xref: /linux/include/net/tcp.h (revision 319fc77f8f45a1b3dba15b0cc1a869778fd222f7)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/tcp_ao.h>
41 #include <net/inet_ecn.h>
42 #include <net/dst.h>
43 #include <net/mptcp.h>
44 #include <net/xfrm.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 #include <linux/bpf-cgroup.h>
49 #include <linux/siphash.h>
50 
51 extern struct inet_hashinfo tcp_hashinfo;
52 
53 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
54 int tcp_orphan_count_sum(void);
55 
56 DECLARE_PER_CPU(u32, tcp_tw_isn);
57 
58 void tcp_time_wait(struct sock *sk, int state, int timeo);
59 
60 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
61 #define MAX_TCP_OPTION_SPACE 40
62 #define TCP_MIN_SND_MSS		48
63 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
64 
65 /*
66  * Never offer a window over 32767 without using window scaling. Some
67  * poor stacks do signed 16bit maths!
68  */
69 #define MAX_TCP_WINDOW		32767U
70 
71 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
72 #define TCP_MIN_MSS		88U
73 
74 /* The initial MTU to use for probing */
75 #define TCP_BASE_MSS		1024
76 
77 /* probing interval, default to 10 minutes as per RFC4821 */
78 #define TCP_PROBE_INTERVAL	600
79 
80 /* Specify interval when tcp mtu probing will stop */
81 #define TCP_PROBE_THRESHOLD	8
82 
83 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
84 #define TCP_FASTRETRANS_THRESH 3
85 
86 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
87 #define TCP_MAX_QUICKACKS	16U
88 
89 /* Maximal number of window scale according to RFC1323 */
90 #define TCP_MAX_WSCALE		14U
91 
92 /* urg_data states */
93 #define TCP_URG_VALID	0x0100
94 #define TCP_URG_NOTYET	0x0200
95 #define TCP_URG_READ	0x0400
96 
97 #define TCP_RETR1	3	/*
98 				 * This is how many retries it does before it
99 				 * tries to figure out if the gateway is
100 				 * down. Minimal RFC value is 3; it corresponds
101 				 * to ~3sec-8min depending on RTO.
102 				 */
103 
104 #define TCP_RETR2	15	/*
105 				 * This should take at least
106 				 * 90 minutes to time out.
107 				 * RFC1122 says that the limit is 100 sec.
108 				 * 15 is ~13-30min depending on RTO.
109 				 */
110 
111 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
112 				 * when active opening a connection.
113 				 * RFC1122 says the minimum retry MUST
114 				 * be at least 180secs.  Nevertheless
115 				 * this value is corresponding to
116 				 * 63secs of retransmission with the
117 				 * current initial RTO.
118 				 */
119 
120 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
121 				 * when passive opening a connection.
122 				 * This is corresponding to 31secs of
123 				 * retransmission with the current
124 				 * initial RTO.
125 				 */
126 
127 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
128 				  * state, about 60 seconds	*/
129 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
130                                  /* BSD style FIN_WAIT2 deadlock breaker.
131 				  * It used to be 3min, new value is 60sec,
132 				  * to combine FIN-WAIT-2 timeout with
133 				  * TIME-WAIT timer.
134 				  */
135 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
136 
137 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
138 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
139 
140 #if HZ >= 100
141 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
142 #define TCP_ATO_MIN	((unsigned)(HZ/25))
143 #else
144 #define TCP_DELACK_MIN	4U
145 #define TCP_ATO_MIN	4U
146 #endif
147 #define TCP_RTO_MAX	((unsigned)(120*HZ))
148 #define TCP_RTO_MIN	((unsigned)(HZ/5))
149 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
150 
151 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
152 
153 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
154 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
155 						 * used as a fallback RTO for the
156 						 * initial data transmission if no
157 						 * valid RTT sample has been acquired,
158 						 * most likely due to retrans in 3WHS.
159 						 */
160 
161 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
162 					                 * for local resources.
163 					                 */
164 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
165 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
166 #define TCP_KEEPALIVE_INTVL	(75*HZ)
167 
168 #define MAX_TCP_KEEPIDLE	32767
169 #define MAX_TCP_KEEPINTVL	32767
170 #define MAX_TCP_KEEPCNT		127
171 #define MAX_TCP_SYNCNT		127
172 
173 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
174  * to avoid overflows. This assumes a clock smaller than 1 Mhz.
175  * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
176  */
177 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
178 
179 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
180 					 * after this time. It should be equal
181 					 * (or greater than) TCP_TIMEWAIT_LEN
182 					 * to provide reliability equal to one
183 					 * provided by timewait state.
184 					 */
185 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
186 					 * timestamps. It must be less than
187 					 * minimal timewait lifetime.
188 					 */
189 /*
190  *	TCP option
191  */
192 
193 #define TCPOPT_NOP		1	/* Padding */
194 #define TCPOPT_EOL		0	/* End of options */
195 #define TCPOPT_MSS		2	/* Segment size negotiating */
196 #define TCPOPT_WINDOW		3	/* Window scaling */
197 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
198 #define TCPOPT_SACK             5       /* SACK Block */
199 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
200 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
201 #define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
202 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
203 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
204 #define TCPOPT_EXP		254	/* Experimental */
205 /* Magic number to be after the option value for sharing TCP
206  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
207  */
208 #define TCPOPT_FASTOPEN_MAGIC	0xF989
209 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
210 
211 /*
212  *     TCP option lengths
213  */
214 
215 #define TCPOLEN_MSS            4
216 #define TCPOLEN_WINDOW         3
217 #define TCPOLEN_SACK_PERM      2
218 #define TCPOLEN_TIMESTAMP      10
219 #define TCPOLEN_MD5SIG         18
220 #define TCPOLEN_FASTOPEN_BASE  2
221 #define TCPOLEN_EXP_FASTOPEN_BASE  4
222 #define TCPOLEN_EXP_SMC_BASE   6
223 
224 /* But this is what stacks really send out. */
225 #define TCPOLEN_TSTAMP_ALIGNED		12
226 #define TCPOLEN_WSCALE_ALIGNED		4
227 #define TCPOLEN_SACKPERM_ALIGNED	4
228 #define TCPOLEN_SACK_BASE		2
229 #define TCPOLEN_SACK_BASE_ALIGNED	4
230 #define TCPOLEN_SACK_PERBLOCK		8
231 #define TCPOLEN_MD5SIG_ALIGNED		20
232 #define TCPOLEN_MSS_ALIGNED		4
233 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
234 
235 /* Flags in tp->nonagle */
236 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
237 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
238 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
239 
240 /* TCP thin-stream limits */
241 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
242 
243 /* TCP initial congestion window as per rfc6928 */
244 #define TCP_INIT_CWND		10
245 
246 /* Bit Flags for sysctl_tcp_fastopen */
247 #define	TFO_CLIENT_ENABLE	1
248 #define	TFO_SERVER_ENABLE	2
249 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
250 
251 /* Accept SYN data w/o any cookie option */
252 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
253 
254 /* Force enable TFO on all listeners, i.e., not requiring the
255  * TCP_FASTOPEN socket option.
256  */
257 #define	TFO_SERVER_WO_SOCKOPT1	0x400
258 
259 
260 /* sysctl variables for tcp */
261 extern int sysctl_tcp_max_orphans;
262 extern long sysctl_tcp_mem[3];
263 
264 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
265 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
266 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
267 
268 extern atomic_long_t tcp_memory_allocated;
269 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
270 
271 extern struct percpu_counter tcp_sockets_allocated;
272 extern unsigned long tcp_memory_pressure;
273 
274 /* optimized version of sk_under_memory_pressure() for TCP sockets */
tcp_under_memory_pressure(const struct sock * sk)275 static inline bool tcp_under_memory_pressure(const struct sock *sk)
276 {
277 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
278 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
279 		return true;
280 
281 	return READ_ONCE(tcp_memory_pressure);
282 }
283 /*
284  * The next routines deal with comparing 32 bit unsigned ints
285  * and worry about wraparound (automatic with unsigned arithmetic).
286  */
287 
before(__u32 seq1,__u32 seq2)288 static inline bool before(__u32 seq1, __u32 seq2)
289 {
290         return (__s32)(seq1-seq2) < 0;
291 }
292 #define after(seq2, seq1) 	before(seq1, seq2)
293 
294 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)295 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
296 {
297 	return seq3 - seq2 >= seq1 - seq2;
298 }
299 
tcp_wmem_free_skb(struct sock * sk,struct sk_buff * skb)300 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
301 {
302 	sk_wmem_queued_add(sk, -skb->truesize);
303 	if (!skb_zcopy_pure(skb))
304 		sk_mem_uncharge(sk, skb->truesize);
305 	else
306 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
307 	__kfree_skb(skb);
308 }
309 
310 void sk_forced_mem_schedule(struct sock *sk, int size);
311 
312 bool tcp_check_oom(const struct sock *sk, int shift);
313 
314 
315 extern struct proto tcp_prot;
316 
317 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
318 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
319 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
320 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
321 
322 void tcp_tasklet_init(void);
323 
324 int tcp_v4_err(struct sk_buff *skb, u32);
325 
326 void tcp_shutdown(struct sock *sk, int how);
327 
328 int tcp_v4_early_demux(struct sk_buff *skb);
329 int tcp_v4_rcv(struct sk_buff *skb);
330 
331 void tcp_remove_empty_skb(struct sock *sk);
332 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
333 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
334 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
335 			 size_t size, struct ubuf_info *uarg);
336 void tcp_splice_eof(struct socket *sock);
337 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
338 int tcp_wmem_schedule(struct sock *sk, int copy);
339 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
340 	      int size_goal);
341 void tcp_release_cb(struct sock *sk);
342 void tcp_wfree(struct sk_buff *skb);
343 void tcp_write_timer_handler(struct sock *sk);
344 void tcp_delack_timer_handler(struct sock *sk);
345 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
346 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
347 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
348 void tcp_rcv_space_adjust(struct sock *sk);
349 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
350 void tcp_twsk_destructor(struct sock *sk);
351 void tcp_twsk_purge(struct list_head *net_exit_list);
352 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
353 			struct pipe_inode_info *pipe, size_t len,
354 			unsigned int flags);
355 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
356 				     bool force_schedule);
357 
tcp_dec_quickack_mode(struct sock * sk)358 static inline void tcp_dec_quickack_mode(struct sock *sk)
359 {
360 	struct inet_connection_sock *icsk = inet_csk(sk);
361 
362 	if (icsk->icsk_ack.quick) {
363 		/* How many ACKs S/ACKing new data have we sent? */
364 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
365 
366 		if (pkts >= icsk->icsk_ack.quick) {
367 			icsk->icsk_ack.quick = 0;
368 			/* Leaving quickack mode we deflate ATO. */
369 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
370 		} else
371 			icsk->icsk_ack.quick -= pkts;
372 	}
373 }
374 
375 #define	TCP_ECN_OK		1
376 #define	TCP_ECN_QUEUE_CWR	2
377 #define	TCP_ECN_DEMAND_CWR	4
378 #define	TCP_ECN_SEEN		8
379 
380 enum tcp_tw_status {
381 	TCP_TW_SUCCESS = 0,
382 	TCP_TW_RST = 1,
383 	TCP_TW_ACK = 2,
384 	TCP_TW_SYN = 3
385 };
386 
387 
388 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
389 					      struct sk_buff *skb,
390 					      const struct tcphdr *th,
391 					      u32 *tw_isn);
392 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
393 			   struct request_sock *req, bool fastopen,
394 			   bool *lost_race);
395 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
396 				       struct sk_buff *skb);
397 void tcp_enter_loss(struct sock *sk);
398 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
399 void tcp_clear_retrans(struct tcp_sock *tp);
400 void tcp_update_metrics(struct sock *sk);
401 void tcp_init_metrics(struct sock *sk);
402 void tcp_metrics_init(void);
403 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
404 void __tcp_close(struct sock *sk, long timeout);
405 void tcp_close(struct sock *sk, long timeout);
406 void tcp_init_sock(struct sock *sk);
407 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
408 __poll_t tcp_poll(struct file *file, struct socket *sock,
409 		      struct poll_table_struct *wait);
410 int do_tcp_getsockopt(struct sock *sk, int level,
411 		      int optname, sockptr_t optval, sockptr_t optlen);
412 int tcp_getsockopt(struct sock *sk, int level, int optname,
413 		   char __user *optval, int __user *optlen);
414 bool tcp_bpf_bypass_getsockopt(int level, int optname);
415 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
416 		      sockptr_t optval, unsigned int optlen);
417 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
418 		   unsigned int optlen);
419 void tcp_set_keepalive(struct sock *sk, int val);
420 void tcp_syn_ack_timeout(const struct request_sock *req);
421 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
422 		int flags, int *addr_len);
423 int tcp_set_rcvlowat(struct sock *sk, int val);
424 int tcp_set_window_clamp(struct sock *sk, int val);
425 void tcp_update_recv_tstamps(struct sk_buff *skb,
426 			     struct scm_timestamping_internal *tss);
427 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
428 			struct scm_timestamping_internal *tss);
429 void tcp_data_ready(struct sock *sk);
430 #ifdef CONFIG_MMU
431 int tcp_mmap(struct file *file, struct socket *sock,
432 	     struct vm_area_struct *vma);
433 #endif
434 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
435 		       struct tcp_options_received *opt_rx,
436 		       int estab, struct tcp_fastopen_cookie *foc);
437 
438 /*
439  *	BPF SKB-less helpers
440  */
441 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
442 			 struct tcphdr *th, u32 *cookie);
443 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
444 			 struct tcphdr *th, u32 *cookie);
445 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
446 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
447 			  const struct tcp_request_sock_ops *af_ops,
448 			  struct sock *sk, struct tcphdr *th);
449 /*
450  *	TCP v4 functions exported for the inet6 API
451  */
452 
453 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
454 void tcp_v4_mtu_reduced(struct sock *sk);
455 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
456 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
457 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
458 struct sock *tcp_create_openreq_child(const struct sock *sk,
459 				      struct request_sock *req,
460 				      struct sk_buff *skb);
461 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
462 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
463 				  struct request_sock *req,
464 				  struct dst_entry *dst,
465 				  struct request_sock *req_unhash,
466 				  bool *own_req);
467 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
468 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
469 int tcp_connect(struct sock *sk);
470 enum tcp_synack_type {
471 	TCP_SYNACK_NORMAL,
472 	TCP_SYNACK_FASTOPEN,
473 	TCP_SYNACK_COOKIE,
474 };
475 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
476 				struct request_sock *req,
477 				struct tcp_fastopen_cookie *foc,
478 				enum tcp_synack_type synack_type,
479 				struct sk_buff *syn_skb);
480 int tcp_disconnect(struct sock *sk, int flags);
481 
482 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
483 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
484 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
485 
486 /* From syncookies.c */
487 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
488 				 struct request_sock *req,
489 				 struct dst_entry *dst);
490 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
491 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
492 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
493 					    struct sock *sk, struct sk_buff *skb,
494 					    struct tcp_options_received *tcp_opt,
495 					    int mss, u32 tsoff);
496 
497 #if IS_ENABLED(CONFIG_BPF)
498 struct bpf_tcp_req_attrs {
499 	u32 rcv_tsval;
500 	u32 rcv_tsecr;
501 	u16 mss;
502 	u8 rcv_wscale;
503 	u8 snd_wscale;
504 	u8 ecn_ok;
505 	u8 wscale_ok;
506 	u8 sack_ok;
507 	u8 tstamp_ok;
508 	u8 usec_ts_ok;
509 	u8 reserved[3];
510 };
511 #endif
512 
513 #ifdef CONFIG_SYN_COOKIES
514 
515 /* Syncookies use a monotonic timer which increments every 60 seconds.
516  * This counter is used both as a hash input and partially encoded into
517  * the cookie value.  A cookie is only validated further if the delta
518  * between the current counter value and the encoded one is less than this,
519  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
520  * the counter advances immediately after a cookie is generated).
521  */
522 #define MAX_SYNCOOKIE_AGE	2
523 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
524 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
525 
526 /* syncookies: remember time of last synqueue overflow
527  * But do not dirty this field too often (once per second is enough)
528  * It is racy as we do not hold a lock, but race is very minor.
529  */
tcp_synq_overflow(const struct sock * sk)530 static inline void tcp_synq_overflow(const struct sock *sk)
531 {
532 	unsigned int last_overflow;
533 	unsigned int now = jiffies;
534 
535 	if (sk->sk_reuseport) {
536 		struct sock_reuseport *reuse;
537 
538 		reuse = rcu_dereference(sk->sk_reuseport_cb);
539 		if (likely(reuse)) {
540 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
541 			if (!time_between32(now, last_overflow,
542 					    last_overflow + HZ))
543 				WRITE_ONCE(reuse->synq_overflow_ts, now);
544 			return;
545 		}
546 	}
547 
548 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
549 	if (!time_between32(now, last_overflow, last_overflow + HZ))
550 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
551 }
552 
553 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)554 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
555 {
556 	unsigned int last_overflow;
557 	unsigned int now = jiffies;
558 
559 	if (sk->sk_reuseport) {
560 		struct sock_reuseport *reuse;
561 
562 		reuse = rcu_dereference(sk->sk_reuseport_cb);
563 		if (likely(reuse)) {
564 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
565 			return !time_between32(now, last_overflow - HZ,
566 					       last_overflow +
567 					       TCP_SYNCOOKIE_VALID);
568 		}
569 	}
570 
571 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
572 
573 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
574 	 * then we're under synflood. However, we have to use
575 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
576 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
577 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
578 	 * which could lead to rejecting a valid syncookie.
579 	 */
580 	return !time_between32(now, last_overflow - HZ,
581 			       last_overflow + TCP_SYNCOOKIE_VALID);
582 }
583 
tcp_cookie_time(void)584 static inline u32 tcp_cookie_time(void)
585 {
586 	u64 val = get_jiffies_64();
587 
588 	do_div(val, TCP_SYNCOOKIE_PERIOD);
589 	return val;
590 }
591 
592 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
tcp_ns_to_ts(bool usec_ts,u64 val)593 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
594 {
595 	if (usec_ts)
596 		return div_u64(val, NSEC_PER_USEC);
597 
598 	return div_u64(val, NSEC_PER_MSEC);
599 }
600 
601 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
602 			      u16 *mssp);
603 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
604 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
605 bool cookie_timestamp_decode(const struct net *net,
606 			     struct tcp_options_received *opt);
607 
cookie_ecn_ok(const struct net * net,const struct dst_entry * dst)608 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
609 {
610 	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
611 		dst_feature(dst, RTAX_FEATURE_ECN);
612 }
613 
614 #if IS_ENABLED(CONFIG_BPF)
cookie_bpf_ok(struct sk_buff * skb)615 static inline bool cookie_bpf_ok(struct sk_buff *skb)
616 {
617 	return skb->sk;
618 }
619 
620 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
621 #else
cookie_bpf_ok(struct sk_buff * skb)622 static inline bool cookie_bpf_ok(struct sk_buff *skb)
623 {
624 	return false;
625 }
626 
cookie_bpf_check(struct net * net,struct sock * sk,struct sk_buff * skb)627 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
628 						    struct sk_buff *skb)
629 {
630 	return NULL;
631 }
632 #endif
633 
634 /* From net/ipv6/syncookies.c */
635 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
636 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
637 
638 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
639 			      const struct tcphdr *th, u16 *mssp);
640 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
641 #endif
642 /* tcp_output.c */
643 
644 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
645 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
646 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
647 			       int nonagle);
648 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
649 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
650 void tcp_retransmit_timer(struct sock *sk);
651 void tcp_xmit_retransmit_queue(struct sock *);
652 void tcp_simple_retransmit(struct sock *);
653 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
654 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
655 enum tcp_queue {
656 	TCP_FRAG_IN_WRITE_QUEUE,
657 	TCP_FRAG_IN_RTX_QUEUE,
658 };
659 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
660 		 struct sk_buff *skb, u32 len,
661 		 unsigned int mss_now, gfp_t gfp);
662 
663 void tcp_send_probe0(struct sock *);
664 int tcp_write_wakeup(struct sock *, int mib);
665 void tcp_send_fin(struct sock *sk);
666 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
667 			   enum sk_rst_reason reason);
668 int tcp_send_synack(struct sock *);
669 void tcp_push_one(struct sock *, unsigned int mss_now);
670 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
671 void tcp_send_ack(struct sock *sk);
672 void tcp_send_delayed_ack(struct sock *sk);
673 void tcp_send_loss_probe(struct sock *sk);
674 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
675 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
676 			     const struct sk_buff *next_skb);
677 
678 /* tcp_input.c */
679 void tcp_rearm_rto(struct sock *sk);
680 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
681 void tcp_done_with_error(struct sock *sk, int err);
682 void tcp_reset(struct sock *sk, struct sk_buff *skb);
683 void tcp_fin(struct sock *sk);
684 void tcp_check_space(struct sock *sk);
685 void tcp_sack_compress_send_ack(struct sock *sk);
686 
tcp_cleanup_skb(struct sk_buff * skb)687 static inline void tcp_cleanup_skb(struct sk_buff *skb)
688 {
689 	skb_dst_drop(skb);
690 	secpath_reset(skb);
691 }
692 
tcp_add_receive_queue(struct sock * sk,struct sk_buff * skb)693 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb)
694 {
695 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
696 	DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb));
697 	__skb_queue_tail(&sk->sk_receive_queue, skb);
698 }
699 
700 /* tcp_timer.c */
701 void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)702 static inline void tcp_clear_xmit_timers(struct sock *sk)
703 {
704 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
705 		__sock_put(sk);
706 
707 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
708 		__sock_put(sk);
709 
710 	inet_csk_clear_xmit_timers(sk);
711 }
712 
713 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
714 unsigned int tcp_current_mss(struct sock *sk);
715 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
716 
717 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)718 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
719 {
720 	int cutoff;
721 
722 	/* When peer uses tiny windows, there is no use in packetizing
723 	 * to sub-MSS pieces for the sake of SWS or making sure there
724 	 * are enough packets in the pipe for fast recovery.
725 	 *
726 	 * On the other hand, for extremely large MSS devices, handling
727 	 * smaller than MSS windows in this way does make sense.
728 	 */
729 	if (tp->max_window > TCP_MSS_DEFAULT)
730 		cutoff = (tp->max_window >> 1);
731 	else
732 		cutoff = tp->max_window;
733 
734 	if (cutoff && pktsize > cutoff)
735 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
736 	else
737 		return pktsize;
738 }
739 
740 /* tcp.c */
741 void tcp_get_info(struct sock *, struct tcp_info *);
742 
743 /* Read 'sendfile()'-style from a TCP socket */
744 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
745 		  sk_read_actor_t recv_actor);
746 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
747 			sk_read_actor_t recv_actor, bool noack,
748 			u32 *copied_seq);
749 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
750 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
751 void tcp_read_done(struct sock *sk, size_t len);
752 
753 void tcp_initialize_rcv_mss(struct sock *sk);
754 
755 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
756 int tcp_mss_to_mtu(struct sock *sk, int mss);
757 void tcp_mtup_init(struct sock *sk);
758 
tcp_bound_rto(struct sock * sk)759 static inline void tcp_bound_rto(struct sock *sk)
760 {
761 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
762 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
763 }
764 
__tcp_set_rto(const struct tcp_sock * tp)765 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
766 {
767 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
768 }
769 
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)770 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
771 {
772 	/* mptcp hooks are only on the slow path */
773 	if (sk_is_mptcp((struct sock *)tp))
774 		return;
775 
776 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
777 			       ntohl(TCP_FLAG_ACK) |
778 			       snd_wnd);
779 }
780 
tcp_fast_path_on(struct tcp_sock * tp)781 static inline void tcp_fast_path_on(struct tcp_sock *tp)
782 {
783 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
784 }
785 
tcp_fast_path_check(struct sock * sk)786 static inline void tcp_fast_path_check(struct sock *sk)
787 {
788 	struct tcp_sock *tp = tcp_sk(sk);
789 
790 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
791 	    tp->rcv_wnd &&
792 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
793 	    !tp->urg_data)
794 		tcp_fast_path_on(tp);
795 }
796 
797 u32 tcp_delack_max(const struct sock *sk);
798 
799 /* Compute the actual rto_min value */
tcp_rto_min(const struct sock * sk)800 static inline u32 tcp_rto_min(const struct sock *sk)
801 {
802 	const struct dst_entry *dst = __sk_dst_get(sk);
803 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
804 
805 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
806 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
807 	return rto_min;
808 }
809 
tcp_rto_min_us(const struct sock * sk)810 static inline u32 tcp_rto_min_us(const struct sock *sk)
811 {
812 	return jiffies_to_usecs(tcp_rto_min(sk));
813 }
814 
tcp_ca_dst_locked(const struct dst_entry * dst)815 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
816 {
817 	return dst_metric_locked(dst, RTAX_CC_ALGO);
818 }
819 
820 /* Minimum RTT in usec. ~0 means not available. */
tcp_min_rtt(const struct tcp_sock * tp)821 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
822 {
823 	return minmax_get(&tp->rtt_min);
824 }
825 
826 /* Compute the actual receive window we are currently advertising.
827  * Rcv_nxt can be after the window if our peer push more data
828  * than the offered window.
829  */
tcp_receive_window(const struct tcp_sock * tp)830 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
831 {
832 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
833 
834 	if (win < 0)
835 		win = 0;
836 	return (u32) win;
837 }
838 
839 /* Choose a new window, without checks for shrinking, and without
840  * scaling applied to the result.  The caller does these things
841  * if necessary.  This is a "raw" window selection.
842  */
843 u32 __tcp_select_window(struct sock *sk);
844 
845 void tcp_send_window_probe(struct sock *sk);
846 
847 /* TCP uses 32bit jiffies to save some space.
848  * Note that this is different from tcp_time_stamp, which
849  * historically has been the same until linux-4.13.
850  */
851 #define tcp_jiffies32 ((u32)jiffies)
852 
853 /*
854  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
855  * It is no longer tied to jiffies, but to 1 ms clock.
856  * Note: double check if you want to use tcp_jiffies32 instead of this.
857  */
858 #define TCP_TS_HZ	1000
859 
tcp_clock_ns(void)860 static inline u64 tcp_clock_ns(void)
861 {
862 	return ktime_get_ns();
863 }
864 
tcp_clock_us(void)865 static inline u64 tcp_clock_us(void)
866 {
867 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
868 }
869 
tcp_clock_ms(void)870 static inline u64 tcp_clock_ms(void)
871 {
872 	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
873 }
874 
875 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
876  * or usec resolution. Each socket carries a flag to select one or other
877  * resolution, as the route attribute could change anytime.
878  * Each flow must stick to initial resolution.
879  */
tcp_clock_ts(bool usec_ts)880 static inline u32 tcp_clock_ts(bool usec_ts)
881 {
882 	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
883 }
884 
tcp_time_stamp_ms(const struct tcp_sock * tp)885 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
886 {
887 	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
888 }
889 
tcp_time_stamp_ts(const struct tcp_sock * tp)890 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
891 {
892 	if (tp->tcp_usec_ts)
893 		return tp->tcp_mstamp;
894 	return tcp_time_stamp_ms(tp);
895 }
896 
897 void tcp_mstamp_refresh(struct tcp_sock *tp);
898 
tcp_stamp_us_delta(u64 t1,u64 t0)899 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
900 {
901 	return max_t(s64, t1 - t0, 0);
902 }
903 
904 /* provide the departure time in us unit */
tcp_skb_timestamp_us(const struct sk_buff * skb)905 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
906 {
907 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
908 }
909 
910 /* Provide skb TSval in usec or ms unit */
tcp_skb_timestamp_ts(bool usec_ts,const struct sk_buff * skb)911 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
912 {
913 	if (usec_ts)
914 		return tcp_skb_timestamp_us(skb);
915 
916 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
917 }
918 
tcp_tw_tsval(const struct tcp_timewait_sock * tcptw)919 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
920 {
921 	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
922 }
923 
tcp_rsk_tsval(const struct tcp_request_sock * treq)924 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
925 {
926 	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
927 }
928 
929 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
930 
931 #define TCPHDR_FIN 0x01
932 #define TCPHDR_SYN 0x02
933 #define TCPHDR_RST 0x04
934 #define TCPHDR_PSH 0x08
935 #define TCPHDR_ACK 0x10
936 #define TCPHDR_URG 0x20
937 #define TCPHDR_ECE 0x40
938 #define TCPHDR_CWR 0x80
939 
940 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
941 
942 /* State flags for sacked in struct tcp_skb_cb */
943 enum tcp_skb_cb_sacked_flags {
944 	TCPCB_SACKED_ACKED	= (1 << 0),	/* SKB ACK'd by a SACK block	*/
945 	TCPCB_SACKED_RETRANS	= (1 << 1),	/* SKB retransmitted		*/
946 	TCPCB_LOST		= (1 << 2),	/* SKB is lost			*/
947 	TCPCB_TAGBITS		= (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
948 				   TCPCB_LOST),	/* All tag bits			*/
949 	TCPCB_REPAIRED		= (1 << 4),	/* SKB repaired (no skb_mstamp_ns)	*/
950 	TCPCB_EVER_RETRANS	= (1 << 7),	/* Ever retransmitted frame	*/
951 	TCPCB_RETRANS		= (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
952 				   TCPCB_REPAIRED),
953 };
954 
955 /* This is what the send packet queuing engine uses to pass
956  * TCP per-packet control information to the transmission code.
957  * We also store the host-order sequence numbers in here too.
958  * This is 44 bytes if IPV6 is enabled.
959  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
960  */
961 struct tcp_skb_cb {
962 	__u32		seq;		/* Starting sequence number	*/
963 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
964 	union {
965 		/* Note :
966 		 * 	  tcp_gso_segs/size are used in write queue only,
967 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
968 		 */
969 		struct {
970 			u16	tcp_gso_segs;
971 			u16	tcp_gso_size;
972 		};
973 	};
974 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
975 
976 	__u8		sacked;		/* State flags for SACK.	*/
977 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
978 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
979 			eor:1,		/* Is skb MSG_EOR marked? */
980 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
981 			unused:5;
982 	__u32		ack_seq;	/* Sequence number ACK'd	*/
983 	union {
984 		struct {
985 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
986 			/* There is space for up to 24 bytes */
987 			__u32 is_app_limited:1, /* cwnd not fully used? */
988 			      delivered_ce:20,
989 			      unused:11;
990 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
991 			__u32 delivered;
992 			/* start of send pipeline phase */
993 			u64 first_tx_mstamp;
994 			/* when we reached the "delivered" count */
995 			u64 delivered_mstamp;
996 		} tx;   /* only used for outgoing skbs */
997 		union {
998 			struct inet_skb_parm	h4;
999 #if IS_ENABLED(CONFIG_IPV6)
1000 			struct inet6_skb_parm	h6;
1001 #endif
1002 		} header;	/* For incoming skbs */
1003 	};
1004 };
1005 
1006 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
1007 
1008 extern const struct inet_connection_sock_af_ops ipv4_specific;
1009 
1010 #if IS_ENABLED(CONFIG_IPV6)
1011 /* This is the variant of inet6_iif() that must be used by TCP,
1012  * as TCP moves IP6CB into a different location in skb->cb[]
1013  */
tcp_v6_iif(const struct sk_buff * skb)1014 static inline int tcp_v6_iif(const struct sk_buff *skb)
1015 {
1016 	return TCP_SKB_CB(skb)->header.h6.iif;
1017 }
1018 
tcp_v6_iif_l3_slave(const struct sk_buff * skb)1019 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1020 {
1021 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1022 
1023 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1024 }
1025 
1026 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v6_sdif(const struct sk_buff * skb)1027 static inline int tcp_v6_sdif(const struct sk_buff *skb)
1028 {
1029 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1030 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1031 		return TCP_SKB_CB(skb)->header.h6.iif;
1032 #endif
1033 	return 0;
1034 }
1035 
1036 extern const struct inet_connection_sock_af_ops ipv6_specific;
1037 
1038 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1039 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1040 void tcp_v6_early_demux(struct sk_buff *skb);
1041 
1042 #endif
1043 
1044 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v4_sdif(struct sk_buff * skb)1045 static inline int tcp_v4_sdif(struct sk_buff *skb)
1046 {
1047 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1048 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1049 		return TCP_SKB_CB(skb)->header.h4.iif;
1050 #endif
1051 	return 0;
1052 }
1053 
1054 /* Due to TSO, an SKB can be composed of multiple actual
1055  * packets.  To keep these tracked properly, we use this.
1056  */
tcp_skb_pcount(const struct sk_buff * skb)1057 static inline int tcp_skb_pcount(const struct sk_buff *skb)
1058 {
1059 	return TCP_SKB_CB(skb)->tcp_gso_segs;
1060 }
1061 
tcp_skb_pcount_set(struct sk_buff * skb,int segs)1062 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1063 {
1064 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1065 }
1066 
tcp_skb_pcount_add(struct sk_buff * skb,int segs)1067 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1068 {
1069 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1070 }
1071 
1072 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)1073 static inline int tcp_skb_mss(const struct sk_buff *skb)
1074 {
1075 	return TCP_SKB_CB(skb)->tcp_gso_size;
1076 }
1077 
tcp_skb_can_collapse_to(const struct sk_buff * skb)1078 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1079 {
1080 	return likely(!TCP_SKB_CB(skb)->eor);
1081 }
1082 
tcp_skb_can_collapse(const struct sk_buff * to,const struct sk_buff * from)1083 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1084 					const struct sk_buff *from)
1085 {
1086 	/* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */
1087 	return likely(tcp_skb_can_collapse_to(to) &&
1088 		      mptcp_skb_can_collapse(to, from) &&
1089 		      skb_pure_zcopy_same(to, from) &&
1090 		      skb_frags_readable(to) == skb_frags_readable(from));
1091 }
1092 
tcp_skb_can_collapse_rx(const struct sk_buff * to,const struct sk_buff * from)1093 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to,
1094 					   const struct sk_buff *from)
1095 {
1096 	return likely(mptcp_skb_can_collapse(to, from) &&
1097 		      !skb_cmp_decrypted(to, from));
1098 }
1099 
1100 /* Events passed to congestion control interface */
1101 enum tcp_ca_event {
1102 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1103 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1104 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1105 	CA_EVENT_LOSS,		/* loss timeout */
1106 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1107 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1108 };
1109 
1110 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1111 enum tcp_ca_ack_event_flags {
1112 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1113 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1114 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1115 };
1116 
1117 /*
1118  * Interface for adding new TCP congestion control handlers
1119  */
1120 #define TCP_CA_NAME_MAX	16
1121 #define TCP_CA_MAX	128
1122 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1123 
1124 #define TCP_CA_UNSPEC	0
1125 
1126 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1127 #define TCP_CONG_NON_RESTRICTED 0x1
1128 /* Requires ECN/ECT set on all packets */
1129 #define TCP_CONG_NEEDS_ECN	0x2
1130 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1131 
1132 union tcp_cc_info;
1133 
1134 struct ack_sample {
1135 	u32 pkts_acked;
1136 	s32 rtt_us;
1137 	u32 in_flight;
1138 };
1139 
1140 /* A rate sample measures the number of (original/retransmitted) data
1141  * packets delivered "delivered" over an interval of time "interval_us".
1142  * The tcp_rate.c code fills in the rate sample, and congestion
1143  * control modules that define a cong_control function to run at the end
1144  * of ACK processing can optionally chose to consult this sample when
1145  * setting cwnd and pacing rate.
1146  * A sample is invalid if "delivered" or "interval_us" is negative.
1147  */
1148 struct rate_sample {
1149 	u64  prior_mstamp; /* starting timestamp for interval */
1150 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1151 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1152 	s32  delivered;		/* number of packets delivered over interval */
1153 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1154 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1155 	u32 snd_interval_us;	/* snd interval for delivered packets */
1156 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1157 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1158 	int  losses;		/* number of packets marked lost upon ACK */
1159 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1160 	u32  prior_in_flight;	/* in flight before this ACK */
1161 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1162 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1163 	bool is_retrans;	/* is sample from retransmission? */
1164 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1165 };
1166 
1167 struct tcp_congestion_ops {
1168 /* fast path fields are put first to fill one cache line */
1169 
1170 	/* return slow start threshold (required) */
1171 	u32 (*ssthresh)(struct sock *sk);
1172 
1173 	/* do new cwnd calculation (required) */
1174 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1175 
1176 	/* call before changing ca_state (optional) */
1177 	void (*set_state)(struct sock *sk, u8 new_state);
1178 
1179 	/* call when cwnd event occurs (optional) */
1180 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1181 
1182 	/* call when ack arrives (optional) */
1183 	void (*in_ack_event)(struct sock *sk, u32 flags);
1184 
1185 	/* hook for packet ack accounting (optional) */
1186 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1187 
1188 	/* override sysctl_tcp_min_tso_segs */
1189 	u32 (*min_tso_segs)(struct sock *sk);
1190 
1191 	/* call when packets are delivered to update cwnd and pacing rate,
1192 	 * after all the ca_state processing. (optional)
1193 	 */
1194 	void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs);
1195 
1196 
1197 	/* new value of cwnd after loss (required) */
1198 	u32  (*undo_cwnd)(struct sock *sk);
1199 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1200 	u32 (*sndbuf_expand)(struct sock *sk);
1201 
1202 /* control/slow paths put last */
1203 	/* get info for inet_diag (optional) */
1204 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1205 			   union tcp_cc_info *info);
1206 
1207 	char 			name[TCP_CA_NAME_MAX];
1208 	struct module		*owner;
1209 	struct list_head	list;
1210 	u32			key;
1211 	u32			flags;
1212 
1213 	/* initialize private data (optional) */
1214 	void (*init)(struct sock *sk);
1215 	/* cleanup private data  (optional) */
1216 	void (*release)(struct sock *sk);
1217 } ____cacheline_aligned_in_smp;
1218 
1219 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1220 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1221 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1222 				  struct tcp_congestion_ops *old_type);
1223 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1224 
1225 void tcp_assign_congestion_control(struct sock *sk);
1226 void tcp_init_congestion_control(struct sock *sk);
1227 void tcp_cleanup_congestion_control(struct sock *sk);
1228 int tcp_set_default_congestion_control(struct net *net, const char *name);
1229 void tcp_get_default_congestion_control(struct net *net, char *name);
1230 void tcp_get_available_congestion_control(char *buf, size_t len);
1231 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1232 int tcp_set_allowed_congestion_control(char *allowed);
1233 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1234 			       bool cap_net_admin);
1235 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1236 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1237 
1238 u32 tcp_reno_ssthresh(struct sock *sk);
1239 u32 tcp_reno_undo_cwnd(struct sock *sk);
1240 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1241 extern struct tcp_congestion_ops tcp_reno;
1242 
1243 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1244 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1245 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1246 #ifdef CONFIG_INET
1247 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1248 #else
tcp_ca_get_name_by_key(u32 key,char * buffer)1249 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1250 {
1251 	return NULL;
1252 }
1253 #endif
1254 
tcp_ca_needs_ecn(const struct sock * sk)1255 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1256 {
1257 	const struct inet_connection_sock *icsk = inet_csk(sk);
1258 
1259 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1260 }
1261 
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)1262 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1263 {
1264 	const struct inet_connection_sock *icsk = inet_csk(sk);
1265 
1266 	if (icsk->icsk_ca_ops->cwnd_event)
1267 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1268 }
1269 
1270 /* From tcp_cong.c */
1271 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1272 
1273 /* From tcp_rate.c */
1274 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1275 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1276 			    struct rate_sample *rs);
1277 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1278 		  bool is_sack_reneg, struct rate_sample *rs);
1279 void tcp_rate_check_app_limited(struct sock *sk);
1280 
tcp_skb_sent_after(u64 t1,u64 t2,u32 seq1,u32 seq2)1281 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1282 {
1283 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1284 }
1285 
1286 /* These functions determine how the current flow behaves in respect of SACK
1287  * handling. SACK is negotiated with the peer, and therefore it can vary
1288  * between different flows.
1289  *
1290  * tcp_is_sack - SACK enabled
1291  * tcp_is_reno - No SACK
1292  */
tcp_is_sack(const struct tcp_sock * tp)1293 static inline int tcp_is_sack(const struct tcp_sock *tp)
1294 {
1295 	return likely(tp->rx_opt.sack_ok);
1296 }
1297 
tcp_is_reno(const struct tcp_sock * tp)1298 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1299 {
1300 	return !tcp_is_sack(tp);
1301 }
1302 
tcp_left_out(const struct tcp_sock * tp)1303 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1304 {
1305 	return tp->sacked_out + tp->lost_out;
1306 }
1307 
1308 /* This determines how many packets are "in the network" to the best
1309  * of our knowledge.  In many cases it is conservative, but where
1310  * detailed information is available from the receiver (via SACK
1311  * blocks etc.) we can make more aggressive calculations.
1312  *
1313  * Use this for decisions involving congestion control, use just
1314  * tp->packets_out to determine if the send queue is empty or not.
1315  *
1316  * Read this equation as:
1317  *
1318  *	"Packets sent once on transmission queue" MINUS
1319  *	"Packets left network, but not honestly ACKed yet" PLUS
1320  *	"Packets fast retransmitted"
1321  */
tcp_packets_in_flight(const struct tcp_sock * tp)1322 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1323 {
1324 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1325 }
1326 
1327 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1328 
tcp_snd_cwnd(const struct tcp_sock * tp)1329 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1330 {
1331 	return tp->snd_cwnd;
1332 }
1333 
tcp_snd_cwnd_set(struct tcp_sock * tp,u32 val)1334 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1335 {
1336 	WARN_ON_ONCE((int)val <= 0);
1337 	tp->snd_cwnd = val;
1338 }
1339 
tcp_in_slow_start(const struct tcp_sock * tp)1340 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1341 {
1342 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1343 }
1344 
tcp_in_initial_slowstart(const struct tcp_sock * tp)1345 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1346 {
1347 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1348 }
1349 
tcp_in_cwnd_reduction(const struct sock * sk)1350 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1351 {
1352 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1353 	       (1 << inet_csk(sk)->icsk_ca_state);
1354 }
1355 
1356 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1357  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1358  * ssthresh.
1359  */
tcp_current_ssthresh(const struct sock * sk)1360 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1361 {
1362 	const struct tcp_sock *tp = tcp_sk(sk);
1363 
1364 	if (tcp_in_cwnd_reduction(sk))
1365 		return tp->snd_ssthresh;
1366 	else
1367 		return max(tp->snd_ssthresh,
1368 			   ((tcp_snd_cwnd(tp) >> 1) +
1369 			    (tcp_snd_cwnd(tp) >> 2)));
1370 }
1371 
1372 /* Use define here intentionally to get WARN_ON location shown at the caller */
1373 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1374 
1375 void tcp_enter_cwr(struct sock *sk);
1376 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1377 
1378 /* The maximum number of MSS of available cwnd for which TSO defers
1379  * sending if not using sysctl_tcp_tso_win_divisor.
1380  */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)1381 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1382 {
1383 	return 3;
1384 }
1385 
1386 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)1387 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1388 {
1389 	return tp->snd_una + tp->snd_wnd;
1390 }
1391 
1392 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1393  * flexible approach. The RFC suggests cwnd should not be raised unless
1394  * it was fully used previously. And that's exactly what we do in
1395  * congestion avoidance mode. But in slow start we allow cwnd to grow
1396  * as long as the application has used half the cwnd.
1397  * Example :
1398  *    cwnd is 10 (IW10), but application sends 9 frames.
1399  *    We allow cwnd to reach 18 when all frames are ACKed.
1400  * This check is safe because it's as aggressive as slow start which already
1401  * risks 100% overshoot. The advantage is that we discourage application to
1402  * either send more filler packets or data to artificially blow up the cwnd
1403  * usage, and allow application-limited process to probe bw more aggressively.
1404  */
tcp_is_cwnd_limited(const struct sock * sk)1405 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1406 {
1407 	const struct tcp_sock *tp = tcp_sk(sk);
1408 
1409 	if (tp->is_cwnd_limited)
1410 		return true;
1411 
1412 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1413 	if (tcp_in_slow_start(tp))
1414 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1415 
1416 	return false;
1417 }
1418 
1419 /* BBR congestion control needs pacing.
1420  * Same remark for SO_MAX_PACING_RATE.
1421  * sch_fq packet scheduler is efficiently handling pacing,
1422  * but is not always installed/used.
1423  * Return true if TCP stack should pace packets itself.
1424  */
tcp_needs_internal_pacing(const struct sock * sk)1425 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1426 {
1427 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1428 }
1429 
1430 /* Estimates in how many jiffies next packet for this flow can be sent.
1431  * Scheduling a retransmit timer too early would be silly.
1432  */
tcp_pacing_delay(const struct sock * sk)1433 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1434 {
1435 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1436 
1437 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1438 }
1439 
tcp_reset_xmit_timer(struct sock * sk,const int what,unsigned long when,const unsigned long max_when)1440 static inline void tcp_reset_xmit_timer(struct sock *sk,
1441 					const int what,
1442 					unsigned long when,
1443 					const unsigned long max_when)
1444 {
1445 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1446 				  max_when);
1447 }
1448 
1449 /* Something is really bad, we could not queue an additional packet,
1450  * because qdisc is full or receiver sent a 0 window, or we are paced.
1451  * We do not want to add fuel to the fire, or abort too early,
1452  * so make sure the timer we arm now is at least 200ms in the future,
1453  * regardless of current icsk_rto value (as it could be ~2ms)
1454  */
tcp_probe0_base(const struct sock * sk)1455 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1456 {
1457 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1458 }
1459 
1460 /* Variant of inet_csk_rto_backoff() used for zero window probes */
tcp_probe0_when(const struct sock * sk,unsigned long max_when)1461 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1462 					    unsigned long max_when)
1463 {
1464 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1465 			   inet_csk(sk)->icsk_backoff);
1466 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1467 
1468 	return (unsigned long)min_t(u64, when, max_when);
1469 }
1470 
tcp_check_probe_timer(struct sock * sk)1471 static inline void tcp_check_probe_timer(struct sock *sk)
1472 {
1473 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1474 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1475 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1476 }
1477 
tcp_init_wl(struct tcp_sock * tp,u32 seq)1478 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1479 {
1480 	tp->snd_wl1 = seq;
1481 }
1482 
tcp_update_wl(struct tcp_sock * tp,u32 seq)1483 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1484 {
1485 	tp->snd_wl1 = seq;
1486 }
1487 
1488 /*
1489  * Calculate(/check) TCP checksum
1490  */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)1491 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1492 				   __be32 daddr, __wsum base)
1493 {
1494 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1495 }
1496 
tcp_checksum_complete(struct sk_buff * skb)1497 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1498 {
1499 	return !skb_csum_unnecessary(skb) &&
1500 		__skb_checksum_complete(skb);
1501 }
1502 
1503 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1504 		     enum skb_drop_reason *reason);
1505 
1506 
1507 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1508 void tcp_set_state(struct sock *sk, int state);
1509 void tcp_done(struct sock *sk);
1510 int tcp_abort(struct sock *sk, int err);
1511 
tcp_sack_reset(struct tcp_options_received * rx_opt)1512 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1513 {
1514 	rx_opt->dsack = 0;
1515 	rx_opt->num_sacks = 0;
1516 }
1517 
1518 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1519 
tcp_slow_start_after_idle_check(struct sock * sk)1520 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1521 {
1522 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1523 	struct tcp_sock *tp = tcp_sk(sk);
1524 	s32 delta;
1525 
1526 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1527 	    tp->packets_out || ca_ops->cong_control)
1528 		return;
1529 	delta = tcp_jiffies32 - tp->lsndtime;
1530 	if (delta > inet_csk(sk)->icsk_rto)
1531 		tcp_cwnd_restart(sk, delta);
1532 }
1533 
1534 /* Determine a window scaling and initial window to offer. */
1535 void tcp_select_initial_window(const struct sock *sk, int __space,
1536 			       __u32 mss, __u32 *rcv_wnd,
1537 			       __u32 *window_clamp, int wscale_ok,
1538 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1539 
__tcp_win_from_space(u8 scaling_ratio,int space)1540 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1541 {
1542 	s64 scaled_space = (s64)space * scaling_ratio;
1543 
1544 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1545 }
1546 
tcp_win_from_space(const struct sock * sk,int space)1547 static inline int tcp_win_from_space(const struct sock *sk, int space)
1548 {
1549 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1550 }
1551 
1552 /* inverse of __tcp_win_from_space() */
__tcp_space_from_win(u8 scaling_ratio,int win)1553 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1554 {
1555 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1556 
1557 	do_div(val, scaling_ratio);
1558 	return val;
1559 }
1560 
tcp_space_from_win(const struct sock * sk,int win)1561 static inline int tcp_space_from_win(const struct sock *sk, int win)
1562 {
1563 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1564 }
1565 
1566 /* Assume a 50% default for skb->len/skb->truesize ratio.
1567  * This may be adjusted later in tcp_measure_rcv_mss().
1568  */
1569 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1570 
tcp_scaling_ratio_init(struct sock * sk)1571 static inline void tcp_scaling_ratio_init(struct sock *sk)
1572 {
1573 	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1574 }
1575 
1576 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1577 static inline int tcp_space(const struct sock *sk)
1578 {
1579 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1580 				  READ_ONCE(sk->sk_backlog.len) -
1581 				  atomic_read(&sk->sk_rmem_alloc));
1582 }
1583 
tcp_full_space(const struct sock * sk)1584 static inline int tcp_full_space(const struct sock *sk)
1585 {
1586 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1587 }
1588 
__tcp_adjust_rcv_ssthresh(struct sock * sk,u32 new_ssthresh)1589 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1590 {
1591 	int unused_mem = sk_unused_reserved_mem(sk);
1592 	struct tcp_sock *tp = tcp_sk(sk);
1593 
1594 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1595 	if (unused_mem)
1596 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1597 					 tcp_win_from_space(sk, unused_mem));
1598 }
1599 
tcp_adjust_rcv_ssthresh(struct sock * sk)1600 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1601 {
1602 	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1603 }
1604 
1605 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1606 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1607 
1608 
1609 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1610  * If 87.5 % (7/8) of the space has been consumed, we want to override
1611  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1612  * len/truesize ratio.
1613  */
tcp_rmem_pressure(const struct sock * sk)1614 static inline bool tcp_rmem_pressure(const struct sock *sk)
1615 {
1616 	int rcvbuf, threshold;
1617 
1618 	if (tcp_under_memory_pressure(sk))
1619 		return true;
1620 
1621 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1622 	threshold = rcvbuf - (rcvbuf >> 3);
1623 
1624 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1625 }
1626 
tcp_epollin_ready(const struct sock * sk,int target)1627 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1628 {
1629 	const struct tcp_sock *tp = tcp_sk(sk);
1630 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1631 
1632 	if (avail <= 0)
1633 		return false;
1634 
1635 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1636 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1637 }
1638 
1639 extern void tcp_openreq_init_rwin(struct request_sock *req,
1640 				  const struct sock *sk_listener,
1641 				  const struct dst_entry *dst);
1642 
1643 void tcp_enter_memory_pressure(struct sock *sk);
1644 void tcp_leave_memory_pressure(struct sock *sk);
1645 
keepalive_intvl_when(const struct tcp_sock * tp)1646 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1647 {
1648 	struct net *net = sock_net((struct sock *)tp);
1649 	int val;
1650 
1651 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1652 	 * and do_tcp_setsockopt().
1653 	 */
1654 	val = READ_ONCE(tp->keepalive_intvl);
1655 
1656 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1657 }
1658 
keepalive_time_when(const struct tcp_sock * tp)1659 static inline int keepalive_time_when(const struct tcp_sock *tp)
1660 {
1661 	struct net *net = sock_net((struct sock *)tp);
1662 	int val;
1663 
1664 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1665 	val = READ_ONCE(tp->keepalive_time);
1666 
1667 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1668 }
1669 
keepalive_probes(const struct tcp_sock * tp)1670 static inline int keepalive_probes(const struct tcp_sock *tp)
1671 {
1672 	struct net *net = sock_net((struct sock *)tp);
1673 	int val;
1674 
1675 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1676 	 * and do_tcp_setsockopt().
1677 	 */
1678 	val = READ_ONCE(tp->keepalive_probes);
1679 
1680 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1681 }
1682 
keepalive_time_elapsed(const struct tcp_sock * tp)1683 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1684 {
1685 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1686 
1687 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1688 			  tcp_jiffies32 - tp->rcv_tstamp);
1689 }
1690 
tcp_fin_time(const struct sock * sk)1691 static inline int tcp_fin_time(const struct sock *sk)
1692 {
1693 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1694 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1695 	const int rto = inet_csk(sk)->icsk_rto;
1696 
1697 	if (fin_timeout < (rto << 2) - (rto >> 1))
1698 		fin_timeout = (rto << 2) - (rto >> 1);
1699 
1700 	return fin_timeout;
1701 }
1702 
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1703 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1704 				  int paws_win)
1705 {
1706 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1707 		return true;
1708 	if (unlikely(!time_before32(ktime_get_seconds(),
1709 				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1710 		return true;
1711 	/*
1712 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1713 	 * then following tcp messages have valid values. Ignore 0 value,
1714 	 * or else 'negative' tsval might forbid us to accept their packets.
1715 	 */
1716 	if (!rx_opt->ts_recent)
1717 		return true;
1718 	return false;
1719 }
1720 
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1721 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1722 				   int rst)
1723 {
1724 	if (tcp_paws_check(rx_opt, 0))
1725 		return false;
1726 
1727 	/* RST segments are not recommended to carry timestamp,
1728 	   and, if they do, it is recommended to ignore PAWS because
1729 	   "their cleanup function should take precedence over timestamps."
1730 	   Certainly, it is mistake. It is necessary to understand the reasons
1731 	   of this constraint to relax it: if peer reboots, clock may go
1732 	   out-of-sync and half-open connections will not be reset.
1733 	   Actually, the problem would be not existing if all
1734 	   the implementations followed draft about maintaining clock
1735 	   via reboots. Linux-2.2 DOES NOT!
1736 
1737 	   However, we can relax time bounds for RST segments to MSL.
1738 	 */
1739 	if (rst && !time_before32(ktime_get_seconds(),
1740 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1741 		return false;
1742 	return true;
1743 }
1744 
1745 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1746 			  int mib_idx, u32 *last_oow_ack_time);
1747 
tcp_mib_init(struct net * net)1748 static inline void tcp_mib_init(struct net *net)
1749 {
1750 	/* See RFC 2012 */
1751 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1752 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1753 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1754 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1755 }
1756 
1757 /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1758 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1759 {
1760 	tp->lost_skb_hint = NULL;
1761 }
1762 
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1763 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1764 {
1765 	tcp_clear_retrans_hints_partial(tp);
1766 	tp->retransmit_skb_hint = NULL;
1767 }
1768 
1769 #define tcp_md5_addr tcp_ao_addr
1770 
1771 /* - key database */
1772 struct tcp_md5sig_key {
1773 	struct hlist_node	node;
1774 	u8			keylen;
1775 	u8			family; /* AF_INET or AF_INET6 */
1776 	u8			prefixlen;
1777 	u8			flags;
1778 	union tcp_md5_addr	addr;
1779 	int			l3index; /* set if key added with L3 scope */
1780 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1781 	struct rcu_head		rcu;
1782 };
1783 
1784 /* - sock block */
1785 struct tcp_md5sig_info {
1786 	struct hlist_head	head;
1787 	struct rcu_head		rcu;
1788 };
1789 
1790 /* - pseudo header */
1791 struct tcp4_pseudohdr {
1792 	__be32		saddr;
1793 	__be32		daddr;
1794 	__u8		pad;
1795 	__u8		protocol;
1796 	__be16		len;
1797 };
1798 
1799 struct tcp6_pseudohdr {
1800 	struct in6_addr	saddr;
1801 	struct in6_addr daddr;
1802 	__be32		len;
1803 	__be32		protocol;	/* including padding */
1804 };
1805 
1806 union tcp_md5sum_block {
1807 	struct tcp4_pseudohdr ip4;
1808 #if IS_ENABLED(CONFIG_IPV6)
1809 	struct tcp6_pseudohdr ip6;
1810 #endif
1811 };
1812 
1813 /*
1814  * struct tcp_sigpool - per-CPU pool of ahash_requests
1815  * @scratch: per-CPU temporary area, that can be used between
1816  *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1817  *	     crypto request
1818  * @req: pre-allocated ahash request
1819  */
1820 struct tcp_sigpool {
1821 	void *scratch;
1822 	struct ahash_request *req;
1823 };
1824 
1825 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1826 void tcp_sigpool_get(unsigned int id);
1827 void tcp_sigpool_release(unsigned int id);
1828 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1829 			      const struct sk_buff *skb,
1830 			      unsigned int header_len);
1831 
1832 /**
1833  * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1834  * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1835  * @c: returned tcp_sigpool for usage (uninitialized on failure)
1836  *
1837  * Returns: 0 on success, error otherwise.
1838  */
1839 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1840 /**
1841  * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1842  * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1843  */
1844 void tcp_sigpool_end(struct tcp_sigpool *c);
1845 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1846 /* - functions */
1847 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1848 			const struct sock *sk, const struct sk_buff *skb);
1849 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1850 		   int family, u8 prefixlen, int l3index, u8 flags,
1851 		   const u8 *newkey, u8 newkeylen);
1852 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1853 		     int family, u8 prefixlen, int l3index,
1854 		     struct tcp_md5sig_key *key);
1855 
1856 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1857 		   int family, u8 prefixlen, int l3index, u8 flags);
1858 void tcp_clear_md5_list(struct sock *sk);
1859 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1860 					 const struct sock *addr_sk);
1861 
1862 #ifdef CONFIG_TCP_MD5SIG
1863 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1864 					   const union tcp_md5_addr *addr,
1865 					   int family, bool any_l3index);
1866 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1867 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1868 		  const union tcp_md5_addr *addr, int family)
1869 {
1870 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1871 		return NULL;
1872 	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1873 }
1874 
1875 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup_any_l3index(const struct sock * sk,const union tcp_md5_addr * addr,int family)1876 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1877 			      const union tcp_md5_addr *addr, int family)
1878 {
1879 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1880 		return NULL;
1881 	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1882 }
1883 
1884 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1885 #else
1886 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1887 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1888 		  const union tcp_md5_addr *addr, int family)
1889 {
1890 	return NULL;
1891 }
1892 
1893 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup_any_l3index(const struct sock * sk,const union tcp_md5_addr * addr,int family)1894 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1895 			      const union tcp_md5_addr *addr, int family)
1896 {
1897 	return NULL;
1898 }
1899 
1900 #define tcp_twsk_md5_key(twsk)	NULL
1901 #endif
1902 
1903 int tcp_md5_alloc_sigpool(void);
1904 void tcp_md5_release_sigpool(void);
1905 void tcp_md5_add_sigpool(void);
1906 extern int tcp_md5_sigpool_id;
1907 
1908 int tcp_md5_hash_key(struct tcp_sigpool *hp,
1909 		     const struct tcp_md5sig_key *key);
1910 
1911 /* From tcp_fastopen.c */
1912 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1913 			    struct tcp_fastopen_cookie *cookie);
1914 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1915 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1916 			    u16 try_exp);
1917 struct tcp_fastopen_request {
1918 	/* Fast Open cookie. Size 0 means a cookie request */
1919 	struct tcp_fastopen_cookie	cookie;
1920 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1921 	size_t				size;
1922 	int				copied;	/* queued in tcp_connect() */
1923 	struct ubuf_info		*uarg;
1924 };
1925 void tcp_free_fastopen_req(struct tcp_sock *tp);
1926 void tcp_fastopen_destroy_cipher(struct sock *sk);
1927 void tcp_fastopen_ctx_destroy(struct net *net);
1928 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1929 			      void *primary_key, void *backup_key);
1930 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1931 			    u64 *key);
1932 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1933 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1934 			      struct request_sock *req,
1935 			      struct tcp_fastopen_cookie *foc,
1936 			      const struct dst_entry *dst);
1937 void tcp_fastopen_init_key_once(struct net *net);
1938 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1939 			     struct tcp_fastopen_cookie *cookie);
1940 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1941 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1942 #define TCP_FASTOPEN_KEY_MAX 2
1943 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1944 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1945 
1946 /* Fastopen key context */
1947 struct tcp_fastopen_context {
1948 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1949 	int		num;
1950 	struct rcu_head	rcu;
1951 };
1952 
1953 void tcp_fastopen_active_disable(struct sock *sk);
1954 bool tcp_fastopen_active_should_disable(struct sock *sk);
1955 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1956 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1957 
1958 /* Caller needs to wrap with rcu_read_(un)lock() */
1959 static inline
tcp_fastopen_get_ctx(const struct sock * sk)1960 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1961 {
1962 	struct tcp_fastopen_context *ctx;
1963 
1964 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1965 	if (!ctx)
1966 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1967 	return ctx;
1968 }
1969 
1970 static inline
tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie * foc,const struct tcp_fastopen_cookie * orig)1971 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1972 			       const struct tcp_fastopen_cookie *orig)
1973 {
1974 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1975 	    orig->len == foc->len &&
1976 	    !memcmp(orig->val, foc->val, foc->len))
1977 		return true;
1978 	return false;
1979 }
1980 
1981 static inline
tcp_fastopen_context_len(const struct tcp_fastopen_context * ctx)1982 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1983 {
1984 	return ctx->num;
1985 }
1986 
1987 /* Latencies incurred by various limits for a sender. They are
1988  * chronograph-like stats that are mutually exclusive.
1989  */
1990 enum tcp_chrono {
1991 	TCP_CHRONO_UNSPEC,
1992 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1993 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1994 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1995 	__TCP_CHRONO_MAX,
1996 };
1997 
1998 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1999 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
2000 
2001 /* This helper is needed, because skb->tcp_tsorted_anchor uses
2002  * the same memory storage than skb->destructor/_skb_refdst
2003  */
tcp_skb_tsorted_anchor_cleanup(struct sk_buff * skb)2004 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
2005 {
2006 	skb->destructor = NULL;
2007 	skb->_skb_refdst = 0UL;
2008 }
2009 
2010 #define tcp_skb_tsorted_save(skb) {		\
2011 	unsigned long _save = skb->_skb_refdst;	\
2012 	skb->_skb_refdst = 0UL;
2013 
2014 #define tcp_skb_tsorted_restore(skb)		\
2015 	skb->_skb_refdst = _save;		\
2016 }
2017 
2018 void tcp_write_queue_purge(struct sock *sk);
2019 
tcp_rtx_queue_head(const struct sock * sk)2020 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2021 {
2022 	return skb_rb_first(&sk->tcp_rtx_queue);
2023 }
2024 
tcp_rtx_queue_tail(const struct sock * sk)2025 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2026 {
2027 	return skb_rb_last(&sk->tcp_rtx_queue);
2028 }
2029 
tcp_write_queue_tail(const struct sock * sk)2030 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2031 {
2032 	return skb_peek_tail(&sk->sk_write_queue);
2033 }
2034 
2035 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2036 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2037 
tcp_send_head(const struct sock * sk)2038 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2039 {
2040 	return skb_peek(&sk->sk_write_queue);
2041 }
2042 
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)2043 static inline bool tcp_skb_is_last(const struct sock *sk,
2044 				   const struct sk_buff *skb)
2045 {
2046 	return skb_queue_is_last(&sk->sk_write_queue, skb);
2047 }
2048 
2049 /**
2050  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2051  * @sk: socket
2052  *
2053  * Since the write queue can have a temporary empty skb in it,
2054  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2055  */
tcp_write_queue_empty(const struct sock * sk)2056 static inline bool tcp_write_queue_empty(const struct sock *sk)
2057 {
2058 	const struct tcp_sock *tp = tcp_sk(sk);
2059 
2060 	return tp->write_seq == tp->snd_nxt;
2061 }
2062 
tcp_rtx_queue_empty(const struct sock * sk)2063 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2064 {
2065 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2066 }
2067 
tcp_rtx_and_write_queues_empty(const struct sock * sk)2068 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2069 {
2070 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2071 }
2072 
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)2073 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2074 {
2075 	__skb_queue_tail(&sk->sk_write_queue, skb);
2076 
2077 	/* Queue it, remembering where we must start sending. */
2078 	if (sk->sk_write_queue.next == skb)
2079 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2080 }
2081 
2082 /* Insert new before skb on the write queue of sk.  */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)2083 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2084 						  struct sk_buff *skb,
2085 						  struct sock *sk)
2086 {
2087 	__skb_queue_before(&sk->sk_write_queue, skb, new);
2088 }
2089 
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)2090 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2091 {
2092 	tcp_skb_tsorted_anchor_cleanup(skb);
2093 	__skb_unlink(skb, &sk->sk_write_queue);
2094 }
2095 
2096 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2097 
tcp_rtx_queue_unlink(struct sk_buff * skb,struct sock * sk)2098 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2099 {
2100 	tcp_skb_tsorted_anchor_cleanup(skb);
2101 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2102 }
2103 
tcp_rtx_queue_unlink_and_free(struct sk_buff * skb,struct sock * sk)2104 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2105 {
2106 	list_del(&skb->tcp_tsorted_anchor);
2107 	tcp_rtx_queue_unlink(skb, sk);
2108 	tcp_wmem_free_skb(sk, skb);
2109 }
2110 
tcp_write_collapse_fence(struct sock * sk)2111 static inline void tcp_write_collapse_fence(struct sock *sk)
2112 {
2113 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2114 
2115 	if (skb)
2116 		TCP_SKB_CB(skb)->eor = 1;
2117 }
2118 
tcp_push_pending_frames(struct sock * sk)2119 static inline void tcp_push_pending_frames(struct sock *sk)
2120 {
2121 	if (tcp_send_head(sk)) {
2122 		struct tcp_sock *tp = tcp_sk(sk);
2123 
2124 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2125 	}
2126 }
2127 
2128 /* Start sequence of the skb just after the highest skb with SACKed
2129  * bit, valid only if sacked_out > 0 or when the caller has ensured
2130  * validity by itself.
2131  */
tcp_highest_sack_seq(struct tcp_sock * tp)2132 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2133 {
2134 	if (!tp->sacked_out)
2135 		return tp->snd_una;
2136 
2137 	if (tp->highest_sack == NULL)
2138 		return tp->snd_nxt;
2139 
2140 	return TCP_SKB_CB(tp->highest_sack)->seq;
2141 }
2142 
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)2143 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2144 {
2145 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2146 }
2147 
tcp_highest_sack(struct sock * sk)2148 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2149 {
2150 	return tcp_sk(sk)->highest_sack;
2151 }
2152 
tcp_highest_sack_reset(struct sock * sk)2153 static inline void tcp_highest_sack_reset(struct sock *sk)
2154 {
2155 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2156 }
2157 
2158 /* Called when old skb is about to be deleted and replaced by new skb */
tcp_highest_sack_replace(struct sock * sk,struct sk_buff * old,struct sk_buff * new)2159 static inline void tcp_highest_sack_replace(struct sock *sk,
2160 					    struct sk_buff *old,
2161 					    struct sk_buff *new)
2162 {
2163 	if (old == tcp_highest_sack(sk))
2164 		tcp_sk(sk)->highest_sack = new;
2165 }
2166 
2167 /* This helper checks if socket has IP_TRANSPARENT set */
inet_sk_transparent(const struct sock * sk)2168 static inline bool inet_sk_transparent(const struct sock *sk)
2169 {
2170 	switch (sk->sk_state) {
2171 	case TCP_TIME_WAIT:
2172 		return inet_twsk(sk)->tw_transparent;
2173 	case TCP_NEW_SYN_RECV:
2174 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2175 	}
2176 	return inet_test_bit(TRANSPARENT, sk);
2177 }
2178 
2179 /* Determines whether this is a thin stream (which may suffer from
2180  * increased latency). Used to trigger latency-reducing mechanisms.
2181  */
tcp_stream_is_thin(struct tcp_sock * tp)2182 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2183 {
2184 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2185 }
2186 
2187 /* /proc */
2188 enum tcp_seq_states {
2189 	TCP_SEQ_STATE_LISTENING,
2190 	TCP_SEQ_STATE_ESTABLISHED,
2191 };
2192 
2193 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2194 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2195 void tcp_seq_stop(struct seq_file *seq, void *v);
2196 
2197 struct tcp_seq_afinfo {
2198 	sa_family_t			family;
2199 };
2200 
2201 struct tcp_iter_state {
2202 	struct seq_net_private	p;
2203 	enum tcp_seq_states	state;
2204 	struct sock		*syn_wait_sk;
2205 	int			bucket, offset, sbucket, num;
2206 	loff_t			last_pos;
2207 };
2208 
2209 extern struct request_sock_ops tcp_request_sock_ops;
2210 extern struct request_sock_ops tcp6_request_sock_ops;
2211 
2212 void tcp_v4_destroy_sock(struct sock *sk);
2213 
2214 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2215 				netdev_features_t features);
2216 struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb);
2217 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th);
2218 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb,
2219 				struct tcphdr *th);
2220 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2221 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2222 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2223 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2224 #ifdef CONFIG_INET
2225 void tcp_gro_complete(struct sk_buff *skb);
2226 #else
tcp_gro_complete(struct sk_buff * skb)2227 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2228 #endif
2229 
2230 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2231 
tcp_notsent_lowat(const struct tcp_sock * tp)2232 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2233 {
2234 	struct net *net = sock_net((struct sock *)tp);
2235 	u32 val;
2236 
2237 	val = READ_ONCE(tp->notsent_lowat);
2238 
2239 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2240 }
2241 
2242 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2243 
2244 #ifdef CONFIG_PROC_FS
2245 int tcp4_proc_init(void);
2246 void tcp4_proc_exit(void);
2247 #endif
2248 
2249 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2250 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2251 		     const struct tcp_request_sock_ops *af_ops,
2252 		     struct sock *sk, struct sk_buff *skb);
2253 
2254 /* TCP af-specific functions */
2255 struct tcp_sock_af_ops {
2256 #ifdef CONFIG_TCP_MD5SIG
2257 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2258 						const struct sock *addr_sk);
2259 	int		(*calc_md5_hash)(char *location,
2260 					 const struct tcp_md5sig_key *md5,
2261 					 const struct sock *sk,
2262 					 const struct sk_buff *skb);
2263 	int		(*md5_parse)(struct sock *sk,
2264 				     int optname,
2265 				     sockptr_t optval,
2266 				     int optlen);
2267 #endif
2268 #ifdef CONFIG_TCP_AO
2269 	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2270 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2271 					struct sock *addr_sk,
2272 					int sndid, int rcvid);
2273 	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2274 			      const struct sock *sk,
2275 			      __be32 sisn, __be32 disn, bool send);
2276 	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2277 			    const struct sock *sk, const struct sk_buff *skb,
2278 			    const u8 *tkey, int hash_offset, u32 sne);
2279 #endif
2280 };
2281 
2282 struct tcp_request_sock_ops {
2283 	u16 mss_clamp;
2284 #ifdef CONFIG_TCP_MD5SIG
2285 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2286 						 const struct sock *addr_sk);
2287 	int		(*calc_md5_hash) (char *location,
2288 					  const struct tcp_md5sig_key *md5,
2289 					  const struct sock *sk,
2290 					  const struct sk_buff *skb);
2291 #endif
2292 #ifdef CONFIG_TCP_AO
2293 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2294 					struct request_sock *req,
2295 					int sndid, int rcvid);
2296 	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2297 	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2298 			      struct request_sock *req, const struct sk_buff *skb,
2299 			      int hash_offset, u32 sne);
2300 #endif
2301 #ifdef CONFIG_SYN_COOKIES
2302 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2303 				 __u16 *mss);
2304 #endif
2305 	struct dst_entry *(*route_req)(const struct sock *sk,
2306 				       struct sk_buff *skb,
2307 				       struct flowi *fl,
2308 				       struct request_sock *req,
2309 				       u32 tw_isn);
2310 	u32 (*init_seq)(const struct sk_buff *skb);
2311 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2312 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2313 			   struct flowi *fl, struct request_sock *req,
2314 			   struct tcp_fastopen_cookie *foc,
2315 			   enum tcp_synack_type synack_type,
2316 			   struct sk_buff *syn_skb);
2317 };
2318 
2319 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2320 #if IS_ENABLED(CONFIG_IPV6)
2321 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2322 #endif
2323 
2324 #ifdef CONFIG_SYN_COOKIES
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2325 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2326 					 const struct sock *sk, struct sk_buff *skb,
2327 					 __u16 *mss)
2328 {
2329 	tcp_synq_overflow(sk);
2330 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2331 	return ops->cookie_init_seq(skb, mss);
2332 }
2333 #else
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2334 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2335 					 const struct sock *sk, struct sk_buff *skb,
2336 					 __u16 *mss)
2337 {
2338 	return 0;
2339 }
2340 #endif
2341 
2342 struct tcp_key {
2343 	union {
2344 		struct {
2345 			struct tcp_ao_key *ao_key;
2346 			char *traffic_key;
2347 			u32 sne;
2348 			u8 rcv_next;
2349 		};
2350 		struct tcp_md5sig_key *md5_key;
2351 	};
2352 	enum {
2353 		TCP_KEY_NONE = 0,
2354 		TCP_KEY_MD5,
2355 		TCP_KEY_AO,
2356 	} type;
2357 };
2358 
tcp_get_current_key(const struct sock * sk,struct tcp_key * out)2359 static inline void tcp_get_current_key(const struct sock *sk,
2360 				       struct tcp_key *out)
2361 {
2362 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2363 	const struct tcp_sock *tp = tcp_sk(sk);
2364 #endif
2365 
2366 #ifdef CONFIG_TCP_AO
2367 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2368 		struct tcp_ao_info *ao;
2369 
2370 		ao = rcu_dereference_protected(tp->ao_info,
2371 					       lockdep_sock_is_held(sk));
2372 		if (ao) {
2373 			out->ao_key = READ_ONCE(ao->current_key);
2374 			out->type = TCP_KEY_AO;
2375 			return;
2376 		}
2377 	}
2378 #endif
2379 #ifdef CONFIG_TCP_MD5SIG
2380 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2381 	    rcu_access_pointer(tp->md5sig_info)) {
2382 		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2383 		if (out->md5_key) {
2384 			out->type = TCP_KEY_MD5;
2385 			return;
2386 		}
2387 	}
2388 #endif
2389 	out->type = TCP_KEY_NONE;
2390 }
2391 
tcp_key_is_md5(const struct tcp_key * key)2392 static inline bool tcp_key_is_md5(const struct tcp_key *key)
2393 {
2394 	if (static_branch_tcp_md5())
2395 		return key->type == TCP_KEY_MD5;
2396 	return false;
2397 }
2398 
tcp_key_is_ao(const struct tcp_key * key)2399 static inline bool tcp_key_is_ao(const struct tcp_key *key)
2400 {
2401 	if (static_branch_tcp_ao())
2402 		return key->type == TCP_KEY_AO;
2403 	return false;
2404 }
2405 
2406 int tcpv4_offload_init(void);
2407 
2408 void tcp_v4_init(void);
2409 void tcp_init(void);
2410 
2411 /* tcp_recovery.c */
2412 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2413 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2414 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2415 				u32 reo_wnd);
2416 extern bool tcp_rack_mark_lost(struct sock *sk);
2417 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2418 			     u64 xmit_time);
2419 extern void tcp_rack_reo_timeout(struct sock *sk);
2420 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2421 
2422 /* tcp_plb.c */
2423 
2424 /*
2425  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2426  * expects cong_ratio which represents fraction of traffic that experienced
2427  * congestion over a single RTT. In order to avoid floating point operations,
2428  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2429  */
2430 #define TCP_PLB_SCALE 8
2431 
2432 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2433 struct tcp_plb_state {
2434 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2435 		unused:3;
2436 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2437 };
2438 
tcp_plb_init(const struct sock * sk,struct tcp_plb_state * plb)2439 static inline void tcp_plb_init(const struct sock *sk,
2440 				struct tcp_plb_state *plb)
2441 {
2442 	plb->consec_cong_rounds = 0;
2443 	plb->pause_until = 0;
2444 }
2445 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2446 			  const int cong_ratio);
2447 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2448 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2449 
tcp_warn_once(const struct sock * sk,bool cond,const char * str)2450 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str)
2451 {
2452 	WARN_ONCE(cond,
2453 		  "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n",
2454 		  str,
2455 		  tcp_snd_cwnd(tcp_sk(sk)),
2456 		  tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out,
2457 		  tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out,
2458 		  tcp_sk(sk)->tlp_high_seq, sk->sk_state,
2459 		  inet_csk(sk)->icsk_ca_state,
2460 		  tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache,
2461 		  inet_csk(sk)->icsk_pmtu_cookie);
2462 }
2463 
2464 /* At how many usecs into the future should the RTO fire? */
tcp_rto_delta_us(const struct sock * sk)2465 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2466 {
2467 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2468 	u32 rto = inet_csk(sk)->icsk_rto;
2469 
2470 	if (likely(skb)) {
2471 		u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2472 
2473 		return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2474 	} else {
2475 		tcp_warn_once(sk, 1, "rtx queue empty: ");
2476 		return jiffies_to_usecs(rto);
2477 	}
2478 
2479 }
2480 
2481 /*
2482  * Save and compile IPv4 options, return a pointer to it
2483  */
tcp_v4_save_options(struct net * net,struct sk_buff * skb)2484 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2485 							 struct sk_buff *skb)
2486 {
2487 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2488 	struct ip_options_rcu *dopt = NULL;
2489 
2490 	if (opt->optlen) {
2491 		int opt_size = sizeof(*dopt) + opt->optlen;
2492 
2493 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2494 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2495 			kfree(dopt);
2496 			dopt = NULL;
2497 		}
2498 	}
2499 	return dopt;
2500 }
2501 
2502 /* locally generated TCP pure ACKs have skb->truesize == 2
2503  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2504  * This is much faster than dissecting the packet to find out.
2505  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2506  */
skb_is_tcp_pure_ack(const struct sk_buff * skb)2507 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2508 {
2509 	return skb->truesize == 2;
2510 }
2511 
skb_set_tcp_pure_ack(struct sk_buff * skb)2512 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2513 {
2514 	skb->truesize = 2;
2515 }
2516 
tcp_inq(struct sock * sk)2517 static inline int tcp_inq(struct sock *sk)
2518 {
2519 	struct tcp_sock *tp = tcp_sk(sk);
2520 	int answ;
2521 
2522 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2523 		answ = 0;
2524 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2525 		   !tp->urg_data ||
2526 		   before(tp->urg_seq, tp->copied_seq) ||
2527 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2528 
2529 		answ = tp->rcv_nxt - tp->copied_seq;
2530 
2531 		/* Subtract 1, if FIN was received */
2532 		if (answ && sock_flag(sk, SOCK_DONE))
2533 			answ--;
2534 	} else {
2535 		answ = tp->urg_seq - tp->copied_seq;
2536 	}
2537 
2538 	return answ;
2539 }
2540 
2541 int tcp_peek_len(struct socket *sock);
2542 
tcp_segs_in(struct tcp_sock * tp,const struct sk_buff * skb)2543 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2544 {
2545 	u16 segs_in;
2546 
2547 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2548 
2549 	/* We update these fields while other threads might
2550 	 * read them from tcp_get_info()
2551 	 */
2552 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2553 	if (skb->len > tcp_hdrlen(skb))
2554 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2555 }
2556 
2557 /*
2558  * TCP listen path runs lockless.
2559  * We forced "struct sock" to be const qualified to make sure
2560  * we don't modify one of its field by mistake.
2561  * Here, we increment sk_drops which is an atomic_t, so we can safely
2562  * make sock writable again.
2563  */
tcp_listendrop(const struct sock * sk)2564 static inline void tcp_listendrop(const struct sock *sk)
2565 {
2566 	atomic_inc(&((struct sock *)sk)->sk_drops);
2567 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2568 }
2569 
2570 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2571 
2572 /*
2573  * Interface for adding Upper Level Protocols over TCP
2574  */
2575 
2576 #define TCP_ULP_NAME_MAX	16
2577 #define TCP_ULP_MAX		128
2578 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2579 
2580 struct tcp_ulp_ops {
2581 	struct list_head	list;
2582 
2583 	/* initialize ulp */
2584 	int (*init)(struct sock *sk);
2585 	/* update ulp */
2586 	void (*update)(struct sock *sk, struct proto *p,
2587 		       void (*write_space)(struct sock *sk));
2588 	/* cleanup ulp */
2589 	void (*release)(struct sock *sk);
2590 	/* diagnostic */
2591 	int (*get_info)(struct sock *sk, struct sk_buff *skb);
2592 	size_t (*get_info_size)(const struct sock *sk);
2593 	/* clone ulp */
2594 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2595 		      const gfp_t priority);
2596 
2597 	char		name[TCP_ULP_NAME_MAX];
2598 	struct module	*owner;
2599 };
2600 int tcp_register_ulp(struct tcp_ulp_ops *type);
2601 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2602 int tcp_set_ulp(struct sock *sk, const char *name);
2603 void tcp_get_available_ulp(char *buf, size_t len);
2604 void tcp_cleanup_ulp(struct sock *sk);
2605 void tcp_update_ulp(struct sock *sk, struct proto *p,
2606 		    void (*write_space)(struct sock *sk));
2607 
2608 #define MODULE_ALIAS_TCP_ULP(name)				\
2609 	__MODULE_INFO(alias, alias_userspace, name);		\
2610 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2611 
2612 #ifdef CONFIG_NET_SOCK_MSG
2613 struct sk_msg;
2614 struct sk_psock;
2615 
2616 #ifdef CONFIG_BPF_SYSCALL
2617 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2618 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2619 #ifdef CONFIG_BPF_STREAM_PARSER
2620 struct strparser;
2621 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc,
2622 			   sk_read_actor_t recv_actor);
2623 #endif /* CONFIG_BPF_STREAM_PARSER */
2624 #endif /* CONFIG_BPF_SYSCALL */
2625 
2626 #ifdef CONFIG_INET
2627 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2628 #else
tcp_eat_skb(struct sock * sk,struct sk_buff * skb)2629 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2630 {
2631 }
2632 #endif
2633 
2634 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2635 			  struct sk_msg *msg, u32 bytes, int flags);
2636 #endif /* CONFIG_NET_SOCK_MSG */
2637 
2638 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
tcp_bpf_clone(const struct sock * sk,struct sock * newsk)2639 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2640 {
2641 }
2642 #endif
2643 
2644 #ifdef CONFIG_CGROUP_BPF
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2645 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2646 				      struct sk_buff *skb,
2647 				      unsigned int end_offset)
2648 {
2649 	skops->skb = skb;
2650 	skops->skb_data_end = skb->data + end_offset;
2651 }
2652 #else
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2653 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2654 				      struct sk_buff *skb,
2655 				      unsigned int end_offset)
2656 {
2657 }
2658 #endif
2659 
2660 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2661  * is < 0, then the BPF op failed (for example if the loaded BPF
2662  * program does not support the chosen operation or there is no BPF
2663  * program loaded).
2664  */
2665 #ifdef CONFIG_BPF
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2666 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2667 {
2668 	struct bpf_sock_ops_kern sock_ops;
2669 	int ret;
2670 
2671 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2672 	if (sk_fullsock(sk)) {
2673 		sock_ops.is_fullsock = 1;
2674 		sock_owned_by_me(sk);
2675 	}
2676 
2677 	sock_ops.sk = sk;
2678 	sock_ops.op = op;
2679 	if (nargs > 0)
2680 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2681 
2682 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2683 	if (ret == 0)
2684 		ret = sock_ops.reply;
2685 	else
2686 		ret = -1;
2687 	return ret;
2688 }
2689 
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2690 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2691 {
2692 	u32 args[2] = {arg1, arg2};
2693 
2694 	return tcp_call_bpf(sk, op, 2, args);
2695 }
2696 
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2697 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2698 				    u32 arg3)
2699 {
2700 	u32 args[3] = {arg1, arg2, arg3};
2701 
2702 	return tcp_call_bpf(sk, op, 3, args);
2703 }
2704 
2705 #else
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2706 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2707 {
2708 	return -EPERM;
2709 }
2710 
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2711 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2712 {
2713 	return -EPERM;
2714 }
2715 
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2716 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2717 				    u32 arg3)
2718 {
2719 	return -EPERM;
2720 }
2721 
2722 #endif
2723 
tcp_timeout_init(struct sock * sk)2724 static inline u32 tcp_timeout_init(struct sock *sk)
2725 {
2726 	int timeout;
2727 
2728 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2729 
2730 	if (timeout <= 0)
2731 		timeout = TCP_TIMEOUT_INIT;
2732 	return min_t(int, timeout, TCP_RTO_MAX);
2733 }
2734 
tcp_rwnd_init_bpf(struct sock * sk)2735 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2736 {
2737 	int rwnd;
2738 
2739 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2740 
2741 	if (rwnd < 0)
2742 		rwnd = 0;
2743 	return rwnd;
2744 }
2745 
tcp_bpf_ca_needs_ecn(struct sock * sk)2746 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2747 {
2748 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2749 }
2750 
tcp_bpf_rtt(struct sock * sk,long mrtt,u32 srtt)2751 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt)
2752 {
2753 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2754 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt);
2755 }
2756 
2757 #if IS_ENABLED(CONFIG_SMC)
2758 extern struct static_key_false tcp_have_smc;
2759 #endif
2760 
2761 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2762 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2763 			     void (*cad)(struct sock *sk, u32 ack_seq));
2764 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2765 void clean_acked_data_flush(void);
2766 #endif
2767 
2768 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
tcp_add_tx_delay(struct sk_buff * skb,const struct tcp_sock * tp)2769 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2770 				    const struct tcp_sock *tp)
2771 {
2772 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2773 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2774 }
2775 
2776 /* Compute Earliest Departure Time for some control packets
2777  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2778  */
tcp_transmit_time(const struct sock * sk)2779 static inline u64 tcp_transmit_time(const struct sock *sk)
2780 {
2781 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2782 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2783 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2784 
2785 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2786 	}
2787 	return 0;
2788 }
2789 
tcp_parse_auth_options(const struct tcphdr * th,const u8 ** md5_hash,const struct tcp_ao_hdr ** aoh)2790 static inline int tcp_parse_auth_options(const struct tcphdr *th,
2791 		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2792 {
2793 	const u8 *md5_tmp, *ao_tmp;
2794 	int ret;
2795 
2796 	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2797 	if (ret)
2798 		return ret;
2799 
2800 	if (md5_hash)
2801 		*md5_hash = md5_tmp;
2802 
2803 	if (aoh) {
2804 		if (!ao_tmp)
2805 			*aoh = NULL;
2806 		else
2807 			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2808 	}
2809 
2810 	return 0;
2811 }
2812 
tcp_ao_required(struct sock * sk,const void * saddr,int family,int l3index,bool stat_inc)2813 static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2814 				   int family, int l3index, bool stat_inc)
2815 {
2816 #ifdef CONFIG_TCP_AO
2817 	struct tcp_ao_info *ao_info;
2818 	struct tcp_ao_key *ao_key;
2819 
2820 	if (!static_branch_unlikely(&tcp_ao_needed.key))
2821 		return false;
2822 
2823 	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2824 					lockdep_sock_is_held(sk));
2825 	if (!ao_info)
2826 		return false;
2827 
2828 	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2829 	if (ao_info->ao_required || ao_key) {
2830 		if (stat_inc) {
2831 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2832 			atomic64_inc(&ao_info->counters.ao_required);
2833 		}
2834 		return true;
2835 	}
2836 #endif
2837 	return false;
2838 }
2839 
2840 enum skb_drop_reason tcp_inbound_hash(struct sock *sk,
2841 		const struct request_sock *req, const struct sk_buff *skb,
2842 		const void *saddr, const void *daddr,
2843 		int family, int dif, int sdif);
2844 
2845 #endif	/* _TCP_H */
2846