xref: /linux/kernel/power/swap.c (revision aecba2e013ab79dde441dfc81a32792ced229539)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/swap.c
4  *
5  * This file provides functions for reading the suspend image from
6  * and writing it to a swap partition.
7  *
8  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11  */
12 
13 #define pr_fmt(fmt) "PM: " fmt
14 
15 #include <crypto/acompress.h>
16 #include <linux/module.h>
17 #include <linux/file.h>
18 #include <linux/delay.h>
19 #include <linux/bitops.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/cpumask.h>
29 #include <linux/atomic.h>
30 #include <linux/kthread.h>
31 #include <linux/crc32.h>
32 #include <linux/ktime.h>
33 
34 #include "power.h"
35 
36 #define HIBERNATE_SIG	"S1SUSPEND"
37 
38 u32 swsusp_hardware_signature;
39 
40 /*
41  * When reading an {un,}compressed image, we may restore pages in place,
42  * in which case some architectures need these pages cleaning before they
43  * can be executed. We don't know which pages these may be, so clean the lot.
44  */
45 static bool clean_pages_on_read;
46 static bool clean_pages_on_decompress;
47 
48 /*
49  *	The swap map is a data structure used for keeping track of each page
50  *	written to a swap partition.  It consists of many swap_map_page
51  *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
52  *	These structures are stored on the swap and linked together with the
53  *	help of the .next_swap member.
54  *
55  *	The swap map is created during suspend.  The swap map pages are
56  *	allocated and populated one at a time, so we only need one memory
57  *	page to set up the entire structure.
58  *
59  *	During resume we pick up all swap_map_page structures into a list.
60  */
61 
62 #define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
63 
64 /*
65  * Number of free pages that are not high.
66  */
low_free_pages(void)67 static inline unsigned long low_free_pages(void)
68 {
69 	return nr_free_pages() - nr_free_highpages();
70 }
71 
72 /*
73  * Number of pages required to be kept free while writing the image. Always
74  * half of all available low pages before the writing starts.
75  */
reqd_free_pages(void)76 static inline unsigned long reqd_free_pages(void)
77 {
78 	return low_free_pages() / 2;
79 }
80 
81 struct swap_map_page {
82 	sector_t entries[MAP_PAGE_ENTRIES];
83 	sector_t next_swap;
84 };
85 
86 struct swap_map_page_list {
87 	struct swap_map_page *map;
88 	struct swap_map_page_list *next;
89 };
90 
91 /*
92  *	The swap_map_handle structure is used for handling swap in
93  *	a file-alike way
94  */
95 
96 struct swap_map_handle {
97 	struct swap_map_page *cur;
98 	struct swap_map_page_list *maps;
99 	sector_t cur_swap;
100 	sector_t first_sector;
101 	unsigned int k;
102 	unsigned long reqd_free_pages;
103 	u32 crc32;
104 };
105 
106 struct swsusp_header {
107 	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
108 	              sizeof(u32) - sizeof(u32)];
109 	u32	hw_sig;
110 	u32	crc32;
111 	sector_t image;
112 	unsigned int flags;	/* Flags to pass to the "boot" kernel */
113 	char	orig_sig[10];
114 	char	sig[10];
115 } __packed;
116 
117 static struct swsusp_header *swsusp_header;
118 
119 /*
120  *	The following functions are used for tracing the allocated
121  *	swap pages, so that they can be freed in case of an error.
122  */
123 
124 struct swsusp_extent {
125 	struct rb_node node;
126 	unsigned long start;
127 	unsigned long end;
128 };
129 
130 static struct rb_root swsusp_extents = RB_ROOT;
131 
swsusp_extents_insert(unsigned long swap_offset)132 static int swsusp_extents_insert(unsigned long swap_offset)
133 {
134 	struct rb_node **new = &(swsusp_extents.rb_node);
135 	struct rb_node *parent = NULL;
136 	struct swsusp_extent *ext;
137 
138 	/* Figure out where to put the new node */
139 	while (*new) {
140 		ext = rb_entry(*new, struct swsusp_extent, node);
141 		parent = *new;
142 		if (swap_offset < ext->start) {
143 			/* Try to merge */
144 			if (swap_offset == ext->start - 1) {
145 				ext->start--;
146 				return 0;
147 			}
148 			new = &((*new)->rb_left);
149 		} else if (swap_offset > ext->end) {
150 			/* Try to merge */
151 			if (swap_offset == ext->end + 1) {
152 				ext->end++;
153 				return 0;
154 			}
155 			new = &((*new)->rb_right);
156 		} else {
157 			/* It already is in the tree */
158 			return -EINVAL;
159 		}
160 	}
161 	/* Add the new node and rebalance the tree. */
162 	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
163 	if (!ext)
164 		return -ENOMEM;
165 
166 	ext->start = swap_offset;
167 	ext->end = swap_offset;
168 	rb_link_node(&ext->node, parent, new);
169 	rb_insert_color(&ext->node, &swsusp_extents);
170 	return 0;
171 }
172 
173 /*
174  *	alloc_swapdev_block - allocate a swap page and register that it has
175  *	been allocated, so that it can be freed in case of an error.
176  */
177 
alloc_swapdev_block(int swap)178 sector_t alloc_swapdev_block(int swap)
179 {
180 	unsigned long offset;
181 
182 	offset = swp_offset(get_swap_page_of_type(swap));
183 	if (offset) {
184 		if (swsusp_extents_insert(offset))
185 			swap_free(swp_entry(swap, offset));
186 		else
187 			return swapdev_block(swap, offset);
188 	}
189 	return 0;
190 }
191 
192 /*
193  *	free_all_swap_pages - free swap pages allocated for saving image data.
194  *	It also frees the extents used to register which swap entries had been
195  *	allocated.
196  */
197 
free_all_swap_pages(int swap)198 void free_all_swap_pages(int swap)
199 {
200 	struct rb_node *node;
201 
202 	while ((node = swsusp_extents.rb_node)) {
203 		struct swsusp_extent *ext;
204 
205 		ext = rb_entry(node, struct swsusp_extent, node);
206 		rb_erase(node, &swsusp_extents);
207 		swap_free_nr(swp_entry(swap, ext->start),
208 			     ext->end - ext->start + 1);
209 
210 		kfree(ext);
211 	}
212 }
213 
swsusp_swap_in_use(void)214 int swsusp_swap_in_use(void)
215 {
216 	return (swsusp_extents.rb_node != NULL);
217 }
218 
219 /*
220  * General things
221  */
222 
223 static unsigned short root_swap = 0xffff;
224 static struct file *hib_resume_bdev_file;
225 
226 struct hib_bio_batch {
227 	atomic_t		count;
228 	wait_queue_head_t	wait;
229 	blk_status_t		error;
230 	struct blk_plug		plug;
231 };
232 
hib_init_batch(struct hib_bio_batch * hb)233 static void hib_init_batch(struct hib_bio_batch *hb)
234 {
235 	atomic_set(&hb->count, 0);
236 	init_waitqueue_head(&hb->wait);
237 	hb->error = BLK_STS_OK;
238 	blk_start_plug(&hb->plug);
239 }
240 
hib_finish_batch(struct hib_bio_batch * hb)241 static void hib_finish_batch(struct hib_bio_batch *hb)
242 {
243 	blk_finish_plug(&hb->plug);
244 }
245 
hib_end_io(struct bio * bio)246 static void hib_end_io(struct bio *bio)
247 {
248 	struct hib_bio_batch *hb = bio->bi_private;
249 	struct page *page = bio_first_page_all(bio);
250 
251 	if (bio->bi_status) {
252 		pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
253 			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
254 			 (unsigned long long)bio->bi_iter.bi_sector);
255 	}
256 
257 	if (bio_data_dir(bio) == WRITE)
258 		put_page(page);
259 	else if (clean_pages_on_read)
260 		flush_icache_range((unsigned long)page_address(page),
261 				   (unsigned long)page_address(page) + PAGE_SIZE);
262 
263 	if (bio->bi_status && !hb->error)
264 		hb->error = bio->bi_status;
265 	if (atomic_dec_and_test(&hb->count))
266 		wake_up(&hb->wait);
267 
268 	bio_put(bio);
269 }
270 
hib_submit_io_sync(blk_opf_t opf,pgoff_t page_off,void * addr)271 static int hib_submit_io_sync(blk_opf_t opf, pgoff_t page_off, void *addr)
272 {
273 	return bdev_rw_virt(file_bdev(hib_resume_bdev_file),
274 			page_off * (PAGE_SIZE >> 9), addr, PAGE_SIZE, opf);
275 }
276 
hib_submit_io_async(blk_opf_t opf,pgoff_t page_off,void * addr,struct hib_bio_batch * hb)277 static int hib_submit_io_async(blk_opf_t opf, pgoff_t page_off, void *addr,
278 			 struct hib_bio_batch *hb)
279 {
280 	struct bio *bio;
281 
282 	bio = bio_alloc(file_bdev(hib_resume_bdev_file), 1, opf,
283 			GFP_NOIO | __GFP_HIGH);
284 	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
285 	bio_add_virt_nofail(bio, addr, PAGE_SIZE);
286 	bio->bi_end_io = hib_end_io;
287 	bio->bi_private = hb;
288 	atomic_inc(&hb->count);
289 	submit_bio(bio);
290 	return 0;
291 }
292 
hib_wait_io(struct hib_bio_batch * hb)293 static int hib_wait_io(struct hib_bio_batch *hb)
294 {
295 	/*
296 	 * We are relying on the behavior of blk_plug that a thread with
297 	 * a plug will flush the plug list before sleeping.
298 	 */
299 	wait_event(hb->wait, atomic_read(&hb->count) == 0);
300 	return blk_status_to_errno(hb->error);
301 }
302 
303 /*
304  * Saving part
305  */
mark_swapfiles(struct swap_map_handle * handle,unsigned int flags)306 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
307 {
308 	int error;
309 
310 	hib_submit_io_sync(REQ_OP_READ, swsusp_resume_block, swsusp_header);
311 	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
312 	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
313 		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
314 		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
315 		swsusp_header->image = handle->first_sector;
316 		if (swsusp_hardware_signature) {
317 			swsusp_header->hw_sig = swsusp_hardware_signature;
318 			flags |= SF_HW_SIG;
319 		}
320 		swsusp_header->flags = flags;
321 		if (flags & SF_CRC32_MODE)
322 			swsusp_header->crc32 = handle->crc32;
323 		error = hib_submit_io_sync(REQ_OP_WRITE | REQ_SYNC,
324 				      swsusp_resume_block, swsusp_header);
325 	} else {
326 		pr_err("Swap header not found!\n");
327 		error = -ENODEV;
328 	}
329 	return error;
330 }
331 
332 /*
333  * Hold the swsusp_header flag. This is used in software_resume() in
334  * 'kernel/power/hibernate' to check if the image is compressed and query
335  * for the compression algorithm support(if so).
336  */
337 unsigned int swsusp_header_flags;
338 
339 /**
340  *	swsusp_swap_check - check if the resume device is a swap device
341  *	and get its index (if so)
342  *
343  *	This is called before saving image
344  */
swsusp_swap_check(void)345 static int swsusp_swap_check(void)
346 {
347 	int res;
348 
349 	if (swsusp_resume_device)
350 		res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
351 	else
352 		res = find_first_swap(&swsusp_resume_device);
353 	if (res < 0)
354 		return res;
355 	root_swap = res;
356 
357 	hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
358 			BLK_OPEN_WRITE, NULL, NULL);
359 	if (IS_ERR(hib_resume_bdev_file))
360 		return PTR_ERR(hib_resume_bdev_file);
361 
362 	return 0;
363 }
364 
365 /**
366  *	write_page - Write one page to given swap location.
367  *	@buf:		Address we're writing.
368  *	@offset:	Offset of the swap page we're writing to.
369  *	@hb:		bio completion batch
370  */
371 
write_page(void * buf,sector_t offset,struct hib_bio_batch * hb)372 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
373 {
374 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
375 	void *src;
376 	int ret;
377 
378 	if (!offset)
379 		return -ENOSPC;
380 
381 	if (!hb)
382 		goto sync_io;
383 
384 	src = (void *)__get_free_page(gfp);
385 	if (!src) {
386 		ret = hib_wait_io(hb); /* Free pages */
387 		if (ret)
388 			return ret;
389 		src = (void *)__get_free_page(gfp);
390 		if (WARN_ON_ONCE(!src))
391 			goto sync_io;
392 	}
393 
394 	copy_page(src, buf);
395 	return hib_submit_io_async(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
396 sync_io:
397 	return hib_submit_io_sync(REQ_OP_WRITE | REQ_SYNC, offset, buf);
398 }
399 
release_swap_writer(struct swap_map_handle * handle)400 static void release_swap_writer(struct swap_map_handle *handle)
401 {
402 	if (handle->cur)
403 		free_page((unsigned long)handle->cur);
404 	handle->cur = NULL;
405 }
406 
get_swap_writer(struct swap_map_handle * handle)407 static int get_swap_writer(struct swap_map_handle *handle)
408 {
409 	int ret;
410 
411 	ret = swsusp_swap_check();
412 	if (ret) {
413 		if (ret != -ENOSPC)
414 			pr_err("Cannot find swap device, try swapon -a\n");
415 		return ret;
416 	}
417 	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
418 	if (!handle->cur) {
419 		ret = -ENOMEM;
420 		goto err_close;
421 	}
422 	handle->cur_swap = alloc_swapdev_block(root_swap);
423 	if (!handle->cur_swap) {
424 		ret = -ENOSPC;
425 		goto err_rel;
426 	}
427 	handle->k = 0;
428 	handle->reqd_free_pages = reqd_free_pages();
429 	handle->first_sector = handle->cur_swap;
430 	return 0;
431 err_rel:
432 	release_swap_writer(handle);
433 err_close:
434 	swsusp_close();
435 	return ret;
436 }
437 
swap_write_page(struct swap_map_handle * handle,void * buf,struct hib_bio_batch * hb)438 static int swap_write_page(struct swap_map_handle *handle, void *buf,
439 		struct hib_bio_batch *hb)
440 {
441 	int error;
442 	sector_t offset;
443 
444 	if (!handle->cur)
445 		return -EINVAL;
446 	offset = alloc_swapdev_block(root_swap);
447 	error = write_page(buf, offset, hb);
448 	if (error)
449 		return error;
450 	handle->cur->entries[handle->k++] = offset;
451 	if (handle->k >= MAP_PAGE_ENTRIES) {
452 		offset = alloc_swapdev_block(root_swap);
453 		if (!offset)
454 			return -ENOSPC;
455 		handle->cur->next_swap = offset;
456 		error = write_page(handle->cur, handle->cur_swap, hb);
457 		if (error)
458 			goto out;
459 		clear_page(handle->cur);
460 		handle->cur_swap = offset;
461 		handle->k = 0;
462 
463 		if (hb && low_free_pages() <= handle->reqd_free_pages) {
464 			error = hib_wait_io(hb);
465 			if (error)
466 				goto out;
467 			/*
468 			 * Recalculate the number of required free pages, to
469 			 * make sure we never take more than half.
470 			 */
471 			handle->reqd_free_pages = reqd_free_pages();
472 		}
473 	}
474  out:
475 	return error;
476 }
477 
flush_swap_writer(struct swap_map_handle * handle)478 static int flush_swap_writer(struct swap_map_handle *handle)
479 {
480 	if (handle->cur && handle->cur_swap)
481 		return write_page(handle->cur, handle->cur_swap, NULL);
482 	else
483 		return -EINVAL;
484 }
485 
swap_writer_finish(struct swap_map_handle * handle,unsigned int flags,int error)486 static int swap_writer_finish(struct swap_map_handle *handle,
487 		unsigned int flags, int error)
488 {
489 	if (!error) {
490 		pr_info("S");
491 		error = mark_swapfiles(handle, flags);
492 		pr_cont("|\n");
493 		flush_swap_writer(handle);
494 	}
495 
496 	if (error)
497 		free_all_swap_pages(root_swap);
498 	release_swap_writer(handle);
499 	swsusp_close();
500 
501 	return error;
502 }
503 
504 /*
505  * Bytes we need for compressed data in worst case. We assume(limitation)
506  * this is the worst of all the compression algorithms.
507  */
508 #define bytes_worst_compress(x) ((x) + ((x) / 16) + 64 + 3 + 2)
509 
510 /* We need to remember how much compressed data we need to read. */
511 #define CMP_HEADER	sizeof(size_t)
512 
513 /* Number of pages/bytes we'll compress at one time. */
514 #define UNC_PAGES	32
515 #define UNC_SIZE	(UNC_PAGES * PAGE_SIZE)
516 
517 /* Number of pages we need for compressed data (worst case). */
518 #define CMP_PAGES	DIV_ROUND_UP(bytes_worst_compress(UNC_SIZE) + \
519 				CMP_HEADER, PAGE_SIZE)
520 #define CMP_SIZE	(CMP_PAGES * PAGE_SIZE)
521 
522 /* Maximum number of threads for compression/decompression. */
523 #define CMP_THREADS	3
524 
525 /* Minimum/maximum number of pages for read buffering. */
526 #define CMP_MIN_RD_PAGES	1024
527 #define CMP_MAX_RD_PAGES	8192
528 
529 /**
530  *	save_image - save the suspend image data
531  */
532 
save_image(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_write)533 static int save_image(struct swap_map_handle *handle,
534                       struct snapshot_handle *snapshot,
535                       unsigned int nr_to_write)
536 {
537 	unsigned int m;
538 	int ret;
539 	int nr_pages;
540 	int err2;
541 	struct hib_bio_batch hb;
542 	ktime_t start;
543 	ktime_t stop;
544 
545 	hib_init_batch(&hb);
546 
547 	pr_info("Saving image data pages (%u pages)...\n",
548 		nr_to_write);
549 	m = nr_to_write / 10;
550 	if (!m)
551 		m = 1;
552 	nr_pages = 0;
553 	start = ktime_get();
554 	while (1) {
555 		ret = snapshot_read_next(snapshot);
556 		if (ret <= 0)
557 			break;
558 		ret = swap_write_page(handle, data_of(*snapshot), &hb);
559 		if (ret)
560 			break;
561 		if (!(nr_pages % m))
562 			pr_info("Image saving progress: %3d%%\n",
563 				nr_pages / m * 10);
564 		nr_pages++;
565 	}
566 	err2 = hib_wait_io(&hb);
567 	hib_finish_batch(&hb);
568 	stop = ktime_get();
569 	if (!ret)
570 		ret = err2;
571 	if (!ret)
572 		pr_info("Image saving done\n");
573 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
574 	return ret;
575 }
576 
577 /*
578  * Structure used for CRC32.
579  */
580 struct crc_data {
581 	struct task_struct *thr;                  /* thread */
582 	atomic_t ready;                           /* ready to start flag */
583 	atomic_t stop;                            /* ready to stop flag */
584 	unsigned run_threads;                     /* nr current threads */
585 	wait_queue_head_t go;                     /* start crc update */
586 	wait_queue_head_t done;                   /* crc update done */
587 	u32 *crc32;                               /* points to handle's crc32 */
588 	size_t *unc_len[CMP_THREADS];             /* uncompressed lengths */
589 	unsigned char *unc[CMP_THREADS];          /* uncompressed data */
590 };
591 
592 /*
593  * CRC32 update function that runs in its own thread.
594  */
crc32_threadfn(void * data)595 static int crc32_threadfn(void *data)
596 {
597 	struct crc_data *d = data;
598 	unsigned i;
599 
600 	while (1) {
601 		wait_event(d->go, atomic_read_acquire(&d->ready) ||
602 		                  kthread_should_stop());
603 		if (kthread_should_stop()) {
604 			d->thr = NULL;
605 			atomic_set_release(&d->stop, 1);
606 			wake_up(&d->done);
607 			break;
608 		}
609 		atomic_set(&d->ready, 0);
610 
611 		for (i = 0; i < d->run_threads; i++)
612 			*d->crc32 = crc32_le(*d->crc32,
613 			                     d->unc[i], *d->unc_len[i]);
614 		atomic_set_release(&d->stop, 1);
615 		wake_up(&d->done);
616 	}
617 	return 0;
618 }
619 /*
620  * Structure used for data compression.
621  */
622 struct cmp_data {
623 	struct task_struct *thr;                  /* thread */
624 	struct crypto_acomp *cc;		  /* crypto compressor */
625 	struct acomp_req *cr;			  /* crypto request */
626 	atomic_t ready;                           /* ready to start flag */
627 	atomic_t stop;                            /* ready to stop flag */
628 	int ret;                                  /* return code */
629 	wait_queue_head_t go;                     /* start compression */
630 	wait_queue_head_t done;                   /* compression done */
631 	size_t unc_len;                           /* uncompressed length */
632 	size_t cmp_len;                           /* compressed length */
633 	unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
634 	unsigned char cmp[CMP_SIZE];              /* compressed buffer */
635 };
636 
637 /* Indicates the image size after compression */
638 static atomic64_t compressed_size = ATOMIC_INIT(0);
639 
640 /*
641  * Compression function that runs in its own thread.
642  */
compress_threadfn(void * data)643 static int compress_threadfn(void *data)
644 {
645 	struct cmp_data *d = data;
646 
647 	while (1) {
648 		wait_event(d->go, atomic_read_acquire(&d->ready) ||
649 		                  kthread_should_stop());
650 		if (kthread_should_stop()) {
651 			d->thr = NULL;
652 			d->ret = -1;
653 			atomic_set_release(&d->stop, 1);
654 			wake_up(&d->done);
655 			break;
656 		}
657 		atomic_set(&d->ready, 0);
658 
659 		acomp_request_set_callback(d->cr, CRYPTO_TFM_REQ_MAY_SLEEP,
660 					   NULL, NULL);
661 		acomp_request_set_src_nondma(d->cr, d->unc, d->unc_len);
662 		acomp_request_set_dst_nondma(d->cr, d->cmp + CMP_HEADER,
663 					     CMP_SIZE - CMP_HEADER);
664 		d->ret = crypto_acomp_compress(d->cr);
665 		d->cmp_len = d->cr->dlen;
666 
667 		atomic64_add(d->cmp_len, &compressed_size);
668 		atomic_set_release(&d->stop, 1);
669 		wake_up(&d->done);
670 	}
671 	return 0;
672 }
673 
674 /**
675  * save_compressed_image - Save the suspend image data after compression.
676  * @handle: Swap map handle to use for saving the image.
677  * @snapshot: Image to read data from.
678  * @nr_to_write: Number of pages to save.
679  */
save_compressed_image(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_write)680 static int save_compressed_image(struct swap_map_handle *handle,
681 				 struct snapshot_handle *snapshot,
682 				 unsigned int nr_to_write)
683 {
684 	unsigned int m;
685 	int ret = 0;
686 	int nr_pages;
687 	int err2;
688 	struct hib_bio_batch hb;
689 	ktime_t start;
690 	ktime_t stop;
691 	size_t off;
692 	unsigned int thr, run_threads, nr_threads;
693 	unsigned char *page = NULL;
694 	struct cmp_data *data = NULL;
695 	struct crc_data *crc = NULL;
696 
697 	hib_init_batch(&hb);
698 
699 	atomic64_set(&compressed_size, 0);
700 
701 	/*
702 	 * We'll limit the number of threads for compression to limit memory
703 	 * footprint.
704 	 */
705 	nr_threads = num_online_cpus() - 1;
706 	nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
707 
708 	page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
709 	if (!page) {
710 		pr_err("Failed to allocate %s page\n", hib_comp_algo);
711 		ret = -ENOMEM;
712 		goto out_clean;
713 	}
714 
715 	data = vcalloc(nr_threads, sizeof(*data));
716 	if (!data) {
717 		pr_err("Failed to allocate %s data\n", hib_comp_algo);
718 		ret = -ENOMEM;
719 		goto out_clean;
720 	}
721 
722 	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
723 	if (!crc) {
724 		pr_err("Failed to allocate crc\n");
725 		ret = -ENOMEM;
726 		goto out_clean;
727 	}
728 
729 	/*
730 	 * Start the compression threads.
731 	 */
732 	for (thr = 0; thr < nr_threads; thr++) {
733 		init_waitqueue_head(&data[thr].go);
734 		init_waitqueue_head(&data[thr].done);
735 
736 		data[thr].cc = crypto_alloc_acomp(hib_comp_algo, 0, CRYPTO_ALG_ASYNC);
737 		if (IS_ERR_OR_NULL(data[thr].cc)) {
738 			pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
739 			ret = -EFAULT;
740 			goto out_clean;
741 		}
742 
743 		data[thr].cr = acomp_request_alloc(data[thr].cc);
744 		if (!data[thr].cr) {
745 			pr_err("Could not allocate comp request\n");
746 			ret = -ENOMEM;
747 			goto out_clean;
748 		}
749 
750 		data[thr].thr = kthread_run(compress_threadfn,
751 		                            &data[thr],
752 		                            "image_compress/%u", thr);
753 		if (IS_ERR(data[thr].thr)) {
754 			data[thr].thr = NULL;
755 			pr_err("Cannot start compression threads\n");
756 			ret = -ENOMEM;
757 			goto out_clean;
758 		}
759 	}
760 
761 	/*
762 	 * Start the CRC32 thread.
763 	 */
764 	init_waitqueue_head(&crc->go);
765 	init_waitqueue_head(&crc->done);
766 
767 	handle->crc32 = 0;
768 	crc->crc32 = &handle->crc32;
769 	for (thr = 0; thr < nr_threads; thr++) {
770 		crc->unc[thr] = data[thr].unc;
771 		crc->unc_len[thr] = &data[thr].unc_len;
772 	}
773 
774 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
775 	if (IS_ERR(crc->thr)) {
776 		crc->thr = NULL;
777 		pr_err("Cannot start CRC32 thread\n");
778 		ret = -ENOMEM;
779 		goto out_clean;
780 	}
781 
782 	/*
783 	 * Adjust the number of required free pages after all allocations have
784 	 * been done. We don't want to run out of pages when writing.
785 	 */
786 	handle->reqd_free_pages = reqd_free_pages();
787 
788 	pr_info("Using %u thread(s) for %s compression\n", nr_threads, hib_comp_algo);
789 	pr_info("Compressing and saving image data (%u pages)...\n",
790 		nr_to_write);
791 	m = nr_to_write / 10;
792 	if (!m)
793 		m = 1;
794 	nr_pages = 0;
795 	start = ktime_get();
796 	for (;;) {
797 		for (thr = 0; thr < nr_threads; thr++) {
798 			for (off = 0; off < UNC_SIZE; off += PAGE_SIZE) {
799 				ret = snapshot_read_next(snapshot);
800 				if (ret < 0)
801 					goto out_finish;
802 
803 				if (!ret)
804 					break;
805 
806 				memcpy(data[thr].unc + off,
807 				       data_of(*snapshot), PAGE_SIZE);
808 
809 				if (!(nr_pages % m))
810 					pr_info("Image saving progress: %3d%%\n",
811 						nr_pages / m * 10);
812 				nr_pages++;
813 			}
814 			if (!off)
815 				break;
816 
817 			data[thr].unc_len = off;
818 
819 			atomic_set_release(&data[thr].ready, 1);
820 			wake_up(&data[thr].go);
821 		}
822 
823 		if (!thr)
824 			break;
825 
826 		crc->run_threads = thr;
827 		atomic_set_release(&crc->ready, 1);
828 		wake_up(&crc->go);
829 
830 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
831 			wait_event(data[thr].done,
832 				atomic_read_acquire(&data[thr].stop));
833 			atomic_set(&data[thr].stop, 0);
834 
835 			ret = data[thr].ret;
836 
837 			if (ret < 0) {
838 				pr_err("%s compression failed\n", hib_comp_algo);
839 				goto out_finish;
840 			}
841 
842 			if (unlikely(!data[thr].cmp_len ||
843 			             data[thr].cmp_len >
844 				     bytes_worst_compress(data[thr].unc_len))) {
845 				pr_err("Invalid %s compressed length\n", hib_comp_algo);
846 				ret = -1;
847 				goto out_finish;
848 			}
849 
850 			*(size_t *)data[thr].cmp = data[thr].cmp_len;
851 
852 			/*
853 			 * Given we are writing one page at a time to disk, we
854 			 * copy that much from the buffer, although the last
855 			 * bit will likely be smaller than full page. This is
856 			 * OK - we saved the length of the compressed data, so
857 			 * any garbage at the end will be discarded when we
858 			 * read it.
859 			 */
860 			for (off = 0;
861 			     off < CMP_HEADER + data[thr].cmp_len;
862 			     off += PAGE_SIZE) {
863 				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
864 
865 				ret = swap_write_page(handle, page, &hb);
866 				if (ret)
867 					goto out_finish;
868 			}
869 		}
870 
871 		wait_event(crc->done, atomic_read_acquire(&crc->stop));
872 		atomic_set(&crc->stop, 0);
873 	}
874 
875 out_finish:
876 	err2 = hib_wait_io(&hb);
877 	stop = ktime_get();
878 	if (!ret)
879 		ret = err2;
880 	if (!ret) {
881 		swsusp_show_speed(start, stop, nr_to_write, "Wrote");
882 		pr_info("Image size after compression: %lld kbytes\n",
883 			(atomic64_read(&compressed_size) / 1024));
884 		pr_info("Image saving done\n");
885 	} else {
886 		pr_err("Image saving failed: %d\n", ret);
887 	}
888 
889 out_clean:
890 	hib_finish_batch(&hb);
891 	if (crc) {
892 		if (crc->thr)
893 			kthread_stop(crc->thr);
894 		kfree(crc);
895 	}
896 	if (data) {
897 		for (thr = 0; thr < nr_threads; thr++) {
898 			if (data[thr].thr)
899 				kthread_stop(data[thr].thr);
900 			acomp_request_free(data[thr].cr);
901 			crypto_free_acomp(data[thr].cc);
902 		}
903 		vfree(data);
904 	}
905 	if (page)
906 		free_page((unsigned long)page);
907 
908 	return ret;
909 }
910 
911 /**
912  *	enough_swap - Make sure we have enough swap to save the image.
913  *
914  *	Returns TRUE or FALSE after checking the total amount of swap
915  *	space available from the resume partition.
916  */
917 
enough_swap(unsigned int nr_pages)918 static int enough_swap(unsigned int nr_pages)
919 {
920 	unsigned int free_swap = count_swap_pages(root_swap, 1);
921 	unsigned int required;
922 
923 	pr_debug("Free swap pages: %u\n", free_swap);
924 
925 	required = PAGES_FOR_IO + nr_pages;
926 	return free_swap > required;
927 }
928 
929 /**
930  *	swsusp_write - Write entire image and metadata.
931  *	@flags: flags to pass to the "boot" kernel in the image header
932  *
933  *	It is important _NOT_ to umount filesystems at this point. We want
934  *	them synced (in case something goes wrong) but we DO not want to mark
935  *	filesystem clean: it is not. (And it does not matter, if we resume
936  *	correctly, we'll mark system clean, anyway.)
937  */
938 
swsusp_write(unsigned int flags)939 int swsusp_write(unsigned int flags)
940 {
941 	struct swap_map_handle handle;
942 	struct snapshot_handle snapshot;
943 	struct swsusp_info *header;
944 	unsigned long pages;
945 	int error;
946 
947 	pages = snapshot_get_image_size();
948 	error = get_swap_writer(&handle);
949 	if (error) {
950 		pr_err("Cannot get swap writer\n");
951 		return error;
952 	}
953 	if (flags & SF_NOCOMPRESS_MODE) {
954 		if (!enough_swap(pages)) {
955 			pr_err("Not enough free swap\n");
956 			error = -ENOSPC;
957 			goto out_finish;
958 		}
959 	}
960 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
961 	error = snapshot_read_next(&snapshot);
962 	if (error < (int)PAGE_SIZE) {
963 		if (error >= 0)
964 			error = -EFAULT;
965 
966 		goto out_finish;
967 	}
968 	header = (struct swsusp_info *)data_of(snapshot);
969 	error = swap_write_page(&handle, header, NULL);
970 	if (!error) {
971 		error = (flags & SF_NOCOMPRESS_MODE) ?
972 			save_image(&handle, &snapshot, pages - 1) :
973 			save_compressed_image(&handle, &snapshot, pages - 1);
974 	}
975 out_finish:
976 	error = swap_writer_finish(&handle, flags, error);
977 	return error;
978 }
979 
980 /*
981  *	The following functions allow us to read data using a swap map
982  *	in a file-like way.
983  */
984 
release_swap_reader(struct swap_map_handle * handle)985 static void release_swap_reader(struct swap_map_handle *handle)
986 {
987 	struct swap_map_page_list *tmp;
988 
989 	while (handle->maps) {
990 		if (handle->maps->map)
991 			free_page((unsigned long)handle->maps->map);
992 		tmp = handle->maps;
993 		handle->maps = handle->maps->next;
994 		kfree(tmp);
995 	}
996 	handle->cur = NULL;
997 }
998 
get_swap_reader(struct swap_map_handle * handle,unsigned int * flags_p)999 static int get_swap_reader(struct swap_map_handle *handle,
1000 		unsigned int *flags_p)
1001 {
1002 	int error;
1003 	struct swap_map_page_list *tmp, *last;
1004 	sector_t offset;
1005 
1006 	*flags_p = swsusp_header->flags;
1007 
1008 	if (!swsusp_header->image) /* how can this happen? */
1009 		return -EINVAL;
1010 
1011 	handle->cur = NULL;
1012 	last = handle->maps = NULL;
1013 	offset = swsusp_header->image;
1014 	while (offset) {
1015 		tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
1016 		if (!tmp) {
1017 			release_swap_reader(handle);
1018 			return -ENOMEM;
1019 		}
1020 		if (!handle->maps)
1021 			handle->maps = tmp;
1022 		if (last)
1023 			last->next = tmp;
1024 		last = tmp;
1025 
1026 		tmp->map = (struct swap_map_page *)
1027 			   __get_free_page(GFP_NOIO | __GFP_HIGH);
1028 		if (!tmp->map) {
1029 			release_swap_reader(handle);
1030 			return -ENOMEM;
1031 		}
1032 
1033 		error = hib_submit_io_sync(REQ_OP_READ, offset, tmp->map);
1034 		if (error) {
1035 			release_swap_reader(handle);
1036 			return error;
1037 		}
1038 		offset = tmp->map->next_swap;
1039 	}
1040 	handle->k = 0;
1041 	handle->cur = handle->maps->map;
1042 	return 0;
1043 }
1044 
swap_read_page(struct swap_map_handle * handle,void * buf,struct hib_bio_batch * hb)1045 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1046 		struct hib_bio_batch *hb)
1047 {
1048 	sector_t offset;
1049 	int error;
1050 	struct swap_map_page_list *tmp;
1051 
1052 	if (!handle->cur)
1053 		return -EINVAL;
1054 	offset = handle->cur->entries[handle->k];
1055 	if (!offset)
1056 		return -EFAULT;
1057 	if (hb)
1058 		error = hib_submit_io_async(REQ_OP_READ, offset, buf, hb);
1059 	else
1060 		error = hib_submit_io_sync(REQ_OP_READ, offset, buf);
1061 	if (error)
1062 		return error;
1063 	if (++handle->k >= MAP_PAGE_ENTRIES) {
1064 		handle->k = 0;
1065 		free_page((unsigned long)handle->maps->map);
1066 		tmp = handle->maps;
1067 		handle->maps = handle->maps->next;
1068 		kfree(tmp);
1069 		if (!handle->maps)
1070 			release_swap_reader(handle);
1071 		else
1072 			handle->cur = handle->maps->map;
1073 	}
1074 	return error;
1075 }
1076 
swap_reader_finish(struct swap_map_handle * handle)1077 static int swap_reader_finish(struct swap_map_handle *handle)
1078 {
1079 	release_swap_reader(handle);
1080 
1081 	return 0;
1082 }
1083 
1084 /**
1085  *	load_image - load the image using the swap map handle
1086  *	@handle and the snapshot handle @snapshot
1087  *	(assume there are @nr_pages pages to load)
1088  */
1089 
load_image(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_read)1090 static int load_image(struct swap_map_handle *handle,
1091                       struct snapshot_handle *snapshot,
1092                       unsigned int nr_to_read)
1093 {
1094 	unsigned int m;
1095 	int ret = 0;
1096 	ktime_t start;
1097 	ktime_t stop;
1098 	struct hib_bio_batch hb;
1099 	int err2;
1100 	unsigned nr_pages;
1101 
1102 	hib_init_batch(&hb);
1103 
1104 	clean_pages_on_read = true;
1105 	pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1106 	m = nr_to_read / 10;
1107 	if (!m)
1108 		m = 1;
1109 	nr_pages = 0;
1110 	start = ktime_get();
1111 	for ( ; ; ) {
1112 		ret = snapshot_write_next(snapshot);
1113 		if (ret <= 0)
1114 			break;
1115 		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1116 		if (ret)
1117 			break;
1118 		if (snapshot->sync_read)
1119 			ret = hib_wait_io(&hb);
1120 		if (ret)
1121 			break;
1122 		if (!(nr_pages % m))
1123 			pr_info("Image loading progress: %3d%%\n",
1124 				nr_pages / m * 10);
1125 		nr_pages++;
1126 	}
1127 	err2 = hib_wait_io(&hb);
1128 	hib_finish_batch(&hb);
1129 	stop = ktime_get();
1130 	if (!ret)
1131 		ret = err2;
1132 	if (!ret) {
1133 		pr_info("Image loading done\n");
1134 		ret = snapshot_write_finalize(snapshot);
1135 		if (!ret && !snapshot_image_loaded(snapshot))
1136 			ret = -ENODATA;
1137 	}
1138 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1139 	return ret;
1140 }
1141 
1142 /*
1143  * Structure used for data decompression.
1144  */
1145 struct dec_data {
1146 	struct task_struct *thr;                  /* thread */
1147 	struct crypto_acomp *cc;		  /* crypto compressor */
1148 	struct acomp_req *cr;			  /* crypto request */
1149 	atomic_t ready;                           /* ready to start flag */
1150 	atomic_t stop;                            /* ready to stop flag */
1151 	int ret;                                  /* return code */
1152 	wait_queue_head_t go;                     /* start decompression */
1153 	wait_queue_head_t done;                   /* decompression done */
1154 	size_t unc_len;                           /* uncompressed length */
1155 	size_t cmp_len;                           /* compressed length */
1156 	unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
1157 	unsigned char cmp[CMP_SIZE];              /* compressed buffer */
1158 };
1159 
1160 /*
1161  * Decompression function that runs in its own thread.
1162  */
decompress_threadfn(void * data)1163 static int decompress_threadfn(void *data)
1164 {
1165 	struct dec_data *d = data;
1166 
1167 	while (1) {
1168 		wait_event(d->go, atomic_read_acquire(&d->ready) ||
1169 		                  kthread_should_stop());
1170 		if (kthread_should_stop()) {
1171 			d->thr = NULL;
1172 			d->ret = -1;
1173 			atomic_set_release(&d->stop, 1);
1174 			wake_up(&d->done);
1175 			break;
1176 		}
1177 		atomic_set(&d->ready, 0);
1178 
1179 		acomp_request_set_callback(d->cr, CRYPTO_TFM_REQ_MAY_SLEEP,
1180 					   NULL, NULL);
1181 		acomp_request_set_src_nondma(d->cr, d->cmp + CMP_HEADER,
1182 					     d->cmp_len);
1183 		acomp_request_set_dst_nondma(d->cr, d->unc, UNC_SIZE);
1184 		d->ret = crypto_acomp_decompress(d->cr);
1185 		d->unc_len = d->cr->dlen;
1186 
1187 		if (clean_pages_on_decompress)
1188 			flush_icache_range((unsigned long)d->unc,
1189 					   (unsigned long)d->unc + d->unc_len);
1190 
1191 		atomic_set_release(&d->stop, 1);
1192 		wake_up(&d->done);
1193 	}
1194 	return 0;
1195 }
1196 
1197 /**
1198  * load_compressed_image - Load compressed image data and decompress it.
1199  * @handle: Swap map handle to use for loading data.
1200  * @snapshot: Image to copy uncompressed data into.
1201  * @nr_to_read: Number of pages to load.
1202  */
load_compressed_image(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_read)1203 static int load_compressed_image(struct swap_map_handle *handle,
1204 				 struct snapshot_handle *snapshot,
1205 				 unsigned int nr_to_read)
1206 {
1207 	unsigned int m;
1208 	int ret = 0;
1209 	int eof = 0;
1210 	struct hib_bio_batch hb;
1211 	ktime_t start;
1212 	ktime_t stop;
1213 	unsigned nr_pages;
1214 	size_t off;
1215 	unsigned i, thr, run_threads, nr_threads;
1216 	unsigned ring = 0, pg = 0, ring_size = 0,
1217 	         have = 0, want, need, asked = 0;
1218 	unsigned long read_pages = 0;
1219 	unsigned char **page = NULL;
1220 	struct dec_data *data = NULL;
1221 	struct crc_data *crc = NULL;
1222 
1223 	hib_init_batch(&hb);
1224 
1225 	/*
1226 	 * We'll limit the number of threads for decompression to limit memory
1227 	 * footprint.
1228 	 */
1229 	nr_threads = num_online_cpus() - 1;
1230 	nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
1231 
1232 	page = vmalloc_array(CMP_MAX_RD_PAGES, sizeof(*page));
1233 	if (!page) {
1234 		pr_err("Failed to allocate %s page\n", hib_comp_algo);
1235 		ret = -ENOMEM;
1236 		goto out_clean;
1237 	}
1238 
1239 	data = vcalloc(nr_threads, sizeof(*data));
1240 	if (!data) {
1241 		pr_err("Failed to allocate %s data\n", hib_comp_algo);
1242 		ret = -ENOMEM;
1243 		goto out_clean;
1244 	}
1245 
1246 	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1247 	if (!crc) {
1248 		pr_err("Failed to allocate crc\n");
1249 		ret = -ENOMEM;
1250 		goto out_clean;
1251 	}
1252 
1253 	clean_pages_on_decompress = true;
1254 
1255 	/*
1256 	 * Start the decompression threads.
1257 	 */
1258 	for (thr = 0; thr < nr_threads; thr++) {
1259 		init_waitqueue_head(&data[thr].go);
1260 		init_waitqueue_head(&data[thr].done);
1261 
1262 		data[thr].cc = crypto_alloc_acomp(hib_comp_algo, 0, CRYPTO_ALG_ASYNC);
1263 		if (IS_ERR_OR_NULL(data[thr].cc)) {
1264 			pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
1265 			ret = -EFAULT;
1266 			goto out_clean;
1267 		}
1268 
1269 		data[thr].cr = acomp_request_alloc(data[thr].cc);
1270 		if (!data[thr].cr) {
1271 			pr_err("Could not allocate comp request\n");
1272 			ret = -ENOMEM;
1273 			goto out_clean;
1274 		}
1275 
1276 		data[thr].thr = kthread_run(decompress_threadfn,
1277 		                            &data[thr],
1278 		                            "image_decompress/%u", thr);
1279 		if (IS_ERR(data[thr].thr)) {
1280 			data[thr].thr = NULL;
1281 			pr_err("Cannot start decompression threads\n");
1282 			ret = -ENOMEM;
1283 			goto out_clean;
1284 		}
1285 	}
1286 
1287 	/*
1288 	 * Start the CRC32 thread.
1289 	 */
1290 	init_waitqueue_head(&crc->go);
1291 	init_waitqueue_head(&crc->done);
1292 
1293 	handle->crc32 = 0;
1294 	crc->crc32 = &handle->crc32;
1295 	for (thr = 0; thr < nr_threads; thr++) {
1296 		crc->unc[thr] = data[thr].unc;
1297 		crc->unc_len[thr] = &data[thr].unc_len;
1298 	}
1299 
1300 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1301 	if (IS_ERR(crc->thr)) {
1302 		crc->thr = NULL;
1303 		pr_err("Cannot start CRC32 thread\n");
1304 		ret = -ENOMEM;
1305 		goto out_clean;
1306 	}
1307 
1308 	/*
1309 	 * Set the number of pages for read buffering.
1310 	 * This is complete guesswork, because we'll only know the real
1311 	 * picture once prepare_image() is called, which is much later on
1312 	 * during the image load phase. We'll assume the worst case and
1313 	 * say that none of the image pages are from high memory.
1314 	 */
1315 	if (low_free_pages() > snapshot_get_image_size())
1316 		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1317 	read_pages = clamp_val(read_pages, CMP_MIN_RD_PAGES, CMP_MAX_RD_PAGES);
1318 
1319 	for (i = 0; i < read_pages; i++) {
1320 		page[i] = (void *)__get_free_page(i < CMP_PAGES ?
1321 						  GFP_NOIO | __GFP_HIGH :
1322 						  GFP_NOIO | __GFP_NOWARN |
1323 						  __GFP_NORETRY);
1324 
1325 		if (!page[i]) {
1326 			if (i < CMP_PAGES) {
1327 				ring_size = i;
1328 				pr_err("Failed to allocate %s pages\n", hib_comp_algo);
1329 				ret = -ENOMEM;
1330 				goto out_clean;
1331 			} else {
1332 				break;
1333 			}
1334 		}
1335 	}
1336 	want = ring_size = i;
1337 
1338 	pr_info("Using %u thread(s) for %s decompression\n", nr_threads, hib_comp_algo);
1339 	pr_info("Loading and decompressing image data (%u pages)...\n",
1340 		nr_to_read);
1341 	m = nr_to_read / 10;
1342 	if (!m)
1343 		m = 1;
1344 	nr_pages = 0;
1345 	start = ktime_get();
1346 
1347 	ret = snapshot_write_next(snapshot);
1348 	if (ret <= 0)
1349 		goto out_finish;
1350 
1351 	for(;;) {
1352 		for (i = 0; !eof && i < want; i++) {
1353 			ret = swap_read_page(handle, page[ring], &hb);
1354 			if (ret) {
1355 				/*
1356 				 * On real read error, finish. On end of data,
1357 				 * set EOF flag and just exit the read loop.
1358 				 */
1359 				if (handle->cur &&
1360 				    handle->cur->entries[handle->k]) {
1361 					goto out_finish;
1362 				} else {
1363 					eof = 1;
1364 					break;
1365 				}
1366 			}
1367 			if (++ring >= ring_size)
1368 				ring = 0;
1369 		}
1370 		asked += i;
1371 		want -= i;
1372 
1373 		/*
1374 		 * We are out of data, wait for some more.
1375 		 */
1376 		if (!have) {
1377 			if (!asked)
1378 				break;
1379 
1380 			ret = hib_wait_io(&hb);
1381 			if (ret)
1382 				goto out_finish;
1383 			have += asked;
1384 			asked = 0;
1385 			if (eof)
1386 				eof = 2;
1387 		}
1388 
1389 		if (crc->run_threads) {
1390 			wait_event(crc->done, atomic_read_acquire(&crc->stop));
1391 			atomic_set(&crc->stop, 0);
1392 			crc->run_threads = 0;
1393 		}
1394 
1395 		for (thr = 0; have && thr < nr_threads; thr++) {
1396 			data[thr].cmp_len = *(size_t *)page[pg];
1397 			if (unlikely(!data[thr].cmp_len ||
1398 			             data[thr].cmp_len >
1399 					bytes_worst_compress(UNC_SIZE))) {
1400 				pr_err("Invalid %s compressed length\n", hib_comp_algo);
1401 				ret = -1;
1402 				goto out_finish;
1403 			}
1404 
1405 			need = DIV_ROUND_UP(data[thr].cmp_len + CMP_HEADER,
1406 			                    PAGE_SIZE);
1407 			if (need > have) {
1408 				if (eof > 1) {
1409 					ret = -1;
1410 					goto out_finish;
1411 				}
1412 				break;
1413 			}
1414 
1415 			for (off = 0;
1416 			     off < CMP_HEADER + data[thr].cmp_len;
1417 			     off += PAGE_SIZE) {
1418 				memcpy(data[thr].cmp + off,
1419 				       page[pg], PAGE_SIZE);
1420 				have--;
1421 				want++;
1422 				if (++pg >= ring_size)
1423 					pg = 0;
1424 			}
1425 
1426 			atomic_set_release(&data[thr].ready, 1);
1427 			wake_up(&data[thr].go);
1428 		}
1429 
1430 		/*
1431 		 * Wait for more data while we are decompressing.
1432 		 */
1433 		if (have < CMP_PAGES && asked) {
1434 			ret = hib_wait_io(&hb);
1435 			if (ret)
1436 				goto out_finish;
1437 			have += asked;
1438 			asked = 0;
1439 			if (eof)
1440 				eof = 2;
1441 		}
1442 
1443 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1444 			wait_event(data[thr].done,
1445 				atomic_read_acquire(&data[thr].stop));
1446 			atomic_set(&data[thr].stop, 0);
1447 
1448 			ret = data[thr].ret;
1449 
1450 			if (ret < 0) {
1451 				pr_err("%s decompression failed\n", hib_comp_algo);
1452 				goto out_finish;
1453 			}
1454 
1455 			if (unlikely(!data[thr].unc_len ||
1456 				data[thr].unc_len > UNC_SIZE ||
1457 				data[thr].unc_len & (PAGE_SIZE - 1))) {
1458 				pr_err("Invalid %s uncompressed length\n", hib_comp_algo);
1459 				ret = -1;
1460 				goto out_finish;
1461 			}
1462 
1463 			for (off = 0;
1464 			     off < data[thr].unc_len; off += PAGE_SIZE) {
1465 				memcpy(data_of(*snapshot),
1466 				       data[thr].unc + off, PAGE_SIZE);
1467 
1468 				if (!(nr_pages % m))
1469 					pr_info("Image loading progress: %3d%%\n",
1470 						nr_pages / m * 10);
1471 				nr_pages++;
1472 
1473 				ret = snapshot_write_next(snapshot);
1474 				if (ret <= 0) {
1475 					crc->run_threads = thr + 1;
1476 					atomic_set_release(&crc->ready, 1);
1477 					wake_up(&crc->go);
1478 					goto out_finish;
1479 				}
1480 			}
1481 		}
1482 
1483 		crc->run_threads = thr;
1484 		atomic_set_release(&crc->ready, 1);
1485 		wake_up(&crc->go);
1486 	}
1487 
1488 out_finish:
1489 	if (crc->run_threads) {
1490 		wait_event(crc->done, atomic_read_acquire(&crc->stop));
1491 		atomic_set(&crc->stop, 0);
1492 	}
1493 	stop = ktime_get();
1494 	if (!ret) {
1495 		pr_info("Image loading done\n");
1496 		ret = snapshot_write_finalize(snapshot);
1497 		if (!ret && !snapshot_image_loaded(snapshot))
1498 			ret = -ENODATA;
1499 		if (!ret) {
1500 			if (swsusp_header->flags & SF_CRC32_MODE) {
1501 				if(handle->crc32 != swsusp_header->crc32) {
1502 					pr_err("Invalid image CRC32!\n");
1503 					ret = -ENODATA;
1504 				}
1505 			}
1506 		}
1507 	}
1508 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1509 out_clean:
1510 	hib_finish_batch(&hb);
1511 	for (i = 0; i < ring_size; i++)
1512 		free_page((unsigned long)page[i]);
1513 	if (crc) {
1514 		if (crc->thr)
1515 			kthread_stop(crc->thr);
1516 		kfree(crc);
1517 	}
1518 	if (data) {
1519 		for (thr = 0; thr < nr_threads; thr++) {
1520 			if (data[thr].thr)
1521 				kthread_stop(data[thr].thr);
1522 			acomp_request_free(data[thr].cr);
1523 			crypto_free_acomp(data[thr].cc);
1524 		}
1525 		vfree(data);
1526 	}
1527 	vfree(page);
1528 
1529 	return ret;
1530 }
1531 
1532 /**
1533  *	swsusp_read - read the hibernation image.
1534  *	@flags_p: flags passed by the "frozen" kernel in the image header should
1535  *		  be written into this memory location
1536  */
1537 
swsusp_read(unsigned int * flags_p)1538 int swsusp_read(unsigned int *flags_p)
1539 {
1540 	int error;
1541 	struct swap_map_handle handle;
1542 	struct snapshot_handle snapshot;
1543 	struct swsusp_info *header;
1544 
1545 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1546 	error = snapshot_write_next(&snapshot);
1547 	if (error < (int)PAGE_SIZE)
1548 		return error < 0 ? error : -EFAULT;
1549 	header = (struct swsusp_info *)data_of(snapshot);
1550 	error = get_swap_reader(&handle, flags_p);
1551 	if (error)
1552 		goto end;
1553 	if (!error)
1554 		error = swap_read_page(&handle, header, NULL);
1555 	if (!error) {
1556 		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1557 			load_image(&handle, &snapshot, header->pages - 1) :
1558 			load_compressed_image(&handle, &snapshot, header->pages - 1);
1559 	}
1560 	swap_reader_finish(&handle);
1561 end:
1562 	if (!error)
1563 		pr_debug("Image successfully loaded\n");
1564 	else
1565 		pr_debug("Error %d resuming\n", error);
1566 	return error;
1567 }
1568 
1569 static void *swsusp_holder;
1570 
1571 /**
1572  * swsusp_check - Open the resume device and check for the swsusp signature.
1573  * @exclusive: Open the resume device exclusively.
1574  */
1575 
swsusp_check(bool exclusive)1576 int swsusp_check(bool exclusive)
1577 {
1578 	void *holder = exclusive ? &swsusp_holder : NULL;
1579 	int error;
1580 
1581 	hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
1582 				BLK_OPEN_READ, holder, NULL);
1583 	if (!IS_ERR(hib_resume_bdev_file)) {
1584 		clear_page(swsusp_header);
1585 		error = hib_submit_io_sync(REQ_OP_READ, swsusp_resume_block,
1586 					swsusp_header);
1587 		if (error)
1588 			goto put;
1589 
1590 		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1591 			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1592 			swsusp_header_flags = swsusp_header->flags;
1593 			/* Reset swap signature now */
1594 			error = hib_submit_io_sync(REQ_OP_WRITE | REQ_SYNC,
1595 						swsusp_resume_block,
1596 						swsusp_header);
1597 		} else {
1598 			error = -EINVAL;
1599 		}
1600 		if (!error && swsusp_header->flags & SF_HW_SIG &&
1601 		    swsusp_header->hw_sig != swsusp_hardware_signature) {
1602 			pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1603 				swsusp_header->hw_sig, swsusp_hardware_signature);
1604 			error = -EINVAL;
1605 		}
1606 
1607 put:
1608 		if (error)
1609 			bdev_fput(hib_resume_bdev_file);
1610 		else
1611 			pr_debug("Image signature found, resuming\n");
1612 	} else {
1613 		error = PTR_ERR(hib_resume_bdev_file);
1614 	}
1615 
1616 	if (error)
1617 		pr_debug("Image not found (code %d)\n", error);
1618 
1619 	return error;
1620 }
1621 
1622 /**
1623  * swsusp_close - close resume device.
1624  */
1625 
swsusp_close(void)1626 void swsusp_close(void)
1627 {
1628 	if (IS_ERR(hib_resume_bdev_file)) {
1629 		pr_debug("Image device not initialised\n");
1630 		return;
1631 	}
1632 
1633 	fput(hib_resume_bdev_file);
1634 }
1635 
1636 /**
1637  *      swsusp_unmark - Unmark swsusp signature in the resume device
1638  */
1639 
1640 #ifdef CONFIG_SUSPEND
swsusp_unmark(void)1641 int swsusp_unmark(void)
1642 {
1643 	int error;
1644 
1645 	hib_submit_io_sync(REQ_OP_READ, swsusp_resume_block, swsusp_header);
1646 	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1647 		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1648 		error = hib_submit_io_sync(REQ_OP_WRITE | REQ_SYNC,
1649 					swsusp_resume_block,
1650 					swsusp_header);
1651 	} else {
1652 		pr_err("Cannot find swsusp signature!\n");
1653 		error = -ENODEV;
1654 	}
1655 
1656 	/*
1657 	 * We just returned from suspend, we don't need the image any more.
1658 	 */
1659 	free_all_swap_pages(root_swap);
1660 
1661 	return error;
1662 }
1663 #endif
1664 
swsusp_header_init(void)1665 static int __init swsusp_header_init(void)
1666 {
1667 	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1668 	if (!swsusp_header)
1669 		panic("Could not allocate memory for swsusp_header\n");
1670 	return 0;
1671 }
1672 
1673 core_initcall(swsusp_header_init);
1674