1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 1993 by Theodore Ts'o.
4 */
5 #include <linux/module.h>
6 #include <linux/moduleparam.h>
7 #include <linux/sched.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/file.h>
11 #include <linux/stat.h>
12 #include <linux/errno.h>
13 #include <linux/major.h>
14 #include <linux/wait.h>
15 #include <linux/blkpg.h>
16 #include <linux/init.h>
17 #include <linux/swap.h>
18 #include <linux/slab.h>
19 #include <linux/compat.h>
20 #include <linux/suspend.h>
21 #include <linux/freezer.h>
22 #include <linux/mutex.h>
23 #include <linux/writeback.h>
24 #include <linux/completion.h>
25 #include <linux/highmem.h>
26 #include <linux/splice.h>
27 #include <linux/sysfs.h>
28 #include <linux/miscdevice.h>
29 #include <linux/falloc.h>
30 #include <linux/uio.h>
31 #include <linux/ioprio.h>
32 #include <linux/blk-cgroup.h>
33 #include <linux/sched/mm.h>
34 #include <linux/statfs.h>
35 #include <linux/uaccess.h>
36 #include <linux/blk-mq.h>
37 #include <linux/spinlock.h>
38 #include <uapi/linux/loop.h>
39
40 /* Possible states of device */
41 enum {
42 Lo_unbound,
43 Lo_bound,
44 Lo_rundown,
45 Lo_deleting,
46 };
47
48 struct loop_device {
49 int lo_number;
50 loff_t lo_offset;
51 loff_t lo_sizelimit;
52 int lo_flags;
53 char lo_file_name[LO_NAME_SIZE];
54
55 struct file *lo_backing_file;
56 unsigned int lo_min_dio_size;
57 struct block_device *lo_device;
58
59 gfp_t old_gfp_mask;
60
61 spinlock_t lo_lock;
62 int lo_state;
63 spinlock_t lo_work_lock;
64 struct workqueue_struct *workqueue;
65 struct work_struct rootcg_work;
66 struct list_head rootcg_cmd_list;
67 struct list_head idle_worker_list;
68 struct rb_root worker_tree;
69 struct timer_list timer;
70 bool sysfs_inited;
71
72 struct request_queue *lo_queue;
73 struct blk_mq_tag_set tag_set;
74 struct gendisk *lo_disk;
75 struct mutex lo_mutex;
76 bool idr_visible;
77 };
78
79 struct loop_cmd {
80 struct list_head list_entry;
81 bool use_aio; /* use AIO interface to handle I/O */
82 atomic_t ref; /* only for aio */
83 long ret;
84 struct kiocb iocb;
85 struct bio_vec *bvec;
86 struct cgroup_subsys_state *blkcg_css;
87 struct cgroup_subsys_state *memcg_css;
88 };
89
90 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
91 #define LOOP_DEFAULT_HW_Q_DEPTH 128
92
93 static DEFINE_IDR(loop_index_idr);
94 static DEFINE_MUTEX(loop_ctl_mutex);
95 static DEFINE_MUTEX(loop_validate_mutex);
96
97 /**
98 * loop_global_lock_killable() - take locks for safe loop_validate_file() test
99 *
100 * @lo: struct loop_device
101 * @global: true if @lo is about to bind another "struct loop_device", false otherwise
102 *
103 * Returns 0 on success, -EINTR otherwise.
104 *
105 * Since loop_validate_file() traverses on other "struct loop_device" if
106 * is_loop_device() is true, we need a global lock for serializing concurrent
107 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
108 */
loop_global_lock_killable(struct loop_device * lo,bool global)109 static int loop_global_lock_killable(struct loop_device *lo, bool global)
110 {
111 int err;
112
113 if (global) {
114 err = mutex_lock_killable(&loop_validate_mutex);
115 if (err)
116 return err;
117 }
118 err = mutex_lock_killable(&lo->lo_mutex);
119 if (err && global)
120 mutex_unlock(&loop_validate_mutex);
121 return err;
122 }
123
124 /**
125 * loop_global_unlock() - release locks taken by loop_global_lock_killable()
126 *
127 * @lo: struct loop_device
128 * @global: true if @lo was about to bind another "struct loop_device", false otherwise
129 */
loop_global_unlock(struct loop_device * lo,bool global)130 static void loop_global_unlock(struct loop_device *lo, bool global)
131 {
132 mutex_unlock(&lo->lo_mutex);
133 if (global)
134 mutex_unlock(&loop_validate_mutex);
135 }
136
137 static int max_part;
138 static int part_shift;
139
get_size(loff_t offset,loff_t sizelimit,struct file * file)140 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
141 {
142 loff_t loopsize;
143
144 /* Compute loopsize in bytes */
145 loopsize = i_size_read(file->f_mapping->host);
146 if (offset > 0)
147 loopsize -= offset;
148 /* offset is beyond i_size, weird but possible */
149 if (loopsize < 0)
150 return 0;
151
152 if (sizelimit > 0 && sizelimit < loopsize)
153 loopsize = sizelimit;
154 /*
155 * Unfortunately, if we want to do I/O on the device,
156 * the number of 512-byte sectors has to fit into a sector_t.
157 */
158 return loopsize >> 9;
159 }
160
get_loop_size(struct loop_device * lo,struct file * file)161 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
162 {
163 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
164 }
165
166 /*
167 * We support direct I/O only if lo_offset is aligned with the logical I/O size
168 * of backing device, and the logical block size of loop is bigger than that of
169 * the backing device.
170 */
lo_can_use_dio(struct loop_device * lo)171 static bool lo_can_use_dio(struct loop_device *lo)
172 {
173 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT))
174 return false;
175 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size)
176 return false;
177 if (lo->lo_offset & (lo->lo_min_dio_size - 1))
178 return false;
179 return true;
180 }
181
182 /*
183 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by
184 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently
185 * disabled when the device block size is too small or the offset is unaligned.
186 *
187 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and
188 * not the originally passed in one.
189 */
loop_update_dio(struct loop_device * lo)190 static inline void loop_update_dio(struct loop_device *lo)
191 {
192 lockdep_assert_held(&lo->lo_mutex);
193 WARN_ON_ONCE(lo->lo_state == Lo_bound &&
194 lo->lo_queue->mq_freeze_depth == 0);
195
196 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo))
197 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
198 }
199
200 /**
201 * loop_set_size() - sets device size and notifies userspace
202 * @lo: struct loop_device to set the size for
203 * @size: new size of the loop device
204 *
205 * Callers must validate that the size passed into this function fits into
206 * a sector_t, eg using loop_validate_size()
207 */
loop_set_size(struct loop_device * lo,loff_t size)208 static void loop_set_size(struct loop_device *lo, loff_t size)
209 {
210 if (!set_capacity_and_notify(lo->lo_disk, size))
211 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
212 }
213
loop_clear_limits(struct loop_device * lo,int mode)214 static void loop_clear_limits(struct loop_device *lo, int mode)
215 {
216 struct queue_limits lim = queue_limits_start_update(lo->lo_queue);
217
218 if (mode & FALLOC_FL_ZERO_RANGE)
219 lim.max_write_zeroes_sectors = 0;
220
221 if (mode & FALLOC_FL_PUNCH_HOLE) {
222 lim.max_hw_discard_sectors = 0;
223 lim.discard_granularity = 0;
224 }
225
226 /*
227 * XXX: this updates the queue limits without freezing the queue, which
228 * is against the locking protocol and dangerous. But we can't just
229 * freeze the queue as we're inside the ->queue_rq method here. So this
230 * should move out into a workqueue unless we get the file operations to
231 * advertise if they support specific fallocate operations.
232 */
233 queue_limits_commit_update(lo->lo_queue, &lim);
234 }
235
lo_fallocate(struct loop_device * lo,struct request * rq,loff_t pos,int mode)236 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
237 int mode)
238 {
239 /*
240 * We use fallocate to manipulate the space mappings used by the image
241 * a.k.a. discard/zerorange.
242 */
243 struct file *file = lo->lo_backing_file;
244 int ret;
245
246 mode |= FALLOC_FL_KEEP_SIZE;
247
248 if (!bdev_max_discard_sectors(lo->lo_device))
249 return -EOPNOTSUPP;
250
251 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
252 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
253 return -EIO;
254
255 /*
256 * We initially configure the limits in a hope that fallocate is
257 * supported and clear them here if that turns out not to be true.
258 */
259 if (unlikely(ret == -EOPNOTSUPP))
260 loop_clear_limits(lo, mode);
261
262 return ret;
263 }
264
lo_req_flush(struct loop_device * lo,struct request * rq)265 static int lo_req_flush(struct loop_device *lo, struct request *rq)
266 {
267 int ret = vfs_fsync(lo->lo_backing_file, 0);
268 if (unlikely(ret && ret != -EINVAL))
269 ret = -EIO;
270
271 return ret;
272 }
273
lo_complete_rq(struct request * rq)274 static void lo_complete_rq(struct request *rq)
275 {
276 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
277 blk_status_t ret = BLK_STS_OK;
278
279 if (cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
280 req_op(rq) != REQ_OP_READ) {
281 if (cmd->ret < 0)
282 ret = errno_to_blk_status(cmd->ret);
283 goto end_io;
284 }
285
286 /*
287 * Short READ - if we got some data, advance our request and
288 * retry it. If we got no data, end the rest with EIO.
289 */
290 if (cmd->ret) {
291 blk_update_request(rq, BLK_STS_OK, cmd->ret);
292 cmd->ret = 0;
293 blk_mq_requeue_request(rq, true);
294 } else {
295 struct bio *bio = rq->bio;
296
297 while (bio) {
298 zero_fill_bio(bio);
299 bio = bio->bi_next;
300 }
301
302 ret = BLK_STS_IOERR;
303 end_io:
304 blk_mq_end_request(rq, ret);
305 }
306 }
307
lo_rw_aio_do_completion(struct loop_cmd * cmd)308 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
309 {
310 struct request *rq = blk_mq_rq_from_pdu(cmd);
311
312 if (!atomic_dec_and_test(&cmd->ref))
313 return;
314 kfree(cmd->bvec);
315 cmd->bvec = NULL;
316 if (likely(!blk_should_fake_timeout(rq->q)))
317 blk_mq_complete_request(rq);
318 }
319
lo_rw_aio_complete(struct kiocb * iocb,long ret)320 static void lo_rw_aio_complete(struct kiocb *iocb, long ret)
321 {
322 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
323
324 cmd->ret = ret;
325 lo_rw_aio_do_completion(cmd);
326 }
327
lo_rw_aio(struct loop_device * lo,struct loop_cmd * cmd,loff_t pos,int rw)328 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
329 loff_t pos, int rw)
330 {
331 struct iov_iter iter;
332 struct req_iterator rq_iter;
333 struct bio_vec *bvec;
334 struct request *rq = blk_mq_rq_from_pdu(cmd);
335 struct bio *bio = rq->bio;
336 struct file *file = lo->lo_backing_file;
337 struct bio_vec tmp;
338 unsigned int offset;
339 int nr_bvec = 0;
340 int ret;
341
342 rq_for_each_bvec(tmp, rq, rq_iter)
343 nr_bvec++;
344
345 if (rq->bio != rq->biotail) {
346
347 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
348 GFP_NOIO);
349 if (!bvec)
350 return -EIO;
351 cmd->bvec = bvec;
352
353 /*
354 * The bios of the request may be started from the middle of
355 * the 'bvec' because of bio splitting, so we can't directly
356 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
357 * API will take care of all details for us.
358 */
359 rq_for_each_bvec(tmp, rq, rq_iter) {
360 *bvec = tmp;
361 bvec++;
362 }
363 bvec = cmd->bvec;
364 offset = 0;
365 } else {
366 /*
367 * Same here, this bio may be started from the middle of the
368 * 'bvec' because of bio splitting, so offset from the bvec
369 * must be passed to iov iterator
370 */
371 offset = bio->bi_iter.bi_bvec_done;
372 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
373 }
374 atomic_set(&cmd->ref, 2);
375
376 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
377 iter.iov_offset = offset;
378
379 cmd->iocb.ki_pos = pos;
380 cmd->iocb.ki_filp = file;
381 cmd->iocb.ki_ioprio = req_get_ioprio(rq);
382 if (cmd->use_aio) {
383 cmd->iocb.ki_complete = lo_rw_aio_complete;
384 cmd->iocb.ki_flags = IOCB_DIRECT;
385 } else {
386 cmd->iocb.ki_complete = NULL;
387 cmd->iocb.ki_flags = 0;
388 }
389
390 if (rw == ITER_SOURCE)
391 ret = file->f_op->write_iter(&cmd->iocb, &iter);
392 else
393 ret = file->f_op->read_iter(&cmd->iocb, &iter);
394
395 lo_rw_aio_do_completion(cmd);
396
397 if (ret != -EIOCBQUEUED)
398 lo_rw_aio_complete(&cmd->iocb, ret);
399 return -EIOCBQUEUED;
400 }
401
do_req_filebacked(struct loop_device * lo,struct request * rq)402 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
403 {
404 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
405 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
406
407 switch (req_op(rq)) {
408 case REQ_OP_FLUSH:
409 return lo_req_flush(lo, rq);
410 case REQ_OP_WRITE_ZEROES:
411 /*
412 * If the caller doesn't want deallocation, call zeroout to
413 * write zeroes the range. Otherwise, punch them out.
414 */
415 return lo_fallocate(lo, rq, pos,
416 (rq->cmd_flags & REQ_NOUNMAP) ?
417 FALLOC_FL_ZERO_RANGE :
418 FALLOC_FL_PUNCH_HOLE);
419 case REQ_OP_DISCARD:
420 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
421 case REQ_OP_WRITE:
422 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE);
423 case REQ_OP_READ:
424 return lo_rw_aio(lo, cmd, pos, ITER_DEST);
425 default:
426 WARN_ON_ONCE(1);
427 return -EIO;
428 }
429 }
430
loop_reread_partitions(struct loop_device * lo)431 static void loop_reread_partitions(struct loop_device *lo)
432 {
433 int rc;
434
435 mutex_lock(&lo->lo_disk->open_mutex);
436 rc = bdev_disk_changed(lo->lo_disk, false);
437 mutex_unlock(&lo->lo_disk->open_mutex);
438 if (rc)
439 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
440 __func__, lo->lo_number, lo->lo_file_name, rc);
441 }
442
loop_query_min_dio_size(struct loop_device * lo)443 static unsigned int loop_query_min_dio_size(struct loop_device *lo)
444 {
445 struct file *file = lo->lo_backing_file;
446 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev;
447 struct kstat st;
448
449 /*
450 * Use the minimal dio alignment of the file system if provided.
451 */
452 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) &&
453 (st.result_mask & STATX_DIOALIGN))
454 return st.dio_offset_align;
455
456 /*
457 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only
458 * a handful of file systems support the STATX_DIOALIGN flag.
459 */
460 if (sb_bdev)
461 return bdev_logical_block_size(sb_bdev);
462 return SECTOR_SIZE;
463 }
464
is_loop_device(struct file * file)465 static inline int is_loop_device(struct file *file)
466 {
467 struct inode *i = file->f_mapping->host;
468
469 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
470 }
471
loop_validate_file(struct file * file,struct block_device * bdev)472 static int loop_validate_file(struct file *file, struct block_device *bdev)
473 {
474 struct inode *inode = file->f_mapping->host;
475 struct file *f = file;
476
477 /* Avoid recursion */
478 while (is_loop_device(f)) {
479 struct loop_device *l;
480
481 lockdep_assert_held(&loop_validate_mutex);
482 if (f->f_mapping->host->i_rdev == bdev->bd_dev)
483 return -EBADF;
484
485 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
486 if (l->lo_state != Lo_bound)
487 return -EINVAL;
488 /* Order wrt setting lo->lo_backing_file in loop_configure(). */
489 rmb();
490 f = l->lo_backing_file;
491 }
492 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
493 return -EINVAL;
494 return 0;
495 }
496
loop_assign_backing_file(struct loop_device * lo,struct file * file)497 static void loop_assign_backing_file(struct loop_device *lo, struct file *file)
498 {
499 lo->lo_backing_file = file;
500 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
501 mapping_set_gfp_mask(file->f_mapping,
502 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS));
503 if (lo->lo_backing_file->f_flags & O_DIRECT)
504 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
505 lo->lo_min_dio_size = loop_query_min_dio_size(lo);
506 }
507
508 /*
509 * loop_change_fd switched the backing store of a loopback device to
510 * a new file. This is useful for operating system installers to free up
511 * the original file and in High Availability environments to switch to
512 * an alternative location for the content in case of server meltdown.
513 * This can only work if the loop device is used read-only, and if the
514 * new backing store is the same size and type as the old backing store.
515 */
loop_change_fd(struct loop_device * lo,struct block_device * bdev,unsigned int arg)516 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
517 unsigned int arg)
518 {
519 struct file *file = fget(arg);
520 struct file *old_file;
521 unsigned int memflags;
522 int error;
523 bool partscan;
524 bool is_loop;
525
526 if (!file)
527 return -EBADF;
528
529 /* suppress uevents while reconfiguring the device */
530 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
531
532 is_loop = is_loop_device(file);
533 error = loop_global_lock_killable(lo, is_loop);
534 if (error)
535 goto out_putf;
536 error = -ENXIO;
537 if (lo->lo_state != Lo_bound)
538 goto out_err;
539
540 /* the loop device has to be read-only */
541 error = -EINVAL;
542 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
543 goto out_err;
544
545 error = loop_validate_file(file, bdev);
546 if (error)
547 goto out_err;
548
549 old_file = lo->lo_backing_file;
550
551 error = -EINVAL;
552
553 /* size of the new backing store needs to be the same */
554 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
555 goto out_err;
556
557 /*
558 * We might switch to direct I/O mode for the loop device, write back
559 * all dirty data the page cache now that so that the individual I/O
560 * operations don't have to do that.
561 */
562 vfs_fsync(file, 0);
563
564 /* and ... switch */
565 disk_force_media_change(lo->lo_disk);
566 memflags = blk_mq_freeze_queue(lo->lo_queue);
567 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
568 loop_assign_backing_file(lo, file);
569 loop_update_dio(lo);
570 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
571 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
572 loop_global_unlock(lo, is_loop);
573
574 /*
575 * Flush loop_validate_file() before fput(), for l->lo_backing_file
576 * might be pointing at old_file which might be the last reference.
577 */
578 if (!is_loop) {
579 mutex_lock(&loop_validate_mutex);
580 mutex_unlock(&loop_validate_mutex);
581 }
582 /*
583 * We must drop file reference outside of lo_mutex as dropping
584 * the file ref can take open_mutex which creates circular locking
585 * dependency.
586 */
587 fput(old_file);
588 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
589 if (partscan)
590 loop_reread_partitions(lo);
591
592 error = 0;
593 done:
594 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
595 return error;
596
597 out_err:
598 loop_global_unlock(lo, is_loop);
599 out_putf:
600 fput(file);
601 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
602 goto done;
603 }
604
605 /* loop sysfs attributes */
606
loop_attr_show(struct device * dev,char * page,ssize_t (* callback)(struct loop_device *,char *))607 static ssize_t loop_attr_show(struct device *dev, char *page,
608 ssize_t (*callback)(struct loop_device *, char *))
609 {
610 struct gendisk *disk = dev_to_disk(dev);
611 struct loop_device *lo = disk->private_data;
612
613 return callback(lo, page);
614 }
615
616 #define LOOP_ATTR_RO(_name) \
617 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
618 static ssize_t loop_attr_do_show_##_name(struct device *d, \
619 struct device_attribute *attr, char *b) \
620 { \
621 return loop_attr_show(d, b, loop_attr_##_name##_show); \
622 } \
623 static struct device_attribute loop_attr_##_name = \
624 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
625
loop_attr_backing_file_show(struct loop_device * lo,char * buf)626 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
627 {
628 ssize_t ret;
629 char *p = NULL;
630
631 spin_lock_irq(&lo->lo_lock);
632 if (lo->lo_backing_file)
633 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
634 spin_unlock_irq(&lo->lo_lock);
635
636 if (IS_ERR_OR_NULL(p))
637 ret = PTR_ERR(p);
638 else {
639 ret = strlen(p);
640 memmove(buf, p, ret);
641 buf[ret++] = '\n';
642 buf[ret] = 0;
643 }
644
645 return ret;
646 }
647
loop_attr_offset_show(struct loop_device * lo,char * buf)648 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
649 {
650 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
651 }
652
loop_attr_sizelimit_show(struct loop_device * lo,char * buf)653 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
654 {
655 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
656 }
657
loop_attr_autoclear_show(struct loop_device * lo,char * buf)658 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
659 {
660 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
661
662 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
663 }
664
loop_attr_partscan_show(struct loop_device * lo,char * buf)665 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
666 {
667 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
668
669 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
670 }
671
loop_attr_dio_show(struct loop_device * lo,char * buf)672 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
673 {
674 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
675
676 return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
677 }
678
679 LOOP_ATTR_RO(backing_file);
680 LOOP_ATTR_RO(offset);
681 LOOP_ATTR_RO(sizelimit);
682 LOOP_ATTR_RO(autoclear);
683 LOOP_ATTR_RO(partscan);
684 LOOP_ATTR_RO(dio);
685
686 static struct attribute *loop_attrs[] = {
687 &loop_attr_backing_file.attr,
688 &loop_attr_offset.attr,
689 &loop_attr_sizelimit.attr,
690 &loop_attr_autoclear.attr,
691 &loop_attr_partscan.attr,
692 &loop_attr_dio.attr,
693 NULL,
694 };
695
696 static struct attribute_group loop_attribute_group = {
697 .name = "loop",
698 .attrs= loop_attrs,
699 };
700
loop_sysfs_init(struct loop_device * lo)701 static void loop_sysfs_init(struct loop_device *lo)
702 {
703 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
704 &loop_attribute_group);
705 }
706
loop_sysfs_exit(struct loop_device * lo)707 static void loop_sysfs_exit(struct loop_device *lo)
708 {
709 if (lo->sysfs_inited)
710 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
711 &loop_attribute_group);
712 }
713
loop_get_discard_config(struct loop_device * lo,u32 * granularity,u32 * max_discard_sectors)714 static void loop_get_discard_config(struct loop_device *lo,
715 u32 *granularity, u32 *max_discard_sectors)
716 {
717 struct file *file = lo->lo_backing_file;
718 struct inode *inode = file->f_mapping->host;
719 struct kstatfs sbuf;
720
721 /*
722 * If the backing device is a block device, mirror its zeroing
723 * capability. Set the discard sectors to the block device's zeroing
724 * capabilities because loop discards result in blkdev_issue_zeroout(),
725 * not blkdev_issue_discard(). This maintains consistent behavior with
726 * file-backed loop devices: discarded regions read back as zero.
727 */
728 if (S_ISBLK(inode->i_mode)) {
729 struct block_device *bdev = I_BDEV(inode);
730
731 *max_discard_sectors = bdev_write_zeroes_sectors(bdev);
732 *granularity = bdev_discard_granularity(bdev);
733
734 /*
735 * We use punch hole to reclaim the free space used by the
736 * image a.k.a. discard.
737 */
738 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) {
739 *max_discard_sectors = UINT_MAX >> 9;
740 *granularity = sbuf.f_bsize;
741 }
742 }
743
744 struct loop_worker {
745 struct rb_node rb_node;
746 struct work_struct work;
747 struct list_head cmd_list;
748 struct list_head idle_list;
749 struct loop_device *lo;
750 struct cgroup_subsys_state *blkcg_css;
751 unsigned long last_ran_at;
752 };
753
754 static void loop_workfn(struct work_struct *work);
755
756 #ifdef CONFIG_BLK_CGROUP
queue_on_root_worker(struct cgroup_subsys_state * css)757 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
758 {
759 return !css || css == blkcg_root_css;
760 }
761 #else
queue_on_root_worker(struct cgroup_subsys_state * css)762 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
763 {
764 return !css;
765 }
766 #endif
767
loop_queue_work(struct loop_device * lo,struct loop_cmd * cmd)768 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
769 {
770 struct rb_node **node, *parent = NULL;
771 struct loop_worker *cur_worker, *worker = NULL;
772 struct work_struct *work;
773 struct list_head *cmd_list;
774
775 spin_lock_irq(&lo->lo_work_lock);
776
777 if (queue_on_root_worker(cmd->blkcg_css))
778 goto queue_work;
779
780 node = &lo->worker_tree.rb_node;
781
782 while (*node) {
783 parent = *node;
784 cur_worker = container_of(*node, struct loop_worker, rb_node);
785 if (cur_worker->blkcg_css == cmd->blkcg_css) {
786 worker = cur_worker;
787 break;
788 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
789 node = &(*node)->rb_left;
790 } else {
791 node = &(*node)->rb_right;
792 }
793 }
794 if (worker)
795 goto queue_work;
796
797 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
798 /*
799 * In the event we cannot allocate a worker, just queue on the
800 * rootcg worker and issue the I/O as the rootcg
801 */
802 if (!worker) {
803 cmd->blkcg_css = NULL;
804 if (cmd->memcg_css)
805 css_put(cmd->memcg_css);
806 cmd->memcg_css = NULL;
807 goto queue_work;
808 }
809
810 worker->blkcg_css = cmd->blkcg_css;
811 css_get(worker->blkcg_css);
812 INIT_WORK(&worker->work, loop_workfn);
813 INIT_LIST_HEAD(&worker->cmd_list);
814 INIT_LIST_HEAD(&worker->idle_list);
815 worker->lo = lo;
816 rb_link_node(&worker->rb_node, parent, node);
817 rb_insert_color(&worker->rb_node, &lo->worker_tree);
818 queue_work:
819 if (worker) {
820 /*
821 * We need to remove from the idle list here while
822 * holding the lock so that the idle timer doesn't
823 * free the worker
824 */
825 if (!list_empty(&worker->idle_list))
826 list_del_init(&worker->idle_list);
827 work = &worker->work;
828 cmd_list = &worker->cmd_list;
829 } else {
830 work = &lo->rootcg_work;
831 cmd_list = &lo->rootcg_cmd_list;
832 }
833 list_add_tail(&cmd->list_entry, cmd_list);
834 queue_work(lo->workqueue, work);
835 spin_unlock_irq(&lo->lo_work_lock);
836 }
837
loop_set_timer(struct loop_device * lo)838 static void loop_set_timer(struct loop_device *lo)
839 {
840 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
841 }
842
loop_free_idle_workers(struct loop_device * lo,bool delete_all)843 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all)
844 {
845 struct loop_worker *pos, *worker;
846
847 spin_lock_irq(&lo->lo_work_lock);
848 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
849 idle_list) {
850 if (!delete_all &&
851 time_is_after_jiffies(worker->last_ran_at +
852 LOOP_IDLE_WORKER_TIMEOUT))
853 break;
854 list_del(&worker->idle_list);
855 rb_erase(&worker->rb_node, &lo->worker_tree);
856 css_put(worker->blkcg_css);
857 kfree(worker);
858 }
859 if (!list_empty(&lo->idle_worker_list))
860 loop_set_timer(lo);
861 spin_unlock_irq(&lo->lo_work_lock);
862 }
863
loop_free_idle_workers_timer(struct timer_list * timer)864 static void loop_free_idle_workers_timer(struct timer_list *timer)
865 {
866 struct loop_device *lo = container_of(timer, struct loop_device, timer);
867
868 return loop_free_idle_workers(lo, false);
869 }
870
871 /**
872 * loop_set_status_from_info - configure device from loop_info
873 * @lo: struct loop_device to configure
874 * @info: struct loop_info64 to configure the device with
875 *
876 * Configures the loop device parameters according to the passed
877 * in loop_info64 configuration.
878 */
879 static int
loop_set_status_from_info(struct loop_device * lo,const struct loop_info64 * info)880 loop_set_status_from_info(struct loop_device *lo,
881 const struct loop_info64 *info)
882 {
883 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
884 return -EINVAL;
885
886 switch (info->lo_encrypt_type) {
887 case LO_CRYPT_NONE:
888 break;
889 case LO_CRYPT_XOR:
890 pr_warn("support for the xor transformation has been removed.\n");
891 return -EINVAL;
892 case LO_CRYPT_CRYPTOAPI:
893 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n");
894 return -EINVAL;
895 default:
896 return -EINVAL;
897 }
898
899 /* Avoid assigning overflow values */
900 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
901 return -EOVERFLOW;
902
903 lo->lo_offset = info->lo_offset;
904 lo->lo_sizelimit = info->lo_sizelimit;
905
906 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
907 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
908 return 0;
909 }
910
loop_default_blocksize(struct loop_device * lo)911 static unsigned int loop_default_blocksize(struct loop_device *lo)
912 {
913 /* In case of direct I/O, match underlying minimum I/O size */
914 if (lo->lo_flags & LO_FLAGS_DIRECT_IO)
915 return lo->lo_min_dio_size;
916 return SECTOR_SIZE;
917 }
918
loop_update_limits(struct loop_device * lo,struct queue_limits * lim,unsigned int bsize)919 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim,
920 unsigned int bsize)
921 {
922 struct file *file = lo->lo_backing_file;
923 struct inode *inode = file->f_mapping->host;
924 struct block_device *backing_bdev = NULL;
925 u32 granularity = 0, max_discard_sectors = 0;
926
927 if (S_ISBLK(inode->i_mode))
928 backing_bdev = I_BDEV(inode);
929 else if (inode->i_sb->s_bdev)
930 backing_bdev = inode->i_sb->s_bdev;
931
932 if (!bsize)
933 bsize = loop_default_blocksize(lo);
934
935 loop_get_discard_config(lo, &granularity, &max_discard_sectors);
936
937 lim->logical_block_size = bsize;
938 lim->physical_block_size = bsize;
939 lim->io_min = bsize;
940 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL);
941 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY))
942 lim->features |= BLK_FEAT_WRITE_CACHE;
943 if (backing_bdev && !bdev_nonrot(backing_bdev))
944 lim->features |= BLK_FEAT_ROTATIONAL;
945 lim->max_hw_discard_sectors = max_discard_sectors;
946 lim->max_write_zeroes_sectors = max_discard_sectors;
947 if (max_discard_sectors)
948 lim->discard_granularity = granularity;
949 else
950 lim->discard_granularity = 0;
951 }
952
loop_configure(struct loop_device * lo,blk_mode_t mode,struct block_device * bdev,const struct loop_config * config)953 static int loop_configure(struct loop_device *lo, blk_mode_t mode,
954 struct block_device *bdev,
955 const struct loop_config *config)
956 {
957 struct file *file = fget(config->fd);
958 struct queue_limits lim;
959 int error;
960 loff_t size;
961 bool partscan;
962 bool is_loop;
963
964 if (!file)
965 return -EBADF;
966 is_loop = is_loop_device(file);
967
968 /* This is safe, since we have a reference from open(). */
969 __module_get(THIS_MODULE);
970
971 /*
972 * If we don't hold exclusive handle for the device, upgrade to it
973 * here to avoid changing device under exclusive owner.
974 */
975 if (!(mode & BLK_OPEN_EXCL)) {
976 error = bd_prepare_to_claim(bdev, loop_configure, NULL);
977 if (error)
978 goto out_putf;
979 }
980
981 error = loop_global_lock_killable(lo, is_loop);
982 if (error)
983 goto out_bdev;
984
985 error = -EBUSY;
986 if (lo->lo_state != Lo_unbound)
987 goto out_unlock;
988
989 error = loop_validate_file(file, bdev);
990 if (error)
991 goto out_unlock;
992
993 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
994 error = -EINVAL;
995 goto out_unlock;
996 }
997
998 error = loop_set_status_from_info(lo, &config->info);
999 if (error)
1000 goto out_unlock;
1001 lo->lo_flags = config->info.lo_flags;
1002
1003 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) ||
1004 !file->f_op->write_iter)
1005 lo->lo_flags |= LO_FLAGS_READ_ONLY;
1006
1007 if (!lo->workqueue) {
1008 lo->workqueue = alloc_workqueue("loop%d",
1009 WQ_UNBOUND | WQ_FREEZABLE,
1010 0, lo->lo_number);
1011 if (!lo->workqueue) {
1012 error = -ENOMEM;
1013 goto out_unlock;
1014 }
1015 }
1016
1017 /* suppress uevents while reconfiguring the device */
1018 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
1019
1020 disk_force_media_change(lo->lo_disk);
1021 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1022
1023 lo->lo_device = bdev;
1024 loop_assign_backing_file(lo, file);
1025
1026 lim = queue_limits_start_update(lo->lo_queue);
1027 loop_update_limits(lo, &lim, config->block_size);
1028 /* No need to freeze the queue as the device isn't bound yet. */
1029 error = queue_limits_commit_update(lo->lo_queue, &lim);
1030 if (error)
1031 goto out_unlock;
1032
1033 /*
1034 * We might switch to direct I/O mode for the loop device, write back
1035 * all dirty data the page cache now that so that the individual I/O
1036 * operations don't have to do that.
1037 */
1038 vfs_fsync(file, 0);
1039
1040 loop_update_dio(lo);
1041 loop_sysfs_init(lo);
1042
1043 size = get_loop_size(lo, file);
1044 loop_set_size(lo, size);
1045
1046 /* Order wrt reading lo_state in loop_validate_file(). */
1047 wmb();
1048
1049 lo->lo_state = Lo_bound;
1050 if (part_shift)
1051 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1052 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1053 if (partscan)
1054 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1055
1056 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
1057 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1058
1059 loop_global_unlock(lo, is_loop);
1060 if (partscan)
1061 loop_reread_partitions(lo);
1062
1063 if (!(mode & BLK_OPEN_EXCL))
1064 bd_abort_claiming(bdev, loop_configure);
1065
1066 return 0;
1067
1068 out_unlock:
1069 loop_global_unlock(lo, is_loop);
1070 out_bdev:
1071 if (!(mode & BLK_OPEN_EXCL))
1072 bd_abort_claiming(bdev, loop_configure);
1073 out_putf:
1074 fput(file);
1075 /* This is safe: open() is still holding a reference. */
1076 module_put(THIS_MODULE);
1077 return error;
1078 }
1079
__loop_clr_fd(struct loop_device * lo)1080 static void __loop_clr_fd(struct loop_device *lo)
1081 {
1082 struct queue_limits lim;
1083 struct file *filp;
1084 gfp_t gfp = lo->old_gfp_mask;
1085
1086 spin_lock_irq(&lo->lo_lock);
1087 filp = lo->lo_backing_file;
1088 lo->lo_backing_file = NULL;
1089 spin_unlock_irq(&lo->lo_lock);
1090
1091 lo->lo_device = NULL;
1092 lo->lo_offset = 0;
1093 lo->lo_sizelimit = 0;
1094 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1095
1096 /*
1097 * Reset the block size to the default.
1098 *
1099 * No queue freezing needed because this is called from the final
1100 * ->release call only, so there can't be any outstanding I/O.
1101 */
1102 lim = queue_limits_start_update(lo->lo_queue);
1103 lim.logical_block_size = SECTOR_SIZE;
1104 lim.physical_block_size = SECTOR_SIZE;
1105 lim.io_min = SECTOR_SIZE;
1106 queue_limits_commit_update(lo->lo_queue, &lim);
1107
1108 invalidate_disk(lo->lo_disk);
1109 loop_sysfs_exit(lo);
1110 /* let user-space know about this change */
1111 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1112 mapping_set_gfp_mask(filp->f_mapping, gfp);
1113 /* This is safe: open() is still holding a reference. */
1114 module_put(THIS_MODULE);
1115
1116 disk_force_media_change(lo->lo_disk);
1117
1118 if (lo->lo_flags & LO_FLAGS_PARTSCAN) {
1119 int err;
1120
1121 /*
1122 * open_mutex has been held already in release path, so don't
1123 * acquire it if this function is called in such case.
1124 *
1125 * If the reread partition isn't from release path, lo_refcnt
1126 * must be at least one and it can only become zero when the
1127 * current holder is released.
1128 */
1129 err = bdev_disk_changed(lo->lo_disk, false);
1130 if (err)
1131 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1132 __func__, lo->lo_number, err);
1133 /* Device is gone, no point in returning error */
1134 }
1135
1136 /*
1137 * lo->lo_state is set to Lo_unbound here after above partscan has
1138 * finished. There cannot be anybody else entering __loop_clr_fd() as
1139 * Lo_rundown state protects us from all the other places trying to
1140 * change the 'lo' device.
1141 */
1142 lo->lo_flags = 0;
1143 if (!part_shift)
1144 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1145 mutex_lock(&lo->lo_mutex);
1146 lo->lo_state = Lo_unbound;
1147 mutex_unlock(&lo->lo_mutex);
1148
1149 /*
1150 * Need not hold lo_mutex to fput backing file. Calling fput holding
1151 * lo_mutex triggers a circular lock dependency possibility warning as
1152 * fput can take open_mutex which is usually taken before lo_mutex.
1153 */
1154 fput(filp);
1155 }
1156
loop_clr_fd(struct loop_device * lo)1157 static int loop_clr_fd(struct loop_device *lo)
1158 {
1159 int err;
1160
1161 /*
1162 * Since lo_ioctl() is called without locks held, it is possible that
1163 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel.
1164 *
1165 * Therefore, use global lock when setting Lo_rundown state in order to
1166 * make sure that loop_validate_file() will fail if the "struct file"
1167 * which loop_configure()/loop_change_fd() found via fget() was this
1168 * loop device.
1169 */
1170 err = loop_global_lock_killable(lo, true);
1171 if (err)
1172 return err;
1173 if (lo->lo_state != Lo_bound) {
1174 loop_global_unlock(lo, true);
1175 return -ENXIO;
1176 }
1177 /*
1178 * Mark the device for removing the backing device on last close.
1179 * If we are the only opener, also switch the state to roundown here to
1180 * prevent new openers from coming in.
1181 */
1182
1183 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1184 if (disk_openers(lo->lo_disk) == 1)
1185 lo->lo_state = Lo_rundown;
1186 loop_global_unlock(lo, true);
1187
1188 return 0;
1189 }
1190
1191 static int
loop_set_status(struct loop_device * lo,const struct loop_info64 * info)1192 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1193 {
1194 int err;
1195 bool partscan = false;
1196 bool size_changed = false;
1197 unsigned int memflags;
1198
1199 err = mutex_lock_killable(&lo->lo_mutex);
1200 if (err)
1201 return err;
1202 if (lo->lo_state != Lo_bound) {
1203 err = -ENXIO;
1204 goto out_unlock;
1205 }
1206
1207 if (lo->lo_offset != info->lo_offset ||
1208 lo->lo_sizelimit != info->lo_sizelimit) {
1209 size_changed = true;
1210 sync_blockdev(lo->lo_device);
1211 invalidate_bdev(lo->lo_device);
1212 }
1213
1214 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */
1215 memflags = blk_mq_freeze_queue(lo->lo_queue);
1216
1217 err = loop_set_status_from_info(lo, info);
1218 if (err)
1219 goto out_unfreeze;
1220
1221 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1222 (info->lo_flags & LO_FLAGS_PARTSCAN);
1223
1224 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1225 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS);
1226
1227 if (size_changed) {
1228 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1229 lo->lo_backing_file);
1230 loop_set_size(lo, new_size);
1231 }
1232
1233 /* update the direct I/O flag if lo_offset changed */
1234 loop_update_dio(lo);
1235
1236 out_unfreeze:
1237 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1238 if (partscan)
1239 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1240 out_unlock:
1241 mutex_unlock(&lo->lo_mutex);
1242 if (partscan)
1243 loop_reread_partitions(lo);
1244
1245 return err;
1246 }
1247
1248 static int
loop_get_status(struct loop_device * lo,struct loop_info64 * info)1249 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1250 {
1251 struct path path;
1252 struct kstat stat;
1253 int ret;
1254
1255 ret = mutex_lock_killable(&lo->lo_mutex);
1256 if (ret)
1257 return ret;
1258 if (lo->lo_state != Lo_bound) {
1259 mutex_unlock(&lo->lo_mutex);
1260 return -ENXIO;
1261 }
1262
1263 memset(info, 0, sizeof(*info));
1264 info->lo_number = lo->lo_number;
1265 info->lo_offset = lo->lo_offset;
1266 info->lo_sizelimit = lo->lo_sizelimit;
1267 info->lo_flags = lo->lo_flags;
1268 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1269
1270 /* Drop lo_mutex while we call into the filesystem. */
1271 path = lo->lo_backing_file->f_path;
1272 path_get(&path);
1273 mutex_unlock(&lo->lo_mutex);
1274 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1275 if (!ret) {
1276 info->lo_device = huge_encode_dev(stat.dev);
1277 info->lo_inode = stat.ino;
1278 info->lo_rdevice = huge_encode_dev(stat.rdev);
1279 }
1280 path_put(&path);
1281 return ret;
1282 }
1283
1284 static void
loop_info64_from_old(const struct loop_info * info,struct loop_info64 * info64)1285 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1286 {
1287 memset(info64, 0, sizeof(*info64));
1288 info64->lo_number = info->lo_number;
1289 info64->lo_device = info->lo_device;
1290 info64->lo_inode = info->lo_inode;
1291 info64->lo_rdevice = info->lo_rdevice;
1292 info64->lo_offset = info->lo_offset;
1293 info64->lo_sizelimit = 0;
1294 info64->lo_flags = info->lo_flags;
1295 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1296 }
1297
1298 static int
loop_info64_to_old(const struct loop_info64 * info64,struct loop_info * info)1299 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1300 {
1301 memset(info, 0, sizeof(*info));
1302 info->lo_number = info64->lo_number;
1303 info->lo_device = info64->lo_device;
1304 info->lo_inode = info64->lo_inode;
1305 info->lo_rdevice = info64->lo_rdevice;
1306 info->lo_offset = info64->lo_offset;
1307 info->lo_flags = info64->lo_flags;
1308 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1309
1310 /* error in case values were truncated */
1311 if (info->lo_device != info64->lo_device ||
1312 info->lo_rdevice != info64->lo_rdevice ||
1313 info->lo_inode != info64->lo_inode ||
1314 info->lo_offset != info64->lo_offset)
1315 return -EOVERFLOW;
1316
1317 return 0;
1318 }
1319
1320 static int
loop_set_status_old(struct loop_device * lo,const struct loop_info __user * arg)1321 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1322 {
1323 struct loop_info info;
1324 struct loop_info64 info64;
1325
1326 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1327 return -EFAULT;
1328 loop_info64_from_old(&info, &info64);
1329 return loop_set_status(lo, &info64);
1330 }
1331
1332 static int
loop_set_status64(struct loop_device * lo,const struct loop_info64 __user * arg)1333 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1334 {
1335 struct loop_info64 info64;
1336
1337 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1338 return -EFAULT;
1339 return loop_set_status(lo, &info64);
1340 }
1341
1342 static int
loop_get_status_old(struct loop_device * lo,struct loop_info __user * arg)1343 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1344 struct loop_info info;
1345 struct loop_info64 info64;
1346 int err;
1347
1348 if (!arg)
1349 return -EINVAL;
1350 err = loop_get_status(lo, &info64);
1351 if (!err)
1352 err = loop_info64_to_old(&info64, &info);
1353 if (!err && copy_to_user(arg, &info, sizeof(info)))
1354 err = -EFAULT;
1355
1356 return err;
1357 }
1358
1359 static int
loop_get_status64(struct loop_device * lo,struct loop_info64 __user * arg)1360 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1361 struct loop_info64 info64;
1362 int err;
1363
1364 if (!arg)
1365 return -EINVAL;
1366 err = loop_get_status(lo, &info64);
1367 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1368 err = -EFAULT;
1369
1370 return err;
1371 }
1372
loop_set_capacity(struct loop_device * lo)1373 static int loop_set_capacity(struct loop_device *lo)
1374 {
1375 loff_t size;
1376
1377 if (unlikely(lo->lo_state != Lo_bound))
1378 return -ENXIO;
1379
1380 size = get_loop_size(lo, lo->lo_backing_file);
1381 loop_set_size(lo, size);
1382
1383 return 0;
1384 }
1385
loop_set_dio(struct loop_device * lo,unsigned long arg)1386 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1387 {
1388 bool use_dio = !!arg;
1389 unsigned int memflags;
1390
1391 if (lo->lo_state != Lo_bound)
1392 return -ENXIO;
1393 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO))
1394 return 0;
1395
1396 if (use_dio) {
1397 if (!lo_can_use_dio(lo))
1398 return -EINVAL;
1399 /* flush dirty pages before starting to use direct I/O */
1400 vfs_fsync(lo->lo_backing_file, 0);
1401 }
1402
1403 memflags = blk_mq_freeze_queue(lo->lo_queue);
1404 if (use_dio)
1405 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
1406 else
1407 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
1408 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1409 return 0;
1410 }
1411
loop_set_block_size(struct loop_device * lo,unsigned long arg)1412 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1413 {
1414 struct queue_limits lim;
1415 unsigned int memflags;
1416 int err = 0;
1417
1418 if (lo->lo_state != Lo_bound)
1419 return -ENXIO;
1420
1421 if (lo->lo_queue->limits.logical_block_size == arg)
1422 return 0;
1423
1424 sync_blockdev(lo->lo_device);
1425 invalidate_bdev(lo->lo_device);
1426
1427 lim = queue_limits_start_update(lo->lo_queue);
1428 loop_update_limits(lo, &lim, arg);
1429
1430 memflags = blk_mq_freeze_queue(lo->lo_queue);
1431 err = queue_limits_commit_update(lo->lo_queue, &lim);
1432 loop_update_dio(lo);
1433 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1434
1435 return err;
1436 }
1437
lo_simple_ioctl(struct loop_device * lo,unsigned int cmd,unsigned long arg)1438 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1439 unsigned long arg)
1440 {
1441 int err;
1442
1443 err = mutex_lock_killable(&lo->lo_mutex);
1444 if (err)
1445 return err;
1446 switch (cmd) {
1447 case LOOP_SET_CAPACITY:
1448 err = loop_set_capacity(lo);
1449 break;
1450 case LOOP_SET_DIRECT_IO:
1451 err = loop_set_dio(lo, arg);
1452 break;
1453 case LOOP_SET_BLOCK_SIZE:
1454 err = loop_set_block_size(lo, arg);
1455 break;
1456 default:
1457 err = -EINVAL;
1458 }
1459 mutex_unlock(&lo->lo_mutex);
1460 return err;
1461 }
1462
lo_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1463 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode,
1464 unsigned int cmd, unsigned long arg)
1465 {
1466 struct loop_device *lo = bdev->bd_disk->private_data;
1467 void __user *argp = (void __user *) arg;
1468 int err;
1469
1470 switch (cmd) {
1471 case LOOP_SET_FD: {
1472 /*
1473 * Legacy case - pass in a zeroed out struct loop_config with
1474 * only the file descriptor set , which corresponds with the
1475 * default parameters we'd have used otherwise.
1476 */
1477 struct loop_config config;
1478
1479 memset(&config, 0, sizeof(config));
1480 config.fd = arg;
1481
1482 return loop_configure(lo, mode, bdev, &config);
1483 }
1484 case LOOP_CONFIGURE: {
1485 struct loop_config config;
1486
1487 if (copy_from_user(&config, argp, sizeof(config)))
1488 return -EFAULT;
1489
1490 return loop_configure(lo, mode, bdev, &config);
1491 }
1492 case LOOP_CHANGE_FD:
1493 return loop_change_fd(lo, bdev, arg);
1494 case LOOP_CLR_FD:
1495 return loop_clr_fd(lo);
1496 case LOOP_SET_STATUS:
1497 err = -EPERM;
1498 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1499 err = loop_set_status_old(lo, argp);
1500 break;
1501 case LOOP_GET_STATUS:
1502 return loop_get_status_old(lo, argp);
1503 case LOOP_SET_STATUS64:
1504 err = -EPERM;
1505 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1506 err = loop_set_status64(lo, argp);
1507 break;
1508 case LOOP_GET_STATUS64:
1509 return loop_get_status64(lo, argp);
1510 case LOOP_SET_CAPACITY:
1511 case LOOP_SET_DIRECT_IO:
1512 case LOOP_SET_BLOCK_SIZE:
1513 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1514 return -EPERM;
1515 fallthrough;
1516 default:
1517 err = lo_simple_ioctl(lo, cmd, arg);
1518 break;
1519 }
1520
1521 return err;
1522 }
1523
1524 #ifdef CONFIG_COMPAT
1525 struct compat_loop_info {
1526 compat_int_t lo_number; /* ioctl r/o */
1527 compat_dev_t lo_device; /* ioctl r/o */
1528 compat_ulong_t lo_inode; /* ioctl r/o */
1529 compat_dev_t lo_rdevice; /* ioctl r/o */
1530 compat_int_t lo_offset;
1531 compat_int_t lo_encrypt_type; /* obsolete, ignored */
1532 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1533 compat_int_t lo_flags; /* ioctl r/o */
1534 char lo_name[LO_NAME_SIZE];
1535 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1536 compat_ulong_t lo_init[2];
1537 char reserved[4];
1538 };
1539
1540 /*
1541 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1542 * - noinlined to reduce stack space usage in main part of driver
1543 */
1544 static noinline int
loop_info64_from_compat(const struct compat_loop_info __user * arg,struct loop_info64 * info64)1545 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1546 struct loop_info64 *info64)
1547 {
1548 struct compat_loop_info info;
1549
1550 if (copy_from_user(&info, arg, sizeof(info)))
1551 return -EFAULT;
1552
1553 memset(info64, 0, sizeof(*info64));
1554 info64->lo_number = info.lo_number;
1555 info64->lo_device = info.lo_device;
1556 info64->lo_inode = info.lo_inode;
1557 info64->lo_rdevice = info.lo_rdevice;
1558 info64->lo_offset = info.lo_offset;
1559 info64->lo_sizelimit = 0;
1560 info64->lo_flags = info.lo_flags;
1561 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1562 return 0;
1563 }
1564
1565 /*
1566 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1567 * - noinlined to reduce stack space usage in main part of driver
1568 */
1569 static noinline int
loop_info64_to_compat(const struct loop_info64 * info64,struct compat_loop_info __user * arg)1570 loop_info64_to_compat(const struct loop_info64 *info64,
1571 struct compat_loop_info __user *arg)
1572 {
1573 struct compat_loop_info info;
1574
1575 memset(&info, 0, sizeof(info));
1576 info.lo_number = info64->lo_number;
1577 info.lo_device = info64->lo_device;
1578 info.lo_inode = info64->lo_inode;
1579 info.lo_rdevice = info64->lo_rdevice;
1580 info.lo_offset = info64->lo_offset;
1581 info.lo_flags = info64->lo_flags;
1582 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1583
1584 /* error in case values were truncated */
1585 if (info.lo_device != info64->lo_device ||
1586 info.lo_rdevice != info64->lo_rdevice ||
1587 info.lo_inode != info64->lo_inode ||
1588 info.lo_offset != info64->lo_offset)
1589 return -EOVERFLOW;
1590
1591 if (copy_to_user(arg, &info, sizeof(info)))
1592 return -EFAULT;
1593 return 0;
1594 }
1595
1596 static int
loop_set_status_compat(struct loop_device * lo,const struct compat_loop_info __user * arg)1597 loop_set_status_compat(struct loop_device *lo,
1598 const struct compat_loop_info __user *arg)
1599 {
1600 struct loop_info64 info64;
1601 int ret;
1602
1603 ret = loop_info64_from_compat(arg, &info64);
1604 if (ret < 0)
1605 return ret;
1606 return loop_set_status(lo, &info64);
1607 }
1608
1609 static int
loop_get_status_compat(struct loop_device * lo,struct compat_loop_info __user * arg)1610 loop_get_status_compat(struct loop_device *lo,
1611 struct compat_loop_info __user *arg)
1612 {
1613 struct loop_info64 info64;
1614 int err;
1615
1616 if (!arg)
1617 return -EINVAL;
1618 err = loop_get_status(lo, &info64);
1619 if (!err)
1620 err = loop_info64_to_compat(&info64, arg);
1621 return err;
1622 }
1623
lo_compat_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1624 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
1625 unsigned int cmd, unsigned long arg)
1626 {
1627 struct loop_device *lo = bdev->bd_disk->private_data;
1628 int err;
1629
1630 switch(cmd) {
1631 case LOOP_SET_STATUS:
1632 err = loop_set_status_compat(lo,
1633 (const struct compat_loop_info __user *)arg);
1634 break;
1635 case LOOP_GET_STATUS:
1636 err = loop_get_status_compat(lo,
1637 (struct compat_loop_info __user *)arg);
1638 break;
1639 case LOOP_SET_CAPACITY:
1640 case LOOP_CLR_FD:
1641 case LOOP_GET_STATUS64:
1642 case LOOP_SET_STATUS64:
1643 case LOOP_CONFIGURE:
1644 arg = (unsigned long) compat_ptr(arg);
1645 fallthrough;
1646 case LOOP_SET_FD:
1647 case LOOP_CHANGE_FD:
1648 case LOOP_SET_BLOCK_SIZE:
1649 case LOOP_SET_DIRECT_IO:
1650 err = lo_ioctl(bdev, mode, cmd, arg);
1651 break;
1652 default:
1653 err = -ENOIOCTLCMD;
1654 break;
1655 }
1656 return err;
1657 }
1658 #endif
1659
lo_open(struct gendisk * disk,blk_mode_t mode)1660 static int lo_open(struct gendisk *disk, blk_mode_t mode)
1661 {
1662 struct loop_device *lo = disk->private_data;
1663 int err;
1664
1665 err = mutex_lock_killable(&lo->lo_mutex);
1666 if (err)
1667 return err;
1668
1669 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown)
1670 err = -ENXIO;
1671 mutex_unlock(&lo->lo_mutex);
1672 return err;
1673 }
1674
lo_release(struct gendisk * disk)1675 static void lo_release(struct gendisk *disk)
1676 {
1677 struct loop_device *lo = disk->private_data;
1678 bool need_clear = false;
1679
1680 if (disk_openers(disk) > 0)
1681 return;
1682 /*
1683 * Clear the backing device information if this is the last close of
1684 * a device that's been marked for auto clear, or on which LOOP_CLR_FD
1685 * has been called.
1686 */
1687
1688 mutex_lock(&lo->lo_mutex);
1689 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR))
1690 lo->lo_state = Lo_rundown;
1691
1692 need_clear = (lo->lo_state == Lo_rundown);
1693 mutex_unlock(&lo->lo_mutex);
1694
1695 if (need_clear)
1696 __loop_clr_fd(lo);
1697 }
1698
lo_free_disk(struct gendisk * disk)1699 static void lo_free_disk(struct gendisk *disk)
1700 {
1701 struct loop_device *lo = disk->private_data;
1702
1703 if (lo->workqueue)
1704 destroy_workqueue(lo->workqueue);
1705 loop_free_idle_workers(lo, true);
1706 timer_shutdown_sync(&lo->timer);
1707 mutex_destroy(&lo->lo_mutex);
1708 kfree(lo);
1709 }
1710
1711 static const struct block_device_operations lo_fops = {
1712 .owner = THIS_MODULE,
1713 .open = lo_open,
1714 .release = lo_release,
1715 .ioctl = lo_ioctl,
1716 #ifdef CONFIG_COMPAT
1717 .compat_ioctl = lo_compat_ioctl,
1718 #endif
1719 .free_disk = lo_free_disk,
1720 };
1721
1722 /*
1723 * And now the modules code and kernel interface.
1724 */
1725
1726 /*
1727 * If max_loop is specified, create that many devices upfront.
1728 * This also becomes a hard limit. If max_loop is not specified,
1729 * the default isn't a hard limit (as before commit 85c50197716c
1730 * changed the default value from 0 for max_loop=0 reasons), just
1731 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1732 * init time. Loop devices can be requested on-demand with the
1733 * /dev/loop-control interface, or be instantiated by accessing
1734 * a 'dead' device node.
1735 */
1736 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1737
1738 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
1739 static bool max_loop_specified;
1740
max_loop_param_set_int(const char * val,const struct kernel_param * kp)1741 static int max_loop_param_set_int(const char *val,
1742 const struct kernel_param *kp)
1743 {
1744 int ret;
1745
1746 ret = param_set_int(val, kp);
1747 if (ret < 0)
1748 return ret;
1749
1750 max_loop_specified = true;
1751 return 0;
1752 }
1753
1754 static const struct kernel_param_ops max_loop_param_ops = {
1755 .set = max_loop_param_set_int,
1756 .get = param_get_int,
1757 };
1758
1759 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444);
1760 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1761 #else
1762 module_param(max_loop, int, 0444);
1763 MODULE_PARM_DESC(max_loop, "Initial number of loop devices");
1764 #endif
1765
1766 module_param(max_part, int, 0444);
1767 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1768
1769 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH;
1770
loop_set_hw_queue_depth(const char * s,const struct kernel_param * p)1771 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p)
1772 {
1773 int qd, ret;
1774
1775 ret = kstrtoint(s, 0, &qd);
1776 if (ret < 0)
1777 return ret;
1778 if (qd < 1)
1779 return -EINVAL;
1780 hw_queue_depth = qd;
1781 return 0;
1782 }
1783
1784 static const struct kernel_param_ops loop_hw_qdepth_param_ops = {
1785 .set = loop_set_hw_queue_depth,
1786 .get = param_get_int,
1787 };
1788
1789 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444);
1790 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH));
1791
1792 MODULE_DESCRIPTION("Loopback device support");
1793 MODULE_LICENSE("GPL");
1794 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1795
loop_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1796 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1797 const struct blk_mq_queue_data *bd)
1798 {
1799 struct request *rq = bd->rq;
1800 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1801 struct loop_device *lo = rq->q->queuedata;
1802
1803 blk_mq_start_request(rq);
1804
1805 if (lo->lo_state != Lo_bound)
1806 return BLK_STS_IOERR;
1807
1808 switch (req_op(rq)) {
1809 case REQ_OP_FLUSH:
1810 case REQ_OP_DISCARD:
1811 case REQ_OP_WRITE_ZEROES:
1812 cmd->use_aio = false;
1813 break;
1814 default:
1815 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1816 break;
1817 }
1818
1819 /* always use the first bio's css */
1820 cmd->blkcg_css = NULL;
1821 cmd->memcg_css = NULL;
1822 #ifdef CONFIG_BLK_CGROUP
1823 if (rq->bio) {
1824 cmd->blkcg_css = bio_blkcg_css(rq->bio);
1825 #ifdef CONFIG_MEMCG
1826 if (cmd->blkcg_css) {
1827 cmd->memcg_css =
1828 cgroup_get_e_css(cmd->blkcg_css->cgroup,
1829 &memory_cgrp_subsys);
1830 }
1831 #endif
1832 }
1833 #endif
1834 loop_queue_work(lo, cmd);
1835
1836 return BLK_STS_OK;
1837 }
1838
loop_handle_cmd(struct loop_cmd * cmd)1839 static void loop_handle_cmd(struct loop_cmd *cmd)
1840 {
1841 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css;
1842 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css;
1843 struct request *rq = blk_mq_rq_from_pdu(cmd);
1844 const bool write = op_is_write(req_op(rq));
1845 struct loop_device *lo = rq->q->queuedata;
1846 int ret = 0;
1847 struct mem_cgroup *old_memcg = NULL;
1848
1849 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1850 ret = -EIO;
1851 goto failed;
1852 }
1853
1854 if (cmd_blkcg_css)
1855 kthread_associate_blkcg(cmd_blkcg_css);
1856 if (cmd_memcg_css)
1857 old_memcg = set_active_memcg(
1858 mem_cgroup_from_css(cmd_memcg_css));
1859
1860 /*
1861 * do_req_filebacked() may call blk_mq_complete_request() synchronously
1862 * or asynchronously if using aio. Hence, do not touch 'cmd' after
1863 * do_req_filebacked() has returned unless we are sure that 'cmd' has
1864 * not yet been completed.
1865 */
1866 ret = do_req_filebacked(lo, rq);
1867
1868 if (cmd_blkcg_css)
1869 kthread_associate_blkcg(NULL);
1870
1871 if (cmd_memcg_css) {
1872 set_active_memcg(old_memcg);
1873 css_put(cmd_memcg_css);
1874 }
1875 failed:
1876 /* complete non-aio request */
1877 if (ret != -EIOCBQUEUED) {
1878 if (ret == -EOPNOTSUPP)
1879 cmd->ret = ret;
1880 else
1881 cmd->ret = ret ? -EIO : 0;
1882 if (likely(!blk_should_fake_timeout(rq->q)))
1883 blk_mq_complete_request(rq);
1884 }
1885 }
1886
loop_process_work(struct loop_worker * worker,struct list_head * cmd_list,struct loop_device * lo)1887 static void loop_process_work(struct loop_worker *worker,
1888 struct list_head *cmd_list, struct loop_device *lo)
1889 {
1890 int orig_flags = current->flags;
1891 struct loop_cmd *cmd;
1892
1893 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
1894 spin_lock_irq(&lo->lo_work_lock);
1895 while (!list_empty(cmd_list)) {
1896 cmd = container_of(
1897 cmd_list->next, struct loop_cmd, list_entry);
1898 list_del(cmd_list->next);
1899 spin_unlock_irq(&lo->lo_work_lock);
1900
1901 loop_handle_cmd(cmd);
1902 cond_resched();
1903
1904 spin_lock_irq(&lo->lo_work_lock);
1905 }
1906
1907 /*
1908 * We only add to the idle list if there are no pending cmds
1909 * *and* the worker will not run again which ensures that it
1910 * is safe to free any worker on the idle list
1911 */
1912 if (worker && !work_pending(&worker->work)) {
1913 worker->last_ran_at = jiffies;
1914 list_add_tail(&worker->idle_list, &lo->idle_worker_list);
1915 loop_set_timer(lo);
1916 }
1917 spin_unlock_irq(&lo->lo_work_lock);
1918 current->flags = orig_flags;
1919 }
1920
loop_workfn(struct work_struct * work)1921 static void loop_workfn(struct work_struct *work)
1922 {
1923 struct loop_worker *worker =
1924 container_of(work, struct loop_worker, work);
1925 loop_process_work(worker, &worker->cmd_list, worker->lo);
1926 }
1927
loop_rootcg_workfn(struct work_struct * work)1928 static void loop_rootcg_workfn(struct work_struct *work)
1929 {
1930 struct loop_device *lo =
1931 container_of(work, struct loop_device, rootcg_work);
1932 loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
1933 }
1934
1935 static const struct blk_mq_ops loop_mq_ops = {
1936 .queue_rq = loop_queue_rq,
1937 .complete = lo_complete_rq,
1938 };
1939
loop_add(int i)1940 static int loop_add(int i)
1941 {
1942 struct queue_limits lim = {
1943 /*
1944 * Random number picked from the historic block max_sectors cap.
1945 */
1946 .max_hw_sectors = 2560u,
1947 };
1948 struct loop_device *lo;
1949 struct gendisk *disk;
1950 int err;
1951
1952 err = -ENOMEM;
1953 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1954 if (!lo)
1955 goto out;
1956 lo->worker_tree = RB_ROOT;
1957 INIT_LIST_HEAD(&lo->idle_worker_list);
1958 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE);
1959 lo->lo_state = Lo_unbound;
1960
1961 err = mutex_lock_killable(&loop_ctl_mutex);
1962 if (err)
1963 goto out_free_dev;
1964
1965 /* allocate id, if @id >= 0, we're requesting that specific id */
1966 if (i >= 0) {
1967 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1968 if (err == -ENOSPC)
1969 err = -EEXIST;
1970 } else {
1971 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1972 }
1973 mutex_unlock(&loop_ctl_mutex);
1974 if (err < 0)
1975 goto out_free_dev;
1976 i = err;
1977
1978 lo->tag_set.ops = &loop_mq_ops;
1979 lo->tag_set.nr_hw_queues = 1;
1980 lo->tag_set.queue_depth = hw_queue_depth;
1981 lo->tag_set.numa_node = NUMA_NO_NODE;
1982 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1983 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT;
1984 lo->tag_set.driver_data = lo;
1985
1986 err = blk_mq_alloc_tag_set(&lo->tag_set);
1987 if (err)
1988 goto out_free_idr;
1989
1990 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo);
1991 if (IS_ERR(disk)) {
1992 err = PTR_ERR(disk);
1993 goto out_cleanup_tags;
1994 }
1995 lo->lo_queue = lo->lo_disk->queue;
1996
1997 /*
1998 * Disable partition scanning by default. The in-kernel partition
1999 * scanning can be requested individually per-device during its
2000 * setup. Userspace can always add and remove partitions from all
2001 * devices. The needed partition minors are allocated from the
2002 * extended minor space, the main loop device numbers will continue
2003 * to match the loop minors, regardless of the number of partitions
2004 * used.
2005 *
2006 * If max_part is given, partition scanning is globally enabled for
2007 * all loop devices. The minors for the main loop devices will be
2008 * multiples of max_part.
2009 *
2010 * Note: Global-for-all-devices, set-only-at-init, read-only module
2011 * parameteters like 'max_loop' and 'max_part' make things needlessly
2012 * complicated, are too static, inflexible and may surprise
2013 * userspace tools. Parameters like this in general should be avoided.
2014 */
2015 if (!part_shift)
2016 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
2017 mutex_init(&lo->lo_mutex);
2018 lo->lo_number = i;
2019 spin_lock_init(&lo->lo_lock);
2020 spin_lock_init(&lo->lo_work_lock);
2021 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
2022 INIT_LIST_HEAD(&lo->rootcg_cmd_list);
2023 disk->major = LOOP_MAJOR;
2024 disk->first_minor = i << part_shift;
2025 disk->minors = 1 << part_shift;
2026 disk->fops = &lo_fops;
2027 disk->private_data = lo;
2028 disk->queue = lo->lo_queue;
2029 disk->events = DISK_EVENT_MEDIA_CHANGE;
2030 disk->event_flags = DISK_EVENT_FLAG_UEVENT;
2031 sprintf(disk->disk_name, "loop%d", i);
2032 /* Make this loop device reachable from pathname. */
2033 err = add_disk(disk);
2034 if (err)
2035 goto out_cleanup_disk;
2036
2037 /* Show this loop device. */
2038 mutex_lock(&loop_ctl_mutex);
2039 lo->idr_visible = true;
2040 mutex_unlock(&loop_ctl_mutex);
2041
2042 return i;
2043
2044 out_cleanup_disk:
2045 put_disk(disk);
2046 out_cleanup_tags:
2047 blk_mq_free_tag_set(&lo->tag_set);
2048 out_free_idr:
2049 mutex_lock(&loop_ctl_mutex);
2050 idr_remove(&loop_index_idr, i);
2051 mutex_unlock(&loop_ctl_mutex);
2052 out_free_dev:
2053 kfree(lo);
2054 out:
2055 return err;
2056 }
2057
loop_remove(struct loop_device * lo)2058 static void loop_remove(struct loop_device *lo)
2059 {
2060 /* Make this loop device unreachable from pathname. */
2061 del_gendisk(lo->lo_disk);
2062 blk_mq_free_tag_set(&lo->tag_set);
2063
2064 mutex_lock(&loop_ctl_mutex);
2065 idr_remove(&loop_index_idr, lo->lo_number);
2066 mutex_unlock(&loop_ctl_mutex);
2067
2068 put_disk(lo->lo_disk);
2069 }
2070
2071 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
loop_probe(dev_t dev)2072 static void loop_probe(dev_t dev)
2073 {
2074 int idx = MINOR(dev) >> part_shift;
2075
2076 if (max_loop_specified && max_loop && idx >= max_loop)
2077 return;
2078 loop_add(idx);
2079 }
2080 #else
2081 #define loop_probe NULL
2082 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */
2083
loop_control_remove(int idx)2084 static int loop_control_remove(int idx)
2085 {
2086 struct loop_device *lo;
2087 int ret;
2088
2089 if (idx < 0) {
2090 pr_warn_once("deleting an unspecified loop device is not supported.\n");
2091 return -EINVAL;
2092 }
2093
2094 /* Hide this loop device for serialization. */
2095 ret = mutex_lock_killable(&loop_ctl_mutex);
2096 if (ret)
2097 return ret;
2098 lo = idr_find(&loop_index_idr, idx);
2099 if (!lo || !lo->idr_visible)
2100 ret = -ENODEV;
2101 else
2102 lo->idr_visible = false;
2103 mutex_unlock(&loop_ctl_mutex);
2104 if (ret)
2105 return ret;
2106
2107 /* Check whether this loop device can be removed. */
2108 ret = mutex_lock_killable(&lo->lo_mutex);
2109 if (ret)
2110 goto mark_visible;
2111 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) {
2112 mutex_unlock(&lo->lo_mutex);
2113 ret = -EBUSY;
2114 goto mark_visible;
2115 }
2116 /* Mark this loop device as no more bound, but not quite unbound yet */
2117 lo->lo_state = Lo_deleting;
2118 mutex_unlock(&lo->lo_mutex);
2119
2120 loop_remove(lo);
2121 return 0;
2122
2123 mark_visible:
2124 /* Show this loop device again. */
2125 mutex_lock(&loop_ctl_mutex);
2126 lo->idr_visible = true;
2127 mutex_unlock(&loop_ctl_mutex);
2128 return ret;
2129 }
2130
loop_control_get_free(int idx)2131 static int loop_control_get_free(int idx)
2132 {
2133 struct loop_device *lo;
2134 int id, ret;
2135
2136 ret = mutex_lock_killable(&loop_ctl_mutex);
2137 if (ret)
2138 return ret;
2139 idr_for_each_entry(&loop_index_idr, lo, id) {
2140 /* Hitting a race results in creating a new loop device which is harmless. */
2141 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound)
2142 goto found;
2143 }
2144 mutex_unlock(&loop_ctl_mutex);
2145 return loop_add(-1);
2146 found:
2147 mutex_unlock(&loop_ctl_mutex);
2148 return id;
2149 }
2150
loop_control_ioctl(struct file * file,unsigned int cmd,unsigned long parm)2151 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2152 unsigned long parm)
2153 {
2154 switch (cmd) {
2155 case LOOP_CTL_ADD:
2156 return loop_add(parm);
2157 case LOOP_CTL_REMOVE:
2158 return loop_control_remove(parm);
2159 case LOOP_CTL_GET_FREE:
2160 return loop_control_get_free(parm);
2161 default:
2162 return -ENOSYS;
2163 }
2164 }
2165
2166 static const struct file_operations loop_ctl_fops = {
2167 .open = nonseekable_open,
2168 .unlocked_ioctl = loop_control_ioctl,
2169 .compat_ioctl = loop_control_ioctl,
2170 .owner = THIS_MODULE,
2171 .llseek = noop_llseek,
2172 };
2173
2174 static struct miscdevice loop_misc = {
2175 .minor = LOOP_CTRL_MINOR,
2176 .name = "loop-control",
2177 .fops = &loop_ctl_fops,
2178 };
2179
2180 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2181 MODULE_ALIAS("devname:loop-control");
2182
loop_init(void)2183 static int __init loop_init(void)
2184 {
2185 int i;
2186 int err;
2187
2188 part_shift = 0;
2189 if (max_part > 0) {
2190 part_shift = fls(max_part);
2191
2192 /*
2193 * Adjust max_part according to part_shift as it is exported
2194 * to user space so that user can decide correct minor number
2195 * if [s]he want to create more devices.
2196 *
2197 * Note that -1 is required because partition 0 is reserved
2198 * for the whole disk.
2199 */
2200 max_part = (1UL << part_shift) - 1;
2201 }
2202
2203 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2204 err = -EINVAL;
2205 goto err_out;
2206 }
2207
2208 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2209 err = -EINVAL;
2210 goto err_out;
2211 }
2212
2213 err = misc_register(&loop_misc);
2214 if (err < 0)
2215 goto err_out;
2216
2217
2218 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2219 err = -EIO;
2220 goto misc_out;
2221 }
2222
2223 /* pre-create number of devices given by config or max_loop */
2224 for (i = 0; i < max_loop; i++)
2225 loop_add(i);
2226
2227 printk(KERN_INFO "loop: module loaded\n");
2228 return 0;
2229
2230 misc_out:
2231 misc_deregister(&loop_misc);
2232 err_out:
2233 return err;
2234 }
2235
loop_exit(void)2236 static void __exit loop_exit(void)
2237 {
2238 struct loop_device *lo;
2239 int id;
2240
2241 unregister_blkdev(LOOP_MAJOR, "loop");
2242 misc_deregister(&loop_misc);
2243
2244 /*
2245 * There is no need to use loop_ctl_mutex here, for nobody else can
2246 * access loop_index_idr when this module is unloading (unless forced
2247 * module unloading is requested). If this is not a clean unloading,
2248 * we have no means to avoid kernel crash.
2249 */
2250 idr_for_each_entry(&loop_index_idr, lo, id)
2251 loop_remove(lo);
2252
2253 idr_destroy(&loop_index_idr);
2254 }
2255
2256 module_init(loop_init);
2257 module_exit(loop_exit);
2258
2259 #ifndef MODULE
max_loop_setup(char * str)2260 static int __init max_loop_setup(char *str)
2261 {
2262 max_loop = simple_strtol(str, NULL, 0);
2263 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2264 max_loop_specified = true;
2265 #endif
2266 return 1;
2267 }
2268
2269 __setup("max_loop=", max_loop_setup);
2270 #endif
2271