1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 1993 by Theodore Ts'o.
4 */
5 #include <linux/module.h>
6 #include <linux/moduleparam.h>
7 #include <linux/sched.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/file.h>
11 #include <linux/stat.h>
12 #include <linux/errno.h>
13 #include <linux/major.h>
14 #include <linux/wait.h>
15 #include <linux/blkpg.h>
16 #include <linux/init.h>
17 #include <linux/swap.h>
18 #include <linux/slab.h>
19 #include <linux/compat.h>
20 #include <linux/suspend.h>
21 #include <linux/freezer.h>
22 #include <linux/mutex.h>
23 #include <linux/writeback.h>
24 #include <linux/completion.h>
25 #include <linux/highmem.h>
26 #include <linux/splice.h>
27 #include <linux/sysfs.h>
28 #include <linux/miscdevice.h>
29 #include <linux/falloc.h>
30 #include <linux/uio.h>
31 #include <linux/ioprio.h>
32 #include <linux/blk-cgroup.h>
33 #include <linux/sched/mm.h>
34 #include <linux/statfs.h>
35 #include <linux/uaccess.h>
36 #include <linux/blk-mq.h>
37 #include <linux/spinlock.h>
38 #include <uapi/linux/loop.h>
39
40 /* Possible states of device */
41 enum {
42 Lo_unbound,
43 Lo_bound,
44 Lo_rundown,
45 Lo_deleting,
46 };
47
48 struct loop_device {
49 int lo_number;
50 loff_t lo_offset;
51 loff_t lo_sizelimit;
52 int lo_flags;
53 char lo_file_name[LO_NAME_SIZE];
54
55 struct file *lo_backing_file;
56 unsigned int lo_min_dio_size;
57 struct block_device *lo_device;
58
59 gfp_t old_gfp_mask;
60
61 spinlock_t lo_lock;
62 int lo_state;
63 spinlock_t lo_work_lock;
64 struct workqueue_struct *workqueue;
65 struct work_struct rootcg_work;
66 struct list_head rootcg_cmd_list;
67 struct list_head idle_worker_list;
68 struct rb_root worker_tree;
69 struct timer_list timer;
70 bool sysfs_inited;
71
72 struct request_queue *lo_queue;
73 struct blk_mq_tag_set tag_set;
74 struct gendisk *lo_disk;
75 struct mutex lo_mutex;
76 bool idr_visible;
77 };
78
79 struct loop_cmd {
80 struct list_head list_entry;
81 bool use_aio; /* use AIO interface to handle I/O */
82 atomic_t ref; /* only for aio */
83 long ret;
84 struct kiocb iocb;
85 struct bio_vec *bvec;
86 struct cgroup_subsys_state *blkcg_css;
87 struct cgroup_subsys_state *memcg_css;
88 };
89
90 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
91 #define LOOP_DEFAULT_HW_Q_DEPTH 128
92
93 static DEFINE_IDR(loop_index_idr);
94 static DEFINE_MUTEX(loop_ctl_mutex);
95 static DEFINE_MUTEX(loop_validate_mutex);
96
97 /**
98 * loop_global_lock_killable() - take locks for safe loop_validate_file() test
99 *
100 * @lo: struct loop_device
101 * @global: true if @lo is about to bind another "struct loop_device", false otherwise
102 *
103 * Returns 0 on success, -EINTR otherwise.
104 *
105 * Since loop_validate_file() traverses on other "struct loop_device" if
106 * is_loop_device() is true, we need a global lock for serializing concurrent
107 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
108 */
loop_global_lock_killable(struct loop_device * lo,bool global)109 static int loop_global_lock_killable(struct loop_device *lo, bool global)
110 {
111 int err;
112
113 if (global) {
114 err = mutex_lock_killable(&loop_validate_mutex);
115 if (err)
116 return err;
117 }
118 err = mutex_lock_killable(&lo->lo_mutex);
119 if (err && global)
120 mutex_unlock(&loop_validate_mutex);
121 return err;
122 }
123
124 /**
125 * loop_global_unlock() - release locks taken by loop_global_lock_killable()
126 *
127 * @lo: struct loop_device
128 * @global: true if @lo was about to bind another "struct loop_device", false otherwise
129 */
loop_global_unlock(struct loop_device * lo,bool global)130 static void loop_global_unlock(struct loop_device *lo, bool global)
131 {
132 mutex_unlock(&lo->lo_mutex);
133 if (global)
134 mutex_unlock(&loop_validate_mutex);
135 }
136
137 static int max_part;
138 static int part_shift;
139
lo_calculate_size(struct loop_device * lo,struct file * file)140 static loff_t lo_calculate_size(struct loop_device *lo, struct file *file)
141 {
142 loff_t loopsize;
143 int ret;
144
145 if (S_ISBLK(file_inode(file)->i_mode)) {
146 loopsize = i_size_read(file->f_mapping->host);
147 } else {
148 struct kstat stat;
149
150 /*
151 * Get the accurate file size. This provides better results than
152 * cached inode data, particularly for network filesystems where
153 * metadata may be stale.
154 */
155 ret = vfs_getattr_nosec(&file->f_path, &stat, STATX_SIZE, 0);
156 if (ret)
157 return 0;
158
159 loopsize = stat.size;
160 }
161
162 if (lo->lo_offset > 0)
163 loopsize -= lo->lo_offset;
164 /* offset is beyond i_size, weird but possible */
165 if (loopsize < 0)
166 return 0;
167 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
168 loopsize = lo->lo_sizelimit;
169 /*
170 * Unfortunately, if we want to do I/O on the device,
171 * the number of 512-byte sectors has to fit into a sector_t.
172 */
173 return loopsize >> 9;
174 }
175
176 /*
177 * We support direct I/O only if lo_offset is aligned with the logical I/O size
178 * of backing device, and the logical block size of loop is bigger than that of
179 * the backing device.
180 */
lo_can_use_dio(struct loop_device * lo)181 static bool lo_can_use_dio(struct loop_device *lo)
182 {
183 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT))
184 return false;
185 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size)
186 return false;
187 if (lo->lo_offset & (lo->lo_min_dio_size - 1))
188 return false;
189 return true;
190 }
191
192 /*
193 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by
194 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently
195 * disabled when the device block size is too small or the offset is unaligned.
196 *
197 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and
198 * not the originally passed in one.
199 */
loop_update_dio(struct loop_device * lo)200 static inline void loop_update_dio(struct loop_device *lo)
201 {
202 lockdep_assert_held(&lo->lo_mutex);
203 WARN_ON_ONCE(lo->lo_state == Lo_bound &&
204 lo->lo_queue->mq_freeze_depth == 0);
205
206 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo))
207 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
208 }
209
210 /**
211 * loop_set_size() - sets device size and notifies userspace
212 * @lo: struct loop_device to set the size for
213 * @size: new size of the loop device
214 *
215 * Callers must validate that the size passed into this function fits into
216 * a sector_t, eg using loop_validate_size()
217 */
loop_set_size(struct loop_device * lo,loff_t size)218 static void loop_set_size(struct loop_device *lo, loff_t size)
219 {
220 if (!set_capacity_and_notify(lo->lo_disk, size))
221 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
222 }
223
loop_clear_limits(struct loop_device * lo,int mode)224 static void loop_clear_limits(struct loop_device *lo, int mode)
225 {
226 struct queue_limits lim = queue_limits_start_update(lo->lo_queue);
227
228 if (mode & FALLOC_FL_ZERO_RANGE)
229 lim.max_write_zeroes_sectors = 0;
230
231 if (mode & FALLOC_FL_PUNCH_HOLE) {
232 lim.max_hw_discard_sectors = 0;
233 lim.discard_granularity = 0;
234 }
235
236 /*
237 * XXX: this updates the queue limits without freezing the queue, which
238 * is against the locking protocol and dangerous. But we can't just
239 * freeze the queue as we're inside the ->queue_rq method here. So this
240 * should move out into a workqueue unless we get the file operations to
241 * advertise if they support specific fallocate operations.
242 */
243 queue_limits_commit_update(lo->lo_queue, &lim);
244 }
245
lo_fallocate(struct loop_device * lo,struct request * rq,loff_t pos,int mode)246 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
247 int mode)
248 {
249 /*
250 * We use fallocate to manipulate the space mappings used by the image
251 * a.k.a. discard/zerorange.
252 */
253 struct file *file = lo->lo_backing_file;
254 int ret;
255
256 mode |= FALLOC_FL_KEEP_SIZE;
257
258 if (!bdev_max_discard_sectors(lo->lo_device))
259 return -EOPNOTSUPP;
260
261 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
262 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
263 return -EIO;
264
265 /*
266 * We initially configure the limits in a hope that fallocate is
267 * supported and clear them here if that turns out not to be true.
268 */
269 if (unlikely(ret == -EOPNOTSUPP))
270 loop_clear_limits(lo, mode);
271
272 return ret;
273 }
274
lo_req_flush(struct loop_device * lo,struct request * rq)275 static int lo_req_flush(struct loop_device *lo, struct request *rq)
276 {
277 int ret = vfs_fsync(lo->lo_backing_file, 0);
278 if (unlikely(ret && ret != -EINVAL))
279 ret = -EIO;
280
281 return ret;
282 }
283
lo_complete_rq(struct request * rq)284 static void lo_complete_rq(struct request *rq)
285 {
286 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
287 blk_status_t ret = BLK_STS_OK;
288
289 if (cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
290 req_op(rq) != REQ_OP_READ) {
291 if (cmd->ret < 0)
292 ret = errno_to_blk_status(cmd->ret);
293 goto end_io;
294 }
295
296 /*
297 * Short READ - if we got some data, advance our request and
298 * retry it. If we got no data, end the rest with EIO.
299 */
300 if (cmd->ret) {
301 blk_update_request(rq, BLK_STS_OK, cmd->ret);
302 cmd->ret = 0;
303 blk_mq_requeue_request(rq, true);
304 } else {
305 struct bio *bio = rq->bio;
306
307 while (bio) {
308 zero_fill_bio(bio);
309 bio = bio->bi_next;
310 }
311
312 ret = BLK_STS_IOERR;
313 end_io:
314 blk_mq_end_request(rq, ret);
315 }
316 }
317
lo_rw_aio_do_completion(struct loop_cmd * cmd)318 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
319 {
320 struct request *rq = blk_mq_rq_from_pdu(cmd);
321
322 if (!atomic_dec_and_test(&cmd->ref))
323 return;
324 kfree(cmd->bvec);
325 cmd->bvec = NULL;
326 if (req_op(rq) == REQ_OP_WRITE)
327 kiocb_end_write(&cmd->iocb);
328 if (likely(!blk_should_fake_timeout(rq->q)))
329 blk_mq_complete_request(rq);
330 }
331
lo_rw_aio_complete(struct kiocb * iocb,long ret)332 static void lo_rw_aio_complete(struct kiocb *iocb, long ret)
333 {
334 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
335
336 cmd->ret = ret;
337 lo_rw_aio_do_completion(cmd);
338 }
339
lo_rw_aio(struct loop_device * lo,struct loop_cmd * cmd,loff_t pos,int rw)340 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
341 loff_t pos, int rw)
342 {
343 struct iov_iter iter;
344 struct req_iterator rq_iter;
345 struct bio_vec *bvec;
346 struct request *rq = blk_mq_rq_from_pdu(cmd);
347 struct bio *bio = rq->bio;
348 struct file *file = lo->lo_backing_file;
349 struct bio_vec tmp;
350 unsigned int offset;
351 unsigned int nr_bvec;
352 int ret;
353
354 nr_bvec = blk_rq_nr_bvec(rq);
355
356 if (rq->bio != rq->biotail) {
357
358 bvec = kmalloc_objs(struct bio_vec, nr_bvec, GFP_NOIO);
359 if (!bvec)
360 return -EIO;
361 cmd->bvec = bvec;
362
363 /*
364 * The bios of the request may be started from the middle of
365 * the 'bvec' because of bio splitting, so we can't directly
366 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
367 * API will take care of all details for us.
368 */
369 rq_for_each_bvec(tmp, rq, rq_iter) {
370 *bvec = tmp;
371 bvec++;
372 }
373 bvec = cmd->bvec;
374 offset = 0;
375 } else {
376 /*
377 * Same here, this bio may be started from the middle of the
378 * 'bvec' because of bio splitting, so offset from the bvec
379 * must be passed to iov iterator
380 */
381 offset = bio->bi_iter.bi_bvec_done;
382 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
383 }
384 atomic_set(&cmd->ref, 2);
385
386 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
387 iter.iov_offset = offset;
388
389 cmd->iocb.ki_pos = pos;
390 cmd->iocb.ki_filp = file;
391 cmd->iocb.ki_ioprio = req_get_ioprio(rq);
392 if (cmd->use_aio) {
393 cmd->iocb.ki_complete = lo_rw_aio_complete;
394 cmd->iocb.ki_flags = IOCB_DIRECT;
395 } else {
396 cmd->iocb.ki_complete = NULL;
397 cmd->iocb.ki_flags = 0;
398 }
399
400 if (rw == ITER_SOURCE) {
401 kiocb_start_write(&cmd->iocb);
402 ret = file->f_op->write_iter(&cmd->iocb, &iter);
403 } else
404 ret = file->f_op->read_iter(&cmd->iocb, &iter);
405
406 lo_rw_aio_do_completion(cmd);
407
408 if (ret != -EIOCBQUEUED)
409 lo_rw_aio_complete(&cmd->iocb, ret);
410 return -EIOCBQUEUED;
411 }
412
do_req_filebacked(struct loop_device * lo,struct request * rq)413 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
414 {
415 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
416 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
417
418 switch (req_op(rq)) {
419 case REQ_OP_FLUSH:
420 return lo_req_flush(lo, rq);
421 case REQ_OP_WRITE_ZEROES:
422 /*
423 * If the caller doesn't want deallocation, call zeroout to
424 * write zeroes the range. Otherwise, punch them out.
425 */
426 return lo_fallocate(lo, rq, pos,
427 (rq->cmd_flags & REQ_NOUNMAP) ?
428 FALLOC_FL_ZERO_RANGE :
429 FALLOC_FL_PUNCH_HOLE);
430 case REQ_OP_DISCARD:
431 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
432 case REQ_OP_WRITE:
433 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE);
434 case REQ_OP_READ:
435 return lo_rw_aio(lo, cmd, pos, ITER_DEST);
436 default:
437 WARN_ON_ONCE(1);
438 return -EIO;
439 }
440 }
441
loop_reread_partitions(struct loop_device * lo)442 static void loop_reread_partitions(struct loop_device *lo)
443 {
444 int rc;
445
446 mutex_lock(&lo->lo_disk->open_mutex);
447 rc = bdev_disk_changed(lo->lo_disk, false);
448 mutex_unlock(&lo->lo_disk->open_mutex);
449 if (rc)
450 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
451 __func__, lo->lo_number, lo->lo_file_name, rc);
452 }
453
loop_query_min_dio_size(struct loop_device * lo)454 static unsigned int loop_query_min_dio_size(struct loop_device *lo)
455 {
456 struct file *file = lo->lo_backing_file;
457 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev;
458 struct kstat st;
459
460 /*
461 * Use the minimal dio alignment of the file system if provided.
462 */
463 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) &&
464 (st.result_mask & STATX_DIOALIGN))
465 return st.dio_offset_align;
466
467 /*
468 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only
469 * a handful of file systems support the STATX_DIOALIGN flag.
470 */
471 if (sb_bdev)
472 return bdev_logical_block_size(sb_bdev);
473 return SECTOR_SIZE;
474 }
475
is_loop_device(struct file * file)476 static inline int is_loop_device(struct file *file)
477 {
478 struct inode *i = file->f_mapping->host;
479
480 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
481 }
482
loop_validate_file(struct file * file,struct block_device * bdev)483 static int loop_validate_file(struct file *file, struct block_device *bdev)
484 {
485 struct inode *inode = file->f_mapping->host;
486 struct file *f = file;
487
488 /* Avoid recursion */
489 while (is_loop_device(f)) {
490 struct loop_device *l;
491
492 lockdep_assert_held(&loop_validate_mutex);
493 if (f->f_mapping->host->i_rdev == bdev->bd_dev)
494 return -EBADF;
495
496 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
497 if (l->lo_state != Lo_bound)
498 return -EINVAL;
499 /* Order wrt setting lo->lo_backing_file in loop_configure(). */
500 rmb();
501 f = l->lo_backing_file;
502 }
503 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
504 return -EINVAL;
505 return 0;
506 }
507
loop_assign_backing_file(struct loop_device * lo,struct file * file)508 static void loop_assign_backing_file(struct loop_device *lo, struct file *file)
509 {
510 lo->lo_backing_file = file;
511 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
512 mapping_set_gfp_mask(file->f_mapping,
513 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS));
514 if (lo->lo_backing_file->f_flags & O_DIRECT)
515 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
516 lo->lo_min_dio_size = loop_query_min_dio_size(lo);
517 }
518
loop_check_backing_file(struct file * file)519 static int loop_check_backing_file(struct file *file)
520 {
521 if (!file->f_op->read_iter)
522 return -EINVAL;
523
524 if ((file->f_mode & FMODE_WRITE) && !file->f_op->write_iter)
525 return -EINVAL;
526
527 return 0;
528 }
529
530 /*
531 * loop_change_fd switched the backing store of a loopback device to
532 * a new file. This is useful for operating system installers to free up
533 * the original file and in High Availability environments to switch to
534 * an alternative location for the content in case of server meltdown.
535 * This can only work if the loop device is used read-only, and if the
536 * new backing store is the same size and type as the old backing store.
537 */
loop_change_fd(struct loop_device * lo,struct block_device * bdev,unsigned int arg)538 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
539 unsigned int arg)
540 {
541 struct file *file = fget(arg);
542 struct file *old_file;
543 unsigned int memflags;
544 int error;
545 bool partscan;
546 bool is_loop;
547
548 if (!file)
549 return -EBADF;
550
551 error = loop_check_backing_file(file);
552 if (error) {
553 fput(file);
554 return error;
555 }
556
557 /* suppress uevents while reconfiguring the device */
558 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
559
560 is_loop = is_loop_device(file);
561 error = loop_global_lock_killable(lo, is_loop);
562 if (error)
563 goto out_putf;
564 error = -ENXIO;
565 if (lo->lo_state != Lo_bound)
566 goto out_err;
567
568 /* the loop device has to be read-only */
569 error = -EINVAL;
570 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
571 goto out_err;
572
573 error = loop_validate_file(file, bdev);
574 if (error)
575 goto out_err;
576
577 old_file = lo->lo_backing_file;
578
579 error = -EINVAL;
580
581 /* size of the new backing store needs to be the same */
582 if (lo_calculate_size(lo, file) != lo_calculate_size(lo, old_file))
583 goto out_err;
584
585 /*
586 * We might switch to direct I/O mode for the loop device, write back
587 * all dirty data the page cache now that so that the individual I/O
588 * operations don't have to do that.
589 */
590 vfs_fsync(file, 0);
591
592 /* and ... switch */
593 disk_force_media_change(lo->lo_disk);
594 memflags = blk_mq_freeze_queue(lo->lo_queue);
595 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
596 loop_assign_backing_file(lo, file);
597 loop_update_dio(lo);
598 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
599 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
600 loop_global_unlock(lo, is_loop);
601
602 /*
603 * Flush loop_validate_file() before fput(), for l->lo_backing_file
604 * might be pointing at old_file which might be the last reference.
605 */
606 if (!is_loop) {
607 mutex_lock(&loop_validate_mutex);
608 mutex_unlock(&loop_validate_mutex);
609 }
610 /*
611 * We must drop file reference outside of lo_mutex as dropping
612 * the file ref can take open_mutex which creates circular locking
613 * dependency.
614 */
615 fput(old_file);
616 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
617 if (partscan)
618 loop_reread_partitions(lo);
619
620 error = 0;
621 done:
622 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
623 return error;
624
625 out_err:
626 loop_global_unlock(lo, is_loop);
627 out_putf:
628 fput(file);
629 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
630 goto done;
631 }
632
633 /* loop sysfs attributes */
634
loop_attr_show(struct device * dev,char * page,ssize_t (* callback)(struct loop_device *,char *))635 static ssize_t loop_attr_show(struct device *dev, char *page,
636 ssize_t (*callback)(struct loop_device *, char *))
637 {
638 struct gendisk *disk = dev_to_disk(dev);
639 struct loop_device *lo = disk->private_data;
640
641 return callback(lo, page);
642 }
643
644 #define LOOP_ATTR_RO(_name) \
645 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
646 static ssize_t loop_attr_do_show_##_name(struct device *d, \
647 struct device_attribute *attr, char *b) \
648 { \
649 return loop_attr_show(d, b, loop_attr_##_name##_show); \
650 } \
651 static struct device_attribute loop_attr_##_name = \
652 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
653
loop_attr_backing_file_show(struct loop_device * lo,char * buf)654 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
655 {
656 ssize_t ret;
657 char *p = NULL;
658
659 spin_lock_irq(&lo->lo_lock);
660 if (lo->lo_backing_file)
661 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
662 spin_unlock_irq(&lo->lo_lock);
663
664 if (IS_ERR_OR_NULL(p))
665 ret = PTR_ERR(p);
666 else {
667 ret = strlen(p);
668 memmove(buf, p, ret);
669 buf[ret++] = '\n';
670 buf[ret] = 0;
671 }
672
673 return ret;
674 }
675
loop_attr_offset_show(struct loop_device * lo,char * buf)676 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
677 {
678 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
679 }
680
loop_attr_sizelimit_show(struct loop_device * lo,char * buf)681 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
682 {
683 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
684 }
685
loop_attr_autoclear_show(struct loop_device * lo,char * buf)686 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
687 {
688 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
689
690 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
691 }
692
loop_attr_partscan_show(struct loop_device * lo,char * buf)693 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
694 {
695 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
696
697 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
698 }
699
loop_attr_dio_show(struct loop_device * lo,char * buf)700 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
701 {
702 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
703
704 return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
705 }
706
707 LOOP_ATTR_RO(backing_file);
708 LOOP_ATTR_RO(offset);
709 LOOP_ATTR_RO(sizelimit);
710 LOOP_ATTR_RO(autoclear);
711 LOOP_ATTR_RO(partscan);
712 LOOP_ATTR_RO(dio);
713
714 static struct attribute *loop_attrs[] = {
715 &loop_attr_backing_file.attr,
716 &loop_attr_offset.attr,
717 &loop_attr_sizelimit.attr,
718 &loop_attr_autoclear.attr,
719 &loop_attr_partscan.attr,
720 &loop_attr_dio.attr,
721 NULL,
722 };
723
724 static struct attribute_group loop_attribute_group = {
725 .name = "loop",
726 .attrs= loop_attrs,
727 };
728
loop_sysfs_init(struct loop_device * lo)729 static void loop_sysfs_init(struct loop_device *lo)
730 {
731 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
732 &loop_attribute_group);
733 }
734
loop_sysfs_exit(struct loop_device * lo)735 static void loop_sysfs_exit(struct loop_device *lo)
736 {
737 if (lo->sysfs_inited)
738 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
739 &loop_attribute_group);
740 }
741
loop_get_discard_config(struct loop_device * lo,u32 * granularity,u32 * max_discard_sectors)742 static void loop_get_discard_config(struct loop_device *lo,
743 u32 *granularity, u32 *max_discard_sectors)
744 {
745 struct file *file = lo->lo_backing_file;
746 struct inode *inode = file->f_mapping->host;
747 struct kstatfs sbuf;
748
749 /*
750 * If the backing device is a block device, mirror its zeroing
751 * capability. Set the discard sectors to the block device's zeroing
752 * capabilities because loop discards result in blkdev_issue_zeroout(),
753 * not blkdev_issue_discard(). This maintains consistent behavior with
754 * file-backed loop devices: discarded regions read back as zero.
755 */
756 if (S_ISBLK(inode->i_mode)) {
757 struct block_device *bdev = I_BDEV(inode);
758
759 *max_discard_sectors = bdev_write_zeroes_sectors(bdev);
760 *granularity = bdev_discard_granularity(bdev);
761
762 /*
763 * We use punch hole to reclaim the free space used by the
764 * image a.k.a. discard.
765 */
766 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) {
767 *max_discard_sectors = UINT_MAX >> 9;
768 *granularity = sbuf.f_bsize;
769 }
770 }
771
772 struct loop_worker {
773 struct rb_node rb_node;
774 struct work_struct work;
775 struct list_head cmd_list;
776 struct list_head idle_list;
777 struct loop_device *lo;
778 struct cgroup_subsys_state *blkcg_css;
779 unsigned long last_ran_at;
780 };
781
782 static void loop_workfn(struct work_struct *work);
783
784 #ifdef CONFIG_BLK_CGROUP
queue_on_root_worker(struct cgroup_subsys_state * css)785 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
786 {
787 return !css || css == blkcg_root_css;
788 }
789 #else
queue_on_root_worker(struct cgroup_subsys_state * css)790 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
791 {
792 return !css;
793 }
794 #endif
795
loop_queue_work(struct loop_device * lo,struct loop_cmd * cmd)796 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
797 {
798 struct rb_node **node, *parent = NULL;
799 struct loop_worker *cur_worker, *worker = NULL;
800 struct work_struct *work;
801 struct list_head *cmd_list;
802
803 spin_lock_irq(&lo->lo_work_lock);
804
805 if (queue_on_root_worker(cmd->blkcg_css))
806 goto queue_work;
807
808 node = &lo->worker_tree.rb_node;
809
810 while (*node) {
811 parent = *node;
812 cur_worker = container_of(*node, struct loop_worker, rb_node);
813 if (cur_worker->blkcg_css == cmd->blkcg_css) {
814 worker = cur_worker;
815 break;
816 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
817 node = &(*node)->rb_left;
818 } else {
819 node = &(*node)->rb_right;
820 }
821 }
822 if (worker)
823 goto queue_work;
824
825 worker = kzalloc_obj(struct loop_worker, GFP_NOWAIT);
826 /*
827 * In the event we cannot allocate a worker, just queue on the
828 * rootcg worker and issue the I/O as the rootcg
829 */
830 if (!worker) {
831 cmd->blkcg_css = NULL;
832 if (cmd->memcg_css)
833 css_put(cmd->memcg_css);
834 cmd->memcg_css = NULL;
835 goto queue_work;
836 }
837
838 worker->blkcg_css = cmd->blkcg_css;
839 css_get(worker->blkcg_css);
840 INIT_WORK(&worker->work, loop_workfn);
841 INIT_LIST_HEAD(&worker->cmd_list);
842 INIT_LIST_HEAD(&worker->idle_list);
843 worker->lo = lo;
844 rb_link_node(&worker->rb_node, parent, node);
845 rb_insert_color(&worker->rb_node, &lo->worker_tree);
846 queue_work:
847 if (worker) {
848 /*
849 * We need to remove from the idle list here while
850 * holding the lock so that the idle timer doesn't
851 * free the worker
852 */
853 if (!list_empty(&worker->idle_list))
854 list_del_init(&worker->idle_list);
855 work = &worker->work;
856 cmd_list = &worker->cmd_list;
857 } else {
858 work = &lo->rootcg_work;
859 cmd_list = &lo->rootcg_cmd_list;
860 }
861 list_add_tail(&cmd->list_entry, cmd_list);
862 queue_work(lo->workqueue, work);
863 spin_unlock_irq(&lo->lo_work_lock);
864 }
865
loop_set_timer(struct loop_device * lo)866 static void loop_set_timer(struct loop_device *lo)
867 {
868 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
869 }
870
loop_free_idle_workers(struct loop_device * lo,bool delete_all)871 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all)
872 {
873 struct loop_worker *pos, *worker;
874
875 spin_lock_irq(&lo->lo_work_lock);
876 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
877 idle_list) {
878 if (!delete_all &&
879 time_is_after_jiffies(worker->last_ran_at +
880 LOOP_IDLE_WORKER_TIMEOUT))
881 break;
882 list_del(&worker->idle_list);
883 rb_erase(&worker->rb_node, &lo->worker_tree);
884 css_put(worker->blkcg_css);
885 kfree(worker);
886 }
887 if (!list_empty(&lo->idle_worker_list))
888 loop_set_timer(lo);
889 spin_unlock_irq(&lo->lo_work_lock);
890 }
891
loop_free_idle_workers_timer(struct timer_list * timer)892 static void loop_free_idle_workers_timer(struct timer_list *timer)
893 {
894 struct loop_device *lo = container_of(timer, struct loop_device, timer);
895
896 return loop_free_idle_workers(lo, false);
897 }
898
899 /**
900 * loop_set_status_from_info - configure device from loop_info
901 * @lo: struct loop_device to configure
902 * @info: struct loop_info64 to configure the device with
903 *
904 * Configures the loop device parameters according to the passed
905 * in loop_info64 configuration.
906 */
907 static int
loop_set_status_from_info(struct loop_device * lo,const struct loop_info64 * info)908 loop_set_status_from_info(struct loop_device *lo,
909 const struct loop_info64 *info)
910 {
911 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
912 return -EINVAL;
913
914 switch (info->lo_encrypt_type) {
915 case LO_CRYPT_NONE:
916 break;
917 case LO_CRYPT_XOR:
918 pr_warn("support for the xor transformation has been removed.\n");
919 return -EINVAL;
920 case LO_CRYPT_CRYPTOAPI:
921 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n");
922 return -EINVAL;
923 default:
924 return -EINVAL;
925 }
926
927 /* Avoid assigning overflow values */
928 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
929 return -EOVERFLOW;
930
931 lo->lo_offset = info->lo_offset;
932 lo->lo_sizelimit = info->lo_sizelimit;
933
934 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
935 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
936 return 0;
937 }
938
loop_default_blocksize(struct loop_device * lo)939 static unsigned int loop_default_blocksize(struct loop_device *lo)
940 {
941 /* In case of direct I/O, match underlying minimum I/O size */
942 if (lo->lo_flags & LO_FLAGS_DIRECT_IO)
943 return lo->lo_min_dio_size;
944 return SECTOR_SIZE;
945 }
946
loop_update_limits(struct loop_device * lo,struct queue_limits * lim,unsigned int bsize)947 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim,
948 unsigned int bsize)
949 {
950 struct file *file = lo->lo_backing_file;
951 struct inode *inode = file->f_mapping->host;
952 struct block_device *backing_bdev = NULL;
953 u32 granularity = 0, max_discard_sectors = 0;
954
955 if (S_ISBLK(inode->i_mode))
956 backing_bdev = I_BDEV(inode);
957 else if (inode->i_sb->s_bdev)
958 backing_bdev = inode->i_sb->s_bdev;
959
960 if (!bsize)
961 bsize = loop_default_blocksize(lo);
962
963 loop_get_discard_config(lo, &granularity, &max_discard_sectors);
964
965 lim->logical_block_size = bsize;
966 lim->physical_block_size = bsize;
967 lim->io_min = bsize;
968 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL);
969 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY))
970 lim->features |= BLK_FEAT_WRITE_CACHE;
971 if (backing_bdev && bdev_rot(backing_bdev))
972 lim->features |= BLK_FEAT_ROTATIONAL;
973 lim->max_hw_discard_sectors = max_discard_sectors;
974 lim->max_write_zeroes_sectors = max_discard_sectors;
975 if (max_discard_sectors)
976 lim->discard_granularity = granularity;
977 else
978 lim->discard_granularity = 0;
979 }
980
loop_configure(struct loop_device * lo,blk_mode_t mode,struct block_device * bdev,const struct loop_config * config)981 static int loop_configure(struct loop_device *lo, blk_mode_t mode,
982 struct block_device *bdev,
983 const struct loop_config *config)
984 {
985 struct file *file = fget(config->fd);
986 struct queue_limits lim;
987 int error;
988 loff_t size;
989 bool partscan;
990 bool is_loop;
991
992 if (!file)
993 return -EBADF;
994
995 error = loop_check_backing_file(file);
996 if (error) {
997 fput(file);
998 return error;
999 }
1000
1001 is_loop = is_loop_device(file);
1002
1003 /* This is safe, since we have a reference from open(). */
1004 __module_get(THIS_MODULE);
1005
1006 /*
1007 * If we don't hold exclusive handle for the device, upgrade to it
1008 * here to avoid changing device under exclusive owner.
1009 */
1010 if (!(mode & BLK_OPEN_EXCL)) {
1011 error = bd_prepare_to_claim(bdev, loop_configure, NULL);
1012 if (error)
1013 goto out_putf;
1014 }
1015
1016 error = loop_global_lock_killable(lo, is_loop);
1017 if (error)
1018 goto out_bdev;
1019
1020 error = -EBUSY;
1021 if (lo->lo_state != Lo_unbound)
1022 goto out_unlock;
1023
1024 error = loop_validate_file(file, bdev);
1025 if (error)
1026 goto out_unlock;
1027
1028 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1029 error = -EINVAL;
1030 goto out_unlock;
1031 }
1032
1033 error = loop_set_status_from_info(lo, &config->info);
1034 if (error)
1035 goto out_unlock;
1036 lo->lo_flags = config->info.lo_flags;
1037
1038 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) ||
1039 !file->f_op->write_iter)
1040 lo->lo_flags |= LO_FLAGS_READ_ONLY;
1041
1042 if (!lo->workqueue) {
1043 lo->workqueue = alloc_workqueue("loop%d",
1044 WQ_UNBOUND | WQ_FREEZABLE,
1045 0, lo->lo_number);
1046 if (!lo->workqueue) {
1047 error = -ENOMEM;
1048 goto out_unlock;
1049 }
1050 }
1051
1052 /* suppress uevents while reconfiguring the device */
1053 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
1054
1055 disk_force_media_change(lo->lo_disk);
1056 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1057
1058 lo->lo_device = bdev;
1059 loop_assign_backing_file(lo, file);
1060
1061 lim = queue_limits_start_update(lo->lo_queue);
1062 loop_update_limits(lo, &lim, config->block_size);
1063 /* No need to freeze the queue as the device isn't bound yet. */
1064 error = queue_limits_commit_update(lo->lo_queue, &lim);
1065 if (error)
1066 goto out_unlock;
1067
1068 /*
1069 * We might switch to direct I/O mode for the loop device, write back
1070 * all dirty data the page cache now that so that the individual I/O
1071 * operations don't have to do that.
1072 */
1073 vfs_fsync(file, 0);
1074
1075 loop_update_dio(lo);
1076 loop_sysfs_init(lo);
1077
1078 size = lo_calculate_size(lo, file);
1079 loop_set_size(lo, size);
1080
1081 /* Order wrt reading lo_state in loop_validate_file(). */
1082 wmb();
1083
1084 WRITE_ONCE(lo->lo_state, Lo_bound);
1085 if (part_shift)
1086 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1087 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1088 if (partscan)
1089 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1090
1091 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
1092 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1093
1094 loop_global_unlock(lo, is_loop);
1095 if (partscan)
1096 loop_reread_partitions(lo);
1097
1098 if (!(mode & BLK_OPEN_EXCL))
1099 bd_abort_claiming(bdev, loop_configure);
1100
1101 return 0;
1102
1103 out_unlock:
1104 loop_global_unlock(lo, is_loop);
1105 out_bdev:
1106 if (!(mode & BLK_OPEN_EXCL))
1107 bd_abort_claiming(bdev, loop_configure);
1108 out_putf:
1109 fput(file);
1110 /* This is safe: open() is still holding a reference. */
1111 module_put(THIS_MODULE);
1112 return error;
1113 }
1114
__loop_clr_fd(struct loop_device * lo)1115 static void __loop_clr_fd(struct loop_device *lo)
1116 {
1117 struct queue_limits lim;
1118 struct file *filp;
1119 gfp_t gfp = lo->old_gfp_mask;
1120
1121 spin_lock_irq(&lo->lo_lock);
1122 filp = lo->lo_backing_file;
1123 lo->lo_backing_file = NULL;
1124 spin_unlock_irq(&lo->lo_lock);
1125
1126 lo->lo_device = NULL;
1127 lo->lo_offset = 0;
1128 lo->lo_sizelimit = 0;
1129 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1130
1131 /*
1132 * Reset the block size to the default.
1133 *
1134 * No queue freezing needed because this is called from the final
1135 * ->release call only, so there can't be any outstanding I/O.
1136 */
1137 lim = queue_limits_start_update(lo->lo_queue);
1138 lim.logical_block_size = SECTOR_SIZE;
1139 lim.physical_block_size = SECTOR_SIZE;
1140 lim.io_min = SECTOR_SIZE;
1141 queue_limits_commit_update(lo->lo_queue, &lim);
1142
1143 invalidate_disk(lo->lo_disk);
1144 loop_sysfs_exit(lo);
1145 /* let user-space know about this change */
1146 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1147 mapping_set_gfp_mask(filp->f_mapping, gfp);
1148 /* This is safe: open() is still holding a reference. */
1149 module_put(THIS_MODULE);
1150
1151 disk_force_media_change(lo->lo_disk);
1152
1153 if (lo->lo_flags & LO_FLAGS_PARTSCAN) {
1154 int err;
1155
1156 /*
1157 * open_mutex has been held already in release path, so don't
1158 * acquire it if this function is called in such case.
1159 *
1160 * If the reread partition isn't from release path, lo_refcnt
1161 * must be at least one and it can only become zero when the
1162 * current holder is released.
1163 */
1164 err = bdev_disk_changed(lo->lo_disk, false);
1165 if (err)
1166 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1167 __func__, lo->lo_number, err);
1168 /* Device is gone, no point in returning error */
1169 }
1170
1171 /*
1172 * lo->lo_state is set to Lo_unbound here after above partscan has
1173 * finished. There cannot be anybody else entering __loop_clr_fd() as
1174 * Lo_rundown state protects us from all the other places trying to
1175 * change the 'lo' device.
1176 */
1177 lo->lo_flags = 0;
1178 if (!part_shift)
1179 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1180 mutex_lock(&lo->lo_mutex);
1181 WRITE_ONCE(lo->lo_state, Lo_unbound);
1182 mutex_unlock(&lo->lo_mutex);
1183
1184 /*
1185 * Need not hold lo_mutex to fput backing file. Calling fput holding
1186 * lo_mutex triggers a circular lock dependency possibility warning as
1187 * fput can take open_mutex which is usually taken before lo_mutex.
1188 */
1189 fput(filp);
1190 }
1191
loop_clr_fd(struct loop_device * lo)1192 static int loop_clr_fd(struct loop_device *lo)
1193 {
1194 int err;
1195
1196 /*
1197 * Since lo_ioctl() is called without locks held, it is possible that
1198 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel.
1199 *
1200 * Therefore, use global lock when setting Lo_rundown state in order to
1201 * make sure that loop_validate_file() will fail if the "struct file"
1202 * which loop_configure()/loop_change_fd() found via fget() was this
1203 * loop device.
1204 */
1205 err = loop_global_lock_killable(lo, true);
1206 if (err)
1207 return err;
1208 if (lo->lo_state != Lo_bound) {
1209 loop_global_unlock(lo, true);
1210 return -ENXIO;
1211 }
1212 /*
1213 * Mark the device for removing the backing device on last close.
1214 * If we are the only opener, also switch the state to roundown here to
1215 * prevent new openers from coming in.
1216 */
1217
1218 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1219 if (disk_openers(lo->lo_disk) == 1)
1220 WRITE_ONCE(lo->lo_state, Lo_rundown);
1221 loop_global_unlock(lo, true);
1222
1223 return 0;
1224 }
1225
1226 static int
loop_set_status(struct loop_device * lo,const struct loop_info64 * info)1227 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1228 {
1229 int err;
1230 bool partscan = false;
1231 bool size_changed = false;
1232 unsigned int memflags;
1233
1234 err = mutex_lock_killable(&lo->lo_mutex);
1235 if (err)
1236 return err;
1237 if (lo->lo_state != Lo_bound) {
1238 err = -ENXIO;
1239 goto out_unlock;
1240 }
1241
1242 if (lo->lo_offset != info->lo_offset ||
1243 lo->lo_sizelimit != info->lo_sizelimit) {
1244 size_changed = true;
1245 sync_blockdev(lo->lo_device);
1246 invalidate_bdev(lo->lo_device);
1247 }
1248
1249 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */
1250 memflags = blk_mq_freeze_queue(lo->lo_queue);
1251
1252 err = loop_set_status_from_info(lo, info);
1253 if (err)
1254 goto out_unfreeze;
1255
1256 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1257 (info->lo_flags & LO_FLAGS_PARTSCAN);
1258
1259 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1260 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS);
1261
1262 /* update the direct I/O flag if lo_offset changed */
1263 loop_update_dio(lo);
1264
1265 out_unfreeze:
1266 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1267 if (partscan)
1268 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1269 if (!err && size_changed) {
1270 loff_t new_size = lo_calculate_size(lo, lo->lo_backing_file);
1271 loop_set_size(lo, new_size);
1272 }
1273 out_unlock:
1274 mutex_unlock(&lo->lo_mutex);
1275 if (partscan)
1276 loop_reread_partitions(lo);
1277
1278 return err;
1279 }
1280
1281 static int
loop_get_status(struct loop_device * lo,struct loop_info64 * info)1282 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1283 {
1284 struct path path;
1285 struct kstat stat;
1286 int ret;
1287
1288 ret = mutex_lock_killable(&lo->lo_mutex);
1289 if (ret)
1290 return ret;
1291 if (lo->lo_state != Lo_bound) {
1292 mutex_unlock(&lo->lo_mutex);
1293 return -ENXIO;
1294 }
1295
1296 memset(info, 0, sizeof(*info));
1297 info->lo_number = lo->lo_number;
1298 info->lo_offset = lo->lo_offset;
1299 info->lo_sizelimit = lo->lo_sizelimit;
1300 info->lo_flags = lo->lo_flags;
1301 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1302
1303 /* Drop lo_mutex while we call into the filesystem. */
1304 path = lo->lo_backing_file->f_path;
1305 path_get(&path);
1306 mutex_unlock(&lo->lo_mutex);
1307 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1308 if (!ret) {
1309 info->lo_device = huge_encode_dev(stat.dev);
1310 info->lo_inode = stat.ino;
1311 info->lo_rdevice = huge_encode_dev(stat.rdev);
1312 }
1313 path_put(&path);
1314 return ret;
1315 }
1316
1317 static void
loop_info64_from_old(const struct loop_info * info,struct loop_info64 * info64)1318 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1319 {
1320 memset(info64, 0, sizeof(*info64));
1321 info64->lo_number = info->lo_number;
1322 info64->lo_device = info->lo_device;
1323 info64->lo_inode = info->lo_inode;
1324 info64->lo_rdevice = info->lo_rdevice;
1325 info64->lo_offset = info->lo_offset;
1326 info64->lo_sizelimit = 0;
1327 info64->lo_flags = info->lo_flags;
1328 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1329 }
1330
1331 static int
loop_info64_to_old(const struct loop_info64 * info64,struct loop_info * info)1332 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1333 {
1334 memset(info, 0, sizeof(*info));
1335 info->lo_number = info64->lo_number;
1336 info->lo_device = info64->lo_device;
1337 info->lo_inode = info64->lo_inode;
1338 info->lo_rdevice = info64->lo_rdevice;
1339 info->lo_offset = info64->lo_offset;
1340 info->lo_flags = info64->lo_flags;
1341 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1342
1343 /* error in case values were truncated */
1344 if (info->lo_device != info64->lo_device ||
1345 info->lo_rdevice != info64->lo_rdevice ||
1346 info->lo_inode != info64->lo_inode ||
1347 info->lo_offset != info64->lo_offset)
1348 return -EOVERFLOW;
1349
1350 return 0;
1351 }
1352
1353 static int
loop_set_status_old(struct loop_device * lo,const struct loop_info __user * arg)1354 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1355 {
1356 struct loop_info info;
1357 struct loop_info64 info64;
1358
1359 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1360 return -EFAULT;
1361 loop_info64_from_old(&info, &info64);
1362 return loop_set_status(lo, &info64);
1363 }
1364
1365 static int
loop_set_status64(struct loop_device * lo,const struct loop_info64 __user * arg)1366 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1367 {
1368 struct loop_info64 info64;
1369
1370 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1371 return -EFAULT;
1372 return loop_set_status(lo, &info64);
1373 }
1374
1375 static int
loop_get_status_old(struct loop_device * lo,struct loop_info __user * arg)1376 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1377 struct loop_info info;
1378 struct loop_info64 info64;
1379 int err;
1380
1381 if (!arg)
1382 return -EINVAL;
1383 err = loop_get_status(lo, &info64);
1384 if (!err)
1385 err = loop_info64_to_old(&info64, &info);
1386 if (!err && copy_to_user(arg, &info, sizeof(info)))
1387 err = -EFAULT;
1388
1389 return err;
1390 }
1391
1392 static int
loop_get_status64(struct loop_device * lo,struct loop_info64 __user * arg)1393 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1394 struct loop_info64 info64;
1395 int err;
1396
1397 if (!arg)
1398 return -EINVAL;
1399 err = loop_get_status(lo, &info64);
1400 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1401 err = -EFAULT;
1402
1403 return err;
1404 }
1405
loop_set_capacity(struct loop_device * lo)1406 static int loop_set_capacity(struct loop_device *lo)
1407 {
1408 loff_t size;
1409
1410 if (unlikely(lo->lo_state != Lo_bound))
1411 return -ENXIO;
1412
1413 size = lo_calculate_size(lo, lo->lo_backing_file);
1414 loop_set_size(lo, size);
1415
1416 return 0;
1417 }
1418
loop_set_dio(struct loop_device * lo,unsigned long arg)1419 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1420 {
1421 bool use_dio = !!arg;
1422 unsigned int memflags;
1423
1424 if (lo->lo_state != Lo_bound)
1425 return -ENXIO;
1426 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO))
1427 return 0;
1428
1429 if (use_dio) {
1430 if (!lo_can_use_dio(lo))
1431 return -EINVAL;
1432 /* flush dirty pages before starting to use direct I/O */
1433 vfs_fsync(lo->lo_backing_file, 0);
1434 }
1435
1436 memflags = blk_mq_freeze_queue(lo->lo_queue);
1437 if (use_dio)
1438 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
1439 else
1440 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
1441 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1442 return 0;
1443 }
1444
loop_set_block_size(struct loop_device * lo,blk_mode_t mode,struct block_device * bdev,unsigned long arg)1445 static int loop_set_block_size(struct loop_device *lo, blk_mode_t mode,
1446 struct block_device *bdev, unsigned long arg)
1447 {
1448 struct queue_limits lim;
1449 unsigned int memflags;
1450 int err = 0;
1451
1452 /*
1453 * If we don't hold exclusive handle for the device, upgrade to it
1454 * here to avoid changing device under exclusive owner.
1455 */
1456 if (!(mode & BLK_OPEN_EXCL)) {
1457 err = bd_prepare_to_claim(bdev, loop_set_block_size, NULL);
1458 if (err)
1459 return err;
1460 }
1461
1462 err = mutex_lock_killable(&lo->lo_mutex);
1463 if (err)
1464 goto abort_claim;
1465
1466 if (lo->lo_state != Lo_bound) {
1467 err = -ENXIO;
1468 goto unlock;
1469 }
1470
1471 if (lo->lo_queue->limits.logical_block_size == arg)
1472 goto unlock;
1473
1474 sync_blockdev(lo->lo_device);
1475 invalidate_bdev(lo->lo_device);
1476
1477 lim = queue_limits_start_update(lo->lo_queue);
1478 loop_update_limits(lo, &lim, arg);
1479
1480 memflags = blk_mq_freeze_queue(lo->lo_queue);
1481 err = queue_limits_commit_update(lo->lo_queue, &lim);
1482 loop_update_dio(lo);
1483 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1484
1485 unlock:
1486 mutex_unlock(&lo->lo_mutex);
1487 abort_claim:
1488 if (!(mode & BLK_OPEN_EXCL))
1489 bd_abort_claiming(bdev, loop_set_block_size);
1490 return err;
1491 }
1492
lo_simple_ioctl(struct loop_device * lo,unsigned int cmd,unsigned long arg)1493 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1494 unsigned long arg)
1495 {
1496 int err;
1497
1498 err = mutex_lock_killable(&lo->lo_mutex);
1499 if (err)
1500 return err;
1501 switch (cmd) {
1502 case LOOP_SET_CAPACITY:
1503 err = loop_set_capacity(lo);
1504 break;
1505 case LOOP_SET_DIRECT_IO:
1506 err = loop_set_dio(lo, arg);
1507 break;
1508 default:
1509 err = -EINVAL;
1510 }
1511 mutex_unlock(&lo->lo_mutex);
1512 return err;
1513 }
1514
lo_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1515 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode,
1516 unsigned int cmd, unsigned long arg)
1517 {
1518 struct loop_device *lo = bdev->bd_disk->private_data;
1519 void __user *argp = (void __user *) arg;
1520 int err;
1521
1522 switch (cmd) {
1523 case LOOP_SET_FD: {
1524 /*
1525 * Legacy case - pass in a zeroed out struct loop_config with
1526 * only the file descriptor set , which corresponds with the
1527 * default parameters we'd have used otherwise.
1528 */
1529 struct loop_config config;
1530
1531 memset(&config, 0, sizeof(config));
1532 config.fd = arg;
1533
1534 return loop_configure(lo, mode, bdev, &config);
1535 }
1536 case LOOP_CONFIGURE: {
1537 struct loop_config config;
1538
1539 if (copy_from_user(&config, argp, sizeof(config)))
1540 return -EFAULT;
1541
1542 return loop_configure(lo, mode, bdev, &config);
1543 }
1544 case LOOP_CHANGE_FD:
1545 return loop_change_fd(lo, bdev, arg);
1546 case LOOP_CLR_FD:
1547 return loop_clr_fd(lo);
1548 case LOOP_SET_STATUS:
1549 err = -EPERM;
1550 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1551 err = loop_set_status_old(lo, argp);
1552 break;
1553 case LOOP_GET_STATUS:
1554 return loop_get_status_old(lo, argp);
1555 case LOOP_SET_STATUS64:
1556 err = -EPERM;
1557 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1558 err = loop_set_status64(lo, argp);
1559 break;
1560 case LOOP_GET_STATUS64:
1561 return loop_get_status64(lo, argp);
1562 case LOOP_SET_BLOCK_SIZE:
1563 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1564 return -EPERM;
1565 return loop_set_block_size(lo, mode, bdev, arg);
1566 case LOOP_SET_CAPACITY:
1567 case LOOP_SET_DIRECT_IO:
1568 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1569 return -EPERM;
1570 fallthrough;
1571 default:
1572 err = lo_simple_ioctl(lo, cmd, arg);
1573 break;
1574 }
1575
1576 return err;
1577 }
1578
1579 #ifdef CONFIG_COMPAT
1580 struct compat_loop_info {
1581 compat_int_t lo_number; /* ioctl r/o */
1582 compat_dev_t lo_device; /* ioctl r/o */
1583 compat_ulong_t lo_inode; /* ioctl r/o */
1584 compat_dev_t lo_rdevice; /* ioctl r/o */
1585 compat_int_t lo_offset;
1586 compat_int_t lo_encrypt_type; /* obsolete, ignored */
1587 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1588 compat_int_t lo_flags; /* ioctl r/o */
1589 char lo_name[LO_NAME_SIZE];
1590 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1591 compat_ulong_t lo_init[2];
1592 char reserved[4];
1593 };
1594
1595 /*
1596 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1597 * - noinlined to reduce stack space usage in main part of driver
1598 */
1599 static noinline int
loop_info64_from_compat(const struct compat_loop_info __user * arg,struct loop_info64 * info64)1600 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1601 struct loop_info64 *info64)
1602 {
1603 struct compat_loop_info info;
1604
1605 if (copy_from_user(&info, arg, sizeof(info)))
1606 return -EFAULT;
1607
1608 memset(info64, 0, sizeof(*info64));
1609 info64->lo_number = info.lo_number;
1610 info64->lo_device = info.lo_device;
1611 info64->lo_inode = info.lo_inode;
1612 info64->lo_rdevice = info.lo_rdevice;
1613 info64->lo_offset = info.lo_offset;
1614 info64->lo_sizelimit = 0;
1615 info64->lo_flags = info.lo_flags;
1616 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1617 return 0;
1618 }
1619
1620 /*
1621 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1622 * - noinlined to reduce stack space usage in main part of driver
1623 */
1624 static noinline int
loop_info64_to_compat(const struct loop_info64 * info64,struct compat_loop_info __user * arg)1625 loop_info64_to_compat(const struct loop_info64 *info64,
1626 struct compat_loop_info __user *arg)
1627 {
1628 struct compat_loop_info info;
1629
1630 memset(&info, 0, sizeof(info));
1631 info.lo_number = info64->lo_number;
1632 info.lo_device = info64->lo_device;
1633 info.lo_inode = info64->lo_inode;
1634 info.lo_rdevice = info64->lo_rdevice;
1635 info.lo_offset = info64->lo_offset;
1636 info.lo_flags = info64->lo_flags;
1637 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1638
1639 /* error in case values were truncated */
1640 if (info.lo_device != info64->lo_device ||
1641 info.lo_rdevice != info64->lo_rdevice ||
1642 info.lo_inode != info64->lo_inode ||
1643 info.lo_offset != info64->lo_offset)
1644 return -EOVERFLOW;
1645
1646 if (copy_to_user(arg, &info, sizeof(info)))
1647 return -EFAULT;
1648 return 0;
1649 }
1650
1651 static int
loop_set_status_compat(struct loop_device * lo,const struct compat_loop_info __user * arg)1652 loop_set_status_compat(struct loop_device *lo,
1653 const struct compat_loop_info __user *arg)
1654 {
1655 struct loop_info64 info64;
1656 int ret;
1657
1658 ret = loop_info64_from_compat(arg, &info64);
1659 if (ret < 0)
1660 return ret;
1661 return loop_set_status(lo, &info64);
1662 }
1663
1664 static int
loop_get_status_compat(struct loop_device * lo,struct compat_loop_info __user * arg)1665 loop_get_status_compat(struct loop_device *lo,
1666 struct compat_loop_info __user *arg)
1667 {
1668 struct loop_info64 info64;
1669 int err;
1670
1671 if (!arg)
1672 return -EINVAL;
1673 err = loop_get_status(lo, &info64);
1674 if (!err)
1675 err = loop_info64_to_compat(&info64, arg);
1676 return err;
1677 }
1678
lo_compat_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1679 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
1680 unsigned int cmd, unsigned long arg)
1681 {
1682 struct loop_device *lo = bdev->bd_disk->private_data;
1683 int err;
1684
1685 switch(cmd) {
1686 case LOOP_SET_STATUS:
1687 err = loop_set_status_compat(lo,
1688 (const struct compat_loop_info __user *)arg);
1689 break;
1690 case LOOP_GET_STATUS:
1691 err = loop_get_status_compat(lo,
1692 (struct compat_loop_info __user *)arg);
1693 break;
1694 case LOOP_SET_CAPACITY:
1695 case LOOP_CLR_FD:
1696 case LOOP_GET_STATUS64:
1697 case LOOP_SET_STATUS64:
1698 case LOOP_CONFIGURE:
1699 arg = (unsigned long) compat_ptr(arg);
1700 fallthrough;
1701 case LOOP_SET_FD:
1702 case LOOP_CHANGE_FD:
1703 case LOOP_SET_BLOCK_SIZE:
1704 case LOOP_SET_DIRECT_IO:
1705 err = lo_ioctl(bdev, mode, cmd, arg);
1706 break;
1707 default:
1708 err = -ENOIOCTLCMD;
1709 break;
1710 }
1711 return err;
1712 }
1713 #endif
1714
lo_open(struct gendisk * disk,blk_mode_t mode)1715 static int lo_open(struct gendisk *disk, blk_mode_t mode)
1716 {
1717 struct loop_device *lo = disk->private_data;
1718 int err;
1719
1720 err = mutex_lock_killable(&lo->lo_mutex);
1721 if (err)
1722 return err;
1723
1724 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown)
1725 err = -ENXIO;
1726 mutex_unlock(&lo->lo_mutex);
1727 return err;
1728 }
1729
lo_release(struct gendisk * disk)1730 static void lo_release(struct gendisk *disk)
1731 {
1732 struct loop_device *lo = disk->private_data;
1733 bool need_clear = false;
1734
1735 if (disk_openers(disk) > 0)
1736 return;
1737 /*
1738 * Clear the backing device information if this is the last close of
1739 * a device that's been marked for auto clear, or on which LOOP_CLR_FD
1740 * has been called.
1741 */
1742
1743 mutex_lock(&lo->lo_mutex);
1744 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR))
1745 WRITE_ONCE(lo->lo_state, Lo_rundown);
1746
1747 need_clear = (lo->lo_state == Lo_rundown);
1748 mutex_unlock(&lo->lo_mutex);
1749
1750 if (need_clear)
1751 __loop_clr_fd(lo);
1752 }
1753
lo_free_disk(struct gendisk * disk)1754 static void lo_free_disk(struct gendisk *disk)
1755 {
1756 struct loop_device *lo = disk->private_data;
1757
1758 if (lo->workqueue)
1759 destroy_workqueue(lo->workqueue);
1760 loop_free_idle_workers(lo, true);
1761 timer_shutdown_sync(&lo->timer);
1762 mutex_destroy(&lo->lo_mutex);
1763 kfree(lo);
1764 }
1765
1766 static const struct block_device_operations lo_fops = {
1767 .owner = THIS_MODULE,
1768 .open = lo_open,
1769 .release = lo_release,
1770 .ioctl = lo_ioctl,
1771 #ifdef CONFIG_COMPAT
1772 .compat_ioctl = lo_compat_ioctl,
1773 #endif
1774 .free_disk = lo_free_disk,
1775 };
1776
1777 /*
1778 * And now the modules code and kernel interface.
1779 */
1780
1781 /*
1782 * If max_loop is specified, create that many devices upfront.
1783 * This also becomes a hard limit. If max_loop is not specified,
1784 * the default isn't a hard limit (as before commit 85c50197716c
1785 * changed the default value from 0 for max_loop=0 reasons), just
1786 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1787 * init time. Loop devices can be requested on-demand with the
1788 * /dev/loop-control interface, or be instantiated by accessing
1789 * a 'dead' device node.
1790 */
1791 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1792
1793 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
1794 static bool max_loop_specified;
1795
max_loop_param_set_int(const char * val,const struct kernel_param * kp)1796 static int max_loop_param_set_int(const char *val,
1797 const struct kernel_param *kp)
1798 {
1799 int ret;
1800
1801 ret = param_set_int(val, kp);
1802 if (ret < 0)
1803 return ret;
1804
1805 max_loop_specified = true;
1806 return 0;
1807 }
1808
1809 static const struct kernel_param_ops max_loop_param_ops = {
1810 .set = max_loop_param_set_int,
1811 .get = param_get_int,
1812 };
1813
1814 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444);
1815 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1816 #else
1817 module_param(max_loop, int, 0444);
1818 MODULE_PARM_DESC(max_loop, "Initial number of loop devices");
1819 #endif
1820
1821 module_param(max_part, int, 0444);
1822 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1823
1824 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH;
1825
loop_set_hw_queue_depth(const char * s,const struct kernel_param * p)1826 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p)
1827 {
1828 int qd, ret;
1829
1830 ret = kstrtoint(s, 0, &qd);
1831 if (ret < 0)
1832 return ret;
1833 if (qd < 1)
1834 return -EINVAL;
1835 hw_queue_depth = qd;
1836 return 0;
1837 }
1838
1839 static const struct kernel_param_ops loop_hw_qdepth_param_ops = {
1840 .set = loop_set_hw_queue_depth,
1841 .get = param_get_int,
1842 };
1843
1844 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444);
1845 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH));
1846
1847 MODULE_DESCRIPTION("Loopback device support");
1848 MODULE_LICENSE("GPL");
1849 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1850
loop_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1851 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1852 const struct blk_mq_queue_data *bd)
1853 {
1854 struct request *rq = bd->rq;
1855 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1856 struct loop_device *lo = rq->q->queuedata;
1857
1858 blk_mq_start_request(rq);
1859
1860 if (data_race(READ_ONCE(lo->lo_state)) != Lo_bound)
1861 return BLK_STS_IOERR;
1862
1863 switch (req_op(rq)) {
1864 case REQ_OP_FLUSH:
1865 case REQ_OP_DISCARD:
1866 case REQ_OP_WRITE_ZEROES:
1867 cmd->use_aio = false;
1868 break;
1869 default:
1870 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1871 break;
1872 }
1873
1874 /* always use the first bio's css */
1875 cmd->blkcg_css = NULL;
1876 cmd->memcg_css = NULL;
1877 #ifdef CONFIG_BLK_CGROUP
1878 if (rq->bio) {
1879 cmd->blkcg_css = bio_blkcg_css(rq->bio);
1880 #ifdef CONFIG_MEMCG
1881 if (cmd->blkcg_css) {
1882 cmd->memcg_css =
1883 cgroup_get_e_css(cmd->blkcg_css->cgroup,
1884 &memory_cgrp_subsys);
1885 }
1886 #endif
1887 }
1888 #endif
1889 loop_queue_work(lo, cmd);
1890
1891 return BLK_STS_OK;
1892 }
1893
loop_handle_cmd(struct loop_cmd * cmd)1894 static void loop_handle_cmd(struct loop_cmd *cmd)
1895 {
1896 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css;
1897 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css;
1898 struct request *rq = blk_mq_rq_from_pdu(cmd);
1899 const bool write = op_is_write(req_op(rq));
1900 struct loop_device *lo = rq->q->queuedata;
1901 int ret = 0;
1902 struct mem_cgroup *old_memcg = NULL;
1903
1904 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1905 ret = -EIO;
1906 goto failed;
1907 }
1908
1909 /* We can block in this context, so ignore REQ_NOWAIT. */
1910 if (rq->cmd_flags & REQ_NOWAIT)
1911 rq->cmd_flags &= ~REQ_NOWAIT;
1912
1913 if (cmd_blkcg_css)
1914 kthread_associate_blkcg(cmd_blkcg_css);
1915 if (cmd_memcg_css)
1916 old_memcg = set_active_memcg(
1917 mem_cgroup_from_css(cmd_memcg_css));
1918
1919 /*
1920 * do_req_filebacked() may call blk_mq_complete_request() synchronously
1921 * or asynchronously if using aio. Hence, do not touch 'cmd' after
1922 * do_req_filebacked() has returned unless we are sure that 'cmd' has
1923 * not yet been completed.
1924 */
1925 ret = do_req_filebacked(lo, rq);
1926
1927 if (cmd_blkcg_css)
1928 kthread_associate_blkcg(NULL);
1929
1930 if (cmd_memcg_css) {
1931 set_active_memcg(old_memcg);
1932 css_put(cmd_memcg_css);
1933 }
1934 failed:
1935 /* complete non-aio request */
1936 if (ret != -EIOCBQUEUED) {
1937 if (ret == -EOPNOTSUPP)
1938 cmd->ret = ret;
1939 else
1940 cmd->ret = ret ? -EIO : 0;
1941 if (likely(!blk_should_fake_timeout(rq->q)))
1942 blk_mq_complete_request(rq);
1943 }
1944 }
1945
loop_process_work(struct loop_worker * worker,struct list_head * cmd_list,struct loop_device * lo)1946 static void loop_process_work(struct loop_worker *worker,
1947 struct list_head *cmd_list, struct loop_device *lo)
1948 {
1949 int orig_flags = current->flags;
1950 struct loop_cmd *cmd;
1951
1952 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
1953 spin_lock_irq(&lo->lo_work_lock);
1954 while (!list_empty(cmd_list)) {
1955 cmd = container_of(
1956 cmd_list->next, struct loop_cmd, list_entry);
1957 list_del(cmd_list->next);
1958 spin_unlock_irq(&lo->lo_work_lock);
1959
1960 loop_handle_cmd(cmd);
1961 cond_resched();
1962
1963 spin_lock_irq(&lo->lo_work_lock);
1964 }
1965
1966 /*
1967 * We only add to the idle list if there are no pending cmds
1968 * *and* the worker will not run again which ensures that it
1969 * is safe to free any worker on the idle list
1970 */
1971 if (worker && !work_pending(&worker->work)) {
1972 worker->last_ran_at = jiffies;
1973 list_add_tail(&worker->idle_list, &lo->idle_worker_list);
1974 loop_set_timer(lo);
1975 }
1976 spin_unlock_irq(&lo->lo_work_lock);
1977 current->flags = orig_flags;
1978 }
1979
loop_workfn(struct work_struct * work)1980 static void loop_workfn(struct work_struct *work)
1981 {
1982 struct loop_worker *worker =
1983 container_of(work, struct loop_worker, work);
1984 loop_process_work(worker, &worker->cmd_list, worker->lo);
1985 }
1986
loop_rootcg_workfn(struct work_struct * work)1987 static void loop_rootcg_workfn(struct work_struct *work)
1988 {
1989 struct loop_device *lo =
1990 container_of(work, struct loop_device, rootcg_work);
1991 loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
1992 }
1993
1994 static const struct blk_mq_ops loop_mq_ops = {
1995 .queue_rq = loop_queue_rq,
1996 .complete = lo_complete_rq,
1997 };
1998
loop_add(int i)1999 static int loop_add(int i)
2000 {
2001 struct queue_limits lim = {
2002 /*
2003 * Random number picked from the historic block max_sectors cap.
2004 */
2005 .max_hw_sectors = 2560u,
2006 };
2007 struct loop_device *lo;
2008 struct gendisk *disk;
2009 int err;
2010
2011 err = -ENOMEM;
2012 lo = kzalloc_obj(*lo, GFP_KERNEL);
2013 if (!lo)
2014 goto out;
2015 lo->worker_tree = RB_ROOT;
2016 INIT_LIST_HEAD(&lo->idle_worker_list);
2017 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE);
2018 WRITE_ONCE(lo->lo_state, Lo_unbound);
2019
2020 err = mutex_lock_killable(&loop_ctl_mutex);
2021 if (err)
2022 goto out_free_dev;
2023
2024 /* allocate id, if @id >= 0, we're requesting that specific id */
2025 if (i >= 0) {
2026 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2027 if (err == -ENOSPC)
2028 err = -EEXIST;
2029 } else {
2030 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2031 }
2032 mutex_unlock(&loop_ctl_mutex);
2033 if (err < 0)
2034 goto out_free_dev;
2035 i = err;
2036
2037 lo->tag_set.ops = &loop_mq_ops;
2038 lo->tag_set.nr_hw_queues = 1;
2039 lo->tag_set.queue_depth = hw_queue_depth;
2040 lo->tag_set.numa_node = NUMA_NO_NODE;
2041 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2042 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2043 lo->tag_set.driver_data = lo;
2044
2045 err = blk_mq_alloc_tag_set(&lo->tag_set);
2046 if (err)
2047 goto out_free_idr;
2048
2049 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo);
2050 if (IS_ERR(disk)) {
2051 err = PTR_ERR(disk);
2052 goto out_cleanup_tags;
2053 }
2054 lo->lo_queue = lo->lo_disk->queue;
2055
2056 /*
2057 * Disable partition scanning by default. The in-kernel partition
2058 * scanning can be requested individually per-device during its
2059 * setup. Userspace can always add and remove partitions from all
2060 * devices. The needed partition minors are allocated from the
2061 * extended minor space, the main loop device numbers will continue
2062 * to match the loop minors, regardless of the number of partitions
2063 * used.
2064 *
2065 * If max_part is given, partition scanning is globally enabled for
2066 * all loop devices. The minors for the main loop devices will be
2067 * multiples of max_part.
2068 *
2069 * Note: Global-for-all-devices, set-only-at-init, read-only module
2070 * parameteters like 'max_loop' and 'max_part' make things needlessly
2071 * complicated, are too static, inflexible and may surprise
2072 * userspace tools. Parameters like this in general should be avoided.
2073 */
2074 if (!part_shift)
2075 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
2076 mutex_init(&lo->lo_mutex);
2077 lo->lo_number = i;
2078 spin_lock_init(&lo->lo_lock);
2079 spin_lock_init(&lo->lo_work_lock);
2080 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
2081 INIT_LIST_HEAD(&lo->rootcg_cmd_list);
2082 disk->major = LOOP_MAJOR;
2083 disk->first_minor = i << part_shift;
2084 disk->minors = 1 << part_shift;
2085 disk->fops = &lo_fops;
2086 disk->private_data = lo;
2087 disk->queue = lo->lo_queue;
2088 disk->events = DISK_EVENT_MEDIA_CHANGE;
2089 disk->event_flags = DISK_EVENT_FLAG_UEVENT;
2090 sprintf(disk->disk_name, "loop%d", i);
2091 /* Make this loop device reachable from pathname. */
2092 err = add_disk(disk);
2093 if (err)
2094 goto out_cleanup_disk;
2095
2096 /* Show this loop device. */
2097 mutex_lock(&loop_ctl_mutex);
2098 lo->idr_visible = true;
2099 mutex_unlock(&loop_ctl_mutex);
2100
2101 return i;
2102
2103 out_cleanup_disk:
2104 put_disk(disk);
2105 out_cleanup_tags:
2106 blk_mq_free_tag_set(&lo->tag_set);
2107 out_free_idr:
2108 mutex_lock(&loop_ctl_mutex);
2109 idr_remove(&loop_index_idr, i);
2110 mutex_unlock(&loop_ctl_mutex);
2111 out_free_dev:
2112 kfree(lo);
2113 out:
2114 return err;
2115 }
2116
loop_remove(struct loop_device * lo)2117 static void loop_remove(struct loop_device *lo)
2118 {
2119 /* Make this loop device unreachable from pathname. */
2120 del_gendisk(lo->lo_disk);
2121 blk_mq_free_tag_set(&lo->tag_set);
2122
2123 mutex_lock(&loop_ctl_mutex);
2124 idr_remove(&loop_index_idr, lo->lo_number);
2125 mutex_unlock(&loop_ctl_mutex);
2126
2127 put_disk(lo->lo_disk);
2128 }
2129
2130 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
loop_probe(dev_t dev)2131 static void loop_probe(dev_t dev)
2132 {
2133 int idx = MINOR(dev) >> part_shift;
2134
2135 if (max_loop_specified && max_loop && idx >= max_loop)
2136 return;
2137 loop_add(idx);
2138 }
2139 #else
2140 #define loop_probe NULL
2141 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */
2142
loop_control_remove(int idx)2143 static int loop_control_remove(int idx)
2144 {
2145 struct loop_device *lo;
2146 int ret;
2147
2148 if (idx < 0) {
2149 pr_warn_once("deleting an unspecified loop device is not supported.\n");
2150 return -EINVAL;
2151 }
2152
2153 /* Hide this loop device for serialization. */
2154 ret = mutex_lock_killable(&loop_ctl_mutex);
2155 if (ret)
2156 return ret;
2157 lo = idr_find(&loop_index_idr, idx);
2158 if (!lo || !lo->idr_visible)
2159 ret = -ENODEV;
2160 else
2161 lo->idr_visible = false;
2162 mutex_unlock(&loop_ctl_mutex);
2163 if (ret)
2164 return ret;
2165
2166 /* Check whether this loop device can be removed. */
2167 ret = mutex_lock_killable(&lo->lo_mutex);
2168 if (ret)
2169 goto mark_visible;
2170 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) {
2171 mutex_unlock(&lo->lo_mutex);
2172 ret = -EBUSY;
2173 goto mark_visible;
2174 }
2175 /* Mark this loop device as no more bound, but not quite unbound yet */
2176 WRITE_ONCE(lo->lo_state, Lo_deleting);
2177 mutex_unlock(&lo->lo_mutex);
2178
2179 loop_remove(lo);
2180 return 0;
2181
2182 mark_visible:
2183 /* Show this loop device again. */
2184 mutex_lock(&loop_ctl_mutex);
2185 lo->idr_visible = true;
2186 mutex_unlock(&loop_ctl_mutex);
2187 return ret;
2188 }
2189
loop_control_get_free(int idx)2190 static int loop_control_get_free(int idx)
2191 {
2192 struct loop_device *lo;
2193 int id, ret;
2194
2195 ret = mutex_lock_killable(&loop_ctl_mutex);
2196 if (ret)
2197 return ret;
2198 idr_for_each_entry(&loop_index_idr, lo, id) {
2199 /*
2200 * Hitting a race results in creating a new loop device
2201 * which is harmless.
2202 */
2203 if (lo->idr_visible &&
2204 data_race(READ_ONCE(lo->lo_state)) == Lo_unbound)
2205 goto found;
2206 }
2207 mutex_unlock(&loop_ctl_mutex);
2208 return loop_add(-1);
2209 found:
2210 mutex_unlock(&loop_ctl_mutex);
2211 return id;
2212 }
2213
loop_control_ioctl(struct file * file,unsigned int cmd,unsigned long parm)2214 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2215 unsigned long parm)
2216 {
2217 switch (cmd) {
2218 case LOOP_CTL_ADD:
2219 return loop_add(parm);
2220 case LOOP_CTL_REMOVE:
2221 return loop_control_remove(parm);
2222 case LOOP_CTL_GET_FREE:
2223 return loop_control_get_free(parm);
2224 default:
2225 return -ENOSYS;
2226 }
2227 }
2228
2229 static const struct file_operations loop_ctl_fops = {
2230 .open = nonseekable_open,
2231 .unlocked_ioctl = loop_control_ioctl,
2232 .compat_ioctl = loop_control_ioctl,
2233 .owner = THIS_MODULE,
2234 .llseek = noop_llseek,
2235 };
2236
2237 static struct miscdevice loop_misc = {
2238 .minor = LOOP_CTRL_MINOR,
2239 .name = "loop-control",
2240 .fops = &loop_ctl_fops,
2241 };
2242
2243 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2244 MODULE_ALIAS("devname:loop-control");
2245
loop_init(void)2246 static int __init loop_init(void)
2247 {
2248 int i;
2249 int err;
2250
2251 part_shift = 0;
2252 if (max_part > 0) {
2253 part_shift = fls(max_part);
2254
2255 /*
2256 * Adjust max_part according to part_shift as it is exported
2257 * to user space so that user can decide correct minor number
2258 * if [s]he want to create more devices.
2259 *
2260 * Note that -1 is required because partition 0 is reserved
2261 * for the whole disk.
2262 */
2263 max_part = (1UL << part_shift) - 1;
2264 }
2265
2266 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2267 err = -EINVAL;
2268 goto err_out;
2269 }
2270
2271 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2272 err = -EINVAL;
2273 goto err_out;
2274 }
2275
2276 err = misc_register(&loop_misc);
2277 if (err < 0)
2278 goto err_out;
2279
2280
2281 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2282 err = -EIO;
2283 goto misc_out;
2284 }
2285
2286 /* pre-create number of devices given by config or max_loop */
2287 for (i = 0; i < max_loop; i++)
2288 loop_add(i);
2289
2290 printk(KERN_INFO "loop: module loaded\n");
2291 return 0;
2292
2293 misc_out:
2294 misc_deregister(&loop_misc);
2295 err_out:
2296 return err;
2297 }
2298
loop_exit(void)2299 static void __exit loop_exit(void)
2300 {
2301 struct loop_device *lo;
2302 int id;
2303
2304 unregister_blkdev(LOOP_MAJOR, "loop");
2305 misc_deregister(&loop_misc);
2306
2307 /*
2308 * There is no need to use loop_ctl_mutex here, for nobody else can
2309 * access loop_index_idr when this module is unloading (unless forced
2310 * module unloading is requested). If this is not a clean unloading,
2311 * we have no means to avoid kernel crash.
2312 */
2313 idr_for_each_entry(&loop_index_idr, lo, id)
2314 loop_remove(lo);
2315
2316 idr_destroy(&loop_index_idr);
2317 }
2318
2319 module_init(loop_init);
2320 module_exit(loop_exit);
2321
2322 #ifndef MODULE
max_loop_setup(char * str)2323 static int __init max_loop_setup(char *str)
2324 {
2325 max_loop = simple_strtol(str, NULL, 0);
2326 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2327 max_loop_specified = true;
2328 #endif
2329 return 1;
2330 }
2331
2332 __setup("max_loop=", max_loop_setup);
2333 #endif
2334