event on "
11554 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
11555 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
11556 bf_get(lpfc_wcqe_xa_xri, axri),
11557 bf_get(lpfc_wcqe_xa_status, axri),
11558 axri->parameter);
11559
11560 /*
11561 * Catch the ABTS protocol failure case. Older OCe FW releases returned
11562 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
11563 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
11564 */
11565 ext_status = axri->parameter & IOERR_PARAM_MASK;
11566 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
11567 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
11568 lpfc_sli_post_recovery_event(phba, ndlp);
11569 }
11570
11571 /**
11572 * lpfc_sli_async_event_handler - ASYNC iocb handler function
11573 * @phba: Pointer to HBA context object.
11574 * @pring: Pointer to driver SLI ring object.
11575 * @iocbq: Pointer to iocb object.
11576 *
11577 * This function is called by the slow ring event handler
11578 * function when there is an ASYNC event iocb in the ring.
11579 * This function is called with no lock held.
11580 * Currently this function handles only temperature related
11581 * ASYNC events. The function decodes the temperature sensor
11582 * event message and posts events for the management applications.
11583 **/
11584 static void
lpfc_sli_async_event_handler(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * iocbq)11585 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
11586 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
11587 {
11588 IOCB_t *icmd;
11589 uint16_t evt_code;
11590 struct temp_event temp_event_data;
11591 struct Scsi_Host *shost;
11592 uint32_t *iocb_w;
11593
11594 icmd = &iocbq->iocb;
11595 evt_code = icmd->un.asyncstat.evt_code;
11596
11597 switch (evt_code) {
11598 case ASYNC_TEMP_WARN:
11599 case ASYNC_TEMP_SAFE:
11600 temp_event_data.data = (uint32_t) icmd->ulpContext;
11601 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
11602 if (evt_code == ASYNC_TEMP_WARN) {
11603 temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
11604 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11605 "0347 Adapter is very hot, please take "
11606 "corrective action. temperature : %d Celsius\n",
11607 (uint32_t) icmd->ulpContext);
11608 } else {
11609 temp_event_data.event_code = LPFC_NORMAL_TEMP;
11610 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11611 "0340 Adapter temperature is OK now. "
11612 "temperature : %d Celsius\n",
11613 (uint32_t) icmd->ulpContext);
11614 }
11615
11616 /* Send temperature change event to applications */
11617 shost = lpfc_shost_from_vport(phba->pport);
11618 fc_host_post_vendor_event(shost, fc_get_event_number(),
11619 sizeof(temp_event_data), (char *) &temp_event_data,
11620 LPFC_NL_VENDOR_ID);
11621 break;
11622 case ASYNC_STATUS_CN:
11623 lpfc_sli_abts_err_handler(phba, iocbq);
11624 break;
11625 default:
11626 iocb_w = (uint32_t *) icmd;
11627 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11628 "0346 Ring %d handler: unexpected ASYNC_STATUS"
11629 " evt_code 0x%x\n"
11630 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n"
11631 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n"
11632 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n"
11633 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
11634 pring->ringno, icmd->un.asyncstat.evt_code,
11635 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
11636 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
11637 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
11638 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
11639
11640 break;
11641 }
11642 }
11643
11644
11645 /**
11646 * lpfc_sli4_setup - SLI ring setup function
11647 * @phba: Pointer to HBA context object.
11648 *
11649 * lpfc_sli_setup sets up rings of the SLI interface with
11650 * number of iocbs per ring and iotags. This function is
11651 * called while driver attach to the HBA and before the
11652 * interrupts are enabled. So there is no need for locking.
11653 *
11654 * This function always returns 0.
11655 **/
11656 int
lpfc_sli4_setup(struct lpfc_hba * phba)11657 lpfc_sli4_setup(struct lpfc_hba *phba)
11658 {
11659 struct lpfc_sli_ring *pring;
11660
11661 pring = phba->sli4_hba.els_wq->pring;
11662 pring->num_mask = LPFC_MAX_RING_MASK;
11663 pring->prt[0].profile = 0; /* Mask 0 */
11664 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
11665 pring->prt[0].type = FC_TYPE_ELS;
11666 pring->prt[0].lpfc_sli_rcv_unsol_event =
11667 lpfc_els_unsol_event;
11668 pring->prt[1].profile = 0; /* Mask 1 */
11669 pring->prt[1].rctl = FC_RCTL_ELS_REP;
11670 pring->prt[1].type = FC_TYPE_ELS;
11671 pring->prt[1].lpfc_sli_rcv_unsol_event =
11672 lpfc_els_unsol_event;
11673 pring->prt[2].profile = 0; /* Mask 2 */
11674 /* NameServer Inquiry */
11675 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
11676 /* NameServer */
11677 pring->prt[2].type = FC_TYPE_CT;
11678 pring->prt[2].lpfc_sli_rcv_unsol_event =
11679 lpfc_ct_unsol_event;
11680 pring->prt[3].profile = 0; /* Mask 3 */
11681 /* NameServer response */
11682 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
11683 /* NameServer */
11684 pring->prt[3].type = FC_TYPE_CT;
11685 pring->prt[3].lpfc_sli_rcv_unsol_event =
11686 lpfc_ct_unsol_event;
11687 return 0;
11688 }
11689
11690 /**
11691 * lpfc_sli_setup - SLI ring setup function
11692 * @phba: Pointer to HBA context object.
11693 *
11694 * lpfc_sli_setup sets up rings of the SLI interface with
11695 * number of iocbs per ring and iotags. This function is
11696 * called while driver attach to the HBA and before the
11697 * interrupts are enabled. So there is no need for locking.
11698 *
11699 * This function always returns 0. SLI3 only.
11700 **/
11701 int
lpfc_sli_setup(struct lpfc_hba * phba)11702 lpfc_sli_setup(struct lpfc_hba *phba)
11703 {
11704 int i, totiocbsize = 0;
11705 struct lpfc_sli *psli = &phba->sli;
11706 struct lpfc_sli_ring *pring;
11707
11708 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
11709 psli->sli_flag = 0;
11710
11711 psli->iocbq_lookup = NULL;
11712 psli->iocbq_lookup_len = 0;
11713 psli->last_iotag = 0;
11714
11715 for (i = 0; i < psli->num_rings; i++) {
11716 pring = &psli->sli3_ring[i];
11717 switch (i) {
11718 case LPFC_FCP_RING: /* ring 0 - FCP */
11719 /* numCiocb and numRiocb are used in config_port */
11720 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
11721 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
11722 pring->sli.sli3.numCiocb +=
11723 SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11724 pring->sli.sli3.numRiocb +=
11725 SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11726 pring->sli.sli3.numCiocb +=
11727 SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11728 pring->sli.sli3.numRiocb +=
11729 SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11730 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11731 SLI3_IOCB_CMD_SIZE :
11732 SLI2_IOCB_CMD_SIZE;
11733 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11734 SLI3_IOCB_RSP_SIZE :
11735 SLI2_IOCB_RSP_SIZE;
11736 pring->iotag_ctr = 0;
11737 pring->iotag_max =
11738 (phba->cfg_hba_queue_depth * 2);
11739 pring->fast_iotag = pring->iotag_max;
11740 pring->num_mask = 0;
11741 break;
11742 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */
11743 /* numCiocb and numRiocb are used in config_port */
11744 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
11745 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
11746 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11747 SLI3_IOCB_CMD_SIZE :
11748 SLI2_IOCB_CMD_SIZE;
11749 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11750 SLI3_IOCB_RSP_SIZE :
11751 SLI2_IOCB_RSP_SIZE;
11752 pring->iotag_max = phba->cfg_hba_queue_depth;
11753 pring->num_mask = 0;
11754 break;
11755 case LPFC_ELS_RING: /* ring 2 - ELS / CT */
11756 /* numCiocb and numRiocb are used in config_port */
11757 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
11758 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
11759 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11760 SLI3_IOCB_CMD_SIZE :
11761 SLI2_IOCB_CMD_SIZE;
11762 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11763 SLI3_IOCB_RSP_SIZE :
11764 SLI2_IOCB_RSP_SIZE;
11765 pring->fast_iotag = 0;
11766 pring->iotag_ctr = 0;
11767 pring->iotag_max = 4096;
11768 pring->lpfc_sli_rcv_async_status =
11769 lpfc_sli_async_event_handler;
11770 pring->num_mask = LPFC_MAX_RING_MASK;
11771 pring->prt[0].profile = 0; /* Mask 0 */
11772 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
11773 pring->prt[0].type = FC_TYPE_ELS;
11774 pring->prt[0].lpfc_sli_rcv_unsol_event =
11775 lpfc_els_unsol_event;
11776 pring->prt[1].profile = 0; /* Mask 1 */
11777 pring->prt[1].rctl = FC_RCTL_ELS_REP;
11778 pring->prt[1].type = FC_TYPE_ELS;
11779 pring->prt[1].lpfc_sli_rcv_unsol_event =
11780 lpfc_els_unsol_event;
11781 pring->prt[2].profile = 0; /* Mask 2 */
11782 /* NameServer Inquiry */
11783 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
11784 /* NameServer */
11785 pring->prt[2].type = FC_TYPE_CT;
11786 pring->prt[2].lpfc_sli_rcv_unsol_event =
11787 lpfc_ct_unsol_event;
11788 pring->prt[3].profile = 0; /* Mask 3 */
11789 /* NameServer response */
11790 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
11791 /* NameServer */
11792 pring->prt[3].type = FC_TYPE_CT;
11793 pring->prt[3].lpfc_sli_rcv_unsol_event =
11794 lpfc_ct_unsol_event;
11795 break;
11796 }
11797 totiocbsize += (pring->sli.sli3.numCiocb *
11798 pring->sli.sli3.sizeCiocb) +
11799 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
11800 }
11801 if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
11802 /* Too many cmd / rsp ring entries in SLI2 SLIM */
11803 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
11804 "SLI2 SLIM Data: x%x x%lx\n",
11805 phba->brd_no, totiocbsize,
11806 (unsigned long) MAX_SLIM_IOCB_SIZE);
11807 }
11808 if (phba->cfg_multi_ring_support == 2)
11809 lpfc_extra_ring_setup(phba);
11810
11811 return 0;
11812 }
11813
11814 /**
11815 * lpfc_sli4_queue_init - Queue initialization function
11816 * @phba: Pointer to HBA context object.
11817 *
11818 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
11819 * ring. This function also initializes ring indices of each ring.
11820 * This function is called during the initialization of the SLI
11821 * interface of an HBA.
11822 * This function is called with no lock held and always returns
11823 * 1.
11824 **/
11825 void
lpfc_sli4_queue_init(struct lpfc_hba * phba)11826 lpfc_sli4_queue_init(struct lpfc_hba *phba)
11827 {
11828 struct lpfc_sli *psli;
11829 struct lpfc_sli_ring *pring;
11830 int i;
11831
11832 psli = &phba->sli;
11833 spin_lock_irq(&phba->hbalock);
11834 INIT_LIST_HEAD(&psli->mboxq);
11835 INIT_LIST_HEAD(&psli->mboxq_cmpl);
11836 /* Initialize list headers for txq and txcmplq as double linked lists */
11837 for (i = 0; i < phba->cfg_hdw_queue; i++) {
11838 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
11839 pring->flag = 0;
11840 pring->ringno = LPFC_FCP_RING;
11841 pring->txcmplq_cnt = 0;
11842 INIT_LIST_HEAD(&pring->txq);
11843 INIT_LIST_HEAD(&pring->txcmplq);
11844 INIT_LIST_HEAD(&pring->iocb_continueq);
11845 spin_lock_init(&pring->ring_lock);
11846 }
11847 pring = phba->sli4_hba.els_wq->pring;
11848 pring->flag = 0;
11849 pring->ringno = LPFC_ELS_RING;
11850 pring->txcmplq_cnt = 0;
11851 INIT_LIST_HEAD(&pring->txq);
11852 INIT_LIST_HEAD(&pring->txcmplq);
11853 INIT_LIST_HEAD(&pring->iocb_continueq);
11854 spin_lock_init(&pring->ring_lock);
11855
11856 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11857 pring = phba->sli4_hba.nvmels_wq->pring;
11858 pring->flag = 0;
11859 pring->ringno = LPFC_ELS_RING;
11860 pring->txcmplq_cnt = 0;
11861 INIT_LIST_HEAD(&pring->txq);
11862 INIT_LIST_HEAD(&pring->txcmplq);
11863 INIT_LIST_HEAD(&pring->iocb_continueq);
11864 spin_lock_init(&pring->ring_lock);
11865 }
11866
11867 spin_unlock_irq(&phba->hbalock);
11868 }
11869
11870 /**
11871 * lpfc_sli_queue_init - Queue initialization function
11872 * @phba: Pointer to HBA context object.
11873 *
11874 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
11875 * ring. This function also initializes ring indices of each ring.
11876 * This function is called during the initialization of the SLI
11877 * interface of an HBA.
11878 * This function is called with no lock held and always returns
11879 * 1.
11880 **/
11881 void
lpfc_sli_queue_init(struct lpfc_hba * phba)11882 lpfc_sli_queue_init(struct lpfc_hba *phba)
11883 {
11884 struct lpfc_sli *psli;
11885 struct lpfc_sli_ring *pring;
11886 int i;
11887
11888 psli = &phba->sli;
11889 spin_lock_irq(&phba->hbalock);
11890 INIT_LIST_HEAD(&psli->mboxq);
11891 INIT_LIST_HEAD(&psli->mboxq_cmpl);
11892 /* Initialize list headers for txq and txcmplq as double linked lists */
11893 for (i = 0; i < psli->num_rings; i++) {
11894 pring = &psli->sli3_ring[i];
11895 pring->ringno = i;
11896 pring->sli.sli3.next_cmdidx = 0;
11897 pring->sli.sli3.local_getidx = 0;
11898 pring->sli.sli3.cmdidx = 0;
11899 INIT_LIST_HEAD(&pring->iocb_continueq);
11900 INIT_LIST_HEAD(&pring->iocb_continue_saveq);
11901 INIT_LIST_HEAD(&pring->postbufq);
11902 pring->flag = 0;
11903 INIT_LIST_HEAD(&pring->txq);
11904 INIT_LIST_HEAD(&pring->txcmplq);
11905 spin_lock_init(&pring->ring_lock);
11906 }
11907 spin_unlock_irq(&phba->hbalock);
11908 }
11909
11910 /**
11911 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
11912 * @phba: Pointer to HBA context object.
11913 *
11914 * This routine flushes the mailbox command subsystem. It will unconditionally
11915 * flush all the mailbox commands in the three possible stages in the mailbox
11916 * command sub-system: pending mailbox command queue; the outstanding mailbox
11917 * command; and completed mailbox command queue. It is caller's responsibility
11918 * to make sure that the driver is in the proper state to flush the mailbox
11919 * command sub-system. Namely, the posting of mailbox commands into the
11920 * pending mailbox command queue from the various clients must be stopped;
11921 * either the HBA is in a state that it will never works on the outstanding
11922 * mailbox command (such as in EEH or ERATT conditions) or the outstanding
11923 * mailbox command has been completed.
11924 **/
11925 static void
lpfc_sli_mbox_sys_flush(struct lpfc_hba * phba)11926 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
11927 {
11928 LIST_HEAD(completions);
11929 struct lpfc_sli *psli = &phba->sli;
11930 LPFC_MBOXQ_t *pmb;
11931 unsigned long iflag;
11932
11933 /* Disable softirqs, including timers from obtaining phba->hbalock */
11934 local_bh_disable();
11935
11936 /* Flush all the mailbox commands in the mbox system */
11937 spin_lock_irqsave(&phba->hbalock, iflag);
11938
11939 /* The pending mailbox command queue */
11940 list_splice_init(&phba->sli.mboxq, &completions);
11941 /* The outstanding active mailbox command */
11942 if (psli->mbox_active) {
11943 list_add_tail(&psli->mbox_active->list, &completions);
11944 psli->mbox_active = NULL;
11945 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
11946 }
11947 /* The completed mailbox command queue */
11948 list_splice_init(&phba->sli.mboxq_cmpl, &completions);
11949 spin_unlock_irqrestore(&phba->hbalock, iflag);
11950
11951 /* Enable softirqs again, done with phba->hbalock */
11952 local_bh_enable();
11953
11954 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
11955 while (!list_empty(&completions)) {
11956 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
11957 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
11958 if (pmb->mbox_cmpl)
11959 pmb->mbox_cmpl(phba, pmb);
11960 }
11961 }
11962
11963 /**
11964 * lpfc_sli_host_down - Vport cleanup function
11965 * @vport: Pointer to virtual port object.
11966 *
11967 * lpfc_sli_host_down is called to clean up the resources
11968 * associated with a vport before destroying virtual
11969 * port data structures.
11970 * This function does following operations:
11971 * - Free discovery resources associated with this virtual
11972 * port.
11973 * - Free iocbs associated with this virtual port in
11974 * the txq.
11975 * - Send abort for all iocb commands associated with this
11976 * vport in txcmplq.
11977 *
11978 * This function is called with no lock held and always returns 1.
11979 **/
11980 int
lpfc_sli_host_down(struct lpfc_vport * vport)11981 lpfc_sli_host_down(struct lpfc_vport *vport)
11982 {
11983 LIST_HEAD(completions);
11984 struct lpfc_hba *phba = vport->phba;
11985 struct lpfc_sli *psli = &phba->sli;
11986 struct lpfc_queue *qp = NULL;
11987 struct lpfc_sli_ring *pring;
11988 struct lpfc_iocbq *iocb, *next_iocb;
11989 int i;
11990 unsigned long flags = 0;
11991 uint16_t prev_pring_flag;
11992
11993 lpfc_cleanup_discovery_resources(vport);
11994
11995 spin_lock_irqsave(&phba->hbalock, flags);
11996
11997 /*
11998 * Error everything on the txq since these iocbs
11999 * have not been given to the FW yet.
12000 * Also issue ABTS for everything on the txcmplq
12001 */
12002 if (phba->sli_rev != LPFC_SLI_REV4) {
12003 for (i = 0; i < psli->num_rings; i++) {
12004 pring = &psli->sli3_ring[i];
12005 prev_pring_flag = pring->flag;
12006 /* Only slow rings */
12007 if (pring->ringno == LPFC_ELS_RING) {
12008 pring->flag |= LPFC_DEFERRED_RING_EVENT;
12009 /* Set the lpfc data pending flag */
12010 set_bit(LPFC_DATA_READY, &phba->data_flags);
12011 }
12012 list_for_each_entry_safe(iocb, next_iocb,
12013 &pring->txq, list) {
12014 if (iocb->vport != vport)
12015 continue;
12016 list_move_tail(&iocb->list, &completions);
12017 }
12018 list_for_each_entry_safe(iocb, next_iocb,
12019 &pring->txcmplq, list) {
12020 if (iocb->vport != vport)
12021 continue;
12022 lpfc_sli_issue_abort_iotag(phba, pring, iocb,
12023 NULL);
12024 }
12025 pring->flag = prev_pring_flag;
12026 }
12027 } else {
12028 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
12029 pring = qp->pring;
12030 if (!pring)
12031 continue;
12032 if (pring == phba->sli4_hba.els_wq->pring) {
12033 pring->flag |= LPFC_DEFERRED_RING_EVENT;
12034 /* Set the lpfc data pending flag */
12035 set_bit(LPFC_DATA_READY, &phba->data_flags);
12036 }
12037 prev_pring_flag = pring->flag;
12038 spin_lock(&pring->ring_lock);
12039 list_for_each_entry_safe(iocb, next_iocb,
12040 &pring->txq, list) {
12041 if (iocb->vport != vport)
12042 continue;
12043 list_move_tail(&iocb->list, &completions);
12044 }
12045 spin_unlock(&pring->ring_lock);
12046 list_for_each_entry_safe(iocb, next_iocb,
12047 &pring->txcmplq, list) {
12048 if (iocb->vport != vport)
12049 continue;
12050 lpfc_sli_issue_abort_iotag(phba, pring, iocb,
12051 NULL);
12052 }
12053 pring->flag = prev_pring_flag;
12054 }
12055 }
12056 spin_unlock_irqrestore(&phba->hbalock, flags);
12057
12058 /* Make sure HBA is alive */
12059 lpfc_issue_hb_tmo(phba);
12060
12061 /* Cancel all the IOCBs from the completions list */
12062 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
12063 IOERR_SLI_DOWN);
12064 return 1;
12065 }
12066
12067 /**
12068 * lpfc_sli_hba_down - Resource cleanup function for the HBA
12069 * @phba: Pointer to HBA context object.
12070 *
12071 * This function cleans up all iocb, buffers, mailbox commands
12072 * while shutting down the HBA. This function is called with no
12073 * lock held and always returns 1.
12074 * This function does the following to cleanup driver resources:
12075 * - Free discovery resources for each virtual port
12076 * - Cleanup any pending fabric iocbs
12077 * - Iterate through the iocb txq and free each entry
12078 * in the list.
12079 * - Free up any buffer posted to the HBA
12080 * - Free mailbox commands in the mailbox queue.
12081 **/
12082 int
lpfc_sli_hba_down(struct lpfc_hba * phba)12083 lpfc_sli_hba_down(struct lpfc_hba *phba)
12084 {
12085 LIST_HEAD(completions);
12086 struct lpfc_sli *psli = &phba->sli;
12087 struct lpfc_queue *qp = NULL;
12088 struct lpfc_sli_ring *pring;
12089 struct lpfc_dmabuf *buf_ptr;
12090 unsigned long flags = 0;
12091 int i;
12092
12093 /* Shutdown the mailbox command sub-system */
12094 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
12095
12096 lpfc_hba_down_prep(phba);
12097
12098 /* Disable softirqs, including timers from obtaining phba->hbalock */
12099 local_bh_disable();
12100
12101 lpfc_fabric_abort_hba(phba);
12102
12103 spin_lock_irqsave(&phba->hbalock, flags);
12104
12105 /*
12106 * Error everything on the txq since these iocbs
12107 * have not been given to the FW yet.
12108 */
12109 if (phba->sli_rev != LPFC_SLI_REV4) {
12110 for (i = 0; i < psli->num_rings; i++) {
12111 pring = &psli->sli3_ring[i];
12112 /* Only slow rings */
12113 if (pring->ringno == LPFC_ELS_RING) {
12114 pring->flag |= LPFC_DEFERRED_RING_EVENT;
12115 /* Set the lpfc data pending flag */
12116 set_bit(LPFC_DATA_READY, &phba->data_flags);
12117 }
12118 list_splice_init(&pring->txq, &completions);
12119 }
12120 } else {
12121 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
12122 pring = qp->pring;
12123 if (!pring)
12124 continue;
12125 spin_lock(&pring->ring_lock);
12126 list_splice_init(&pring->txq, &completions);
12127 spin_unlock(&pring->ring_lock);
12128 if (pring == phba->sli4_hba.els_wq->pring) {
12129 pring->flag |= LPFC_DEFERRED_RING_EVENT;
12130 /* Set the lpfc data pending flag */
12131 set_bit(LPFC_DATA_READY, &phba->data_flags);
12132 }
12133 }
12134 }
12135 spin_unlock_irqrestore(&phba->hbalock, flags);
12136
12137 /* Cancel all the IOCBs from the completions list */
12138 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
12139 IOERR_SLI_DOWN);
12140
12141 spin_lock_irqsave(&phba->hbalock, flags);
12142 list_splice_init(&phba->elsbuf, &completions);
12143 phba->elsbuf_cnt = 0;
12144 phba->elsbuf_prev_cnt = 0;
12145 spin_unlock_irqrestore(&phba->hbalock, flags);
12146
12147 while (!list_empty(&completions)) {
12148 list_remove_head(&completions, buf_ptr,
12149 struct lpfc_dmabuf, list);
12150 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
12151 kfree(buf_ptr);
12152 }
12153
12154 /* Enable softirqs again, done with phba->hbalock */
12155 local_bh_enable();
12156
12157 /* Return any active mbox cmds */
12158 timer_delete_sync(&psli->mbox_tmo);
12159
12160 spin_lock_irqsave(&phba->pport->work_port_lock, flags);
12161 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
12162 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
12163
12164 return 1;
12165 }
12166
12167 /**
12168 * lpfc_sli_pcimem_bcopy - SLI memory copy function
12169 * @srcp: Source memory pointer.
12170 * @destp: Destination memory pointer.
12171 * @cnt: Number of words required to be copied.
12172 *
12173 * This function is used for copying data between driver memory
12174 * and the SLI memory. This function also changes the endianness
12175 * of each word if native endianness is different from SLI
12176 * endianness. This function can be called with or without
12177 * lock.
12178 **/
12179 void
lpfc_sli_pcimem_bcopy(void * srcp,void * destp,uint32_t cnt)12180 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
12181 {
12182 uint32_t *src = srcp;
12183 uint32_t *dest = destp;
12184 uint32_t ldata;
12185 int i;
12186
12187 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
12188 ldata = *src;
12189 ldata = le32_to_cpu(ldata);
12190 *dest = ldata;
12191 src++;
12192 dest++;
12193 }
12194 }
12195
12196
12197 /**
12198 * lpfc_sli_bemem_bcopy - SLI memory copy function
12199 * @srcp: Source memory pointer.
12200 * @destp: Destination memory pointer.
12201 * @cnt: Number of words required to be copied.
12202 *
12203 * This function is used for copying data between a data structure
12204 * with big endian representation to local endianness.
12205 * This function can be called with or without lock.
12206 **/
12207 void
lpfc_sli_bemem_bcopy(void * srcp,void * destp,uint32_t cnt)12208 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
12209 {
12210 uint32_t *src = srcp;
12211 uint32_t *dest = destp;
12212 uint32_t ldata;
12213 int i;
12214
12215 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
12216 ldata = *src;
12217 ldata = be32_to_cpu(ldata);
12218 *dest = ldata;
12219 src++;
12220 dest++;
12221 }
12222 }
12223
12224 /**
12225 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
12226 * @phba: Pointer to HBA context object.
12227 * @pring: Pointer to driver SLI ring object.
12228 * @mp: Pointer to driver buffer object.
12229 *
12230 * This function is called with no lock held.
12231 * It always return zero after adding the buffer to the postbufq
12232 * buffer list.
12233 **/
12234 int
lpfc_sli_ringpostbuf_put(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_dmabuf * mp)12235 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12236 struct lpfc_dmabuf *mp)
12237 {
12238 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
12239 later */
12240 spin_lock_irq(&phba->hbalock);
12241 list_add_tail(&mp->list, &pring->postbufq);
12242 pring->postbufq_cnt++;
12243 spin_unlock_irq(&phba->hbalock);
12244 return 0;
12245 }
12246
12247 /**
12248 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
12249 * @phba: Pointer to HBA context object.
12250 *
12251 * When HBQ is enabled, buffers are searched based on tags. This function
12252 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
12253 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
12254 * does not conflict with tags of buffer posted for unsolicited events.
12255 * The function returns the allocated tag. The function is called with
12256 * no locks held.
12257 **/
12258 uint32_t
lpfc_sli_get_buffer_tag(struct lpfc_hba * phba)12259 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
12260 {
12261 spin_lock_irq(&phba->hbalock);
12262 phba->buffer_tag_count++;
12263 /*
12264 * Always set the QUE_BUFTAG_BIT to distiguish between
12265 * a tag assigned by HBQ.
12266 */
12267 phba->buffer_tag_count |= QUE_BUFTAG_BIT;
12268 spin_unlock_irq(&phba->hbalock);
12269 return phba->buffer_tag_count;
12270 }
12271
12272 /**
12273 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
12274 * @phba: Pointer to HBA context object.
12275 * @pring: Pointer to driver SLI ring object.
12276 * @tag: Buffer tag.
12277 *
12278 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
12279 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
12280 * iocb is posted to the response ring with the tag of the buffer.
12281 * This function searches the pring->postbufq list using the tag
12282 * to find buffer associated with CMD_IOCB_RET_XRI64_CX
12283 * iocb. If the buffer is found then lpfc_dmabuf object of the
12284 * buffer is returned to the caller else NULL is returned.
12285 * This function is called with no lock held.
12286 **/
12287 struct lpfc_dmabuf *
lpfc_sli_ring_taggedbuf_get(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t tag)12288 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12289 uint32_t tag)
12290 {
12291 struct lpfc_dmabuf *mp, *next_mp;
12292 struct list_head *slp = &pring->postbufq;
12293
12294 /* Search postbufq, from the beginning, looking for a match on tag */
12295 spin_lock_irq(&phba->hbalock);
12296 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
12297 if (mp->buffer_tag == tag) {
12298 list_del_init(&mp->list);
12299 pring->postbufq_cnt--;
12300 spin_unlock_irq(&phba->hbalock);
12301 return mp;
12302 }
12303 }
12304
12305 spin_unlock_irq(&phba->hbalock);
12306 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12307 "0402 Cannot find virtual addr for buffer tag on "
12308 "ring %d Data x%lx x%px x%px x%x\n",
12309 pring->ringno, (unsigned long) tag,
12310 slp->next, slp->prev, pring->postbufq_cnt);
12311
12312 return NULL;
12313 }
12314
12315 /**
12316 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
12317 * @phba: Pointer to HBA context object.
12318 * @pring: Pointer to driver SLI ring object.
12319 * @phys: DMA address of the buffer.
12320 *
12321 * This function searches the buffer list using the dma_address
12322 * of unsolicited event to find the driver's lpfc_dmabuf object
12323 * corresponding to the dma_address. The function returns the
12324 * lpfc_dmabuf object if a buffer is found else it returns NULL.
12325 * This function is called by the ct and els unsolicited event
12326 * handlers to get the buffer associated with the unsolicited
12327 * event.
12328 *
12329 * This function is called with no lock held.
12330 **/
12331 struct lpfc_dmabuf *
lpfc_sli_ringpostbuf_get(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,dma_addr_t phys)12332 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12333 dma_addr_t phys)
12334 {
12335 struct lpfc_dmabuf *mp, *next_mp;
12336 struct list_head *slp = &pring->postbufq;
12337
12338 /* Search postbufq, from the beginning, looking for a match on phys */
12339 spin_lock_irq(&phba->hbalock);
12340 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
12341 if (mp->phys == phys) {
12342 list_del_init(&mp->list);
12343 pring->postbufq_cnt--;
12344 spin_unlock_irq(&phba->hbalock);
12345 return mp;
12346 }
12347 }
12348
12349 spin_unlock_irq(&phba->hbalock);
12350 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12351 "0410 Cannot find virtual addr for mapped buf on "
12352 "ring %d Data x%llx x%px x%px x%x\n",
12353 pring->ringno, (unsigned long long)phys,
12354 slp->next, slp->prev, pring->postbufq_cnt);
12355 return NULL;
12356 }
12357
12358 /**
12359 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
12360 * @phba: Pointer to HBA context object.
12361 * @cmdiocb: Pointer to driver command iocb object.
12362 * @rspiocb: Pointer to driver response iocb object.
12363 *
12364 * This function is the completion handler for the abort iocbs for
12365 * ELS commands. This function is called from the ELS ring event
12366 * handler with no lock held. This function frees memory resources
12367 * associated with the abort iocb.
12368 **/
12369 static void
lpfc_sli_abort_els_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)12370 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12371 struct lpfc_iocbq *rspiocb)
12372 {
12373 u32 ulp_status = get_job_ulpstatus(phba, rspiocb);
12374 u32 ulp_word4 = get_job_word4(phba, rspiocb);
12375 u8 cmnd = get_job_cmnd(phba, cmdiocb);
12376
12377 if (ulp_status) {
12378 /*
12379 * Assume that the port already completed and returned, or
12380 * will return the iocb. Just Log the message.
12381 */
12382 if (phba->sli_rev < LPFC_SLI_REV4) {
12383 if (cmnd == CMD_ABORT_XRI_CX &&
12384 ulp_status == IOSTAT_LOCAL_REJECT &&
12385 ulp_word4 == IOERR_ABORT_REQUESTED) {
12386 goto release_iocb;
12387 }
12388 }
12389 }
12390
12391 lpfc_printf_log(phba, KERN_INFO, LOG_ELS | LOG_SLI,
12392 "0327 Abort els iocb complete x%px with io cmd xri %x "
12393 "abort tag x%x abort status %x abort code %x\n",
12394 cmdiocb, get_job_abtsiotag(phba, cmdiocb),
12395 (phba->sli_rev == LPFC_SLI_REV4) ?
12396 get_wqe_reqtag(cmdiocb) :
12397 cmdiocb->iocb.ulpIoTag,
12398 ulp_status, ulp_word4);
12399 release_iocb:
12400 lpfc_sli_release_iocbq(phba, cmdiocb);
12401 return;
12402 }
12403
12404 /**
12405 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
12406 * @phba: Pointer to HBA context object.
12407 * @cmdiocb: Pointer to driver command iocb object.
12408 * @rspiocb: Pointer to driver response iocb object.
12409 *
12410 * The function is called from SLI ring event handler with no
12411 * lock held. This function is the completion handler for ELS commands
12412 * which are aborted. The function frees memory resources used for
12413 * the aborted ELS commands.
12414 **/
12415 void
lpfc_ignore_els_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)12416 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12417 struct lpfc_iocbq *rspiocb)
12418 {
12419 struct lpfc_nodelist *ndlp = cmdiocb->ndlp;
12420 IOCB_t *irsp;
12421 LPFC_MBOXQ_t *mbox;
12422 u32 ulp_command, ulp_status, ulp_word4, iotag;
12423
12424 ulp_command = get_job_cmnd(phba, cmdiocb);
12425 ulp_status = get_job_ulpstatus(phba, rspiocb);
12426 ulp_word4 = get_job_word4(phba, rspiocb);
12427
12428 if (phba->sli_rev == LPFC_SLI_REV4) {
12429 iotag = get_wqe_reqtag(cmdiocb);
12430 } else {
12431 irsp = &rspiocb->iocb;
12432 iotag = irsp->ulpIoTag;
12433
12434 /* It is possible a PLOGI_RJT for NPIV ports to get aborted.
12435 * The MBX_REG_LOGIN64 mbox command is freed back to the
12436 * mbox_mem_pool here.
12437 */
12438 if (cmdiocb->context_un.mbox) {
12439 mbox = cmdiocb->context_un.mbox;
12440 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED);
12441 cmdiocb->context_un.mbox = NULL;
12442 }
12443 }
12444
12445 /* ELS cmd tag <ulpIoTag> completes */
12446 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
12447 "0139 Ignoring ELS cmd code x%x ref cnt x%x Data: "
12448 "x%x x%x x%x x%px\n",
12449 ulp_command, kref_read(&cmdiocb->ndlp->kref),
12450 ulp_status, ulp_word4, iotag, cmdiocb->ndlp);
12451 /*
12452 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp
12453 * if exchange is busy.
12454 */
12455 if (ulp_command == CMD_GEN_REQUEST64_CR)
12456 lpfc_ct_free_iocb(phba, cmdiocb);
12457 else
12458 lpfc_els_free_iocb(phba, cmdiocb);
12459
12460 lpfc_nlp_put(ndlp);
12461 }
12462
12463 /**
12464 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
12465 * @phba: Pointer to HBA context object.
12466 * @pring: Pointer to driver SLI ring object.
12467 * @cmdiocb: Pointer to driver command iocb object.
12468 * @cmpl: completion function.
12469 *
12470 * This function issues an abort iocb for the provided command iocb. In case
12471 * of unloading, the abort iocb will not be issued to commands on the ELS
12472 * ring. Instead, the callback function shall be changed to those commands
12473 * so that nothing happens when them finishes. This function is called with
12474 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS
12475 * when the command iocb is an abort request.
12476 *
12477 **/
12478 int
lpfc_sli_issue_abort_iotag(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * cmdiocb,void * cmpl)12479 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12480 struct lpfc_iocbq *cmdiocb, void *cmpl)
12481 {
12482 struct lpfc_vport *vport = cmdiocb->vport;
12483 struct lpfc_iocbq *abtsiocbp;
12484 int retval = IOCB_ERROR;
12485 unsigned long iflags;
12486 struct lpfc_nodelist *ndlp = NULL;
12487 u32 ulp_command = get_job_cmnd(phba, cmdiocb);
12488 u16 ulp_context, iotag;
12489 bool ia;
12490
12491 /*
12492 * There are certain command types we don't want to abort. And we
12493 * don't want to abort commands that are already in the process of
12494 * being aborted.
12495 */
12496 if (ulp_command == CMD_ABORT_XRI_WQE ||
12497 ulp_command == CMD_ABORT_XRI_CN ||
12498 ulp_command == CMD_CLOSE_XRI_CN ||
12499 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED)
12500 return IOCB_ABORTING;
12501
12502 if (!pring) {
12503 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC)
12504 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl;
12505 else
12506 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl;
12507 return retval;
12508 }
12509
12510 /*
12511 * Always abort the outstanding WQE and set the IA bit correctly
12512 * for the context. This is necessary for correctly removing
12513 * outstanding ndlp reference counts when the CQE completes with
12514 * the XB bit set.
12515 */
12516 abtsiocbp = __lpfc_sli_get_iocbq(phba);
12517 if (abtsiocbp == NULL)
12518 return IOCB_NORESOURCE;
12519
12520 /* This signals the response to set the correct status
12521 * before calling the completion handler
12522 */
12523 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED;
12524
12525 if (phba->sli_rev == LPFC_SLI_REV4) {
12526 ulp_context = cmdiocb->sli4_xritag;
12527 iotag = abtsiocbp->iotag;
12528 } else {
12529 iotag = cmdiocb->iocb.ulpIoTag;
12530 if (pring->ringno == LPFC_ELS_RING) {
12531 ndlp = cmdiocb->ndlp;
12532 ulp_context = ndlp->nlp_rpi;
12533 } else {
12534 ulp_context = cmdiocb->iocb.ulpContext;
12535 }
12536 }
12537
12538 /* Just close the exchange under certain conditions. */
12539 if (test_bit(FC_UNLOADING, &vport->load_flag) ||
12540 phba->link_state < LPFC_LINK_UP ||
12541 (phba->sli_rev == LPFC_SLI_REV4 &&
12542 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) ||
12543 (phba->link_flag & LS_EXTERNAL_LOOPBACK))
12544 ia = true;
12545 else
12546 ia = false;
12547
12548 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag,
12549 cmdiocb->iocb.ulpClass,
12550 LPFC_WQE_CQ_ID_DEFAULT, ia, false);
12551
12552 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
12553 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
12554 if (cmdiocb->cmd_flag & LPFC_IO_FCP)
12555 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX);
12556
12557 if (cmdiocb->cmd_flag & LPFC_IO_FOF)
12558 abtsiocbp->cmd_flag |= LPFC_IO_FOF;
12559
12560 if (cmpl)
12561 abtsiocbp->cmd_cmpl = cmpl;
12562 else
12563 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl;
12564 abtsiocbp->vport = vport;
12565
12566 if (phba->sli_rev == LPFC_SLI_REV4) {
12567 pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
12568 if (unlikely(pring == NULL))
12569 goto abort_iotag_exit;
12570 /* Note: both hbalock and ring_lock need to be set here */
12571 spin_lock_irqsave(&pring->ring_lock, iflags);
12572 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
12573 abtsiocbp, 0);
12574 spin_unlock_irqrestore(&pring->ring_lock, iflags);
12575 } else {
12576 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
12577 abtsiocbp, 0);
12578 }
12579
12580 abort_iotag_exit:
12581
12582 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
12583 "0339 Abort IO XRI x%x, Original iotag x%x, "
12584 "abort tag x%x Cmdjob : x%px Abortjob : x%px "
12585 "retval x%x : IA %d cmd_cmpl %ps\n",
12586 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ?
12587 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp,
12588 retval, ia, abtsiocbp->cmd_cmpl);
12589 if (retval) {
12590 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED;
12591 __lpfc_sli_release_iocbq(phba, abtsiocbp);
12592 }
12593
12594 /*
12595 * Caller to this routine should check for IOCB_ERROR
12596 * and handle it properly. This routine no longer removes
12597 * iocb off txcmplq and call compl in case of IOCB_ERROR.
12598 */
12599 return retval;
12600 }
12601
12602 /**
12603 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
12604 * @phba: pointer to lpfc HBA data structure.
12605 *
12606 * This routine will abort all pending and outstanding iocbs to an HBA.
12607 **/
12608 void
lpfc_sli_hba_iocb_abort(struct lpfc_hba * phba)12609 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
12610 {
12611 struct lpfc_sli *psli = &phba->sli;
12612 struct lpfc_sli_ring *pring;
12613 struct lpfc_queue *qp = NULL;
12614 int i;
12615
12616 if (phba->sli_rev != LPFC_SLI_REV4) {
12617 for (i = 0; i < psli->num_rings; i++) {
12618 pring = &psli->sli3_ring[i];
12619 lpfc_sli_abort_iocb_ring(phba, pring);
12620 }
12621 return;
12622 }
12623 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
12624 pring = qp->pring;
12625 if (!pring)
12626 continue;
12627 lpfc_sli_abort_iocb_ring(phba, pring);
12628 }
12629 }
12630
12631 /**
12632 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts
12633 * @iocbq: Pointer to iocb object.
12634 * @vport: Pointer to driver virtual port object.
12635 *
12636 * This function acts as an iocb filter for functions which abort FCP iocbs.
12637 *
12638 * Return values
12639 * -ENODEV, if a null iocb or vport ptr is encountered
12640 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as
12641 * driver already started the abort process, or is an abort iocb itself
12642 * 0, passes criteria for aborting the FCP I/O iocb
12643 **/
12644 static int
lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq * iocbq,struct lpfc_vport * vport)12645 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq,
12646 struct lpfc_vport *vport)
12647 {
12648 u8 ulp_command;
12649
12650 /* No null ptr vports */
12651 if (!iocbq || iocbq->vport != vport)
12652 return -ENODEV;
12653
12654 /* iocb must be for FCP IO, already exists on the TX cmpl queue,
12655 * can't be premarked as driver aborted, nor be an ABORT iocb itself
12656 */
12657 ulp_command = get_job_cmnd(vport->phba, iocbq);
12658 if (!(iocbq->cmd_flag & LPFC_IO_FCP) ||
12659 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) ||
12660 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) ||
12661 (ulp_command == CMD_ABORT_XRI_CN ||
12662 ulp_command == CMD_CLOSE_XRI_CN ||
12663 ulp_command == CMD_ABORT_XRI_WQE))
12664 return -EINVAL;
12665
12666 return 0;
12667 }
12668
12669 /**
12670 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target
12671 * @iocbq: Pointer to driver iocb object.
12672 * @vport: Pointer to driver virtual port object.
12673 * @tgt_id: SCSI ID of the target.
12674 * @lun_id: LUN ID of the scsi device.
12675 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
12676 *
12677 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI
12678 * host.
12679 *
12680 * It will return
12681 * 0 if the filtering criteria is met for the given iocb and will return
12682 * 1 if the filtering criteria is not met.
12683 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
12684 * given iocb is for the SCSI device specified by vport, tgt_id and
12685 * lun_id parameter.
12686 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the
12687 * given iocb is for the SCSI target specified by vport and tgt_id
12688 * parameters.
12689 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
12690 * given iocb is for the SCSI host associated with the given vport.
12691 * This function is called with no locks held.
12692 **/
12693 static int
lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq * iocbq,struct lpfc_vport * vport,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd ctx_cmd)12694 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
12695 uint16_t tgt_id, uint64_t lun_id,
12696 lpfc_ctx_cmd ctx_cmd)
12697 {
12698 struct lpfc_io_buf *lpfc_cmd;
12699 int rc = 1;
12700
12701 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
12702
12703 if (lpfc_cmd->pCmd == NULL)
12704 return rc;
12705
12706 switch (ctx_cmd) {
12707 case LPFC_CTX_LUN:
12708 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
12709 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
12710 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
12711 rc = 0;
12712 break;
12713 case LPFC_CTX_TGT:
12714 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
12715 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
12716 rc = 0;
12717 break;
12718 case LPFC_CTX_HOST:
12719 rc = 0;
12720 break;
12721 default:
12722 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
12723 __func__, ctx_cmd);
12724 break;
12725 }
12726
12727 return rc;
12728 }
12729
12730 /**
12731 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
12732 * @vport: Pointer to virtual port.
12733 * @tgt_id: SCSI ID of the target.
12734 * @lun_id: LUN ID of the scsi device.
12735 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12736 *
12737 * This function returns number of FCP commands pending for the vport.
12738 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
12739 * commands pending on the vport associated with SCSI device specified
12740 * by tgt_id and lun_id parameters.
12741 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
12742 * commands pending on the vport associated with SCSI target specified
12743 * by tgt_id parameter.
12744 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
12745 * commands pending on the vport.
12746 * This function returns the number of iocbs which satisfy the filter.
12747 * This function is called without any lock held.
12748 **/
12749 int
lpfc_sli_sum_iocb(struct lpfc_vport * vport,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd ctx_cmd)12750 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
12751 lpfc_ctx_cmd ctx_cmd)
12752 {
12753 struct lpfc_hba *phba = vport->phba;
12754 struct lpfc_iocbq *iocbq;
12755 int sum, i;
12756 unsigned long iflags;
12757 u8 ulp_command;
12758
12759 spin_lock_irqsave(&phba->hbalock, iflags);
12760 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
12761 iocbq = phba->sli.iocbq_lookup[i];
12762
12763 if (!iocbq || iocbq->vport != vport)
12764 continue;
12765 if (!(iocbq->cmd_flag & LPFC_IO_FCP) ||
12766 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ))
12767 continue;
12768
12769 /* Include counting outstanding aborts */
12770 ulp_command = get_job_cmnd(phba, iocbq);
12771 if (ulp_command == CMD_ABORT_XRI_CN ||
12772 ulp_command == CMD_CLOSE_XRI_CN ||
12773 ulp_command == CMD_ABORT_XRI_WQE) {
12774 sum++;
12775 continue;
12776 }
12777
12778 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12779 ctx_cmd) == 0)
12780 sum++;
12781 }
12782 spin_unlock_irqrestore(&phba->hbalock, iflags);
12783
12784 return sum;
12785 }
12786
12787 /**
12788 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
12789 * @phba: Pointer to HBA context object
12790 * @cmdiocb: Pointer to command iocb object.
12791 * @rspiocb: Pointer to response iocb object.
12792 *
12793 * This function is called when an aborted FCP iocb completes. This
12794 * function is called by the ring event handler with no lock held.
12795 * This function frees the iocb.
12796 **/
12797 void
lpfc_sli_abort_fcp_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)12798 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12799 struct lpfc_iocbq *rspiocb)
12800 {
12801 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12802 "3096 ABORT_XRI_CX completing on rpi x%x "
12803 "original iotag x%x, abort cmd iotag x%x "
12804 "status 0x%x, reason 0x%x\n",
12805 (phba->sli_rev == LPFC_SLI_REV4) ?
12806 cmdiocb->sli4_xritag :
12807 cmdiocb->iocb.un.acxri.abortContextTag,
12808 get_job_abtsiotag(phba, cmdiocb),
12809 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb),
12810 get_job_word4(phba, rspiocb));
12811 lpfc_sli_release_iocbq(phba, cmdiocb);
12812 return;
12813 }
12814
12815 /**
12816 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
12817 * @vport: Pointer to virtual port.
12818 * @tgt_id: SCSI ID of the target.
12819 * @lun_id: LUN ID of the scsi device.
12820 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12821 *
12822 * This function sends an abort command for every SCSI command
12823 * associated with the given virtual port pending on the ring
12824 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then
12825 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before
12826 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort
12827 * followed by lpfc_sli_validate_fcp_iocb.
12828 *
12829 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
12830 * FCP iocbs associated with lun specified by tgt_id and lun_id
12831 * parameters
12832 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
12833 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
12834 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
12835 * FCP iocbs associated with virtual port.
12836 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4
12837 * lpfc_sli4_calc_ring is used.
12838 * This function returns number of iocbs it failed to abort.
12839 * This function is called with no locks held.
12840 **/
12841 int
lpfc_sli_abort_iocb(struct lpfc_vport * vport,u16 tgt_id,u64 lun_id,lpfc_ctx_cmd abort_cmd)12842 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id,
12843 lpfc_ctx_cmd abort_cmd)
12844 {
12845 struct lpfc_hba *phba = vport->phba;
12846 struct lpfc_sli_ring *pring = NULL;
12847 struct lpfc_iocbq *iocbq;
12848 int errcnt = 0, ret_val = 0;
12849 unsigned long iflags;
12850 int i;
12851
12852 /* all I/Os are in process of being flushed */
12853 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag))
12854 return errcnt;
12855
12856 for (i = 1; i <= phba->sli.last_iotag; i++) {
12857 iocbq = phba->sli.iocbq_lookup[i];
12858
12859 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport))
12860 continue;
12861
12862 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12863 abort_cmd) != 0)
12864 continue;
12865
12866 spin_lock_irqsave(&phba->hbalock, iflags);
12867 if (phba->sli_rev == LPFC_SLI_REV3) {
12868 pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12869 } else if (phba->sli_rev == LPFC_SLI_REV4) {
12870 pring = lpfc_sli4_calc_ring(phba, iocbq);
12871 }
12872 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq,
12873 lpfc_sli_abort_fcp_cmpl);
12874 spin_unlock_irqrestore(&phba->hbalock, iflags);
12875 if (ret_val != IOCB_SUCCESS)
12876 errcnt++;
12877 }
12878
12879 return errcnt;
12880 }
12881
12882 /**
12883 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
12884 * @vport: Pointer to virtual port.
12885 * @pring: Pointer to driver SLI ring object.
12886 * @tgt_id: SCSI ID of the target.
12887 * @lun_id: LUN ID of the scsi device.
12888 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12889 *
12890 * This function sends an abort command for every SCSI command
12891 * associated with the given virtual port pending on the ring
12892 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then
12893 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before
12894 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort
12895 * followed by lpfc_sli_validate_fcp_iocb.
12896 *
12897 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
12898 * FCP iocbs associated with lun specified by tgt_id and lun_id
12899 * parameters
12900 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
12901 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
12902 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
12903 * FCP iocbs associated with virtual port.
12904 * This function returns number of iocbs it aborted .
12905 * This function is called with no locks held right after a taskmgmt
12906 * command is sent.
12907 **/
12908 int
lpfc_sli_abort_taskmgmt(struct lpfc_vport * vport,struct lpfc_sli_ring * pring,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd cmd)12909 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
12910 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
12911 {
12912 struct lpfc_hba *phba = vport->phba;
12913 struct lpfc_io_buf *lpfc_cmd;
12914 struct lpfc_iocbq *abtsiocbq;
12915 struct lpfc_nodelist *ndlp = NULL;
12916 struct lpfc_iocbq *iocbq;
12917 int sum, i, ret_val;
12918 unsigned long iflags;
12919 struct lpfc_sli_ring *pring_s4 = NULL;
12920 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT;
12921 bool ia;
12922
12923 /* all I/Os are in process of being flushed */
12924 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag))
12925 return 0;
12926
12927 sum = 0;
12928
12929 spin_lock_irqsave(&phba->hbalock, iflags);
12930 for (i = 1; i <= phba->sli.last_iotag; i++) {
12931 iocbq = phba->sli.iocbq_lookup[i];
12932
12933 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport))
12934 continue;
12935
12936 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12937 cmd) != 0)
12938 continue;
12939
12940 /* Guard against IO completion being called at same time */
12941 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
12942 spin_lock(&lpfc_cmd->buf_lock);
12943
12944 if (!lpfc_cmd->pCmd) {
12945 spin_unlock(&lpfc_cmd->buf_lock);
12946 continue;
12947 }
12948
12949 if (phba->sli_rev == LPFC_SLI_REV4) {
12950 pring_s4 =
12951 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring;
12952 if (!pring_s4) {
12953 spin_unlock(&lpfc_cmd->buf_lock);
12954 continue;
12955 }
12956 /* Note: both hbalock and ring_lock must be set here */
12957 spin_lock(&pring_s4->ring_lock);
12958 }
12959
12960 /*
12961 * If the iocbq is already being aborted, don't take a second
12962 * action, but do count it.
12963 */
12964 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) ||
12965 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) {
12966 if (phba->sli_rev == LPFC_SLI_REV4)
12967 spin_unlock(&pring_s4->ring_lock);
12968 spin_unlock(&lpfc_cmd->buf_lock);
12969 continue;
12970 }
12971
12972 /* issue ABTS for this IOCB based on iotag */
12973 abtsiocbq = __lpfc_sli_get_iocbq(phba);
12974 if (!abtsiocbq) {
12975 if (phba->sli_rev == LPFC_SLI_REV4)
12976 spin_unlock(&pring_s4->ring_lock);
12977 spin_unlock(&lpfc_cmd->buf_lock);
12978 continue;
12979 }
12980
12981 if (phba->sli_rev == LPFC_SLI_REV4) {
12982 iotag = abtsiocbq->iotag;
12983 ulp_context = iocbq->sli4_xritag;
12984 cqid = lpfc_cmd->hdwq->io_cq_map;
12985 } else {
12986 iotag = iocbq->iocb.ulpIoTag;
12987 if (pring->ringno == LPFC_ELS_RING) {
12988 ndlp = iocbq->ndlp;
12989 ulp_context = ndlp->nlp_rpi;
12990 } else {
12991 ulp_context = iocbq->iocb.ulpContext;
12992 }
12993 }
12994
12995 ndlp = lpfc_cmd->rdata->pnode;
12996
12997 if (lpfc_is_link_up(phba) &&
12998 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) &&
12999 !(phba->link_flag & LS_EXTERNAL_LOOPBACK))
13000 ia = false;
13001 else
13002 ia = true;
13003
13004 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag,
13005 iocbq->iocb.ulpClass, cqid,
13006 ia, false);
13007
13008 abtsiocbq->vport = vport;
13009
13010 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
13011 abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
13012 if (iocbq->cmd_flag & LPFC_IO_FCP)
13013 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX;
13014 if (iocbq->cmd_flag & LPFC_IO_FOF)
13015 abtsiocbq->cmd_flag |= LPFC_IO_FOF;
13016
13017 /* Setup callback routine and issue the command. */
13018 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl;
13019
13020 /*
13021 * Indicate the IO is being aborted by the driver and set
13022 * the caller's flag into the aborted IO.
13023 */
13024 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED;
13025
13026 if (phba->sli_rev == LPFC_SLI_REV4) {
13027 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
13028 abtsiocbq, 0);
13029 spin_unlock(&pring_s4->ring_lock);
13030 } else {
13031 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
13032 abtsiocbq, 0);
13033 }
13034
13035 spin_unlock(&lpfc_cmd->buf_lock);
13036
13037 if (ret_val == IOCB_ERROR)
13038 __lpfc_sli_release_iocbq(phba, abtsiocbq);
13039 else
13040 sum++;
13041 }
13042 spin_unlock_irqrestore(&phba->hbalock, iflags);
13043 return sum;
13044 }
13045
13046 /**
13047 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
13048 * @phba: Pointer to HBA context object.
13049 * @cmdiocbq: Pointer to command iocb.
13050 * @rspiocbq: Pointer to response iocb.
13051 *
13052 * This function is the completion handler for iocbs issued using
13053 * lpfc_sli_issue_iocb_wait function. This function is called by the
13054 * ring event handler function without any lock held. This function
13055 * can be called from both worker thread context and interrupt
13056 * context. This function also can be called from other thread which
13057 * cleans up the SLI layer objects.
13058 * This function copy the contents of the response iocb to the
13059 * response iocb memory object provided by the caller of
13060 * lpfc_sli_issue_iocb_wait and then wakes up the thread which
13061 * sleeps for the iocb completion.
13062 **/
13063 static void
lpfc_sli_wake_iocb_wait(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,struct lpfc_iocbq * rspiocbq)13064 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
13065 struct lpfc_iocbq *cmdiocbq,
13066 struct lpfc_iocbq *rspiocbq)
13067 {
13068 wait_queue_head_t *pdone_q;
13069 unsigned long iflags;
13070 struct lpfc_io_buf *lpfc_cmd;
13071 size_t offset = offsetof(struct lpfc_iocbq, wqe);
13072
13073 spin_lock_irqsave(&phba->hbalock, iflags);
13074 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) {
13075
13076 /*
13077 * A time out has occurred for the iocb. If a time out
13078 * completion handler has been supplied, call it. Otherwise,
13079 * just free the iocbq.
13080 */
13081
13082 spin_unlock_irqrestore(&phba->hbalock, iflags);
13083 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl;
13084 cmdiocbq->wait_cmd_cmpl = NULL;
13085 if (cmdiocbq->cmd_cmpl)
13086 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL);
13087 else
13088 lpfc_sli_release_iocbq(phba, cmdiocbq);
13089 return;
13090 }
13091
13092 /* Copy the contents of the local rspiocb into the caller's buffer. */
13093 cmdiocbq->cmd_flag |= LPFC_IO_WAKE;
13094 if (cmdiocbq->rsp_iocb && rspiocbq)
13095 memcpy((char *)cmdiocbq->rsp_iocb + offset,
13096 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset);
13097
13098 /* Set the exchange busy flag for task management commands */
13099 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) &&
13100 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) {
13101 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
13102 cur_iocbq);
13103 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY))
13104 lpfc_cmd->flags |= LPFC_SBUF_XBUSY;
13105 else
13106 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY;
13107 }
13108
13109 pdone_q = cmdiocbq->context_un.wait_queue;
13110 if (pdone_q)
13111 wake_up(pdone_q);
13112 spin_unlock_irqrestore(&phba->hbalock, iflags);
13113 return;
13114 }
13115
13116 /**
13117 * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
13118 * @phba: Pointer to HBA context object..
13119 * @piocbq: Pointer to command iocb.
13120 * @flag: Flag to test.
13121 *
13122 * This routine grabs the hbalock and then test the cmd_flag to
13123 * see if the passed in flag is set.
13124 * Returns:
13125 * 1 if flag is set.
13126 * 0 if flag is not set.
13127 **/
13128 static int
lpfc_chk_iocb_flg(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq,uint32_t flag)13129 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
13130 struct lpfc_iocbq *piocbq, uint32_t flag)
13131 {
13132 unsigned long iflags;
13133 int ret;
13134
13135 spin_lock_irqsave(&phba->hbalock, iflags);
13136 ret = piocbq->cmd_flag & flag;
13137 spin_unlock_irqrestore(&phba->hbalock, iflags);
13138 return ret;
13139
13140 }
13141
13142 /**
13143 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
13144 * @phba: Pointer to HBA context object..
13145 * @ring_number: Ring number
13146 * @piocb: Pointer to command iocb.
13147 * @prspiocbq: Pointer to response iocb.
13148 * @timeout: Timeout in number of seconds.
13149 *
13150 * This function issues the iocb to firmware and waits for the
13151 * iocb to complete. The cmd_cmpl field of the shall be used
13152 * to handle iocbs which time out. If the field is NULL, the
13153 * function shall free the iocbq structure. If more clean up is
13154 * needed, the caller is expected to provide a completion function
13155 * that will provide the needed clean up. If the iocb command is
13156 * not completed within timeout seconds, the function will either
13157 * free the iocbq structure (if cmd_cmpl == NULL) or execute the
13158 * completion function set in the cmd_cmpl field and then return
13159 * a status of IOCB_TIMEDOUT. The caller should not free the iocb
13160 * resources if this function returns IOCB_TIMEDOUT.
13161 * The function waits for the iocb completion using an
13162 * non-interruptible wait.
13163 * This function will sleep while waiting for iocb completion.
13164 * So, this function should not be called from any context which
13165 * does not allow sleeping. Due to the same reason, this function
13166 * cannot be called with interrupt disabled.
13167 * This function assumes that the iocb completions occur while
13168 * this function sleep. So, this function cannot be called from
13169 * the thread which process iocb completion for this ring.
13170 * This function clears the cmd_flag of the iocb object before
13171 * issuing the iocb and the iocb completion handler sets this
13172 * flag and wakes this thread when the iocb completes.
13173 * The contents of the response iocb will be copied to prspiocbq
13174 * by the completion handler when the command completes.
13175 * This function returns IOCB_SUCCESS when success.
13176 * This function is called with no lock held.
13177 **/
13178 int
lpfc_sli_issue_iocb_wait(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,struct lpfc_iocbq * prspiocbq,uint32_t timeout)13179 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
13180 uint32_t ring_number,
13181 struct lpfc_iocbq *piocb,
13182 struct lpfc_iocbq *prspiocbq,
13183 uint32_t timeout)
13184 {
13185 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
13186 long timeleft, timeout_req = 0;
13187 int retval = IOCB_SUCCESS;
13188 uint32_t creg_val;
13189 struct lpfc_iocbq *iocb;
13190 int txq_cnt = 0;
13191 int txcmplq_cnt = 0;
13192 struct lpfc_sli_ring *pring;
13193 unsigned long iflags;
13194 bool iocb_completed = true;
13195
13196 if (phba->sli_rev >= LPFC_SLI_REV4) {
13197 lpfc_sli_prep_wqe(phba, piocb);
13198
13199 pring = lpfc_sli4_calc_ring(phba, piocb);
13200 } else
13201 pring = &phba->sli.sli3_ring[ring_number];
13202 /*
13203 * If the caller has provided a response iocbq buffer, then rsp_iocb
13204 * is NULL or its an error.
13205 */
13206 if (prspiocbq) {
13207 if (piocb->rsp_iocb)
13208 return IOCB_ERROR;
13209 piocb->rsp_iocb = prspiocbq;
13210 }
13211
13212 piocb->wait_cmd_cmpl = piocb->cmd_cmpl;
13213 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait;
13214 piocb->context_un.wait_queue = &done_q;
13215 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
13216
13217 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
13218 if (lpfc_readl(phba->HCregaddr, &creg_val))
13219 return IOCB_ERROR;
13220 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
13221 writel(creg_val, phba->HCregaddr);
13222 readl(phba->HCregaddr); /* flush */
13223 }
13224
13225 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
13226 SLI_IOCB_RET_IOCB);
13227 if (retval == IOCB_SUCCESS) {
13228 timeout_req = secs_to_jiffies(timeout);
13229 timeleft = wait_event_timeout(done_q,
13230 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
13231 timeout_req);
13232 spin_lock_irqsave(&phba->hbalock, iflags);
13233 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) {
13234
13235 /*
13236 * IOCB timed out. Inform the wake iocb wait
13237 * completion function and set local status
13238 */
13239
13240 iocb_completed = false;
13241 piocb->cmd_flag |= LPFC_IO_WAKE_TMO;
13242 }
13243 spin_unlock_irqrestore(&phba->hbalock, iflags);
13244 if (iocb_completed) {
13245 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13246 "0331 IOCB wake signaled\n");
13247 /* Note: we are not indicating if the IOCB has a success
13248 * status or not - that's for the caller to check.
13249 * IOCB_SUCCESS means just that the command was sent and
13250 * completed. Not that it completed successfully.
13251 * */
13252 } else if (timeleft == 0) {
13253 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13254 "0338 IOCB wait timeout error - no "
13255 "wake response Data x%x\n", timeout);
13256 retval = IOCB_TIMEDOUT;
13257 } else {
13258 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13259 "0330 IOCB wake NOT set, "
13260 "Data x%x x%lx\n",
13261 timeout, (timeleft / jiffies));
13262 retval = IOCB_TIMEDOUT;
13263 }
13264 } else if (retval == IOCB_BUSY) {
13265 if (phba->cfg_log_verbose & LOG_SLI) {
13266 list_for_each_entry(iocb, &pring->txq, list) {
13267 txq_cnt++;
13268 }
13269 list_for_each_entry(iocb, &pring->txcmplq, list) {
13270 txcmplq_cnt++;
13271 }
13272 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13273 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
13274 phba->iocb_cnt, txq_cnt, txcmplq_cnt);
13275 }
13276 return retval;
13277 } else {
13278 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13279 "0332 IOCB wait issue failed, Data x%x\n",
13280 retval);
13281 retval = IOCB_ERROR;
13282 }
13283
13284 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
13285 if (lpfc_readl(phba->HCregaddr, &creg_val))
13286 return IOCB_ERROR;
13287 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
13288 writel(creg_val, phba->HCregaddr);
13289 readl(phba->HCregaddr); /* flush */
13290 }
13291
13292 if (prspiocbq)
13293 piocb->rsp_iocb = NULL;
13294
13295 piocb->context_un.wait_queue = NULL;
13296 piocb->cmd_cmpl = NULL;
13297 return retval;
13298 }
13299
13300 /**
13301 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
13302 * @phba: Pointer to HBA context object.
13303 * @pmboxq: Pointer to driver mailbox object.
13304 * @timeout: Timeout in number of seconds.
13305 *
13306 * This function issues the mailbox to firmware and waits for the
13307 * mailbox command to complete. If the mailbox command is not
13308 * completed within timeout seconds, it returns MBX_TIMEOUT.
13309 * The function waits for the mailbox completion using an
13310 * interruptible wait. If the thread is woken up due to a
13311 * signal, MBX_TIMEOUT error is returned to the caller. Caller
13312 * should not free the mailbox resources, if this function returns
13313 * MBX_TIMEOUT.
13314 * This function will sleep while waiting for mailbox completion.
13315 * So, this function should not be called from any context which
13316 * does not allow sleeping. Due to the same reason, this function
13317 * cannot be called with interrupt disabled.
13318 * This function assumes that the mailbox completion occurs while
13319 * this function sleep. So, this function cannot be called from
13320 * the worker thread which processes mailbox completion.
13321 * This function is called in the context of HBA management
13322 * applications.
13323 * This function returns MBX_SUCCESS when successful.
13324 * This function is called with no lock held.
13325 **/
13326 int
lpfc_sli_issue_mbox_wait(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq,uint32_t timeout)13327 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
13328 uint32_t timeout)
13329 {
13330 struct completion mbox_done;
13331 int retval;
13332 unsigned long flag;
13333
13334 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
13335 /* setup wake call as IOCB callback */
13336 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
13337
13338 /* setup ctx_u field to pass wait_queue pointer to wake function */
13339 init_completion(&mbox_done);
13340 pmboxq->ctx_u.mbox_wait = &mbox_done;
13341 /* now issue the command */
13342 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
13343 if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
13344 wait_for_completion_timeout(&mbox_done, secs_to_jiffies(timeout));
13345
13346 spin_lock_irqsave(&phba->hbalock, flag);
13347 pmboxq->ctx_u.mbox_wait = NULL;
13348 /*
13349 * if LPFC_MBX_WAKE flag is set the mailbox is completed
13350 * else do not free the resources.
13351 */
13352 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
13353 retval = MBX_SUCCESS;
13354 } else {
13355 retval = MBX_TIMEOUT;
13356 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
13357 }
13358 spin_unlock_irqrestore(&phba->hbalock, flag);
13359 }
13360 return retval;
13361 }
13362
13363 /**
13364 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
13365 * @phba: Pointer to HBA context.
13366 * @mbx_action: Mailbox shutdown options.
13367 *
13368 * This function is called to shutdown the driver's mailbox sub-system.
13369 * It first marks the mailbox sub-system is in a block state to prevent
13370 * the asynchronous mailbox command from issued off the pending mailbox
13371 * command queue. If the mailbox command sub-system shutdown is due to
13372 * HBA error conditions such as EEH or ERATT, this routine shall invoke
13373 * the mailbox sub-system flush routine to forcefully bring down the
13374 * mailbox sub-system. Otherwise, if it is due to normal condition (such
13375 * as with offline or HBA function reset), this routine will wait for the
13376 * outstanding mailbox command to complete before invoking the mailbox
13377 * sub-system flush routine to gracefully bring down mailbox sub-system.
13378 **/
13379 void
lpfc_sli_mbox_sys_shutdown(struct lpfc_hba * phba,int mbx_action)13380 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
13381 {
13382 struct lpfc_sli *psli = &phba->sli;
13383 unsigned long timeout;
13384
13385 if (mbx_action == LPFC_MBX_NO_WAIT) {
13386 /* delay 100ms for port state */
13387 msleep(100);
13388 lpfc_sli_mbox_sys_flush(phba);
13389 return;
13390 }
13391 timeout = secs_to_jiffies(LPFC_MBOX_TMO) + jiffies;
13392
13393 /* Disable softirqs, including timers from obtaining phba->hbalock */
13394 local_bh_disable();
13395
13396 spin_lock_irq(&phba->hbalock);
13397 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13398
13399 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
13400 /* Determine how long we might wait for the active mailbox
13401 * command to be gracefully completed by firmware.
13402 */
13403 if (phba->sli.mbox_active)
13404 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba,
13405 phba->sli.mbox_active)) + jiffies;
13406 spin_unlock_irq(&phba->hbalock);
13407
13408 /* Enable softirqs again, done with phba->hbalock */
13409 local_bh_enable();
13410
13411 while (phba->sli.mbox_active) {
13412 /* Check active mailbox complete status every 2ms */
13413 msleep(2);
13414 if (time_after(jiffies, timeout))
13415 /* Timeout, let the mailbox flush routine to
13416 * forcefully release active mailbox command
13417 */
13418 break;
13419 }
13420 } else {
13421 spin_unlock_irq(&phba->hbalock);
13422
13423 /* Enable softirqs again, done with phba->hbalock */
13424 local_bh_enable();
13425 }
13426
13427 lpfc_sli_mbox_sys_flush(phba);
13428 }
13429
13430 /**
13431 * lpfc_sli_eratt_read - read sli-3 error attention events
13432 * @phba: Pointer to HBA context.
13433 *
13434 * This function is called to read the SLI3 device error attention registers
13435 * for possible error attention events. The caller must hold the hostlock
13436 * with spin_lock_irq().
13437 *
13438 * This function returns 1 when there is Error Attention in the Host Attention
13439 * Register and returns 0 otherwise.
13440 **/
13441 static int
lpfc_sli_eratt_read(struct lpfc_hba * phba)13442 lpfc_sli_eratt_read(struct lpfc_hba *phba)
13443 {
13444 uint32_t ha_copy;
13445
13446 /* Read chip Host Attention (HA) register */
13447 if (lpfc_readl(phba->HAregaddr, &ha_copy))
13448 goto unplug_err;
13449
13450 if (ha_copy & HA_ERATT) {
13451 /* Read host status register to retrieve error event */
13452 if (lpfc_sli_read_hs(phba))
13453 goto unplug_err;
13454
13455 /* Check if there is a deferred error condition is active */
13456 if ((HS_FFER1 & phba->work_hs) &&
13457 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
13458 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
13459 set_bit(DEFER_ERATT, &phba->hba_flag);
13460 /* Clear all interrupt enable conditions */
13461 writel(0, phba->HCregaddr);
13462 readl(phba->HCregaddr);
13463 }
13464
13465 /* Set the driver HA work bitmap */
13466 phba->work_ha |= HA_ERATT;
13467 /* Indicate polling handles this ERATT */
13468 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
13469 return 1;
13470 }
13471 return 0;
13472
13473 unplug_err:
13474 /* Set the driver HS work bitmap */
13475 phba->work_hs |= UNPLUG_ERR;
13476 /* Set the driver HA work bitmap */
13477 phba->work_ha |= HA_ERATT;
13478 /* Indicate polling handles this ERATT */
13479 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
13480 return 1;
13481 }
13482
13483 /**
13484 * lpfc_sli4_eratt_read - read sli-4 error attention events
13485 * @phba: Pointer to HBA context.
13486 *
13487 * This function is called to read the SLI4 device error attention registers
13488 * for possible error attention events. The caller must hold the hostlock
13489 * with spin_lock_irq().
13490 *
13491 * This function returns 1 when there is Error Attention in the Host Attention
13492 * Register and returns 0 otherwise.
13493 **/
13494 static int
lpfc_sli4_eratt_read(struct lpfc_hba * phba)13495 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
13496 {
13497 uint32_t uerr_sta_hi, uerr_sta_lo;
13498 uint32_t if_type, portsmphr;
13499 struct lpfc_register portstat_reg;
13500 u32 logmask;
13501
13502 /*
13503 * For now, use the SLI4 device internal unrecoverable error
13504 * registers for error attention. This can be changed later.
13505 */
13506 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
13507 switch (if_type) {
13508 case LPFC_SLI_INTF_IF_TYPE_0:
13509 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
13510 &uerr_sta_lo) ||
13511 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
13512 &uerr_sta_hi)) {
13513 phba->work_hs |= UNPLUG_ERR;
13514 phba->work_ha |= HA_ERATT;
13515 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
13516 return 1;
13517 }
13518 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
13519 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
13520 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13521 "1423 HBA Unrecoverable error: "
13522 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
13523 "ue_mask_lo_reg=0x%x, "
13524 "ue_mask_hi_reg=0x%x\n",
13525 uerr_sta_lo, uerr_sta_hi,
13526 phba->sli4_hba.ue_mask_lo,
13527 phba->sli4_hba.ue_mask_hi);
13528 phba->work_status[0] = uerr_sta_lo;
13529 phba->work_status[1] = uerr_sta_hi;
13530 phba->work_ha |= HA_ERATT;
13531 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
13532 return 1;
13533 }
13534 break;
13535 case LPFC_SLI_INTF_IF_TYPE_2:
13536 case LPFC_SLI_INTF_IF_TYPE_6:
13537 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
13538 &portstat_reg.word0) ||
13539 lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
13540 &portsmphr)){
13541 phba->work_hs |= UNPLUG_ERR;
13542 phba->work_ha |= HA_ERATT;
13543 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
13544 return 1;
13545 }
13546 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
13547 phba->work_status[0] =
13548 readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
13549 phba->work_status[1] =
13550 readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
13551 logmask = LOG_TRACE_EVENT;
13552 if (phba->work_status[0] ==
13553 SLIPORT_ERR1_REG_ERR_CODE_2 &&
13554 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART)
13555 logmask = LOG_SLI;
13556 lpfc_printf_log(phba, KERN_ERR, logmask,
13557 "2885 Port Status Event: "
13558 "port status reg 0x%x, "
13559 "port smphr reg 0x%x, "
13560 "error 1=0x%x, error 2=0x%x\n",
13561 portstat_reg.word0,
13562 portsmphr,
13563 phba->work_status[0],
13564 phba->work_status[1]);
13565 phba->work_ha |= HA_ERATT;
13566 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
13567 return 1;
13568 }
13569 break;
13570 case LPFC_SLI_INTF_IF_TYPE_1:
13571 default:
13572 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13573 "2886 HBA Error Attention on unsupported "
13574 "if type %d.", if_type);
13575 return 1;
13576 }
13577
13578 return 0;
13579 }
13580
13581 /**
13582 * lpfc_sli_check_eratt - check error attention events
13583 * @phba: Pointer to HBA context.
13584 *
13585 * This function is called from timer soft interrupt context to check HBA's
13586 * error attention register bit for error attention events.
13587 *
13588 * This function returns 1 when there is Error Attention in the Host Attention
13589 * Register and returns 0 otherwise.
13590 **/
13591 int
lpfc_sli_check_eratt(struct lpfc_hba * phba)13592 lpfc_sli_check_eratt(struct lpfc_hba *phba)
13593 {
13594 uint32_t ha_copy;
13595
13596 /* If somebody is waiting to handle an eratt, don't process it
13597 * here. The brdkill function will do this.
13598 */
13599 if (phba->link_flag & LS_IGNORE_ERATT)
13600 return 0;
13601
13602 /* Check if interrupt handler handles this ERATT */
13603 if (test_bit(HBA_ERATT_HANDLED, &phba->hba_flag))
13604 /* Interrupt handler has handled ERATT */
13605 return 0;
13606
13607 /*
13608 * If there is deferred error attention, do not check for error
13609 * attention
13610 */
13611 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag)))
13612 return 0;
13613
13614 spin_lock_irq(&phba->hbalock);
13615 /* If PCI channel is offline, don't process it */
13616 if (unlikely(pci_channel_offline(phba->pcidev))) {
13617 spin_unlock_irq(&phba->hbalock);
13618 return 0;
13619 }
13620
13621 switch (phba->sli_rev) {
13622 case LPFC_SLI_REV2:
13623 case LPFC_SLI_REV3:
13624 /* Read chip Host Attention (HA) register */
13625 ha_copy = lpfc_sli_eratt_read(phba);
13626 break;
13627 case LPFC_SLI_REV4:
13628 /* Read device Uncoverable Error (UERR) registers */
13629 ha_copy = lpfc_sli4_eratt_read(phba);
13630 break;
13631 default:
13632 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13633 "0299 Invalid SLI revision (%d)\n",
13634 phba->sli_rev);
13635 ha_copy = 0;
13636 break;
13637 }
13638 spin_unlock_irq(&phba->hbalock);
13639
13640 return ha_copy;
13641 }
13642
13643 /**
13644 * lpfc_intr_state_check - Check device state for interrupt handling
13645 * @phba: Pointer to HBA context.
13646 *
13647 * This inline routine checks whether a device or its PCI slot is in a state
13648 * that the interrupt should be handled.
13649 *
13650 * This function returns 0 if the device or the PCI slot is in a state that
13651 * interrupt should be handled, otherwise -EIO.
13652 */
13653 static inline int
lpfc_intr_state_check(struct lpfc_hba * phba)13654 lpfc_intr_state_check(struct lpfc_hba *phba)
13655 {
13656 /* If the pci channel is offline, ignore all the interrupts */
13657 if (unlikely(pci_channel_offline(phba->pcidev)))
13658 return -EIO;
13659
13660 /* Update device level interrupt statistics */
13661 phba->sli.slistat.sli_intr++;
13662
13663 /* Ignore all interrupts during initialization. */
13664 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
13665 return -EIO;
13666
13667 return 0;
13668 }
13669
13670 /**
13671 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
13672 * @irq: Interrupt number.
13673 * @dev_id: The device context pointer.
13674 *
13675 * This function is directly called from the PCI layer as an interrupt
13676 * service routine when device with SLI-3 interface spec is enabled with
13677 * MSI-X multi-message interrupt mode and there are slow-path events in
13678 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
13679 * interrupt mode, this function is called as part of the device-level
13680 * interrupt handler. When the PCI slot is in error recovery or the HBA
13681 * is undergoing initialization, the interrupt handler will not process
13682 * the interrupt. The link attention and ELS ring attention events are
13683 * handled by the worker thread. The interrupt handler signals the worker
13684 * thread and returns for these events. This function is called without
13685 * any lock held. It gets the hbalock to access and update SLI data
13686 * structures.
13687 *
13688 * This function returns IRQ_HANDLED when interrupt is handled else it
13689 * returns IRQ_NONE.
13690 **/
13691 irqreturn_t
lpfc_sli_sp_intr_handler(int irq,void * dev_id)13692 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
13693 {
13694 struct lpfc_hba *phba;
13695 uint32_t ha_copy, hc_copy;
13696 uint32_t work_ha_copy;
13697 unsigned long status;
13698 unsigned long iflag;
13699 uint32_t control;
13700
13701 MAILBOX_t *mbox, *pmbox;
13702 struct lpfc_vport *vport;
13703 struct lpfc_nodelist *ndlp;
13704 struct lpfc_dmabuf *mp;
13705 LPFC_MBOXQ_t *pmb;
13706 int rc;
13707
13708 /*
13709 * Get the driver's phba structure from the dev_id and
13710 * assume the HBA is not interrupting.
13711 */
13712 phba = (struct lpfc_hba *)dev_id;
13713
13714 if (unlikely(!phba))
13715 return IRQ_NONE;
13716
13717 /*
13718 * Stuff needs to be attented to when this function is invoked as an
13719 * individual interrupt handler in MSI-X multi-message interrupt mode
13720 */
13721 if (phba->intr_type == MSIX) {
13722 /* Check device state for handling interrupt */
13723 if (lpfc_intr_state_check(phba))
13724 return IRQ_NONE;
13725 /* Need to read HA REG for slow-path events */
13726 spin_lock_irqsave(&phba->hbalock, iflag);
13727 if (lpfc_readl(phba->HAregaddr, &ha_copy))
13728 goto unplug_error;
13729 /* If somebody is waiting to handle an eratt don't process it
13730 * here. The brdkill function will do this.
13731 */
13732 if (phba->link_flag & LS_IGNORE_ERATT)
13733 ha_copy &= ~HA_ERATT;
13734 /* Check the need for handling ERATT in interrupt handler */
13735 if (ha_copy & HA_ERATT) {
13736 if (test_and_set_bit(HBA_ERATT_HANDLED,
13737 &phba->hba_flag))
13738 /* ERATT polling has handled ERATT */
13739 ha_copy &= ~HA_ERATT;
13740 }
13741
13742 /*
13743 * If there is deferred error attention, do not check for any
13744 * interrupt.
13745 */
13746 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) {
13747 spin_unlock_irqrestore(&phba->hbalock, iflag);
13748 return IRQ_NONE;
13749 }
13750
13751 /* Clear up only attention source related to slow-path */
13752 if (lpfc_readl(phba->HCregaddr, &hc_copy))
13753 goto unplug_error;
13754
13755 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
13756 HC_LAINT_ENA | HC_ERINT_ENA),
13757 phba->HCregaddr);
13758 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
13759 phba->HAregaddr);
13760 writel(hc_copy, phba->HCregaddr);
13761 readl(phba->HAregaddr); /* flush */
13762 spin_unlock_irqrestore(&phba->hbalock, iflag);
13763 } else
13764 ha_copy = phba->ha_copy;
13765
13766 work_ha_copy = ha_copy & phba->work_ha_mask;
13767
13768 if (work_ha_copy) {
13769 if (work_ha_copy & HA_LATT) {
13770 if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
13771 /*
13772 * Turn off Link Attention interrupts
13773 * until CLEAR_LA done
13774 */
13775 spin_lock_irqsave(&phba->hbalock, iflag);
13776 phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
13777 if (lpfc_readl(phba->HCregaddr, &control))
13778 goto unplug_error;
13779 control &= ~HC_LAINT_ENA;
13780 writel(control, phba->HCregaddr);
13781 readl(phba->HCregaddr); /* flush */
13782 spin_unlock_irqrestore(&phba->hbalock, iflag);
13783 }
13784 else
13785 work_ha_copy &= ~HA_LATT;
13786 }
13787
13788 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
13789 /*
13790 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
13791 * the only slow ring.
13792 */
13793 status = (work_ha_copy &
13794 (HA_RXMASK << (4*LPFC_ELS_RING)));
13795 status >>= (4*LPFC_ELS_RING);
13796 if (status & HA_RXMASK) {
13797 spin_lock_irqsave(&phba->hbalock, iflag);
13798 if (lpfc_readl(phba->HCregaddr, &control))
13799 goto unplug_error;
13800
13801 lpfc_debugfs_slow_ring_trc(phba,
13802 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x",
13803 control, status,
13804 (uint32_t)phba->sli.slistat.sli_intr);
13805
13806 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
13807 lpfc_debugfs_slow_ring_trc(phba,
13808 "ISR Disable ring:"
13809 "pwork:x%x hawork:x%x wait:x%x",
13810 phba->work_ha, work_ha_copy,
13811 (uint32_t)((unsigned long)
13812 &phba->work_waitq));
13813
13814 control &=
13815 ~(HC_R0INT_ENA << LPFC_ELS_RING);
13816 writel(control, phba->HCregaddr);
13817 readl(phba->HCregaddr); /* flush */
13818 }
13819 else {
13820 lpfc_debugfs_slow_ring_trc(phba,
13821 "ISR slow ring: pwork:"
13822 "x%x hawork:x%x wait:x%x",
13823 phba->work_ha, work_ha_copy,
13824 (uint32_t)((unsigned long)
13825 &phba->work_waitq));
13826 }
13827 spin_unlock_irqrestore(&phba->hbalock, iflag);
13828 }
13829 }
13830 spin_lock_irqsave(&phba->hbalock, iflag);
13831 if (work_ha_copy & HA_ERATT) {
13832 if (lpfc_sli_read_hs(phba))
13833 goto unplug_error;
13834 /*
13835 * Check if there is a deferred error condition
13836 * is active
13837 */
13838 if ((HS_FFER1 & phba->work_hs) &&
13839 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
13840 HS_FFER6 | HS_FFER7 | HS_FFER8) &
13841 phba->work_hs)) {
13842 set_bit(DEFER_ERATT, &phba->hba_flag);
13843 /* Clear all interrupt enable conditions */
13844 writel(0, phba->HCregaddr);
13845 readl(phba->HCregaddr);
13846 }
13847 }
13848
13849 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
13850 pmb = phba->sli.mbox_active;
13851 pmbox = &pmb->u.mb;
13852 mbox = phba->mbox;
13853 vport = pmb->vport;
13854
13855 /* First check out the status word */
13856 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
13857 if (pmbox->mbxOwner != OWN_HOST) {
13858 spin_unlock_irqrestore(&phba->hbalock, iflag);
13859 /*
13860 * Stray Mailbox Interrupt, mbxCommand <cmd>
13861 * mbxStatus <status>
13862 */
13863 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13864 "(%d):0304 Stray Mailbox "
13865 "Interrupt mbxCommand x%x "
13866 "mbxStatus x%x\n",
13867 (vport ? vport->vpi : 0),
13868 pmbox->mbxCommand,
13869 pmbox->mbxStatus);
13870 /* clear mailbox attention bit */
13871 work_ha_copy &= ~HA_MBATT;
13872 } else {
13873 phba->sli.mbox_active = NULL;
13874 spin_unlock_irqrestore(&phba->hbalock, iflag);
13875 phba->last_completion_time = jiffies;
13876 timer_delete(&phba->sli.mbox_tmo);
13877 if (pmb->mbox_cmpl) {
13878 lpfc_sli_pcimem_bcopy(mbox, pmbox,
13879 MAILBOX_CMD_SIZE);
13880 if (pmb->out_ext_byte_len &&
13881 pmb->ext_buf)
13882 lpfc_sli_pcimem_bcopy(
13883 phba->mbox_ext,
13884 pmb->ext_buf,
13885 pmb->out_ext_byte_len);
13886 }
13887 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13888 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13889
13890 lpfc_debugfs_disc_trc(vport,
13891 LPFC_DISC_TRC_MBOX_VPORT,
13892 "MBOX dflt rpi: : "
13893 "status:x%x rpi:x%x",
13894 (uint32_t)pmbox->mbxStatus,
13895 pmbox->un.varWords[0], 0);
13896
13897 if (!pmbox->mbxStatus) {
13898 mp = pmb->ctx_buf;
13899 ndlp = pmb->ctx_ndlp;
13900
13901 /* Reg_LOGIN of dflt RPI was
13902 * successful. new lets get
13903 * rid of the RPI using the
13904 * same mbox buffer.
13905 */
13906 lpfc_unreg_login(phba,
13907 vport->vpi,
13908 pmbox->un.varWords[0],
13909 pmb);
13910 pmb->mbox_cmpl =
13911 lpfc_mbx_cmpl_dflt_rpi;
13912 pmb->ctx_buf = mp;
13913 pmb->ctx_ndlp = ndlp;
13914 pmb->vport = vport;
13915 rc = lpfc_sli_issue_mbox(phba,
13916 pmb,
13917 MBX_NOWAIT);
13918 if (rc != MBX_BUSY)
13919 lpfc_printf_log(phba,
13920 KERN_ERR,
13921 LOG_TRACE_EVENT,
13922 "0350 rc should have"
13923 "been MBX_BUSY\n");
13924 if (rc != MBX_NOT_FINISHED)
13925 goto send_current_mbox;
13926 }
13927 }
13928 spin_lock_irqsave(
13929 &phba->pport->work_port_lock,
13930 iflag);
13931 phba->pport->work_port_events &=
13932 ~WORKER_MBOX_TMO;
13933 spin_unlock_irqrestore(
13934 &phba->pport->work_port_lock,
13935 iflag);
13936
13937 /* Do NOT queue MBX_HEARTBEAT to the worker
13938 * thread for processing.
13939 */
13940 if (pmbox->mbxCommand == MBX_HEARTBEAT) {
13941 /* Process mbox now */
13942 phba->sli.mbox_active = NULL;
13943 phba->sli.sli_flag &=
13944 ~LPFC_SLI_MBOX_ACTIVE;
13945 if (pmb->mbox_cmpl)
13946 pmb->mbox_cmpl(phba, pmb);
13947 } else {
13948 /* Queue to worker thread to process */
13949 lpfc_mbox_cmpl_put(phba, pmb);
13950 }
13951 }
13952 } else
13953 spin_unlock_irqrestore(&phba->hbalock, iflag);
13954
13955 if ((work_ha_copy & HA_MBATT) &&
13956 (phba->sli.mbox_active == NULL)) {
13957 send_current_mbox:
13958 /* Process next mailbox command if there is one */
13959 do {
13960 rc = lpfc_sli_issue_mbox(phba, NULL,
13961 MBX_NOWAIT);
13962 } while (rc == MBX_NOT_FINISHED);
13963 if (rc != MBX_SUCCESS)
13964 lpfc_printf_log(phba, KERN_ERR,
13965 LOG_TRACE_EVENT,
13966 "0349 rc should be "
13967 "MBX_SUCCESS\n");
13968 }
13969
13970 spin_lock_irqsave(&phba->hbalock, iflag);
13971 phba->work_ha |= work_ha_copy;
13972 spin_unlock_irqrestore(&phba->hbalock, iflag);
13973 lpfc_worker_wake_up(phba);
13974 }
13975 return IRQ_HANDLED;
13976 unplug_error:
13977 spin_unlock_irqrestore(&phba->hbalock, iflag);
13978 return IRQ_HANDLED;
13979
13980 } /* lpfc_sli_sp_intr_handler */
13981
13982 /**
13983 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
13984 * @irq: Interrupt number.
13985 * @dev_id: The device context pointer.
13986 *
13987 * This function is directly called from the PCI layer as an interrupt
13988 * service routine when device with SLI-3 interface spec is enabled with
13989 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
13990 * ring event in the HBA. However, when the device is enabled with either
13991 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
13992 * device-level interrupt handler. When the PCI slot is in error recovery
13993 * or the HBA is undergoing initialization, the interrupt handler will not
13994 * process the interrupt. The SCSI FCP fast-path ring event are handled in
13995 * the intrrupt context. This function is called without any lock held.
13996 * It gets the hbalock to access and update SLI data structures.
13997 *
13998 * This function returns IRQ_HANDLED when interrupt is handled else it
13999 * returns IRQ_NONE.
14000 **/
14001 irqreturn_t
lpfc_sli_fp_intr_handler(int irq,void * dev_id)14002 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
14003 {
14004 struct lpfc_hba *phba;
14005 uint32_t ha_copy;
14006 unsigned long status;
14007 unsigned long iflag;
14008 struct lpfc_sli_ring *pring;
14009
14010 /* Get the driver's phba structure from the dev_id and
14011 * assume the HBA is not interrupting.
14012 */
14013 phba = (struct lpfc_hba *) dev_id;
14014
14015 if (unlikely(!phba))
14016 return IRQ_NONE;
14017
14018 /*
14019 * Stuff needs to be attented to when this function is invoked as an
14020 * individual interrupt handler in MSI-X multi-message interrupt mode
14021 */
14022 if (phba->intr_type == MSIX) {
14023 /* Check device state for handling interrupt */
14024 if (lpfc_intr_state_check(phba))
14025 return IRQ_NONE;
14026 /* Need to read HA REG for FCP ring and other ring events */
14027 if (lpfc_readl(phba->HAregaddr, &ha_copy))
14028 return IRQ_HANDLED;
14029
14030 /*
14031 * If there is deferred error attention, do not check for
14032 * any interrupt.
14033 */
14034 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag)))
14035 return IRQ_NONE;
14036
14037 /* Clear up only attention source related to fast-path */
14038 spin_lock_irqsave(&phba->hbalock, iflag);
14039 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
14040 phba->HAregaddr);
14041 readl(phba->HAregaddr); /* flush */
14042 spin_unlock_irqrestore(&phba->hbalock, iflag);
14043 } else
14044 ha_copy = phba->ha_copy;
14045
14046 /*
14047 * Process all events on FCP ring. Take the optimized path for FCP IO.
14048 */
14049 ha_copy &= ~(phba->work_ha_mask);
14050
14051 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
14052 status >>= (4*LPFC_FCP_RING);
14053 pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
14054 if (status & HA_RXMASK)
14055 lpfc_sli_handle_fast_ring_event(phba, pring, status);
14056
14057 if (phba->cfg_multi_ring_support == 2) {
14058 /*
14059 * Process all events on extra ring. Take the optimized path
14060 * for extra ring IO.
14061 */
14062 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
14063 status >>= (4*LPFC_EXTRA_RING);
14064 if (status & HA_RXMASK) {
14065 lpfc_sli_handle_fast_ring_event(phba,
14066 &phba->sli.sli3_ring[LPFC_EXTRA_RING],
14067 status);
14068 }
14069 }
14070 return IRQ_HANDLED;
14071 } /* lpfc_sli_fp_intr_handler */
14072
14073 /**
14074 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
14075 * @irq: Interrupt number.
14076 * @dev_id: The device context pointer.
14077 *
14078 * This function is the HBA device-level interrupt handler to device with
14079 * SLI-3 interface spec, called from the PCI layer when either MSI or
14080 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
14081 * requires driver attention. This function invokes the slow-path interrupt
14082 * attention handling function and fast-path interrupt attention handling
14083 * function in turn to process the relevant HBA attention events. This
14084 * function is called without any lock held. It gets the hbalock to access
14085 * and update SLI data structures.
14086 *
14087 * This function returns IRQ_HANDLED when interrupt is handled, else it
14088 * returns IRQ_NONE.
14089 **/
14090 irqreturn_t
lpfc_sli_intr_handler(int irq,void * dev_id)14091 lpfc_sli_intr_handler(int irq, void *dev_id)
14092 {
14093 struct lpfc_hba *phba;
14094 irqreturn_t sp_irq_rc, fp_irq_rc;
14095 unsigned long status1, status2;
14096 uint32_t hc_copy;
14097
14098 /*
14099 * Get the driver's phba structure from the dev_id and
14100 * assume the HBA is not interrupting.
14101 */
14102 phba = (struct lpfc_hba *) dev_id;
14103
14104 if (unlikely(!phba))
14105 return IRQ_NONE;
14106
14107 /* Check device state for handling interrupt */
14108 if (lpfc_intr_state_check(phba))
14109 return IRQ_NONE;
14110
14111 spin_lock(&phba->hbalock);
14112 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
14113 spin_unlock(&phba->hbalock);
14114 return IRQ_HANDLED;
14115 }
14116
14117 if (unlikely(!phba->ha_copy)) {
14118 spin_unlock(&phba->hbalock);
14119 return IRQ_NONE;
14120 } else if (phba->ha_copy & HA_ERATT) {
14121 if (test_and_set_bit(HBA_ERATT_HANDLED, &phba->hba_flag))
14122 /* ERATT polling has handled ERATT */
14123 phba->ha_copy &= ~HA_ERATT;
14124 }
14125
14126 /*
14127 * If there is deferred error attention, do not check for any interrupt.
14128 */
14129 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) {
14130 spin_unlock(&phba->hbalock);
14131 return IRQ_NONE;
14132 }
14133
14134 /* Clear attention sources except link and error attentions */
14135 if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
14136 spin_unlock(&phba->hbalock);
14137 return IRQ_HANDLED;
14138 }
14139 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
14140 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
14141 phba->HCregaddr);
14142 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
14143 writel(hc_copy, phba->HCregaddr);
14144 readl(phba->HAregaddr); /* flush */
14145 spin_unlock(&phba->hbalock);
14146
14147 /*
14148 * Invokes slow-path host attention interrupt handling as appropriate.
14149 */
14150
14151 /* status of events with mailbox and link attention */
14152 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
14153
14154 /* status of events with ELS ring */
14155 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING)));
14156 status2 >>= (4*LPFC_ELS_RING);
14157
14158 if (status1 || (status2 & HA_RXMASK))
14159 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
14160 else
14161 sp_irq_rc = IRQ_NONE;
14162
14163 /*
14164 * Invoke fast-path host attention interrupt handling as appropriate.
14165 */
14166
14167 /* status of events with FCP ring */
14168 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
14169 status1 >>= (4*LPFC_FCP_RING);
14170
14171 /* status of events with extra ring */
14172 if (phba->cfg_multi_ring_support == 2) {
14173 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
14174 status2 >>= (4*LPFC_EXTRA_RING);
14175 } else
14176 status2 = 0;
14177
14178 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
14179 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
14180 else
14181 fp_irq_rc = IRQ_NONE;
14182
14183 /* Return device-level interrupt handling status */
14184 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
14185 } /* lpfc_sli_intr_handler */
14186
14187 /**
14188 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
14189 * @phba: pointer to lpfc hba data structure.
14190 *
14191 * This routine is invoked by the worker thread to process all the pending
14192 * SLI4 els abort xri events.
14193 **/
lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba * phba)14194 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
14195 {
14196 struct lpfc_cq_event *cq_event;
14197 unsigned long iflags;
14198
14199 /* First, declare the els xri abort event has been handled */
14200 clear_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag);
14201
14202 /* Now, handle all the els xri abort events */
14203 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
14204 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
14205 /* Get the first event from the head of the event queue */
14206 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
14207 cq_event, struct lpfc_cq_event, list);
14208 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
14209 iflags);
14210 /* Notify aborted XRI for ELS work queue */
14211 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
14212
14213 /* Free the event processed back to the free pool */
14214 lpfc_sli4_cq_event_release(phba, cq_event);
14215 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
14216 iflags);
14217 }
14218 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
14219 }
14220
14221 /**
14222 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe
14223 * @phba: Pointer to HBA context object.
14224 * @irspiocbq: Pointer to work-queue completion queue entry.
14225 *
14226 * This routine handles an ELS work-queue completion event and construct
14227 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common
14228 * discovery engine to handle.
14229 *
14230 * Return: Pointer to the receive IOCBQ, NULL otherwise.
14231 **/
14232 static struct lpfc_iocbq *
lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba * phba,struct lpfc_iocbq * irspiocbq)14233 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba,
14234 struct lpfc_iocbq *irspiocbq)
14235 {
14236 struct lpfc_sli_ring *pring;
14237 struct lpfc_iocbq *cmdiocbq;
14238 struct lpfc_wcqe_complete *wcqe;
14239 unsigned long iflags;
14240
14241 pring = lpfc_phba_elsring(phba);
14242 if (unlikely(!pring))
14243 return NULL;
14244
14245 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
14246 spin_lock_irqsave(&pring->ring_lock, iflags);
14247 pring->stats.iocb_event++;
14248 /* Look up the ELS command IOCB and create pseudo response IOCB */
14249 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
14250 bf_get(lpfc_wcqe_c_request_tag, wcqe));
14251 if (unlikely(!cmdiocbq)) {
14252 spin_unlock_irqrestore(&pring->ring_lock, iflags);
14253 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14254 "0386 ELS complete with no corresponding "
14255 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
14256 wcqe->word0, wcqe->total_data_placed,
14257 wcqe->parameter, wcqe->word3);
14258 lpfc_sli_release_iocbq(phba, irspiocbq);
14259 return NULL;
14260 }
14261
14262 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128));
14263 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe));
14264
14265 /* Put the iocb back on the txcmplq */
14266 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
14267 spin_unlock_irqrestore(&pring->ring_lock, iflags);
14268
14269 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
14270 spin_lock_irqsave(&phba->hbalock, iflags);
14271 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY;
14272 spin_unlock_irqrestore(&phba->hbalock, iflags);
14273 }
14274
14275 return irspiocbq;
14276 }
14277
14278 inline struct lpfc_cq_event *
lpfc_cq_event_setup(struct lpfc_hba * phba,void * entry,int size)14279 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
14280 {
14281 struct lpfc_cq_event *cq_event;
14282
14283 /* Allocate a new internal CQ_EVENT entry */
14284 cq_event = lpfc_sli4_cq_event_alloc(phba);
14285 if (!cq_event) {
14286 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14287 "0602 Failed to alloc CQ_EVENT entry\n");
14288 return NULL;
14289 }
14290
14291 /* Move the CQE into the event */
14292 memcpy(&cq_event->cqe, entry, size);
14293 return cq_event;
14294 }
14295
14296 /**
14297 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event
14298 * @phba: Pointer to HBA context object.
14299 * @mcqe: Pointer to mailbox completion queue entry.
14300 *
14301 * This routine process a mailbox completion queue entry with asynchronous
14302 * event.
14303 *
14304 * Return: true if work posted to worker thread, otherwise false.
14305 **/
14306 static bool
lpfc_sli4_sp_handle_async_event(struct lpfc_hba * phba,struct lpfc_mcqe * mcqe)14307 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
14308 {
14309 struct lpfc_cq_event *cq_event;
14310 unsigned long iflags;
14311
14312 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14313 "0392 Async Event: word0:x%x, word1:x%x, "
14314 "word2:x%x, word3:x%x\n", mcqe->word0,
14315 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
14316
14317 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
14318 if (!cq_event)
14319 return false;
14320
14321 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
14322 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
14323 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
14324
14325 /* Set the async event flag */
14326 set_bit(ASYNC_EVENT, &phba->hba_flag);
14327
14328 return true;
14329 }
14330
14331 /**
14332 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
14333 * @phba: Pointer to HBA context object.
14334 * @mcqe: Pointer to mailbox completion queue entry.
14335 *
14336 * This routine process a mailbox completion queue entry with mailbox
14337 * completion event.
14338 *
14339 * Return: true if work posted to worker thread, otherwise false.
14340 **/
14341 static bool
lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba * phba,struct lpfc_mcqe * mcqe)14342 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
14343 {
14344 uint32_t mcqe_status;
14345 MAILBOX_t *mbox, *pmbox;
14346 struct lpfc_mqe *mqe;
14347 struct lpfc_vport *vport;
14348 struct lpfc_nodelist *ndlp;
14349 struct lpfc_dmabuf *mp;
14350 unsigned long iflags;
14351 LPFC_MBOXQ_t *pmb;
14352 bool workposted = false;
14353 int rc;
14354
14355 /* If not a mailbox complete MCQE, out by checking mailbox consume */
14356 if (!bf_get(lpfc_trailer_completed, mcqe))
14357 goto out_no_mqe_complete;
14358
14359 /* Get the reference to the active mbox command */
14360 spin_lock_irqsave(&phba->hbalock, iflags);
14361 pmb = phba->sli.mbox_active;
14362 if (unlikely(!pmb)) {
14363 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14364 "1832 No pending MBOX command to handle\n");
14365 spin_unlock_irqrestore(&phba->hbalock, iflags);
14366 goto out_no_mqe_complete;
14367 }
14368 spin_unlock_irqrestore(&phba->hbalock, iflags);
14369 mqe = &pmb->u.mqe;
14370 pmbox = (MAILBOX_t *)&pmb->u.mqe;
14371 mbox = phba->mbox;
14372 vport = pmb->vport;
14373
14374 /* Reset heartbeat timer */
14375 phba->last_completion_time = jiffies;
14376 timer_delete(&phba->sli.mbox_tmo);
14377
14378 /* Move mbox data to caller's mailbox region, do endian swapping */
14379 if (pmb->mbox_cmpl && mbox)
14380 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
14381
14382 /*
14383 * For mcqe errors, conditionally move a modified error code to
14384 * the mbox so that the error will not be missed.
14385 */
14386 mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
14387 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
14388 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
14389 bf_set(lpfc_mqe_status, mqe,
14390 (LPFC_MBX_ERROR_RANGE | mcqe_status));
14391 }
14392 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
14393 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
14394 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
14395 "MBOX dflt rpi: status:x%x rpi:x%x",
14396 mcqe_status,
14397 pmbox->un.varWords[0], 0);
14398 if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
14399 mp = pmb->ctx_buf;
14400 ndlp = pmb->ctx_ndlp;
14401
14402 /* Reg_LOGIN of dflt RPI was successful. Mark the
14403 * node as having an UNREG_LOGIN in progress to stop
14404 * an unsolicited PLOGI from the same NPortId from
14405 * starting another mailbox transaction.
14406 */
14407 set_bit(NLP_UNREG_INP, &ndlp->nlp_flag);
14408 lpfc_unreg_login(phba, vport->vpi,
14409 pmbox->un.varWords[0], pmb);
14410 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
14411 pmb->ctx_buf = mp;
14412
14413 /* No reference taken here. This is a default
14414 * RPI reg/immediate unreg cycle. The reference was
14415 * taken in the reg rpi path and is released when
14416 * this mailbox completes.
14417 */
14418 pmb->ctx_ndlp = ndlp;
14419 pmb->vport = vport;
14420 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
14421 if (rc != MBX_BUSY)
14422 lpfc_printf_log(phba, KERN_ERR,
14423 LOG_TRACE_EVENT,
14424 "0385 rc should "
14425 "have been MBX_BUSY\n");
14426 if (rc != MBX_NOT_FINISHED)
14427 goto send_current_mbox;
14428 }
14429 }
14430 spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
14431 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
14432 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
14433
14434 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */
14435 if (pmbox->mbxCommand == MBX_HEARTBEAT) {
14436 spin_lock_irqsave(&phba->hbalock, iflags);
14437 /* Release the mailbox command posting token */
14438 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
14439 phba->sli.mbox_active = NULL;
14440 if (bf_get(lpfc_trailer_consumed, mcqe))
14441 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14442 spin_unlock_irqrestore(&phba->hbalock, iflags);
14443
14444 /* Post the next mbox command, if there is one */
14445 lpfc_sli4_post_async_mbox(phba);
14446
14447 /* Process cmpl now */
14448 if (pmb->mbox_cmpl)
14449 pmb->mbox_cmpl(phba, pmb);
14450 return false;
14451 }
14452
14453 /* There is mailbox completion work to queue to the worker thread */
14454 spin_lock_irqsave(&phba->hbalock, iflags);
14455 __lpfc_mbox_cmpl_put(phba, pmb);
14456 phba->work_ha |= HA_MBATT;
14457 spin_unlock_irqrestore(&phba->hbalock, iflags);
14458 workposted = true;
14459
14460 send_current_mbox:
14461 spin_lock_irqsave(&phba->hbalock, iflags);
14462 /* Release the mailbox command posting token */
14463 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
14464 /* Setting active mailbox pointer need to be in sync to flag clear */
14465 phba->sli.mbox_active = NULL;
14466 if (bf_get(lpfc_trailer_consumed, mcqe))
14467 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14468 spin_unlock_irqrestore(&phba->hbalock, iflags);
14469 /* Wake up worker thread to post the next pending mailbox command */
14470 lpfc_worker_wake_up(phba);
14471 return workposted;
14472
14473 out_no_mqe_complete:
14474 spin_lock_irqsave(&phba->hbalock, iflags);
14475 if (bf_get(lpfc_trailer_consumed, mcqe))
14476 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14477 spin_unlock_irqrestore(&phba->hbalock, iflags);
14478 return false;
14479 }
14480
14481 /**
14482 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
14483 * @phba: Pointer to HBA context object.
14484 * @cq: Pointer to associated CQ
14485 * @cqe: Pointer to mailbox completion queue entry.
14486 *
14487 * This routine process a mailbox completion queue entry, it invokes the
14488 * proper mailbox complete handling or asynchronous event handling routine
14489 * according to the MCQE's async bit.
14490 *
14491 * Return: true if work posted to worker thread, otherwise false.
14492 **/
14493 static bool
lpfc_sli4_sp_handle_mcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)14494 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14495 struct lpfc_cqe *cqe)
14496 {
14497 struct lpfc_mcqe mcqe;
14498 bool workposted;
14499
14500 cq->CQ_mbox++;
14501
14502 /* Copy the mailbox MCQE and convert endian order as needed */
14503 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
14504
14505 /* Invoke the proper event handling routine */
14506 if (!bf_get(lpfc_trailer_async, &mcqe))
14507 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
14508 else
14509 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
14510 return workposted;
14511 }
14512
14513 /**
14514 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
14515 * @phba: Pointer to HBA context object.
14516 * @cq: Pointer to associated CQ
14517 * @wcqe: Pointer to work-queue completion queue entry.
14518 *
14519 * This routine handles an ELS work-queue completion event.
14520 *
14521 * Return: true if work posted to worker thread, otherwise false.
14522 **/
14523 static bool
lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_wcqe_complete * wcqe)14524 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14525 struct lpfc_wcqe_complete *wcqe)
14526 {
14527 struct lpfc_iocbq *irspiocbq;
14528 unsigned long iflags;
14529 struct lpfc_sli_ring *pring = cq->pring;
14530 int txq_cnt = 0;
14531 int txcmplq_cnt = 0;
14532
14533 /* Check for response status */
14534 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
14535 /* Log the error status */
14536 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14537 "0357 ELS CQE error: status=x%x: "
14538 "CQE: %08x %08x %08x %08x\n",
14539 bf_get(lpfc_wcqe_c_status, wcqe),
14540 wcqe->word0, wcqe->total_data_placed,
14541 wcqe->parameter, wcqe->word3);
14542 }
14543
14544 /* Get an irspiocbq for later ELS response processing use */
14545 irspiocbq = lpfc_sli_get_iocbq(phba);
14546 if (!irspiocbq) {
14547 if (!list_empty(&pring->txq))
14548 txq_cnt++;
14549 if (!list_empty(&pring->txcmplq))
14550 txcmplq_cnt++;
14551 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14552 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
14553 "els_txcmplq_cnt=%d\n",
14554 txq_cnt, phba->iocb_cnt,
14555 txcmplq_cnt);
14556 return false;
14557 }
14558
14559 /* Save off the slow-path queue event for work thread to process */
14560 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
14561 spin_lock_irqsave(&phba->hbalock, iflags);
14562 list_add_tail(&irspiocbq->cq_event.list,
14563 &phba->sli4_hba.sp_queue_event);
14564 spin_unlock_irqrestore(&phba->hbalock, iflags);
14565 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag);
14566
14567 return true;
14568 }
14569
14570 /**
14571 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
14572 * @phba: Pointer to HBA context object.
14573 * @wcqe: Pointer to work-queue completion queue entry.
14574 *
14575 * This routine handles slow-path WQ entry consumed event by invoking the
14576 * proper WQ release routine to the slow-path WQ.
14577 **/
14578 static void
lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba * phba,struct lpfc_wcqe_release * wcqe)14579 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
14580 struct lpfc_wcqe_release *wcqe)
14581 {
14582 /* sanity check on queue memory */
14583 if (unlikely(!phba->sli4_hba.els_wq))
14584 return;
14585 /* Check for the slow-path ELS work queue */
14586 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
14587 lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
14588 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
14589 else
14590 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14591 "2579 Slow-path wqe consume event carries "
14592 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
14593 bf_get(lpfc_wcqe_r_wqe_index, wcqe),
14594 phba->sli4_hba.els_wq->queue_id);
14595 }
14596
14597 /**
14598 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
14599 * @phba: Pointer to HBA context object.
14600 * @cq: Pointer to a WQ completion queue.
14601 * @wcqe: Pointer to work-queue completion queue entry.
14602 *
14603 * This routine handles an XRI abort event.
14604 *
14605 * Return: true if work posted to worker thread, otherwise false.
14606 **/
14607 static bool
lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct sli4_wcqe_xri_aborted * wcqe)14608 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
14609 struct lpfc_queue *cq,
14610 struct sli4_wcqe_xri_aborted *wcqe)
14611 {
14612 bool workposted = false;
14613 struct lpfc_cq_event *cq_event;
14614 unsigned long iflags;
14615
14616 switch (cq->subtype) {
14617 case LPFC_IO:
14618 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq);
14619 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14620 /* Notify aborted XRI for NVME work queue */
14621 if (phba->nvmet_support)
14622 lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
14623 }
14624 workposted = false;
14625 break;
14626 case LPFC_NVME_LS: /* NVME LS uses ELS resources */
14627 case LPFC_ELS:
14628 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe));
14629 if (!cq_event) {
14630 workposted = false;
14631 break;
14632 }
14633 cq_event->hdwq = cq->hdwq;
14634 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
14635 iflags);
14636 list_add_tail(&cq_event->list,
14637 &phba->sli4_hba.sp_els_xri_aborted_work_queue);
14638 /* Set the els xri abort event flag */
14639 set_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag);
14640 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
14641 iflags);
14642 workposted = true;
14643 break;
14644 default:
14645 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14646 "0603 Invalid CQ subtype %d: "
14647 "%08x %08x %08x %08x\n",
14648 cq->subtype, wcqe->word0, wcqe->parameter,
14649 wcqe->word2, wcqe->word3);
14650 workposted = false;
14651 break;
14652 }
14653 return workposted;
14654 }
14655
14656 #define FC_RCTL_MDS_DIAGS 0xF4
14657
14658 /**
14659 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
14660 * @phba: Pointer to HBA context object.
14661 * @rcqe: Pointer to receive-queue completion queue entry.
14662 *
14663 * This routine process a receive-queue completion queue entry.
14664 *
14665 * Return: true if work posted to worker thread, otherwise false.
14666 **/
14667 static bool
lpfc_sli4_sp_handle_rcqe(struct lpfc_hba * phba,struct lpfc_rcqe * rcqe)14668 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
14669 {
14670 bool workposted = false;
14671 struct fc_frame_header *fc_hdr;
14672 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
14673 struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
14674 struct lpfc_nvmet_tgtport *tgtp;
14675 struct hbq_dmabuf *dma_buf;
14676 uint32_t status, rq_id;
14677 unsigned long iflags;
14678
14679 /* sanity check on queue memory */
14680 if (unlikely(!hrq) || unlikely(!drq))
14681 return workposted;
14682
14683 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
14684 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
14685 else
14686 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
14687 if (rq_id != hrq->queue_id)
14688 goto out;
14689
14690 status = bf_get(lpfc_rcqe_status, rcqe);
14691 switch (status) {
14692 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
14693 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14694 "2537 Receive Frame Truncated!!\n");
14695 fallthrough;
14696 case FC_STATUS_RQ_SUCCESS:
14697 spin_lock_irqsave(&phba->hbalock, iflags);
14698 lpfc_sli4_rq_release(hrq, drq);
14699 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
14700 if (!dma_buf) {
14701 hrq->RQ_no_buf_found++;
14702 spin_unlock_irqrestore(&phba->hbalock, iflags);
14703 goto out;
14704 }
14705 hrq->RQ_rcv_buf++;
14706 hrq->RQ_buf_posted--;
14707 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
14708
14709 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
14710
14711 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
14712 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
14713 spin_unlock_irqrestore(&phba->hbalock, iflags);
14714 /* Handle MDS Loopback frames */
14715 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag))
14716 lpfc_sli4_handle_mds_loopback(phba->pport,
14717 dma_buf);
14718 else
14719 lpfc_in_buf_free(phba, &dma_buf->dbuf);
14720 break;
14721 }
14722
14723 /* save off the frame for the work thread to process */
14724 list_add_tail(&dma_buf->cq_event.list,
14725 &phba->sli4_hba.sp_queue_event);
14726 spin_unlock_irqrestore(&phba->hbalock, iflags);
14727 /* Frame received */
14728 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag);
14729 workposted = true;
14730 break;
14731 case FC_STATUS_INSUFF_BUF_FRM_DISC:
14732 if (phba->nvmet_support) {
14733 tgtp = phba->targetport->private;
14734 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14735 "6402 RQE Error x%x, posted %d err_cnt "
14736 "%d: %x %x %x\n",
14737 status, hrq->RQ_buf_posted,
14738 hrq->RQ_no_posted_buf,
14739 atomic_read(&tgtp->rcv_fcp_cmd_in),
14740 atomic_read(&tgtp->rcv_fcp_cmd_out),
14741 atomic_read(&tgtp->xmt_fcp_release));
14742 }
14743 fallthrough;
14744
14745 case FC_STATUS_INSUFF_BUF_NEED_BUF:
14746 hrq->RQ_no_posted_buf++;
14747 /* Post more buffers if possible */
14748 set_bit(HBA_POST_RECEIVE_BUFFER, &phba->hba_flag);
14749 workposted = true;
14750 break;
14751 case FC_STATUS_RQ_DMA_FAILURE:
14752 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14753 "2564 RQE DMA Error x%x, x%08x x%08x x%08x "
14754 "x%08x\n",
14755 status, rcqe->word0, rcqe->word1,
14756 rcqe->word2, rcqe->word3);
14757
14758 /* If IV set, no further recovery */
14759 if (bf_get(lpfc_rcqe_iv, rcqe))
14760 break;
14761
14762 /* recycle consumed resource */
14763 spin_lock_irqsave(&phba->hbalock, iflags);
14764 lpfc_sli4_rq_release(hrq, drq);
14765 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
14766 if (!dma_buf) {
14767 hrq->RQ_no_buf_found++;
14768 spin_unlock_irqrestore(&phba->hbalock, iflags);
14769 break;
14770 }
14771 hrq->RQ_rcv_buf++;
14772 hrq->RQ_buf_posted--;
14773 spin_unlock_irqrestore(&phba->hbalock, iflags);
14774 lpfc_in_buf_free(phba, &dma_buf->dbuf);
14775 break;
14776 default:
14777 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14778 "2565 Unexpected RQE Status x%x, w0-3 x%08x "
14779 "x%08x x%08x x%08x\n",
14780 status, rcqe->word0, rcqe->word1,
14781 rcqe->word2, rcqe->word3);
14782 break;
14783 }
14784 out:
14785 return workposted;
14786 }
14787
14788 /**
14789 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
14790 * @phba: Pointer to HBA context object.
14791 * @cq: Pointer to the completion queue.
14792 * @cqe: Pointer to a completion queue entry.
14793 *
14794 * This routine process a slow-path work-queue or receive queue completion queue
14795 * entry.
14796 *
14797 * Return: true if work posted to worker thread, otherwise false.
14798 **/
14799 static bool
lpfc_sli4_sp_handle_cqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)14800 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14801 struct lpfc_cqe *cqe)
14802 {
14803 struct lpfc_cqe cqevt;
14804 bool workposted = false;
14805
14806 /* Copy the work queue CQE and convert endian order if needed */
14807 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
14808
14809 /* Check and process for different type of WCQE and dispatch */
14810 switch (bf_get(lpfc_cqe_code, &cqevt)) {
14811 case CQE_CODE_COMPL_WQE:
14812 /* Process the WQ/RQ complete event */
14813 phba->last_completion_time = jiffies;
14814 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
14815 (struct lpfc_wcqe_complete *)&cqevt);
14816 break;
14817 case CQE_CODE_RELEASE_WQE:
14818 /* Process the WQ release event */
14819 lpfc_sli4_sp_handle_rel_wcqe(phba,
14820 (struct lpfc_wcqe_release *)&cqevt);
14821 break;
14822 case CQE_CODE_XRI_ABORTED:
14823 /* Process the WQ XRI abort event */
14824 phba->last_completion_time = jiffies;
14825 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14826 (struct sli4_wcqe_xri_aborted *)&cqevt);
14827 break;
14828 case CQE_CODE_RECEIVE:
14829 case CQE_CODE_RECEIVE_V1:
14830 /* Process the RQ event */
14831 phba->last_completion_time = jiffies;
14832 workposted = lpfc_sli4_sp_handle_rcqe(phba,
14833 (struct lpfc_rcqe *)&cqevt);
14834 break;
14835 default:
14836 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14837 "0388 Not a valid WCQE code: x%x\n",
14838 bf_get(lpfc_cqe_code, &cqevt));
14839 break;
14840 }
14841 return workposted;
14842 }
14843
14844 /**
14845 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
14846 * @phba: Pointer to HBA context object.
14847 * @eqe: Pointer to fast-path event queue entry.
14848 * @speq: Pointer to slow-path event queue.
14849 *
14850 * This routine process a event queue entry from the slow-path event queue.
14851 * It will check the MajorCode and MinorCode to determine this is for a
14852 * completion event on a completion queue, if not, an error shall be logged
14853 * and just return. Otherwise, it will get to the corresponding completion
14854 * queue and process all the entries on that completion queue, rearm the
14855 * completion queue, and then return.
14856 *
14857 **/
14858 static void
lpfc_sli4_sp_handle_eqe(struct lpfc_hba * phba,struct lpfc_eqe * eqe,struct lpfc_queue * speq)14859 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
14860 struct lpfc_queue *speq)
14861 {
14862 struct lpfc_queue *cq = NULL, *childq;
14863 uint16_t cqid;
14864 int ret = 0;
14865
14866 /* Get the reference to the corresponding CQ */
14867 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14868
14869 list_for_each_entry(childq, &speq->child_list, list) {
14870 if (childq->queue_id == cqid) {
14871 cq = childq;
14872 break;
14873 }
14874 }
14875 if (unlikely(!cq)) {
14876 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
14877 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14878 "0365 Slow-path CQ identifier "
14879 "(%d) does not exist\n", cqid);
14880 return;
14881 }
14882
14883 /* Save EQ associated with this CQ */
14884 cq->assoc_qp = speq;
14885
14886 if (is_kdump_kernel())
14887 ret = queue_work(phba->wq, &cq->spwork);
14888 else
14889 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork);
14890
14891 if (!ret)
14892 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14893 "0390 Cannot schedule queue work "
14894 "for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14895 cqid, cq->queue_id, raw_smp_processor_id());
14896 }
14897
14898 /**
14899 * __lpfc_sli4_process_cq - Process elements of a CQ
14900 * @phba: Pointer to HBA context object.
14901 * @cq: Pointer to CQ to be processed
14902 * @handler: Routine to process each cqe
14903 * @delay: Pointer to usdelay to set in case of rescheduling of the handler
14904 *
14905 * This routine processes completion queue entries in a CQ. While a valid
14906 * queue element is found, the handler is called. During processing checks
14907 * are made for periodic doorbell writes to let the hardware know of
14908 * element consumption.
14909 *
14910 * If the max limit on cqes to process is hit, or there are no more valid
14911 * entries, the loop stops. If we processed a sufficient number of elements,
14912 * meaning there is sufficient load, rather than rearming and generating
14913 * another interrupt, a cq rescheduling delay will be set. A delay of 0
14914 * indicates no rescheduling.
14915 *
14916 * Returns True if work scheduled, False otherwise.
14917 **/
14918 static bool
__lpfc_sli4_process_cq(struct lpfc_hba * phba,struct lpfc_queue * cq,bool (* handler)(struct lpfc_hba *,struct lpfc_queue *,struct lpfc_cqe *),unsigned long * delay)14919 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
14920 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
14921 struct lpfc_cqe *), unsigned long *delay)
14922 {
14923 struct lpfc_cqe *cqe;
14924 bool workposted = false;
14925 int count = 0, consumed = 0;
14926 bool arm = true;
14927
14928 /* default - no reschedule */
14929 *delay = 0;
14930
14931 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
14932 goto rearm_and_exit;
14933
14934 /* Process all the entries to the CQ */
14935 cq->q_flag = 0;
14936 cqe = lpfc_sli4_cq_get(cq);
14937 while (cqe) {
14938 workposted |= handler(phba, cq, cqe);
14939 __lpfc_sli4_consume_cqe(phba, cq, cqe);
14940
14941 consumed++;
14942 if (!(++count % cq->max_proc_limit))
14943 break;
14944
14945 if (!(count % cq->notify_interval)) {
14946 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14947 LPFC_QUEUE_NOARM);
14948 consumed = 0;
14949 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK;
14950 }
14951
14952 if (count == LPFC_NVMET_CQ_NOTIFY)
14953 cq->q_flag |= HBA_NVMET_CQ_NOTIFY;
14954
14955 cqe = lpfc_sli4_cq_get(cq);
14956 }
14957 if (count >= phba->cfg_cq_poll_threshold) {
14958 *delay = 1;
14959 arm = false;
14960 }
14961
14962 /* Track the max number of CQEs processed in 1 EQ */
14963 if (count > cq->CQ_max_cqe)
14964 cq->CQ_max_cqe = count;
14965
14966 cq->assoc_qp->EQ_cqe_cnt += count;
14967
14968 /* Catch the no cq entry condition */
14969 if (unlikely(count == 0))
14970 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14971 "0369 No entry from completion queue "
14972 "qid=%d\n", cq->queue_id);
14973
14974 xchg(&cq->queue_claimed, 0);
14975
14976 rearm_and_exit:
14977 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14978 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
14979
14980 return workposted;
14981 }
14982
14983 /**
14984 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
14985 * @cq: pointer to CQ to process
14986 *
14987 * This routine calls the cq processing routine with a handler specific
14988 * to the type of queue bound to it.
14989 *
14990 * The CQ routine returns two values: the first is the calling status,
14991 * which indicates whether work was queued to the background discovery
14992 * thread. If true, the routine should wakeup the discovery thread;
14993 * the second is the delay parameter. If non-zero, rather than rearming
14994 * the CQ and yet another interrupt, the CQ handler should be queued so
14995 * that it is processed in a subsequent polling action. The value of
14996 * the delay indicates when to reschedule it.
14997 **/
14998 static void
__lpfc_sli4_sp_process_cq(struct lpfc_queue * cq)14999 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
15000 {
15001 struct lpfc_hba *phba = cq->phba;
15002 unsigned long delay;
15003 bool workposted = false;
15004 int ret = 0;
15005
15006 /* Process and rearm the CQ */
15007 switch (cq->type) {
15008 case LPFC_MCQ:
15009 workposted |= __lpfc_sli4_process_cq(phba, cq,
15010 lpfc_sli4_sp_handle_mcqe,
15011 &delay);
15012 break;
15013 case LPFC_WCQ:
15014 if (cq->subtype == LPFC_IO)
15015 workposted |= __lpfc_sli4_process_cq(phba, cq,
15016 lpfc_sli4_fp_handle_cqe,
15017 &delay);
15018 else
15019 workposted |= __lpfc_sli4_process_cq(phba, cq,
15020 lpfc_sli4_sp_handle_cqe,
15021 &delay);
15022 break;
15023 default:
15024 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15025 "0370 Invalid completion queue type (%d)\n",
15026 cq->type);
15027 return;
15028 }
15029
15030 if (delay) {
15031 if (is_kdump_kernel())
15032 ret = queue_delayed_work(phba->wq, &cq->sched_spwork,
15033 delay);
15034 else
15035 ret = queue_delayed_work_on(cq->chann, phba->wq,
15036 &cq->sched_spwork, delay);
15037 if (!ret)
15038 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15039 "0394 Cannot schedule queue work "
15040 "for cqid=%d on CPU %d\n",
15041 cq->queue_id, cq->chann);
15042 }
15043
15044 /* wake up worker thread if there are works to be done */
15045 if (workposted)
15046 lpfc_worker_wake_up(phba);
15047 }
15048
15049 /**
15050 * lpfc_sli4_sp_process_cq - slow-path work handler when started by
15051 * interrupt
15052 * @work: pointer to work element
15053 *
15054 * translates from the work handler and calls the slow-path handler.
15055 **/
15056 static void
lpfc_sli4_sp_process_cq(struct work_struct * work)15057 lpfc_sli4_sp_process_cq(struct work_struct *work)
15058 {
15059 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
15060
15061 __lpfc_sli4_sp_process_cq(cq);
15062 }
15063
15064 /**
15065 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
15066 * @work: pointer to work element
15067 *
15068 * translates from the work handler and calls the slow-path handler.
15069 **/
15070 static void
lpfc_sli4_dly_sp_process_cq(struct work_struct * work)15071 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
15072 {
15073 struct lpfc_queue *cq = container_of(to_delayed_work(work),
15074 struct lpfc_queue, sched_spwork);
15075
15076 __lpfc_sli4_sp_process_cq(cq);
15077 }
15078
15079 /**
15080 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
15081 * @phba: Pointer to HBA context object.
15082 * @cq: Pointer to associated CQ
15083 * @wcqe: Pointer to work-queue completion queue entry.
15084 *
15085 * This routine process a fast-path work queue completion entry from fast-path
15086 * event queue for FCP command response completion.
15087 **/
15088 static void
lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_wcqe_complete * wcqe)15089 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15090 struct lpfc_wcqe_complete *wcqe)
15091 {
15092 struct lpfc_sli_ring *pring = cq->pring;
15093 struct lpfc_iocbq *cmdiocbq;
15094 unsigned long iflags;
15095
15096 /* Check for response status */
15097 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
15098 /* If resource errors reported from HBA, reduce queue
15099 * depth of the SCSI device.
15100 */
15101 if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
15102 IOSTAT_LOCAL_REJECT)) &&
15103 ((wcqe->parameter & IOERR_PARAM_MASK) ==
15104 IOERR_NO_RESOURCES))
15105 phba->lpfc_rampdown_queue_depth(phba);
15106
15107 /* Log the cmpl status */
15108 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
15109 "0373 FCP CQE cmpl: status=x%x: "
15110 "CQE: %08x %08x %08x %08x\n",
15111 bf_get(lpfc_wcqe_c_status, wcqe),
15112 wcqe->word0, wcqe->total_data_placed,
15113 wcqe->parameter, wcqe->word3);
15114 }
15115
15116 /* Look up the FCP command IOCB and create pseudo response IOCB */
15117 spin_lock_irqsave(&pring->ring_lock, iflags);
15118 pring->stats.iocb_event++;
15119 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
15120 bf_get(lpfc_wcqe_c_request_tag, wcqe));
15121 spin_unlock_irqrestore(&pring->ring_lock, iflags);
15122 if (unlikely(!cmdiocbq)) {
15123 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15124 "0374 FCP complete with no corresponding "
15125 "cmdiocb: iotag (%d)\n",
15126 bf_get(lpfc_wcqe_c_request_tag, wcqe));
15127 return;
15128 }
15129 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
15130 cmdiocbq->isr_timestamp = cq->isr_timestamp;
15131 #endif
15132 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
15133 spin_lock_irqsave(&phba->hbalock, iflags);
15134 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY;
15135 spin_unlock_irqrestore(&phba->hbalock, iflags);
15136 }
15137
15138 if (cmdiocbq->cmd_cmpl) {
15139 /* For FCP the flag is cleared in cmd_cmpl */
15140 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) &&
15141 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) {
15142 spin_lock_irqsave(&phba->hbalock, iflags);
15143 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED;
15144 spin_unlock_irqrestore(&phba->hbalock, iflags);
15145 }
15146
15147 /* Pass the cmd_iocb and the wcqe to the upper layer */
15148 memcpy(&cmdiocbq->wcqe_cmpl, wcqe,
15149 sizeof(struct lpfc_wcqe_complete));
15150 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq);
15151 } else {
15152 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15153 "0375 FCP cmdiocb not callback function "
15154 "iotag: (%d)\n",
15155 bf_get(lpfc_wcqe_c_request_tag, wcqe));
15156 }
15157 }
15158
15159 /**
15160 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
15161 * @phba: Pointer to HBA context object.
15162 * @cq: Pointer to completion queue.
15163 * @wcqe: Pointer to work-queue completion queue entry.
15164 *
15165 * This routine handles an fast-path WQ entry consumed event by invoking the
15166 * proper WQ release routine to the slow-path WQ.
15167 **/
15168 static void
lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_wcqe_release * wcqe)15169 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15170 struct lpfc_wcqe_release *wcqe)
15171 {
15172 struct lpfc_queue *childwq;
15173 bool wqid_matched = false;
15174 uint16_t hba_wqid;
15175
15176 /* Check for fast-path FCP work queue release */
15177 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
15178 list_for_each_entry(childwq, &cq->child_list, list) {
15179 if (childwq->queue_id == hba_wqid) {
15180 lpfc_sli4_wq_release(childwq,
15181 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
15182 if (childwq->q_flag & HBA_NVMET_WQFULL)
15183 lpfc_nvmet_wqfull_process(phba, childwq);
15184 wqid_matched = true;
15185 break;
15186 }
15187 }
15188 /* Report warning log message if no match found */
15189 if (wqid_matched != true)
15190 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15191 "2580 Fast-path wqe consume event carries "
15192 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
15193 }
15194
15195 /**
15196 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
15197 * @phba: Pointer to HBA context object.
15198 * @cq: Pointer to completion queue.
15199 * @rcqe: Pointer to receive-queue completion queue entry.
15200 *
15201 * This routine process a receive-queue completion queue entry.
15202 *
15203 * Return: true if work posted to worker thread, otherwise false.
15204 **/
15205 static bool
lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_rcqe * rcqe)15206 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15207 struct lpfc_rcqe *rcqe)
15208 {
15209 bool workposted = false;
15210 struct lpfc_queue *hrq;
15211 struct lpfc_queue *drq;
15212 struct rqb_dmabuf *dma_buf;
15213 struct fc_frame_header *fc_hdr;
15214 struct lpfc_nvmet_tgtport *tgtp;
15215 uint32_t status, rq_id;
15216 unsigned long iflags;
15217 uint32_t fctl, idx;
15218
15219 if ((phba->nvmet_support == 0) ||
15220 (phba->sli4_hba.nvmet_cqset == NULL))
15221 return workposted;
15222
15223 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
15224 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
15225 drq = phba->sli4_hba.nvmet_mrq_data[idx];
15226
15227 /* sanity check on queue memory */
15228 if (unlikely(!hrq) || unlikely(!drq))
15229 return workposted;
15230
15231 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
15232 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
15233 else
15234 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
15235
15236 if ((phba->nvmet_support == 0) ||
15237 (rq_id != hrq->queue_id))
15238 return workposted;
15239
15240 status = bf_get(lpfc_rcqe_status, rcqe);
15241 switch (status) {
15242 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
15243 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15244 "6126 Receive Frame Truncated!!\n");
15245 fallthrough;
15246 case FC_STATUS_RQ_SUCCESS:
15247 spin_lock_irqsave(&phba->hbalock, iflags);
15248 lpfc_sli4_rq_release(hrq, drq);
15249 dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
15250 if (!dma_buf) {
15251 hrq->RQ_no_buf_found++;
15252 spin_unlock_irqrestore(&phba->hbalock, iflags);
15253 goto out;
15254 }
15255 spin_unlock_irqrestore(&phba->hbalock, iflags);
15256 hrq->RQ_rcv_buf++;
15257 hrq->RQ_buf_posted--;
15258 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
15259
15260 /* Just some basic sanity checks on FCP Command frame */
15261 fctl = (fc_hdr->fh_f_ctl[0] << 16 |
15262 fc_hdr->fh_f_ctl[1] << 8 |
15263 fc_hdr->fh_f_ctl[2]);
15264 if (((fctl &
15265 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
15266 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
15267 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
15268 goto drop;
15269
15270 if (fc_hdr->fh_type == FC_TYPE_FCP) {
15271 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
15272 lpfc_nvmet_unsol_fcp_event(
15273 phba, idx, dma_buf, cq->isr_timestamp,
15274 cq->q_flag & HBA_NVMET_CQ_NOTIFY);
15275 return false;
15276 }
15277 drop:
15278 lpfc_rq_buf_free(phba, &dma_buf->hbuf);
15279 break;
15280 case FC_STATUS_INSUFF_BUF_FRM_DISC:
15281 if (phba->nvmet_support) {
15282 tgtp = phba->targetport->private;
15283 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15284 "6401 RQE Error x%x, posted %d err_cnt "
15285 "%d: %x %x %x\n",
15286 status, hrq->RQ_buf_posted,
15287 hrq->RQ_no_posted_buf,
15288 atomic_read(&tgtp->rcv_fcp_cmd_in),
15289 atomic_read(&tgtp->rcv_fcp_cmd_out),
15290 atomic_read(&tgtp->xmt_fcp_release));
15291 }
15292 fallthrough;
15293
15294 case FC_STATUS_INSUFF_BUF_NEED_BUF:
15295 hrq->RQ_no_posted_buf++;
15296 /* Post more buffers if possible */
15297 break;
15298 case FC_STATUS_RQ_DMA_FAILURE:
15299 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15300 "2575 RQE DMA Error x%x, x%08x x%08x x%08x "
15301 "x%08x\n",
15302 status, rcqe->word0, rcqe->word1,
15303 rcqe->word2, rcqe->word3);
15304
15305 /* If IV set, no further recovery */
15306 if (bf_get(lpfc_rcqe_iv, rcqe))
15307 break;
15308
15309 /* recycle consumed resource */
15310 spin_lock_irqsave(&phba->hbalock, iflags);
15311 lpfc_sli4_rq_release(hrq, drq);
15312 dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
15313 if (!dma_buf) {
15314 hrq->RQ_no_buf_found++;
15315 spin_unlock_irqrestore(&phba->hbalock, iflags);
15316 break;
15317 }
15318 hrq->RQ_rcv_buf++;
15319 hrq->RQ_buf_posted--;
15320 spin_unlock_irqrestore(&phba->hbalock, iflags);
15321 lpfc_rq_buf_free(phba, &dma_buf->hbuf);
15322 break;
15323 default:
15324 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15325 "2576 Unexpected RQE Status x%x, w0-3 x%08x "
15326 "x%08x x%08x x%08x\n",
15327 status, rcqe->word0, rcqe->word1,
15328 rcqe->word2, rcqe->word3);
15329 break;
15330 }
15331 out:
15332 return workposted;
15333 }
15334
15335 /**
15336 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
15337 * @phba: adapter with cq
15338 * @cq: Pointer to the completion queue.
15339 * @cqe: Pointer to fast-path completion queue entry.
15340 *
15341 * This routine process a fast-path work queue completion entry from fast-path
15342 * event queue for FCP command response completion.
15343 *
15344 * Return: true if work posted to worker thread, otherwise false.
15345 **/
15346 static bool
lpfc_sli4_fp_handle_cqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)15347 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15348 struct lpfc_cqe *cqe)
15349 {
15350 struct lpfc_wcqe_release wcqe;
15351 bool workposted = false;
15352
15353 /* Copy the work queue CQE and convert endian order if needed */
15354 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
15355
15356 /* Check and process for different type of WCQE and dispatch */
15357 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
15358 case CQE_CODE_COMPL_WQE:
15359 case CQE_CODE_NVME_ERSP:
15360 cq->CQ_wq++;
15361 /* Process the WQ complete event */
15362 phba->last_completion_time = jiffies;
15363 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS)
15364 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
15365 (struct lpfc_wcqe_complete *)&wcqe);
15366 break;
15367 case CQE_CODE_RELEASE_WQE:
15368 cq->CQ_release_wqe++;
15369 /* Process the WQ release event */
15370 lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
15371 (struct lpfc_wcqe_release *)&wcqe);
15372 break;
15373 case CQE_CODE_XRI_ABORTED:
15374 cq->CQ_xri_aborted++;
15375 /* Process the WQ XRI abort event */
15376 phba->last_completion_time = jiffies;
15377 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
15378 (struct sli4_wcqe_xri_aborted *)&wcqe);
15379 break;
15380 case CQE_CODE_RECEIVE_V1:
15381 case CQE_CODE_RECEIVE:
15382 phba->last_completion_time = jiffies;
15383 if (cq->subtype == LPFC_NVMET) {
15384 workposted = lpfc_sli4_nvmet_handle_rcqe(
15385 phba, cq, (struct lpfc_rcqe *)&wcqe);
15386 }
15387 break;
15388 default:
15389 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15390 "0144 Not a valid CQE code: x%x\n",
15391 bf_get(lpfc_wcqe_c_code, &wcqe));
15392 break;
15393 }
15394 return workposted;
15395 }
15396
15397 /**
15398 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
15399 * @cq: Pointer to CQ to be processed
15400 *
15401 * This routine calls the cq processing routine with the handler for
15402 * fast path CQEs.
15403 *
15404 * The CQ routine returns two values: the first is the calling status,
15405 * which indicates whether work was queued to the background discovery
15406 * thread. If true, the routine should wakeup the discovery thread;
15407 * the second is the delay parameter. If non-zero, rather than rearming
15408 * the CQ and yet another interrupt, the CQ handler should be queued so
15409 * that it is processed in a subsequent polling action. The value of
15410 * the delay indicates when to reschedule it.
15411 **/
15412 static void
__lpfc_sli4_hba_process_cq(struct lpfc_queue * cq)15413 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq)
15414 {
15415 struct lpfc_hba *phba = cq->phba;
15416 unsigned long delay;
15417 bool workposted = false;
15418 int ret;
15419
15420 /* process and rearm the CQ */
15421 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
15422 &delay);
15423
15424 if (delay) {
15425 if (is_kdump_kernel())
15426 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork,
15427 delay);
15428 else
15429 ret = queue_delayed_work_on(cq->chann, phba->wq,
15430 &cq->sched_irqwork, delay);
15431 if (!ret)
15432 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15433 "0367 Cannot schedule queue work "
15434 "for cqid=%d on CPU %d\n",
15435 cq->queue_id, cq->chann);
15436 }
15437
15438 /* wake up worker thread if there are works to be done */
15439 if (workposted)
15440 lpfc_worker_wake_up(phba);
15441 }
15442
15443 /**
15444 * lpfc_sli4_hba_process_cq - fast-path work handler when started by
15445 * interrupt
15446 * @work: pointer to work element
15447 *
15448 * translates from the work handler and calls the fast-path handler.
15449 **/
15450 static void
lpfc_sli4_hba_process_cq(struct work_struct * work)15451 lpfc_sli4_hba_process_cq(struct work_struct *work)
15452 {
15453 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
15454
15455 __lpfc_sli4_hba_process_cq(cq);
15456 }
15457
15458 /**
15459 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
15460 * @phba: Pointer to HBA context object.
15461 * @eq: Pointer to the queue structure.
15462 * @eqe: Pointer to fast-path event queue entry.
15463 * @poll_mode: poll_mode to execute processing the cq.
15464 *
15465 * This routine process a event queue entry from the fast-path event queue.
15466 * It will check the MajorCode and MinorCode to determine this is for a
15467 * completion event on a completion queue, if not, an error shall be logged
15468 * and just return. Otherwise, it will get to the corresponding completion
15469 * queue and process all the entries on the completion queue, rearm the
15470 * completion queue, and then return.
15471 **/
15472 static void
lpfc_sli4_hba_handle_eqe(struct lpfc_hba * phba,struct lpfc_queue * eq,struct lpfc_eqe * eqe,enum lpfc_poll_mode poll_mode)15473 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
15474 struct lpfc_eqe *eqe, enum lpfc_poll_mode poll_mode)
15475 {
15476 struct lpfc_queue *cq = NULL;
15477 uint32_t qidx = eq->hdwq;
15478 uint16_t cqid, id;
15479 int ret;
15480
15481 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
15482 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15483 "0366 Not a valid completion "
15484 "event: majorcode=x%x, minorcode=x%x\n",
15485 bf_get_le32(lpfc_eqe_major_code, eqe),
15486 bf_get_le32(lpfc_eqe_minor_code, eqe));
15487 return;
15488 }
15489
15490 /* Get the reference to the corresponding CQ */
15491 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
15492
15493 /* Use the fast lookup method first */
15494 if (cqid <= phba->sli4_hba.cq_max) {
15495 cq = phba->sli4_hba.cq_lookup[cqid];
15496 if (cq)
15497 goto work_cq;
15498 }
15499
15500 /* Next check for NVMET completion */
15501 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
15502 id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
15503 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
15504 /* Process NVMET unsol rcv */
15505 cq = phba->sli4_hba.nvmet_cqset[cqid - id];
15506 goto process_cq;
15507 }
15508 }
15509
15510 if (phba->sli4_hba.nvmels_cq &&
15511 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
15512 /* Process NVME unsol rcv */
15513 cq = phba->sli4_hba.nvmels_cq;
15514 }
15515
15516 /* Otherwise this is a Slow path event */
15517 if (cq == NULL) {
15518 lpfc_sli4_sp_handle_eqe(phba, eqe,
15519 phba->sli4_hba.hdwq[qidx].hba_eq);
15520 return;
15521 }
15522
15523 process_cq:
15524 if (unlikely(cqid != cq->queue_id)) {
15525 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15526 "0368 Miss-matched fast-path completion "
15527 "queue identifier: eqcqid=%d, fcpcqid=%d\n",
15528 cqid, cq->queue_id);
15529 return;
15530 }
15531
15532 work_cq:
15533 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS)
15534 if (phba->ktime_on)
15535 cq->isr_timestamp = ktime_get_ns();
15536 else
15537 cq->isr_timestamp = 0;
15538 #endif
15539
15540 switch (poll_mode) {
15541 case LPFC_THREADED_IRQ:
15542 __lpfc_sli4_hba_process_cq(cq);
15543 break;
15544 case LPFC_QUEUE_WORK:
15545 default:
15546 if (is_kdump_kernel())
15547 ret = queue_work(phba->wq, &cq->irqwork);
15548 else
15549 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork);
15550 if (!ret)
15551 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15552 "0383 Cannot schedule queue work "
15553 "for CQ eqcqid=%d, cqid=%d on CPU %d\n",
15554 cqid, cq->queue_id,
15555 raw_smp_processor_id());
15556 break;
15557 }
15558 }
15559
15560 /**
15561 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer
15562 * @work: pointer to work element
15563 *
15564 * translates from the work handler and calls the fast-path handler.
15565 **/
15566 static void
lpfc_sli4_dly_hba_process_cq(struct work_struct * work)15567 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
15568 {
15569 struct lpfc_queue *cq = container_of(to_delayed_work(work),
15570 struct lpfc_queue, sched_irqwork);
15571
15572 __lpfc_sli4_hba_process_cq(cq);
15573 }
15574
15575 /**
15576 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
15577 * @irq: Interrupt number.
15578 * @dev_id: The device context pointer.
15579 *
15580 * This function is directly called from the PCI layer as an interrupt
15581 * service routine when device with SLI-4 interface spec is enabled with
15582 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
15583 * ring event in the HBA. However, when the device is enabled with either
15584 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
15585 * device-level interrupt handler. When the PCI slot is in error recovery
15586 * or the HBA is undergoing initialization, the interrupt handler will not
15587 * process the interrupt. The SCSI FCP fast-path ring event are handled in
15588 * the intrrupt context. This function is called without any lock held.
15589 * It gets the hbalock to access and update SLI data structures. Note that,
15590 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
15591 * equal to that of FCP CQ index.
15592 *
15593 * The link attention and ELS ring attention events are handled
15594 * by the worker thread. The interrupt handler signals the worker thread
15595 * and returns for these events. This function is called without any lock
15596 * held. It gets the hbalock to access and update SLI data structures.
15597 *
15598 * This function returns IRQ_HANDLED when interrupt is handled, IRQ_WAKE_THREAD
15599 * when interrupt is scheduled to be handled from a threaded irq context, or
15600 * else returns IRQ_NONE.
15601 **/
15602 irqreturn_t
lpfc_sli4_hba_intr_handler(int irq,void * dev_id)15603 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
15604 {
15605 struct lpfc_hba *phba;
15606 struct lpfc_hba_eq_hdl *hba_eq_hdl;
15607 struct lpfc_queue *fpeq;
15608 unsigned long iflag;
15609 int hba_eqidx;
15610 int ecount = 0;
15611 struct lpfc_eq_intr_info *eqi;
15612
15613 /* Get the driver's phba structure from the dev_id */
15614 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
15615 phba = hba_eq_hdl->phba;
15616 hba_eqidx = hba_eq_hdl->idx;
15617
15618 if (unlikely(!phba))
15619 return IRQ_NONE;
15620 if (unlikely(!phba->sli4_hba.hdwq))
15621 return IRQ_NONE;
15622
15623 /* Get to the EQ struct associated with this vector */
15624 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
15625 if (unlikely(!fpeq))
15626 return IRQ_NONE;
15627
15628 /* Check device state for handling interrupt */
15629 if (unlikely(lpfc_intr_state_check(phba))) {
15630 /* Check again for link_state with lock held */
15631 spin_lock_irqsave(&phba->hbalock, iflag);
15632 if (phba->link_state < LPFC_LINK_DOWN)
15633 /* Flush, clear interrupt, and rearm the EQ */
15634 lpfc_sli4_eqcq_flush(phba, fpeq);
15635 spin_unlock_irqrestore(&phba->hbalock, iflag);
15636 return IRQ_NONE;
15637 }
15638
15639 switch (fpeq->poll_mode) {
15640 case LPFC_THREADED_IRQ:
15641 /* CGN mgmt is mutually exclusive from irq processing */
15642 if (phba->cmf_active_mode == LPFC_CFG_OFF)
15643 return IRQ_WAKE_THREAD;
15644 fallthrough;
15645 case LPFC_QUEUE_WORK:
15646 default:
15647 eqi = this_cpu_ptr(phba->sli4_hba.eq_info);
15648 eqi->icnt++;
15649
15650 fpeq->last_cpu = raw_smp_processor_id();
15651
15652 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER &&
15653 fpeq->q_flag & HBA_EQ_DELAY_CHK &&
15654 phba->cfg_auto_imax &&
15655 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
15656 phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
15657 lpfc_sli4_mod_hba_eq_delay(phba, fpeq,
15658 LPFC_MAX_AUTO_EQ_DELAY);
15659
15660 /* process and rearm the EQ */
15661 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM,
15662 LPFC_QUEUE_WORK);
15663
15664 if (unlikely(ecount == 0)) {
15665 fpeq->EQ_no_entry++;
15666 if (phba->intr_type == MSIX)
15667 /* MSI-X treated interrupt served as no EQ share INT */
15668 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15669 "0358 MSI-X interrupt with no EQE\n");
15670 else
15671 /* Non MSI-X treated on interrupt as EQ share INT */
15672 return IRQ_NONE;
15673 }
15674 }
15675
15676 return IRQ_HANDLED;
15677 } /* lpfc_sli4_hba_intr_handler */
15678
15679 /**
15680 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
15681 * @irq: Interrupt number.
15682 * @dev_id: The device context pointer.
15683 *
15684 * This function is the device-level interrupt handler to device with SLI-4
15685 * interface spec, called from the PCI layer when either MSI or Pin-IRQ
15686 * interrupt mode is enabled and there is an event in the HBA which requires
15687 * driver attention. This function invokes the slow-path interrupt attention
15688 * handling function and fast-path interrupt attention handling function in
15689 * turn to process the relevant HBA attention events. This function is called
15690 * without any lock held. It gets the hbalock to access and update SLI data
15691 * structures.
15692 *
15693 * This function returns IRQ_HANDLED when interrupt is handled, else it
15694 * returns IRQ_NONE.
15695 **/
15696 irqreturn_t
lpfc_sli4_intr_handler(int irq,void * dev_id)15697 lpfc_sli4_intr_handler(int irq, void *dev_id)
15698 {
15699 struct lpfc_hba *phba;
15700 irqreturn_t hba_irq_rc;
15701 bool hba_handled = false;
15702 int qidx;
15703
15704 /* Get the driver's phba structure from the dev_id */
15705 phba = (struct lpfc_hba *)dev_id;
15706
15707 if (unlikely(!phba))
15708 return IRQ_NONE;
15709
15710 /*
15711 * Invoke fast-path host attention interrupt handling as appropriate.
15712 */
15713 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
15714 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
15715 &phba->sli4_hba.hba_eq_hdl[qidx]);
15716 if (hba_irq_rc == IRQ_HANDLED)
15717 hba_handled |= true;
15718 }
15719
15720 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
15721 } /* lpfc_sli4_intr_handler */
15722
lpfc_sli4_poll_hbtimer(struct timer_list * t)15723 void lpfc_sli4_poll_hbtimer(struct timer_list *t)
15724 {
15725 struct lpfc_hba *phba = timer_container_of(phba, t, cpuhp_poll_timer);
15726 struct lpfc_queue *eq;
15727
15728 rcu_read_lock();
15729
15730 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list)
15731 lpfc_sli4_poll_eq(eq);
15732 if (!list_empty(&phba->poll_list))
15733 mod_timer(&phba->cpuhp_poll_timer,
15734 jiffies + msecs_to_jiffies(LPFC_POLL_HB));
15735
15736 rcu_read_unlock();
15737 }
15738
lpfc_sli4_add_to_poll_list(struct lpfc_queue * eq)15739 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq)
15740 {
15741 struct lpfc_hba *phba = eq->phba;
15742
15743 /* kickstart slowpath processing if needed */
15744 if (list_empty(&phba->poll_list))
15745 mod_timer(&phba->cpuhp_poll_timer,
15746 jiffies + msecs_to_jiffies(LPFC_POLL_HB));
15747
15748 list_add_rcu(&eq->_poll_list, &phba->poll_list);
15749 synchronize_rcu();
15750 }
15751
lpfc_sli4_remove_from_poll_list(struct lpfc_queue * eq)15752 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq)
15753 {
15754 struct lpfc_hba *phba = eq->phba;
15755
15756 /* Disable slowpath processing for this eq. Kick start the eq
15757 * by RE-ARMING the eq's ASAP
15758 */
15759 list_del_rcu(&eq->_poll_list);
15760 synchronize_rcu();
15761
15762 if (list_empty(&phba->poll_list))
15763 timer_delete_sync(&phba->cpuhp_poll_timer);
15764 }
15765
lpfc_sli4_cleanup_poll_list(struct lpfc_hba * phba)15766 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba)
15767 {
15768 struct lpfc_queue *eq, *next;
15769
15770 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list)
15771 list_del(&eq->_poll_list);
15772
15773 INIT_LIST_HEAD(&phba->poll_list);
15774 synchronize_rcu();
15775 }
15776
15777 static inline void
__lpfc_sli4_switch_eqmode(struct lpfc_queue * eq,uint8_t mode)15778 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode)
15779 {
15780 if (mode == eq->mode)
15781 return;
15782 /*
15783 * currently this function is only called during a hotplug
15784 * event and the cpu on which this function is executing
15785 * is going offline. By now the hotplug has instructed
15786 * the scheduler to remove this cpu from cpu active mask.
15787 * So we don't need to work about being put aside by the
15788 * scheduler for a high priority process. Yes, the inte-
15789 * rrupts could come but they are known to retire ASAP.
15790 */
15791
15792 /* Disable polling in the fastpath */
15793 WRITE_ONCE(eq->mode, mode);
15794 /* flush out the store buffer */
15795 smp_wmb();
15796
15797 /*
15798 * Add this eq to the polling list and start polling. For
15799 * a grace period both interrupt handler and poller will
15800 * try to process the eq _but_ that's fine. We have a
15801 * synchronization mechanism in place (queue_claimed) to
15802 * deal with it. This is just a draining phase for int-
15803 * errupt handler (not eq's) as we have guranteed through
15804 * barrier that all the CPUs have seen the new CQ_POLLED
15805 * state. which will effectively disable the REARMING of
15806 * the EQ. The whole idea is eq's die off eventually as
15807 * we are not rearming EQ's anymore.
15808 */
15809 mode ? lpfc_sli4_add_to_poll_list(eq) :
15810 lpfc_sli4_remove_from_poll_list(eq);
15811 }
15812
lpfc_sli4_start_polling(struct lpfc_queue * eq)15813 void lpfc_sli4_start_polling(struct lpfc_queue *eq)
15814 {
15815 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL);
15816 }
15817
lpfc_sli4_stop_polling(struct lpfc_queue * eq)15818 void lpfc_sli4_stop_polling(struct lpfc_queue *eq)
15819 {
15820 struct lpfc_hba *phba = eq->phba;
15821
15822 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT);
15823
15824 /* Kick start for the pending io's in h/w.
15825 * Once we switch back to interrupt processing on a eq
15826 * the io path completion will only arm eq's when it
15827 * receives a completion. But since eq's are in disa-
15828 * rmed state it doesn't receive a completion. This
15829 * creates a deadlock scenaro.
15830 */
15831 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM);
15832 }
15833
15834 /**
15835 * lpfc_sli4_queue_free - free a queue structure and associated memory
15836 * @queue: The queue structure to free.
15837 *
15838 * This function frees a queue structure and the DMAable memory used for
15839 * the host resident queue. This function must be called after destroying the
15840 * queue on the HBA.
15841 **/
15842 void
lpfc_sli4_queue_free(struct lpfc_queue * queue)15843 lpfc_sli4_queue_free(struct lpfc_queue *queue)
15844 {
15845 struct lpfc_dmabuf *dmabuf;
15846
15847 if (!queue)
15848 return;
15849
15850 if (!list_empty(&queue->wq_list))
15851 list_del(&queue->wq_list);
15852
15853 while (!list_empty(&queue->page_list)) {
15854 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
15855 list);
15856 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
15857 dmabuf->virt, dmabuf->phys);
15858 kfree(dmabuf);
15859 }
15860 if (queue->rqbp) {
15861 lpfc_free_rq_buffer(queue->phba, queue);
15862 kfree(queue->rqbp);
15863 }
15864
15865 if (!list_empty(&queue->cpu_list))
15866 list_del(&queue->cpu_list);
15867
15868 kfree(queue);
15869 return;
15870 }
15871
15872 /**
15873 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
15874 * @phba: The HBA that this queue is being created on.
15875 * @page_size: The size of a queue page
15876 * @entry_size: The size of each queue entry for this queue.
15877 * @entry_count: The number of entries that this queue will handle.
15878 * @cpu: The cpu that will primarily utilize this queue.
15879 *
15880 * This function allocates a queue structure and the DMAable memory used for
15881 * the host resident queue. This function must be called before creating the
15882 * queue on the HBA.
15883 **/
15884 struct lpfc_queue *
lpfc_sli4_queue_alloc(struct lpfc_hba * phba,uint32_t page_size,uint32_t entry_size,uint32_t entry_count,int cpu)15885 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
15886 uint32_t entry_size, uint32_t entry_count, int cpu)
15887 {
15888 struct lpfc_queue *queue;
15889 struct lpfc_dmabuf *dmabuf;
15890 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15891 uint16_t x, pgcnt;
15892
15893 if (!phba->sli4_hba.pc_sli4_params.supported)
15894 hw_page_size = page_size;
15895
15896 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
15897
15898 /* If needed, Adjust page count to match the max the adapter supports */
15899 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
15900 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
15901
15902 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
15903 GFP_KERNEL, cpu_to_node(cpu));
15904 if (!queue)
15905 return NULL;
15906
15907 INIT_LIST_HEAD(&queue->list);
15908 INIT_LIST_HEAD(&queue->_poll_list);
15909 INIT_LIST_HEAD(&queue->wq_list);
15910 INIT_LIST_HEAD(&queue->wqfull_list);
15911 INIT_LIST_HEAD(&queue->page_list);
15912 INIT_LIST_HEAD(&queue->child_list);
15913 INIT_LIST_HEAD(&queue->cpu_list);
15914
15915 /* Set queue parameters now. If the system cannot provide memory
15916 * resources, the free routine needs to know what was allocated.
15917 */
15918 queue->page_count = pgcnt;
15919 queue->q_pgs = (void **)&queue[1];
15920 queue->entry_cnt_per_pg = hw_page_size / entry_size;
15921 queue->entry_size = entry_size;
15922 queue->entry_count = entry_count;
15923 queue->page_size = hw_page_size;
15924 queue->phba = phba;
15925
15926 for (x = 0; x < queue->page_count; x++) {
15927 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
15928 dev_to_node(&phba->pcidev->dev));
15929 if (!dmabuf)
15930 goto out_fail;
15931 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
15932 hw_page_size, &dmabuf->phys,
15933 GFP_KERNEL);
15934 if (!dmabuf->virt) {
15935 kfree(dmabuf);
15936 goto out_fail;
15937 }
15938 dmabuf->buffer_tag = x;
15939 list_add_tail(&dmabuf->list, &queue->page_list);
15940 /* use lpfc_sli4_qe to index a paritcular entry in this page */
15941 queue->q_pgs[x] = dmabuf->virt;
15942 }
15943 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
15944 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
15945 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
15946 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
15947
15948 /* notify_interval will be set during q creation */
15949
15950 return queue;
15951 out_fail:
15952 lpfc_sli4_queue_free(queue);
15953 return NULL;
15954 }
15955
15956 /**
15957 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
15958 * @phba: HBA structure that indicates port to create a queue on.
15959 * @pci_barset: PCI BAR set flag.
15960 *
15961 * This function shall perform iomap of the specified PCI BAR address to host
15962 * memory address if not already done so and return it. The returned host
15963 * memory address can be NULL.
15964 */
15965 static void __iomem *
lpfc_dual_chute_pci_bar_map(struct lpfc_hba * phba,uint16_t pci_barset)15966 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
15967 {
15968 if (!phba->pcidev)
15969 return NULL;
15970
15971 switch (pci_barset) {
15972 case WQ_PCI_BAR_0_AND_1:
15973 return phba->pci_bar0_memmap_p;
15974 case WQ_PCI_BAR_2_AND_3:
15975 return phba->pci_bar2_memmap_p;
15976 case WQ_PCI_BAR_4_AND_5:
15977 return phba->pci_bar4_memmap_p;
15978 default:
15979 break;
15980 }
15981 return NULL;
15982 }
15983
15984 /**
15985 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
15986 * @phba: HBA structure that EQs are on.
15987 * @startq: The starting EQ index to modify
15988 * @numq: The number of EQs (consecutive indexes) to modify
15989 * @usdelay: amount of delay
15990 *
15991 * This function revises the EQ delay on 1 or more EQs. The EQ delay
15992 * is set either by writing to a register (if supported by the SLI Port)
15993 * or by mailbox command. The mailbox command allows several EQs to be
15994 * updated at once.
15995 *
15996 * The @phba struct is used to send a mailbox command to HBA. The @startq
15997 * is used to get the starting EQ index to change. The @numq value is
15998 * used to specify how many consecutive EQ indexes, starting at EQ index,
15999 * are to be changed. This function is asynchronous and will wait for any
16000 * mailbox commands to finish before returning.
16001 *
16002 * On success this function will return a zero. If unable to allocate
16003 * enough memory this function will return -ENOMEM. If a mailbox command
16004 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
16005 * have had their delay multipler changed.
16006 **/
16007 void
lpfc_modify_hba_eq_delay(struct lpfc_hba * phba,uint32_t startq,uint32_t numq,uint32_t usdelay)16008 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
16009 uint32_t numq, uint32_t usdelay)
16010 {
16011 struct lpfc_mbx_modify_eq_delay *eq_delay;
16012 LPFC_MBOXQ_t *mbox;
16013 struct lpfc_queue *eq;
16014 int cnt = 0, rc, length;
16015 uint32_t shdr_status, shdr_add_status;
16016 uint32_t dmult;
16017 int qidx;
16018 union lpfc_sli4_cfg_shdr *shdr;
16019
16020 if (startq >= phba->cfg_irq_chann)
16021 return;
16022
16023 if (usdelay > 0xFFFF) {
16024 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
16025 "6429 usdelay %d too large. Scaled down to "
16026 "0xFFFF.\n", usdelay);
16027 usdelay = 0xFFFF;
16028 }
16029
16030 /* set values by EQ_DELAY register if supported */
16031 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
16032 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
16033 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
16034 if (!eq)
16035 continue;
16036
16037 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
16038
16039 if (++cnt >= numq)
16040 break;
16041 }
16042 return;
16043 }
16044
16045 /* Otherwise, set values by mailbox cmd */
16046
16047 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16048 if (!mbox) {
16049 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16050 "6428 Failed allocating mailbox cmd buffer."
16051 " EQ delay was not set.\n");
16052 return;
16053 }
16054 length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
16055 sizeof(struct lpfc_sli4_cfg_mhdr));
16056 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16057 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
16058 length, LPFC_SLI4_MBX_EMBED);
16059 eq_delay = &mbox->u.mqe.un.eq_delay;
16060
16061 /* Calculate delay multiper from maximum interrupt per second */
16062 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
16063 if (dmult)
16064 dmult--;
16065 if (dmult > LPFC_DMULT_MAX)
16066 dmult = LPFC_DMULT_MAX;
16067
16068 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
16069 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
16070 if (!eq)
16071 continue;
16072 eq->q_mode = usdelay;
16073 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
16074 eq_delay->u.request.eq[cnt].phase = 0;
16075 eq_delay->u.request.eq[cnt].delay_multi = dmult;
16076
16077 if (++cnt >= numq)
16078 break;
16079 }
16080 eq_delay->u.request.num_eq = cnt;
16081
16082 mbox->vport = phba->pport;
16083 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16084 mbox->ctx_ndlp = NULL;
16085 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16086 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
16087 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16088 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16089 if (shdr_status || shdr_add_status || rc) {
16090 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16091 "2512 MODIFY_EQ_DELAY mailbox failed with "
16092 "status x%x add_status x%x, mbx status x%x\n",
16093 shdr_status, shdr_add_status, rc);
16094 }
16095 mempool_free(mbox, phba->mbox_mem_pool);
16096 return;
16097 }
16098
16099 /**
16100 * lpfc_eq_create - Create an Event Queue on the HBA
16101 * @phba: HBA structure that indicates port to create a queue on.
16102 * @eq: The queue structure to use to create the event queue.
16103 * @imax: The maximum interrupt per second limit.
16104 *
16105 * This function creates an event queue, as detailed in @eq, on a port,
16106 * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
16107 *
16108 * The @phba struct is used to send mailbox command to HBA. The @eq struct
16109 * is used to get the entry count and entry size that are necessary to
16110 * determine the number of pages to allocate and use for this queue. This
16111 * function will send the EQ_CREATE mailbox command to the HBA to setup the
16112 * event queue. This function is asynchronous and will wait for the mailbox
16113 * command to finish before continuing.
16114 *
16115 * On success this function will return a zero. If unable to allocate enough
16116 * memory this function will return -ENOMEM. If the queue create mailbox command
16117 * fails this function will return -ENXIO.
16118 **/
16119 int
lpfc_eq_create(struct lpfc_hba * phba,struct lpfc_queue * eq,uint32_t imax)16120 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
16121 {
16122 struct lpfc_mbx_eq_create *eq_create;
16123 LPFC_MBOXQ_t *mbox;
16124 int rc, length, status = 0;
16125 struct lpfc_dmabuf *dmabuf;
16126 uint32_t shdr_status, shdr_add_status;
16127 union lpfc_sli4_cfg_shdr *shdr;
16128 uint16_t dmult;
16129 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16130
16131 /* sanity check on queue memory */
16132 if (!eq)
16133 return -ENODEV;
16134 if (!phba->sli4_hba.pc_sli4_params.supported)
16135 hw_page_size = SLI4_PAGE_SIZE;
16136
16137 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16138 if (!mbox)
16139 return -ENOMEM;
16140 length = (sizeof(struct lpfc_mbx_eq_create) -
16141 sizeof(struct lpfc_sli4_cfg_mhdr));
16142 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16143 LPFC_MBOX_OPCODE_EQ_CREATE,
16144 length, LPFC_SLI4_MBX_EMBED);
16145 eq_create = &mbox->u.mqe.un.eq_create;
16146 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
16147 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
16148 eq->page_count);
16149 bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
16150 LPFC_EQE_SIZE);
16151 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
16152
16153 /* Use version 2 of CREATE_EQ if eqav is set */
16154 if (phba->sli4_hba.pc_sli4_params.eqav) {
16155 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16156 LPFC_Q_CREATE_VERSION_2);
16157 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
16158 phba->sli4_hba.pc_sli4_params.eqav);
16159 }
16160
16161 /* don't setup delay multiplier using EQ_CREATE */
16162 dmult = 0;
16163 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
16164 dmult);
16165 switch (eq->entry_count) {
16166 default:
16167 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16168 "0360 Unsupported EQ count. (%d)\n",
16169 eq->entry_count);
16170 if (eq->entry_count < 256) {
16171 status = -EINVAL;
16172 goto out;
16173 }
16174 fallthrough; /* otherwise default to smallest count */
16175 case 256:
16176 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16177 LPFC_EQ_CNT_256);
16178 break;
16179 case 512:
16180 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16181 LPFC_EQ_CNT_512);
16182 break;
16183 case 1024:
16184 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16185 LPFC_EQ_CNT_1024);
16186 break;
16187 case 2048:
16188 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16189 LPFC_EQ_CNT_2048);
16190 break;
16191 case 4096:
16192 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16193 LPFC_EQ_CNT_4096);
16194 break;
16195 }
16196 list_for_each_entry(dmabuf, &eq->page_list, list) {
16197 memset(dmabuf->virt, 0, hw_page_size);
16198 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16199 putPaddrLow(dmabuf->phys);
16200 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16201 putPaddrHigh(dmabuf->phys);
16202 }
16203 mbox->vport = phba->pport;
16204 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16205 mbox->ctx_buf = NULL;
16206 mbox->ctx_ndlp = NULL;
16207 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16208 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16209 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16210 if (shdr_status || shdr_add_status || rc) {
16211 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16212 "2500 EQ_CREATE mailbox failed with "
16213 "status x%x add_status x%x, mbx status x%x\n",
16214 shdr_status, shdr_add_status, rc);
16215 status = -ENXIO;
16216 }
16217 eq->type = LPFC_EQ;
16218 eq->subtype = LPFC_NONE;
16219 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
16220 if (eq->queue_id == 0xFFFF)
16221 status = -ENXIO;
16222 eq->host_index = 0;
16223 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
16224 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
16225 out:
16226 mempool_free(mbox, phba->mbox_mem_pool);
16227 return status;
16228 }
16229
16230 /**
16231 * lpfc_sli4_hba_intr_handler_th - SLI4 HBA threaded interrupt handler
16232 * @irq: Interrupt number.
16233 * @dev_id: The device context pointer.
16234 *
16235 * This routine is a mirror of lpfc_sli4_hba_intr_handler, but executed within
16236 * threaded irq context.
16237 *
16238 * Returns
16239 * IRQ_HANDLED - interrupt is handled
16240 * IRQ_NONE - otherwise
16241 **/
lpfc_sli4_hba_intr_handler_th(int irq,void * dev_id)16242 irqreturn_t lpfc_sli4_hba_intr_handler_th(int irq, void *dev_id)
16243 {
16244 struct lpfc_hba *phba;
16245 struct lpfc_hba_eq_hdl *hba_eq_hdl;
16246 struct lpfc_queue *fpeq;
16247 int ecount = 0;
16248 int hba_eqidx;
16249 struct lpfc_eq_intr_info *eqi;
16250
16251 /* Get the driver's phba structure from the dev_id */
16252 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
16253 phba = hba_eq_hdl->phba;
16254 hba_eqidx = hba_eq_hdl->idx;
16255
16256 if (unlikely(!phba))
16257 return IRQ_NONE;
16258 if (unlikely(!phba->sli4_hba.hdwq))
16259 return IRQ_NONE;
16260
16261 /* Get to the EQ struct associated with this vector */
16262 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
16263 if (unlikely(!fpeq))
16264 return IRQ_NONE;
16265
16266 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, raw_smp_processor_id());
16267 eqi->icnt++;
16268
16269 fpeq->last_cpu = raw_smp_processor_id();
16270
16271 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER &&
16272 fpeq->q_flag & HBA_EQ_DELAY_CHK &&
16273 phba->cfg_auto_imax &&
16274 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
16275 phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
16276 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
16277
16278 /* process and rearm the EQ */
16279 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM,
16280 LPFC_THREADED_IRQ);
16281
16282 if (unlikely(ecount == 0)) {
16283 fpeq->EQ_no_entry++;
16284 if (phba->intr_type == MSIX)
16285 /* MSI-X treated interrupt served as no EQ share INT */
16286 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
16287 "3358 MSI-X interrupt with no EQE\n");
16288 else
16289 /* Non MSI-X treated on interrupt as EQ share INT */
16290 return IRQ_NONE;
16291 }
16292 return IRQ_HANDLED;
16293 }
16294
16295 /**
16296 * lpfc_cq_create - Create a Completion Queue on the HBA
16297 * @phba: HBA structure that indicates port to create a queue on.
16298 * @cq: The queue structure to use to create the completion queue.
16299 * @eq: The event queue to bind this completion queue to.
16300 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
16301 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
16302 *
16303 * This function creates a completion queue, as detailed in @wq, on a port,
16304 * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
16305 *
16306 * The @phba struct is used to send mailbox command to HBA. The @cq struct
16307 * is used to get the entry count and entry size that are necessary to
16308 * determine the number of pages to allocate and use for this queue. The @eq
16309 * is used to indicate which event queue to bind this completion queue to. This
16310 * function will send the CQ_CREATE mailbox command to the HBA to setup the
16311 * completion queue. This function is asynchronous and will wait for the mailbox
16312 * command to finish before continuing.
16313 *
16314 * On success this function will return a zero. If unable to allocate enough
16315 * memory this function will return -ENOMEM. If the queue create mailbox command
16316 * fails this function will return -ENXIO.
16317 **/
16318 int
lpfc_cq_create(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_queue * eq,uint32_t type,uint32_t subtype)16319 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
16320 struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
16321 {
16322 struct lpfc_mbx_cq_create *cq_create;
16323 struct lpfc_dmabuf *dmabuf;
16324 LPFC_MBOXQ_t *mbox;
16325 int rc, length, status = 0;
16326 uint32_t shdr_status, shdr_add_status;
16327 union lpfc_sli4_cfg_shdr *shdr;
16328
16329 /* sanity check on queue memory */
16330 if (!cq || !eq)
16331 return -ENODEV;
16332
16333 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16334 if (!mbox)
16335 return -ENOMEM;
16336 length = (sizeof(struct lpfc_mbx_cq_create) -
16337 sizeof(struct lpfc_sli4_cfg_mhdr));
16338 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16339 LPFC_MBOX_OPCODE_CQ_CREATE,
16340 length, LPFC_SLI4_MBX_EMBED);
16341 cq_create = &mbox->u.mqe.un.cq_create;
16342 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
16343 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
16344 cq->page_count);
16345 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
16346 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
16347 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16348 phba->sli4_hba.pc_sli4_params.cqv);
16349 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
16350 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
16351 (cq->page_size / SLI4_PAGE_SIZE));
16352 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
16353 eq->queue_id);
16354 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
16355 phba->sli4_hba.pc_sli4_params.cqav);
16356 } else {
16357 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
16358 eq->queue_id);
16359 }
16360 switch (cq->entry_count) {
16361 case 2048:
16362 case 4096:
16363 if (phba->sli4_hba.pc_sli4_params.cqv ==
16364 LPFC_Q_CREATE_VERSION_2) {
16365 cq_create->u.request.context.lpfc_cq_context_count =
16366 cq->entry_count;
16367 bf_set(lpfc_cq_context_count,
16368 &cq_create->u.request.context,
16369 LPFC_CQ_CNT_WORD7);
16370 break;
16371 }
16372 fallthrough;
16373 default:
16374 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16375 "0361 Unsupported CQ count: "
16376 "entry cnt %d sz %d pg cnt %d\n",
16377 cq->entry_count, cq->entry_size,
16378 cq->page_count);
16379 if (cq->entry_count < 256) {
16380 status = -EINVAL;
16381 goto out;
16382 }
16383 fallthrough; /* otherwise default to smallest count */
16384 case 256:
16385 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
16386 LPFC_CQ_CNT_256);
16387 break;
16388 case 512:
16389 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
16390 LPFC_CQ_CNT_512);
16391 break;
16392 case 1024:
16393 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
16394 LPFC_CQ_CNT_1024);
16395 break;
16396 }
16397 list_for_each_entry(dmabuf, &cq->page_list, list) {
16398 memset(dmabuf->virt, 0, cq->page_size);
16399 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16400 putPaddrLow(dmabuf->phys);
16401 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16402 putPaddrHigh(dmabuf->phys);
16403 }
16404 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16405
16406 /* The IOCTL status is embedded in the mailbox subheader. */
16407 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16408 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16409 if (shdr_status || shdr_add_status || rc) {
16410 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16411 "2501 CQ_CREATE mailbox failed with "
16412 "status x%x add_status x%x, mbx status x%x\n",
16413 shdr_status, shdr_add_status, rc);
16414 status = -ENXIO;
16415 goto out;
16416 }
16417 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
16418 if (cq->queue_id == 0xFFFF) {
16419 status = -ENXIO;
16420 goto out;
16421 }
16422 /* link the cq onto the parent eq child list */
16423 list_add_tail(&cq->list, &eq->child_list);
16424 /* Set up completion queue's type and subtype */
16425 cq->type = type;
16426 cq->subtype = subtype;
16427 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
16428 cq->assoc_qid = eq->queue_id;
16429 cq->assoc_qp = eq;
16430 cq->host_index = 0;
16431 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
16432 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
16433
16434 if (cq->queue_id > phba->sli4_hba.cq_max)
16435 phba->sli4_hba.cq_max = cq->queue_id;
16436 out:
16437 mempool_free(mbox, phba->mbox_mem_pool);
16438 return status;
16439 }
16440
16441 /**
16442 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
16443 * @phba: HBA structure that indicates port to create a queue on.
16444 * @cqp: The queue structure array to use to create the completion queues.
16445 * @hdwq: The hardware queue array with the EQ to bind completion queues to.
16446 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
16447 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
16448 *
16449 * This function creates a set of completion queue, s to support MRQ
16450 * as detailed in @cqp, on a port,
16451 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
16452 *
16453 * The @phba struct is used to send mailbox command to HBA. The @cq struct
16454 * is used to get the entry count and entry size that are necessary to
16455 * determine the number of pages to allocate and use for this queue. The @eq
16456 * is used to indicate which event queue to bind this completion queue to. This
16457 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
16458 * completion queue. This function is asynchronous and will wait for the mailbox
16459 * command to finish before continuing.
16460 *
16461 * On success this function will return a zero. If unable to allocate enough
16462 * memory this function will return -ENOMEM. If the queue create mailbox command
16463 * fails this function will return -ENXIO.
16464 **/
16465 int
lpfc_cq_create_set(struct lpfc_hba * phba,struct lpfc_queue ** cqp,struct lpfc_sli4_hdw_queue * hdwq,uint32_t type,uint32_t subtype)16466 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
16467 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
16468 uint32_t subtype)
16469 {
16470 struct lpfc_queue *cq;
16471 struct lpfc_queue *eq;
16472 struct lpfc_mbx_cq_create_set *cq_set;
16473 struct lpfc_dmabuf *dmabuf;
16474 LPFC_MBOXQ_t *mbox;
16475 int rc, length, alloclen, status = 0;
16476 int cnt, idx, numcq, page_idx = 0;
16477 uint32_t shdr_status, shdr_add_status;
16478 union lpfc_sli4_cfg_shdr *shdr;
16479 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16480
16481 /* sanity check on queue memory */
16482 numcq = phba->cfg_nvmet_mrq;
16483 if (!cqp || !hdwq || !numcq)
16484 return -ENODEV;
16485
16486 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16487 if (!mbox)
16488 return -ENOMEM;
16489
16490 length = sizeof(struct lpfc_mbx_cq_create_set);
16491 length += ((numcq * cqp[0]->page_count) *
16492 sizeof(struct dma_address));
16493 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16494 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
16495 LPFC_SLI4_MBX_NEMBED);
16496 if (alloclen < length) {
16497 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16498 "3098 Allocated DMA memory size (%d) is "
16499 "less than the requested DMA memory size "
16500 "(%d)\n", alloclen, length);
16501 status = -ENOMEM;
16502 goto out;
16503 }
16504 cq_set = mbox->sge_array->addr[0];
16505 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
16506 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
16507
16508 for (idx = 0; idx < numcq; idx++) {
16509 cq = cqp[idx];
16510 eq = hdwq[idx].hba_eq;
16511 if (!cq || !eq) {
16512 status = -ENOMEM;
16513 goto out;
16514 }
16515 if (!phba->sli4_hba.pc_sli4_params.supported)
16516 hw_page_size = cq->page_size;
16517
16518 switch (idx) {
16519 case 0:
16520 bf_set(lpfc_mbx_cq_create_set_page_size,
16521 &cq_set->u.request,
16522 (hw_page_size / SLI4_PAGE_SIZE));
16523 bf_set(lpfc_mbx_cq_create_set_num_pages,
16524 &cq_set->u.request, cq->page_count);
16525 bf_set(lpfc_mbx_cq_create_set_evt,
16526 &cq_set->u.request, 1);
16527 bf_set(lpfc_mbx_cq_create_set_valid,
16528 &cq_set->u.request, 1);
16529 bf_set(lpfc_mbx_cq_create_set_cqe_size,
16530 &cq_set->u.request, 0);
16531 bf_set(lpfc_mbx_cq_create_set_num_cq,
16532 &cq_set->u.request, numcq);
16533 bf_set(lpfc_mbx_cq_create_set_autovalid,
16534 &cq_set->u.request,
16535 phba->sli4_hba.pc_sli4_params.cqav);
16536 switch (cq->entry_count) {
16537 case 2048:
16538 case 4096:
16539 if (phba->sli4_hba.pc_sli4_params.cqv ==
16540 LPFC_Q_CREATE_VERSION_2) {
16541 bf_set(lpfc_mbx_cq_create_set_cqe_cnt_lo,
16542 &cq_set->u.request,
16543 cq->entry_count);
16544 bf_set(lpfc_mbx_cq_create_set_cqecnt,
16545 &cq_set->u.request,
16546 LPFC_CQ_CNT_WORD7);
16547 break;
16548 }
16549 fallthrough;
16550 default:
16551 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16552 "3118 Bad CQ count. (%d)\n",
16553 cq->entry_count);
16554 if (cq->entry_count < 256) {
16555 status = -EINVAL;
16556 goto out;
16557 }
16558 fallthrough; /* otherwise default to smallest */
16559 case 256:
16560 bf_set(lpfc_mbx_cq_create_set_cqecnt,
16561 &cq_set->u.request, LPFC_CQ_CNT_256);
16562 break;
16563 case 512:
16564 bf_set(lpfc_mbx_cq_create_set_cqecnt,
16565 &cq_set->u.request, LPFC_CQ_CNT_512);
16566 break;
16567 case 1024:
16568 bf_set(lpfc_mbx_cq_create_set_cqecnt,
16569 &cq_set->u.request, LPFC_CQ_CNT_1024);
16570 break;
16571 }
16572 bf_set(lpfc_mbx_cq_create_set_eq_id0,
16573 &cq_set->u.request, eq->queue_id);
16574 break;
16575 case 1:
16576 bf_set(lpfc_mbx_cq_create_set_eq_id1,
16577 &cq_set->u.request, eq->queue_id);
16578 break;
16579 case 2:
16580 bf_set(lpfc_mbx_cq_create_set_eq_id2,
16581 &cq_set->u.request, eq->queue_id);
16582 break;
16583 case 3:
16584 bf_set(lpfc_mbx_cq_create_set_eq_id3,
16585 &cq_set->u.request, eq->queue_id);
16586 break;
16587 case 4:
16588 bf_set(lpfc_mbx_cq_create_set_eq_id4,
16589 &cq_set->u.request, eq->queue_id);
16590 break;
16591 case 5:
16592 bf_set(lpfc_mbx_cq_create_set_eq_id5,
16593 &cq_set->u.request, eq->queue_id);
16594 break;
16595 case 6:
16596 bf_set(lpfc_mbx_cq_create_set_eq_id6,
16597 &cq_set->u.request, eq->queue_id);
16598 break;
16599 case 7:
16600 bf_set(lpfc_mbx_cq_create_set_eq_id7,
16601 &cq_set->u.request, eq->queue_id);
16602 break;
16603 case 8:
16604 bf_set(lpfc_mbx_cq_create_set_eq_id8,
16605 &cq_set->u.request, eq->queue_id);
16606 break;
16607 case 9:
16608 bf_set(lpfc_mbx_cq_create_set_eq_id9,
16609 &cq_set->u.request, eq->queue_id);
16610 break;
16611 case 10:
16612 bf_set(lpfc_mbx_cq_create_set_eq_id10,
16613 &cq_set->u.request, eq->queue_id);
16614 break;
16615 case 11:
16616 bf_set(lpfc_mbx_cq_create_set_eq_id11,
16617 &cq_set->u.request, eq->queue_id);
16618 break;
16619 case 12:
16620 bf_set(lpfc_mbx_cq_create_set_eq_id12,
16621 &cq_set->u.request, eq->queue_id);
16622 break;
16623 case 13:
16624 bf_set(lpfc_mbx_cq_create_set_eq_id13,
16625 &cq_set->u.request, eq->queue_id);
16626 break;
16627 case 14:
16628 bf_set(lpfc_mbx_cq_create_set_eq_id14,
16629 &cq_set->u.request, eq->queue_id);
16630 break;
16631 case 15:
16632 bf_set(lpfc_mbx_cq_create_set_eq_id15,
16633 &cq_set->u.request, eq->queue_id);
16634 break;
16635 }
16636
16637 /* link the cq onto the parent eq child list */
16638 list_add_tail(&cq->list, &eq->child_list);
16639 /* Set up completion queue's type and subtype */
16640 cq->type = type;
16641 cq->subtype = subtype;
16642 cq->assoc_qid = eq->queue_id;
16643 cq->assoc_qp = eq;
16644 cq->host_index = 0;
16645 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
16646 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
16647 cq->entry_count);
16648 cq->chann = idx;
16649
16650 rc = 0;
16651 list_for_each_entry(dmabuf, &cq->page_list, list) {
16652 memset(dmabuf->virt, 0, hw_page_size);
16653 cnt = page_idx + dmabuf->buffer_tag;
16654 cq_set->u.request.page[cnt].addr_lo =
16655 putPaddrLow(dmabuf->phys);
16656 cq_set->u.request.page[cnt].addr_hi =
16657 putPaddrHigh(dmabuf->phys);
16658 rc++;
16659 }
16660 page_idx += rc;
16661 }
16662
16663 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16664
16665 /* The IOCTL status is embedded in the mailbox subheader. */
16666 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16667 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16668 if (shdr_status || shdr_add_status || rc) {
16669 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16670 "3119 CQ_CREATE_SET mailbox failed with "
16671 "status x%x add_status x%x, mbx status x%x\n",
16672 shdr_status, shdr_add_status, rc);
16673 status = -ENXIO;
16674 goto out;
16675 }
16676 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
16677 if (rc == 0xFFFF) {
16678 status = -ENXIO;
16679 goto out;
16680 }
16681
16682 for (idx = 0; idx < numcq; idx++) {
16683 cq = cqp[idx];
16684 cq->queue_id = rc + idx;
16685 if (cq->queue_id > phba->sli4_hba.cq_max)
16686 phba->sli4_hba.cq_max = cq->queue_id;
16687 }
16688
16689 out:
16690 lpfc_sli4_mbox_cmd_free(phba, mbox);
16691 return status;
16692 }
16693
16694 /**
16695 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
16696 * @phba: HBA structure that indicates port to create a queue on.
16697 * @mq: The queue structure to use to create the mailbox queue.
16698 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
16699 * @cq: The completion queue to associate with this cq.
16700 *
16701 * This function provides failback (fb) functionality when the
16702 * mq_create_ext fails on older FW generations. It's purpose is identical
16703 * to mq_create_ext otherwise.
16704 *
16705 * This routine cannot fail as all attributes were previously accessed and
16706 * initialized in mq_create_ext.
16707 **/
16708 static void
lpfc_mq_create_fb_init(struct lpfc_hba * phba,struct lpfc_queue * mq,LPFC_MBOXQ_t * mbox,struct lpfc_queue * cq)16709 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
16710 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
16711 {
16712 struct lpfc_mbx_mq_create *mq_create;
16713 struct lpfc_dmabuf *dmabuf;
16714 int length;
16715
16716 length = (sizeof(struct lpfc_mbx_mq_create) -
16717 sizeof(struct lpfc_sli4_cfg_mhdr));
16718 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16719 LPFC_MBOX_OPCODE_MQ_CREATE,
16720 length, LPFC_SLI4_MBX_EMBED);
16721 mq_create = &mbox->u.mqe.un.mq_create;
16722 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
16723 mq->page_count);
16724 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
16725 cq->queue_id);
16726 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
16727 switch (mq->entry_count) {
16728 case 16:
16729 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16730 LPFC_MQ_RING_SIZE_16);
16731 break;
16732 case 32:
16733 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16734 LPFC_MQ_RING_SIZE_32);
16735 break;
16736 case 64:
16737 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16738 LPFC_MQ_RING_SIZE_64);
16739 break;
16740 case 128:
16741 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16742 LPFC_MQ_RING_SIZE_128);
16743 break;
16744 }
16745 list_for_each_entry(dmabuf, &mq->page_list, list) {
16746 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16747 putPaddrLow(dmabuf->phys);
16748 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16749 putPaddrHigh(dmabuf->phys);
16750 }
16751 }
16752
16753 /**
16754 * lpfc_mq_create - Create a mailbox Queue on the HBA
16755 * @phba: HBA structure that indicates port to create a queue on.
16756 * @mq: The queue structure to use to create the mailbox queue.
16757 * @cq: The completion queue to associate with this cq.
16758 * @subtype: The queue's subtype.
16759 *
16760 * This function creates a mailbox queue, as detailed in @mq, on a port,
16761 * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
16762 *
16763 * The @phba struct is used to send mailbox command to HBA. The @cq struct
16764 * is used to get the entry count and entry size that are necessary to
16765 * determine the number of pages to allocate and use for this queue. This
16766 * function will send the MQ_CREATE mailbox command to the HBA to setup the
16767 * mailbox queue. This function is asynchronous and will wait for the mailbox
16768 * command to finish before continuing.
16769 *
16770 * On success this function will return a zero. If unable to allocate enough
16771 * memory this function will return -ENOMEM. If the queue create mailbox command
16772 * fails this function will return -ENXIO.
16773 **/
16774 int32_t
lpfc_mq_create(struct lpfc_hba * phba,struct lpfc_queue * mq,struct lpfc_queue * cq,uint32_t subtype)16775 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
16776 struct lpfc_queue *cq, uint32_t subtype)
16777 {
16778 struct lpfc_mbx_mq_create *mq_create;
16779 struct lpfc_mbx_mq_create_ext *mq_create_ext;
16780 struct lpfc_dmabuf *dmabuf;
16781 LPFC_MBOXQ_t *mbox;
16782 int rc, length, status = 0;
16783 uint32_t shdr_status, shdr_add_status;
16784 union lpfc_sli4_cfg_shdr *shdr;
16785 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16786
16787 /* sanity check on queue memory */
16788 if (!mq || !cq)
16789 return -ENODEV;
16790 if (!phba->sli4_hba.pc_sli4_params.supported)
16791 hw_page_size = SLI4_PAGE_SIZE;
16792
16793 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16794 if (!mbox)
16795 return -ENOMEM;
16796 length = (sizeof(struct lpfc_mbx_mq_create_ext) -
16797 sizeof(struct lpfc_sli4_cfg_mhdr));
16798 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16799 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
16800 length, LPFC_SLI4_MBX_EMBED);
16801
16802 mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
16803 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
16804 bf_set(lpfc_mbx_mq_create_ext_num_pages,
16805 &mq_create_ext->u.request, mq->page_count);
16806 bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
16807 &mq_create_ext->u.request, 1);
16808 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
16809 &mq_create_ext->u.request, 1);
16810 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
16811 &mq_create_ext->u.request, 1);
16812 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
16813 &mq_create_ext->u.request, 1);
16814 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
16815 &mq_create_ext->u.request, 1);
16816 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
16817 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16818 phba->sli4_hba.pc_sli4_params.mqv);
16819 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
16820 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
16821 cq->queue_id);
16822 else
16823 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
16824 cq->queue_id);
16825 switch (mq->entry_count) {
16826 default:
16827 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16828 "0362 Unsupported MQ count. (%d)\n",
16829 mq->entry_count);
16830 if (mq->entry_count < 16) {
16831 status = -EINVAL;
16832 goto out;
16833 }
16834 fallthrough; /* otherwise default to smallest count */
16835 case 16:
16836 bf_set(lpfc_mq_context_ring_size,
16837 &mq_create_ext->u.request.context,
16838 LPFC_MQ_RING_SIZE_16);
16839 break;
16840 case 32:
16841 bf_set(lpfc_mq_context_ring_size,
16842 &mq_create_ext->u.request.context,
16843 LPFC_MQ_RING_SIZE_32);
16844 break;
16845 case 64:
16846 bf_set(lpfc_mq_context_ring_size,
16847 &mq_create_ext->u.request.context,
16848 LPFC_MQ_RING_SIZE_64);
16849 break;
16850 case 128:
16851 bf_set(lpfc_mq_context_ring_size,
16852 &mq_create_ext->u.request.context,
16853 LPFC_MQ_RING_SIZE_128);
16854 break;
16855 }
16856 list_for_each_entry(dmabuf, &mq->page_list, list) {
16857 memset(dmabuf->virt, 0, hw_page_size);
16858 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
16859 putPaddrLow(dmabuf->phys);
16860 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
16861 putPaddrHigh(dmabuf->phys);
16862 }
16863 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16864 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
16865 &mq_create_ext->u.response);
16866 if (rc != MBX_SUCCESS) {
16867 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16868 "2795 MQ_CREATE_EXT failed with "
16869 "status x%x. Failback to MQ_CREATE.\n",
16870 rc);
16871 lpfc_mq_create_fb_init(phba, mq, mbox, cq);
16872 mq_create = &mbox->u.mqe.un.mq_create;
16873 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16874 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
16875 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
16876 &mq_create->u.response);
16877 }
16878
16879 /* The IOCTL status is embedded in the mailbox subheader. */
16880 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16881 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16882 if (shdr_status || shdr_add_status || rc) {
16883 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16884 "2502 MQ_CREATE mailbox failed with "
16885 "status x%x add_status x%x, mbx status x%x\n",
16886 shdr_status, shdr_add_status, rc);
16887 status = -ENXIO;
16888 goto out;
16889 }
16890 if (mq->queue_id == 0xFFFF) {
16891 status = -ENXIO;
16892 goto out;
16893 }
16894 mq->type = LPFC_MQ;
16895 mq->assoc_qid = cq->queue_id;
16896 mq->subtype = subtype;
16897 mq->host_index = 0;
16898 mq->hba_index = 0;
16899
16900 /* link the mq onto the parent cq child list */
16901 list_add_tail(&mq->list, &cq->child_list);
16902 out:
16903 mempool_free(mbox, phba->mbox_mem_pool);
16904 return status;
16905 }
16906
16907 /**
16908 * lpfc_wq_create - Create a Work Queue on the HBA
16909 * @phba: HBA structure that indicates port to create a queue on.
16910 * @wq: The queue structure to use to create the work queue.
16911 * @cq: The completion queue to bind this work queue to.
16912 * @subtype: The subtype of the work queue indicating its functionality.
16913 *
16914 * This function creates a work queue, as detailed in @wq, on a port, described
16915 * by @phba by sending a WQ_CREATE mailbox command to the HBA.
16916 *
16917 * The @phba struct is used to send mailbox command to HBA. The @wq struct
16918 * is used to get the entry count and entry size that are necessary to
16919 * determine the number of pages to allocate and use for this queue. The @cq
16920 * is used to indicate which completion queue to bind this work queue to. This
16921 * function will send the WQ_CREATE mailbox command to the HBA to setup the
16922 * work queue. This function is asynchronous and will wait for the mailbox
16923 * command to finish before continuing.
16924 *
16925 * On success this function will return a zero. If unable to allocate enough
16926 * memory this function will return -ENOMEM. If the queue create mailbox command
16927 * fails this function will return -ENXIO.
16928 **/
16929 int
lpfc_wq_create(struct lpfc_hba * phba,struct lpfc_queue * wq,struct lpfc_queue * cq,uint32_t subtype)16930 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
16931 struct lpfc_queue *cq, uint32_t subtype)
16932 {
16933 struct lpfc_mbx_wq_create *wq_create;
16934 struct lpfc_dmabuf *dmabuf;
16935 LPFC_MBOXQ_t *mbox;
16936 int rc, length, status = 0;
16937 uint32_t shdr_status, shdr_add_status;
16938 union lpfc_sli4_cfg_shdr *shdr;
16939 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16940 struct dma_address *page;
16941 void __iomem *bar_memmap_p;
16942 uint32_t db_offset;
16943 uint16_t pci_barset;
16944 uint8_t dpp_barset;
16945 uint32_t dpp_offset;
16946 uint8_t wq_create_version;
16947 #ifdef CONFIG_X86
16948 unsigned long pg_addr;
16949 #endif
16950
16951 /* sanity check on queue memory */
16952 if (!wq || !cq)
16953 return -ENODEV;
16954 if (!phba->sli4_hba.pc_sli4_params.supported)
16955 hw_page_size = wq->page_size;
16956
16957 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16958 if (!mbox)
16959 return -ENOMEM;
16960 length = (sizeof(struct lpfc_mbx_wq_create) -
16961 sizeof(struct lpfc_sli4_cfg_mhdr));
16962 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16963 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
16964 length, LPFC_SLI4_MBX_EMBED);
16965 wq_create = &mbox->u.mqe.un.wq_create;
16966 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
16967 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
16968 wq->page_count);
16969 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
16970 cq->queue_id);
16971
16972 /* wqv is the earliest version supported, NOT the latest */
16973 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16974 phba->sli4_hba.pc_sli4_params.wqv);
16975
16976 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
16977 (wq->page_size > SLI4_PAGE_SIZE))
16978 wq_create_version = LPFC_Q_CREATE_VERSION_1;
16979 else
16980 wq_create_version = LPFC_Q_CREATE_VERSION_0;
16981
16982 switch (wq_create_version) {
16983 case LPFC_Q_CREATE_VERSION_1:
16984 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
16985 wq->entry_count);
16986 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16987 LPFC_Q_CREATE_VERSION_1);
16988
16989 switch (wq->entry_size) {
16990 default:
16991 case 64:
16992 bf_set(lpfc_mbx_wq_create_wqe_size,
16993 &wq_create->u.request_1,
16994 LPFC_WQ_WQE_SIZE_64);
16995 break;
16996 case 128:
16997 bf_set(lpfc_mbx_wq_create_wqe_size,
16998 &wq_create->u.request_1,
16999 LPFC_WQ_WQE_SIZE_128);
17000 break;
17001 }
17002 /* Request DPP by default */
17003 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
17004 bf_set(lpfc_mbx_wq_create_page_size,
17005 &wq_create->u.request_1,
17006 (wq->page_size / SLI4_PAGE_SIZE));
17007 page = wq_create->u.request_1.page;
17008 break;
17009 default:
17010 page = wq_create->u.request.page;
17011 break;
17012 }
17013
17014 list_for_each_entry(dmabuf, &wq->page_list, list) {
17015 memset(dmabuf->virt, 0, hw_page_size);
17016 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
17017 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
17018 }
17019
17020 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
17021 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
17022
17023 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17024 /* The IOCTL status is embedded in the mailbox subheader. */
17025 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17026 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17027 if (shdr_status || shdr_add_status || rc) {
17028 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17029 "2503 WQ_CREATE mailbox failed with "
17030 "status x%x add_status x%x, mbx status x%x\n",
17031 shdr_status, shdr_add_status, rc);
17032 status = -ENXIO;
17033 goto out;
17034 }
17035
17036 if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
17037 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
17038 &wq_create->u.response);
17039 else
17040 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
17041 &wq_create->u.response_1);
17042
17043 if (wq->queue_id == 0xFFFF) {
17044 status = -ENXIO;
17045 goto out;
17046 }
17047
17048 wq->db_format = LPFC_DB_LIST_FORMAT;
17049 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
17050 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
17051 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
17052 &wq_create->u.response);
17053 if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
17054 (wq->db_format != LPFC_DB_RING_FORMAT)) {
17055 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17056 "3265 WQ[%d] doorbell format "
17057 "not supported: x%x\n",
17058 wq->queue_id, wq->db_format);
17059 status = -EINVAL;
17060 goto out;
17061 }
17062 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
17063 &wq_create->u.response);
17064 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
17065 pci_barset);
17066 if (!bar_memmap_p) {
17067 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17068 "3263 WQ[%d] failed to memmap "
17069 "pci barset:x%x\n",
17070 wq->queue_id, pci_barset);
17071 status = -ENOMEM;
17072 goto out;
17073 }
17074 db_offset = wq_create->u.response.doorbell_offset;
17075 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
17076 (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
17077 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17078 "3252 WQ[%d] doorbell offset "
17079 "not supported: x%x\n",
17080 wq->queue_id, db_offset);
17081 status = -EINVAL;
17082 goto out;
17083 }
17084 wq->db_regaddr = bar_memmap_p + db_offset;
17085 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
17086 "3264 WQ[%d]: barset:x%x, offset:x%x, "
17087 "format:x%x\n", wq->queue_id,
17088 pci_barset, db_offset, wq->db_format);
17089 } else
17090 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
17091 } else {
17092 /* Check if DPP was honored by the firmware */
17093 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
17094 &wq_create->u.response_1);
17095 if (wq->dpp_enable) {
17096 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
17097 &wq_create->u.response_1);
17098 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
17099 pci_barset);
17100 if (!bar_memmap_p) {
17101 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17102 "3267 WQ[%d] failed to memmap "
17103 "pci barset:x%x\n",
17104 wq->queue_id, pci_barset);
17105 status = -ENOMEM;
17106 goto out;
17107 }
17108 db_offset = wq_create->u.response_1.doorbell_offset;
17109 wq->db_regaddr = bar_memmap_p + db_offset;
17110 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
17111 &wq_create->u.response_1);
17112 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
17113 &wq_create->u.response_1);
17114 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
17115 dpp_barset);
17116 if (!bar_memmap_p) {
17117 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17118 "3268 WQ[%d] failed to memmap "
17119 "pci barset:x%x\n",
17120 wq->queue_id, dpp_barset);
17121 status = -ENOMEM;
17122 goto out;
17123 }
17124 dpp_offset = wq_create->u.response_1.dpp_offset;
17125 wq->dpp_regaddr = bar_memmap_p + dpp_offset;
17126 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
17127 "3271 WQ[%d]: barset:x%x, offset:x%x, "
17128 "dpp_id:x%x dpp_barset:x%x "
17129 "dpp_offset:x%x\n",
17130 wq->queue_id, pci_barset, db_offset,
17131 wq->dpp_id, dpp_barset, dpp_offset);
17132
17133 #ifdef CONFIG_X86
17134 /* Enable combined writes for DPP aperture */
17135 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
17136 rc = set_memory_wc(pg_addr, 1);
17137 if (rc) {
17138 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17139 "3272 Cannot setup Combined "
17140 "Write on WQ[%d] - disable DPP\n",
17141 wq->queue_id);
17142 phba->cfg_enable_dpp = 0;
17143 }
17144 #else
17145 phba->cfg_enable_dpp = 0;
17146 #endif
17147 } else
17148 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
17149 }
17150 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
17151 if (wq->pring == NULL) {
17152 status = -ENOMEM;
17153 goto out;
17154 }
17155 wq->type = LPFC_WQ;
17156 wq->assoc_qid = cq->queue_id;
17157 wq->subtype = subtype;
17158 wq->host_index = 0;
17159 wq->hba_index = 0;
17160 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
17161
17162 /* link the wq onto the parent cq child list */
17163 list_add_tail(&wq->list, &cq->child_list);
17164 out:
17165 mempool_free(mbox, phba->mbox_mem_pool);
17166 return status;
17167 }
17168
17169 /**
17170 * lpfc_rq_create - Create a Receive Queue on the HBA
17171 * @phba: HBA structure that indicates port to create a queue on.
17172 * @hrq: The queue structure to use to create the header receive queue.
17173 * @drq: The queue structure to use to create the data receive queue.
17174 * @cq: The completion queue to bind this work queue to.
17175 * @subtype: The subtype of the work queue indicating its functionality.
17176 *
17177 * This function creates a receive buffer queue pair , as detailed in @hrq and
17178 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
17179 * to the HBA.
17180 *
17181 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
17182 * struct is used to get the entry count that is necessary to determine the
17183 * number of pages to use for this queue. The @cq is used to indicate which
17184 * completion queue to bind received buffers that are posted to these queues to.
17185 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
17186 * receive queue pair. This function is asynchronous and will wait for the
17187 * mailbox command to finish before continuing.
17188 *
17189 * On success this function will return a zero. If unable to allocate enough
17190 * memory this function will return -ENOMEM. If the queue create mailbox command
17191 * fails this function will return -ENXIO.
17192 **/
17193 int
lpfc_rq_create(struct lpfc_hba * phba,struct lpfc_queue * hrq,struct lpfc_queue * drq,struct lpfc_queue * cq,uint32_t subtype)17194 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
17195 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
17196 {
17197 struct lpfc_mbx_rq_create *rq_create;
17198 struct lpfc_dmabuf *dmabuf;
17199 LPFC_MBOXQ_t *mbox;
17200 int rc, length, status = 0;
17201 uint32_t shdr_status, shdr_add_status;
17202 union lpfc_sli4_cfg_shdr *shdr;
17203 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
17204 void __iomem *bar_memmap_p;
17205 uint32_t db_offset;
17206 uint16_t pci_barset;
17207
17208 /* sanity check on queue memory */
17209 if (!hrq || !drq || !cq)
17210 return -ENODEV;
17211 if (!phba->sli4_hba.pc_sli4_params.supported)
17212 hw_page_size = SLI4_PAGE_SIZE;
17213
17214 if (hrq->entry_count != drq->entry_count)
17215 return -EINVAL;
17216 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17217 if (!mbox)
17218 return -ENOMEM;
17219 length = (sizeof(struct lpfc_mbx_rq_create) -
17220 sizeof(struct lpfc_sli4_cfg_mhdr));
17221 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17222 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
17223 length, LPFC_SLI4_MBX_EMBED);
17224 rq_create = &mbox->u.mqe.un.rq_create;
17225 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
17226 bf_set(lpfc_mbox_hdr_version, &shdr->request,
17227 phba->sli4_hba.pc_sli4_params.rqv);
17228 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
17229 bf_set(lpfc_rq_context_rqe_count_1,
17230 &rq_create->u.request.context,
17231 hrq->entry_count);
17232 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
17233 bf_set(lpfc_rq_context_rqe_size,
17234 &rq_create->u.request.context,
17235 LPFC_RQE_SIZE_8);
17236 bf_set(lpfc_rq_context_page_size,
17237 &rq_create->u.request.context,
17238 LPFC_RQ_PAGE_SIZE_4096);
17239 } else {
17240 switch (hrq->entry_count) {
17241 default:
17242 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17243 "2535 Unsupported RQ count. (%d)\n",
17244 hrq->entry_count);
17245 if (hrq->entry_count < 512) {
17246 status = -EINVAL;
17247 goto out;
17248 }
17249 fallthrough; /* otherwise default to smallest count */
17250 case 512:
17251 bf_set(lpfc_rq_context_rqe_count,
17252 &rq_create->u.request.context,
17253 LPFC_RQ_RING_SIZE_512);
17254 break;
17255 case 1024:
17256 bf_set(lpfc_rq_context_rqe_count,
17257 &rq_create->u.request.context,
17258 LPFC_RQ_RING_SIZE_1024);
17259 break;
17260 case 2048:
17261 bf_set(lpfc_rq_context_rqe_count,
17262 &rq_create->u.request.context,
17263 LPFC_RQ_RING_SIZE_2048);
17264 break;
17265 case 4096:
17266 bf_set(lpfc_rq_context_rqe_count,
17267 &rq_create->u.request.context,
17268 LPFC_RQ_RING_SIZE_4096);
17269 break;
17270 }
17271 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
17272 LPFC_HDR_BUF_SIZE);
17273 }
17274 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
17275 cq->queue_id);
17276 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
17277 hrq->page_count);
17278 list_for_each_entry(dmabuf, &hrq->page_list, list) {
17279 memset(dmabuf->virt, 0, hw_page_size);
17280 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
17281 putPaddrLow(dmabuf->phys);
17282 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
17283 putPaddrHigh(dmabuf->phys);
17284 }
17285 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
17286 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
17287
17288 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17289 /* The IOCTL status is embedded in the mailbox subheader. */
17290 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17291 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17292 if (shdr_status || shdr_add_status || rc) {
17293 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17294 "2504 RQ_CREATE mailbox failed with "
17295 "status x%x add_status x%x, mbx status x%x\n",
17296 shdr_status, shdr_add_status, rc);
17297 status = -ENXIO;
17298 goto out;
17299 }
17300 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17301 if (hrq->queue_id == 0xFFFF) {
17302 status = -ENXIO;
17303 goto out;
17304 }
17305
17306 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
17307 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
17308 &rq_create->u.response);
17309 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
17310 (hrq->db_format != LPFC_DB_RING_FORMAT)) {
17311 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17312 "3262 RQ [%d] doorbell format not "
17313 "supported: x%x\n", hrq->queue_id,
17314 hrq->db_format);
17315 status = -EINVAL;
17316 goto out;
17317 }
17318
17319 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
17320 &rq_create->u.response);
17321 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
17322 if (!bar_memmap_p) {
17323 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17324 "3269 RQ[%d] failed to memmap pci "
17325 "barset:x%x\n", hrq->queue_id,
17326 pci_barset);
17327 status = -ENOMEM;
17328 goto out;
17329 }
17330
17331 db_offset = rq_create->u.response.doorbell_offset;
17332 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
17333 (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
17334 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17335 "3270 RQ[%d] doorbell offset not "
17336 "supported: x%x\n", hrq->queue_id,
17337 db_offset);
17338 status = -EINVAL;
17339 goto out;
17340 }
17341 hrq->db_regaddr = bar_memmap_p + db_offset;
17342 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
17343 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
17344 "format:x%x\n", hrq->queue_id, pci_barset,
17345 db_offset, hrq->db_format);
17346 } else {
17347 hrq->db_format = LPFC_DB_RING_FORMAT;
17348 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17349 }
17350 hrq->type = LPFC_HRQ;
17351 hrq->assoc_qid = cq->queue_id;
17352 hrq->subtype = subtype;
17353 hrq->host_index = 0;
17354 hrq->hba_index = 0;
17355 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17356
17357 /* now create the data queue */
17358 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17359 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
17360 length, LPFC_SLI4_MBX_EMBED);
17361 bf_set(lpfc_mbox_hdr_version, &shdr->request,
17362 phba->sli4_hba.pc_sli4_params.rqv);
17363 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
17364 bf_set(lpfc_rq_context_rqe_count_1,
17365 &rq_create->u.request.context, hrq->entry_count);
17366 if (subtype == LPFC_NVMET)
17367 rq_create->u.request.context.buffer_size =
17368 LPFC_NVMET_DATA_BUF_SIZE;
17369 else
17370 rq_create->u.request.context.buffer_size =
17371 LPFC_DATA_BUF_SIZE;
17372 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
17373 LPFC_RQE_SIZE_8);
17374 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
17375 (PAGE_SIZE/SLI4_PAGE_SIZE));
17376 } else {
17377 switch (drq->entry_count) {
17378 default:
17379 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17380 "2536 Unsupported RQ count. (%d)\n",
17381 drq->entry_count);
17382 if (drq->entry_count < 512) {
17383 status = -EINVAL;
17384 goto out;
17385 }
17386 fallthrough; /* otherwise default to smallest count */
17387 case 512:
17388 bf_set(lpfc_rq_context_rqe_count,
17389 &rq_create->u.request.context,
17390 LPFC_RQ_RING_SIZE_512);
17391 break;
17392 case 1024:
17393 bf_set(lpfc_rq_context_rqe_count,
17394 &rq_create->u.request.context,
17395 LPFC_RQ_RING_SIZE_1024);
17396 break;
17397 case 2048:
17398 bf_set(lpfc_rq_context_rqe_count,
17399 &rq_create->u.request.context,
17400 LPFC_RQ_RING_SIZE_2048);
17401 break;
17402 case 4096:
17403 bf_set(lpfc_rq_context_rqe_count,
17404 &rq_create->u.request.context,
17405 LPFC_RQ_RING_SIZE_4096);
17406 break;
17407 }
17408 if (subtype == LPFC_NVMET)
17409 bf_set(lpfc_rq_context_buf_size,
17410 &rq_create->u.request.context,
17411 LPFC_NVMET_DATA_BUF_SIZE);
17412 else
17413 bf_set(lpfc_rq_context_buf_size,
17414 &rq_create->u.request.context,
17415 LPFC_DATA_BUF_SIZE);
17416 }
17417 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
17418 cq->queue_id);
17419 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
17420 drq->page_count);
17421 list_for_each_entry(dmabuf, &drq->page_list, list) {
17422 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
17423 putPaddrLow(dmabuf->phys);
17424 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
17425 putPaddrHigh(dmabuf->phys);
17426 }
17427 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
17428 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
17429 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17430 /* The IOCTL status is embedded in the mailbox subheader. */
17431 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
17432 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17433 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17434 if (shdr_status || shdr_add_status || rc) {
17435 status = -ENXIO;
17436 goto out;
17437 }
17438 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17439 if (drq->queue_id == 0xFFFF) {
17440 status = -ENXIO;
17441 goto out;
17442 }
17443 drq->type = LPFC_DRQ;
17444 drq->assoc_qid = cq->queue_id;
17445 drq->subtype = subtype;
17446 drq->host_index = 0;
17447 drq->hba_index = 0;
17448 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17449
17450 /* link the header and data RQs onto the parent cq child list */
17451 list_add_tail(&hrq->list, &cq->child_list);
17452 list_add_tail(&drq->list, &cq->child_list);
17453
17454 out:
17455 mempool_free(mbox, phba->mbox_mem_pool);
17456 return status;
17457 }
17458
17459 /**
17460 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
17461 * @phba: HBA structure that indicates port to create a queue on.
17462 * @hrqp: The queue structure array to use to create the header receive queues.
17463 * @drqp: The queue structure array to use to create the data receive queues.
17464 * @cqp: The completion queue array to bind these receive queues to.
17465 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
17466 *
17467 * This function creates a receive buffer queue pair , as detailed in @hrq and
17468 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
17469 * to the HBA.
17470 *
17471 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
17472 * struct is used to get the entry count that is necessary to determine the
17473 * number of pages to use for this queue. The @cq is used to indicate which
17474 * completion queue to bind received buffers that are posted to these queues to.
17475 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
17476 * receive queue pair. This function is asynchronous and will wait for the
17477 * mailbox command to finish before continuing.
17478 *
17479 * On success this function will return a zero. If unable to allocate enough
17480 * memory this function will return -ENOMEM. If the queue create mailbox command
17481 * fails this function will return -ENXIO.
17482 **/
17483 int
lpfc_mrq_create(struct lpfc_hba * phba,struct lpfc_queue ** hrqp,struct lpfc_queue ** drqp,struct lpfc_queue ** cqp,uint32_t subtype)17484 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
17485 struct lpfc_queue **drqp, struct lpfc_queue **cqp,
17486 uint32_t subtype)
17487 {
17488 struct lpfc_queue *hrq, *drq, *cq;
17489 struct lpfc_mbx_rq_create_v2 *rq_create;
17490 struct lpfc_dmabuf *dmabuf;
17491 LPFC_MBOXQ_t *mbox;
17492 int rc, length, alloclen, status = 0;
17493 int cnt, idx, numrq, page_idx = 0;
17494 uint32_t shdr_status, shdr_add_status;
17495 union lpfc_sli4_cfg_shdr *shdr;
17496 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
17497
17498 numrq = phba->cfg_nvmet_mrq;
17499 /* sanity check on array memory */
17500 if (!hrqp || !drqp || !cqp || !numrq)
17501 return -ENODEV;
17502 if (!phba->sli4_hba.pc_sli4_params.supported)
17503 hw_page_size = SLI4_PAGE_SIZE;
17504
17505 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17506 if (!mbox)
17507 return -ENOMEM;
17508
17509 length = sizeof(struct lpfc_mbx_rq_create_v2);
17510 length += ((2 * numrq * hrqp[0]->page_count) *
17511 sizeof(struct dma_address));
17512
17513 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17514 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
17515 LPFC_SLI4_MBX_NEMBED);
17516 if (alloclen < length) {
17517 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17518 "3099 Allocated DMA memory size (%d) is "
17519 "less than the requested DMA memory size "
17520 "(%d)\n", alloclen, length);
17521 status = -ENOMEM;
17522 goto out;
17523 }
17524
17525
17526
17527 rq_create = mbox->sge_array->addr[0];
17528 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
17529
17530 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
17531 cnt = 0;
17532
17533 for (idx = 0; idx < numrq; idx++) {
17534 hrq = hrqp[idx];
17535 drq = drqp[idx];
17536 cq = cqp[idx];
17537
17538 /* sanity check on queue memory */
17539 if (!hrq || !drq || !cq) {
17540 status = -ENODEV;
17541 goto out;
17542 }
17543
17544 if (hrq->entry_count != drq->entry_count) {
17545 status = -EINVAL;
17546 goto out;
17547 }
17548
17549 if (idx == 0) {
17550 bf_set(lpfc_mbx_rq_create_num_pages,
17551 &rq_create->u.request,
17552 hrq->page_count);
17553 bf_set(lpfc_mbx_rq_create_rq_cnt,
17554 &rq_create->u.request, (numrq * 2));
17555 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
17556 1);
17557 bf_set(lpfc_rq_context_base_cq,
17558 &rq_create->u.request.context,
17559 cq->queue_id);
17560 bf_set(lpfc_rq_context_data_size,
17561 &rq_create->u.request.context,
17562 LPFC_NVMET_DATA_BUF_SIZE);
17563 bf_set(lpfc_rq_context_hdr_size,
17564 &rq_create->u.request.context,
17565 LPFC_HDR_BUF_SIZE);
17566 bf_set(lpfc_rq_context_rqe_count_1,
17567 &rq_create->u.request.context,
17568 hrq->entry_count);
17569 bf_set(lpfc_rq_context_rqe_size,
17570 &rq_create->u.request.context,
17571 LPFC_RQE_SIZE_8);
17572 bf_set(lpfc_rq_context_page_size,
17573 &rq_create->u.request.context,
17574 (PAGE_SIZE/SLI4_PAGE_SIZE));
17575 }
17576 rc = 0;
17577 list_for_each_entry(dmabuf, &hrq->page_list, list) {
17578 memset(dmabuf->virt, 0, hw_page_size);
17579 cnt = page_idx + dmabuf->buffer_tag;
17580 rq_create->u.request.page[cnt].addr_lo =
17581 putPaddrLow(dmabuf->phys);
17582 rq_create->u.request.page[cnt].addr_hi =
17583 putPaddrHigh(dmabuf->phys);
17584 rc++;
17585 }
17586 page_idx += rc;
17587
17588 rc = 0;
17589 list_for_each_entry(dmabuf, &drq->page_list, list) {
17590 memset(dmabuf->virt, 0, hw_page_size);
17591 cnt = page_idx + dmabuf->buffer_tag;
17592 rq_create->u.request.page[cnt].addr_lo =
17593 putPaddrLow(dmabuf->phys);
17594 rq_create->u.request.page[cnt].addr_hi =
17595 putPaddrHigh(dmabuf->phys);
17596 rc++;
17597 }
17598 page_idx += rc;
17599
17600 hrq->db_format = LPFC_DB_RING_FORMAT;
17601 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17602 hrq->type = LPFC_HRQ;
17603 hrq->assoc_qid = cq->queue_id;
17604 hrq->subtype = subtype;
17605 hrq->host_index = 0;
17606 hrq->hba_index = 0;
17607 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17608
17609 drq->db_format = LPFC_DB_RING_FORMAT;
17610 drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17611 drq->type = LPFC_DRQ;
17612 drq->assoc_qid = cq->queue_id;
17613 drq->subtype = subtype;
17614 drq->host_index = 0;
17615 drq->hba_index = 0;
17616 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17617
17618 list_add_tail(&hrq->list, &cq->child_list);
17619 list_add_tail(&drq->list, &cq->child_list);
17620 }
17621
17622 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17623 /* The IOCTL status is embedded in the mailbox subheader. */
17624 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17625 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17626 if (shdr_status || shdr_add_status || rc) {
17627 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17628 "3120 RQ_CREATE mailbox failed with "
17629 "status x%x add_status x%x, mbx status x%x\n",
17630 shdr_status, shdr_add_status, rc);
17631 status = -ENXIO;
17632 goto out;
17633 }
17634 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17635 if (rc == 0xFFFF) {
17636 status = -ENXIO;
17637 goto out;
17638 }
17639
17640 /* Initialize all RQs with associated queue id */
17641 for (idx = 0; idx < numrq; idx++) {
17642 hrq = hrqp[idx];
17643 hrq->queue_id = rc + (2 * idx);
17644 drq = drqp[idx];
17645 drq->queue_id = rc + (2 * idx) + 1;
17646 }
17647
17648 out:
17649 lpfc_sli4_mbox_cmd_free(phba, mbox);
17650 return status;
17651 }
17652
17653 /**
17654 * lpfc_eq_destroy - Destroy an event Queue on the HBA
17655 * @phba: HBA structure that indicates port to destroy a queue on.
17656 * @eq: The queue structure associated with the queue to destroy.
17657 *
17658 * This function destroys a queue, as detailed in @eq by sending an mailbox
17659 * command, specific to the type of queue, to the HBA.
17660 *
17661 * The @eq struct is used to get the queue ID of the queue to destroy.
17662 *
17663 * On success this function will return a zero. If the queue destroy mailbox
17664 * command fails this function will return -ENXIO.
17665 **/
17666 int
lpfc_eq_destroy(struct lpfc_hba * phba,struct lpfc_queue * eq)17667 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
17668 {
17669 LPFC_MBOXQ_t *mbox;
17670 int rc, length, status = 0;
17671 uint32_t shdr_status, shdr_add_status;
17672 union lpfc_sli4_cfg_shdr *shdr;
17673
17674 /* sanity check on queue memory */
17675 if (!eq)
17676 return -ENODEV;
17677
17678 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE))
17679 goto list_remove;
17680
17681 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
17682 if (!mbox)
17683 return -ENOMEM;
17684 length = (sizeof(struct lpfc_mbx_eq_destroy) -
17685 sizeof(struct lpfc_sli4_cfg_mhdr));
17686 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17687 LPFC_MBOX_OPCODE_EQ_DESTROY,
17688 length, LPFC_SLI4_MBX_EMBED);
17689 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
17690 eq->queue_id);
17691 mbox->vport = eq->phba->pport;
17692 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17693
17694 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
17695 /* The IOCTL status is embedded in the mailbox subheader. */
17696 shdr = (union lpfc_sli4_cfg_shdr *)
17697 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
17698 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17699 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17700 if (shdr_status || shdr_add_status || rc) {
17701 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17702 "2505 EQ_DESTROY mailbox failed with "
17703 "status x%x add_status x%x, mbx status x%x\n",
17704 shdr_status, shdr_add_status, rc);
17705 status = -ENXIO;
17706 }
17707 mempool_free(mbox, eq->phba->mbox_mem_pool);
17708
17709 list_remove:
17710 /* Remove eq from any list */
17711 list_del_init(&eq->list);
17712
17713 return status;
17714 }
17715
17716 /**
17717 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
17718 * @phba: HBA structure that indicates port to destroy a queue on.
17719 * @cq: The queue structure associated with the queue to destroy.
17720 *
17721 * This function destroys a queue, as detailed in @cq by sending an mailbox
17722 * command, specific to the type of queue, to the HBA.
17723 *
17724 * The @cq struct is used to get the queue ID of the queue to destroy.
17725 *
17726 * On success this function will return a zero. If the queue destroy mailbox
17727 * command fails this function will return -ENXIO.
17728 **/
17729 int
lpfc_cq_destroy(struct lpfc_hba * phba,struct lpfc_queue * cq)17730 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
17731 {
17732 LPFC_MBOXQ_t *mbox;
17733 int rc, length, status = 0;
17734 uint32_t shdr_status, shdr_add_status;
17735 union lpfc_sli4_cfg_shdr *shdr;
17736
17737 /* sanity check on queue memory */
17738 if (!cq)
17739 return -ENODEV;
17740
17741 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE))
17742 goto list_remove;
17743
17744 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
17745 if (!mbox)
17746 return -ENOMEM;
17747 length = (sizeof(struct lpfc_mbx_cq_destroy) -
17748 sizeof(struct lpfc_sli4_cfg_mhdr));
17749 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17750 LPFC_MBOX_OPCODE_CQ_DESTROY,
17751 length, LPFC_SLI4_MBX_EMBED);
17752 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
17753 cq->queue_id);
17754 mbox->vport = cq->phba->pport;
17755 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17756 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
17757 /* The IOCTL status is embedded in the mailbox subheader. */
17758 shdr = (union lpfc_sli4_cfg_shdr *)
17759 &mbox->u.mqe.un.wq_create.header.cfg_shdr;
17760 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17761 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17762 if (shdr_status || shdr_add_status || rc) {
17763 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17764 "2506 CQ_DESTROY mailbox failed with "
17765 "status x%x add_status x%x, mbx status x%x\n",
17766 shdr_status, shdr_add_status, rc);
17767 status = -ENXIO;
17768 }
17769 mempool_free(mbox, cq->phba->mbox_mem_pool);
17770
17771 list_remove:
17772 /* Remove cq from any list */
17773 list_del_init(&cq->list);
17774 return status;
17775 }
17776
17777 /**
17778 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
17779 * @phba: HBA structure that indicates port to destroy a queue on.
17780 * @mq: The queue structure associated with the queue to destroy.
17781 *
17782 * This function destroys a queue, as detailed in @mq by sending an mailbox
17783 * command, specific to the type of queue, to the HBA.
17784 *
17785 * The @mq struct is used to get the queue ID of the queue to destroy.
17786 *
17787 * On success this function will return a zero. If the queue destroy mailbox
17788 * command fails this function will return -ENXIO.
17789 **/
17790 int
lpfc_mq_destroy(struct lpfc_hba * phba,struct lpfc_queue * mq)17791 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
17792 {
17793 LPFC_MBOXQ_t *mbox;
17794 int rc, length, status = 0;
17795 uint32_t shdr_status, shdr_add_status;
17796 union lpfc_sli4_cfg_shdr *shdr;
17797
17798 /* sanity check on queue memory */
17799 if (!mq)
17800 return -ENODEV;
17801
17802 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE))
17803 goto list_remove;
17804
17805 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
17806 if (!mbox)
17807 return -ENOMEM;
17808 length = (sizeof(struct lpfc_mbx_mq_destroy) -
17809 sizeof(struct lpfc_sli4_cfg_mhdr));
17810 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17811 LPFC_MBOX_OPCODE_MQ_DESTROY,
17812 length, LPFC_SLI4_MBX_EMBED);
17813 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
17814 mq->queue_id);
17815 mbox->vport = mq->phba->pport;
17816 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17817 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
17818 /* The IOCTL status is embedded in the mailbox subheader. */
17819 shdr = (union lpfc_sli4_cfg_shdr *)
17820 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
17821 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17822 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17823 if (shdr_status || shdr_add_status || rc) {
17824 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17825 "2507 MQ_DESTROY mailbox failed with "
17826 "status x%x add_status x%x, mbx status x%x\n",
17827 shdr_status, shdr_add_status, rc);
17828 status = -ENXIO;
17829 }
17830 mempool_free(mbox, mq->phba->mbox_mem_pool);
17831
17832 list_remove:
17833 /* Remove mq from any list */
17834 list_del_init(&mq->list);
17835 return status;
17836 }
17837
17838 /**
17839 * lpfc_wq_destroy - Destroy a Work Queue on the HBA
17840 * @phba: HBA structure that indicates port to destroy a queue on.
17841 * @wq: The queue structure associated with the queue to destroy.
17842 *
17843 * This function destroys a queue, as detailed in @wq by sending an mailbox
17844 * command, specific to the type of queue, to the HBA.
17845 *
17846 * The @wq struct is used to get the queue ID of the queue to destroy.
17847 *
17848 * On success this function will return a zero. If the queue destroy mailbox
17849 * command fails this function will return -ENXIO.
17850 **/
17851 int
lpfc_wq_destroy(struct lpfc_hba * phba,struct lpfc_queue * wq)17852 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
17853 {
17854 LPFC_MBOXQ_t *mbox;
17855 int rc, length, status = 0;
17856 uint32_t shdr_status, shdr_add_status;
17857 union lpfc_sli4_cfg_shdr *shdr;
17858
17859 /* sanity check on queue memory */
17860 if (!wq)
17861 return -ENODEV;
17862
17863 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE))
17864 goto list_remove;
17865
17866 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
17867 if (!mbox)
17868 return -ENOMEM;
17869 length = (sizeof(struct lpfc_mbx_wq_destroy) -
17870 sizeof(struct lpfc_sli4_cfg_mhdr));
17871 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17872 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
17873 length, LPFC_SLI4_MBX_EMBED);
17874 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
17875 wq->queue_id);
17876 mbox->vport = wq->phba->pport;
17877 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17878 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
17879 shdr = (union lpfc_sli4_cfg_shdr *)
17880 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
17881 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17882 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17883 if (shdr_status || shdr_add_status || rc) {
17884 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17885 "2508 WQ_DESTROY mailbox failed with "
17886 "status x%x add_status x%x, mbx status x%x\n",
17887 shdr_status, shdr_add_status, rc);
17888 status = -ENXIO;
17889 }
17890 mempool_free(mbox, wq->phba->mbox_mem_pool);
17891
17892 list_remove:
17893 /* Remove wq from any list */
17894 list_del_init(&wq->list);
17895 kfree(wq->pring);
17896 wq->pring = NULL;
17897 return status;
17898 }
17899
17900 /**
17901 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
17902 * @phba: HBA structure that indicates port to destroy a queue on.
17903 * @hrq: The queue structure associated with the queue to destroy.
17904 * @drq: The queue structure associated with the queue to destroy.
17905 *
17906 * This function destroys a queue, as detailed in @rq by sending an mailbox
17907 * command, specific to the type of queue, to the HBA.
17908 *
17909 * The @rq struct is used to get the queue ID of the queue to destroy.
17910 *
17911 * On success this function will return a zero. If the queue destroy mailbox
17912 * command fails this function will return -ENXIO.
17913 **/
17914 int
lpfc_rq_destroy(struct lpfc_hba * phba,struct lpfc_queue * hrq,struct lpfc_queue * drq)17915 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
17916 struct lpfc_queue *drq)
17917 {
17918 LPFC_MBOXQ_t *mbox;
17919 int rc, length, status = 0;
17920 uint32_t shdr_status, shdr_add_status;
17921 union lpfc_sli4_cfg_shdr *shdr;
17922
17923 /* sanity check on queue memory */
17924 if (!hrq || !drq)
17925 return -ENODEV;
17926
17927 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE))
17928 goto list_remove;
17929
17930 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
17931 if (!mbox)
17932 return -ENOMEM;
17933 length = (sizeof(struct lpfc_mbx_rq_destroy) -
17934 sizeof(struct lpfc_sli4_cfg_mhdr));
17935 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17936 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
17937 length, LPFC_SLI4_MBX_EMBED);
17938 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17939 hrq->queue_id);
17940 mbox->vport = hrq->phba->pport;
17941 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17942 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
17943 /* The IOCTL status is embedded in the mailbox subheader. */
17944 shdr = (union lpfc_sli4_cfg_shdr *)
17945 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17946 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17947 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17948 if (shdr_status || shdr_add_status || rc) {
17949 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17950 "2509 RQ_DESTROY mailbox failed with "
17951 "status x%x add_status x%x, mbx status x%x\n",
17952 shdr_status, shdr_add_status, rc);
17953 mempool_free(mbox, hrq->phba->mbox_mem_pool);
17954 return -ENXIO;
17955 }
17956 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17957 drq->queue_id);
17958 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
17959 shdr = (union lpfc_sli4_cfg_shdr *)
17960 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17961 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17962 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17963 if (shdr_status || shdr_add_status || rc) {
17964 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17965 "2510 RQ_DESTROY mailbox failed with "
17966 "status x%x add_status x%x, mbx status x%x\n",
17967 shdr_status, shdr_add_status, rc);
17968 status = -ENXIO;
17969 }
17970 mempool_free(mbox, hrq->phba->mbox_mem_pool);
17971
17972 list_remove:
17973 list_del_init(&hrq->list);
17974 list_del_init(&drq->list);
17975 return status;
17976 }
17977
17978 /**
17979 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
17980 * @phba: The virtual port for which this call being executed.
17981 * @pdma_phys_addr0: Physical address of the 1st SGL page.
17982 * @pdma_phys_addr1: Physical address of the 2nd SGL page.
17983 * @xritag: the xritag that ties this io to the SGL pages.
17984 *
17985 * This routine will post the sgl pages for the IO that has the xritag
17986 * that is in the iocbq structure. The xritag is assigned during iocbq
17987 * creation and persists for as long as the driver is loaded.
17988 * if the caller has fewer than 256 scatter gather segments to map then
17989 * pdma_phys_addr1 should be 0.
17990 * If the caller needs to map more than 256 scatter gather segment then
17991 * pdma_phys_addr1 should be a valid physical address.
17992 * physical address for SGLs must be 64 byte aligned.
17993 * If you are going to map 2 SGL's then the first one must have 256 entries
17994 * the second sgl can have between 1 and 256 entries.
17995 *
17996 * Return codes:
17997 * 0 - Success
17998 * -ENXIO, -ENOMEM - Failure
17999 **/
18000 int
lpfc_sli4_post_sgl(struct lpfc_hba * phba,dma_addr_t pdma_phys_addr0,dma_addr_t pdma_phys_addr1,uint16_t xritag)18001 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
18002 dma_addr_t pdma_phys_addr0,
18003 dma_addr_t pdma_phys_addr1,
18004 uint16_t xritag)
18005 {
18006 struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
18007 LPFC_MBOXQ_t *mbox;
18008 int rc;
18009 uint32_t shdr_status, shdr_add_status;
18010 uint32_t mbox_tmo;
18011 union lpfc_sli4_cfg_shdr *shdr;
18012
18013 if (xritag == NO_XRI) {
18014 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18015 "0364 Invalid param:\n");
18016 return -EINVAL;
18017 }
18018
18019 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18020 if (!mbox)
18021 return -ENOMEM;
18022
18023 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18024 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
18025 sizeof(struct lpfc_mbx_post_sgl_pages) -
18026 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
18027
18028 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
18029 &mbox->u.mqe.un.post_sgl_pages;
18030 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
18031 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
18032
18033 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo =
18034 cpu_to_le32(putPaddrLow(pdma_phys_addr0));
18035 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
18036 cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
18037
18038 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo =
18039 cpu_to_le32(putPaddrLow(pdma_phys_addr1));
18040 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
18041 cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
18042 if (!phba->sli4_hba.intr_enable)
18043 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
18044 else {
18045 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
18046 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
18047 }
18048 /* The IOCTL status is embedded in the mailbox subheader. */
18049 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
18050 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18051 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18052 if (!phba->sli4_hba.intr_enable)
18053 mempool_free(mbox, phba->mbox_mem_pool);
18054 else if (rc != MBX_TIMEOUT)
18055 mempool_free(mbox, phba->mbox_mem_pool);
18056 if (shdr_status || shdr_add_status || rc) {
18057 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18058 "2511 POST_SGL mailbox failed with "
18059 "status x%x add_status x%x, mbx status x%x\n",
18060 shdr_status, shdr_add_status, rc);
18061 }
18062 return 0;
18063 }
18064
18065 /**
18066 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
18067 * @phba: pointer to lpfc hba data structure.
18068 *
18069 * This routine is invoked to post rpi header templates to the
18070 * HBA consistent with the SLI-4 interface spec. This routine
18071 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18072 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18073 *
18074 * Returns
18075 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18076 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
18077 **/
18078 static uint16_t
lpfc_sli4_alloc_xri(struct lpfc_hba * phba)18079 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
18080 {
18081 unsigned long xri;
18082
18083 /*
18084 * Fetch the next logical xri. Because this index is logical,
18085 * the driver starts at 0 each time.
18086 */
18087 spin_lock_irq(&phba->hbalock);
18088 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask,
18089 phba->sli4_hba.max_cfg_param.max_xri);
18090 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
18091 spin_unlock_irq(&phba->hbalock);
18092 return NO_XRI;
18093 } else {
18094 set_bit(xri, phba->sli4_hba.xri_bmask);
18095 phba->sli4_hba.max_cfg_param.xri_used++;
18096 }
18097 spin_unlock_irq(&phba->hbalock);
18098 return xri;
18099 }
18100
18101 /**
18102 * __lpfc_sli4_free_xri - Release an xri for reuse.
18103 * @phba: pointer to lpfc hba data structure.
18104 * @xri: xri to release.
18105 *
18106 * This routine is invoked to release an xri to the pool of
18107 * available rpis maintained by the driver.
18108 **/
18109 static void
__lpfc_sli4_free_xri(struct lpfc_hba * phba,int xri)18110 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
18111 {
18112 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
18113 phba->sli4_hba.max_cfg_param.xri_used--;
18114 }
18115 }
18116
18117 /**
18118 * lpfc_sli4_free_xri - Release an xri for reuse.
18119 * @phba: pointer to lpfc hba data structure.
18120 * @xri: xri to release.
18121 *
18122 * This routine is invoked to release an xri to the pool of
18123 * available rpis maintained by the driver.
18124 **/
18125 void
lpfc_sli4_free_xri(struct lpfc_hba * phba,int xri)18126 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
18127 {
18128 spin_lock_irq(&phba->hbalock);
18129 __lpfc_sli4_free_xri(phba, xri);
18130 spin_unlock_irq(&phba->hbalock);
18131 }
18132
18133 /**
18134 * lpfc_sli4_next_xritag - Get an xritag for the io
18135 * @phba: Pointer to HBA context object.
18136 *
18137 * This function gets an xritag for the iocb. If there is no unused xritag
18138 * it will return 0xffff.
18139 * The function returns the allocated xritag if successful, else returns zero.
18140 * Zero is not a valid xritag.
18141 * The caller is not required to hold any lock.
18142 **/
18143 uint16_t
lpfc_sli4_next_xritag(struct lpfc_hba * phba)18144 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
18145 {
18146 uint16_t xri_index;
18147
18148 xri_index = lpfc_sli4_alloc_xri(phba);
18149 if (xri_index == NO_XRI)
18150 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
18151 "2004 Failed to allocate XRI.last XRITAG is %d"
18152 " Max XRI is %d, Used XRI is %d\n",
18153 xri_index,
18154 phba->sli4_hba.max_cfg_param.max_xri,
18155 phba->sli4_hba.max_cfg_param.xri_used);
18156 return xri_index;
18157 }
18158
18159 /**
18160 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
18161 * @phba: pointer to lpfc hba data structure.
18162 * @post_sgl_list: pointer to els sgl entry list.
18163 * @post_cnt: number of els sgl entries on the list.
18164 *
18165 * This routine is invoked to post a block of driver's sgl pages to the
18166 * HBA using non-embedded mailbox command. No Lock is held. This routine
18167 * is only called when the driver is loading and after all IO has been
18168 * stopped.
18169 **/
18170 static int
lpfc_sli4_post_sgl_list(struct lpfc_hba * phba,struct list_head * post_sgl_list,int post_cnt)18171 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
18172 struct list_head *post_sgl_list,
18173 int post_cnt)
18174 {
18175 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
18176 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
18177 struct sgl_page_pairs *sgl_pg_pairs;
18178 void *viraddr;
18179 LPFC_MBOXQ_t *mbox;
18180 uint32_t reqlen, alloclen, pg_pairs;
18181 uint32_t mbox_tmo;
18182 uint16_t xritag_start = 0;
18183 int rc = 0;
18184 uint32_t shdr_status, shdr_add_status;
18185 union lpfc_sli4_cfg_shdr *shdr;
18186
18187 reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
18188 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
18189 if (reqlen > SLI4_PAGE_SIZE) {
18190 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18191 "2559 Block sgl registration required DMA "
18192 "size (%d) great than a page\n", reqlen);
18193 return -ENOMEM;
18194 }
18195
18196 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18197 if (!mbox)
18198 return -ENOMEM;
18199
18200 /* Allocate DMA memory and set up the non-embedded mailbox command */
18201 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18202 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
18203 LPFC_SLI4_MBX_NEMBED);
18204
18205 if (alloclen < reqlen) {
18206 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18207 "0285 Allocated DMA memory size (%d) is "
18208 "less than the requested DMA memory "
18209 "size (%d)\n", alloclen, reqlen);
18210 lpfc_sli4_mbox_cmd_free(phba, mbox);
18211 return -ENOMEM;
18212 }
18213 /* Set up the SGL pages in the non-embedded DMA pages */
18214 viraddr = mbox->sge_array->addr[0];
18215 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
18216 sgl_pg_pairs = &sgl->sgl_pg_pairs;
18217
18218 pg_pairs = 0;
18219 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
18220 /* Set up the sge entry */
18221 sgl_pg_pairs->sgl_pg0_addr_lo =
18222 cpu_to_le32(putPaddrLow(sglq_entry->phys));
18223 sgl_pg_pairs->sgl_pg0_addr_hi =
18224 cpu_to_le32(putPaddrHigh(sglq_entry->phys));
18225 sgl_pg_pairs->sgl_pg1_addr_lo =
18226 cpu_to_le32(putPaddrLow(0));
18227 sgl_pg_pairs->sgl_pg1_addr_hi =
18228 cpu_to_le32(putPaddrHigh(0));
18229
18230 /* Keep the first xritag on the list */
18231 if (pg_pairs == 0)
18232 xritag_start = sglq_entry->sli4_xritag;
18233 sgl_pg_pairs++;
18234 pg_pairs++;
18235 }
18236
18237 /* Complete initialization and perform endian conversion. */
18238 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
18239 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
18240 sgl->word0 = cpu_to_le32(sgl->word0);
18241
18242 if (!phba->sli4_hba.intr_enable)
18243 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
18244 else {
18245 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
18246 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
18247 }
18248 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
18249 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18250 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18251 if (!phba->sli4_hba.intr_enable)
18252 lpfc_sli4_mbox_cmd_free(phba, mbox);
18253 else if (rc != MBX_TIMEOUT)
18254 lpfc_sli4_mbox_cmd_free(phba, mbox);
18255 if (shdr_status || shdr_add_status || rc) {
18256 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18257 "2513 POST_SGL_BLOCK mailbox command failed "
18258 "status x%x add_status x%x mbx status x%x\n",
18259 shdr_status, shdr_add_status, rc);
18260 rc = -ENXIO;
18261 }
18262 return rc;
18263 }
18264
18265 /**
18266 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
18267 * @phba: pointer to lpfc hba data structure.
18268 * @nblist: pointer to nvme buffer list.
18269 * @count: number of scsi buffers on the list.
18270 *
18271 * This routine is invoked to post a block of @count scsi sgl pages from a
18272 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
18273 * No Lock is held.
18274 *
18275 **/
18276 static int
lpfc_sli4_post_io_sgl_block(struct lpfc_hba * phba,struct list_head * nblist,int count)18277 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
18278 int count)
18279 {
18280 struct lpfc_io_buf *lpfc_ncmd;
18281 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
18282 struct sgl_page_pairs *sgl_pg_pairs;
18283 void *viraddr;
18284 LPFC_MBOXQ_t *mbox;
18285 uint32_t reqlen, alloclen, pg_pairs;
18286 uint32_t mbox_tmo;
18287 uint16_t xritag_start = 0;
18288 int rc = 0;
18289 uint32_t shdr_status, shdr_add_status;
18290 dma_addr_t pdma_phys_bpl1;
18291 union lpfc_sli4_cfg_shdr *shdr;
18292
18293 /* Calculate the requested length of the dma memory */
18294 reqlen = count * sizeof(struct sgl_page_pairs) +
18295 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
18296 if (reqlen > SLI4_PAGE_SIZE) {
18297 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
18298 "6118 Block sgl registration required DMA "
18299 "size (%d) great than a page\n", reqlen);
18300 return -ENOMEM;
18301 }
18302 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18303 if (!mbox) {
18304 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18305 "6119 Failed to allocate mbox cmd memory\n");
18306 return -ENOMEM;
18307 }
18308
18309 /* Allocate DMA memory and set up the non-embedded mailbox command */
18310 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18311 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
18312 reqlen, LPFC_SLI4_MBX_NEMBED);
18313
18314 if (alloclen < reqlen) {
18315 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18316 "6120 Allocated DMA memory size (%d) is "
18317 "less than the requested DMA memory "
18318 "size (%d)\n", alloclen, reqlen);
18319 lpfc_sli4_mbox_cmd_free(phba, mbox);
18320 return -ENOMEM;
18321 }
18322
18323 /* Get the first SGE entry from the non-embedded DMA memory */
18324 viraddr = mbox->sge_array->addr[0];
18325
18326 /* Set up the SGL pages in the non-embedded DMA pages */
18327 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
18328 sgl_pg_pairs = &sgl->sgl_pg_pairs;
18329
18330 pg_pairs = 0;
18331 list_for_each_entry(lpfc_ncmd, nblist, list) {
18332 /* Set up the sge entry */
18333 sgl_pg_pairs->sgl_pg0_addr_lo =
18334 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
18335 sgl_pg_pairs->sgl_pg0_addr_hi =
18336 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
18337 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
18338 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
18339 SGL_PAGE_SIZE;
18340 else
18341 pdma_phys_bpl1 = 0;
18342 sgl_pg_pairs->sgl_pg1_addr_lo =
18343 cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
18344 sgl_pg_pairs->sgl_pg1_addr_hi =
18345 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
18346 /* Keep the first xritag on the list */
18347 if (pg_pairs == 0)
18348 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
18349 sgl_pg_pairs++;
18350 pg_pairs++;
18351 }
18352 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
18353 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
18354 /* Perform endian conversion if necessary */
18355 sgl->word0 = cpu_to_le32(sgl->word0);
18356
18357 if (!phba->sli4_hba.intr_enable) {
18358 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
18359 } else {
18360 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
18361 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
18362 }
18363 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
18364 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18365 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18366 if (!phba->sli4_hba.intr_enable)
18367 lpfc_sli4_mbox_cmd_free(phba, mbox);
18368 else if (rc != MBX_TIMEOUT)
18369 lpfc_sli4_mbox_cmd_free(phba, mbox);
18370 if (shdr_status || shdr_add_status || rc) {
18371 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18372 "6125 POST_SGL_BLOCK mailbox command failed "
18373 "status x%x add_status x%x mbx status x%x\n",
18374 shdr_status, shdr_add_status, rc);
18375 rc = -ENXIO;
18376 }
18377 return rc;
18378 }
18379
18380 /**
18381 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
18382 * @phba: pointer to lpfc hba data structure.
18383 * @post_nblist: pointer to the nvme buffer list.
18384 * @sb_count: number of nvme buffers.
18385 *
18386 * This routine walks a list of nvme buffers that was passed in. It attempts
18387 * to construct blocks of nvme buffer sgls which contains contiguous xris and
18388 * uses the non-embedded SGL block post mailbox commands to post to the port.
18389 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
18390 * embedded SGL post mailbox command for posting. The @post_nblist passed in
18391 * must be local list, thus no lock is needed when manipulate the list.
18392 *
18393 * Returns: 0 = failure, non-zero number of successfully posted buffers.
18394 **/
18395 int
lpfc_sli4_post_io_sgl_list(struct lpfc_hba * phba,struct list_head * post_nblist,int sb_count)18396 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
18397 struct list_head *post_nblist, int sb_count)
18398 {
18399 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
18400 int status, sgl_size;
18401 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
18402 dma_addr_t pdma_phys_sgl1;
18403 int last_xritag = NO_XRI;
18404 int cur_xritag;
18405 LIST_HEAD(prep_nblist);
18406 LIST_HEAD(blck_nblist);
18407 LIST_HEAD(nvme_nblist);
18408
18409 /* sanity check */
18410 if (sb_count <= 0)
18411 return -EINVAL;
18412
18413 sgl_size = phba->cfg_sg_dma_buf_size;
18414 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
18415 list_del_init(&lpfc_ncmd->list);
18416 block_cnt++;
18417 if ((last_xritag != NO_XRI) &&
18418 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
18419 /* a hole in xri block, form a sgl posting block */
18420 list_splice_init(&prep_nblist, &blck_nblist);
18421 post_cnt = block_cnt - 1;
18422 /* prepare list for next posting block */
18423 list_add_tail(&lpfc_ncmd->list, &prep_nblist);
18424 block_cnt = 1;
18425 } else {
18426 /* prepare list for next posting block */
18427 list_add_tail(&lpfc_ncmd->list, &prep_nblist);
18428 /* enough sgls for non-embed sgl mbox command */
18429 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
18430 list_splice_init(&prep_nblist, &blck_nblist);
18431 post_cnt = block_cnt;
18432 block_cnt = 0;
18433 }
18434 }
18435 num_posting++;
18436 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
18437
18438 /* end of repost sgl list condition for NVME buffers */
18439 if (num_posting == sb_count) {
18440 if (post_cnt == 0) {
18441 /* last sgl posting block */
18442 list_splice_init(&prep_nblist, &blck_nblist);
18443 post_cnt = block_cnt;
18444 } else if (block_cnt == 1) {
18445 /* last single sgl with non-contiguous xri */
18446 if (sgl_size > SGL_PAGE_SIZE)
18447 pdma_phys_sgl1 =
18448 lpfc_ncmd->dma_phys_sgl +
18449 SGL_PAGE_SIZE;
18450 else
18451 pdma_phys_sgl1 = 0;
18452 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
18453 status = lpfc_sli4_post_sgl(
18454 phba, lpfc_ncmd->dma_phys_sgl,
18455 pdma_phys_sgl1, cur_xritag);
18456 if (status) {
18457 /* Post error. Buffer unavailable. */
18458 lpfc_ncmd->flags |=
18459 LPFC_SBUF_NOT_POSTED;
18460 } else {
18461 /* Post success. Bffer available. */
18462 lpfc_ncmd->flags &=
18463 ~LPFC_SBUF_NOT_POSTED;
18464 lpfc_ncmd->status = IOSTAT_SUCCESS;
18465 num_posted++;
18466 }
18467 /* success, put on NVME buffer sgl list */
18468 list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
18469 }
18470 }
18471
18472 /* continue until a nembed page worth of sgls */
18473 if (post_cnt == 0)
18474 continue;
18475
18476 /* post block of NVME buffer list sgls */
18477 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
18478 post_cnt);
18479
18480 /* don't reset xirtag due to hole in xri block */
18481 if (block_cnt == 0)
18482 last_xritag = NO_XRI;
18483
18484 /* reset NVME buffer post count for next round of posting */
18485 post_cnt = 0;
18486
18487 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */
18488 while (!list_empty(&blck_nblist)) {
18489 list_remove_head(&blck_nblist, lpfc_ncmd,
18490 struct lpfc_io_buf, list);
18491 if (status) {
18492 /* Post error. Mark buffer unavailable. */
18493 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
18494 } else {
18495 /* Post success, Mark buffer available. */
18496 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
18497 lpfc_ncmd->status = IOSTAT_SUCCESS;
18498 num_posted++;
18499 }
18500 list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
18501 }
18502 }
18503 /* Push NVME buffers with sgl posted to the available list */
18504 lpfc_io_buf_replenish(phba, &nvme_nblist);
18505
18506 return num_posted;
18507 }
18508
18509 /**
18510 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
18511 * @phba: pointer to lpfc_hba struct that the frame was received on
18512 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18513 *
18514 * This function checks the fields in the @fc_hdr to see if the FC frame is a
18515 * valid type of frame that the LPFC driver will handle. This function will
18516 * return a zero if the frame is a valid frame or a non zero value when the
18517 * frame does not pass the check.
18518 **/
18519 static int
lpfc_fc_frame_check(struct lpfc_hba * phba,struct fc_frame_header * fc_hdr)18520 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
18521 {
18522 /* make rctl_names static to save stack space */
18523 struct fc_vft_header *fc_vft_hdr;
18524 struct fc_app_header *fc_app_hdr;
18525 uint32_t *header = (uint32_t *) fc_hdr;
18526
18527 #define FC_RCTL_MDS_DIAGS 0xF4
18528
18529 switch (fc_hdr->fh_r_ctl) {
18530 case FC_RCTL_DD_UNCAT: /* uncategorized information */
18531 case FC_RCTL_DD_SOL_DATA: /* solicited data */
18532 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */
18533 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */
18534 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */
18535 case FC_RCTL_DD_DATA_DESC: /* data descriptor */
18536 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */
18537 case FC_RCTL_DD_CMD_STATUS: /* command status */
18538 case FC_RCTL_ELS_REQ: /* extended link services request */
18539 case FC_RCTL_ELS_REP: /* extended link services reply */
18540 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */
18541 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */
18542 case FC_RCTL_BA_ABTS: /* basic link service abort */
18543 case FC_RCTL_BA_RMC: /* remove connection */
18544 case FC_RCTL_BA_ACC: /* basic accept */
18545 case FC_RCTL_BA_RJT: /* basic reject */
18546 case FC_RCTL_BA_PRMT:
18547 case FC_RCTL_ACK_1: /* acknowledge_1 */
18548 case FC_RCTL_ACK_0: /* acknowledge_0 */
18549 case FC_RCTL_P_RJT: /* port reject */
18550 case FC_RCTL_F_RJT: /* fabric reject */
18551 case FC_RCTL_P_BSY: /* port busy */
18552 case FC_RCTL_F_BSY: /* fabric busy to data frame */
18553 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */
18554 case FC_RCTL_LCR: /* link credit reset */
18555 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
18556 case FC_RCTL_END: /* end */
18557 break;
18558 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */
18559 fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
18560 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
18561 return lpfc_fc_frame_check(phba, fc_hdr);
18562 case FC_RCTL_BA_NOP: /* basic link service NOP */
18563 default:
18564 goto drop;
18565 }
18566
18567 switch (fc_hdr->fh_type) {
18568 case FC_TYPE_BLS:
18569 case FC_TYPE_ELS:
18570 case FC_TYPE_FCP:
18571 case FC_TYPE_CT:
18572 case FC_TYPE_NVME:
18573 break;
18574 case FC_TYPE_IP:
18575 case FC_TYPE_ILS:
18576 default:
18577 goto drop;
18578 }
18579
18580 if (unlikely(phba->link_flag == LS_LOOPBACK_MODE &&
18581 phba->cfg_vmid_app_header)) {
18582 /* Application header is 16B device header */
18583 if (fc_hdr->fh_df_ctl & LPFC_FC_16B_DEVICE_HEADER) {
18584 fc_app_hdr = (struct fc_app_header *) (fc_hdr + 1);
18585 if (be32_to_cpu(fc_app_hdr->src_app_id) !=
18586 LOOPBACK_SRC_APPID) {
18587 lpfc_printf_log(phba, KERN_WARNING,
18588 LOG_ELS | LOG_LIBDFC,
18589 "1932 Loopback src app id "
18590 "not matched, app_id:x%x\n",
18591 be32_to_cpu(fc_app_hdr->src_app_id));
18592
18593 goto drop;
18594 }
18595 } else {
18596 lpfc_printf_log(phba, KERN_WARNING,
18597 LOG_ELS | LOG_LIBDFC,
18598 "1933 Loopback df_ctl bit not set, "
18599 "df_ctl:x%x\n",
18600 fc_hdr->fh_df_ctl);
18601
18602 goto drop;
18603 }
18604 }
18605
18606 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
18607 "2538 Received frame rctl:x%x, type:x%x, "
18608 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
18609 fc_hdr->fh_r_ctl, fc_hdr->fh_type,
18610 be32_to_cpu(header[0]), be32_to_cpu(header[1]),
18611 be32_to_cpu(header[2]), be32_to_cpu(header[3]),
18612 be32_to_cpu(header[4]), be32_to_cpu(header[5]),
18613 be32_to_cpu(header[6]));
18614 return 0;
18615 drop:
18616 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
18617 "2539 Dropped frame rctl:x%x type:x%x\n",
18618 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18619 return 1;
18620 }
18621
18622 /**
18623 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
18624 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18625 *
18626 * This function processes the FC header to retrieve the VFI from the VF
18627 * header, if one exists. This function will return the VFI if one exists
18628 * or 0 if no VSAN Header exists.
18629 **/
18630 static uint32_t
lpfc_fc_hdr_get_vfi(struct fc_frame_header * fc_hdr)18631 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
18632 {
18633 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
18634
18635 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
18636 return 0;
18637 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
18638 }
18639
18640 /**
18641 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
18642 * @phba: Pointer to the HBA structure to search for the vport on
18643 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18644 * @fcfi: The FC Fabric ID that the frame came from
18645 * @did: Destination ID to match against
18646 *
18647 * This function searches the @phba for a vport that matches the content of the
18648 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
18649 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
18650 * returns the matching vport pointer or NULL if unable to match frame to a
18651 * vport.
18652 **/
18653 static struct lpfc_vport *
lpfc_fc_frame_to_vport(struct lpfc_hba * phba,struct fc_frame_header * fc_hdr,uint16_t fcfi,uint32_t did)18654 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
18655 uint16_t fcfi, uint32_t did)
18656 {
18657 struct lpfc_vport **vports;
18658 struct lpfc_vport *vport = NULL;
18659 int i;
18660
18661 if (did == Fabric_DID)
18662 return phba->pport;
18663 if (test_bit(FC_PT2PT, &phba->pport->fc_flag) &&
18664 phba->link_state != LPFC_HBA_READY)
18665 return phba->pport;
18666
18667 vports = lpfc_create_vport_work_array(phba);
18668 if (vports != NULL) {
18669 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
18670 if (phba->fcf.fcfi == fcfi &&
18671 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
18672 vports[i]->fc_myDID == did) {
18673 vport = vports[i];
18674 break;
18675 }
18676 }
18677 }
18678 lpfc_destroy_vport_work_array(phba, vports);
18679 return vport;
18680 }
18681
18682 /**
18683 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
18684 * @vport: The vport to work on.
18685 *
18686 * This function updates the receive sequence time stamp for this vport. The
18687 * receive sequence time stamp indicates the time that the last frame of the
18688 * the sequence that has been idle for the longest amount of time was received.
18689 * the driver uses this time stamp to indicate if any received sequences have
18690 * timed out.
18691 **/
18692 static void
lpfc_update_rcv_time_stamp(struct lpfc_vport * vport)18693 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
18694 {
18695 struct lpfc_dmabuf *h_buf;
18696 struct hbq_dmabuf *dmabuf = NULL;
18697
18698 /* get the oldest sequence on the rcv list */
18699 h_buf = list_get_first(&vport->rcv_buffer_list,
18700 struct lpfc_dmabuf, list);
18701 if (!h_buf)
18702 return;
18703 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18704 vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
18705 }
18706
18707 /**
18708 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
18709 * @vport: The vport that the received sequences were sent to.
18710 *
18711 * This function cleans up all outstanding received sequences. This is called
18712 * by the driver when a link event or user action invalidates all the received
18713 * sequences.
18714 **/
18715 void
lpfc_cleanup_rcv_buffers(struct lpfc_vport * vport)18716 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
18717 {
18718 struct lpfc_dmabuf *h_buf, *hnext;
18719 struct lpfc_dmabuf *d_buf, *dnext;
18720 struct hbq_dmabuf *dmabuf = NULL;
18721
18722 /* start with the oldest sequence on the rcv list */
18723 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
18724 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18725 list_del_init(&dmabuf->hbuf.list);
18726 list_for_each_entry_safe(d_buf, dnext,
18727 &dmabuf->dbuf.list, list) {
18728 list_del_init(&d_buf->list);
18729 lpfc_in_buf_free(vport->phba, d_buf);
18730 }
18731 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
18732 }
18733 }
18734
18735 /**
18736 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
18737 * @vport: The vport that the received sequences were sent to.
18738 *
18739 * This function determines whether any received sequences have timed out by
18740 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
18741 * indicates that there is at least one timed out sequence this routine will
18742 * go through the received sequences one at a time from most inactive to most
18743 * active to determine which ones need to be cleaned up. Once it has determined
18744 * that a sequence needs to be cleaned up it will simply free up the resources
18745 * without sending an abort.
18746 **/
18747 void
lpfc_rcv_seq_check_edtov(struct lpfc_vport * vport)18748 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
18749 {
18750 struct lpfc_dmabuf *h_buf, *hnext;
18751 struct lpfc_dmabuf *d_buf, *dnext;
18752 struct hbq_dmabuf *dmabuf = NULL;
18753 unsigned long timeout;
18754 int abort_count = 0;
18755
18756 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
18757 vport->rcv_buffer_time_stamp);
18758 if (list_empty(&vport->rcv_buffer_list) ||
18759 time_before(jiffies, timeout))
18760 return;
18761 /* start with the oldest sequence on the rcv list */
18762 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
18763 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18764 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
18765 dmabuf->time_stamp);
18766 if (time_before(jiffies, timeout))
18767 break;
18768 abort_count++;
18769 list_del_init(&dmabuf->hbuf.list);
18770 list_for_each_entry_safe(d_buf, dnext,
18771 &dmabuf->dbuf.list, list) {
18772 list_del_init(&d_buf->list);
18773 lpfc_in_buf_free(vport->phba, d_buf);
18774 }
18775 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
18776 }
18777 if (abort_count)
18778 lpfc_update_rcv_time_stamp(vport);
18779 }
18780
18781 /**
18782 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
18783 * @vport: pointer to a vitural port
18784 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
18785 *
18786 * This function searches through the existing incomplete sequences that have
18787 * been sent to this @vport. If the frame matches one of the incomplete
18788 * sequences then the dbuf in the @dmabuf is added to the list of frames that
18789 * make up that sequence. If no sequence is found that matches this frame then
18790 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
18791 * This function returns a pointer to the first dmabuf in the sequence list that
18792 * the frame was linked to.
18793 **/
18794 static struct hbq_dmabuf *
lpfc_fc_frame_add(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)18795 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
18796 {
18797 struct fc_frame_header *new_hdr;
18798 struct fc_frame_header *temp_hdr;
18799 struct lpfc_dmabuf *d_buf;
18800 struct lpfc_dmabuf *h_buf;
18801 struct hbq_dmabuf *seq_dmabuf = NULL;
18802 struct hbq_dmabuf *temp_dmabuf = NULL;
18803 uint8_t found = 0;
18804
18805 INIT_LIST_HEAD(&dmabuf->dbuf.list);
18806 dmabuf->time_stamp = jiffies;
18807 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18808
18809 /* Use the hdr_buf to find the sequence that this frame belongs to */
18810 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
18811 temp_hdr = (struct fc_frame_header *)h_buf->virt;
18812 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
18813 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
18814 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
18815 continue;
18816 /* found a pending sequence that matches this frame */
18817 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18818 break;
18819 }
18820 if (!seq_dmabuf) {
18821 /*
18822 * This indicates first frame received for this sequence.
18823 * Queue the buffer on the vport's rcv_buffer_list.
18824 */
18825 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
18826 lpfc_update_rcv_time_stamp(vport);
18827 return dmabuf;
18828 }
18829 temp_hdr = seq_dmabuf->hbuf.virt;
18830 if (be16_to_cpu(new_hdr->fh_seq_cnt) <
18831 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
18832 list_del_init(&seq_dmabuf->hbuf.list);
18833 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
18834 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
18835 lpfc_update_rcv_time_stamp(vport);
18836 return dmabuf;
18837 }
18838 /* move this sequence to the tail to indicate a young sequence */
18839 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
18840 seq_dmabuf->time_stamp = jiffies;
18841 lpfc_update_rcv_time_stamp(vport);
18842 if (list_empty(&seq_dmabuf->dbuf.list)) {
18843 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
18844 return seq_dmabuf;
18845 }
18846 /* find the correct place in the sequence to insert this frame */
18847 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
18848 while (!found) {
18849 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18850 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
18851 /*
18852 * If the frame's sequence count is greater than the frame on
18853 * the list then insert the frame right after this frame
18854 */
18855 if (be16_to_cpu(new_hdr->fh_seq_cnt) >
18856 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
18857 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
18858 found = 1;
18859 break;
18860 }
18861
18862 if (&d_buf->list == &seq_dmabuf->dbuf.list)
18863 break;
18864 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
18865 }
18866
18867 if (found)
18868 return seq_dmabuf;
18869 return NULL;
18870 }
18871
18872 /**
18873 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
18874 * @vport: pointer to a vitural port
18875 * @dmabuf: pointer to a dmabuf that describes the FC sequence
18876 *
18877 * This function tries to abort from the partially assembed sequence, described
18878 * by the information from basic abbort @dmabuf. It checks to see whether such
18879 * partially assembled sequence held by the driver. If so, it shall free up all
18880 * the frames from the partially assembled sequence.
18881 *
18882 * Return
18883 * true -- if there is matching partially assembled sequence present and all
18884 * the frames freed with the sequence;
18885 * false -- if there is no matching partially assembled sequence present so
18886 * nothing got aborted in the lower layer driver
18887 **/
18888 static bool
lpfc_sli4_abort_partial_seq(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)18889 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
18890 struct hbq_dmabuf *dmabuf)
18891 {
18892 struct fc_frame_header *new_hdr;
18893 struct fc_frame_header *temp_hdr;
18894 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
18895 struct hbq_dmabuf *seq_dmabuf = NULL;
18896
18897 /* Use the hdr_buf to find the sequence that matches this frame */
18898 INIT_LIST_HEAD(&dmabuf->dbuf.list);
18899 INIT_LIST_HEAD(&dmabuf->hbuf.list);
18900 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18901 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
18902 temp_hdr = (struct fc_frame_header *)h_buf->virt;
18903 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
18904 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
18905 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
18906 continue;
18907 /* found a pending sequence that matches this frame */
18908 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18909 break;
18910 }
18911
18912 /* Free up all the frames from the partially assembled sequence */
18913 if (seq_dmabuf) {
18914 list_for_each_entry_safe(d_buf, n_buf,
18915 &seq_dmabuf->dbuf.list, list) {
18916 list_del_init(&d_buf->list);
18917 lpfc_in_buf_free(vport->phba, d_buf);
18918 }
18919 return true;
18920 }
18921 return false;
18922 }
18923
18924 /**
18925 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
18926 * @vport: pointer to a vitural port
18927 * @dmabuf: pointer to a dmabuf that describes the FC sequence
18928 *
18929 * This function tries to abort from the assembed sequence from upper level
18930 * protocol, described by the information from basic abbort @dmabuf. It
18931 * checks to see whether such pending context exists at upper level protocol.
18932 * If so, it shall clean up the pending context.
18933 *
18934 * Return
18935 * true -- if there is matching pending context of the sequence cleaned
18936 * at ulp;
18937 * false -- if there is no matching pending context of the sequence present
18938 * at ulp.
18939 **/
18940 static bool
lpfc_sli4_abort_ulp_seq(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)18941 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
18942 {
18943 struct lpfc_hba *phba = vport->phba;
18944 int handled;
18945
18946 /* Accepting abort at ulp with SLI4 only */
18947 if (phba->sli_rev < LPFC_SLI_REV4)
18948 return false;
18949
18950 /* Register all caring upper level protocols to attend abort */
18951 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
18952 if (handled)
18953 return true;
18954
18955 return false;
18956 }
18957
18958 /**
18959 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
18960 * @phba: Pointer to HBA context object.
18961 * @cmd_iocbq: pointer to the command iocbq structure.
18962 * @rsp_iocbq: pointer to the response iocbq structure.
18963 *
18964 * This function handles the sequence abort response iocb command complete
18965 * event. It properly releases the memory allocated to the sequence abort
18966 * accept iocb.
18967 **/
18968 static void
lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmd_iocbq,struct lpfc_iocbq * rsp_iocbq)18969 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
18970 struct lpfc_iocbq *cmd_iocbq,
18971 struct lpfc_iocbq *rsp_iocbq)
18972 {
18973 if (cmd_iocbq) {
18974 lpfc_nlp_put(cmd_iocbq->ndlp);
18975 lpfc_sli_release_iocbq(phba, cmd_iocbq);
18976 }
18977
18978 /* Failure means BLS ABORT RSP did not get delivered to remote node*/
18979 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
18980 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18981 "3154 BLS ABORT RSP failed, data: x%x/x%x\n",
18982 get_job_ulpstatus(phba, rsp_iocbq),
18983 get_job_word4(phba, rsp_iocbq));
18984 }
18985
18986 /**
18987 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
18988 * @phba: Pointer to HBA context object.
18989 * @xri: xri id in transaction.
18990 *
18991 * This function validates the xri maps to the known range of XRIs allocated an
18992 * used by the driver.
18993 **/
18994 uint16_t
lpfc_sli4_xri_inrange(struct lpfc_hba * phba,uint16_t xri)18995 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
18996 uint16_t xri)
18997 {
18998 uint16_t i;
18999
19000 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
19001 if (xri == phba->sli4_hba.xri_ids[i])
19002 return i;
19003 }
19004 return NO_XRI;
19005 }
19006
19007 /**
19008 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
19009 * @vport: pointer to a virtual port.
19010 * @fc_hdr: pointer to a FC frame header.
19011 * @aborted: was the partially assembled receive sequence successfully aborted
19012 *
19013 * This function sends a basic response to a previous unsol sequence abort
19014 * event after aborting the sequence handling.
19015 **/
19016 void
lpfc_sli4_seq_abort_rsp(struct lpfc_vport * vport,struct fc_frame_header * fc_hdr,bool aborted)19017 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
19018 struct fc_frame_header *fc_hdr, bool aborted)
19019 {
19020 struct lpfc_hba *phba = vport->phba;
19021 struct lpfc_iocbq *ctiocb = NULL;
19022 struct lpfc_nodelist *ndlp;
19023 uint16_t oxid, rxid, xri, lxri;
19024 uint32_t sid, fctl;
19025 union lpfc_wqe128 *icmd;
19026 int rc;
19027
19028 if (!lpfc_is_link_up(phba))
19029 return;
19030
19031 sid = sli4_sid_from_fc_hdr(fc_hdr);
19032 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
19033 rxid = be16_to_cpu(fc_hdr->fh_rx_id);
19034
19035 ndlp = lpfc_findnode_did(vport, sid);
19036 if (!ndlp) {
19037 ndlp = lpfc_nlp_init(vport, sid);
19038 if (!ndlp) {
19039 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
19040 "1268 Failed to allocate ndlp for "
19041 "oxid:x%x SID:x%x\n", oxid, sid);
19042 return;
19043 }
19044 /* Put ndlp onto vport node list */
19045 lpfc_enqueue_node(vport, ndlp);
19046 }
19047
19048 /* Allocate buffer for rsp iocb */
19049 ctiocb = lpfc_sli_get_iocbq(phba);
19050 if (!ctiocb)
19051 return;
19052
19053 icmd = &ctiocb->wqe;
19054
19055 /* Extract the F_CTL field from FC_HDR */
19056 fctl = sli4_fctl_from_fc_hdr(fc_hdr);
19057
19058 ctiocb->ndlp = lpfc_nlp_get(ndlp);
19059 if (!ctiocb->ndlp) {
19060 lpfc_sli_release_iocbq(phba, ctiocb);
19061 return;
19062 }
19063
19064 ctiocb->vport = vport;
19065 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
19066 ctiocb->sli4_lxritag = NO_XRI;
19067 ctiocb->sli4_xritag = NO_XRI;
19068 ctiocb->abort_rctl = FC_RCTL_BA_ACC;
19069
19070 if (fctl & FC_FC_EX_CTX)
19071 /* Exchange responder sent the abort so we
19072 * own the oxid.
19073 */
19074 xri = oxid;
19075 else
19076 xri = rxid;
19077 lxri = lpfc_sli4_xri_inrange(phba, xri);
19078 if (lxri != NO_XRI)
19079 lpfc_set_rrq_active(phba, ndlp, lxri,
19080 (xri == oxid) ? rxid : oxid, 0);
19081 /* For BA_ABTS from exchange responder, if the logical xri with
19082 * the oxid maps to the FCP XRI range, the port no longer has
19083 * that exchange context, send a BLS_RJT. Override the IOCB for
19084 * a BA_RJT.
19085 */
19086 if ((fctl & FC_FC_EX_CTX) &&
19087 (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
19088 ctiocb->abort_rctl = FC_RCTL_BA_RJT;
19089 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0);
19090 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp,
19091 FC_BA_RJT_INV_XID);
19092 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp,
19093 FC_BA_RJT_UNABLE);
19094 }
19095
19096 /* If BA_ABTS failed to abort a partially assembled receive sequence,
19097 * the driver no longer has that exchange, send a BLS_RJT. Override
19098 * the IOCB for a BA_RJT.
19099 */
19100 if (aborted == false) {
19101 ctiocb->abort_rctl = FC_RCTL_BA_RJT;
19102 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0);
19103 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp,
19104 FC_BA_RJT_INV_XID);
19105 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp,
19106 FC_BA_RJT_UNABLE);
19107 }
19108
19109 if (fctl & FC_FC_EX_CTX) {
19110 /* ABTS sent by responder to CT exchange, construction
19111 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
19112 * field and RX_ID from ABTS for RX_ID field.
19113 */
19114 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP;
19115 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid);
19116 } else {
19117 /* ABTS sent by initiator to CT exchange, construction
19118 * of BA_ACC will need to allocate a new XRI as for the
19119 * XRI_TAG field.
19120 */
19121 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT;
19122 }
19123
19124 /* OX_ID is invariable to who sent ABTS to CT exchange */
19125 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid);
19126 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid);
19127
19128 /* Use CT=VPI */
19129 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest,
19130 ndlp->nlp_DID);
19131 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp,
19132 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
19133 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX);
19134
19135 /* Xmit CT abts response on exchange <xid> */
19136 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
19137 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
19138 ctiocb->abort_rctl, oxid, phba->link_state);
19139
19140 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
19141 if (rc == IOCB_ERROR) {
19142 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
19143 "2925 Failed to issue CT ABTS RSP x%x on "
19144 "xri x%x, Data x%x\n",
19145 ctiocb->abort_rctl, oxid,
19146 phba->link_state);
19147 lpfc_nlp_put(ndlp);
19148 ctiocb->ndlp = NULL;
19149 lpfc_sli_release_iocbq(phba, ctiocb);
19150 }
19151
19152 /* if only usage of this nodelist is BLS response, release initial ref
19153 * to free ndlp when transmit completes
19154 */
19155 if (ndlp->nlp_state == NLP_STE_UNUSED_NODE &&
19156 !test_bit(NLP_DROPPED, &ndlp->nlp_flag) &&
19157 !(ndlp->fc4_xpt_flags & (NVME_XPT_REGD | SCSI_XPT_REGD))) {
19158 set_bit(NLP_DROPPED, &ndlp->nlp_flag);
19159 lpfc_nlp_put(ndlp);
19160 }
19161 }
19162
19163 /**
19164 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
19165 * @vport: Pointer to the vport on which this sequence was received
19166 * @dmabuf: pointer to a dmabuf that describes the FC sequence
19167 *
19168 * This function handles an SLI-4 unsolicited abort event. If the unsolicited
19169 * receive sequence is only partially assembed by the driver, it shall abort
19170 * the partially assembled frames for the sequence. Otherwise, if the
19171 * unsolicited receive sequence has been completely assembled and passed to
19172 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the
19173 * unsolicited sequence has been aborted. After that, it will issue a basic
19174 * accept to accept the abort.
19175 **/
19176 static void
lpfc_sli4_handle_unsol_abort(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)19177 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
19178 struct hbq_dmabuf *dmabuf)
19179 {
19180 struct lpfc_hba *phba = vport->phba;
19181 struct fc_frame_header fc_hdr;
19182 uint32_t fctl;
19183 bool aborted;
19184
19185 /* Make a copy of fc_hdr before the dmabuf being released */
19186 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
19187 fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
19188
19189 if (fctl & FC_FC_EX_CTX) {
19190 /* ABTS by responder to exchange, no cleanup needed */
19191 aborted = true;
19192 } else {
19193 /* ABTS by initiator to exchange, need to do cleanup */
19194 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
19195 if (aborted == false)
19196 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
19197 }
19198 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19199
19200 if (phba->nvmet_support) {
19201 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
19202 return;
19203 }
19204
19205 /* Respond with BA_ACC or BA_RJT accordingly */
19206 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
19207 }
19208
19209 /**
19210 * lpfc_seq_complete - Indicates if a sequence is complete
19211 * @dmabuf: pointer to a dmabuf that describes the FC sequence
19212 *
19213 * This function checks the sequence, starting with the frame described by
19214 * @dmabuf, to see if all the frames associated with this sequence are present.
19215 * the frames associated with this sequence are linked to the @dmabuf using the
19216 * dbuf list. This function looks for two major things. 1) That the first frame
19217 * has a sequence count of zero. 2) There is a frame with last frame of sequence
19218 * set. 3) That there are no holes in the sequence count. The function will
19219 * return 1 when the sequence is complete, otherwise it will return 0.
19220 **/
19221 static int
lpfc_seq_complete(struct hbq_dmabuf * dmabuf)19222 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
19223 {
19224 struct fc_frame_header *hdr;
19225 struct lpfc_dmabuf *d_buf;
19226 struct hbq_dmabuf *seq_dmabuf;
19227 uint32_t fctl;
19228 int seq_count = 0;
19229
19230 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
19231 /* make sure first fame of sequence has a sequence count of zero */
19232 if (hdr->fh_seq_cnt != seq_count)
19233 return 0;
19234 fctl = (hdr->fh_f_ctl[0] << 16 |
19235 hdr->fh_f_ctl[1] << 8 |
19236 hdr->fh_f_ctl[2]);
19237 /* If last frame of sequence we can return success. */
19238 if (fctl & FC_FC_END_SEQ)
19239 return 1;
19240 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
19241 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
19242 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
19243 /* If there is a hole in the sequence count then fail. */
19244 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
19245 return 0;
19246 fctl = (hdr->fh_f_ctl[0] << 16 |
19247 hdr->fh_f_ctl[1] << 8 |
19248 hdr->fh_f_ctl[2]);
19249 /* If last frame of sequence we can return success. */
19250 if (fctl & FC_FC_END_SEQ)
19251 return 1;
19252 }
19253 return 0;
19254 }
19255
19256 /**
19257 * lpfc_prep_seq - Prep sequence for ULP processing
19258 * @vport: Pointer to the vport on which this sequence was received
19259 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence
19260 *
19261 * This function takes a sequence, described by a list of frames, and creates
19262 * a list of iocbq structures to describe the sequence. This iocbq list will be
19263 * used to issue to the generic unsolicited sequence handler. This routine
19264 * returns a pointer to the first iocbq in the list. If the function is unable
19265 * to allocate an iocbq then it throw out the received frames that were not
19266 * able to be described and return a pointer to the first iocbq. If unable to
19267 * allocate any iocbqs (including the first) this function will return NULL.
19268 **/
19269 static struct lpfc_iocbq *
lpfc_prep_seq(struct lpfc_vport * vport,struct hbq_dmabuf * seq_dmabuf)19270 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
19271 {
19272 struct hbq_dmabuf *hbq_buf;
19273 struct lpfc_dmabuf *d_buf, *n_buf;
19274 struct lpfc_iocbq *first_iocbq, *iocbq;
19275 struct fc_frame_header *fc_hdr;
19276 uint32_t sid;
19277 uint32_t len, tot_len;
19278
19279 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
19280 /* remove from receive buffer list */
19281 list_del_init(&seq_dmabuf->hbuf.list);
19282 lpfc_update_rcv_time_stamp(vport);
19283 /* get the Remote Port's SID */
19284 sid = sli4_sid_from_fc_hdr(fc_hdr);
19285 tot_len = 0;
19286 /* Get an iocbq struct to fill in. */
19287 first_iocbq = lpfc_sli_get_iocbq(vport->phba);
19288 if (first_iocbq) {
19289 /* Initialize the first IOCB. */
19290 first_iocbq->wcqe_cmpl.total_data_placed = 0;
19291 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl,
19292 IOSTAT_SUCCESS);
19293 first_iocbq->vport = vport;
19294
19295 /* Check FC Header to see what TYPE of frame we are rcv'ing */
19296 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
19297 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp,
19298 sli4_did_from_fc_hdr(fc_hdr));
19299 }
19300
19301 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com,
19302 NO_XRI);
19303 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com,
19304 be16_to_cpu(fc_hdr->fh_ox_id));
19305
19306 /* put the first buffer into the first iocb */
19307 tot_len = bf_get(lpfc_rcqe_length,
19308 &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
19309
19310 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf;
19311 first_iocbq->bpl_dmabuf = NULL;
19312 /* Keep track of the BDE count */
19313 first_iocbq->wcqe_cmpl.word3 = 1;
19314
19315 if (tot_len > LPFC_DATA_BUF_SIZE)
19316 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize =
19317 LPFC_DATA_BUF_SIZE;
19318 else
19319 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len;
19320
19321 first_iocbq->wcqe_cmpl.total_data_placed = tot_len;
19322 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest,
19323 sid);
19324 }
19325 iocbq = first_iocbq;
19326 /*
19327 * Each IOCBq can have two Buffers assigned, so go through the list
19328 * of buffers for this sequence and save two buffers in each IOCBq
19329 */
19330 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
19331 if (!iocbq) {
19332 lpfc_in_buf_free(vport->phba, d_buf);
19333 continue;
19334 }
19335 if (!iocbq->bpl_dmabuf) {
19336 iocbq->bpl_dmabuf = d_buf;
19337 iocbq->wcqe_cmpl.word3++;
19338 /* We need to get the size out of the right CQE */
19339 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
19340 len = bf_get(lpfc_rcqe_length,
19341 &hbq_buf->cq_event.cqe.rcqe_cmpl);
19342 iocbq->unsol_rcv_len = len;
19343 iocbq->wcqe_cmpl.total_data_placed += len;
19344 tot_len += len;
19345 } else {
19346 iocbq = lpfc_sli_get_iocbq(vport->phba);
19347 if (!iocbq) {
19348 if (first_iocbq) {
19349 bf_set(lpfc_wcqe_c_status,
19350 &first_iocbq->wcqe_cmpl,
19351 IOSTAT_SUCCESS);
19352 first_iocbq->wcqe_cmpl.parameter =
19353 IOERR_NO_RESOURCES;
19354 }
19355 lpfc_in_buf_free(vport->phba, d_buf);
19356 continue;
19357 }
19358 /* We need to get the size out of the right CQE */
19359 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
19360 len = bf_get(lpfc_rcqe_length,
19361 &hbq_buf->cq_event.cqe.rcqe_cmpl);
19362 iocbq->cmd_dmabuf = d_buf;
19363 iocbq->bpl_dmabuf = NULL;
19364 iocbq->wcqe_cmpl.word3 = 1;
19365
19366 if (len > LPFC_DATA_BUF_SIZE)
19367 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize =
19368 LPFC_DATA_BUF_SIZE;
19369 else
19370 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize =
19371 len;
19372
19373 tot_len += len;
19374 iocbq->wcqe_cmpl.total_data_placed = tot_len;
19375 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest,
19376 sid);
19377 list_add_tail(&iocbq->list, &first_iocbq->list);
19378 }
19379 }
19380 /* Free the sequence's header buffer */
19381 if (!first_iocbq)
19382 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf);
19383
19384 return first_iocbq;
19385 }
19386
19387 static void
lpfc_sli4_send_seq_to_ulp(struct lpfc_vport * vport,struct hbq_dmabuf * seq_dmabuf)19388 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
19389 struct hbq_dmabuf *seq_dmabuf)
19390 {
19391 struct fc_frame_header *fc_hdr;
19392 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
19393 struct lpfc_hba *phba = vport->phba;
19394
19395 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
19396 iocbq = lpfc_prep_seq(vport, seq_dmabuf);
19397 if (!iocbq) {
19398 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19399 "2707 Ring %d handler: Failed to allocate "
19400 "iocb Rctl x%x Type x%x received\n",
19401 LPFC_ELS_RING,
19402 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
19403 return;
19404 }
19405 if (!lpfc_complete_unsol_iocb(phba,
19406 phba->sli4_hba.els_wq->pring,
19407 iocbq, fc_hdr->fh_r_ctl,
19408 fc_hdr->fh_type)) {
19409 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19410 "2540 Ring %d handler: unexpected Rctl "
19411 "x%x Type x%x received\n",
19412 LPFC_ELS_RING,
19413 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
19414 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf);
19415 }
19416
19417 /* Free iocb created in lpfc_prep_seq */
19418 list_for_each_entry_safe(curr_iocb, next_iocb,
19419 &iocbq->list, list) {
19420 list_del_init(&curr_iocb->list);
19421 lpfc_sli_release_iocbq(phba, curr_iocb);
19422 }
19423 lpfc_sli_release_iocbq(phba, iocbq);
19424 }
19425
19426 static void
lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)19427 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
19428 struct lpfc_iocbq *rspiocb)
19429 {
19430 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf;
19431
19432 if (pcmd && pcmd->virt)
19433 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
19434 kfree(pcmd);
19435 lpfc_sli_release_iocbq(phba, cmdiocb);
19436 lpfc_drain_txq(phba);
19437 }
19438
19439 static void
lpfc_sli4_handle_mds_loopback(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)19440 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
19441 struct hbq_dmabuf *dmabuf)
19442 {
19443 struct fc_frame_header *fc_hdr;
19444 struct lpfc_hba *phba = vport->phba;
19445 struct lpfc_iocbq *iocbq = NULL;
19446 union lpfc_wqe128 *pwqe;
19447 struct lpfc_dmabuf *pcmd = NULL;
19448 uint32_t frame_len;
19449 int rc;
19450 unsigned long iflags;
19451
19452 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
19453 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
19454
19455 /* Send the received frame back */
19456 iocbq = lpfc_sli_get_iocbq(phba);
19457 if (!iocbq) {
19458 /* Queue cq event and wakeup worker thread to process it */
19459 spin_lock_irqsave(&phba->hbalock, iflags);
19460 list_add_tail(&dmabuf->cq_event.list,
19461 &phba->sli4_hba.sp_queue_event);
19462 spin_unlock_irqrestore(&phba->hbalock, iflags);
19463 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag);
19464 lpfc_worker_wake_up(phba);
19465 return;
19466 }
19467
19468 /* Allocate buffer for command payload */
19469 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
19470 if (pcmd)
19471 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
19472 &pcmd->phys);
19473 if (!pcmd || !pcmd->virt)
19474 goto exit;
19475
19476 INIT_LIST_HEAD(&pcmd->list);
19477
19478 /* copyin the payload */
19479 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
19480
19481 iocbq->cmd_dmabuf = pcmd;
19482 iocbq->vport = vport;
19483 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK;
19484 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX;
19485 iocbq->num_bdes = 0;
19486
19487 pwqe = &iocbq->wqe;
19488 /* fill in BDE's for command */
19489 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys);
19490 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys);
19491 pwqe->gen_req.bde.tus.f.bdeSize = frame_len;
19492 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
19493
19494 pwqe->send_frame.frame_len = frame_len;
19495 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr));
19496 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1));
19497 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2));
19498 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3));
19499 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4));
19500 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5));
19501
19502 pwqe->generic.wqe_com.word7 = 0;
19503 pwqe->generic.wqe_com.word10 = 0;
19504
19505 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME);
19506 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */
19507 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */
19508 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1);
19509 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1);
19510 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1);
19511 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1);
19512 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA);
19513 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
19514 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag);
19515 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag);
19516 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3);
19517 pwqe->generic.wqe_com.abort_tag = iocbq->iotag;
19518
19519 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl;
19520
19521 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
19522 if (rc == IOCB_ERROR)
19523 goto exit;
19524
19525 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19526 return;
19527
19528 exit:
19529 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
19530 "2023 Unable to process MDS loopback frame\n");
19531 if (pcmd && pcmd->virt)
19532 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
19533 kfree(pcmd);
19534 if (iocbq)
19535 lpfc_sli_release_iocbq(phba, iocbq);
19536 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19537 }
19538
19539 /**
19540 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
19541 * @phba: Pointer to HBA context object.
19542 * @dmabuf: Pointer to a dmabuf that describes the FC sequence.
19543 *
19544 * This function is called with no lock held. This function processes all
19545 * the received buffers and gives it to upper layers when a received buffer
19546 * indicates that it is the final frame in the sequence. The interrupt
19547 * service routine processes received buffers at interrupt contexts.
19548 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
19549 * appropriate receive function when the final frame in a sequence is received.
19550 **/
19551 void
lpfc_sli4_handle_received_buffer(struct lpfc_hba * phba,struct hbq_dmabuf * dmabuf)19552 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
19553 struct hbq_dmabuf *dmabuf)
19554 {
19555 struct hbq_dmabuf *seq_dmabuf;
19556 struct fc_frame_header *fc_hdr;
19557 struct lpfc_vport *vport;
19558 uint32_t fcfi;
19559 uint32_t did;
19560
19561 /* Process each received buffer */
19562 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
19563
19564 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
19565 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
19566 vport = phba->pport;
19567 /* Handle MDS Loopback frames */
19568 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag))
19569 lpfc_sli4_handle_mds_loopback(vport, dmabuf);
19570 else
19571 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19572 return;
19573 }
19574
19575 /* check to see if this a valid type of frame */
19576 if (lpfc_fc_frame_check(phba, fc_hdr)) {
19577 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19578 return;
19579 }
19580
19581 if ((bf_get(lpfc_cqe_code,
19582 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
19583 fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
19584 &dmabuf->cq_event.cqe.rcqe_cmpl);
19585 else
19586 fcfi = bf_get(lpfc_rcqe_fcf_id,
19587 &dmabuf->cq_event.cqe.rcqe_cmpl);
19588
19589 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
19590 vport = phba->pport;
19591 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
19592 "2023 MDS Loopback %d bytes\n",
19593 bf_get(lpfc_rcqe_length,
19594 &dmabuf->cq_event.cqe.rcqe_cmpl));
19595 /* Handle MDS Loopback frames */
19596 lpfc_sli4_handle_mds_loopback(vport, dmabuf);
19597 return;
19598 }
19599
19600 /* d_id this frame is directed to */
19601 did = sli4_did_from_fc_hdr(fc_hdr);
19602
19603 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
19604 if (!vport) {
19605 /* throw out the frame */
19606 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19607 return;
19608 }
19609
19610 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
19611 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
19612 (did != Fabric_DID)) {
19613 /*
19614 * Throw out the frame if we are not pt2pt.
19615 * The pt2pt protocol allows for discovery frames
19616 * to be received without a registered VPI.
19617 */
19618 if (!test_bit(FC_PT2PT, &vport->fc_flag) ||
19619 phba->link_state == LPFC_HBA_READY) {
19620 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19621 return;
19622 }
19623 }
19624
19625 /* Handle the basic abort sequence (BA_ABTS) event */
19626 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
19627 lpfc_sli4_handle_unsol_abort(vport, dmabuf);
19628 return;
19629 }
19630
19631 /* Link this frame */
19632 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
19633 if (!seq_dmabuf) {
19634 /* unable to add frame to vport - throw it out */
19635 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19636 return;
19637 }
19638 /* If not last frame in sequence continue processing frames. */
19639 if (!lpfc_seq_complete(seq_dmabuf))
19640 return;
19641
19642 /* Send the complete sequence to the upper layer protocol */
19643 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
19644 }
19645
19646 /**
19647 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
19648 * @phba: pointer to lpfc hba data structure.
19649 *
19650 * This routine is invoked to post rpi header templates to the
19651 * HBA consistent with the SLI-4 interface spec. This routine
19652 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
19653 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
19654 *
19655 * This routine does not require any locks. It's usage is expected
19656 * to be driver load or reset recovery when the driver is
19657 * sequential.
19658 *
19659 * Return codes
19660 * 0 - successful
19661 * -EIO - The mailbox failed to complete successfully.
19662 * When this error occurs, the driver is not guaranteed
19663 * to have any rpi regions posted to the device and
19664 * must either attempt to repost the regions or take a
19665 * fatal error.
19666 **/
19667 int
lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba * phba)19668 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
19669 {
19670 struct lpfc_rpi_hdr *rpi_page;
19671 uint32_t rc = 0;
19672 uint16_t lrpi = 0;
19673
19674 /* SLI4 ports that support extents do not require RPI headers. */
19675 if (!phba->sli4_hba.rpi_hdrs_in_use)
19676 goto exit;
19677 if (phba->sli4_hba.extents_in_use)
19678 return -EIO;
19679
19680 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
19681 /*
19682 * Assign the rpi headers a physical rpi only if the driver
19683 * has not initialized those resources. A port reset only
19684 * needs the headers posted.
19685 */
19686 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
19687 LPFC_RPI_RSRC_RDY)
19688 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
19689
19690 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
19691 if (rc != MBX_SUCCESS) {
19692 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19693 "2008 Error %d posting all rpi "
19694 "headers\n", rc);
19695 rc = -EIO;
19696 break;
19697 }
19698 }
19699
19700 exit:
19701 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
19702 LPFC_RPI_RSRC_RDY);
19703 return rc;
19704 }
19705
19706 /**
19707 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
19708 * @phba: pointer to lpfc hba data structure.
19709 * @rpi_page: pointer to the rpi memory region.
19710 *
19711 * This routine is invoked to post a single rpi header to the
19712 * HBA consistent with the SLI-4 interface spec. This memory region
19713 * maps up to 64 rpi context regions.
19714 *
19715 * Return codes
19716 * 0 - successful
19717 * -ENOMEM - No available memory
19718 * -EIO - The mailbox failed to complete successfully.
19719 **/
19720 int
lpfc_sli4_post_rpi_hdr(struct lpfc_hba * phba,struct lpfc_rpi_hdr * rpi_page)19721 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
19722 {
19723 LPFC_MBOXQ_t *mboxq;
19724 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
19725 uint32_t rc = 0;
19726 uint32_t shdr_status, shdr_add_status;
19727 union lpfc_sli4_cfg_shdr *shdr;
19728
19729 /* SLI4 ports that support extents do not require RPI headers. */
19730 if (!phba->sli4_hba.rpi_hdrs_in_use)
19731 return rc;
19732 if (phba->sli4_hba.extents_in_use)
19733 return -EIO;
19734
19735 /* The port is notified of the header region via a mailbox command. */
19736 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19737 if (!mboxq) {
19738 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19739 "2001 Unable to allocate memory for issuing "
19740 "SLI_CONFIG_SPECIAL mailbox command\n");
19741 return -ENOMEM;
19742 }
19743
19744 /* Post all rpi memory regions to the port. */
19745 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
19746 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
19747 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
19748 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
19749 sizeof(struct lpfc_sli4_cfg_mhdr),
19750 LPFC_SLI4_MBX_EMBED);
19751
19752
19753 /* Post the physical rpi to the port for this rpi header. */
19754 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
19755 rpi_page->start_rpi);
19756 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
19757 hdr_tmpl, rpi_page->page_count);
19758
19759 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
19760 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
19761 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19762 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
19763 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
19764 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
19765 mempool_free(mboxq, phba->mbox_mem_pool);
19766 if (shdr_status || shdr_add_status || rc) {
19767 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19768 "2514 POST_RPI_HDR mailbox failed with "
19769 "status x%x add_status x%x, mbx status x%x\n",
19770 shdr_status, shdr_add_status, rc);
19771 rc = -ENXIO;
19772 } else {
19773 /*
19774 * The next_rpi stores the next logical module-64 rpi value used
19775 * to post physical rpis in subsequent rpi postings.
19776 */
19777 spin_lock_irq(&phba->hbalock);
19778 phba->sli4_hba.next_rpi = rpi_page->next_rpi;
19779 spin_unlock_irq(&phba->hbalock);
19780 }
19781 return rc;
19782 }
19783
19784 /**
19785 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
19786 * @phba: pointer to lpfc hba data structure.
19787 *
19788 * This routine is invoked to post rpi header templates to the
19789 * HBA consistent with the SLI-4 interface spec. This routine
19790 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
19791 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
19792 *
19793 * Returns
19794 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
19795 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
19796 **/
19797 int
lpfc_sli4_alloc_rpi(struct lpfc_hba * phba)19798 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
19799 {
19800 unsigned long rpi;
19801 uint16_t max_rpi, rpi_limit;
19802 uint16_t rpi_remaining, lrpi = 0;
19803 struct lpfc_rpi_hdr *rpi_hdr;
19804 unsigned long iflag;
19805
19806 /*
19807 * Fetch the next logical rpi. Because this index is logical,
19808 * the driver starts at 0 each time.
19809 */
19810 spin_lock_irqsave(&phba->hbalock, iflag);
19811 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
19812 rpi_limit = phba->sli4_hba.next_rpi;
19813
19814 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit);
19815 if (rpi >= rpi_limit)
19816 rpi = LPFC_RPI_ALLOC_ERROR;
19817 else {
19818 set_bit(rpi, phba->sli4_hba.rpi_bmask);
19819 phba->sli4_hba.max_cfg_param.rpi_used++;
19820 phba->sli4_hba.rpi_count++;
19821 }
19822 lpfc_printf_log(phba, KERN_INFO,
19823 LOG_NODE | LOG_DISCOVERY,
19824 "0001 Allocated rpi:x%x max:x%x lim:x%x\n",
19825 (int) rpi, max_rpi, rpi_limit);
19826
19827 /*
19828 * Don't try to allocate more rpi header regions if the device limit
19829 * has been exhausted.
19830 */
19831 if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
19832 (phba->sli4_hba.rpi_count >= max_rpi)) {
19833 spin_unlock_irqrestore(&phba->hbalock, iflag);
19834 return rpi;
19835 }
19836
19837 /*
19838 * RPI header postings are not required for SLI4 ports capable of
19839 * extents.
19840 */
19841 if (!phba->sli4_hba.rpi_hdrs_in_use) {
19842 spin_unlock_irqrestore(&phba->hbalock, iflag);
19843 return rpi;
19844 }
19845
19846 /*
19847 * If the driver is running low on rpi resources, allocate another
19848 * page now. Note that the next_rpi value is used because
19849 * it represents how many are actually in use whereas max_rpi notes
19850 * how many are supported max by the device.
19851 */
19852 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
19853 spin_unlock_irqrestore(&phba->hbalock, iflag);
19854 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
19855 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
19856 if (!rpi_hdr) {
19857 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19858 "2002 Error Could not grow rpi "
19859 "count\n");
19860 } else {
19861 lrpi = rpi_hdr->start_rpi;
19862 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
19863 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
19864 }
19865 }
19866
19867 return rpi;
19868 }
19869
19870 /**
19871 * __lpfc_sli4_free_rpi - Release an rpi for reuse.
19872 * @phba: pointer to lpfc hba data structure.
19873 * @rpi: rpi to free
19874 *
19875 * This routine is invoked to release an rpi to the pool of
19876 * available rpis maintained by the driver.
19877 **/
19878 static void
__lpfc_sli4_free_rpi(struct lpfc_hba * phba,int rpi)19879 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
19880 {
19881 /*
19882 * if the rpi value indicates a prior unreg has already
19883 * been done, skip the unreg.
19884 */
19885 if (rpi == LPFC_RPI_ALLOC_ERROR)
19886 return;
19887
19888 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
19889 phba->sli4_hba.rpi_count--;
19890 phba->sli4_hba.max_cfg_param.rpi_used--;
19891 } else {
19892 lpfc_printf_log(phba, KERN_INFO,
19893 LOG_NODE | LOG_DISCOVERY,
19894 "2016 rpi %x not inuse\n",
19895 rpi);
19896 }
19897 }
19898
19899 /**
19900 * lpfc_sli4_free_rpi - Release an rpi for reuse.
19901 * @phba: pointer to lpfc hba data structure.
19902 * @rpi: rpi to free
19903 *
19904 * This routine is invoked to release an rpi to the pool of
19905 * available rpis maintained by the driver.
19906 **/
19907 void
lpfc_sli4_free_rpi(struct lpfc_hba * phba,int rpi)19908 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
19909 {
19910 spin_lock_irq(&phba->hbalock);
19911 __lpfc_sli4_free_rpi(phba, rpi);
19912 spin_unlock_irq(&phba->hbalock);
19913 }
19914
19915 /**
19916 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
19917 * @phba: pointer to lpfc hba data structure.
19918 *
19919 * This routine is invoked to remove the memory region that
19920 * provided rpi via a bitmask.
19921 **/
19922 void
lpfc_sli4_remove_rpis(struct lpfc_hba * phba)19923 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
19924 {
19925 kfree(phba->sli4_hba.rpi_bmask);
19926 kfree(phba->sli4_hba.rpi_ids);
19927 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
19928 }
19929
19930 /**
19931 * lpfc_sli4_resume_rpi - Resume traffic relative to an RPI
19932 * @ndlp: pointer to lpfc nodelist data structure.
19933 * @cmpl: completion call-back.
19934 * @iocbq: data to load as mbox ctx_u information
19935 *
19936 * Return codes
19937 * 0 - successful
19938 * -ENOMEM - No available memory
19939 * -EIO - The mailbox failed to complete successfully.
19940 **/
19941 int
lpfc_sli4_resume_rpi(struct lpfc_nodelist * ndlp,void (* cmpl)(struct lpfc_hba *,LPFC_MBOXQ_t *),struct lpfc_iocbq * iocbq)19942 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
19943 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *),
19944 struct lpfc_iocbq *iocbq)
19945 {
19946 LPFC_MBOXQ_t *mboxq;
19947 struct lpfc_hba *phba = ndlp->phba;
19948 int rc;
19949
19950 /* The port is notified of the header region via a mailbox command. */
19951 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19952 if (!mboxq)
19953 return -ENOMEM;
19954
19955 /* If cmpl assigned, then this nlp_get pairs with
19956 * lpfc_mbx_cmpl_resume_rpi.
19957 *
19958 * Else cmpl is NULL, then this nlp_get pairs with
19959 * lpfc_sli_def_mbox_cmpl.
19960 */
19961 if (!lpfc_nlp_get(ndlp)) {
19962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19963 "2122 %s: Failed to get nlp ref\n",
19964 __func__);
19965 mempool_free(mboxq, phba->mbox_mem_pool);
19966 return -EIO;
19967 }
19968
19969 lpfc_resume_rpi(mboxq, ndlp);
19970 if (cmpl) {
19971 mboxq->mbox_cmpl = cmpl;
19972 mboxq->ctx_u.save_iocb = iocbq;
19973 } else
19974 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19975 mboxq->ctx_ndlp = ndlp;
19976 mboxq->vport = ndlp->vport;
19977 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19978 if (rc == MBX_NOT_FINISHED) {
19979 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19980 "2010 Resume RPI Mailbox failed "
19981 "status %d, mbxStatus x%x\n", rc,
19982 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
19983 lpfc_nlp_put(ndlp);
19984 mempool_free(mboxq, phba->mbox_mem_pool);
19985 return -EIO;
19986 }
19987 return 0;
19988 }
19989
19990 /**
19991 * lpfc_sli4_init_vpi - Initialize a vpi with the port
19992 * @vport: Pointer to the vport for which the vpi is being initialized
19993 *
19994 * This routine is invoked to activate a vpi with the port.
19995 *
19996 * Returns:
19997 * 0 success
19998 * -Evalue otherwise
19999 **/
20000 int
lpfc_sli4_init_vpi(struct lpfc_vport * vport)20001 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
20002 {
20003 LPFC_MBOXQ_t *mboxq;
20004 int rc = 0;
20005 int retval = MBX_SUCCESS;
20006 uint32_t mbox_tmo;
20007 struct lpfc_hba *phba = vport->phba;
20008 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20009 if (!mboxq)
20010 return -ENOMEM;
20011 lpfc_init_vpi(phba, mboxq, vport->vpi);
20012 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
20013 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
20014 if (rc != MBX_SUCCESS) {
20015 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
20016 "2022 INIT VPI Mailbox failed "
20017 "status %d, mbxStatus x%x\n", rc,
20018 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
20019 retval = -EIO;
20020 }
20021 if (rc != MBX_TIMEOUT)
20022 mempool_free(mboxq, vport->phba->mbox_mem_pool);
20023
20024 return retval;
20025 }
20026
20027 /**
20028 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
20029 * @phba: pointer to lpfc hba data structure.
20030 * @mboxq: Pointer to mailbox object.
20031 *
20032 * This routine is invoked to manually add a single FCF record. The caller
20033 * must pass a completely initialized FCF_Record. This routine takes
20034 * care of the nonembedded mailbox operations.
20035 **/
20036 static void
lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)20037 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
20038 {
20039 void *virt_addr;
20040 union lpfc_sli4_cfg_shdr *shdr;
20041 uint32_t shdr_status, shdr_add_status;
20042
20043 virt_addr = mboxq->sge_array->addr[0];
20044 /* The IOCTL status is embedded in the mailbox subheader. */
20045 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
20046 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
20047 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
20048
20049 if ((shdr_status || shdr_add_status) &&
20050 (shdr_status != STATUS_FCF_IN_USE))
20051 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20052 "2558 ADD_FCF_RECORD mailbox failed with "
20053 "status x%x add_status x%x\n",
20054 shdr_status, shdr_add_status);
20055
20056 lpfc_sli4_mbox_cmd_free(phba, mboxq);
20057 }
20058
20059 /**
20060 * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
20061 * @phba: pointer to lpfc hba data structure.
20062 * @fcf_record: pointer to the initialized fcf record to add.
20063 *
20064 * This routine is invoked to manually add a single FCF record. The caller
20065 * must pass a completely initialized FCF_Record. This routine takes
20066 * care of the nonembedded mailbox operations.
20067 **/
20068 int
lpfc_sli4_add_fcf_record(struct lpfc_hba * phba,struct fcf_record * fcf_record)20069 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
20070 {
20071 int rc = 0;
20072 LPFC_MBOXQ_t *mboxq;
20073 uint8_t *bytep;
20074 void *virt_addr;
20075 struct lpfc_mbx_sge sge;
20076 uint32_t alloc_len, req_len;
20077 uint32_t fcfindex;
20078
20079 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20080 if (!mboxq) {
20081 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20082 "2009 Failed to allocate mbox for ADD_FCF cmd\n");
20083 return -ENOMEM;
20084 }
20085
20086 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
20087 sizeof(uint32_t);
20088
20089 /* Allocate DMA memory and set up the non-embedded mailbox command */
20090 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
20091 LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
20092 req_len, LPFC_SLI4_MBX_NEMBED);
20093 if (alloc_len < req_len) {
20094 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20095 "2523 Allocated DMA memory size (x%x) is "
20096 "less than the requested DMA memory "
20097 "size (x%x)\n", alloc_len, req_len);
20098 lpfc_sli4_mbox_cmd_free(phba, mboxq);
20099 return -ENOMEM;
20100 }
20101
20102 /*
20103 * Get the first SGE entry from the non-embedded DMA memory. This
20104 * routine only uses a single SGE.
20105 */
20106 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
20107 virt_addr = mboxq->sge_array->addr[0];
20108 /*
20109 * Configure the FCF record for FCFI 0. This is the driver's
20110 * hardcoded default and gets used in nonFIP mode.
20111 */
20112 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
20113 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
20114 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
20115
20116 /*
20117 * Copy the fcf_index and the FCF Record Data. The data starts after
20118 * the FCoE header plus word10. The data copy needs to be endian
20119 * correct.
20120 */
20121 bytep += sizeof(uint32_t);
20122 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
20123 mboxq->vport = phba->pport;
20124 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
20125 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20126 if (rc == MBX_NOT_FINISHED) {
20127 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20128 "2515 ADD_FCF_RECORD mailbox failed with "
20129 "status 0x%x\n", rc);
20130 lpfc_sli4_mbox_cmd_free(phba, mboxq);
20131 rc = -EIO;
20132 } else
20133 rc = 0;
20134
20135 return rc;
20136 }
20137
20138 /**
20139 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
20140 * @phba: pointer to lpfc hba data structure.
20141 * @fcf_record: pointer to the fcf record to write the default data.
20142 * @fcf_index: FCF table entry index.
20143 *
20144 * This routine is invoked to build the driver's default FCF record. The
20145 * values used are hardcoded. This routine handles memory initialization.
20146 *
20147 **/
20148 void
lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba * phba,struct fcf_record * fcf_record,uint16_t fcf_index)20149 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
20150 struct fcf_record *fcf_record,
20151 uint16_t fcf_index)
20152 {
20153 memset(fcf_record, 0, sizeof(struct fcf_record));
20154 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
20155 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
20156 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
20157 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
20158 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
20159 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
20160 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
20161 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
20162 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
20163 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
20164 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
20165 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
20166 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
20167 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
20168 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
20169 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
20170 LPFC_FCF_FPMA | LPFC_FCF_SPMA);
20171 /* Set the VLAN bit map */
20172 if (phba->valid_vlan) {
20173 fcf_record->vlan_bitmap[phba->vlan_id / 8]
20174 = 1 << (phba->vlan_id % 8);
20175 }
20176 }
20177
20178 /**
20179 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
20180 * @phba: pointer to lpfc hba data structure.
20181 * @fcf_index: FCF table entry offset.
20182 *
20183 * This routine is invoked to scan the entire FCF table by reading FCF
20184 * record and processing it one at a time starting from the @fcf_index
20185 * for initial FCF discovery or fast FCF failover rediscovery.
20186 *
20187 * Return 0 if the mailbox command is submitted successfully, none 0
20188 * otherwise.
20189 **/
20190 int
lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba * phba,uint16_t fcf_index)20191 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
20192 {
20193 int rc = 0, error;
20194 LPFC_MBOXQ_t *mboxq;
20195
20196 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
20197 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
20198 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20199 if (!mboxq) {
20200 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20201 "2000 Failed to allocate mbox for "
20202 "READ_FCF cmd\n");
20203 error = -ENOMEM;
20204 goto fail_fcf_scan;
20205 }
20206 /* Construct the read FCF record mailbox command */
20207 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
20208 if (rc) {
20209 error = -EINVAL;
20210 goto fail_fcf_scan;
20211 }
20212 /* Issue the mailbox command asynchronously */
20213 mboxq->vport = phba->pport;
20214 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
20215
20216 set_bit(FCF_TS_INPROG, &phba->hba_flag);
20217
20218 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20219 if (rc == MBX_NOT_FINISHED)
20220 error = -EIO;
20221 else {
20222 /* Reset eligible FCF count for new scan */
20223 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
20224 phba->fcf.eligible_fcf_cnt = 0;
20225 error = 0;
20226 }
20227 fail_fcf_scan:
20228 if (error) {
20229 if (mboxq)
20230 lpfc_sli4_mbox_cmd_free(phba, mboxq);
20231 /* FCF scan failed, clear FCF_TS_INPROG flag */
20232 clear_bit(FCF_TS_INPROG, &phba->hba_flag);
20233 }
20234 return error;
20235 }
20236
20237 /**
20238 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
20239 * @phba: pointer to lpfc hba data structure.
20240 * @fcf_index: FCF table entry offset.
20241 *
20242 * This routine is invoked to read an FCF record indicated by @fcf_index
20243 * and to use it for FLOGI roundrobin FCF failover.
20244 *
20245 * Return 0 if the mailbox command is submitted successfully, none 0
20246 * otherwise.
20247 **/
20248 int
lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba * phba,uint16_t fcf_index)20249 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
20250 {
20251 int rc = 0, error;
20252 LPFC_MBOXQ_t *mboxq;
20253
20254 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20255 if (!mboxq) {
20256 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
20257 "2763 Failed to allocate mbox for "
20258 "READ_FCF cmd\n");
20259 error = -ENOMEM;
20260 goto fail_fcf_read;
20261 }
20262 /* Construct the read FCF record mailbox command */
20263 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
20264 if (rc) {
20265 error = -EINVAL;
20266 goto fail_fcf_read;
20267 }
20268 /* Issue the mailbox command asynchronously */
20269 mboxq->vport = phba->pport;
20270 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
20271 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20272 if (rc == MBX_NOT_FINISHED)
20273 error = -EIO;
20274 else
20275 error = 0;
20276
20277 fail_fcf_read:
20278 if (error && mboxq)
20279 lpfc_sli4_mbox_cmd_free(phba, mboxq);
20280 return error;
20281 }
20282
20283 /**
20284 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
20285 * @phba: pointer to lpfc hba data structure.
20286 * @fcf_index: FCF table entry offset.
20287 *
20288 * This routine is invoked to read an FCF record indicated by @fcf_index to
20289 * determine whether it's eligible for FLOGI roundrobin failover list.
20290 *
20291 * Return 0 if the mailbox command is submitted successfully, none 0
20292 * otherwise.
20293 **/
20294 int
lpfc_sli4_read_fcf_rec(struct lpfc_hba * phba,uint16_t fcf_index)20295 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
20296 {
20297 int rc = 0, error;
20298 LPFC_MBOXQ_t *mboxq;
20299
20300 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20301 if (!mboxq) {
20302 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
20303 "2758 Failed to allocate mbox for "
20304 "READ_FCF cmd\n");
20305 error = -ENOMEM;
20306 goto fail_fcf_read;
20307 }
20308 /* Construct the read FCF record mailbox command */
20309 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
20310 if (rc) {
20311 error = -EINVAL;
20312 goto fail_fcf_read;
20313 }
20314 /* Issue the mailbox command asynchronously */
20315 mboxq->vport = phba->pport;
20316 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
20317 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20318 if (rc == MBX_NOT_FINISHED)
20319 error = -EIO;
20320 else
20321 error = 0;
20322
20323 fail_fcf_read:
20324 if (error && mboxq)
20325 lpfc_sli4_mbox_cmd_free(phba, mboxq);
20326 return error;
20327 }
20328
20329 /**
20330 * lpfc_check_next_fcf_pri_level
20331 * @phba: pointer to the lpfc_hba struct for this port.
20332 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
20333 * routine when the rr_bmask is empty. The FCF indecies are put into the
20334 * rr_bmask based on their priority level. Starting from the highest priority
20335 * to the lowest. The most likely FCF candidate will be in the highest
20336 * priority group. When this routine is called it searches the fcf_pri list for
20337 * next lowest priority group and repopulates the rr_bmask with only those
20338 * fcf_indexes.
20339 * returns:
20340 * 1=success 0=failure
20341 **/
20342 static int
lpfc_check_next_fcf_pri_level(struct lpfc_hba * phba)20343 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
20344 {
20345 uint16_t next_fcf_pri;
20346 uint16_t last_index;
20347 struct lpfc_fcf_pri *fcf_pri;
20348 int rc;
20349 int ret = 0;
20350
20351 last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
20352 LPFC_SLI4_FCF_TBL_INDX_MAX);
20353 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20354 "3060 Last IDX %d\n", last_index);
20355
20356 /* Verify the priority list has 2 or more entries */
20357 spin_lock_irq(&phba->hbalock);
20358 if (list_empty(&phba->fcf.fcf_pri_list) ||
20359 list_is_singular(&phba->fcf.fcf_pri_list)) {
20360 spin_unlock_irq(&phba->hbalock);
20361 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20362 "3061 Last IDX %d\n", last_index);
20363 return 0; /* Empty rr list */
20364 }
20365 spin_unlock_irq(&phba->hbalock);
20366
20367 next_fcf_pri = 0;
20368 /*
20369 * Clear the rr_bmask and set all of the bits that are at this
20370 * priority.
20371 */
20372 memset(phba->fcf.fcf_rr_bmask, 0,
20373 sizeof(*phba->fcf.fcf_rr_bmask));
20374 spin_lock_irq(&phba->hbalock);
20375 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
20376 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
20377 continue;
20378 /*
20379 * the 1st priority that has not FLOGI failed
20380 * will be the highest.
20381 */
20382 if (!next_fcf_pri)
20383 next_fcf_pri = fcf_pri->fcf_rec.priority;
20384 spin_unlock_irq(&phba->hbalock);
20385 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
20386 rc = lpfc_sli4_fcf_rr_index_set(phba,
20387 fcf_pri->fcf_rec.fcf_index);
20388 if (rc)
20389 return 0;
20390 }
20391 spin_lock_irq(&phba->hbalock);
20392 }
20393 /*
20394 * if next_fcf_pri was not set above and the list is not empty then
20395 * we have failed flogis on all of them. So reset flogi failed
20396 * and start at the beginning.
20397 */
20398 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
20399 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
20400 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
20401 /*
20402 * the 1st priority that has not FLOGI failed
20403 * will be the highest.
20404 */
20405 if (!next_fcf_pri)
20406 next_fcf_pri = fcf_pri->fcf_rec.priority;
20407 spin_unlock_irq(&phba->hbalock);
20408 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
20409 rc = lpfc_sli4_fcf_rr_index_set(phba,
20410 fcf_pri->fcf_rec.fcf_index);
20411 if (rc)
20412 return 0;
20413 }
20414 spin_lock_irq(&phba->hbalock);
20415 }
20416 } else
20417 ret = 1;
20418 spin_unlock_irq(&phba->hbalock);
20419
20420 return ret;
20421 }
20422 /**
20423 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
20424 * @phba: pointer to lpfc hba data structure.
20425 *
20426 * This routine is to get the next eligible FCF record index in a round
20427 * robin fashion. If the next eligible FCF record index equals to the
20428 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
20429 * shall be returned, otherwise, the next eligible FCF record's index
20430 * shall be returned.
20431 **/
20432 uint16_t
lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba * phba)20433 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
20434 {
20435 uint16_t next_fcf_index;
20436
20437 initial_priority:
20438 /* Search start from next bit of currently registered FCF index */
20439 next_fcf_index = phba->fcf.current_rec.fcf_indx;
20440
20441 next_priority:
20442 /* Determine the next fcf index to check */
20443 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
20444 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
20445 LPFC_SLI4_FCF_TBL_INDX_MAX,
20446 next_fcf_index);
20447
20448 /* Wrap around condition on phba->fcf.fcf_rr_bmask */
20449 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20450 /*
20451 * If we have wrapped then we need to clear the bits that
20452 * have been tested so that we can detect when we should
20453 * change the priority level.
20454 */
20455 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask,
20456 LPFC_SLI4_FCF_TBL_INDX_MAX);
20457 }
20458
20459
20460 /* Check roundrobin failover list empty condition */
20461 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
20462 next_fcf_index == phba->fcf.current_rec.fcf_indx) {
20463 /*
20464 * If next fcf index is not found check if there are lower
20465 * Priority level fcf's in the fcf_priority list.
20466 * Set up the rr_bmask with all of the avaiable fcf bits
20467 * at that level and continue the selection process.
20468 */
20469 if (lpfc_check_next_fcf_pri_level(phba))
20470 goto initial_priority;
20471 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
20472 "2844 No roundrobin failover FCF available\n");
20473
20474 return LPFC_FCOE_FCF_NEXT_NONE;
20475 }
20476
20477 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
20478 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
20479 LPFC_FCF_FLOGI_FAILED) {
20480 if (list_is_singular(&phba->fcf.fcf_pri_list))
20481 return LPFC_FCOE_FCF_NEXT_NONE;
20482
20483 goto next_priority;
20484 }
20485
20486 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20487 "2845 Get next roundrobin failover FCF (x%x)\n",
20488 next_fcf_index);
20489
20490 return next_fcf_index;
20491 }
20492
20493 /**
20494 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
20495 * @phba: pointer to lpfc hba data structure.
20496 * @fcf_index: index into the FCF table to 'set'
20497 *
20498 * This routine sets the FCF record index in to the eligible bmask for
20499 * roundrobin failover search. It checks to make sure that the index
20500 * does not go beyond the range of the driver allocated bmask dimension
20501 * before setting the bit.
20502 *
20503 * Returns 0 if the index bit successfully set, otherwise, it returns
20504 * -EINVAL.
20505 **/
20506 int
lpfc_sli4_fcf_rr_index_set(struct lpfc_hba * phba,uint16_t fcf_index)20507 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
20508 {
20509 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20510 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20511 "2610 FCF (x%x) reached driver's book "
20512 "keeping dimension:x%x\n",
20513 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
20514 return -EINVAL;
20515 }
20516 /* Set the eligible FCF record index bmask */
20517 set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
20518
20519 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20520 "2790 Set FCF (x%x) to roundrobin FCF failover "
20521 "bmask\n", fcf_index);
20522
20523 return 0;
20524 }
20525
20526 /**
20527 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
20528 * @phba: pointer to lpfc hba data structure.
20529 * @fcf_index: index into the FCF table to 'clear'
20530 *
20531 * This routine clears the FCF record index from the eligible bmask for
20532 * roundrobin failover search. It checks to make sure that the index
20533 * does not go beyond the range of the driver allocated bmask dimension
20534 * before clearing the bit.
20535 **/
20536 void
lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba * phba,uint16_t fcf_index)20537 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
20538 {
20539 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
20540 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20541 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20542 "2762 FCF (x%x) reached driver's book "
20543 "keeping dimension:x%x\n",
20544 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
20545 return;
20546 }
20547 /* Clear the eligible FCF record index bmask */
20548 spin_lock_irq(&phba->hbalock);
20549 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
20550 list) {
20551 if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
20552 list_del_init(&fcf_pri->list);
20553 break;
20554 }
20555 }
20556 spin_unlock_irq(&phba->hbalock);
20557 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
20558
20559 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20560 "2791 Clear FCF (x%x) from roundrobin failover "
20561 "bmask\n", fcf_index);
20562 }
20563
20564 /**
20565 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
20566 * @phba: pointer to lpfc hba data structure.
20567 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
20568 *
20569 * This routine is the completion routine for the rediscover FCF table mailbox
20570 * command. If the mailbox command returned failure, it will try to stop the
20571 * FCF rediscover wait timer.
20572 **/
20573 static void
lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba * phba,LPFC_MBOXQ_t * mbox)20574 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
20575 {
20576 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
20577 uint32_t shdr_status, shdr_add_status;
20578
20579 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
20580
20581 shdr_status = bf_get(lpfc_mbox_hdr_status,
20582 &redisc_fcf->header.cfg_shdr.response);
20583 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
20584 &redisc_fcf->header.cfg_shdr.response);
20585 if (shdr_status || shdr_add_status) {
20586 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20587 "2746 Requesting for FCF rediscovery failed "
20588 "status x%x add_status x%x\n",
20589 shdr_status, shdr_add_status);
20590 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
20591 spin_lock_irq(&phba->hbalock);
20592 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
20593 spin_unlock_irq(&phba->hbalock);
20594 /*
20595 * CVL event triggered FCF rediscover request failed,
20596 * last resort to re-try current registered FCF entry.
20597 */
20598 lpfc_retry_pport_discovery(phba);
20599 } else {
20600 spin_lock_irq(&phba->hbalock);
20601 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
20602 spin_unlock_irq(&phba->hbalock);
20603 /*
20604 * DEAD FCF event triggered FCF rediscover request
20605 * failed, last resort to fail over as a link down
20606 * to FCF registration.
20607 */
20608 lpfc_sli4_fcf_dead_failthrough(phba);
20609 }
20610 } else {
20611 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20612 "2775 Start FCF rediscover quiescent timer\n");
20613 /*
20614 * Start FCF rediscovery wait timer for pending FCF
20615 * before rescan FCF record table.
20616 */
20617 lpfc_fcf_redisc_wait_start_timer(phba);
20618 }
20619
20620 mempool_free(mbox, phba->mbox_mem_pool);
20621 }
20622
20623 /**
20624 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
20625 * @phba: pointer to lpfc hba data structure.
20626 *
20627 * This routine is invoked to request for rediscovery of the entire FCF table
20628 * by the port.
20629 **/
20630 int
lpfc_sli4_redisc_fcf_table(struct lpfc_hba * phba)20631 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
20632 {
20633 LPFC_MBOXQ_t *mbox;
20634 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
20635 int rc, length;
20636
20637 /* Cancel retry delay timers to all vports before FCF rediscover */
20638 lpfc_cancel_all_vport_retry_delay_timer(phba);
20639
20640 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20641 if (!mbox) {
20642 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20643 "2745 Failed to allocate mbox for "
20644 "requesting FCF rediscover.\n");
20645 return -ENOMEM;
20646 }
20647
20648 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
20649 sizeof(struct lpfc_sli4_cfg_mhdr));
20650 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
20651 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
20652 length, LPFC_SLI4_MBX_EMBED);
20653
20654 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
20655 /* Set count to 0 for invalidating the entire FCF database */
20656 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
20657
20658 /* Issue the mailbox command asynchronously */
20659 mbox->vport = phba->pport;
20660 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
20661 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
20662
20663 if (rc == MBX_NOT_FINISHED) {
20664 mempool_free(mbox, phba->mbox_mem_pool);
20665 return -EIO;
20666 }
20667 return 0;
20668 }
20669
20670 /**
20671 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
20672 * @phba: pointer to lpfc hba data structure.
20673 *
20674 * This function is the failover routine as a last resort to the FCF DEAD
20675 * event when driver failed to perform fast FCF failover.
20676 **/
20677 void
lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba * phba)20678 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
20679 {
20680 uint32_t link_state;
20681
20682 /*
20683 * Last resort as FCF DEAD event failover will treat this as
20684 * a link down, but save the link state because we don't want
20685 * it to be changed to Link Down unless it is already down.
20686 */
20687 link_state = phba->link_state;
20688 lpfc_linkdown(phba);
20689 phba->link_state = link_state;
20690
20691 /* Unregister FCF if no devices connected to it */
20692 lpfc_unregister_unused_fcf(phba);
20693 }
20694
20695 /**
20696 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
20697 * @phba: pointer to lpfc hba data structure.
20698 * @rgn23_data: pointer to configure region 23 data.
20699 *
20700 * This function gets SLI3 port configure region 23 data through memory dump
20701 * mailbox command. When it successfully retrieves data, the size of the data
20702 * will be returned, otherwise, 0 will be returned.
20703 **/
20704 static uint32_t
lpfc_sli_get_config_region23(struct lpfc_hba * phba,char * rgn23_data)20705 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
20706 {
20707 LPFC_MBOXQ_t *pmb = NULL;
20708 MAILBOX_t *mb;
20709 uint32_t offset = 0;
20710 int rc;
20711
20712 if (!rgn23_data)
20713 return 0;
20714
20715 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20716 if (!pmb) {
20717 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20718 "2600 failed to allocate mailbox memory\n");
20719 return 0;
20720 }
20721 mb = &pmb->u.mb;
20722
20723 do {
20724 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
20725 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
20726
20727 if (rc != MBX_SUCCESS) {
20728 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
20729 "2601 failed to read config "
20730 "region 23, rc 0x%x Status 0x%x\n",
20731 rc, mb->mbxStatus);
20732 mb->un.varDmp.word_cnt = 0;
20733 }
20734 /*
20735 * dump mem may return a zero when finished or we got a
20736 * mailbox error, either way we are done.
20737 */
20738 if (mb->un.varDmp.word_cnt == 0)
20739 break;
20740
20741 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
20742 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
20743
20744 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
20745 rgn23_data + offset,
20746 mb->un.varDmp.word_cnt);
20747 offset += mb->un.varDmp.word_cnt;
20748 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
20749
20750 mempool_free(pmb, phba->mbox_mem_pool);
20751 return offset;
20752 }
20753
20754 /**
20755 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
20756 * @phba: pointer to lpfc hba data structure.
20757 * @rgn23_data: pointer to configure region 23 data.
20758 *
20759 * This function gets SLI4 port configure region 23 data through memory dump
20760 * mailbox command. When it successfully retrieves data, the size of the data
20761 * will be returned, otherwise, 0 will be returned.
20762 **/
20763 static uint32_t
lpfc_sli4_get_config_region23(struct lpfc_hba * phba,char * rgn23_data)20764 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
20765 {
20766 LPFC_MBOXQ_t *mboxq = NULL;
20767 struct lpfc_dmabuf *mp = NULL;
20768 struct lpfc_mqe *mqe;
20769 uint32_t data_length = 0;
20770 int rc;
20771
20772 if (!rgn23_data)
20773 return 0;
20774
20775 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20776 if (!mboxq) {
20777 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20778 "3105 failed to allocate mailbox memory\n");
20779 return 0;
20780 }
20781
20782 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
20783 goto out;
20784 mqe = &mboxq->u.mqe;
20785 mp = mboxq->ctx_buf;
20786 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
20787 if (rc)
20788 goto out;
20789 data_length = mqe->un.mb_words[5];
20790 if (data_length == 0)
20791 goto out;
20792 if (data_length > DMP_RGN23_SIZE) {
20793 data_length = 0;
20794 goto out;
20795 }
20796 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
20797 out:
20798 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED);
20799 return data_length;
20800 }
20801
20802 /**
20803 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
20804 * @phba: pointer to lpfc hba data structure.
20805 *
20806 * This function read region 23 and parse TLV for port status to
20807 * decide if the user disaled the port. If the TLV indicates the
20808 * port is disabled, the hba_flag is set accordingly.
20809 **/
20810 void
lpfc_sli_read_link_ste(struct lpfc_hba * phba)20811 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
20812 {
20813 uint8_t *rgn23_data = NULL;
20814 uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
20815 uint32_t offset = 0;
20816
20817 /* Get adapter Region 23 data */
20818 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
20819 if (!rgn23_data)
20820 goto out;
20821
20822 if (phba->sli_rev < LPFC_SLI_REV4)
20823 data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
20824 else {
20825 if_type = bf_get(lpfc_sli_intf_if_type,
20826 &phba->sli4_hba.sli_intf);
20827 if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
20828 goto out;
20829 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
20830 }
20831
20832 if (!data_size)
20833 goto out;
20834
20835 /* Check the region signature first */
20836 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
20837 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20838 "2619 Config region 23 has bad signature\n");
20839 goto out;
20840 }
20841 offset += 4;
20842
20843 /* Check the data structure version */
20844 if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
20845 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20846 "2620 Config region 23 has bad version\n");
20847 goto out;
20848 }
20849 offset += 4;
20850
20851 /* Parse TLV entries in the region */
20852 while (offset < data_size) {
20853 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
20854 break;
20855 /*
20856 * If the TLV is not driver specific TLV or driver id is
20857 * not linux driver id, skip the record.
20858 */
20859 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
20860 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
20861 (rgn23_data[offset + 3] != 0)) {
20862 offset += rgn23_data[offset + 1] * 4 + 4;
20863 continue;
20864 }
20865
20866 /* Driver found a driver specific TLV in the config region */
20867 sub_tlv_len = rgn23_data[offset + 1] * 4;
20868 offset += 4;
20869 tlv_offset = 0;
20870
20871 /*
20872 * Search for configured port state sub-TLV.
20873 */
20874 while ((offset < data_size) &&
20875 (tlv_offset < sub_tlv_len)) {
20876 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
20877 offset += 4;
20878 tlv_offset += 4;
20879 break;
20880 }
20881 if (rgn23_data[offset] != PORT_STE_TYPE) {
20882 offset += rgn23_data[offset + 1] * 4 + 4;
20883 tlv_offset += rgn23_data[offset + 1] * 4 + 4;
20884 continue;
20885 }
20886
20887 /* This HBA contains PORT_STE configured */
20888 if (!rgn23_data[offset + 2])
20889 set_bit(LINK_DISABLED, &phba->hba_flag);
20890
20891 goto out;
20892 }
20893 }
20894
20895 out:
20896 kfree(rgn23_data);
20897 return;
20898 }
20899
20900 /**
20901 * lpfc_log_fw_write_cmpl - logs firmware write completion status
20902 * @phba: pointer to lpfc hba data structure
20903 * @shdr_status: wr_object rsp's status field
20904 * @shdr_add_status: wr_object rsp's add_status field
20905 * @shdr_add_status_2: wr_object rsp's add_status_2 field
20906 * @shdr_change_status: wr_object rsp's change_status field
20907 * @shdr_csf: wr_object rsp's csf bit
20908 *
20909 * This routine is intended to be called after a firmware write completes.
20910 * It will log next action items to be performed by the user to instantiate
20911 * the newly downloaded firmware or reason for incompatibility.
20912 **/
20913 static void
lpfc_log_fw_write_cmpl(struct lpfc_hba * phba,u32 shdr_status,u32 shdr_add_status,u32 shdr_add_status_2,u32 shdr_change_status,u32 shdr_csf)20914 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status,
20915 u32 shdr_add_status, u32 shdr_add_status_2,
20916 u32 shdr_change_status, u32 shdr_csf)
20917 {
20918 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20919 "4198 %s: flash_id x%02x, asic_rev x%02x, "
20920 "status x%02x, add_status x%02x, add_status_2 x%02x, "
20921 "change_status x%02x, csf %01x\n", __func__,
20922 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev,
20923 shdr_status, shdr_add_status, shdr_add_status_2,
20924 shdr_change_status, shdr_csf);
20925
20926 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) {
20927 switch (shdr_add_status_2) {
20928 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH:
20929 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20930 "4199 Firmware write failed: "
20931 "image incompatible with flash x%02x\n",
20932 phba->sli4_hba.flash_id);
20933 break;
20934 case LPFC_ADD_STATUS_2_INCORRECT_ASIC:
20935 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20936 "4200 Firmware write failed: "
20937 "image incompatible with ASIC "
20938 "architecture x%02x\n",
20939 phba->sli4_hba.asic_rev);
20940 break;
20941 default:
20942 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20943 "4210 Firmware write failed: "
20944 "add_status_2 x%02x\n",
20945 shdr_add_status_2);
20946 break;
20947 }
20948 } else if (!shdr_status && !shdr_add_status) {
20949 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET ||
20950 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) {
20951 if (shdr_csf)
20952 shdr_change_status =
20953 LPFC_CHANGE_STATUS_PCI_RESET;
20954 }
20955
20956 switch (shdr_change_status) {
20957 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
20958 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI,
20959 "3198 Firmware write complete: System "
20960 "reboot required to instantiate\n");
20961 break;
20962 case (LPFC_CHANGE_STATUS_FW_RESET):
20963 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI,
20964 "3199 Firmware write complete: "
20965 "Firmware reset required to "
20966 "instantiate\n");
20967 break;
20968 case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
20969 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI,
20970 "3200 Firmware write complete: Port "
20971 "Migration or PCI Reset required to "
20972 "instantiate\n");
20973 break;
20974 case (LPFC_CHANGE_STATUS_PCI_RESET):
20975 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI,
20976 "3201 Firmware write complete: PCI "
20977 "Reset required to instantiate\n");
20978 break;
20979 default:
20980 break;
20981 }
20982 }
20983 }
20984
20985 /**
20986 * lpfc_wr_object - write an object to the firmware
20987 * @phba: HBA structure that indicates port to create a queue on.
20988 * @dmabuf_list: list of dmabufs to write to the port.
20989 * @size: the total byte value of the objects to write to the port.
20990 * @offset: the current offset to be used to start the transfer.
20991 *
20992 * This routine will create a wr_object mailbox command to send to the port.
20993 * the mailbox command will be constructed using the dma buffers described in
20994 * @dmabuf_list to create a list of BDEs. This routine will fill in as many
20995 * BDEs that the imbedded mailbox can support. The @offset variable will be
20996 * used to indicate the starting offset of the transfer and will also return
20997 * the offset after the write object mailbox has completed. @size is used to
20998 * determine the end of the object and whether the eof bit should be set.
20999 *
21000 * Return 0 is successful and offset will contain the new offset to use
21001 * for the next write.
21002 * Return negative value for error cases.
21003 **/
21004 int
lpfc_wr_object(struct lpfc_hba * phba,struct list_head * dmabuf_list,uint32_t size,uint32_t * offset)21005 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
21006 uint32_t size, uint32_t *offset)
21007 {
21008 struct lpfc_mbx_wr_object *wr_object;
21009 LPFC_MBOXQ_t *mbox;
21010 int rc = 0, i = 0;
21011 int mbox_status = 0;
21012 uint32_t shdr_status, shdr_add_status, shdr_add_status_2;
21013 uint32_t shdr_change_status = 0, shdr_csf = 0;
21014 uint32_t mbox_tmo;
21015 struct lpfc_dmabuf *dmabuf;
21016 uint32_t written = 0;
21017 bool check_change_status = false;
21018
21019 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
21020 if (!mbox)
21021 return -ENOMEM;
21022
21023 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
21024 LPFC_MBOX_OPCODE_WRITE_OBJECT,
21025 sizeof(struct lpfc_mbx_wr_object) -
21026 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
21027
21028 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
21029 wr_object->u.request.write_offset = *offset;
21030 sprintf((uint8_t *)wr_object->u.request.object_name, "/");
21031 wr_object->u.request.object_name[0] =
21032 cpu_to_le32(wr_object->u.request.object_name[0]);
21033 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
21034 list_for_each_entry(dmabuf, dmabuf_list, list) {
21035 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
21036 break;
21037 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
21038 wr_object->u.request.bde[i].addrHigh =
21039 putPaddrHigh(dmabuf->phys);
21040 if (written + SLI4_PAGE_SIZE >= size) {
21041 wr_object->u.request.bde[i].tus.f.bdeSize =
21042 (size - written);
21043 written += (size - written);
21044 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
21045 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
21046 check_change_status = true;
21047 } else {
21048 wr_object->u.request.bde[i].tus.f.bdeSize =
21049 SLI4_PAGE_SIZE;
21050 written += SLI4_PAGE_SIZE;
21051 }
21052 i++;
21053 }
21054 wr_object->u.request.bde_count = i;
21055 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
21056 if (!phba->sli4_hba.intr_enable)
21057 mbox_status = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
21058 else {
21059 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
21060 mbox_status = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
21061 }
21062
21063 /* The mbox status needs to be maintained to detect MBOX_TIMEOUT. */
21064 rc = mbox_status;
21065
21066 /* The IOCTL status is embedded in the mailbox subheader. */
21067 shdr_status = bf_get(lpfc_mbox_hdr_status,
21068 &wr_object->header.cfg_shdr.response);
21069 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
21070 &wr_object->header.cfg_shdr.response);
21071 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2,
21072 &wr_object->header.cfg_shdr.response);
21073 if (check_change_status) {
21074 shdr_change_status = bf_get(lpfc_wr_object_change_status,
21075 &wr_object->u.response);
21076 shdr_csf = bf_get(lpfc_wr_object_csf,
21077 &wr_object->u.response);
21078 }
21079
21080 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) {
21081 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
21082 "3025 Write Object mailbox failed with "
21083 "status x%x add_status x%x, add_status_2 x%x, "
21084 "mbx status x%x\n",
21085 shdr_status, shdr_add_status, shdr_add_status_2,
21086 rc);
21087 rc = -ENXIO;
21088 *offset = shdr_add_status;
21089 } else {
21090 *offset += wr_object->u.response.actual_write_length;
21091 }
21092
21093 if (rc || check_change_status)
21094 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status,
21095 shdr_add_status_2, shdr_change_status,
21096 shdr_csf);
21097
21098 if (!phba->sli4_hba.intr_enable)
21099 mempool_free(mbox, phba->mbox_mem_pool);
21100 else if (mbox_status != MBX_TIMEOUT)
21101 mempool_free(mbox, phba->mbox_mem_pool);
21102
21103 return rc;
21104 }
21105
21106 /**
21107 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
21108 * @vport: pointer to vport data structure.
21109 *
21110 * This function iterate through the mailboxq and clean up all REG_LOGIN
21111 * and REG_VPI mailbox commands associated with the vport. This function
21112 * is called when driver want to restart discovery of the vport due to
21113 * a Clear Virtual Link event.
21114 **/
21115 void
lpfc_cleanup_pending_mbox(struct lpfc_vport * vport)21116 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
21117 {
21118 struct lpfc_hba *phba = vport->phba;
21119 LPFC_MBOXQ_t *mb, *nextmb;
21120 struct lpfc_nodelist *ndlp;
21121 struct lpfc_nodelist *act_mbx_ndlp = NULL;
21122 LIST_HEAD(mbox_cmd_list);
21123 uint8_t restart_loop;
21124
21125 /* Clean up internally queued mailbox commands with the vport */
21126 spin_lock_irq(&phba->hbalock);
21127 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
21128 if (mb->vport != vport)
21129 continue;
21130
21131 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
21132 (mb->u.mb.mbxCommand != MBX_REG_VPI))
21133 continue;
21134
21135 list_move_tail(&mb->list, &mbox_cmd_list);
21136 }
21137 /* Clean up active mailbox command with the vport */
21138 mb = phba->sli.mbox_active;
21139 if (mb && (mb->vport == vport)) {
21140 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
21141 (mb->u.mb.mbxCommand == MBX_REG_VPI))
21142 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
21143 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
21144 act_mbx_ndlp = mb->ctx_ndlp;
21145
21146 /* This reference is local to this routine. The
21147 * reference is removed at routine exit.
21148 */
21149 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
21150
21151 /* Unregister the RPI when mailbox complete */
21152 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
21153 }
21154 }
21155 /* Cleanup any mailbox completions which are not yet processed */
21156 do {
21157 restart_loop = 0;
21158 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
21159 /*
21160 * If this mailox is already processed or it is
21161 * for another vport ignore it.
21162 */
21163 if ((mb->vport != vport) ||
21164 (mb->mbox_flag & LPFC_MBX_IMED_UNREG))
21165 continue;
21166
21167 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
21168 (mb->u.mb.mbxCommand != MBX_REG_VPI))
21169 continue;
21170
21171 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
21172 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
21173 ndlp = mb->ctx_ndlp;
21174 /* Unregister the RPI when mailbox complete */
21175 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
21176 restart_loop = 1;
21177 clear_bit(NLP_IGNR_REG_CMPL, &ndlp->nlp_flag);
21178 break;
21179 }
21180 }
21181 } while (restart_loop);
21182
21183 spin_unlock_irq(&phba->hbalock);
21184
21185 /* Release the cleaned-up mailbox commands */
21186 while (!list_empty(&mbox_cmd_list)) {
21187 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
21188 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
21189 ndlp = mb->ctx_ndlp;
21190 mb->ctx_ndlp = NULL;
21191 if (ndlp) {
21192 clear_bit(NLP_IGNR_REG_CMPL, &ndlp->nlp_flag);
21193 lpfc_nlp_put(ndlp);
21194 }
21195 }
21196 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED);
21197 }
21198
21199 /* Release the ndlp with the cleaned-up active mailbox command */
21200 if (act_mbx_ndlp) {
21201 clear_bit(NLP_IGNR_REG_CMPL, &act_mbx_ndlp->nlp_flag);
21202 lpfc_nlp_put(act_mbx_ndlp);
21203 }
21204 }
21205
21206 /**
21207 * lpfc_drain_txq - Drain the txq
21208 * @phba: Pointer to HBA context object.
21209 *
21210 * This function attempt to submit IOCBs on the txq
21211 * to the adapter. For SLI4 adapters, the txq contains
21212 * ELS IOCBs that have been deferred because the there
21213 * are no SGLs. This congestion can occur with large
21214 * vport counts during node discovery.
21215 **/
21216
21217 uint32_t
lpfc_drain_txq(struct lpfc_hba * phba)21218 lpfc_drain_txq(struct lpfc_hba *phba)
21219 {
21220 LIST_HEAD(completions);
21221 struct lpfc_sli_ring *pring;
21222 struct lpfc_iocbq *piocbq = NULL;
21223 unsigned long iflags = 0;
21224 char *fail_msg = NULL;
21225 uint32_t txq_cnt = 0;
21226 struct lpfc_queue *wq;
21227 int ret = 0;
21228
21229 if (phba->link_flag & LS_MDS_LOOPBACK) {
21230 /* MDS WQE are posted only to first WQ*/
21231 wq = phba->sli4_hba.hdwq[0].io_wq;
21232 if (unlikely(!wq))
21233 return 0;
21234 pring = wq->pring;
21235 } else {
21236 wq = phba->sli4_hba.els_wq;
21237 if (unlikely(!wq))
21238 return 0;
21239 pring = lpfc_phba_elsring(phba);
21240 }
21241
21242 if (unlikely(!pring) || list_empty(&pring->txq))
21243 return 0;
21244
21245 spin_lock_irqsave(&pring->ring_lock, iflags);
21246 list_for_each_entry(piocbq, &pring->txq, list) {
21247 txq_cnt++;
21248 }
21249
21250 if (txq_cnt > pring->txq_max)
21251 pring->txq_max = txq_cnt;
21252
21253 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21254
21255 while (!list_empty(&pring->txq)) {
21256 spin_lock_irqsave(&pring->ring_lock, iflags);
21257
21258 piocbq = lpfc_sli_ringtx_get(phba, pring);
21259 if (!piocbq) {
21260 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
21262 "2823 txq empty and txq_cnt is %d\n",
21263 txq_cnt);
21264 break;
21265 }
21266 txq_cnt--;
21267
21268 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0);
21269
21270 if (ret && ret != IOCB_BUSY) {
21271 fail_msg = " - Cannot send IO ";
21272 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED;
21273 }
21274 if (fail_msg) {
21275 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED;
21276 /* Failed means we can't issue and need to cancel */
21277 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
21278 "2822 IOCB failed %s iotag 0x%x "
21279 "xri 0x%x %d flg x%x\n",
21280 fail_msg, piocbq->iotag,
21281 piocbq->sli4_xritag, ret,
21282 piocbq->cmd_flag);
21283 list_add_tail(&piocbq->list, &completions);
21284 fail_msg = NULL;
21285 }
21286 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21287 if (txq_cnt == 0 || ret == IOCB_BUSY)
21288 break;
21289 }
21290 /* Cancel all the IOCBs that cannot be issued */
21291 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
21292 IOERR_SLI_ABORTED);
21293
21294 return txq_cnt;
21295 }
21296
21297 /**
21298 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
21299 * @phba: Pointer to HBA context object.
21300 * @pwqeq: Pointer to command WQE.
21301 * @sglq: Pointer to the scatter gather queue object.
21302 *
21303 * This routine converts the bpl or bde that is in the WQE
21304 * to a sgl list for the sli4 hardware. The physical address
21305 * of the bpl/bde is converted back to a virtual address.
21306 * If the WQE contains a BPL then the list of BDE's is
21307 * converted to sli4_sge's. If the WQE contains a single
21308 * BDE then it is converted to a single sli_sge.
21309 * The WQE is still in cpu endianness so the contents of
21310 * the bpl can be used without byte swapping.
21311 *
21312 * Returns valid XRI = Success, NO_XRI = Failure.
21313 */
21314 static uint16_t
lpfc_wqe_bpl2sgl(struct lpfc_hba * phba,struct lpfc_iocbq * pwqeq,struct lpfc_sglq * sglq)21315 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
21316 struct lpfc_sglq *sglq)
21317 {
21318 uint16_t xritag = NO_XRI;
21319 struct ulp_bde64 *bpl = NULL;
21320 struct ulp_bde64 bde;
21321 struct sli4_sge *sgl = NULL;
21322 struct lpfc_dmabuf *dmabuf;
21323 union lpfc_wqe128 *wqe;
21324 int numBdes = 0;
21325 int i = 0;
21326 uint32_t offset = 0; /* accumulated offset in the sg request list */
21327 int inbound = 0; /* number of sg reply entries inbound from firmware */
21328 uint32_t cmd;
21329
21330 if (!pwqeq || !sglq)
21331 return xritag;
21332
21333 sgl = (struct sli4_sge *)sglq->sgl;
21334 wqe = &pwqeq->wqe;
21335 pwqeq->iocb.ulpIoTag = pwqeq->iotag;
21336
21337 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
21338 if (cmd == CMD_XMIT_BLS_RSP64_WQE)
21339 return sglq->sli4_xritag;
21340 numBdes = pwqeq->num_bdes;
21341 if (numBdes) {
21342 /* The addrHigh and addrLow fields within the WQE
21343 * have not been byteswapped yet so there is no
21344 * need to swap them back.
21345 */
21346 if (pwqeq->bpl_dmabuf)
21347 dmabuf = pwqeq->bpl_dmabuf;
21348 else
21349 return xritag;
21350
21351 bpl = (struct ulp_bde64 *)dmabuf->virt;
21352 if (!bpl)
21353 return xritag;
21354
21355 for (i = 0; i < numBdes; i++) {
21356 /* Should already be byte swapped. */
21357 sgl->addr_hi = bpl->addrHigh;
21358 sgl->addr_lo = bpl->addrLow;
21359
21360 sgl->word2 = le32_to_cpu(sgl->word2);
21361 if ((i+1) == numBdes)
21362 bf_set(lpfc_sli4_sge_last, sgl, 1);
21363 else
21364 bf_set(lpfc_sli4_sge_last, sgl, 0);
21365 /* swap the size field back to the cpu so we
21366 * can assign it to the sgl.
21367 */
21368 bde.tus.w = le32_to_cpu(bpl->tus.w);
21369 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
21370 /* The offsets in the sgl need to be accumulated
21371 * separately for the request and reply lists.
21372 * The request is always first, the reply follows.
21373 */
21374 switch (cmd) {
21375 case CMD_GEN_REQUEST64_WQE:
21376 /* add up the reply sg entries */
21377 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
21378 inbound++;
21379 /* first inbound? reset the offset */
21380 if (inbound == 1)
21381 offset = 0;
21382 bf_set(lpfc_sli4_sge_offset, sgl, offset);
21383 bf_set(lpfc_sli4_sge_type, sgl,
21384 LPFC_SGE_TYPE_DATA);
21385 offset += bde.tus.f.bdeSize;
21386 break;
21387 case CMD_FCP_TRSP64_WQE:
21388 bf_set(lpfc_sli4_sge_offset, sgl, 0);
21389 bf_set(lpfc_sli4_sge_type, sgl,
21390 LPFC_SGE_TYPE_DATA);
21391 break;
21392 case CMD_FCP_TSEND64_WQE:
21393 case CMD_FCP_TRECEIVE64_WQE:
21394 bf_set(lpfc_sli4_sge_type, sgl,
21395 bpl->tus.f.bdeFlags);
21396 if (i < 3)
21397 offset = 0;
21398 else
21399 offset += bde.tus.f.bdeSize;
21400 bf_set(lpfc_sli4_sge_offset, sgl, offset);
21401 break;
21402 }
21403 sgl->word2 = cpu_to_le32(sgl->word2);
21404 bpl++;
21405 sgl++;
21406 }
21407 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
21408 /* The addrHigh and addrLow fields of the BDE have not
21409 * been byteswapped yet so they need to be swapped
21410 * before putting them in the sgl.
21411 */
21412 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
21413 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
21414 sgl->word2 = le32_to_cpu(sgl->word2);
21415 bf_set(lpfc_sli4_sge_last, sgl, 1);
21416 sgl->word2 = cpu_to_le32(sgl->word2);
21417 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
21418 }
21419 return sglq->sli4_xritag;
21420 }
21421
21422 /**
21423 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
21424 * @phba: Pointer to HBA context object.
21425 * @qp: Pointer to HDW queue.
21426 * @pwqe: Pointer to command WQE.
21427 **/
21428 int
lpfc_sli4_issue_wqe(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * qp,struct lpfc_iocbq * pwqe)21429 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
21430 struct lpfc_iocbq *pwqe)
21431 {
21432 union lpfc_wqe128 *wqe = &pwqe->wqe;
21433 struct lpfc_async_xchg_ctx *ctxp;
21434 struct lpfc_queue *wq;
21435 struct lpfc_sglq *sglq;
21436 struct lpfc_sli_ring *pring;
21437 unsigned long iflags;
21438 int ret = 0;
21439
21440 /* NVME_LS and NVME_LS ABTS requests. */
21441 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) {
21442 pring = phba->sli4_hba.nvmels_wq->pring;
21443 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21444 qp, wq_access);
21445 sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
21446 if (!sglq) {
21447 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21448 return WQE_BUSY;
21449 }
21450 pwqe->sli4_lxritag = sglq->sli4_lxritag;
21451 pwqe->sli4_xritag = sglq->sli4_xritag;
21452 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
21453 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21454 return WQE_ERROR;
21455 }
21456 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
21457 pwqe->sli4_xritag);
21458 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
21459 if (ret) {
21460 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21461 return ret;
21462 }
21463
21464 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21465 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21466
21467 lpfc_sli4_poll_eq(qp->hba_eq);
21468 return 0;
21469 }
21470
21471 /* NVME_FCREQ and NVME_ABTS requests */
21472 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) {
21473 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
21474 wq = qp->io_wq;
21475 pring = wq->pring;
21476
21477 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
21478
21479 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21480 qp, wq_access);
21481 ret = lpfc_sli4_wq_put(wq, wqe);
21482 if (ret) {
21483 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21484 return ret;
21485 }
21486 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21487 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21488
21489 lpfc_sli4_poll_eq(qp->hba_eq);
21490 return 0;
21491 }
21492
21493 /* NVMET requests */
21494 if (pwqe->cmd_flag & LPFC_IO_NVMET) {
21495 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
21496 wq = qp->io_wq;
21497 pring = wq->pring;
21498
21499 ctxp = pwqe->context_un.axchg;
21500 sglq = ctxp->ctxbuf->sglq;
21501 if (pwqe->sli4_xritag == NO_XRI) {
21502 pwqe->sli4_lxritag = sglq->sli4_lxritag;
21503 pwqe->sli4_xritag = sglq->sli4_xritag;
21504 }
21505 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
21506 pwqe->sli4_xritag);
21507 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
21508
21509 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21510 qp, wq_access);
21511 ret = lpfc_sli4_wq_put(wq, wqe);
21512 if (ret) {
21513 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21514 return ret;
21515 }
21516 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21517 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21518
21519 lpfc_sli4_poll_eq(qp->hba_eq);
21520 return 0;
21521 }
21522 return WQE_ERROR;
21523 }
21524
21525 /**
21526 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort
21527 * @phba: Pointer to HBA context object.
21528 * @cmdiocb: Pointer to driver command iocb object.
21529 * @cmpl: completion function.
21530 *
21531 * Fill the appropriate fields for the abort WQE and call
21532 * internal routine lpfc_sli4_issue_wqe to send the WQE
21533 * This function is called with hbalock held and no ring_lock held.
21534 *
21535 * RETURNS 0 - SUCCESS
21536 **/
21537
21538 int
lpfc_sli4_issue_abort_iotag(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,void * cmpl)21539 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
21540 void *cmpl)
21541 {
21542 struct lpfc_vport *vport = cmdiocb->vport;
21543 struct lpfc_iocbq *abtsiocb = NULL;
21544 union lpfc_wqe128 *abtswqe;
21545 struct lpfc_io_buf *lpfc_cmd;
21546 int retval = IOCB_ERROR;
21547 u16 xritag = cmdiocb->sli4_xritag;
21548
21549 /*
21550 * The scsi command can not be in txq and it is in flight because the
21551 * pCmd is still pointing at the SCSI command we have to abort. There
21552 * is no need to search the txcmplq. Just send an abort to the FW.
21553 */
21554
21555 abtsiocb = __lpfc_sli_get_iocbq(phba);
21556 if (!abtsiocb)
21557 return WQE_NORESOURCE;
21558
21559 /* Indicate the IO is being aborted by the driver. */
21560 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED;
21561
21562 abtswqe = &abtsiocb->wqe;
21563 memset(abtswqe, 0, sizeof(*abtswqe));
21564
21565 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK))
21566 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1);
21567 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG);
21568 abtswqe->abort_cmd.rsrvd5 = 0;
21569 abtswqe->abort_cmd.wqe_com.abort_tag = xritag;
21570 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag);
21571 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
21572 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0);
21573 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1);
21574 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
21575 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND);
21576
21577 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
21578 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx;
21579 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX;
21580 if (cmdiocb->cmd_flag & LPFC_IO_FCP)
21581 abtsiocb->cmd_flag |= LPFC_IO_FCP;
21582 if (cmdiocb->cmd_flag & LPFC_IO_NVME)
21583 abtsiocb->cmd_flag |= LPFC_IO_NVME;
21584 if (cmdiocb->cmd_flag & LPFC_IO_FOF)
21585 abtsiocb->cmd_flag |= LPFC_IO_FOF;
21586 abtsiocb->vport = vport;
21587 abtsiocb->cmd_cmpl = cmpl;
21588
21589 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq);
21590 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb);
21591
21592 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
21593 "0359 Abort xri x%x, original iotag x%x, "
21594 "abort cmd iotag x%x retval x%x\n",
21595 xritag, cmdiocb->iotag, abtsiocb->iotag, retval);
21596
21597 if (retval) {
21598 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED;
21599 __lpfc_sli_release_iocbq(phba, abtsiocb);
21600 }
21601
21602 return retval;
21603 }
21604
21605 #ifdef LPFC_MXP_STAT
21606 /**
21607 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
21608 * @phba: pointer to lpfc hba data structure.
21609 * @hwqid: belong to which HWQ.
21610 *
21611 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
21612 * 15 seconds after a test case is running.
21613 *
21614 * The user should call lpfc_debugfs_multixripools_write before running a test
21615 * case to clear stat_snapshot_taken. Then the user starts a test case. During
21616 * test case is running, stat_snapshot_taken is incremented by 1 every time when
21617 * this routine is called from heartbeat timer. When stat_snapshot_taken is
21618 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
21619 **/
lpfc_snapshot_mxp(struct lpfc_hba * phba,u32 hwqid)21620 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
21621 {
21622 struct lpfc_sli4_hdw_queue *qp;
21623 struct lpfc_multixri_pool *multixri_pool;
21624 struct lpfc_pvt_pool *pvt_pool;
21625 struct lpfc_pbl_pool *pbl_pool;
21626 u32 txcmplq_cnt;
21627
21628 qp = &phba->sli4_hba.hdwq[hwqid];
21629 multixri_pool = qp->p_multixri_pool;
21630 if (!multixri_pool)
21631 return;
21632
21633 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
21634 pvt_pool = &qp->p_multixri_pool->pvt_pool;
21635 pbl_pool = &qp->p_multixri_pool->pbl_pool;
21636 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21637
21638 multixri_pool->stat_pbl_count = pbl_pool->count;
21639 multixri_pool->stat_pvt_count = pvt_pool->count;
21640 multixri_pool->stat_busy_count = txcmplq_cnt;
21641 }
21642
21643 multixri_pool->stat_snapshot_taken++;
21644 }
21645 #endif
21646
21647 /**
21648 * lpfc_adjust_pvt_pool_count - Adjust private pool count
21649 * @phba: pointer to lpfc hba data structure.
21650 * @hwqid: belong to which HWQ.
21651 *
21652 * This routine moves some XRIs from private to public pool when private pool
21653 * is not busy.
21654 **/
lpfc_adjust_pvt_pool_count(struct lpfc_hba * phba,u32 hwqid)21655 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
21656 {
21657 struct lpfc_multixri_pool *multixri_pool;
21658 u32 io_req_count;
21659 u32 prev_io_req_count;
21660
21661 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
21662 if (!multixri_pool)
21663 return;
21664 io_req_count = multixri_pool->io_req_count;
21665 prev_io_req_count = multixri_pool->prev_io_req_count;
21666
21667 if (prev_io_req_count != io_req_count) {
21668 /* Private pool is busy */
21669 multixri_pool->prev_io_req_count = io_req_count;
21670 } else {
21671 /* Private pool is not busy.
21672 * Move XRIs from private to public pool.
21673 */
21674 lpfc_move_xri_pvt_to_pbl(phba, hwqid);
21675 }
21676 }
21677
21678 /**
21679 * lpfc_adjust_high_watermark - Adjust high watermark
21680 * @phba: pointer to lpfc hba data structure.
21681 * @hwqid: belong to which HWQ.
21682 *
21683 * This routine sets high watermark as number of outstanding XRIs,
21684 * but make sure the new value is between xri_limit/2 and xri_limit.
21685 **/
lpfc_adjust_high_watermark(struct lpfc_hba * phba,u32 hwqid)21686 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
21687 {
21688 u32 new_watermark;
21689 u32 watermark_max;
21690 u32 watermark_min;
21691 u32 xri_limit;
21692 u32 txcmplq_cnt;
21693 u32 abts_io_bufs;
21694 struct lpfc_multixri_pool *multixri_pool;
21695 struct lpfc_sli4_hdw_queue *qp;
21696
21697 qp = &phba->sli4_hba.hdwq[hwqid];
21698 multixri_pool = qp->p_multixri_pool;
21699 if (!multixri_pool)
21700 return;
21701 xri_limit = multixri_pool->xri_limit;
21702
21703 watermark_max = xri_limit;
21704 watermark_min = xri_limit / 2;
21705
21706 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21707 abts_io_bufs = qp->abts_scsi_io_bufs;
21708 abts_io_bufs += qp->abts_nvme_io_bufs;
21709
21710 new_watermark = txcmplq_cnt + abts_io_bufs;
21711 new_watermark = min(watermark_max, new_watermark);
21712 new_watermark = max(watermark_min, new_watermark);
21713 multixri_pool->pvt_pool.high_watermark = new_watermark;
21714
21715 #ifdef LPFC_MXP_STAT
21716 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
21717 new_watermark);
21718 #endif
21719 }
21720
21721 /**
21722 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
21723 * @phba: pointer to lpfc hba data structure.
21724 * @hwqid: belong to which HWQ.
21725 *
21726 * This routine is called from hearbeat timer when pvt_pool is idle.
21727 * All free XRIs are moved from private to public pool on hwqid with 2 steps.
21728 * The first step moves (all - low_watermark) amount of XRIs.
21729 * The second step moves the rest of XRIs.
21730 **/
lpfc_move_xri_pvt_to_pbl(struct lpfc_hba * phba,u32 hwqid)21731 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
21732 {
21733 struct lpfc_pbl_pool *pbl_pool;
21734 struct lpfc_pvt_pool *pvt_pool;
21735 struct lpfc_sli4_hdw_queue *qp;
21736 struct lpfc_io_buf *lpfc_ncmd;
21737 struct lpfc_io_buf *lpfc_ncmd_next;
21738 unsigned long iflag;
21739 struct list_head tmp_list;
21740 u32 tmp_count;
21741
21742 qp = &phba->sli4_hba.hdwq[hwqid];
21743 pbl_pool = &qp->p_multixri_pool->pbl_pool;
21744 pvt_pool = &qp->p_multixri_pool->pvt_pool;
21745 tmp_count = 0;
21746
21747 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
21748 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
21749
21750 if (pvt_pool->count > pvt_pool->low_watermark) {
21751 /* Step 1: move (all - low_watermark) from pvt_pool
21752 * to pbl_pool
21753 */
21754
21755 /* Move low watermark of bufs from pvt_pool to tmp_list */
21756 INIT_LIST_HEAD(&tmp_list);
21757 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21758 &pvt_pool->list, list) {
21759 list_move_tail(&lpfc_ncmd->list, &tmp_list);
21760 tmp_count++;
21761 if (tmp_count >= pvt_pool->low_watermark)
21762 break;
21763 }
21764
21765 /* Move all bufs from pvt_pool to pbl_pool */
21766 list_splice_init(&pvt_pool->list, &pbl_pool->list);
21767
21768 /* Move all bufs from tmp_list to pvt_pool */
21769 list_splice(&tmp_list, &pvt_pool->list);
21770
21771 pbl_pool->count += (pvt_pool->count - tmp_count);
21772 pvt_pool->count = tmp_count;
21773 } else {
21774 /* Step 2: move the rest from pvt_pool to pbl_pool */
21775 list_splice_init(&pvt_pool->list, &pbl_pool->list);
21776 pbl_pool->count += pvt_pool->count;
21777 pvt_pool->count = 0;
21778 }
21779
21780 spin_unlock(&pvt_pool->lock);
21781 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21782 }
21783
21784 /**
21785 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
21786 * @phba: pointer to lpfc hba data structure
21787 * @qp: pointer to HDW queue
21788 * @pbl_pool: specified public free XRI pool
21789 * @pvt_pool: specified private free XRI pool
21790 * @count: number of XRIs to move
21791 *
21792 * This routine tries to move some free common bufs from the specified pbl_pool
21793 * to the specified pvt_pool. It might move less than count XRIs if there's not
21794 * enough in public pool.
21795 *
21796 * Return:
21797 * true - if XRIs are successfully moved from the specified pbl_pool to the
21798 * specified pvt_pool
21799 * false - if the specified pbl_pool is empty or locked by someone else
21800 **/
21801 static bool
_lpfc_move_xri_pbl_to_pvt(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * qp,struct lpfc_pbl_pool * pbl_pool,struct lpfc_pvt_pool * pvt_pool,u32 count)21802 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
21803 struct lpfc_pbl_pool *pbl_pool,
21804 struct lpfc_pvt_pool *pvt_pool, u32 count)
21805 {
21806 struct lpfc_io_buf *lpfc_ncmd;
21807 struct lpfc_io_buf *lpfc_ncmd_next;
21808 unsigned long iflag;
21809 int ret;
21810
21811 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
21812 if (ret) {
21813 if (pbl_pool->count) {
21814 /* Move a batch of XRIs from public to private pool */
21815 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
21816 list_for_each_entry_safe(lpfc_ncmd,
21817 lpfc_ncmd_next,
21818 &pbl_pool->list,
21819 list) {
21820 list_move_tail(&lpfc_ncmd->list,
21821 &pvt_pool->list);
21822 pvt_pool->count++;
21823 pbl_pool->count--;
21824 count--;
21825 if (count == 0)
21826 break;
21827 }
21828
21829 spin_unlock(&pvt_pool->lock);
21830 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21831 return true;
21832 }
21833 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21834 }
21835
21836 return false;
21837 }
21838
21839 /**
21840 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
21841 * @phba: pointer to lpfc hba data structure.
21842 * @hwqid: belong to which HWQ.
21843 * @count: number of XRIs to move
21844 *
21845 * This routine tries to find some free common bufs in one of public pools with
21846 * Round Robin method. The search always starts from local hwqid, then the next
21847 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
21848 * a batch of free common bufs are moved to private pool on hwqid.
21849 * It might move less than count XRIs if there's not enough in public pool.
21850 **/
lpfc_move_xri_pbl_to_pvt(struct lpfc_hba * phba,u32 hwqid,u32 count)21851 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
21852 {
21853 struct lpfc_multixri_pool *multixri_pool;
21854 struct lpfc_multixri_pool *next_multixri_pool;
21855 struct lpfc_pvt_pool *pvt_pool;
21856 struct lpfc_pbl_pool *pbl_pool;
21857 struct lpfc_sli4_hdw_queue *qp;
21858 u32 next_hwqid;
21859 u32 hwq_count;
21860 int ret;
21861
21862 qp = &phba->sli4_hba.hdwq[hwqid];
21863 multixri_pool = qp->p_multixri_pool;
21864 pvt_pool = &multixri_pool->pvt_pool;
21865 pbl_pool = &multixri_pool->pbl_pool;
21866
21867 /* Check if local pbl_pool is available */
21868 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
21869 if (ret) {
21870 #ifdef LPFC_MXP_STAT
21871 multixri_pool->local_pbl_hit_count++;
21872 #endif
21873 return;
21874 }
21875
21876 hwq_count = phba->cfg_hdw_queue;
21877
21878 /* Get the next hwqid which was found last time */
21879 next_hwqid = multixri_pool->rrb_next_hwqid;
21880
21881 do {
21882 /* Go to next hwq */
21883 next_hwqid = (next_hwqid + 1) % hwq_count;
21884
21885 next_multixri_pool =
21886 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
21887 pbl_pool = &next_multixri_pool->pbl_pool;
21888
21889 /* Check if the public free xri pool is available */
21890 ret = _lpfc_move_xri_pbl_to_pvt(
21891 phba, qp, pbl_pool, pvt_pool, count);
21892
21893 /* Exit while-loop if success or all hwqid are checked */
21894 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
21895
21896 /* Starting point for the next time */
21897 multixri_pool->rrb_next_hwqid = next_hwqid;
21898
21899 if (!ret) {
21900 /* stats: all public pools are empty*/
21901 multixri_pool->pbl_empty_count++;
21902 }
21903
21904 #ifdef LPFC_MXP_STAT
21905 if (ret) {
21906 if (next_hwqid == hwqid)
21907 multixri_pool->local_pbl_hit_count++;
21908 else
21909 multixri_pool->other_pbl_hit_count++;
21910 }
21911 #endif
21912 }
21913
21914 /**
21915 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
21916 * @phba: pointer to lpfc hba data structure.
21917 * @hwqid: belong to which HWQ.
21918 *
21919 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
21920 * low watermark.
21921 **/
lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba * phba,u32 hwqid)21922 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
21923 {
21924 struct lpfc_multixri_pool *multixri_pool;
21925 struct lpfc_pvt_pool *pvt_pool;
21926
21927 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
21928 pvt_pool = &multixri_pool->pvt_pool;
21929
21930 if (pvt_pool->count < pvt_pool->low_watermark)
21931 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
21932 }
21933
21934 /**
21935 * lpfc_release_io_buf - Return one IO buf back to free pool
21936 * @phba: pointer to lpfc hba data structure.
21937 * @lpfc_ncmd: IO buf to be returned.
21938 * @qp: belong to which HWQ.
21939 *
21940 * This routine returns one IO buf back to free pool. If this is an urgent IO,
21941 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
21942 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
21943 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to
21944 * lpfc_io_buf_list_put.
21945 **/
lpfc_release_io_buf(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_ncmd,struct lpfc_sli4_hdw_queue * qp)21946 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
21947 struct lpfc_sli4_hdw_queue *qp)
21948 {
21949 unsigned long iflag;
21950 struct lpfc_pbl_pool *pbl_pool;
21951 struct lpfc_pvt_pool *pvt_pool;
21952 struct lpfc_epd_pool *epd_pool;
21953 u32 txcmplq_cnt;
21954 u32 xri_owned;
21955 u32 xri_limit;
21956 u32 abts_io_bufs;
21957
21958 /* MUST zero fields if buffer is reused by another protocol */
21959 lpfc_ncmd->nvmeCmd = NULL;
21960 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL;
21961
21962 if (phba->cfg_xpsgl && !phba->nvmet_support &&
21963 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list))
21964 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
21965
21966 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list))
21967 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
21968
21969 if (phba->cfg_xri_rebalancing) {
21970 if (lpfc_ncmd->expedite) {
21971 /* Return to expedite pool */
21972 epd_pool = &phba->epd_pool;
21973 spin_lock_irqsave(&epd_pool->lock, iflag);
21974 list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
21975 epd_pool->count++;
21976 spin_unlock_irqrestore(&epd_pool->lock, iflag);
21977 return;
21978 }
21979
21980 /* Avoid invalid access if an IO sneaks in and is being rejected
21981 * just _after_ xri pools are destroyed in lpfc_offline.
21982 * Nothing much can be done at this point.
21983 */
21984 if (!qp->p_multixri_pool)
21985 return;
21986
21987 pbl_pool = &qp->p_multixri_pool->pbl_pool;
21988 pvt_pool = &qp->p_multixri_pool->pvt_pool;
21989
21990 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21991 abts_io_bufs = qp->abts_scsi_io_bufs;
21992 abts_io_bufs += qp->abts_nvme_io_bufs;
21993
21994 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
21995 xri_limit = qp->p_multixri_pool->xri_limit;
21996
21997 #ifdef LPFC_MXP_STAT
21998 if (xri_owned <= xri_limit)
21999 qp->p_multixri_pool->below_limit_count++;
22000 else
22001 qp->p_multixri_pool->above_limit_count++;
22002 #endif
22003
22004 /* XRI goes to either public or private free xri pool
22005 * based on watermark and xri_limit
22006 */
22007 if ((pvt_pool->count < pvt_pool->low_watermark) ||
22008 (xri_owned < xri_limit &&
22009 pvt_pool->count < pvt_pool->high_watermark)) {
22010 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
22011 qp, free_pvt_pool);
22012 list_add_tail(&lpfc_ncmd->list,
22013 &pvt_pool->list);
22014 pvt_pool->count++;
22015 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
22016 } else {
22017 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
22018 qp, free_pub_pool);
22019 list_add_tail(&lpfc_ncmd->list,
22020 &pbl_pool->list);
22021 pbl_pool->count++;
22022 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
22023 }
22024 } else {
22025 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
22026 qp, free_xri);
22027 list_add_tail(&lpfc_ncmd->list,
22028 &qp->lpfc_io_buf_list_put);
22029 qp->put_io_bufs++;
22030 spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
22031 iflag);
22032 }
22033 }
22034
22035 /**
22036 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
22037 * @phba: pointer to lpfc hba data structure.
22038 * @qp: pointer to HDW queue
22039 * @pvt_pool: pointer to private pool data structure.
22040 * @ndlp: pointer to lpfc nodelist data structure.
22041 *
22042 * This routine tries to get one free IO buf from private pool.
22043 *
22044 * Return:
22045 * pointer to one free IO buf - if private pool is not empty
22046 * NULL - if private pool is empty
22047 **/
22048 static struct lpfc_io_buf *
lpfc_get_io_buf_from_private_pool(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * qp,struct lpfc_pvt_pool * pvt_pool,struct lpfc_nodelist * ndlp)22049 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
22050 struct lpfc_sli4_hdw_queue *qp,
22051 struct lpfc_pvt_pool *pvt_pool,
22052 struct lpfc_nodelist *ndlp)
22053 {
22054 struct lpfc_io_buf *lpfc_ncmd;
22055 struct lpfc_io_buf *lpfc_ncmd_next;
22056 unsigned long iflag;
22057
22058 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
22059 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
22060 &pvt_pool->list, list) {
22061 if (lpfc_test_rrq_active(
22062 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
22063 continue;
22064 list_del(&lpfc_ncmd->list);
22065 pvt_pool->count--;
22066 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
22067 return lpfc_ncmd;
22068 }
22069 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
22070
22071 return NULL;
22072 }
22073
22074 /**
22075 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
22076 * @phba: pointer to lpfc hba data structure.
22077 *
22078 * This routine tries to get one free IO buf from expedite pool.
22079 *
22080 * Return:
22081 * pointer to one free IO buf - if expedite pool is not empty
22082 * NULL - if expedite pool is empty
22083 **/
22084 static struct lpfc_io_buf *
lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba * phba)22085 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
22086 {
22087 struct lpfc_io_buf *lpfc_ncmd = NULL, *iter;
22088 struct lpfc_io_buf *lpfc_ncmd_next;
22089 unsigned long iflag;
22090 struct lpfc_epd_pool *epd_pool;
22091
22092 epd_pool = &phba->epd_pool;
22093
22094 spin_lock_irqsave(&epd_pool->lock, iflag);
22095 if (epd_pool->count > 0) {
22096 list_for_each_entry_safe(iter, lpfc_ncmd_next,
22097 &epd_pool->list, list) {
22098 list_del(&iter->list);
22099 epd_pool->count--;
22100 lpfc_ncmd = iter;
22101 break;
22102 }
22103 }
22104 spin_unlock_irqrestore(&epd_pool->lock, iflag);
22105
22106 return lpfc_ncmd;
22107 }
22108
22109 /**
22110 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
22111 * @phba: pointer to lpfc hba data structure.
22112 * @ndlp: pointer to lpfc nodelist data structure.
22113 * @hwqid: belong to which HWQ
22114 * @expedite: 1 means this request is urgent.
22115 *
22116 * This routine will do the following actions and then return a pointer to
22117 * one free IO buf.
22118 *
22119 * 1. If private free xri count is empty, move some XRIs from public to
22120 * private pool.
22121 * 2. Get one XRI from private free xri pool.
22122 * 3. If we fail to get one from pvt_pool and this is an expedite request,
22123 * get one free xri from expedite pool.
22124 *
22125 * Note: ndlp is only used on SCSI side for RRQ testing.
22126 * The caller should pass NULL for ndlp on NVME side.
22127 *
22128 * Return:
22129 * pointer to one free IO buf - if private pool is not empty
22130 * NULL - if private pool is empty
22131 **/
22132 static struct lpfc_io_buf *
lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,int hwqid,int expedite)22133 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
22134 struct lpfc_nodelist *ndlp,
22135 int hwqid, int expedite)
22136 {
22137 struct lpfc_sli4_hdw_queue *qp;
22138 struct lpfc_multixri_pool *multixri_pool;
22139 struct lpfc_pvt_pool *pvt_pool;
22140 struct lpfc_io_buf *lpfc_ncmd;
22141
22142 qp = &phba->sli4_hba.hdwq[hwqid];
22143 lpfc_ncmd = NULL;
22144 if (!qp) {
22145 lpfc_printf_log(phba, KERN_INFO,
22146 LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22147 "5556 NULL qp for hwqid x%x\n", hwqid);
22148 return lpfc_ncmd;
22149 }
22150 multixri_pool = qp->p_multixri_pool;
22151 if (!multixri_pool) {
22152 lpfc_printf_log(phba, KERN_INFO,
22153 LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22154 "5557 NULL multixri for hwqid x%x\n", hwqid);
22155 return lpfc_ncmd;
22156 }
22157 pvt_pool = &multixri_pool->pvt_pool;
22158 if (!pvt_pool) {
22159 lpfc_printf_log(phba, KERN_INFO,
22160 LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22161 "5558 NULL pvt_pool for hwqid x%x\n", hwqid);
22162 return lpfc_ncmd;
22163 }
22164 multixri_pool->io_req_count++;
22165
22166 /* If pvt_pool is empty, move some XRIs from public to private pool */
22167 if (pvt_pool->count == 0)
22168 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
22169
22170 /* Get one XRI from private free xri pool */
22171 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
22172
22173 if (lpfc_ncmd) {
22174 lpfc_ncmd->hdwq = qp;
22175 lpfc_ncmd->hdwq_no = hwqid;
22176 } else if (expedite) {
22177 /* If we fail to get one from pvt_pool and this is an expedite
22178 * request, get one free xri from expedite pool.
22179 */
22180 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
22181 }
22182
22183 return lpfc_ncmd;
22184 }
22185
22186 static inline struct lpfc_io_buf *
lpfc_io_buf(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,int idx)22187 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
22188 {
22189 struct lpfc_sli4_hdw_queue *qp;
22190 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
22191
22192 qp = &phba->sli4_hba.hdwq[idx];
22193 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
22194 &qp->lpfc_io_buf_list_get, list) {
22195 if (lpfc_test_rrq_active(phba, ndlp,
22196 lpfc_cmd->cur_iocbq.sli4_lxritag))
22197 continue;
22198
22199 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
22200 continue;
22201
22202 list_del_init(&lpfc_cmd->list);
22203 qp->get_io_bufs--;
22204 lpfc_cmd->hdwq = qp;
22205 lpfc_cmd->hdwq_no = idx;
22206 return lpfc_cmd;
22207 }
22208 return NULL;
22209 }
22210
22211 /**
22212 * lpfc_get_io_buf - Get one IO buffer from free pool
22213 * @phba: The HBA for which this call is being executed.
22214 * @ndlp: pointer to lpfc nodelist data structure.
22215 * @hwqid: belong to which HWQ
22216 * @expedite: 1 means this request is urgent.
22217 *
22218 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
22219 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
22220 * a IO buffer from head of @hdwq io_buf_list and returns to caller.
22221 *
22222 * Note: ndlp is only used on SCSI side for RRQ testing.
22223 * The caller should pass NULL for ndlp on NVME side.
22224 *
22225 * Return codes:
22226 * NULL - Error
22227 * Pointer to lpfc_io_buf - Success
22228 **/
lpfc_get_io_buf(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,u32 hwqid,int expedite)22229 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
22230 struct lpfc_nodelist *ndlp,
22231 u32 hwqid, int expedite)
22232 {
22233 struct lpfc_sli4_hdw_queue *qp;
22234 unsigned long iflag;
22235 struct lpfc_io_buf *lpfc_cmd;
22236
22237 qp = &phba->sli4_hba.hdwq[hwqid];
22238 lpfc_cmd = NULL;
22239 if (!qp) {
22240 lpfc_printf_log(phba, KERN_WARNING,
22241 LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22242 "5555 NULL qp for hwqid x%x\n", hwqid);
22243 return lpfc_cmd;
22244 }
22245
22246 if (phba->cfg_xri_rebalancing)
22247 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
22248 phba, ndlp, hwqid, expedite);
22249 else {
22250 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
22251 qp, alloc_xri_get);
22252 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
22253 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
22254 if (!lpfc_cmd) {
22255 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
22256 qp, alloc_xri_put);
22257 list_splice(&qp->lpfc_io_buf_list_put,
22258 &qp->lpfc_io_buf_list_get);
22259 qp->get_io_bufs += qp->put_io_bufs;
22260 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
22261 qp->put_io_bufs = 0;
22262 spin_unlock(&qp->io_buf_list_put_lock);
22263 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
22264 expedite)
22265 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
22266 }
22267 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
22268 }
22269
22270 return lpfc_cmd;
22271 }
22272
22273 /**
22274 * lpfc_read_object - Retrieve object data from HBA
22275 * @phba: The HBA for which this call is being executed.
22276 * @rdobject: Pathname of object data we want to read.
22277 * @datap: Pointer to where data will be copied to.
22278 * @datasz: size of data area
22279 *
22280 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less.
22281 * The data will be truncated if datasz is not large enough.
22282 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0.
22283 * Returns the actual bytes read from the object.
22284 *
22285 * This routine is hard coded to use a poll completion. Unlike other
22286 * sli4_config mailboxes, it uses lpfc_mbuf memory which is not
22287 * cleaned up in lpfc_sli4_cmd_mbox_free. If this routine is modified
22288 * to use interrupt-based completions, code is needed to fully cleanup
22289 * the memory.
22290 */
22291 int
lpfc_read_object(struct lpfc_hba * phba,char * rdobject,uint32_t * datap,uint32_t datasz)22292 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap,
22293 uint32_t datasz)
22294 {
22295 struct lpfc_mbx_read_object *read_object;
22296 LPFC_MBOXQ_t *mbox;
22297 int rc, length, eof, j, byte_cnt = 0;
22298 uint32_t shdr_status, shdr_add_status;
22299 union lpfc_sli4_cfg_shdr *shdr;
22300 struct lpfc_dmabuf *pcmd;
22301 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0};
22302
22303 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
22304 if (!mbox)
22305 return -ENOMEM;
22306 length = (sizeof(struct lpfc_mbx_read_object) -
22307 sizeof(struct lpfc_sli4_cfg_mhdr));
22308 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
22309 LPFC_MBOX_OPCODE_READ_OBJECT,
22310 length, LPFC_SLI4_MBX_EMBED);
22311 read_object = &mbox->u.mqe.un.read_object;
22312 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr;
22313
22314 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0);
22315 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz);
22316 read_object->u.request.rd_object_offset = 0;
22317 read_object->u.request.rd_object_cnt = 1;
22318
22319 memset((void *)read_object->u.request.rd_object_name, 0,
22320 LPFC_OBJ_NAME_SZ);
22321 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject);
22322 for (j = 0; j < strlen(rdobject); j++)
22323 read_object->u.request.rd_object_name[j] =
22324 cpu_to_le32(rd_object_name[j]);
22325
22326 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL);
22327 if (pcmd)
22328 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys);
22329 if (!pcmd || !pcmd->virt) {
22330 kfree(pcmd);
22331 mempool_free(mbox, phba->mbox_mem_pool);
22332 return -ENOMEM;
22333 }
22334 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE);
22335 read_object->u.request.rd_object_hbuf[0].pa_lo =
22336 putPaddrLow(pcmd->phys);
22337 read_object->u.request.rd_object_hbuf[0].pa_hi =
22338 putPaddrHigh(pcmd->phys);
22339 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE;
22340
22341 mbox->vport = phba->pport;
22342 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
22343 mbox->ctx_ndlp = NULL;
22344
22345 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
22346 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
22347 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
22348
22349 if (shdr_status == STATUS_FAILED &&
22350 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) {
22351 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
22352 "4674 No port cfg file in FW.\n");
22353 byte_cnt = -ENOENT;
22354 } else if (shdr_status || shdr_add_status || rc) {
22355 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
22356 "2625 READ_OBJECT mailbox failed with "
22357 "status x%x add_status x%x, mbx status x%x\n",
22358 shdr_status, shdr_add_status, rc);
22359 byte_cnt = -ENXIO;
22360 } else {
22361 /* Success */
22362 length = read_object->u.response.rd_object_actual_rlen;
22363 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response);
22364 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT,
22365 "2626 READ_OBJECT Success len %d:%d, EOF %d\n",
22366 length, datasz, eof);
22367
22368 /* Detect the port config file exists but is empty */
22369 if (!length && eof) {
22370 byte_cnt = 0;
22371 goto exit;
22372 }
22373
22374 byte_cnt = length;
22375 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt);
22376 }
22377
22378 exit:
22379 /* This is an embedded SLI4 mailbox with an external buffer allocated.
22380 * Free the pcmd and then cleanup with the correct routine.
22381 */
22382 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys);
22383 kfree(pcmd);
22384 lpfc_sli4_mbox_cmd_free(phba, mbox);
22385 return byte_cnt;
22386 }
22387
22388 /**
22389 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool
22390 * @phba: The HBA for which this call is being executed.
22391 * @lpfc_buf: IO buf structure to append the SGL chunk
22392 *
22393 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool,
22394 * and will allocate an SGL chunk if the pool is empty.
22395 *
22396 * Return codes:
22397 * NULL - Error
22398 * Pointer to sli4_hybrid_sgl - Success
22399 **/
22400 struct sli4_hybrid_sgl *
lpfc_get_sgl_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)22401 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
22402 {
22403 struct sli4_hybrid_sgl *list_entry = NULL;
22404 struct sli4_hybrid_sgl *tmp = NULL;
22405 struct sli4_hybrid_sgl *allocated_sgl = NULL;
22406 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22407 struct list_head *buf_list = &hdwq->sgl_list;
22408 unsigned long iflags;
22409
22410 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22411
22412 if (likely(!list_empty(buf_list))) {
22413 /* break off 1 chunk from the sgl_list */
22414 list_for_each_entry_safe(list_entry, tmp,
22415 buf_list, list_node) {
22416 list_move_tail(&list_entry->list_node,
22417 &lpfc_buf->dma_sgl_xtra_list);
22418 break;
22419 }
22420 } else {
22421 /* allocate more */
22422 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22423 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
22424 cpu_to_node(hdwq->io_wq->chann));
22425 if (!tmp) {
22426 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22427 "8353 error kmalloc memory for HDWQ "
22428 "%d %s\n",
22429 lpfc_buf->hdwq_no, __func__);
22430 return NULL;
22431 }
22432
22433 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool,
22434 GFP_ATOMIC, &tmp->dma_phys_sgl);
22435 if (!tmp->dma_sgl) {
22436 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22437 "8354 error pool_alloc memory for HDWQ "
22438 "%d %s\n",
22439 lpfc_buf->hdwq_no, __func__);
22440 kfree(tmp);
22441 return NULL;
22442 }
22443
22444 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22445 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list);
22446 }
22447
22448 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list,
22449 struct sli4_hybrid_sgl,
22450 list_node);
22451
22452 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22453
22454 return allocated_sgl;
22455 }
22456
22457 /**
22458 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool
22459 * @phba: The HBA for which this call is being executed.
22460 * @lpfc_buf: IO buf structure with the SGL chunk
22461 *
22462 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool.
22463 *
22464 * Return codes:
22465 * 0 - Success
22466 * -EINVAL - Error
22467 **/
22468 int
lpfc_put_sgl_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)22469 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
22470 {
22471 int rc = 0;
22472 struct sli4_hybrid_sgl *list_entry = NULL;
22473 struct sli4_hybrid_sgl *tmp = NULL;
22474 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22475 struct list_head *buf_list = &hdwq->sgl_list;
22476 unsigned long iflags;
22477
22478 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22479
22480 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) {
22481 list_for_each_entry_safe(list_entry, tmp,
22482 &lpfc_buf->dma_sgl_xtra_list,
22483 list_node) {
22484 list_move_tail(&list_entry->list_node,
22485 buf_list);
22486 }
22487 } else {
22488 rc = -EINVAL;
22489 }
22490
22491 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22492 return rc;
22493 }
22494
22495 /**
22496 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool
22497 * @phba: phba object
22498 * @hdwq: hdwq to cleanup sgl buff resources on
22499 *
22500 * This routine frees all SGL chunks of hdwq SGL chunk pool.
22501 *
22502 * Return codes:
22503 * None
22504 **/
22505 void
lpfc_free_sgl_per_hdwq(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * hdwq)22506 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba,
22507 struct lpfc_sli4_hdw_queue *hdwq)
22508 {
22509 struct list_head *buf_list = &hdwq->sgl_list;
22510 struct sli4_hybrid_sgl *list_entry = NULL;
22511 struct sli4_hybrid_sgl *tmp = NULL;
22512 unsigned long iflags;
22513
22514 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22515
22516 /* Free sgl pool */
22517 list_for_each_entry_safe(list_entry, tmp,
22518 buf_list, list_node) {
22519 list_del(&list_entry->list_node);
22520 dma_pool_free(phba->lpfc_sg_dma_buf_pool,
22521 list_entry->dma_sgl,
22522 list_entry->dma_phys_sgl);
22523 kfree(list_entry);
22524 }
22525
22526 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22527 }
22528
22529 /**
22530 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq
22531 * @phba: The HBA for which this call is being executed.
22532 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer
22533 *
22534 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool,
22535 * and will allocate an CMD/RSP buffer if the pool is empty.
22536 *
22537 * Return codes:
22538 * NULL - Error
22539 * Pointer to fcp_cmd_rsp_buf - Success
22540 **/
22541 struct fcp_cmd_rsp_buf *
lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)22542 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22543 struct lpfc_io_buf *lpfc_buf)
22544 {
22545 struct fcp_cmd_rsp_buf *list_entry = NULL;
22546 struct fcp_cmd_rsp_buf *tmp = NULL;
22547 struct fcp_cmd_rsp_buf *allocated_buf = NULL;
22548 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22549 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22550 unsigned long iflags;
22551
22552 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22553
22554 if (likely(!list_empty(buf_list))) {
22555 /* break off 1 chunk from the list */
22556 list_for_each_entry_safe(list_entry, tmp,
22557 buf_list,
22558 list_node) {
22559 list_move_tail(&list_entry->list_node,
22560 &lpfc_buf->dma_cmd_rsp_list);
22561 break;
22562 }
22563 } else {
22564 /* allocate more */
22565 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22566 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
22567 cpu_to_node(hdwq->io_wq->chann));
22568 if (!tmp) {
22569 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22570 "8355 error kmalloc memory for HDWQ "
22571 "%d %s\n",
22572 lpfc_buf->hdwq_no, __func__);
22573 return NULL;
22574 }
22575
22576 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool,
22577 GFP_ATOMIC,
22578 &tmp->fcp_cmd_rsp_dma_handle);
22579
22580 if (!tmp->fcp_cmnd) {
22581 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22582 "8356 error pool_alloc memory for HDWQ "
22583 "%d %s\n",
22584 lpfc_buf->hdwq_no, __func__);
22585 kfree(tmp);
22586 return NULL;
22587 }
22588
22589 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd +
22590 sizeof(struct fcp_cmnd32));
22591
22592 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22593 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list);
22594 }
22595
22596 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list,
22597 struct fcp_cmd_rsp_buf,
22598 list_node);
22599
22600 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22601
22602 return allocated_buf;
22603 }
22604
22605 /**
22606 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool
22607 * @phba: The HBA for which this call is being executed.
22608 * @lpfc_buf: IO buf structure with the CMD/RSP buf
22609 *
22610 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool.
22611 *
22612 * Return codes:
22613 * 0 - Success
22614 * -EINVAL - Error
22615 **/
22616 int
lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)22617 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22618 struct lpfc_io_buf *lpfc_buf)
22619 {
22620 int rc = 0;
22621 struct fcp_cmd_rsp_buf *list_entry = NULL;
22622 struct fcp_cmd_rsp_buf *tmp = NULL;
22623 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22624 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22625 unsigned long iflags;
22626
22627 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22628
22629 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) {
22630 list_for_each_entry_safe(list_entry, tmp,
22631 &lpfc_buf->dma_cmd_rsp_list,
22632 list_node) {
22633 list_move_tail(&list_entry->list_node,
22634 buf_list);
22635 }
22636 } else {
22637 rc = -EINVAL;
22638 }
22639
22640 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22641 return rc;
22642 }
22643
22644 /**
22645 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool
22646 * @phba: phba object
22647 * @hdwq: hdwq to cleanup cmd rsp buff resources on
22648 *
22649 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool.
22650 *
22651 * Return codes:
22652 * None
22653 **/
22654 void
lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * hdwq)22655 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22656 struct lpfc_sli4_hdw_queue *hdwq)
22657 {
22658 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22659 struct fcp_cmd_rsp_buf *list_entry = NULL;
22660 struct fcp_cmd_rsp_buf *tmp = NULL;
22661 unsigned long iflags;
22662
22663 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22664
22665 /* Free cmd_rsp buf pool */
22666 list_for_each_entry_safe(list_entry, tmp,
22667 buf_list,
22668 list_node) {
22669 list_del(&list_entry->list_node);
22670 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool,
22671 list_entry->fcp_cmnd,
22672 list_entry->fcp_cmd_rsp_dma_handle);
22673 kfree(list_entry);
22674 }
22675
22676 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22677 }
22678
22679 /**
22680 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted
22681 * @phba: phba object
22682 * @job: job entry of the command to be posted.
22683 *
22684 * Fill the common fields of the wqe for each of the command.
22685 *
22686 * Return codes:
22687 * None
22688 **/
22689 void
lpfc_sli_prep_wqe(struct lpfc_hba * phba,struct lpfc_iocbq * job)22690 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job)
22691 {
22692 u8 cmnd;
22693 u32 *pcmd;
22694 u32 if_type = 0;
22695 u32 abort_tag;
22696 bool fip;
22697 struct lpfc_nodelist *ndlp = NULL;
22698 union lpfc_wqe128 *wqe = &job->wqe;
22699 u8 command_type = ELS_COMMAND_NON_FIP;
22700
22701 fip = test_bit(HBA_FIP_SUPPORT, &phba->hba_flag);
22702 /* The fcp commands will set command type */
22703 if (job->cmd_flag & LPFC_IO_FCP)
22704 command_type = FCP_COMMAND;
22705 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK))
22706 command_type = ELS_COMMAND_FIP;
22707 else
22708 command_type = ELS_COMMAND_NON_FIP;
22709
22710 abort_tag = job->iotag;
22711 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com);
22712
22713 switch (cmnd) {
22714 case CMD_ELS_REQUEST64_WQE:
22715 ndlp = job->ndlp;
22716
22717 if_type = bf_get(lpfc_sli_intf_if_type,
22718 &phba->sli4_hba.sli_intf);
22719 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
22720 pcmd = (u32 *)job->cmd_dmabuf->virt;
22721 if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
22722 *pcmd == ELS_CMD_SCR ||
22723 *pcmd == ELS_CMD_RDF ||
22724 *pcmd == ELS_CMD_EDC ||
22725 *pcmd == ELS_CMD_RSCN_XMT ||
22726 *pcmd == ELS_CMD_FDISC ||
22727 *pcmd == ELS_CMD_LOGO ||
22728 *pcmd == ELS_CMD_QFPA ||
22729 *pcmd == ELS_CMD_UVEM ||
22730 *pcmd == ELS_CMD_PLOGI)) {
22731 bf_set(els_req64_sp, &wqe->els_req, 1);
22732 bf_set(els_req64_sid, &wqe->els_req,
22733 job->vport->fc_myDID);
22734
22735 if ((*pcmd == ELS_CMD_FLOGI) &&
22736 !(phba->fc_topology ==
22737 LPFC_TOPOLOGY_LOOP))
22738 bf_set(els_req64_sid, &wqe->els_req, 0);
22739
22740 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
22741 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
22742 phba->vpi_ids[job->vport->vpi]);
22743 } else if (pcmd) {
22744 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
22745 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
22746 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
22747 }
22748 }
22749
22750 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
22751 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
22752
22753 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
22754 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
22755 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
22756 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
22757 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
22758 break;
22759 case CMD_XMIT_ELS_RSP64_WQE:
22760 ndlp = job->ndlp;
22761
22762 /* word4 */
22763 wqe->xmit_els_rsp.word4 = 0;
22764
22765 if_type = bf_get(lpfc_sli_intf_if_type,
22766 &phba->sli4_hba.sli_intf);
22767 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
22768 if (test_bit(FC_PT2PT, &job->vport->fc_flag)) {
22769 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
22770 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
22771 job->vport->fc_myDID);
22772 if (job->vport->fc_myDID == Fabric_DID) {
22773 bf_set(wqe_els_did,
22774 &wqe->xmit_els_rsp.wqe_dest, 0);
22775 }
22776 }
22777 }
22778
22779 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
22780 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
22781 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
22782 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
22783 LPFC_WQE_LENLOC_WORD3);
22784 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
22785
22786 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
22787 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
22788 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
22789 job->vport->fc_myDID);
22790 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
22791 }
22792
22793 if (phba->sli_rev == LPFC_SLI_REV4) {
22794 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
22795 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
22796
22797 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com))
22798 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
22799 phba->vpi_ids[job->vport->vpi]);
22800 }
22801 command_type = OTHER_COMMAND;
22802 break;
22803 case CMD_GEN_REQUEST64_WQE:
22804 /* Word 10 */
22805 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
22806 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
22807 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
22808 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
22809 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
22810 command_type = OTHER_COMMAND;
22811 break;
22812 case CMD_XMIT_SEQUENCE64_WQE:
22813 if (phba->link_flag & LS_LOOPBACK_MODE)
22814 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
22815
22816 wqe->xmit_sequence.rsvd3 = 0;
22817 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
22818 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
22819 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
22820 LPFC_WQE_IOD_WRITE);
22821 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
22822 LPFC_WQE_LENLOC_WORD12);
22823 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
22824 command_type = OTHER_COMMAND;
22825 break;
22826 case CMD_XMIT_BLS_RSP64_WQE:
22827 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
22828 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
22829 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
22830 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
22831 phba->vpi_ids[phba->pport->vpi]);
22832 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
22833 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
22834 LPFC_WQE_LENLOC_NONE);
22835 /* Overwrite the pre-set comnd type with OTHER_COMMAND */
22836 command_type = OTHER_COMMAND;
22837 break;
22838 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */
22839 case CMD_ABORT_XRI_WQE: /* abort iotag */
22840 case CMD_SEND_FRAME: /* mds loopback */
22841 /* cases already formatted for sli4 wqe - no chgs necessary */
22842 return;
22843 default:
22844 dump_stack();
22845 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
22846 "6207 Invalid command 0x%x\n",
22847 cmnd);
22848 break;
22849 }
22850
22851 wqe->generic.wqe_com.abort_tag = abort_tag;
22852 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag);
22853 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
22854 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
22855 }
22856