1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/pidfs.h>
36
37 #include "pnode.h"
38 #include "internal.h"
39
40 /* Maximum number of mounts in a mount namespace */
41 static unsigned int sysctl_mount_max __read_mostly = 100000;
42
43 static unsigned int m_hash_mask __ro_after_init;
44 static unsigned int m_hash_shift __ro_after_init;
45 static unsigned int mp_hash_mask __ro_after_init;
46 static unsigned int mp_hash_shift __ro_after_init;
47
48 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)49 static int __init set_mhash_entries(char *str)
50 {
51 if (!str)
52 return 0;
53 mhash_entries = simple_strtoul(str, &str, 0);
54 return 1;
55 }
56 __setup("mhash_entries=", set_mhash_entries);
57
58 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)59 static int __init set_mphash_entries(char *str)
60 {
61 if (!str)
62 return 0;
63 mphash_entries = simple_strtoul(str, &str, 0);
64 return 1;
65 }
66 __setup("mphash_entries=", set_mphash_entries);
67
68 static u64 event;
69 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC);
70 static DEFINE_IDA(mnt_group_ida);
71
72 /* Don't allow confusion with old 32bit mount ID */
73 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
74 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET;
75
76 static struct hlist_head *mount_hashtable __ro_after_init;
77 static struct hlist_head *mountpoint_hashtable __ro_after_init;
78 static struct kmem_cache *mnt_cache __ro_after_init;
79 static DECLARE_RWSEM(namespace_sem);
80 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
81 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
82 static struct mnt_namespace *emptied_ns; /* protected by namespace_sem */
83 static DEFINE_SEQLOCK(mnt_ns_tree_lock);
84
85 #ifdef CONFIG_FSNOTIFY
86 LIST_HEAD(notify_list); /* protected by namespace_sem */
87 #endif
88 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */
89 static LIST_HEAD(mnt_ns_list); /* protected by mnt_ns_tree_lock */
90
91 enum mount_kattr_flags_t {
92 MOUNT_KATTR_RECURSE = (1 << 0),
93 MOUNT_KATTR_IDMAP_REPLACE = (1 << 1),
94 };
95
96 struct mount_kattr {
97 unsigned int attr_set;
98 unsigned int attr_clr;
99 unsigned int propagation;
100 unsigned int lookup_flags;
101 enum mount_kattr_flags_t kflags;
102 struct user_namespace *mnt_userns;
103 struct mnt_idmap *mnt_idmap;
104 };
105
106 /* /sys/fs */
107 struct kobject *fs_kobj __ro_after_init;
108 EXPORT_SYMBOL_GPL(fs_kobj);
109
110 /*
111 * vfsmount lock may be taken for read to prevent changes to the
112 * vfsmount hash, ie. during mountpoint lookups or walking back
113 * up the tree.
114 *
115 * It should be taken for write in all cases where the vfsmount
116 * tree or hash is modified or when a vfsmount structure is modified.
117 */
118 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
119
node_to_mnt_ns(const struct rb_node * node)120 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node)
121 {
122 if (!node)
123 return NULL;
124 return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node);
125 }
126
mnt_ns_cmp(struct rb_node * a,const struct rb_node * b)127 static int mnt_ns_cmp(struct rb_node *a, const struct rb_node *b)
128 {
129 struct mnt_namespace *ns_a = node_to_mnt_ns(a);
130 struct mnt_namespace *ns_b = node_to_mnt_ns(b);
131 u64 seq_a = ns_a->seq;
132 u64 seq_b = ns_b->seq;
133
134 if (seq_a < seq_b)
135 return -1;
136 if (seq_a > seq_b)
137 return 1;
138 return 0;
139 }
140
mnt_ns_tree_write_lock(void)141 static inline void mnt_ns_tree_write_lock(void)
142 {
143 write_seqlock(&mnt_ns_tree_lock);
144 }
145
mnt_ns_tree_write_unlock(void)146 static inline void mnt_ns_tree_write_unlock(void)
147 {
148 write_sequnlock(&mnt_ns_tree_lock);
149 }
150
mnt_ns_tree_add(struct mnt_namespace * ns)151 static void mnt_ns_tree_add(struct mnt_namespace *ns)
152 {
153 struct rb_node *node, *prev;
154
155 mnt_ns_tree_write_lock();
156 node = rb_find_add_rcu(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_cmp);
157 /*
158 * If there's no previous entry simply add it after the
159 * head and if there is add it after the previous entry.
160 */
161 prev = rb_prev(&ns->mnt_ns_tree_node);
162 if (!prev)
163 list_add_rcu(&ns->mnt_ns_list, &mnt_ns_list);
164 else
165 list_add_rcu(&ns->mnt_ns_list, &node_to_mnt_ns(prev)->mnt_ns_list);
166 mnt_ns_tree_write_unlock();
167
168 WARN_ON_ONCE(node);
169 }
170
mnt_ns_release(struct mnt_namespace * ns)171 static void mnt_ns_release(struct mnt_namespace *ns)
172 {
173 /* keep alive for {list,stat}mount() */
174 if (refcount_dec_and_test(&ns->passive)) {
175 fsnotify_mntns_delete(ns);
176 put_user_ns(ns->user_ns);
177 kfree(ns);
178 }
179 }
DEFINE_FREE(mnt_ns_release,struct mnt_namespace *,if (_T)mnt_ns_release (_T))180 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T))
181
182 static void mnt_ns_release_rcu(struct rcu_head *rcu)
183 {
184 mnt_ns_release(container_of(rcu, struct mnt_namespace, mnt_ns_rcu));
185 }
186
mnt_ns_tree_remove(struct mnt_namespace * ns)187 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
188 {
189 /* remove from global mount namespace list */
190 if (!is_anon_ns(ns)) {
191 mnt_ns_tree_write_lock();
192 rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree);
193 list_bidir_del_rcu(&ns->mnt_ns_list);
194 mnt_ns_tree_write_unlock();
195 }
196
197 call_rcu(&ns->mnt_ns_rcu, mnt_ns_release_rcu);
198 }
199
mnt_ns_find(const void * key,const struct rb_node * node)200 static int mnt_ns_find(const void *key, const struct rb_node *node)
201 {
202 const u64 mnt_ns_id = *(u64 *)key;
203 const struct mnt_namespace *ns = node_to_mnt_ns(node);
204
205 if (mnt_ns_id < ns->seq)
206 return -1;
207 if (mnt_ns_id > ns->seq)
208 return 1;
209 return 0;
210 }
211
212 /*
213 * Lookup a mount namespace by id and take a passive reference count. Taking a
214 * passive reference means the mount namespace can be emptied if e.g., the last
215 * task holding an active reference exits. To access the mounts of the
216 * namespace the @namespace_sem must first be acquired. If the namespace has
217 * already shut down before acquiring @namespace_sem, {list,stat}mount() will
218 * see that the mount rbtree of the namespace is empty.
219 *
220 * Note the lookup is lockless protected by a sequence counter. We only
221 * need to guard against false negatives as false positives aren't
222 * possible. So if we didn't find a mount namespace and the sequence
223 * counter has changed we need to retry. If the sequence counter is
224 * still the same we know the search actually failed.
225 */
lookup_mnt_ns(u64 mnt_ns_id)226 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
227 {
228 struct mnt_namespace *ns;
229 struct rb_node *node;
230 unsigned int seq;
231
232 guard(rcu)();
233 do {
234 seq = read_seqbegin(&mnt_ns_tree_lock);
235 node = rb_find_rcu(&mnt_ns_id, &mnt_ns_tree, mnt_ns_find);
236 if (node)
237 break;
238 } while (read_seqretry(&mnt_ns_tree_lock, seq));
239
240 if (!node)
241 return NULL;
242
243 /*
244 * The last reference count is put with RCU delay so we can
245 * unconditonally acquire a reference here.
246 */
247 ns = node_to_mnt_ns(node);
248 refcount_inc(&ns->passive);
249 return ns;
250 }
251
lock_mount_hash(void)252 static inline void lock_mount_hash(void)
253 {
254 write_seqlock(&mount_lock);
255 }
256
unlock_mount_hash(void)257 static inline void unlock_mount_hash(void)
258 {
259 write_sequnlock(&mount_lock);
260 }
261
m_hash(struct vfsmount * mnt,struct dentry * dentry)262 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
263 {
264 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
265 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
266 tmp = tmp + (tmp >> m_hash_shift);
267 return &mount_hashtable[tmp & m_hash_mask];
268 }
269
mp_hash(struct dentry * dentry)270 static inline struct hlist_head *mp_hash(struct dentry *dentry)
271 {
272 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
273 tmp = tmp + (tmp >> mp_hash_shift);
274 return &mountpoint_hashtable[tmp & mp_hash_mask];
275 }
276
mnt_alloc_id(struct mount * mnt)277 static int mnt_alloc_id(struct mount *mnt)
278 {
279 int res;
280
281 xa_lock(&mnt_id_xa);
282 res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL);
283 if (!res)
284 mnt->mnt_id_unique = ++mnt_id_ctr;
285 xa_unlock(&mnt_id_xa);
286 return res;
287 }
288
mnt_free_id(struct mount * mnt)289 static void mnt_free_id(struct mount *mnt)
290 {
291 xa_erase(&mnt_id_xa, mnt->mnt_id);
292 }
293
294 /*
295 * Allocate a new peer group ID
296 */
mnt_alloc_group_id(struct mount * mnt)297 static int mnt_alloc_group_id(struct mount *mnt)
298 {
299 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
300
301 if (res < 0)
302 return res;
303 mnt->mnt_group_id = res;
304 return 0;
305 }
306
307 /*
308 * Release a peer group ID
309 */
mnt_release_group_id(struct mount * mnt)310 void mnt_release_group_id(struct mount *mnt)
311 {
312 ida_free(&mnt_group_ida, mnt->mnt_group_id);
313 mnt->mnt_group_id = 0;
314 }
315
316 /*
317 * vfsmount lock must be held for read
318 */
mnt_add_count(struct mount * mnt,int n)319 static inline void mnt_add_count(struct mount *mnt, int n)
320 {
321 #ifdef CONFIG_SMP
322 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
323 #else
324 preempt_disable();
325 mnt->mnt_count += n;
326 preempt_enable();
327 #endif
328 }
329
330 /*
331 * vfsmount lock must be held for write
332 */
mnt_get_count(struct mount * mnt)333 int mnt_get_count(struct mount *mnt)
334 {
335 #ifdef CONFIG_SMP
336 int count = 0;
337 int cpu;
338
339 for_each_possible_cpu(cpu) {
340 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
341 }
342
343 return count;
344 #else
345 return mnt->mnt_count;
346 #endif
347 }
348
alloc_vfsmnt(const char * name)349 static struct mount *alloc_vfsmnt(const char *name)
350 {
351 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
352 if (mnt) {
353 int err;
354
355 err = mnt_alloc_id(mnt);
356 if (err)
357 goto out_free_cache;
358
359 if (name)
360 mnt->mnt_devname = kstrdup_const(name,
361 GFP_KERNEL_ACCOUNT);
362 else
363 mnt->mnt_devname = "none";
364 if (!mnt->mnt_devname)
365 goto out_free_id;
366
367 #ifdef CONFIG_SMP
368 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
369 if (!mnt->mnt_pcp)
370 goto out_free_devname;
371
372 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
373 #else
374 mnt->mnt_count = 1;
375 mnt->mnt_writers = 0;
376 #endif
377
378 INIT_HLIST_NODE(&mnt->mnt_hash);
379 INIT_LIST_HEAD(&mnt->mnt_child);
380 INIT_LIST_HEAD(&mnt->mnt_mounts);
381 INIT_LIST_HEAD(&mnt->mnt_list);
382 INIT_LIST_HEAD(&mnt->mnt_expire);
383 INIT_LIST_HEAD(&mnt->mnt_share);
384 INIT_HLIST_HEAD(&mnt->mnt_slave_list);
385 INIT_HLIST_NODE(&mnt->mnt_slave);
386 INIT_HLIST_NODE(&mnt->mnt_mp_list);
387 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
388 RB_CLEAR_NODE(&mnt->mnt_node);
389 mnt->mnt.mnt_idmap = &nop_mnt_idmap;
390 }
391 return mnt;
392
393 #ifdef CONFIG_SMP
394 out_free_devname:
395 kfree_const(mnt->mnt_devname);
396 #endif
397 out_free_id:
398 mnt_free_id(mnt);
399 out_free_cache:
400 kmem_cache_free(mnt_cache, mnt);
401 return NULL;
402 }
403
404 /*
405 * Most r/o checks on a fs are for operations that take
406 * discrete amounts of time, like a write() or unlink().
407 * We must keep track of when those operations start
408 * (for permission checks) and when they end, so that
409 * we can determine when writes are able to occur to
410 * a filesystem.
411 */
412 /*
413 * __mnt_is_readonly: check whether a mount is read-only
414 * @mnt: the mount to check for its write status
415 *
416 * This shouldn't be used directly ouside of the VFS.
417 * It does not guarantee that the filesystem will stay
418 * r/w, just that it is right *now*. This can not and
419 * should not be used in place of IS_RDONLY(inode).
420 * mnt_want/drop_write() will _keep_ the filesystem
421 * r/w.
422 */
__mnt_is_readonly(struct vfsmount * mnt)423 bool __mnt_is_readonly(struct vfsmount *mnt)
424 {
425 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
426 }
427 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
428
mnt_inc_writers(struct mount * mnt)429 static inline void mnt_inc_writers(struct mount *mnt)
430 {
431 #ifdef CONFIG_SMP
432 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
433 #else
434 mnt->mnt_writers++;
435 #endif
436 }
437
mnt_dec_writers(struct mount * mnt)438 static inline void mnt_dec_writers(struct mount *mnt)
439 {
440 #ifdef CONFIG_SMP
441 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
442 #else
443 mnt->mnt_writers--;
444 #endif
445 }
446
mnt_get_writers(struct mount * mnt)447 static unsigned int mnt_get_writers(struct mount *mnt)
448 {
449 #ifdef CONFIG_SMP
450 unsigned int count = 0;
451 int cpu;
452
453 for_each_possible_cpu(cpu) {
454 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
455 }
456
457 return count;
458 #else
459 return mnt->mnt_writers;
460 #endif
461 }
462
mnt_is_readonly(struct vfsmount * mnt)463 static int mnt_is_readonly(struct vfsmount *mnt)
464 {
465 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
466 return 1;
467 /*
468 * The barrier pairs with the barrier in sb_start_ro_state_change()
469 * making sure if we don't see s_readonly_remount set yet, we also will
470 * not see any superblock / mount flag changes done by remount.
471 * It also pairs with the barrier in sb_end_ro_state_change()
472 * assuring that if we see s_readonly_remount already cleared, we will
473 * see the values of superblock / mount flags updated by remount.
474 */
475 smp_rmb();
476 return __mnt_is_readonly(mnt);
477 }
478
479 /*
480 * Most r/o & frozen checks on a fs are for operations that take discrete
481 * amounts of time, like a write() or unlink(). We must keep track of when
482 * those operations start (for permission checks) and when they end, so that we
483 * can determine when writes are able to occur to a filesystem.
484 */
485 /**
486 * mnt_get_write_access - get write access to a mount without freeze protection
487 * @m: the mount on which to take a write
488 *
489 * This tells the low-level filesystem that a write is about to be performed to
490 * it, and makes sure that writes are allowed (mnt it read-write) before
491 * returning success. This operation does not protect against filesystem being
492 * frozen. When the write operation is finished, mnt_put_write_access() must be
493 * called. This is effectively a refcount.
494 */
mnt_get_write_access(struct vfsmount * m)495 int mnt_get_write_access(struct vfsmount *m)
496 {
497 struct mount *mnt = real_mount(m);
498 int ret = 0;
499
500 preempt_disable();
501 mnt_inc_writers(mnt);
502 /*
503 * The store to mnt_inc_writers must be visible before we pass
504 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
505 * incremented count after it has set MNT_WRITE_HOLD.
506 */
507 smp_mb();
508 might_lock(&mount_lock.lock);
509 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
510 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
511 cpu_relax();
512 } else {
513 /*
514 * This prevents priority inversion, if the task
515 * setting MNT_WRITE_HOLD got preempted on a remote
516 * CPU, and it prevents life lock if the task setting
517 * MNT_WRITE_HOLD has a lower priority and is bound to
518 * the same CPU as the task that is spinning here.
519 */
520 preempt_enable();
521 lock_mount_hash();
522 unlock_mount_hash();
523 preempt_disable();
524 }
525 }
526 /*
527 * The barrier pairs with the barrier sb_start_ro_state_change() making
528 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
529 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
530 * mnt_is_readonly() and bail in case we are racing with remount
531 * read-only.
532 */
533 smp_rmb();
534 if (mnt_is_readonly(m)) {
535 mnt_dec_writers(mnt);
536 ret = -EROFS;
537 }
538 preempt_enable();
539
540 return ret;
541 }
542 EXPORT_SYMBOL_GPL(mnt_get_write_access);
543
544 /**
545 * mnt_want_write - get write access to a mount
546 * @m: the mount on which to take a write
547 *
548 * This tells the low-level filesystem that a write is about to be performed to
549 * it, and makes sure that writes are allowed (mount is read-write, filesystem
550 * is not frozen) before returning success. When the write operation is
551 * finished, mnt_drop_write() must be called. This is effectively a refcount.
552 */
mnt_want_write(struct vfsmount * m)553 int mnt_want_write(struct vfsmount *m)
554 {
555 int ret;
556
557 sb_start_write(m->mnt_sb);
558 ret = mnt_get_write_access(m);
559 if (ret)
560 sb_end_write(m->mnt_sb);
561 return ret;
562 }
563 EXPORT_SYMBOL_GPL(mnt_want_write);
564
565 /**
566 * mnt_get_write_access_file - get write access to a file's mount
567 * @file: the file who's mount on which to take a write
568 *
569 * This is like mnt_get_write_access, but if @file is already open for write it
570 * skips incrementing mnt_writers (since the open file already has a reference)
571 * and instead only does the check for emergency r/o remounts. This must be
572 * paired with mnt_put_write_access_file.
573 */
mnt_get_write_access_file(struct file * file)574 int mnt_get_write_access_file(struct file *file)
575 {
576 if (file->f_mode & FMODE_WRITER) {
577 /*
578 * Superblock may have become readonly while there are still
579 * writable fd's, e.g. due to a fs error with errors=remount-ro
580 */
581 if (__mnt_is_readonly(file->f_path.mnt))
582 return -EROFS;
583 return 0;
584 }
585 return mnt_get_write_access(file->f_path.mnt);
586 }
587
588 /**
589 * mnt_want_write_file - get write access to a file's mount
590 * @file: the file who's mount on which to take a write
591 *
592 * This is like mnt_want_write, but if the file is already open for writing it
593 * skips incrementing mnt_writers (since the open file already has a reference)
594 * and instead only does the freeze protection and the check for emergency r/o
595 * remounts. This must be paired with mnt_drop_write_file.
596 */
mnt_want_write_file(struct file * file)597 int mnt_want_write_file(struct file *file)
598 {
599 int ret;
600
601 sb_start_write(file_inode(file)->i_sb);
602 ret = mnt_get_write_access_file(file);
603 if (ret)
604 sb_end_write(file_inode(file)->i_sb);
605 return ret;
606 }
607 EXPORT_SYMBOL_GPL(mnt_want_write_file);
608
609 /**
610 * mnt_put_write_access - give up write access to a mount
611 * @mnt: the mount on which to give up write access
612 *
613 * Tells the low-level filesystem that we are done
614 * performing writes to it. Must be matched with
615 * mnt_get_write_access() call above.
616 */
mnt_put_write_access(struct vfsmount * mnt)617 void mnt_put_write_access(struct vfsmount *mnt)
618 {
619 preempt_disable();
620 mnt_dec_writers(real_mount(mnt));
621 preempt_enable();
622 }
623 EXPORT_SYMBOL_GPL(mnt_put_write_access);
624
625 /**
626 * mnt_drop_write - give up write access to a mount
627 * @mnt: the mount on which to give up write access
628 *
629 * Tells the low-level filesystem that we are done performing writes to it and
630 * also allows filesystem to be frozen again. Must be matched with
631 * mnt_want_write() call above.
632 */
mnt_drop_write(struct vfsmount * mnt)633 void mnt_drop_write(struct vfsmount *mnt)
634 {
635 mnt_put_write_access(mnt);
636 sb_end_write(mnt->mnt_sb);
637 }
638 EXPORT_SYMBOL_GPL(mnt_drop_write);
639
mnt_put_write_access_file(struct file * file)640 void mnt_put_write_access_file(struct file *file)
641 {
642 if (!(file->f_mode & FMODE_WRITER))
643 mnt_put_write_access(file->f_path.mnt);
644 }
645
mnt_drop_write_file(struct file * file)646 void mnt_drop_write_file(struct file *file)
647 {
648 mnt_put_write_access_file(file);
649 sb_end_write(file_inode(file)->i_sb);
650 }
651 EXPORT_SYMBOL(mnt_drop_write_file);
652
653 /**
654 * mnt_hold_writers - prevent write access to the given mount
655 * @mnt: mnt to prevent write access to
656 *
657 * Prevents write access to @mnt if there are no active writers for @mnt.
658 * This function needs to be called and return successfully before changing
659 * properties of @mnt that need to remain stable for callers with write access
660 * to @mnt.
661 *
662 * After this functions has been called successfully callers must pair it with
663 * a call to mnt_unhold_writers() in order to stop preventing write access to
664 * @mnt.
665 *
666 * Context: This function expects lock_mount_hash() to be held serializing
667 * setting MNT_WRITE_HOLD.
668 * Return: On success 0 is returned.
669 * On error, -EBUSY is returned.
670 */
mnt_hold_writers(struct mount * mnt)671 static inline int mnt_hold_writers(struct mount *mnt)
672 {
673 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
674 /*
675 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
676 * should be visible before we do.
677 */
678 smp_mb();
679
680 /*
681 * With writers on hold, if this value is zero, then there are
682 * definitely no active writers (although held writers may subsequently
683 * increment the count, they'll have to wait, and decrement it after
684 * seeing MNT_READONLY).
685 *
686 * It is OK to have counter incremented on one CPU and decremented on
687 * another: the sum will add up correctly. The danger would be when we
688 * sum up each counter, if we read a counter before it is incremented,
689 * but then read another CPU's count which it has been subsequently
690 * decremented from -- we would see more decrements than we should.
691 * MNT_WRITE_HOLD protects against this scenario, because
692 * mnt_want_write first increments count, then smp_mb, then spins on
693 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
694 * we're counting up here.
695 */
696 if (mnt_get_writers(mnt) > 0)
697 return -EBUSY;
698
699 return 0;
700 }
701
702 /**
703 * mnt_unhold_writers - stop preventing write access to the given mount
704 * @mnt: mnt to stop preventing write access to
705 *
706 * Stop preventing write access to @mnt allowing callers to gain write access
707 * to @mnt again.
708 *
709 * This function can only be called after a successful call to
710 * mnt_hold_writers().
711 *
712 * Context: This function expects lock_mount_hash() to be held.
713 */
mnt_unhold_writers(struct mount * mnt)714 static inline void mnt_unhold_writers(struct mount *mnt)
715 {
716 /*
717 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
718 * that become unheld will see MNT_READONLY.
719 */
720 smp_wmb();
721 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
722 }
723
mnt_make_readonly(struct mount * mnt)724 static int mnt_make_readonly(struct mount *mnt)
725 {
726 int ret;
727
728 ret = mnt_hold_writers(mnt);
729 if (!ret)
730 mnt->mnt.mnt_flags |= MNT_READONLY;
731 mnt_unhold_writers(mnt);
732 return ret;
733 }
734
sb_prepare_remount_readonly(struct super_block * sb)735 int sb_prepare_remount_readonly(struct super_block *sb)
736 {
737 struct mount *mnt;
738 int err = 0;
739
740 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
741 if (atomic_long_read(&sb->s_remove_count))
742 return -EBUSY;
743
744 lock_mount_hash();
745 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
746 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
747 err = mnt_hold_writers(mnt);
748 if (err)
749 break;
750 }
751 }
752 if (!err && atomic_long_read(&sb->s_remove_count))
753 err = -EBUSY;
754
755 if (!err)
756 sb_start_ro_state_change(sb);
757 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
758 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
759 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
760 }
761 unlock_mount_hash();
762
763 return err;
764 }
765
free_vfsmnt(struct mount * mnt)766 static void free_vfsmnt(struct mount *mnt)
767 {
768 mnt_idmap_put(mnt_idmap(&mnt->mnt));
769 kfree_const(mnt->mnt_devname);
770 #ifdef CONFIG_SMP
771 free_percpu(mnt->mnt_pcp);
772 #endif
773 kmem_cache_free(mnt_cache, mnt);
774 }
775
delayed_free_vfsmnt(struct rcu_head * head)776 static void delayed_free_vfsmnt(struct rcu_head *head)
777 {
778 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
779 }
780
781 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)782 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
783 {
784 struct mount *mnt;
785 if (read_seqretry(&mount_lock, seq))
786 return 1;
787 if (bastard == NULL)
788 return 0;
789 mnt = real_mount(bastard);
790 mnt_add_count(mnt, 1);
791 smp_mb(); // see mntput_no_expire() and do_umount()
792 if (likely(!read_seqretry(&mount_lock, seq)))
793 return 0;
794 lock_mount_hash();
795 if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) {
796 mnt_add_count(mnt, -1);
797 unlock_mount_hash();
798 return 1;
799 }
800 unlock_mount_hash();
801 /* caller will mntput() */
802 return -1;
803 }
804
805 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)806 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
807 {
808 int res = __legitimize_mnt(bastard, seq);
809 if (likely(!res))
810 return true;
811 if (unlikely(res < 0)) {
812 rcu_read_unlock();
813 mntput(bastard);
814 rcu_read_lock();
815 }
816 return false;
817 }
818
819 /**
820 * __lookup_mnt - find first child mount
821 * @mnt: parent mount
822 * @dentry: mountpoint
823 *
824 * If @mnt has a child mount @c mounted @dentry find and return it.
825 *
826 * Note that the child mount @c need not be unique. There are cases
827 * where shadow mounts are created. For example, during mount
828 * propagation when a source mount @mnt whose root got overmounted by a
829 * mount @o after path lookup but before @namespace_sem could be
830 * acquired gets copied and propagated. So @mnt gets copied including
831 * @o. When @mnt is propagated to a destination mount @d that already
832 * has another mount @n mounted at the same mountpoint then the source
833 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
834 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
835 * on @dentry.
836 *
837 * Return: The first child of @mnt mounted @dentry or NULL.
838 */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)839 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
840 {
841 struct hlist_head *head = m_hash(mnt, dentry);
842 struct mount *p;
843
844 hlist_for_each_entry_rcu(p, head, mnt_hash)
845 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
846 return p;
847 return NULL;
848 }
849
850 /*
851 * lookup_mnt - Return the first child mount mounted at path
852 *
853 * "First" means first mounted chronologically. If you create the
854 * following mounts:
855 *
856 * mount /dev/sda1 /mnt
857 * mount /dev/sda2 /mnt
858 * mount /dev/sda3 /mnt
859 *
860 * Then lookup_mnt() on the base /mnt dentry in the root mount will
861 * return successively the root dentry and vfsmount of /dev/sda1, then
862 * /dev/sda2, then /dev/sda3, then NULL.
863 *
864 * lookup_mnt takes a reference to the found vfsmount.
865 */
lookup_mnt(const struct path * path)866 struct vfsmount *lookup_mnt(const struct path *path)
867 {
868 struct mount *child_mnt;
869 struct vfsmount *m;
870 unsigned seq;
871
872 rcu_read_lock();
873 do {
874 seq = read_seqbegin(&mount_lock);
875 child_mnt = __lookup_mnt(path->mnt, path->dentry);
876 m = child_mnt ? &child_mnt->mnt : NULL;
877 } while (!legitimize_mnt(m, seq));
878 rcu_read_unlock();
879 return m;
880 }
881
882 /*
883 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
884 * current mount namespace.
885 *
886 * The common case is dentries are not mountpoints at all and that
887 * test is handled inline. For the slow case when we are actually
888 * dealing with a mountpoint of some kind, walk through all of the
889 * mounts in the current mount namespace and test to see if the dentry
890 * is a mountpoint.
891 *
892 * The mount_hashtable is not usable in the context because we
893 * need to identify all mounts that may be in the current mount
894 * namespace not just a mount that happens to have some specified
895 * parent mount.
896 */
__is_local_mountpoint(const struct dentry * dentry)897 bool __is_local_mountpoint(const struct dentry *dentry)
898 {
899 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
900 struct mount *mnt, *n;
901 bool is_covered = false;
902
903 down_read(&namespace_sem);
904 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
905 is_covered = (mnt->mnt_mountpoint == dentry);
906 if (is_covered)
907 break;
908 }
909 up_read(&namespace_sem);
910
911 return is_covered;
912 }
913
914 struct pinned_mountpoint {
915 struct hlist_node node;
916 struct mountpoint *mp;
917 };
918
lookup_mountpoint(struct dentry * dentry,struct pinned_mountpoint * m)919 static bool lookup_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
920 {
921 struct hlist_head *chain = mp_hash(dentry);
922 struct mountpoint *mp;
923
924 hlist_for_each_entry(mp, chain, m_hash) {
925 if (mp->m_dentry == dentry) {
926 hlist_add_head(&m->node, &mp->m_list);
927 m->mp = mp;
928 return true;
929 }
930 }
931 return false;
932 }
933
get_mountpoint(struct dentry * dentry,struct pinned_mountpoint * m)934 static int get_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
935 {
936 struct mountpoint *mp __free(kfree) = NULL;
937 bool found;
938 int ret;
939
940 if (d_mountpoint(dentry)) {
941 /* might be worth a WARN_ON() */
942 if (d_unlinked(dentry))
943 return -ENOENT;
944 mountpoint:
945 read_seqlock_excl(&mount_lock);
946 found = lookup_mountpoint(dentry, m);
947 read_sequnlock_excl(&mount_lock);
948 if (found)
949 return 0;
950 }
951
952 if (!mp)
953 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
954 if (!mp)
955 return -ENOMEM;
956
957 /* Exactly one processes may set d_mounted */
958 ret = d_set_mounted(dentry);
959
960 /* Someone else set d_mounted? */
961 if (ret == -EBUSY)
962 goto mountpoint;
963
964 /* The dentry is not available as a mountpoint? */
965 if (ret)
966 return ret;
967
968 /* Add the new mountpoint to the hash table */
969 read_seqlock_excl(&mount_lock);
970 mp->m_dentry = dget(dentry);
971 hlist_add_head(&mp->m_hash, mp_hash(dentry));
972 INIT_HLIST_HEAD(&mp->m_list);
973 hlist_add_head(&m->node, &mp->m_list);
974 m->mp = no_free_ptr(mp);
975 read_sequnlock_excl(&mount_lock);
976 return 0;
977 }
978
979 /*
980 * vfsmount lock must be held. Additionally, the caller is responsible
981 * for serializing calls for given disposal list.
982 */
maybe_free_mountpoint(struct mountpoint * mp,struct list_head * list)983 static void maybe_free_mountpoint(struct mountpoint *mp, struct list_head *list)
984 {
985 if (hlist_empty(&mp->m_list)) {
986 struct dentry *dentry = mp->m_dentry;
987 spin_lock(&dentry->d_lock);
988 dentry->d_flags &= ~DCACHE_MOUNTED;
989 spin_unlock(&dentry->d_lock);
990 dput_to_list(dentry, list);
991 hlist_del(&mp->m_hash);
992 kfree(mp);
993 }
994 }
995
996 /*
997 * locks: mount_lock [read_seqlock_excl], namespace_sem [excl]
998 */
unpin_mountpoint(struct pinned_mountpoint * m)999 static void unpin_mountpoint(struct pinned_mountpoint *m)
1000 {
1001 if (m->mp) {
1002 hlist_del(&m->node);
1003 maybe_free_mountpoint(m->mp, &ex_mountpoints);
1004 }
1005 }
1006
check_mnt(struct mount * mnt)1007 static inline int check_mnt(struct mount *mnt)
1008 {
1009 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1010 }
1011
check_anonymous_mnt(struct mount * mnt)1012 static inline bool check_anonymous_mnt(struct mount *mnt)
1013 {
1014 u64 seq;
1015
1016 if (!is_anon_ns(mnt->mnt_ns))
1017 return false;
1018
1019 seq = mnt->mnt_ns->seq_origin;
1020 return !seq || (seq == current->nsproxy->mnt_ns->seq);
1021 }
1022
1023 /*
1024 * vfsmount lock must be held for write
1025 */
touch_mnt_namespace(struct mnt_namespace * ns)1026 static void touch_mnt_namespace(struct mnt_namespace *ns)
1027 {
1028 if (ns) {
1029 ns->event = ++event;
1030 wake_up_interruptible(&ns->poll);
1031 }
1032 }
1033
1034 /*
1035 * vfsmount lock must be held for write
1036 */
__touch_mnt_namespace(struct mnt_namespace * ns)1037 static void __touch_mnt_namespace(struct mnt_namespace *ns)
1038 {
1039 if (ns && ns->event != event) {
1040 ns->event = event;
1041 wake_up_interruptible(&ns->poll);
1042 }
1043 }
1044
1045 /*
1046 * locks: mount_lock[write_seqlock]
1047 */
__umount_mnt(struct mount * mnt,struct list_head * shrink_list)1048 static void __umount_mnt(struct mount *mnt, struct list_head *shrink_list)
1049 {
1050 struct mountpoint *mp;
1051 struct mount *parent = mnt->mnt_parent;
1052 if (unlikely(parent->overmount == mnt))
1053 parent->overmount = NULL;
1054 mnt->mnt_parent = mnt;
1055 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1056 list_del_init(&mnt->mnt_child);
1057 hlist_del_init_rcu(&mnt->mnt_hash);
1058 hlist_del_init(&mnt->mnt_mp_list);
1059 mp = mnt->mnt_mp;
1060 mnt->mnt_mp = NULL;
1061 maybe_free_mountpoint(mp, shrink_list);
1062 }
1063
1064 /*
1065 * locks: mount_lock[write_seqlock], namespace_sem[excl] (for ex_mountpoints)
1066 */
umount_mnt(struct mount * mnt)1067 static void umount_mnt(struct mount *mnt)
1068 {
1069 __umount_mnt(mnt, &ex_mountpoints);
1070 }
1071
1072 /*
1073 * vfsmount lock must be held for write
1074 */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)1075 void mnt_set_mountpoint(struct mount *mnt,
1076 struct mountpoint *mp,
1077 struct mount *child_mnt)
1078 {
1079 child_mnt->mnt_mountpoint = mp->m_dentry;
1080 child_mnt->mnt_parent = mnt;
1081 child_mnt->mnt_mp = mp;
1082 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1083 }
1084
make_visible(struct mount * mnt)1085 static void make_visible(struct mount *mnt)
1086 {
1087 struct mount *parent = mnt->mnt_parent;
1088 if (unlikely(mnt->mnt_mountpoint == parent->mnt.mnt_root))
1089 parent->overmount = mnt;
1090 hlist_add_head_rcu(&mnt->mnt_hash,
1091 m_hash(&parent->mnt, mnt->mnt_mountpoint));
1092 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1093 }
1094
1095 /**
1096 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1097 * list of child mounts
1098 * @parent: the parent
1099 * @mnt: the new mount
1100 * @mp: the new mountpoint
1101 *
1102 * Mount @mnt at @mp on @parent. Then attach @mnt
1103 * to @parent's child mount list and to @mount_hashtable.
1104 *
1105 * Note, when make_visible() is called @mnt->mnt_parent already points
1106 * to the correct parent.
1107 *
1108 * Context: This function expects namespace_lock() and lock_mount_hash()
1109 * to have been acquired in that order.
1110 */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)1111 static void attach_mnt(struct mount *mnt, struct mount *parent,
1112 struct mountpoint *mp)
1113 {
1114 mnt_set_mountpoint(parent, mp, mnt);
1115 make_visible(mnt);
1116 }
1117
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)1118 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1119 {
1120 struct mountpoint *old_mp = mnt->mnt_mp;
1121
1122 list_del_init(&mnt->mnt_child);
1123 hlist_del_init(&mnt->mnt_mp_list);
1124 hlist_del_init_rcu(&mnt->mnt_hash);
1125
1126 attach_mnt(mnt, parent, mp);
1127
1128 maybe_free_mountpoint(old_mp, &ex_mountpoints);
1129 }
1130
node_to_mount(struct rb_node * node)1131 static inline struct mount *node_to_mount(struct rb_node *node)
1132 {
1133 return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1134 }
1135
mnt_add_to_ns(struct mnt_namespace * ns,struct mount * mnt)1136 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1137 {
1138 struct rb_node **link = &ns->mounts.rb_node;
1139 struct rb_node *parent = NULL;
1140 bool mnt_first_node = true, mnt_last_node = true;
1141
1142 WARN_ON(mnt_ns_attached(mnt));
1143 mnt->mnt_ns = ns;
1144 while (*link) {
1145 parent = *link;
1146 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) {
1147 link = &parent->rb_left;
1148 mnt_last_node = false;
1149 } else {
1150 link = &parent->rb_right;
1151 mnt_first_node = false;
1152 }
1153 }
1154
1155 if (mnt_last_node)
1156 ns->mnt_last_node = &mnt->mnt_node;
1157 if (mnt_first_node)
1158 ns->mnt_first_node = &mnt->mnt_node;
1159 rb_link_node(&mnt->mnt_node, parent, link);
1160 rb_insert_color(&mnt->mnt_node, &ns->mounts);
1161
1162 mnt_notify_add(mnt);
1163 }
1164
next_mnt(struct mount * p,struct mount * root)1165 static struct mount *next_mnt(struct mount *p, struct mount *root)
1166 {
1167 struct list_head *next = p->mnt_mounts.next;
1168 if (next == &p->mnt_mounts) {
1169 while (1) {
1170 if (p == root)
1171 return NULL;
1172 next = p->mnt_child.next;
1173 if (next != &p->mnt_parent->mnt_mounts)
1174 break;
1175 p = p->mnt_parent;
1176 }
1177 }
1178 return list_entry(next, struct mount, mnt_child);
1179 }
1180
skip_mnt_tree(struct mount * p)1181 static struct mount *skip_mnt_tree(struct mount *p)
1182 {
1183 struct list_head *prev = p->mnt_mounts.prev;
1184 while (prev != &p->mnt_mounts) {
1185 p = list_entry(prev, struct mount, mnt_child);
1186 prev = p->mnt_mounts.prev;
1187 }
1188 return p;
1189 }
1190
1191 /*
1192 * vfsmount lock must be held for write
1193 */
commit_tree(struct mount * mnt)1194 static void commit_tree(struct mount *mnt)
1195 {
1196 struct mnt_namespace *n = mnt->mnt_parent->mnt_ns;
1197
1198 if (!mnt_ns_attached(mnt)) {
1199 for (struct mount *m = mnt; m; m = next_mnt(m, mnt))
1200 if (unlikely(mnt_ns_attached(m)))
1201 m = skip_mnt_tree(m);
1202 else
1203 mnt_add_to_ns(n, m);
1204 n->nr_mounts += n->pending_mounts;
1205 n->pending_mounts = 0;
1206 }
1207
1208 make_visible(mnt);
1209 touch_mnt_namespace(n);
1210 }
1211
1212 /**
1213 * vfs_create_mount - Create a mount for a configured superblock
1214 * @fc: The configuration context with the superblock attached
1215 *
1216 * Create a mount to an already configured superblock. If necessary, the
1217 * caller should invoke vfs_get_tree() before calling this.
1218 *
1219 * Note that this does not attach the mount to anything.
1220 */
vfs_create_mount(struct fs_context * fc)1221 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1222 {
1223 struct mount *mnt;
1224
1225 if (!fc->root)
1226 return ERR_PTR(-EINVAL);
1227
1228 mnt = alloc_vfsmnt(fc->source);
1229 if (!mnt)
1230 return ERR_PTR(-ENOMEM);
1231
1232 if (fc->sb_flags & SB_KERNMOUNT)
1233 mnt->mnt.mnt_flags = MNT_INTERNAL;
1234
1235 atomic_inc(&fc->root->d_sb->s_active);
1236 mnt->mnt.mnt_sb = fc->root->d_sb;
1237 mnt->mnt.mnt_root = dget(fc->root);
1238 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1239 mnt->mnt_parent = mnt;
1240
1241 lock_mount_hash();
1242 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1243 unlock_mount_hash();
1244 return &mnt->mnt;
1245 }
1246 EXPORT_SYMBOL(vfs_create_mount);
1247
fc_mount(struct fs_context * fc)1248 struct vfsmount *fc_mount(struct fs_context *fc)
1249 {
1250 int err = vfs_get_tree(fc);
1251 if (!err) {
1252 up_write(&fc->root->d_sb->s_umount);
1253 return vfs_create_mount(fc);
1254 }
1255 return ERR_PTR(err);
1256 }
1257 EXPORT_SYMBOL(fc_mount);
1258
fc_mount_longterm(struct fs_context * fc)1259 struct vfsmount *fc_mount_longterm(struct fs_context *fc)
1260 {
1261 struct vfsmount *mnt = fc_mount(fc);
1262 if (!IS_ERR(mnt))
1263 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
1264 return mnt;
1265 }
1266 EXPORT_SYMBOL(fc_mount_longterm);
1267
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)1268 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1269 int flags, const char *name,
1270 void *data)
1271 {
1272 struct fs_context *fc;
1273 struct vfsmount *mnt;
1274 int ret = 0;
1275
1276 if (!type)
1277 return ERR_PTR(-EINVAL);
1278
1279 fc = fs_context_for_mount(type, flags);
1280 if (IS_ERR(fc))
1281 return ERR_CAST(fc);
1282
1283 if (name)
1284 ret = vfs_parse_fs_string(fc, "source",
1285 name, strlen(name));
1286 if (!ret)
1287 ret = parse_monolithic_mount_data(fc, data);
1288 if (!ret)
1289 mnt = fc_mount(fc);
1290 else
1291 mnt = ERR_PTR(ret);
1292
1293 put_fs_context(fc);
1294 return mnt;
1295 }
1296 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1297
clone_mnt(struct mount * old,struct dentry * root,int flag)1298 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1299 int flag)
1300 {
1301 struct super_block *sb = old->mnt.mnt_sb;
1302 struct mount *mnt;
1303 int err;
1304
1305 mnt = alloc_vfsmnt(old->mnt_devname);
1306 if (!mnt)
1307 return ERR_PTR(-ENOMEM);
1308
1309 mnt->mnt.mnt_flags = READ_ONCE(old->mnt.mnt_flags) &
1310 ~MNT_INTERNAL_FLAGS;
1311
1312 if (flag & (CL_SLAVE | CL_PRIVATE))
1313 mnt->mnt_group_id = 0; /* not a peer of original */
1314 else
1315 mnt->mnt_group_id = old->mnt_group_id;
1316
1317 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1318 err = mnt_alloc_group_id(mnt);
1319 if (err)
1320 goto out_free;
1321 }
1322
1323 if (mnt->mnt_group_id)
1324 set_mnt_shared(mnt);
1325
1326 atomic_inc(&sb->s_active);
1327 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1328
1329 mnt->mnt.mnt_sb = sb;
1330 mnt->mnt.mnt_root = dget(root);
1331 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1332 mnt->mnt_parent = mnt;
1333 lock_mount_hash();
1334 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1335 unlock_mount_hash();
1336
1337 if (flag & CL_PRIVATE) // we are done with it
1338 return mnt;
1339
1340 if (peers(mnt, old))
1341 list_add(&mnt->mnt_share, &old->mnt_share);
1342
1343 if ((flag & CL_SLAVE) && old->mnt_group_id) {
1344 hlist_add_head(&mnt->mnt_slave, &old->mnt_slave_list);
1345 mnt->mnt_master = old;
1346 } else if (IS_MNT_SLAVE(old)) {
1347 hlist_add_behind(&mnt->mnt_slave, &old->mnt_slave);
1348 mnt->mnt_master = old->mnt_master;
1349 }
1350 return mnt;
1351
1352 out_free:
1353 mnt_free_id(mnt);
1354 free_vfsmnt(mnt);
1355 return ERR_PTR(err);
1356 }
1357
cleanup_mnt(struct mount * mnt)1358 static void cleanup_mnt(struct mount *mnt)
1359 {
1360 struct hlist_node *p;
1361 struct mount *m;
1362 /*
1363 * The warning here probably indicates that somebody messed
1364 * up a mnt_want/drop_write() pair. If this happens, the
1365 * filesystem was probably unable to make r/w->r/o transitions.
1366 * The locking used to deal with mnt_count decrement provides barriers,
1367 * so mnt_get_writers() below is safe.
1368 */
1369 WARN_ON(mnt_get_writers(mnt));
1370 if (unlikely(mnt->mnt_pins.first))
1371 mnt_pin_kill(mnt);
1372 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1373 hlist_del(&m->mnt_umount);
1374 mntput(&m->mnt);
1375 }
1376 fsnotify_vfsmount_delete(&mnt->mnt);
1377 dput(mnt->mnt.mnt_root);
1378 deactivate_super(mnt->mnt.mnt_sb);
1379 mnt_free_id(mnt);
1380 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1381 }
1382
__cleanup_mnt(struct rcu_head * head)1383 static void __cleanup_mnt(struct rcu_head *head)
1384 {
1385 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1386 }
1387
1388 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1389 static void delayed_mntput(struct work_struct *unused)
1390 {
1391 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1392 struct mount *m, *t;
1393
1394 llist_for_each_entry_safe(m, t, node, mnt_llist)
1395 cleanup_mnt(m);
1396 }
1397 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1398
mntput_no_expire(struct mount * mnt)1399 static void mntput_no_expire(struct mount *mnt)
1400 {
1401 LIST_HEAD(list);
1402 int count;
1403
1404 rcu_read_lock();
1405 if (likely(READ_ONCE(mnt->mnt_ns))) {
1406 /*
1407 * Since we don't do lock_mount_hash() here,
1408 * ->mnt_ns can change under us. However, if it's
1409 * non-NULL, then there's a reference that won't
1410 * be dropped until after an RCU delay done after
1411 * turning ->mnt_ns NULL. So if we observe it
1412 * non-NULL under rcu_read_lock(), the reference
1413 * we are dropping is not the final one.
1414 */
1415 mnt_add_count(mnt, -1);
1416 rcu_read_unlock();
1417 return;
1418 }
1419 lock_mount_hash();
1420 /*
1421 * make sure that if __legitimize_mnt() has not seen us grab
1422 * mount_lock, we'll see their refcount increment here.
1423 */
1424 smp_mb();
1425 mnt_add_count(mnt, -1);
1426 count = mnt_get_count(mnt);
1427 if (count != 0) {
1428 WARN_ON(count < 0);
1429 rcu_read_unlock();
1430 unlock_mount_hash();
1431 return;
1432 }
1433 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1434 rcu_read_unlock();
1435 unlock_mount_hash();
1436 return;
1437 }
1438 mnt->mnt.mnt_flags |= MNT_DOOMED;
1439 rcu_read_unlock();
1440
1441 list_del(&mnt->mnt_instance);
1442 if (unlikely(!list_empty(&mnt->mnt_expire)))
1443 list_del(&mnt->mnt_expire);
1444
1445 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1446 struct mount *p, *tmp;
1447 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1448 __umount_mnt(p, &list);
1449 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1450 }
1451 }
1452 unlock_mount_hash();
1453 shrink_dentry_list(&list);
1454
1455 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1456 struct task_struct *task = current;
1457 if (likely(!(task->flags & PF_KTHREAD))) {
1458 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1459 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1460 return;
1461 }
1462 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1463 schedule_delayed_work(&delayed_mntput_work, 1);
1464 return;
1465 }
1466 cleanup_mnt(mnt);
1467 }
1468
mntput(struct vfsmount * mnt)1469 void mntput(struct vfsmount *mnt)
1470 {
1471 if (mnt) {
1472 struct mount *m = real_mount(mnt);
1473 /* avoid cacheline pingpong */
1474 if (unlikely(m->mnt_expiry_mark))
1475 WRITE_ONCE(m->mnt_expiry_mark, 0);
1476 mntput_no_expire(m);
1477 }
1478 }
1479 EXPORT_SYMBOL(mntput);
1480
mntget(struct vfsmount * mnt)1481 struct vfsmount *mntget(struct vfsmount *mnt)
1482 {
1483 if (mnt)
1484 mnt_add_count(real_mount(mnt), 1);
1485 return mnt;
1486 }
1487 EXPORT_SYMBOL(mntget);
1488
1489 /*
1490 * Make a mount point inaccessible to new lookups.
1491 * Because there may still be current users, the caller MUST WAIT
1492 * for an RCU grace period before destroying the mount point.
1493 */
mnt_make_shortterm(struct vfsmount * mnt)1494 void mnt_make_shortterm(struct vfsmount *mnt)
1495 {
1496 if (mnt)
1497 real_mount(mnt)->mnt_ns = NULL;
1498 }
1499
1500 /**
1501 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1502 * @path: path to check
1503 *
1504 * d_mountpoint() can only be used reliably to establish if a dentry is
1505 * not mounted in any namespace and that common case is handled inline.
1506 * d_mountpoint() isn't aware of the possibility there may be multiple
1507 * mounts using a given dentry in a different namespace. This function
1508 * checks if the passed in path is a mountpoint rather than the dentry
1509 * alone.
1510 */
path_is_mountpoint(const struct path * path)1511 bool path_is_mountpoint(const struct path *path)
1512 {
1513 unsigned seq;
1514 bool res;
1515
1516 if (!d_mountpoint(path->dentry))
1517 return false;
1518
1519 rcu_read_lock();
1520 do {
1521 seq = read_seqbegin(&mount_lock);
1522 res = __path_is_mountpoint(path);
1523 } while (read_seqretry(&mount_lock, seq));
1524 rcu_read_unlock();
1525
1526 return res;
1527 }
1528 EXPORT_SYMBOL(path_is_mountpoint);
1529
mnt_clone_internal(const struct path * path)1530 struct vfsmount *mnt_clone_internal(const struct path *path)
1531 {
1532 struct mount *p;
1533 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1534 if (IS_ERR(p))
1535 return ERR_CAST(p);
1536 p->mnt.mnt_flags |= MNT_INTERNAL;
1537 return &p->mnt;
1538 }
1539
1540 /*
1541 * Returns the mount which either has the specified mnt_id, or has the next
1542 * smallest id afer the specified one.
1543 */
mnt_find_id_at(struct mnt_namespace * ns,u64 mnt_id)1544 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1545 {
1546 struct rb_node *node = ns->mounts.rb_node;
1547 struct mount *ret = NULL;
1548
1549 while (node) {
1550 struct mount *m = node_to_mount(node);
1551
1552 if (mnt_id <= m->mnt_id_unique) {
1553 ret = node_to_mount(node);
1554 if (mnt_id == m->mnt_id_unique)
1555 break;
1556 node = node->rb_left;
1557 } else {
1558 node = node->rb_right;
1559 }
1560 }
1561 return ret;
1562 }
1563
1564 /*
1565 * Returns the mount which either has the specified mnt_id, or has the next
1566 * greater id before the specified one.
1567 */
mnt_find_id_at_reverse(struct mnt_namespace * ns,u64 mnt_id)1568 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1569 {
1570 struct rb_node *node = ns->mounts.rb_node;
1571 struct mount *ret = NULL;
1572
1573 while (node) {
1574 struct mount *m = node_to_mount(node);
1575
1576 if (mnt_id >= m->mnt_id_unique) {
1577 ret = node_to_mount(node);
1578 if (mnt_id == m->mnt_id_unique)
1579 break;
1580 node = node->rb_right;
1581 } else {
1582 node = node->rb_left;
1583 }
1584 }
1585 return ret;
1586 }
1587
1588 #ifdef CONFIG_PROC_FS
1589
1590 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1591 static void *m_start(struct seq_file *m, loff_t *pos)
1592 {
1593 struct proc_mounts *p = m->private;
1594
1595 down_read(&namespace_sem);
1596
1597 return mnt_find_id_at(p->ns, *pos);
1598 }
1599
m_next(struct seq_file * m,void * v,loff_t * pos)1600 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1601 {
1602 struct mount *next = NULL, *mnt = v;
1603 struct rb_node *node = rb_next(&mnt->mnt_node);
1604
1605 ++*pos;
1606 if (node) {
1607 next = node_to_mount(node);
1608 *pos = next->mnt_id_unique;
1609 }
1610 return next;
1611 }
1612
m_stop(struct seq_file * m,void * v)1613 static void m_stop(struct seq_file *m, void *v)
1614 {
1615 up_read(&namespace_sem);
1616 }
1617
m_show(struct seq_file * m,void * v)1618 static int m_show(struct seq_file *m, void *v)
1619 {
1620 struct proc_mounts *p = m->private;
1621 struct mount *r = v;
1622 return p->show(m, &r->mnt);
1623 }
1624
1625 const struct seq_operations mounts_op = {
1626 .start = m_start,
1627 .next = m_next,
1628 .stop = m_stop,
1629 .show = m_show,
1630 };
1631
1632 #endif /* CONFIG_PROC_FS */
1633
1634 /**
1635 * may_umount_tree - check if a mount tree is busy
1636 * @m: root of mount tree
1637 *
1638 * This is called to check if a tree of mounts has any
1639 * open files, pwds, chroots or sub mounts that are
1640 * busy.
1641 */
may_umount_tree(struct vfsmount * m)1642 int may_umount_tree(struct vfsmount *m)
1643 {
1644 struct mount *mnt = real_mount(m);
1645 bool busy = false;
1646
1647 /* write lock needed for mnt_get_count */
1648 lock_mount_hash();
1649 for (struct mount *p = mnt; p; p = next_mnt(p, mnt)) {
1650 if (mnt_get_count(p) > (p == mnt ? 2 : 1)) {
1651 busy = true;
1652 break;
1653 }
1654 }
1655 unlock_mount_hash();
1656
1657 return !busy;
1658 }
1659
1660 EXPORT_SYMBOL(may_umount_tree);
1661
1662 /**
1663 * may_umount - check if a mount point is busy
1664 * @mnt: root of mount
1665 *
1666 * This is called to check if a mount point has any
1667 * open files, pwds, chroots or sub mounts. If the
1668 * mount has sub mounts this will return busy
1669 * regardless of whether the sub mounts are busy.
1670 *
1671 * Doesn't take quota and stuff into account. IOW, in some cases it will
1672 * give false negatives. The main reason why it's here is that we need
1673 * a non-destructive way to look for easily umountable filesystems.
1674 */
may_umount(struct vfsmount * mnt)1675 int may_umount(struct vfsmount *mnt)
1676 {
1677 int ret = 1;
1678 down_read(&namespace_sem);
1679 lock_mount_hash();
1680 if (propagate_mount_busy(real_mount(mnt), 2))
1681 ret = 0;
1682 unlock_mount_hash();
1683 up_read(&namespace_sem);
1684 return ret;
1685 }
1686
1687 EXPORT_SYMBOL(may_umount);
1688
1689 #ifdef CONFIG_FSNOTIFY
mnt_notify(struct mount * p)1690 static void mnt_notify(struct mount *p)
1691 {
1692 if (!p->prev_ns && p->mnt_ns) {
1693 fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1694 } else if (p->prev_ns && !p->mnt_ns) {
1695 fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1696 } else if (p->prev_ns == p->mnt_ns) {
1697 fsnotify_mnt_move(p->mnt_ns, &p->mnt);
1698 } else {
1699 fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1700 fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1701 }
1702 p->prev_ns = p->mnt_ns;
1703 }
1704
notify_mnt_list(void)1705 static void notify_mnt_list(void)
1706 {
1707 struct mount *m, *tmp;
1708 /*
1709 * Notify about mounts that were added/reparented/detached/remain
1710 * connected after unmount.
1711 */
1712 list_for_each_entry_safe(m, tmp, ¬ify_list, to_notify) {
1713 mnt_notify(m);
1714 list_del_init(&m->to_notify);
1715 }
1716 }
1717
need_notify_mnt_list(void)1718 static bool need_notify_mnt_list(void)
1719 {
1720 return !list_empty(¬ify_list);
1721 }
1722 #else
notify_mnt_list(void)1723 static void notify_mnt_list(void)
1724 {
1725 }
1726
need_notify_mnt_list(void)1727 static bool need_notify_mnt_list(void)
1728 {
1729 return false;
1730 }
1731 #endif
1732
1733 static void free_mnt_ns(struct mnt_namespace *);
namespace_unlock(void)1734 static void namespace_unlock(void)
1735 {
1736 struct hlist_head head;
1737 struct hlist_node *p;
1738 struct mount *m;
1739 struct mnt_namespace *ns = emptied_ns;
1740 LIST_HEAD(list);
1741
1742 hlist_move_list(&unmounted, &head);
1743 list_splice_init(&ex_mountpoints, &list);
1744 emptied_ns = NULL;
1745
1746 if (need_notify_mnt_list()) {
1747 /*
1748 * No point blocking out concurrent readers while notifications
1749 * are sent. This will also allow statmount()/listmount() to run
1750 * concurrently.
1751 */
1752 downgrade_write(&namespace_sem);
1753 notify_mnt_list();
1754 up_read(&namespace_sem);
1755 } else {
1756 up_write(&namespace_sem);
1757 }
1758 if (unlikely(ns)) {
1759 /* Make sure we notice when we leak mounts. */
1760 VFS_WARN_ON_ONCE(!mnt_ns_empty(ns));
1761 free_mnt_ns(ns);
1762 }
1763
1764 shrink_dentry_list(&list);
1765
1766 if (likely(hlist_empty(&head)))
1767 return;
1768
1769 synchronize_rcu_expedited();
1770
1771 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1772 hlist_del(&m->mnt_umount);
1773 mntput(&m->mnt);
1774 }
1775 }
1776
namespace_lock(void)1777 static inline void namespace_lock(void)
1778 {
1779 down_write(&namespace_sem);
1780 }
1781
1782 DEFINE_GUARD(namespace_lock, struct rw_semaphore *, namespace_lock(), namespace_unlock())
1783
1784 enum umount_tree_flags {
1785 UMOUNT_SYNC = 1,
1786 UMOUNT_PROPAGATE = 2,
1787 UMOUNT_CONNECTED = 4,
1788 };
1789
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1790 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1791 {
1792 /* Leaving mounts connected is only valid for lazy umounts */
1793 if (how & UMOUNT_SYNC)
1794 return true;
1795
1796 /* A mount without a parent has nothing to be connected to */
1797 if (!mnt_has_parent(mnt))
1798 return true;
1799
1800 /* Because the reference counting rules change when mounts are
1801 * unmounted and connected, umounted mounts may not be
1802 * connected to mounted mounts.
1803 */
1804 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1805 return true;
1806
1807 /* Has it been requested that the mount remain connected? */
1808 if (how & UMOUNT_CONNECTED)
1809 return false;
1810
1811 /* Is the mount locked such that it needs to remain connected? */
1812 if (IS_MNT_LOCKED(mnt))
1813 return false;
1814
1815 /* By default disconnect the mount */
1816 return true;
1817 }
1818
1819 /*
1820 * mount_lock must be held
1821 * namespace_sem must be held for write
1822 */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1823 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1824 {
1825 LIST_HEAD(tmp_list);
1826 struct mount *p;
1827
1828 if (how & UMOUNT_PROPAGATE)
1829 propagate_mount_unlock(mnt);
1830
1831 /* Gather the mounts to umount */
1832 for (p = mnt; p; p = next_mnt(p, mnt)) {
1833 p->mnt.mnt_flags |= MNT_UMOUNT;
1834 if (mnt_ns_attached(p))
1835 move_from_ns(p);
1836 list_add_tail(&p->mnt_list, &tmp_list);
1837 }
1838
1839 /* Hide the mounts from mnt_mounts */
1840 list_for_each_entry(p, &tmp_list, mnt_list) {
1841 list_del_init(&p->mnt_child);
1842 }
1843
1844 /* Add propagated mounts to the tmp_list */
1845 if (how & UMOUNT_PROPAGATE)
1846 propagate_umount(&tmp_list);
1847
1848 while (!list_empty(&tmp_list)) {
1849 struct mnt_namespace *ns;
1850 bool disconnect;
1851 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1852 list_del_init(&p->mnt_expire);
1853 list_del_init(&p->mnt_list);
1854 ns = p->mnt_ns;
1855 if (ns) {
1856 ns->nr_mounts--;
1857 __touch_mnt_namespace(ns);
1858 }
1859 p->mnt_ns = NULL;
1860 if (how & UMOUNT_SYNC)
1861 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1862
1863 disconnect = disconnect_mount(p, how);
1864 if (mnt_has_parent(p)) {
1865 if (!disconnect) {
1866 /* Don't forget about p */
1867 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1868 } else {
1869 umount_mnt(p);
1870 }
1871 }
1872 change_mnt_propagation(p, MS_PRIVATE);
1873 if (disconnect)
1874 hlist_add_head(&p->mnt_umount, &unmounted);
1875
1876 /*
1877 * At this point p->mnt_ns is NULL, notification will be queued
1878 * only if
1879 *
1880 * - p->prev_ns is non-NULL *and*
1881 * - p->prev_ns->n_fsnotify_marks is non-NULL
1882 *
1883 * This will preclude queuing the mount if this is a cleanup
1884 * after a failed copy_tree() or destruction of an anonymous
1885 * namespace, etc.
1886 */
1887 mnt_notify_add(p);
1888 }
1889 }
1890
1891 static void shrink_submounts(struct mount *mnt);
1892
do_umount_root(struct super_block * sb)1893 static int do_umount_root(struct super_block *sb)
1894 {
1895 int ret = 0;
1896
1897 down_write(&sb->s_umount);
1898 if (!sb_rdonly(sb)) {
1899 struct fs_context *fc;
1900
1901 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1902 SB_RDONLY);
1903 if (IS_ERR(fc)) {
1904 ret = PTR_ERR(fc);
1905 } else {
1906 ret = parse_monolithic_mount_data(fc, NULL);
1907 if (!ret)
1908 ret = reconfigure_super(fc);
1909 put_fs_context(fc);
1910 }
1911 }
1912 up_write(&sb->s_umount);
1913 return ret;
1914 }
1915
do_umount(struct mount * mnt,int flags)1916 static int do_umount(struct mount *mnt, int flags)
1917 {
1918 struct super_block *sb = mnt->mnt.mnt_sb;
1919 int retval;
1920
1921 retval = security_sb_umount(&mnt->mnt, flags);
1922 if (retval)
1923 return retval;
1924
1925 /*
1926 * Allow userspace to request a mountpoint be expired rather than
1927 * unmounting unconditionally. Unmount only happens if:
1928 * (1) the mark is already set (the mark is cleared by mntput())
1929 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1930 */
1931 if (flags & MNT_EXPIRE) {
1932 if (&mnt->mnt == current->fs->root.mnt ||
1933 flags & (MNT_FORCE | MNT_DETACH))
1934 return -EINVAL;
1935
1936 /*
1937 * probably don't strictly need the lock here if we examined
1938 * all race cases, but it's a slowpath.
1939 */
1940 lock_mount_hash();
1941 if (!list_empty(&mnt->mnt_mounts) || mnt_get_count(mnt) != 2) {
1942 unlock_mount_hash();
1943 return -EBUSY;
1944 }
1945 unlock_mount_hash();
1946
1947 if (!xchg(&mnt->mnt_expiry_mark, 1))
1948 return -EAGAIN;
1949 }
1950
1951 /*
1952 * If we may have to abort operations to get out of this
1953 * mount, and they will themselves hold resources we must
1954 * allow the fs to do things. In the Unix tradition of
1955 * 'Gee thats tricky lets do it in userspace' the umount_begin
1956 * might fail to complete on the first run through as other tasks
1957 * must return, and the like. Thats for the mount program to worry
1958 * about for the moment.
1959 */
1960
1961 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1962 sb->s_op->umount_begin(sb);
1963 }
1964
1965 /*
1966 * No sense to grab the lock for this test, but test itself looks
1967 * somewhat bogus. Suggestions for better replacement?
1968 * Ho-hum... In principle, we might treat that as umount + switch
1969 * to rootfs. GC would eventually take care of the old vfsmount.
1970 * Actually it makes sense, especially if rootfs would contain a
1971 * /reboot - static binary that would close all descriptors and
1972 * call reboot(9). Then init(8) could umount root and exec /reboot.
1973 */
1974 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1975 /*
1976 * Special case for "unmounting" root ...
1977 * we just try to remount it readonly.
1978 */
1979 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1980 return -EPERM;
1981 return do_umount_root(sb);
1982 }
1983
1984 namespace_lock();
1985 lock_mount_hash();
1986
1987 /* Repeat the earlier racy checks, now that we are holding the locks */
1988 retval = -EINVAL;
1989 if (!check_mnt(mnt))
1990 goto out;
1991
1992 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1993 goto out;
1994
1995 if (!mnt_has_parent(mnt)) /* not the absolute root */
1996 goto out;
1997
1998 event++;
1999 if (flags & MNT_DETACH) {
2000 umount_tree(mnt, UMOUNT_PROPAGATE);
2001 retval = 0;
2002 } else {
2003 smp_mb(); // paired with __legitimize_mnt()
2004 shrink_submounts(mnt);
2005 retval = -EBUSY;
2006 if (!propagate_mount_busy(mnt, 2)) {
2007 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2008 retval = 0;
2009 }
2010 }
2011 out:
2012 unlock_mount_hash();
2013 namespace_unlock();
2014 return retval;
2015 }
2016
2017 /*
2018 * __detach_mounts - lazily unmount all mounts on the specified dentry
2019 *
2020 * During unlink, rmdir, and d_drop it is possible to loose the path
2021 * to an existing mountpoint, and wind up leaking the mount.
2022 * detach_mounts allows lazily unmounting those mounts instead of
2023 * leaking them.
2024 *
2025 * The caller may hold dentry->d_inode->i_rwsem.
2026 */
__detach_mounts(struct dentry * dentry)2027 void __detach_mounts(struct dentry *dentry)
2028 {
2029 struct pinned_mountpoint mp = {};
2030 struct mount *mnt;
2031
2032 namespace_lock();
2033 lock_mount_hash();
2034 if (!lookup_mountpoint(dentry, &mp))
2035 goto out_unlock;
2036
2037 event++;
2038 while (mp.node.next) {
2039 mnt = hlist_entry(mp.node.next, struct mount, mnt_mp_list);
2040 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
2041 umount_mnt(mnt);
2042 hlist_add_head(&mnt->mnt_umount, &unmounted);
2043 }
2044 else umount_tree(mnt, UMOUNT_CONNECTED);
2045 }
2046 unpin_mountpoint(&mp);
2047 out_unlock:
2048 unlock_mount_hash();
2049 namespace_unlock();
2050 }
2051
2052 /*
2053 * Is the caller allowed to modify his namespace?
2054 */
may_mount(void)2055 bool may_mount(void)
2056 {
2057 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
2058 }
2059
warn_mandlock(void)2060 static void warn_mandlock(void)
2061 {
2062 pr_warn_once("=======================================================\n"
2063 "WARNING: The mand mount option has been deprecated and\n"
2064 " and is ignored by this kernel. Remove the mand\n"
2065 " option from the mount to silence this warning.\n"
2066 "=======================================================\n");
2067 }
2068
can_umount(const struct path * path,int flags)2069 static int can_umount(const struct path *path, int flags)
2070 {
2071 struct mount *mnt = real_mount(path->mnt);
2072 struct super_block *sb = path->dentry->d_sb;
2073
2074 if (!may_mount())
2075 return -EPERM;
2076 if (!path_mounted(path))
2077 return -EINVAL;
2078 if (!check_mnt(mnt))
2079 return -EINVAL;
2080 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2081 return -EINVAL;
2082 if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2083 return -EPERM;
2084 return 0;
2085 }
2086
2087 // caller is responsible for flags being sane
path_umount(struct path * path,int flags)2088 int path_umount(struct path *path, int flags)
2089 {
2090 struct mount *mnt = real_mount(path->mnt);
2091 int ret;
2092
2093 ret = can_umount(path, flags);
2094 if (!ret)
2095 ret = do_umount(mnt, flags);
2096
2097 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2098 dput(path->dentry);
2099 mntput_no_expire(mnt);
2100 return ret;
2101 }
2102
ksys_umount(char __user * name,int flags)2103 static int ksys_umount(char __user *name, int flags)
2104 {
2105 int lookup_flags = LOOKUP_MOUNTPOINT;
2106 struct path path;
2107 int ret;
2108
2109 // basic validity checks done first
2110 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2111 return -EINVAL;
2112
2113 if (!(flags & UMOUNT_NOFOLLOW))
2114 lookup_flags |= LOOKUP_FOLLOW;
2115 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2116 if (ret)
2117 return ret;
2118 return path_umount(&path, flags);
2119 }
2120
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)2121 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2122 {
2123 return ksys_umount(name, flags);
2124 }
2125
2126 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2127
2128 /*
2129 * The 2.0 compatible umount. No flags.
2130 */
SYSCALL_DEFINE1(oldumount,char __user *,name)2131 SYSCALL_DEFINE1(oldumount, char __user *, name)
2132 {
2133 return ksys_umount(name, 0);
2134 }
2135
2136 #endif
2137
is_mnt_ns_file(struct dentry * dentry)2138 static bool is_mnt_ns_file(struct dentry *dentry)
2139 {
2140 struct ns_common *ns;
2141
2142 /* Is this a proxy for a mount namespace? */
2143 if (dentry->d_op != &ns_dentry_operations)
2144 return false;
2145
2146 ns = d_inode(dentry)->i_private;
2147
2148 return ns->ops == &mntns_operations;
2149 }
2150
from_mnt_ns(struct mnt_namespace * mnt)2151 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2152 {
2153 return &mnt->ns;
2154 }
2155
get_sequential_mnt_ns(struct mnt_namespace * mntns,bool previous)2156 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous)
2157 {
2158 guard(rcu)();
2159
2160 for (;;) {
2161 struct list_head *list;
2162
2163 if (previous)
2164 list = rcu_dereference(list_bidir_prev_rcu(&mntns->mnt_ns_list));
2165 else
2166 list = rcu_dereference(list_next_rcu(&mntns->mnt_ns_list));
2167 if (list_is_head(list, &mnt_ns_list))
2168 return ERR_PTR(-ENOENT);
2169
2170 mntns = list_entry_rcu(list, struct mnt_namespace, mnt_ns_list);
2171
2172 /*
2173 * The last passive reference count is put with RCU
2174 * delay so accessing the mount namespace is not just
2175 * safe but all relevant members are still valid.
2176 */
2177 if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2178 continue;
2179
2180 /*
2181 * We need an active reference count as we're persisting
2182 * the mount namespace and it might already be on its
2183 * deathbed.
2184 */
2185 if (!refcount_inc_not_zero(&mntns->ns.count))
2186 continue;
2187
2188 return mntns;
2189 }
2190 }
2191
mnt_ns_from_dentry(struct dentry * dentry)2192 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry)
2193 {
2194 if (!is_mnt_ns_file(dentry))
2195 return NULL;
2196
2197 return to_mnt_ns(get_proc_ns(dentry->d_inode));
2198 }
2199
mnt_ns_loop(struct dentry * dentry)2200 static bool mnt_ns_loop(struct dentry *dentry)
2201 {
2202 /* Could bind mounting the mount namespace inode cause a
2203 * mount namespace loop?
2204 */
2205 struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry);
2206
2207 if (!mnt_ns)
2208 return false;
2209
2210 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
2211 }
2212
copy_tree(struct mount * src_root,struct dentry * dentry,int flag)2213 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2214 int flag)
2215 {
2216 struct mount *res, *src_parent, *src_root_child, *src_mnt,
2217 *dst_parent, *dst_mnt;
2218
2219 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2220 return ERR_PTR(-EINVAL);
2221
2222 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2223 return ERR_PTR(-EINVAL);
2224
2225 res = dst_mnt = clone_mnt(src_root, dentry, flag);
2226 if (IS_ERR(dst_mnt))
2227 return dst_mnt;
2228
2229 src_parent = src_root;
2230
2231 list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2232 if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2233 continue;
2234
2235 for (src_mnt = src_root_child; src_mnt;
2236 src_mnt = next_mnt(src_mnt, src_root_child)) {
2237 if (!(flag & CL_COPY_UNBINDABLE) &&
2238 IS_MNT_UNBINDABLE(src_mnt)) {
2239 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2240 /* Both unbindable and locked. */
2241 dst_mnt = ERR_PTR(-EPERM);
2242 goto out;
2243 } else {
2244 src_mnt = skip_mnt_tree(src_mnt);
2245 continue;
2246 }
2247 }
2248 if (!(flag & CL_COPY_MNT_NS_FILE) &&
2249 is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2250 src_mnt = skip_mnt_tree(src_mnt);
2251 continue;
2252 }
2253 while (src_parent != src_mnt->mnt_parent) {
2254 src_parent = src_parent->mnt_parent;
2255 dst_mnt = dst_mnt->mnt_parent;
2256 }
2257
2258 src_parent = src_mnt;
2259 dst_parent = dst_mnt;
2260 dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2261 if (IS_ERR(dst_mnt))
2262 goto out;
2263 lock_mount_hash();
2264 if (src_mnt->mnt.mnt_flags & MNT_LOCKED)
2265 dst_mnt->mnt.mnt_flags |= MNT_LOCKED;
2266 if (unlikely(flag & CL_EXPIRE)) {
2267 /* stick the duplicate mount on the same expiry
2268 * list as the original if that was on one */
2269 if (!list_empty(&src_mnt->mnt_expire))
2270 list_add(&dst_mnt->mnt_expire,
2271 &src_mnt->mnt_expire);
2272 }
2273 attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp);
2274 unlock_mount_hash();
2275 }
2276 }
2277 return res;
2278
2279 out:
2280 if (res) {
2281 lock_mount_hash();
2282 umount_tree(res, UMOUNT_SYNC);
2283 unlock_mount_hash();
2284 }
2285 return dst_mnt;
2286 }
2287
extend_array(struct path ** res,struct path ** to_free,unsigned n,unsigned * count,unsigned new_count)2288 static inline bool extend_array(struct path **res, struct path **to_free,
2289 unsigned n, unsigned *count, unsigned new_count)
2290 {
2291 struct path *p;
2292
2293 if (likely(n < *count))
2294 return true;
2295 p = kmalloc_array(new_count, sizeof(struct path), GFP_KERNEL);
2296 if (p && *count)
2297 memcpy(p, *res, *count * sizeof(struct path));
2298 *count = new_count;
2299 kfree(*to_free);
2300 *to_free = *res = p;
2301 return p;
2302 }
2303
collect_paths(const struct path * path,struct path * prealloc,unsigned count)2304 struct path *collect_paths(const struct path *path,
2305 struct path *prealloc, unsigned count)
2306 {
2307 struct mount *root = real_mount(path->mnt);
2308 struct mount *child;
2309 struct path *res = prealloc, *to_free = NULL;
2310 unsigned n = 0;
2311
2312 guard(rwsem_read)(&namespace_sem);
2313
2314 if (!check_mnt(root))
2315 return ERR_PTR(-EINVAL);
2316 if (!extend_array(&res, &to_free, 0, &count, 32))
2317 return ERR_PTR(-ENOMEM);
2318 res[n++] = *path;
2319 list_for_each_entry(child, &root->mnt_mounts, mnt_child) {
2320 if (!is_subdir(child->mnt_mountpoint, path->dentry))
2321 continue;
2322 for (struct mount *m = child; m; m = next_mnt(m, child)) {
2323 if (!extend_array(&res, &to_free, n, &count, 2 * count))
2324 return ERR_PTR(-ENOMEM);
2325 res[n].mnt = &m->mnt;
2326 res[n].dentry = m->mnt.mnt_root;
2327 n++;
2328 }
2329 }
2330 if (!extend_array(&res, &to_free, n, &count, count + 1))
2331 return ERR_PTR(-ENOMEM);
2332 memset(res + n, 0, (count - n) * sizeof(struct path));
2333 for (struct path *p = res; p->mnt; p++)
2334 path_get(p);
2335 return res;
2336 }
2337
drop_collected_paths(struct path * paths,struct path * prealloc)2338 void drop_collected_paths(struct path *paths, struct path *prealloc)
2339 {
2340 for (struct path *p = paths; p->mnt; p++)
2341 path_put(p);
2342 if (paths != prealloc)
2343 kfree(paths);
2344 }
2345
2346 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2347
dissolve_on_fput(struct vfsmount * mnt)2348 void dissolve_on_fput(struct vfsmount *mnt)
2349 {
2350 struct mount *m = real_mount(mnt);
2351
2352 /*
2353 * m used to be the root of anon namespace; if it still is one,
2354 * we need to dissolve the mount tree and free that namespace.
2355 * Let's try to avoid taking namespace_sem if we can determine
2356 * that there's nothing to do without it - rcu_read_lock() is
2357 * enough to make anon_ns_root() memory-safe and once m has
2358 * left its namespace, it's no longer our concern, since it will
2359 * never become a root of anon ns again.
2360 */
2361
2362 scoped_guard(rcu) {
2363 if (!anon_ns_root(m))
2364 return;
2365 }
2366
2367 scoped_guard(namespace_lock, &namespace_sem) {
2368 if (!anon_ns_root(m))
2369 return;
2370
2371 emptied_ns = m->mnt_ns;
2372 lock_mount_hash();
2373 umount_tree(m, UMOUNT_CONNECTED);
2374 unlock_mount_hash();
2375 }
2376 }
2377
__has_locked_children(struct mount * mnt,struct dentry * dentry)2378 static bool __has_locked_children(struct mount *mnt, struct dentry *dentry)
2379 {
2380 struct mount *child;
2381
2382 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2383 if (!is_subdir(child->mnt_mountpoint, dentry))
2384 continue;
2385
2386 if (child->mnt.mnt_flags & MNT_LOCKED)
2387 return true;
2388 }
2389 return false;
2390 }
2391
has_locked_children(struct mount * mnt,struct dentry * dentry)2392 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2393 {
2394 bool res;
2395
2396 read_seqlock_excl(&mount_lock);
2397 res = __has_locked_children(mnt, dentry);
2398 read_sequnlock_excl(&mount_lock);
2399 return res;
2400 }
2401
2402 /*
2403 * Check that there aren't references to earlier/same mount namespaces in the
2404 * specified subtree. Such references can act as pins for mount namespaces
2405 * that aren't checked by the mount-cycle checking code, thereby allowing
2406 * cycles to be made.
2407 */
check_for_nsfs_mounts(struct mount * subtree)2408 static bool check_for_nsfs_mounts(struct mount *subtree)
2409 {
2410 struct mount *p;
2411 bool ret = false;
2412
2413 lock_mount_hash();
2414 for (p = subtree; p; p = next_mnt(p, subtree))
2415 if (mnt_ns_loop(p->mnt.mnt_root))
2416 goto out;
2417
2418 ret = true;
2419 out:
2420 unlock_mount_hash();
2421 return ret;
2422 }
2423
2424 /**
2425 * clone_private_mount - create a private clone of a path
2426 * @path: path to clone
2427 *
2428 * This creates a new vfsmount, which will be the clone of @path. The new mount
2429 * will not be attached anywhere in the namespace and will be private (i.e.
2430 * changes to the originating mount won't be propagated into this).
2431 *
2432 * This assumes caller has called or done the equivalent of may_mount().
2433 *
2434 * Release with mntput().
2435 */
clone_private_mount(const struct path * path)2436 struct vfsmount *clone_private_mount(const struct path *path)
2437 {
2438 struct mount *old_mnt = real_mount(path->mnt);
2439 struct mount *new_mnt;
2440
2441 guard(rwsem_read)(&namespace_sem);
2442
2443 if (IS_MNT_UNBINDABLE(old_mnt))
2444 return ERR_PTR(-EINVAL);
2445
2446 /*
2447 * Make sure the source mount is acceptable.
2448 * Anything mounted in our mount namespace is allowed.
2449 * Otherwise, it must be the root of an anonymous mount
2450 * namespace, and we need to make sure no namespace
2451 * loops get created.
2452 */
2453 if (!check_mnt(old_mnt)) {
2454 if (!anon_ns_root(old_mnt))
2455 return ERR_PTR(-EINVAL);
2456
2457 if (!check_for_nsfs_mounts(old_mnt))
2458 return ERR_PTR(-EINVAL);
2459 }
2460
2461 if (!ns_capable(old_mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
2462 return ERR_PTR(-EPERM);
2463
2464 if (__has_locked_children(old_mnt, path->dentry))
2465 return ERR_PTR(-EINVAL);
2466
2467 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2468 if (IS_ERR(new_mnt))
2469 return ERR_PTR(-EINVAL);
2470
2471 /* Longterm mount to be removed by kern_unmount*() */
2472 new_mnt->mnt_ns = MNT_NS_INTERNAL;
2473 return &new_mnt->mnt;
2474 }
2475 EXPORT_SYMBOL_GPL(clone_private_mount);
2476
lock_mnt_tree(struct mount * mnt)2477 static void lock_mnt_tree(struct mount *mnt)
2478 {
2479 struct mount *p;
2480
2481 for (p = mnt; p; p = next_mnt(p, mnt)) {
2482 int flags = p->mnt.mnt_flags;
2483 /* Don't allow unprivileged users to change mount flags */
2484 flags |= MNT_LOCK_ATIME;
2485
2486 if (flags & MNT_READONLY)
2487 flags |= MNT_LOCK_READONLY;
2488
2489 if (flags & MNT_NODEV)
2490 flags |= MNT_LOCK_NODEV;
2491
2492 if (flags & MNT_NOSUID)
2493 flags |= MNT_LOCK_NOSUID;
2494
2495 if (flags & MNT_NOEXEC)
2496 flags |= MNT_LOCK_NOEXEC;
2497 /* Don't allow unprivileged users to reveal what is under a mount */
2498 if (list_empty(&p->mnt_expire) && p != mnt)
2499 flags |= MNT_LOCKED;
2500 p->mnt.mnt_flags = flags;
2501 }
2502 }
2503
cleanup_group_ids(struct mount * mnt,struct mount * end)2504 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2505 {
2506 struct mount *p;
2507
2508 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2509 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2510 mnt_release_group_id(p);
2511 }
2512 }
2513
invent_group_ids(struct mount * mnt,bool recurse)2514 static int invent_group_ids(struct mount *mnt, bool recurse)
2515 {
2516 struct mount *p;
2517
2518 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2519 if (!p->mnt_group_id) {
2520 int err = mnt_alloc_group_id(p);
2521 if (err) {
2522 cleanup_group_ids(mnt, p);
2523 return err;
2524 }
2525 }
2526 }
2527
2528 return 0;
2529 }
2530
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2531 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2532 {
2533 unsigned int max = READ_ONCE(sysctl_mount_max);
2534 unsigned int mounts = 0;
2535 struct mount *p;
2536
2537 if (ns->nr_mounts >= max)
2538 return -ENOSPC;
2539 max -= ns->nr_mounts;
2540 if (ns->pending_mounts >= max)
2541 return -ENOSPC;
2542 max -= ns->pending_mounts;
2543
2544 for (p = mnt; p; p = next_mnt(p, mnt))
2545 mounts++;
2546
2547 if (mounts > max)
2548 return -ENOSPC;
2549
2550 ns->pending_mounts += mounts;
2551 return 0;
2552 }
2553
2554 enum mnt_tree_flags_t {
2555 MNT_TREE_BENEATH = BIT(0),
2556 MNT_TREE_PROPAGATION = BIT(1),
2557 };
2558
2559 /**
2560 * attach_recursive_mnt - attach a source mount tree
2561 * @source_mnt: mount tree to be attached
2562 * @dest_mnt: mount that @source_mnt will be mounted on
2563 * @dest_mp: the mountpoint @source_mnt will be mounted at
2564 *
2565 * NOTE: in the table below explains the semantics when a source mount
2566 * of a given type is attached to a destination mount of a given type.
2567 * ---------------------------------------------------------------------------
2568 * | BIND MOUNT OPERATION |
2569 * |**************************************************************************
2570 * | source-->| shared | private | slave | unbindable |
2571 * | dest | | | | |
2572 * | | | | | | |
2573 * | v | | | | |
2574 * |**************************************************************************
2575 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2576 * | | | | | |
2577 * |non-shared| shared (+) | private | slave (*) | invalid |
2578 * ***************************************************************************
2579 * A bind operation clones the source mount and mounts the clone on the
2580 * destination mount.
2581 *
2582 * (++) the cloned mount is propagated to all the mounts in the propagation
2583 * tree of the destination mount and the cloned mount is added to
2584 * the peer group of the source mount.
2585 * (+) the cloned mount is created under the destination mount and is marked
2586 * as shared. The cloned mount is added to the peer group of the source
2587 * mount.
2588 * (+++) the mount is propagated to all the mounts in the propagation tree
2589 * of the destination mount and the cloned mount is made slave
2590 * of the same master as that of the source mount. The cloned mount
2591 * is marked as 'shared and slave'.
2592 * (*) the cloned mount is made a slave of the same master as that of the
2593 * source mount.
2594 *
2595 * ---------------------------------------------------------------------------
2596 * | MOVE MOUNT OPERATION |
2597 * |**************************************************************************
2598 * | source-->| shared | private | slave | unbindable |
2599 * | dest | | | | |
2600 * | | | | | | |
2601 * | v | | | | |
2602 * |**************************************************************************
2603 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2604 * | | | | | |
2605 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2606 * ***************************************************************************
2607 *
2608 * (+) the mount is moved to the destination. And is then propagated to
2609 * all the mounts in the propagation tree of the destination mount.
2610 * (+*) the mount is moved to the destination.
2611 * (+++) the mount is moved to the destination and is then propagated to
2612 * all the mounts belonging to the destination mount's propagation tree.
2613 * the mount is marked as 'shared and slave'.
2614 * (*) the mount continues to be a slave at the new location.
2615 *
2616 * if the source mount is a tree, the operations explained above is
2617 * applied to each mount in the tree.
2618 * Must be called without spinlocks held, since this function can sleep
2619 * in allocations.
2620 *
2621 * Context: The function expects namespace_lock() to be held.
2622 * Return: If @source_mnt was successfully attached 0 is returned.
2623 * Otherwise a negative error code is returned.
2624 */
attach_recursive_mnt(struct mount * source_mnt,struct mount * dest_mnt,struct mountpoint * dest_mp)2625 static int attach_recursive_mnt(struct mount *source_mnt,
2626 struct mount *dest_mnt,
2627 struct mountpoint *dest_mp)
2628 {
2629 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2630 HLIST_HEAD(tree_list);
2631 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2632 struct pinned_mountpoint root = {};
2633 struct mountpoint *shorter = NULL;
2634 struct mount *child, *p;
2635 struct mount *top;
2636 struct hlist_node *n;
2637 int err = 0;
2638 bool moving = mnt_has_parent(source_mnt);
2639
2640 /*
2641 * Preallocate a mountpoint in case the new mounts need to be
2642 * mounted beneath mounts on the same mountpoint.
2643 */
2644 for (top = source_mnt; unlikely(top->overmount); top = top->overmount) {
2645 if (!shorter && is_mnt_ns_file(top->mnt.mnt_root))
2646 shorter = top->mnt_mp;
2647 }
2648 err = get_mountpoint(top->mnt.mnt_root, &root);
2649 if (err)
2650 return err;
2651
2652 /* Is there space to add these mounts to the mount namespace? */
2653 if (!moving) {
2654 err = count_mounts(ns, source_mnt);
2655 if (err)
2656 goto out;
2657 }
2658
2659 if (IS_MNT_SHARED(dest_mnt)) {
2660 err = invent_group_ids(source_mnt, true);
2661 if (err)
2662 goto out;
2663 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2664 }
2665 lock_mount_hash();
2666 if (err)
2667 goto out_cleanup_ids;
2668
2669 if (IS_MNT_SHARED(dest_mnt)) {
2670 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2671 set_mnt_shared(p);
2672 }
2673
2674 if (moving) {
2675 umount_mnt(source_mnt);
2676 mnt_notify_add(source_mnt);
2677 /* if the mount is moved, it should no longer be expired
2678 * automatically */
2679 list_del_init(&source_mnt->mnt_expire);
2680 } else {
2681 if (source_mnt->mnt_ns) {
2682 /* move from anon - the caller will destroy */
2683 emptied_ns = source_mnt->mnt_ns;
2684 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2685 move_from_ns(p);
2686 }
2687 }
2688
2689 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2690 /*
2691 * Now the original copy is in the same state as the secondaries -
2692 * its root attached to mountpoint, but not hashed and all mounts
2693 * in it are either in our namespace or in no namespace at all.
2694 * Add the original to the list of copies and deal with the
2695 * rest of work for all of them uniformly.
2696 */
2697 hlist_add_head(&source_mnt->mnt_hash, &tree_list);
2698
2699 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2700 struct mount *q;
2701 hlist_del_init(&child->mnt_hash);
2702 /* Notice when we are propagating across user namespaces */
2703 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2704 lock_mnt_tree(child);
2705 q = __lookup_mnt(&child->mnt_parent->mnt,
2706 child->mnt_mountpoint);
2707 if (q) {
2708 struct mountpoint *mp = root.mp;
2709 struct mount *r = child;
2710 while (unlikely(r->overmount))
2711 r = r->overmount;
2712 if (unlikely(shorter) && child != source_mnt)
2713 mp = shorter;
2714 mnt_change_mountpoint(r, mp, q);
2715 }
2716 commit_tree(child);
2717 }
2718 unpin_mountpoint(&root);
2719 unlock_mount_hash();
2720
2721 return 0;
2722
2723 out_cleanup_ids:
2724 while (!hlist_empty(&tree_list)) {
2725 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2726 child->mnt_parent->mnt_ns->pending_mounts = 0;
2727 umount_tree(child, UMOUNT_SYNC);
2728 }
2729 unlock_mount_hash();
2730 cleanup_group_ids(source_mnt, NULL);
2731 out:
2732 ns->pending_mounts = 0;
2733
2734 read_seqlock_excl(&mount_lock);
2735 unpin_mountpoint(&root);
2736 read_sequnlock_excl(&mount_lock);
2737
2738 return err;
2739 }
2740
2741 /**
2742 * do_lock_mount - lock mount and mountpoint
2743 * @path: target path
2744 * @beneath: whether the intention is to mount beneath @path
2745 *
2746 * Follow the mount stack on @path until the top mount @mnt is found. If
2747 * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2748 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2749 * until nothing is stacked on top of it anymore.
2750 *
2751 * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2752 * against concurrent removal of the new mountpoint from another mount
2753 * namespace.
2754 *
2755 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2756 * @mp on @mnt->mnt_parent must be acquired. This protects against a
2757 * concurrent unlink of @mp->mnt_dentry from another mount namespace
2758 * where @mnt doesn't have a child mount mounted @mp. A concurrent
2759 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2760 * on top of it for @beneath.
2761 *
2762 * In addition, @beneath needs to make sure that @mnt hasn't been
2763 * unmounted or moved from its current mountpoint in between dropping
2764 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2765 * being unmounted would be detected later by e.g., calling
2766 * check_mnt(mnt) in the function it's called from. For the @beneath
2767 * case however, it's useful to detect it directly in do_lock_mount().
2768 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2769 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2770 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2771 *
2772 * Return: Either the target mountpoint on the top mount or the top
2773 * mount's mountpoint.
2774 */
do_lock_mount(struct path * path,struct pinned_mountpoint * pinned,bool beneath)2775 static int do_lock_mount(struct path *path, struct pinned_mountpoint *pinned, bool beneath)
2776 {
2777 struct vfsmount *mnt = path->mnt;
2778 struct dentry *dentry;
2779 struct path under = {};
2780 int err = -ENOENT;
2781
2782 for (;;) {
2783 struct mount *m = real_mount(mnt);
2784
2785 if (beneath) {
2786 path_put(&under);
2787 read_seqlock_excl(&mount_lock);
2788 under.mnt = mntget(&m->mnt_parent->mnt);
2789 under.dentry = dget(m->mnt_mountpoint);
2790 read_sequnlock_excl(&mount_lock);
2791 dentry = under.dentry;
2792 } else {
2793 dentry = path->dentry;
2794 }
2795
2796 inode_lock(dentry->d_inode);
2797 namespace_lock();
2798
2799 if (unlikely(cant_mount(dentry) || !is_mounted(mnt)))
2800 break; // not to be mounted on
2801
2802 if (beneath && unlikely(m->mnt_mountpoint != dentry ||
2803 &m->mnt_parent->mnt != under.mnt)) {
2804 namespace_unlock();
2805 inode_unlock(dentry->d_inode);
2806 continue; // got moved
2807 }
2808
2809 mnt = lookup_mnt(path);
2810 if (unlikely(mnt)) {
2811 namespace_unlock();
2812 inode_unlock(dentry->d_inode);
2813 path_put(path);
2814 path->mnt = mnt;
2815 path->dentry = dget(mnt->mnt_root);
2816 continue; // got overmounted
2817 }
2818 err = get_mountpoint(dentry, pinned);
2819 if (err)
2820 break;
2821 if (beneath) {
2822 /*
2823 * @under duplicates the references that will stay
2824 * at least until namespace_unlock(), so the path_put()
2825 * below is safe (and OK to do under namespace_lock -
2826 * we are not dropping the final references here).
2827 */
2828 path_put(&under);
2829 }
2830 return 0;
2831 }
2832 namespace_unlock();
2833 inode_unlock(dentry->d_inode);
2834 if (beneath)
2835 path_put(&under);
2836 return err;
2837 }
2838
lock_mount(struct path * path,struct pinned_mountpoint * m)2839 static inline int lock_mount(struct path *path, struct pinned_mountpoint *m)
2840 {
2841 return do_lock_mount(path, m, false);
2842 }
2843
unlock_mount(struct pinned_mountpoint * m)2844 static void unlock_mount(struct pinned_mountpoint *m)
2845 {
2846 inode_unlock(m->mp->m_dentry->d_inode);
2847 read_seqlock_excl(&mount_lock);
2848 unpin_mountpoint(m);
2849 read_sequnlock_excl(&mount_lock);
2850 namespace_unlock();
2851 }
2852
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2853 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2854 {
2855 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2856 return -EINVAL;
2857
2858 if (d_is_dir(mp->m_dentry) !=
2859 d_is_dir(mnt->mnt.mnt_root))
2860 return -ENOTDIR;
2861
2862 return attach_recursive_mnt(mnt, p, mp);
2863 }
2864
2865 /*
2866 * Sanity check the flags to change_mnt_propagation.
2867 */
2868
flags_to_propagation_type(int ms_flags)2869 static int flags_to_propagation_type(int ms_flags)
2870 {
2871 int type = ms_flags & ~(MS_REC | MS_SILENT);
2872
2873 /* Fail if any non-propagation flags are set */
2874 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2875 return 0;
2876 /* Only one propagation flag should be set */
2877 if (!is_power_of_2(type))
2878 return 0;
2879 return type;
2880 }
2881
2882 /*
2883 * recursively change the type of the mountpoint.
2884 */
do_change_type(struct path * path,int ms_flags)2885 static int do_change_type(struct path *path, int ms_flags)
2886 {
2887 struct mount *m;
2888 struct mount *mnt = real_mount(path->mnt);
2889 int recurse = ms_flags & MS_REC;
2890 int type;
2891 int err = 0;
2892
2893 if (!path_mounted(path))
2894 return -EINVAL;
2895
2896 type = flags_to_propagation_type(ms_flags);
2897 if (!type)
2898 return -EINVAL;
2899
2900 namespace_lock();
2901 if (!check_mnt(mnt)) {
2902 err = -EINVAL;
2903 goto out_unlock;
2904 }
2905 if (type == MS_SHARED) {
2906 err = invent_group_ids(mnt, recurse);
2907 if (err)
2908 goto out_unlock;
2909 }
2910
2911 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2912 change_mnt_propagation(m, type);
2913
2914 out_unlock:
2915 namespace_unlock();
2916 return err;
2917 }
2918
2919 /* may_copy_tree() - check if a mount tree can be copied
2920 * @path: path to the mount tree to be copied
2921 *
2922 * This helper checks if the caller may copy the mount tree starting
2923 * from @path->mnt. The caller may copy the mount tree under the
2924 * following circumstances:
2925 *
2926 * (1) The caller is located in the mount namespace of the mount tree.
2927 * This also implies that the mount does not belong to an anonymous
2928 * mount namespace.
2929 * (2) The caller tries to copy an nfs mount referring to a mount
2930 * namespace, i.e., the caller is trying to copy a mount namespace
2931 * entry from nsfs.
2932 * (3) The caller tries to copy a pidfs mount referring to a pidfd.
2933 * (4) The caller is trying to copy a mount tree that belongs to an
2934 * anonymous mount namespace.
2935 *
2936 * For that to be safe, this helper enforces that the origin mount
2937 * namespace the anonymous mount namespace was created from is the
2938 * same as the caller's mount namespace by comparing the sequence
2939 * numbers.
2940 *
2941 * This is not strictly necessary. The current semantics of the new
2942 * mount api enforce that the caller must be located in the same
2943 * mount namespace as the mount tree it interacts with. Using the
2944 * origin sequence number preserves these semantics even for
2945 * anonymous mount namespaces. However, one could envision extending
2946 * the api to directly operate across mount namespace if needed.
2947 *
2948 * The ownership of a non-anonymous mount namespace such as the
2949 * caller's cannot change.
2950 * => We know that the caller's mount namespace is stable.
2951 *
2952 * If the origin sequence number of the anonymous mount namespace is
2953 * the same as the sequence number of the caller's mount namespace.
2954 * => The owning namespaces are the same.
2955 *
2956 * ==> The earlier capability check on the owning namespace of the
2957 * caller's mount namespace ensures that the caller has the
2958 * ability to copy the mount tree.
2959 *
2960 * Returns true if the mount tree can be copied, false otherwise.
2961 */
may_copy_tree(struct path * path)2962 static inline bool may_copy_tree(struct path *path)
2963 {
2964 struct mount *mnt = real_mount(path->mnt);
2965 const struct dentry_operations *d_op;
2966
2967 if (check_mnt(mnt))
2968 return true;
2969
2970 d_op = path->dentry->d_op;
2971 if (d_op == &ns_dentry_operations)
2972 return true;
2973
2974 if (d_op == &pidfs_dentry_operations)
2975 return true;
2976
2977 if (!is_mounted(path->mnt))
2978 return false;
2979
2980 return check_anonymous_mnt(mnt);
2981 }
2982
2983
__do_loopback(struct path * old_path,int recurse)2984 static struct mount *__do_loopback(struct path *old_path, int recurse)
2985 {
2986 struct mount *old = real_mount(old_path->mnt);
2987
2988 if (IS_MNT_UNBINDABLE(old))
2989 return ERR_PTR(-EINVAL);
2990
2991 if (!may_copy_tree(old_path))
2992 return ERR_PTR(-EINVAL);
2993
2994 if (!recurse && __has_locked_children(old, old_path->dentry))
2995 return ERR_PTR(-EINVAL);
2996
2997 if (recurse)
2998 return copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2999 else
3000 return clone_mnt(old, old_path->dentry, 0);
3001 }
3002
3003 /*
3004 * do loopback mount.
3005 */
do_loopback(struct path * path,const char * old_name,int recurse)3006 static int do_loopback(struct path *path, const char *old_name,
3007 int recurse)
3008 {
3009 struct path old_path;
3010 struct mount *mnt = NULL, *parent;
3011 struct pinned_mountpoint mp = {};
3012 int err;
3013 if (!old_name || !*old_name)
3014 return -EINVAL;
3015 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
3016 if (err)
3017 return err;
3018
3019 err = -EINVAL;
3020 if (mnt_ns_loop(old_path.dentry))
3021 goto out;
3022
3023 err = lock_mount(path, &mp);
3024 if (err)
3025 goto out;
3026
3027 parent = real_mount(path->mnt);
3028 if (!check_mnt(parent))
3029 goto out2;
3030
3031 mnt = __do_loopback(&old_path, recurse);
3032 if (IS_ERR(mnt)) {
3033 err = PTR_ERR(mnt);
3034 goto out2;
3035 }
3036
3037 err = graft_tree(mnt, parent, mp.mp);
3038 if (err) {
3039 lock_mount_hash();
3040 umount_tree(mnt, UMOUNT_SYNC);
3041 unlock_mount_hash();
3042 }
3043 out2:
3044 unlock_mount(&mp);
3045 out:
3046 path_put(&old_path);
3047 return err;
3048 }
3049
open_detached_copy(struct path * path,bool recursive)3050 static struct file *open_detached_copy(struct path *path, bool recursive)
3051 {
3052 struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns;
3053 struct user_namespace *user_ns = mnt_ns->user_ns;
3054 struct mount *mnt, *p;
3055 struct file *file;
3056
3057 ns = alloc_mnt_ns(user_ns, true);
3058 if (IS_ERR(ns))
3059 return ERR_CAST(ns);
3060
3061 namespace_lock();
3062
3063 /*
3064 * Record the sequence number of the source mount namespace.
3065 * This needs to hold namespace_sem to ensure that the mount
3066 * doesn't get attached.
3067 */
3068 if (is_mounted(path->mnt)) {
3069 src_mnt_ns = real_mount(path->mnt)->mnt_ns;
3070 if (is_anon_ns(src_mnt_ns))
3071 ns->seq_origin = src_mnt_ns->seq_origin;
3072 else
3073 ns->seq_origin = src_mnt_ns->seq;
3074 }
3075
3076 mnt = __do_loopback(path, recursive);
3077 if (IS_ERR(mnt)) {
3078 namespace_unlock();
3079 free_mnt_ns(ns);
3080 return ERR_CAST(mnt);
3081 }
3082
3083 lock_mount_hash();
3084 for (p = mnt; p; p = next_mnt(p, mnt)) {
3085 mnt_add_to_ns(ns, p);
3086 ns->nr_mounts++;
3087 }
3088 ns->root = mnt;
3089 mntget(&mnt->mnt);
3090 unlock_mount_hash();
3091 namespace_unlock();
3092
3093 mntput(path->mnt);
3094 path->mnt = &mnt->mnt;
3095 file = dentry_open(path, O_PATH, current_cred());
3096 if (IS_ERR(file))
3097 dissolve_on_fput(path->mnt);
3098 else
3099 file->f_mode |= FMODE_NEED_UNMOUNT;
3100 return file;
3101 }
3102
vfs_open_tree(int dfd,const char __user * filename,unsigned int flags)3103 static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags)
3104 {
3105 int ret;
3106 struct path path __free(path_put) = {};
3107 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
3108 bool detached = flags & OPEN_TREE_CLONE;
3109
3110 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
3111
3112 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
3113 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
3114 OPEN_TREE_CLOEXEC))
3115 return ERR_PTR(-EINVAL);
3116
3117 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
3118 return ERR_PTR(-EINVAL);
3119
3120 if (flags & AT_NO_AUTOMOUNT)
3121 lookup_flags &= ~LOOKUP_AUTOMOUNT;
3122 if (flags & AT_SYMLINK_NOFOLLOW)
3123 lookup_flags &= ~LOOKUP_FOLLOW;
3124 if (flags & AT_EMPTY_PATH)
3125 lookup_flags |= LOOKUP_EMPTY;
3126
3127 if (detached && !may_mount())
3128 return ERR_PTR(-EPERM);
3129
3130 ret = user_path_at(dfd, filename, lookup_flags, &path);
3131 if (unlikely(ret))
3132 return ERR_PTR(ret);
3133
3134 if (detached)
3135 return open_detached_copy(&path, flags & AT_RECURSIVE);
3136
3137 return dentry_open(&path, O_PATH, current_cred());
3138 }
3139
SYSCALL_DEFINE3(open_tree,int,dfd,const char __user *,filename,unsigned,flags)3140 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
3141 {
3142 int fd;
3143 struct file *file __free(fput) = NULL;
3144
3145 file = vfs_open_tree(dfd, filename, flags);
3146 if (IS_ERR(file))
3147 return PTR_ERR(file);
3148
3149 fd = get_unused_fd_flags(flags & O_CLOEXEC);
3150 if (fd < 0)
3151 return fd;
3152
3153 fd_install(fd, no_free_ptr(file));
3154 return fd;
3155 }
3156
3157 /*
3158 * Don't allow locked mount flags to be cleared.
3159 *
3160 * No locks need to be held here while testing the various MNT_LOCK
3161 * flags because those flags can never be cleared once they are set.
3162 */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)3163 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
3164 {
3165 unsigned int fl = mnt->mnt.mnt_flags;
3166
3167 if ((fl & MNT_LOCK_READONLY) &&
3168 !(mnt_flags & MNT_READONLY))
3169 return false;
3170
3171 if ((fl & MNT_LOCK_NODEV) &&
3172 !(mnt_flags & MNT_NODEV))
3173 return false;
3174
3175 if ((fl & MNT_LOCK_NOSUID) &&
3176 !(mnt_flags & MNT_NOSUID))
3177 return false;
3178
3179 if ((fl & MNT_LOCK_NOEXEC) &&
3180 !(mnt_flags & MNT_NOEXEC))
3181 return false;
3182
3183 if ((fl & MNT_LOCK_ATIME) &&
3184 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
3185 return false;
3186
3187 return true;
3188 }
3189
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)3190 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
3191 {
3192 bool readonly_request = (mnt_flags & MNT_READONLY);
3193
3194 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
3195 return 0;
3196
3197 if (readonly_request)
3198 return mnt_make_readonly(mnt);
3199
3200 mnt->mnt.mnt_flags &= ~MNT_READONLY;
3201 return 0;
3202 }
3203
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)3204 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
3205 {
3206 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
3207 mnt->mnt.mnt_flags = mnt_flags;
3208 touch_mnt_namespace(mnt->mnt_ns);
3209 }
3210
mnt_warn_timestamp_expiry(struct path * mountpoint,struct vfsmount * mnt)3211 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
3212 {
3213 struct super_block *sb = mnt->mnt_sb;
3214
3215 if (!__mnt_is_readonly(mnt) &&
3216 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
3217 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
3218 char *buf, *mntpath;
3219
3220 buf = (char *)__get_free_page(GFP_KERNEL);
3221 if (buf)
3222 mntpath = d_path(mountpoint, buf, PAGE_SIZE);
3223 else
3224 mntpath = ERR_PTR(-ENOMEM);
3225 if (IS_ERR(mntpath))
3226 mntpath = "(unknown)";
3227
3228 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
3229 sb->s_type->name,
3230 is_mounted(mnt) ? "remounted" : "mounted",
3231 mntpath, &sb->s_time_max,
3232 (unsigned long long)sb->s_time_max);
3233
3234 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
3235 if (buf)
3236 free_page((unsigned long)buf);
3237 }
3238 }
3239
3240 /*
3241 * Handle reconfiguration of the mountpoint only without alteration of the
3242 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
3243 * to mount(2).
3244 */
do_reconfigure_mnt(struct path * path,unsigned int mnt_flags)3245 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
3246 {
3247 struct super_block *sb = path->mnt->mnt_sb;
3248 struct mount *mnt = real_mount(path->mnt);
3249 int ret;
3250
3251 if (!check_mnt(mnt))
3252 return -EINVAL;
3253
3254 if (!path_mounted(path))
3255 return -EINVAL;
3256
3257 if (!can_change_locked_flags(mnt, mnt_flags))
3258 return -EPERM;
3259
3260 /*
3261 * We're only checking whether the superblock is read-only not
3262 * changing it, so only take down_read(&sb->s_umount).
3263 */
3264 down_read(&sb->s_umount);
3265 lock_mount_hash();
3266 ret = change_mount_ro_state(mnt, mnt_flags);
3267 if (ret == 0)
3268 set_mount_attributes(mnt, mnt_flags);
3269 unlock_mount_hash();
3270 up_read(&sb->s_umount);
3271
3272 mnt_warn_timestamp_expiry(path, &mnt->mnt);
3273
3274 return ret;
3275 }
3276
3277 /*
3278 * change filesystem flags. dir should be a physical root of filesystem.
3279 * If you've mounted a non-root directory somewhere and want to do remount
3280 * on it - tough luck.
3281 */
do_remount(struct path * path,int ms_flags,int sb_flags,int mnt_flags,void * data)3282 static int do_remount(struct path *path, int ms_flags, int sb_flags,
3283 int mnt_flags, void *data)
3284 {
3285 int err;
3286 struct super_block *sb = path->mnt->mnt_sb;
3287 struct mount *mnt = real_mount(path->mnt);
3288 struct fs_context *fc;
3289
3290 if (!check_mnt(mnt))
3291 return -EINVAL;
3292
3293 if (!path_mounted(path))
3294 return -EINVAL;
3295
3296 if (!can_change_locked_flags(mnt, mnt_flags))
3297 return -EPERM;
3298
3299 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3300 if (IS_ERR(fc))
3301 return PTR_ERR(fc);
3302
3303 /*
3304 * Indicate to the filesystem that the remount request is coming
3305 * from the legacy mount system call.
3306 */
3307 fc->oldapi = true;
3308
3309 err = parse_monolithic_mount_data(fc, data);
3310 if (!err) {
3311 down_write(&sb->s_umount);
3312 err = -EPERM;
3313 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3314 err = reconfigure_super(fc);
3315 if (!err) {
3316 lock_mount_hash();
3317 set_mount_attributes(mnt, mnt_flags);
3318 unlock_mount_hash();
3319 }
3320 }
3321 up_write(&sb->s_umount);
3322 }
3323
3324 mnt_warn_timestamp_expiry(path, &mnt->mnt);
3325
3326 put_fs_context(fc);
3327 return err;
3328 }
3329
tree_contains_unbindable(struct mount * mnt)3330 static inline int tree_contains_unbindable(struct mount *mnt)
3331 {
3332 struct mount *p;
3333 for (p = mnt; p; p = next_mnt(p, mnt)) {
3334 if (IS_MNT_UNBINDABLE(p))
3335 return 1;
3336 }
3337 return 0;
3338 }
3339
do_set_group(struct path * from_path,struct path * to_path)3340 static int do_set_group(struct path *from_path, struct path *to_path)
3341 {
3342 struct mount *from, *to;
3343 int err;
3344
3345 from = real_mount(from_path->mnt);
3346 to = real_mount(to_path->mnt);
3347
3348 namespace_lock();
3349
3350 err = -EINVAL;
3351 /* To and From must be mounted */
3352 if (!is_mounted(&from->mnt))
3353 goto out;
3354 if (!is_mounted(&to->mnt))
3355 goto out;
3356
3357 err = -EPERM;
3358 /* We should be allowed to modify mount namespaces of both mounts */
3359 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
3360 goto out;
3361 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
3362 goto out;
3363
3364 err = -EINVAL;
3365 /* To and From paths should be mount roots */
3366 if (!path_mounted(from_path))
3367 goto out;
3368 if (!path_mounted(to_path))
3369 goto out;
3370
3371 /* Setting sharing groups is only allowed across same superblock */
3372 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3373 goto out;
3374
3375 /* From mount root should be wider than To mount root */
3376 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3377 goto out;
3378
3379 /* From mount should not have locked children in place of To's root */
3380 if (__has_locked_children(from, to->mnt.mnt_root))
3381 goto out;
3382
3383 /* Setting sharing groups is only allowed on private mounts */
3384 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3385 goto out;
3386
3387 /* From should not be private */
3388 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3389 goto out;
3390
3391 if (IS_MNT_SLAVE(from)) {
3392 hlist_add_behind(&to->mnt_slave, &from->mnt_slave);
3393 to->mnt_master = from->mnt_master;
3394 }
3395
3396 if (IS_MNT_SHARED(from)) {
3397 to->mnt_group_id = from->mnt_group_id;
3398 list_add(&to->mnt_share, &from->mnt_share);
3399 set_mnt_shared(to);
3400 }
3401
3402 err = 0;
3403 out:
3404 namespace_unlock();
3405 return err;
3406 }
3407
3408 /**
3409 * path_overmounted - check if path is overmounted
3410 * @path: path to check
3411 *
3412 * Check if path is overmounted, i.e., if there's a mount on top of
3413 * @path->mnt with @path->dentry as mountpoint.
3414 *
3415 * Context: namespace_sem must be held at least shared.
3416 * MUST NOT be called under lock_mount_hash() (there one should just
3417 * call __lookup_mnt() and check if it returns NULL).
3418 * Return: If path is overmounted true is returned, false if not.
3419 */
path_overmounted(const struct path * path)3420 static inline bool path_overmounted(const struct path *path)
3421 {
3422 unsigned seq = read_seqbegin(&mount_lock);
3423 bool no_child;
3424
3425 rcu_read_lock();
3426 no_child = !__lookup_mnt(path->mnt, path->dentry);
3427 rcu_read_unlock();
3428 if (need_seqretry(&mount_lock, seq)) {
3429 read_seqlock_excl(&mount_lock);
3430 no_child = !__lookup_mnt(path->mnt, path->dentry);
3431 read_sequnlock_excl(&mount_lock);
3432 }
3433 return unlikely(!no_child);
3434 }
3435
3436 /*
3437 * Check if there is a possibly empty chain of descent from p1 to p2.
3438 * Locks: namespace_sem (shared) or mount_lock (read_seqlock_excl).
3439 */
mount_is_ancestor(const struct mount * p1,const struct mount * p2)3440 static bool mount_is_ancestor(const struct mount *p1, const struct mount *p2)
3441 {
3442 while (p2 != p1 && mnt_has_parent(p2))
3443 p2 = p2->mnt_parent;
3444 return p2 == p1;
3445 }
3446
3447 /**
3448 * can_move_mount_beneath - check that we can mount beneath the top mount
3449 * @from: mount to mount beneath
3450 * @to: mount under which to mount
3451 * @mp: mountpoint of @to
3452 *
3453 * - Make sure that @to->dentry is actually the root of a mount under
3454 * which we can mount another mount.
3455 * - Make sure that nothing can be mounted beneath the caller's current
3456 * root or the rootfs of the namespace.
3457 * - Make sure that the caller can unmount the topmost mount ensuring
3458 * that the caller could reveal the underlying mountpoint.
3459 * - Ensure that nothing has been mounted on top of @from before we
3460 * grabbed @namespace_sem to avoid creating pointless shadow mounts.
3461 * - Prevent mounting beneath a mount if the propagation relationship
3462 * between the source mount, parent mount, and top mount would lead to
3463 * nonsensical mount trees.
3464 *
3465 * Context: This function expects namespace_lock() to be held.
3466 * Return: On success 0, and on error a negative error code is returned.
3467 */
can_move_mount_beneath(const struct path * from,const struct path * to,const struct mountpoint * mp)3468 static int can_move_mount_beneath(const struct path *from,
3469 const struct path *to,
3470 const struct mountpoint *mp)
3471 {
3472 struct mount *mnt_from = real_mount(from->mnt),
3473 *mnt_to = real_mount(to->mnt),
3474 *parent_mnt_to = mnt_to->mnt_parent;
3475
3476 if (!mnt_has_parent(mnt_to))
3477 return -EINVAL;
3478
3479 if (!path_mounted(to))
3480 return -EINVAL;
3481
3482 if (IS_MNT_LOCKED(mnt_to))
3483 return -EINVAL;
3484
3485 /* Avoid creating shadow mounts during mount propagation. */
3486 if (path_overmounted(from))
3487 return -EINVAL;
3488
3489 /*
3490 * Mounting beneath the rootfs only makes sense when the
3491 * semantics of pivot_root(".", ".") are used.
3492 */
3493 if (&mnt_to->mnt == current->fs->root.mnt)
3494 return -EINVAL;
3495 if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3496 return -EINVAL;
3497
3498 if (mount_is_ancestor(mnt_to, mnt_from))
3499 return -EINVAL;
3500
3501 /*
3502 * If the parent mount propagates to the child mount this would
3503 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3504 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3505 * defeats the whole purpose of mounting beneath another mount.
3506 */
3507 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3508 return -EINVAL;
3509
3510 /*
3511 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3512 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3513 * Afterwards @mnt_from would be mounted on top of
3514 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3515 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3516 * already mounted on @mnt_from, @mnt_to would ultimately be
3517 * remounted on top of @c. Afterwards, @mnt_from would be
3518 * covered by a copy @c of @mnt_from and @c would be covered by
3519 * @mnt_from itself. This defeats the whole purpose of mounting
3520 * @mnt_from beneath @mnt_to.
3521 */
3522 if (check_mnt(mnt_from) &&
3523 propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3524 return -EINVAL;
3525
3526 return 0;
3527 }
3528
3529 /* may_use_mount() - check if a mount tree can be used
3530 * @mnt: vfsmount to be used
3531 *
3532 * This helper checks if the caller may use the mount tree starting
3533 * from @path->mnt. The caller may use the mount tree under the
3534 * following circumstances:
3535 *
3536 * (1) The caller is located in the mount namespace of the mount tree.
3537 * This also implies that the mount does not belong to an anonymous
3538 * mount namespace.
3539 * (2) The caller is trying to use a mount tree that belongs to an
3540 * anonymous mount namespace.
3541 *
3542 * For that to be safe, this helper enforces that the origin mount
3543 * namespace the anonymous mount namespace was created from is the
3544 * same as the caller's mount namespace by comparing the sequence
3545 * numbers.
3546 *
3547 * The ownership of a non-anonymous mount namespace such as the
3548 * caller's cannot change.
3549 * => We know that the caller's mount namespace is stable.
3550 *
3551 * If the origin sequence number of the anonymous mount namespace is
3552 * the same as the sequence number of the caller's mount namespace.
3553 * => The owning namespaces are the same.
3554 *
3555 * ==> The earlier capability check on the owning namespace of the
3556 * caller's mount namespace ensures that the caller has the
3557 * ability to use the mount tree.
3558 *
3559 * Returns true if the mount tree can be used, false otherwise.
3560 */
may_use_mount(struct mount * mnt)3561 static inline bool may_use_mount(struct mount *mnt)
3562 {
3563 if (check_mnt(mnt))
3564 return true;
3565
3566 /*
3567 * Make sure that noone unmounted the target path or somehow
3568 * managed to get their hands on something purely kernel
3569 * internal.
3570 */
3571 if (!is_mounted(&mnt->mnt))
3572 return false;
3573
3574 return check_anonymous_mnt(mnt);
3575 }
3576
do_move_mount(struct path * old_path,struct path * new_path,enum mnt_tree_flags_t flags)3577 static int do_move_mount(struct path *old_path,
3578 struct path *new_path, enum mnt_tree_flags_t flags)
3579 {
3580 struct mnt_namespace *ns;
3581 struct mount *p;
3582 struct mount *old;
3583 struct mount *parent;
3584 struct pinned_mountpoint mp;
3585 int err;
3586 bool beneath = flags & MNT_TREE_BENEATH;
3587
3588 err = do_lock_mount(new_path, &mp, beneath);
3589 if (err)
3590 return err;
3591
3592 old = real_mount(old_path->mnt);
3593 p = real_mount(new_path->mnt);
3594 parent = old->mnt_parent;
3595 ns = old->mnt_ns;
3596
3597 err = -EINVAL;
3598
3599 if (check_mnt(old)) {
3600 /* if the source is in our namespace... */
3601 /* ... it should be detachable from parent */
3602 if (!mnt_has_parent(old) || IS_MNT_LOCKED(old))
3603 goto out;
3604 /* ... and the target should be in our namespace */
3605 if (!check_mnt(p))
3606 goto out;
3607 /* parent of the source should not be shared */
3608 if (IS_MNT_SHARED(parent))
3609 goto out;
3610 } else {
3611 /*
3612 * otherwise the source must be the root of some anon namespace.
3613 */
3614 if (!anon_ns_root(old))
3615 goto out;
3616 /*
3617 * Bail out early if the target is within the same namespace -
3618 * subsequent checks would've rejected that, but they lose
3619 * some corner cases if we check it early.
3620 */
3621 if (ns == p->mnt_ns)
3622 goto out;
3623 /*
3624 * Target should be either in our namespace or in an acceptable
3625 * anon namespace, sensu check_anonymous_mnt().
3626 */
3627 if (!may_use_mount(p))
3628 goto out;
3629 }
3630
3631 if (!path_mounted(old_path))
3632 goto out;
3633
3634 if (d_is_dir(new_path->dentry) !=
3635 d_is_dir(old_path->dentry))
3636 goto out;
3637
3638 if (beneath) {
3639 err = can_move_mount_beneath(old_path, new_path, mp.mp);
3640 if (err)
3641 goto out;
3642
3643 err = -EINVAL;
3644 p = p->mnt_parent;
3645 }
3646
3647 /*
3648 * Don't move a mount tree containing unbindable mounts to a destination
3649 * mount which is shared.
3650 */
3651 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3652 goto out;
3653 err = -ELOOP;
3654 if (!check_for_nsfs_mounts(old))
3655 goto out;
3656 if (mount_is_ancestor(old, p))
3657 goto out;
3658
3659 err = attach_recursive_mnt(old, p, mp.mp);
3660 out:
3661 unlock_mount(&mp);
3662 return err;
3663 }
3664
do_move_mount_old(struct path * path,const char * old_name)3665 static int do_move_mount_old(struct path *path, const char *old_name)
3666 {
3667 struct path old_path;
3668 int err;
3669
3670 if (!old_name || !*old_name)
3671 return -EINVAL;
3672
3673 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3674 if (err)
3675 return err;
3676
3677 err = do_move_mount(&old_path, path, 0);
3678 path_put(&old_path);
3679 return err;
3680 }
3681
3682 /*
3683 * add a mount into a namespace's mount tree
3684 */
do_add_mount(struct mount * newmnt,struct mountpoint * mp,const struct path * path,int mnt_flags)3685 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3686 const struct path *path, int mnt_flags)
3687 {
3688 struct mount *parent = real_mount(path->mnt);
3689
3690 mnt_flags &= ~MNT_INTERNAL_FLAGS;
3691
3692 if (unlikely(!check_mnt(parent))) {
3693 /* that's acceptable only for automounts done in private ns */
3694 if (!(mnt_flags & MNT_SHRINKABLE))
3695 return -EINVAL;
3696 /* ... and for those we'd better have mountpoint still alive */
3697 if (!parent->mnt_ns)
3698 return -EINVAL;
3699 }
3700
3701 /* Refuse the same filesystem on the same mount point */
3702 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3703 return -EBUSY;
3704
3705 if (d_is_symlink(newmnt->mnt.mnt_root))
3706 return -EINVAL;
3707
3708 newmnt->mnt.mnt_flags = mnt_flags;
3709 return graft_tree(newmnt, parent, mp);
3710 }
3711
3712 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3713
3714 /*
3715 * Create a new mount using a superblock configuration and request it
3716 * be added to the namespace tree.
3717 */
do_new_mount_fc(struct fs_context * fc,struct path * mountpoint,unsigned int mnt_flags)3718 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3719 unsigned int mnt_flags)
3720 {
3721 struct vfsmount *mnt;
3722 struct pinned_mountpoint mp = {};
3723 struct super_block *sb = fc->root->d_sb;
3724 int error;
3725
3726 error = security_sb_kern_mount(sb);
3727 if (!error && mount_too_revealing(sb, &mnt_flags))
3728 error = -EPERM;
3729
3730 if (unlikely(error)) {
3731 fc_drop_locked(fc);
3732 return error;
3733 }
3734
3735 up_write(&sb->s_umount);
3736
3737 mnt = vfs_create_mount(fc);
3738 if (IS_ERR(mnt))
3739 return PTR_ERR(mnt);
3740
3741 mnt_warn_timestamp_expiry(mountpoint, mnt);
3742
3743 error = lock_mount(mountpoint, &mp);
3744 if (!error) {
3745 error = do_add_mount(real_mount(mnt), mp.mp,
3746 mountpoint, mnt_flags);
3747 unlock_mount(&mp);
3748 }
3749 if (error < 0)
3750 mntput(mnt);
3751 return error;
3752 }
3753
3754 /*
3755 * create a new mount for userspace and request it to be added into the
3756 * namespace's tree
3757 */
do_new_mount(struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)3758 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3759 int mnt_flags, const char *name, void *data)
3760 {
3761 struct file_system_type *type;
3762 struct fs_context *fc;
3763 const char *subtype = NULL;
3764 int err = 0;
3765
3766 if (!fstype)
3767 return -EINVAL;
3768
3769 type = get_fs_type(fstype);
3770 if (!type)
3771 return -ENODEV;
3772
3773 if (type->fs_flags & FS_HAS_SUBTYPE) {
3774 subtype = strchr(fstype, '.');
3775 if (subtype) {
3776 subtype++;
3777 if (!*subtype) {
3778 put_filesystem(type);
3779 return -EINVAL;
3780 }
3781 }
3782 }
3783
3784 fc = fs_context_for_mount(type, sb_flags);
3785 put_filesystem(type);
3786 if (IS_ERR(fc))
3787 return PTR_ERR(fc);
3788
3789 /*
3790 * Indicate to the filesystem that the mount request is coming
3791 * from the legacy mount system call.
3792 */
3793 fc->oldapi = true;
3794
3795 if (subtype)
3796 err = vfs_parse_fs_string(fc, "subtype",
3797 subtype, strlen(subtype));
3798 if (!err && name)
3799 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3800 if (!err)
3801 err = parse_monolithic_mount_data(fc, data);
3802 if (!err && !mount_capable(fc))
3803 err = -EPERM;
3804 if (!err)
3805 err = vfs_get_tree(fc);
3806 if (!err)
3807 err = do_new_mount_fc(fc, path, mnt_flags);
3808
3809 put_fs_context(fc);
3810 return err;
3811 }
3812
finish_automount(struct vfsmount * m,const struct path * path)3813 int finish_automount(struct vfsmount *m, const struct path *path)
3814 {
3815 struct dentry *dentry = path->dentry;
3816 struct pinned_mountpoint mp = {};
3817 struct mount *mnt;
3818 int err;
3819
3820 if (!m)
3821 return 0;
3822 if (IS_ERR(m))
3823 return PTR_ERR(m);
3824
3825 mnt = real_mount(m);
3826
3827 if (m->mnt_sb == path->mnt->mnt_sb &&
3828 m->mnt_root == dentry) {
3829 err = -ELOOP;
3830 goto discard;
3831 }
3832
3833 /*
3834 * we don't want to use lock_mount() - in this case finding something
3835 * that overmounts our mountpoint to be means "quitely drop what we've
3836 * got", not "try to mount it on top".
3837 */
3838 inode_lock(dentry->d_inode);
3839 namespace_lock();
3840 if (unlikely(cant_mount(dentry))) {
3841 err = -ENOENT;
3842 goto discard_locked;
3843 }
3844 if (path_overmounted(path)) {
3845 err = 0;
3846 goto discard_locked;
3847 }
3848 err = get_mountpoint(dentry, &mp);
3849 if (err)
3850 goto discard_locked;
3851
3852 err = do_add_mount(mnt, mp.mp, path,
3853 path->mnt->mnt_flags | MNT_SHRINKABLE);
3854 unlock_mount(&mp);
3855 if (unlikely(err))
3856 goto discard;
3857 return 0;
3858
3859 discard_locked:
3860 namespace_unlock();
3861 inode_unlock(dentry->d_inode);
3862 discard:
3863 mntput(m);
3864 return err;
3865 }
3866
3867 /**
3868 * mnt_set_expiry - Put a mount on an expiration list
3869 * @mnt: The mount to list.
3870 * @expiry_list: The list to add the mount to.
3871 */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)3872 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3873 {
3874 read_seqlock_excl(&mount_lock);
3875 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3876 read_sequnlock_excl(&mount_lock);
3877 }
3878 EXPORT_SYMBOL(mnt_set_expiry);
3879
3880 /*
3881 * process a list of expirable mountpoints with the intent of discarding any
3882 * mountpoints that aren't in use and haven't been touched since last we came
3883 * here
3884 */
mark_mounts_for_expiry(struct list_head * mounts)3885 void mark_mounts_for_expiry(struct list_head *mounts)
3886 {
3887 struct mount *mnt, *next;
3888 LIST_HEAD(graveyard);
3889
3890 if (list_empty(mounts))
3891 return;
3892
3893 namespace_lock();
3894 lock_mount_hash();
3895
3896 /* extract from the expiration list every vfsmount that matches the
3897 * following criteria:
3898 * - already mounted
3899 * - only referenced by its parent vfsmount
3900 * - still marked for expiry (marked on the last call here; marks are
3901 * cleared by mntput())
3902 */
3903 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3904 if (!is_mounted(&mnt->mnt))
3905 continue;
3906 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3907 propagate_mount_busy(mnt, 1))
3908 continue;
3909 list_move(&mnt->mnt_expire, &graveyard);
3910 }
3911 while (!list_empty(&graveyard)) {
3912 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3913 touch_mnt_namespace(mnt->mnt_ns);
3914 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3915 }
3916 unlock_mount_hash();
3917 namespace_unlock();
3918 }
3919
3920 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3921
3922 /*
3923 * Ripoff of 'select_parent()'
3924 *
3925 * search the list of submounts for a given mountpoint, and move any
3926 * shrinkable submounts to the 'graveyard' list.
3927 */
select_submounts(struct mount * parent,struct list_head * graveyard)3928 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3929 {
3930 struct mount *this_parent = parent;
3931 struct list_head *next;
3932 int found = 0;
3933
3934 repeat:
3935 next = this_parent->mnt_mounts.next;
3936 resume:
3937 while (next != &this_parent->mnt_mounts) {
3938 struct list_head *tmp = next;
3939 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3940
3941 next = tmp->next;
3942 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3943 continue;
3944 /*
3945 * Descend a level if the d_mounts list is non-empty.
3946 */
3947 if (!list_empty(&mnt->mnt_mounts)) {
3948 this_parent = mnt;
3949 goto repeat;
3950 }
3951
3952 if (!propagate_mount_busy(mnt, 1)) {
3953 list_move_tail(&mnt->mnt_expire, graveyard);
3954 found++;
3955 }
3956 }
3957 /*
3958 * All done at this level ... ascend and resume the search
3959 */
3960 if (this_parent != parent) {
3961 next = this_parent->mnt_child.next;
3962 this_parent = this_parent->mnt_parent;
3963 goto resume;
3964 }
3965 return found;
3966 }
3967
3968 /*
3969 * process a list of expirable mountpoints with the intent of discarding any
3970 * submounts of a specific parent mountpoint
3971 *
3972 * mount_lock must be held for write
3973 */
shrink_submounts(struct mount * mnt)3974 static void shrink_submounts(struct mount *mnt)
3975 {
3976 LIST_HEAD(graveyard);
3977 struct mount *m;
3978
3979 /* extract submounts of 'mountpoint' from the expiration list */
3980 while (select_submounts(mnt, &graveyard)) {
3981 while (!list_empty(&graveyard)) {
3982 m = list_first_entry(&graveyard, struct mount,
3983 mnt_expire);
3984 touch_mnt_namespace(m->mnt_ns);
3985 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3986 }
3987 }
3988 }
3989
copy_mount_options(const void __user * data)3990 static void *copy_mount_options(const void __user * data)
3991 {
3992 char *copy;
3993 unsigned left, offset;
3994
3995 if (!data)
3996 return NULL;
3997
3998 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3999 if (!copy)
4000 return ERR_PTR(-ENOMEM);
4001
4002 left = copy_from_user(copy, data, PAGE_SIZE);
4003
4004 /*
4005 * Not all architectures have an exact copy_from_user(). Resort to
4006 * byte at a time.
4007 */
4008 offset = PAGE_SIZE - left;
4009 while (left) {
4010 char c;
4011 if (get_user(c, (const char __user *)data + offset))
4012 break;
4013 copy[offset] = c;
4014 left--;
4015 offset++;
4016 }
4017
4018 if (left == PAGE_SIZE) {
4019 kfree(copy);
4020 return ERR_PTR(-EFAULT);
4021 }
4022
4023 return copy;
4024 }
4025
copy_mount_string(const void __user * data)4026 static char *copy_mount_string(const void __user *data)
4027 {
4028 return data ? strndup_user(data, PATH_MAX) : NULL;
4029 }
4030
4031 /*
4032 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
4033 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
4034 *
4035 * data is a (void *) that can point to any structure up to
4036 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
4037 * information (or be NULL).
4038 *
4039 * Pre-0.97 versions of mount() didn't have a flags word.
4040 * When the flags word was introduced its top half was required
4041 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
4042 * Therefore, if this magic number is present, it carries no information
4043 * and must be discarded.
4044 */
path_mount(const char * dev_name,struct path * path,const char * type_page,unsigned long flags,void * data_page)4045 int path_mount(const char *dev_name, struct path *path,
4046 const char *type_page, unsigned long flags, void *data_page)
4047 {
4048 unsigned int mnt_flags = 0, sb_flags;
4049 int ret;
4050
4051 /* Discard magic */
4052 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
4053 flags &= ~MS_MGC_MSK;
4054
4055 /* Basic sanity checks */
4056 if (data_page)
4057 ((char *)data_page)[PAGE_SIZE - 1] = 0;
4058
4059 if (flags & MS_NOUSER)
4060 return -EINVAL;
4061
4062 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
4063 if (ret)
4064 return ret;
4065 if (!may_mount())
4066 return -EPERM;
4067 if (flags & SB_MANDLOCK)
4068 warn_mandlock();
4069
4070 /* Default to relatime unless overriden */
4071 if (!(flags & MS_NOATIME))
4072 mnt_flags |= MNT_RELATIME;
4073
4074 /* Separate the per-mountpoint flags */
4075 if (flags & MS_NOSUID)
4076 mnt_flags |= MNT_NOSUID;
4077 if (flags & MS_NODEV)
4078 mnt_flags |= MNT_NODEV;
4079 if (flags & MS_NOEXEC)
4080 mnt_flags |= MNT_NOEXEC;
4081 if (flags & MS_NOATIME)
4082 mnt_flags |= MNT_NOATIME;
4083 if (flags & MS_NODIRATIME)
4084 mnt_flags |= MNT_NODIRATIME;
4085 if (flags & MS_STRICTATIME)
4086 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
4087 if (flags & MS_RDONLY)
4088 mnt_flags |= MNT_READONLY;
4089 if (flags & MS_NOSYMFOLLOW)
4090 mnt_flags |= MNT_NOSYMFOLLOW;
4091
4092 /* The default atime for remount is preservation */
4093 if ((flags & MS_REMOUNT) &&
4094 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
4095 MS_STRICTATIME)) == 0)) {
4096 mnt_flags &= ~MNT_ATIME_MASK;
4097 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
4098 }
4099
4100 sb_flags = flags & (SB_RDONLY |
4101 SB_SYNCHRONOUS |
4102 SB_MANDLOCK |
4103 SB_DIRSYNC |
4104 SB_SILENT |
4105 SB_POSIXACL |
4106 SB_LAZYTIME |
4107 SB_I_VERSION);
4108
4109 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
4110 return do_reconfigure_mnt(path, mnt_flags);
4111 if (flags & MS_REMOUNT)
4112 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
4113 if (flags & MS_BIND)
4114 return do_loopback(path, dev_name, flags & MS_REC);
4115 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
4116 return do_change_type(path, flags);
4117 if (flags & MS_MOVE)
4118 return do_move_mount_old(path, dev_name);
4119
4120 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
4121 data_page);
4122 }
4123
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)4124 int do_mount(const char *dev_name, const char __user *dir_name,
4125 const char *type_page, unsigned long flags, void *data_page)
4126 {
4127 struct path path;
4128 int ret;
4129
4130 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
4131 if (ret)
4132 return ret;
4133 ret = path_mount(dev_name, &path, type_page, flags, data_page);
4134 path_put(&path);
4135 return ret;
4136 }
4137
inc_mnt_namespaces(struct user_namespace * ns)4138 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
4139 {
4140 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
4141 }
4142
dec_mnt_namespaces(struct ucounts * ucounts)4143 static void dec_mnt_namespaces(struct ucounts *ucounts)
4144 {
4145 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
4146 }
4147
free_mnt_ns(struct mnt_namespace * ns)4148 static void free_mnt_ns(struct mnt_namespace *ns)
4149 {
4150 if (!is_anon_ns(ns))
4151 ns_free_inum(&ns->ns);
4152 dec_mnt_namespaces(ns->ucounts);
4153 mnt_ns_tree_remove(ns);
4154 }
4155
4156 /*
4157 * Assign a sequence number so we can detect when we attempt to bind
4158 * mount a reference to an older mount namespace into the current
4159 * mount namespace, preventing reference counting loops. A 64bit
4160 * number incrementing at 10Ghz will take 12,427 years to wrap which
4161 * is effectively never, so we can ignore the possibility.
4162 */
4163 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
4164
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)4165 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
4166 {
4167 struct mnt_namespace *new_ns;
4168 struct ucounts *ucounts;
4169 int ret;
4170
4171 ucounts = inc_mnt_namespaces(user_ns);
4172 if (!ucounts)
4173 return ERR_PTR(-ENOSPC);
4174
4175 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
4176 if (!new_ns) {
4177 dec_mnt_namespaces(ucounts);
4178 return ERR_PTR(-ENOMEM);
4179 }
4180 if (!anon) {
4181 ret = ns_alloc_inum(&new_ns->ns);
4182 if (ret) {
4183 kfree(new_ns);
4184 dec_mnt_namespaces(ucounts);
4185 return ERR_PTR(ret);
4186 }
4187 }
4188 new_ns->ns.ops = &mntns_operations;
4189 if (!anon)
4190 new_ns->seq = atomic64_inc_return(&mnt_ns_seq);
4191 refcount_set(&new_ns->ns.count, 1);
4192 refcount_set(&new_ns->passive, 1);
4193 new_ns->mounts = RB_ROOT;
4194 INIT_LIST_HEAD(&new_ns->mnt_ns_list);
4195 RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node);
4196 init_waitqueue_head(&new_ns->poll);
4197 new_ns->user_ns = get_user_ns(user_ns);
4198 new_ns->ucounts = ucounts;
4199 return new_ns;
4200 }
4201
4202 __latent_entropy
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)4203 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
4204 struct user_namespace *user_ns, struct fs_struct *new_fs)
4205 {
4206 struct mnt_namespace *new_ns;
4207 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
4208 struct mount *p, *q;
4209 struct mount *old;
4210 struct mount *new;
4211 int copy_flags;
4212
4213 BUG_ON(!ns);
4214
4215 if (likely(!(flags & CLONE_NEWNS))) {
4216 get_mnt_ns(ns);
4217 return ns;
4218 }
4219
4220 old = ns->root;
4221
4222 new_ns = alloc_mnt_ns(user_ns, false);
4223 if (IS_ERR(new_ns))
4224 return new_ns;
4225
4226 namespace_lock();
4227 /* First pass: copy the tree topology */
4228 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
4229 if (user_ns != ns->user_ns)
4230 copy_flags |= CL_SLAVE;
4231 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
4232 if (IS_ERR(new)) {
4233 namespace_unlock();
4234 ns_free_inum(&new_ns->ns);
4235 dec_mnt_namespaces(new_ns->ucounts);
4236 mnt_ns_release(new_ns);
4237 return ERR_CAST(new);
4238 }
4239 if (user_ns != ns->user_ns) {
4240 lock_mount_hash();
4241 lock_mnt_tree(new);
4242 unlock_mount_hash();
4243 }
4244 new_ns->root = new;
4245
4246 /*
4247 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
4248 * as belonging to new namespace. We have already acquired a private
4249 * fs_struct, so tsk->fs->lock is not needed.
4250 */
4251 p = old;
4252 q = new;
4253 while (p) {
4254 mnt_add_to_ns(new_ns, q);
4255 new_ns->nr_mounts++;
4256 if (new_fs) {
4257 if (&p->mnt == new_fs->root.mnt) {
4258 new_fs->root.mnt = mntget(&q->mnt);
4259 rootmnt = &p->mnt;
4260 }
4261 if (&p->mnt == new_fs->pwd.mnt) {
4262 new_fs->pwd.mnt = mntget(&q->mnt);
4263 pwdmnt = &p->mnt;
4264 }
4265 }
4266 p = next_mnt(p, old);
4267 q = next_mnt(q, new);
4268 if (!q)
4269 break;
4270 // an mntns binding we'd skipped?
4271 while (p->mnt.mnt_root != q->mnt.mnt_root)
4272 p = next_mnt(skip_mnt_tree(p), old);
4273 }
4274 namespace_unlock();
4275
4276 if (rootmnt)
4277 mntput(rootmnt);
4278 if (pwdmnt)
4279 mntput(pwdmnt);
4280
4281 mnt_ns_tree_add(new_ns);
4282 return new_ns;
4283 }
4284
mount_subtree(struct vfsmount * m,const char * name)4285 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4286 {
4287 struct mount *mnt = real_mount(m);
4288 struct mnt_namespace *ns;
4289 struct super_block *s;
4290 struct path path;
4291 int err;
4292
4293 ns = alloc_mnt_ns(&init_user_ns, true);
4294 if (IS_ERR(ns)) {
4295 mntput(m);
4296 return ERR_CAST(ns);
4297 }
4298 ns->root = mnt;
4299 ns->nr_mounts++;
4300 mnt_add_to_ns(ns, mnt);
4301
4302 err = vfs_path_lookup(m->mnt_root, m,
4303 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4304
4305 put_mnt_ns(ns);
4306
4307 if (err)
4308 return ERR_PTR(err);
4309
4310 /* trade a vfsmount reference for active sb one */
4311 s = path.mnt->mnt_sb;
4312 atomic_inc(&s->s_active);
4313 mntput(path.mnt);
4314 /* lock the sucker */
4315 down_write(&s->s_umount);
4316 /* ... and return the root of (sub)tree on it */
4317 return path.dentry;
4318 }
4319 EXPORT_SYMBOL(mount_subtree);
4320
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)4321 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4322 char __user *, type, unsigned long, flags, void __user *, data)
4323 {
4324 int ret;
4325 char *kernel_type;
4326 char *kernel_dev;
4327 void *options;
4328
4329 kernel_type = copy_mount_string(type);
4330 ret = PTR_ERR(kernel_type);
4331 if (IS_ERR(kernel_type))
4332 goto out_type;
4333
4334 kernel_dev = copy_mount_string(dev_name);
4335 ret = PTR_ERR(kernel_dev);
4336 if (IS_ERR(kernel_dev))
4337 goto out_dev;
4338
4339 options = copy_mount_options(data);
4340 ret = PTR_ERR(options);
4341 if (IS_ERR(options))
4342 goto out_data;
4343
4344 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4345
4346 kfree(options);
4347 out_data:
4348 kfree(kernel_dev);
4349 out_dev:
4350 kfree(kernel_type);
4351 out_type:
4352 return ret;
4353 }
4354
4355 #define FSMOUNT_VALID_FLAGS \
4356 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
4357 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
4358 MOUNT_ATTR_NOSYMFOLLOW)
4359
4360 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4361
4362 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4363 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4364
attr_flags_to_mnt_flags(u64 attr_flags)4365 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4366 {
4367 unsigned int mnt_flags = 0;
4368
4369 if (attr_flags & MOUNT_ATTR_RDONLY)
4370 mnt_flags |= MNT_READONLY;
4371 if (attr_flags & MOUNT_ATTR_NOSUID)
4372 mnt_flags |= MNT_NOSUID;
4373 if (attr_flags & MOUNT_ATTR_NODEV)
4374 mnt_flags |= MNT_NODEV;
4375 if (attr_flags & MOUNT_ATTR_NOEXEC)
4376 mnt_flags |= MNT_NOEXEC;
4377 if (attr_flags & MOUNT_ATTR_NODIRATIME)
4378 mnt_flags |= MNT_NODIRATIME;
4379 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4380 mnt_flags |= MNT_NOSYMFOLLOW;
4381
4382 return mnt_flags;
4383 }
4384
4385 /*
4386 * Create a kernel mount representation for a new, prepared superblock
4387 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4388 */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)4389 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4390 unsigned int, attr_flags)
4391 {
4392 struct mnt_namespace *ns;
4393 struct fs_context *fc;
4394 struct file *file;
4395 struct path newmount;
4396 struct mount *mnt;
4397 unsigned int mnt_flags = 0;
4398 long ret;
4399
4400 if (!may_mount())
4401 return -EPERM;
4402
4403 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4404 return -EINVAL;
4405
4406 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4407 return -EINVAL;
4408
4409 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4410
4411 switch (attr_flags & MOUNT_ATTR__ATIME) {
4412 case MOUNT_ATTR_STRICTATIME:
4413 break;
4414 case MOUNT_ATTR_NOATIME:
4415 mnt_flags |= MNT_NOATIME;
4416 break;
4417 case MOUNT_ATTR_RELATIME:
4418 mnt_flags |= MNT_RELATIME;
4419 break;
4420 default:
4421 return -EINVAL;
4422 }
4423
4424 CLASS(fd, f)(fs_fd);
4425 if (fd_empty(f))
4426 return -EBADF;
4427
4428 if (fd_file(f)->f_op != &fscontext_fops)
4429 return -EINVAL;
4430
4431 fc = fd_file(f)->private_data;
4432
4433 ret = mutex_lock_interruptible(&fc->uapi_mutex);
4434 if (ret < 0)
4435 return ret;
4436
4437 /* There must be a valid superblock or we can't mount it */
4438 ret = -EINVAL;
4439 if (!fc->root)
4440 goto err_unlock;
4441
4442 ret = -EPERM;
4443 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4444 pr_warn("VFS: Mount too revealing\n");
4445 goto err_unlock;
4446 }
4447
4448 ret = -EBUSY;
4449 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4450 goto err_unlock;
4451
4452 if (fc->sb_flags & SB_MANDLOCK)
4453 warn_mandlock();
4454
4455 newmount.mnt = vfs_create_mount(fc);
4456 if (IS_ERR(newmount.mnt)) {
4457 ret = PTR_ERR(newmount.mnt);
4458 goto err_unlock;
4459 }
4460 newmount.dentry = dget(fc->root);
4461 newmount.mnt->mnt_flags = mnt_flags;
4462
4463 /* We've done the mount bit - now move the file context into more or
4464 * less the same state as if we'd done an fspick(). We don't want to
4465 * do any memory allocation or anything like that at this point as we
4466 * don't want to have to handle any errors incurred.
4467 */
4468 vfs_clean_context(fc);
4469
4470 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4471 if (IS_ERR(ns)) {
4472 ret = PTR_ERR(ns);
4473 goto err_path;
4474 }
4475 mnt = real_mount(newmount.mnt);
4476 ns->root = mnt;
4477 ns->nr_mounts = 1;
4478 mnt_add_to_ns(ns, mnt);
4479 mntget(newmount.mnt);
4480
4481 /* Attach to an apparent O_PATH fd with a note that we need to unmount
4482 * it, not just simply put it.
4483 */
4484 file = dentry_open(&newmount, O_PATH, fc->cred);
4485 if (IS_ERR(file)) {
4486 dissolve_on_fput(newmount.mnt);
4487 ret = PTR_ERR(file);
4488 goto err_path;
4489 }
4490 file->f_mode |= FMODE_NEED_UNMOUNT;
4491
4492 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4493 if (ret >= 0)
4494 fd_install(ret, file);
4495 else
4496 fput(file);
4497
4498 err_path:
4499 path_put(&newmount);
4500 err_unlock:
4501 mutex_unlock(&fc->uapi_mutex);
4502 return ret;
4503 }
4504
vfs_move_mount(struct path * from_path,struct path * to_path,enum mnt_tree_flags_t mflags)4505 static inline int vfs_move_mount(struct path *from_path, struct path *to_path,
4506 enum mnt_tree_flags_t mflags)
4507 {
4508 int ret;
4509
4510 ret = security_move_mount(from_path, to_path);
4511 if (ret)
4512 return ret;
4513
4514 if (mflags & MNT_TREE_PROPAGATION)
4515 return do_set_group(from_path, to_path);
4516
4517 return do_move_mount(from_path, to_path, mflags);
4518 }
4519
4520 /*
4521 * Move a mount from one place to another. In combination with
4522 * fsopen()/fsmount() this is used to install a new mount and in combination
4523 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4524 * a mount subtree.
4525 *
4526 * Note the flags value is a combination of MOVE_MOUNT_* flags.
4527 */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char __user *,from_pathname,int,to_dfd,const char __user *,to_pathname,unsigned int,flags)4528 SYSCALL_DEFINE5(move_mount,
4529 int, from_dfd, const char __user *, from_pathname,
4530 int, to_dfd, const char __user *, to_pathname,
4531 unsigned int, flags)
4532 {
4533 struct path to_path __free(path_put) = {};
4534 struct path from_path __free(path_put) = {};
4535 struct filename *to_name __free(putname) = NULL;
4536 struct filename *from_name __free(putname) = NULL;
4537 unsigned int lflags, uflags;
4538 enum mnt_tree_flags_t mflags = 0;
4539 int ret = 0;
4540
4541 if (!may_mount())
4542 return -EPERM;
4543
4544 if (flags & ~MOVE_MOUNT__MASK)
4545 return -EINVAL;
4546
4547 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4548 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4549 return -EINVAL;
4550
4551 if (flags & MOVE_MOUNT_SET_GROUP) mflags |= MNT_TREE_PROPAGATION;
4552 if (flags & MOVE_MOUNT_BENEATH) mflags |= MNT_TREE_BENEATH;
4553
4554 lflags = 0;
4555 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
4556 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
4557 uflags = 0;
4558 if (flags & MOVE_MOUNT_F_EMPTY_PATH) uflags = AT_EMPTY_PATH;
4559 from_name = getname_maybe_null(from_pathname, uflags);
4560 if (IS_ERR(from_name))
4561 return PTR_ERR(from_name);
4562
4563 lflags = 0;
4564 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
4565 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
4566 uflags = 0;
4567 if (flags & MOVE_MOUNT_T_EMPTY_PATH) uflags = AT_EMPTY_PATH;
4568 to_name = getname_maybe_null(to_pathname, uflags);
4569 if (IS_ERR(to_name))
4570 return PTR_ERR(to_name);
4571
4572 if (!to_name && to_dfd >= 0) {
4573 CLASS(fd_raw, f_to)(to_dfd);
4574 if (fd_empty(f_to))
4575 return -EBADF;
4576
4577 to_path = fd_file(f_to)->f_path;
4578 path_get(&to_path);
4579 } else {
4580 ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL);
4581 if (ret)
4582 return ret;
4583 }
4584
4585 if (!from_name && from_dfd >= 0) {
4586 CLASS(fd_raw, f_from)(from_dfd);
4587 if (fd_empty(f_from))
4588 return -EBADF;
4589
4590 return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags);
4591 }
4592
4593 ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL);
4594 if (ret)
4595 return ret;
4596
4597 return vfs_move_mount(&from_path, &to_path, mflags);
4598 }
4599
4600 /*
4601 * Return true if path is reachable from root
4602 *
4603 * namespace_sem or mount_lock is held
4604 */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)4605 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4606 const struct path *root)
4607 {
4608 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4609 dentry = mnt->mnt_mountpoint;
4610 mnt = mnt->mnt_parent;
4611 }
4612 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4613 }
4614
path_is_under(const struct path * path1,const struct path * path2)4615 bool path_is_under(const struct path *path1, const struct path *path2)
4616 {
4617 bool res;
4618 read_seqlock_excl(&mount_lock);
4619 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4620 read_sequnlock_excl(&mount_lock);
4621 return res;
4622 }
4623 EXPORT_SYMBOL(path_is_under);
4624
4625 /*
4626 * pivot_root Semantics:
4627 * Moves the root file system of the current process to the directory put_old,
4628 * makes new_root as the new root file system of the current process, and sets
4629 * root/cwd of all processes which had them on the current root to new_root.
4630 *
4631 * Restrictions:
4632 * The new_root and put_old must be directories, and must not be on the
4633 * same file system as the current process root. The put_old must be
4634 * underneath new_root, i.e. adding a non-zero number of /.. to the string
4635 * pointed to by put_old must yield the same directory as new_root. No other
4636 * file system may be mounted on put_old. After all, new_root is a mountpoint.
4637 *
4638 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4639 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4640 * in this situation.
4641 *
4642 * Notes:
4643 * - we don't move root/cwd if they are not at the root (reason: if something
4644 * cared enough to change them, it's probably wrong to force them elsewhere)
4645 * - it's okay to pick a root that isn't the root of a file system, e.g.
4646 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4647 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4648 * first.
4649 */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)4650 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4651 const char __user *, put_old)
4652 {
4653 struct path new, old, root;
4654 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4655 struct pinned_mountpoint old_mp = {};
4656 int error;
4657
4658 if (!may_mount())
4659 return -EPERM;
4660
4661 error = user_path_at(AT_FDCWD, new_root,
4662 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4663 if (error)
4664 goto out0;
4665
4666 error = user_path_at(AT_FDCWD, put_old,
4667 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4668 if (error)
4669 goto out1;
4670
4671 error = security_sb_pivotroot(&old, &new);
4672 if (error)
4673 goto out2;
4674
4675 get_fs_root(current->fs, &root);
4676 error = lock_mount(&old, &old_mp);
4677 if (error)
4678 goto out3;
4679
4680 error = -EINVAL;
4681 new_mnt = real_mount(new.mnt);
4682 root_mnt = real_mount(root.mnt);
4683 old_mnt = real_mount(old.mnt);
4684 ex_parent = new_mnt->mnt_parent;
4685 root_parent = root_mnt->mnt_parent;
4686 if (IS_MNT_SHARED(old_mnt) ||
4687 IS_MNT_SHARED(ex_parent) ||
4688 IS_MNT_SHARED(root_parent))
4689 goto out4;
4690 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4691 goto out4;
4692 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4693 goto out4;
4694 error = -ENOENT;
4695 if (d_unlinked(new.dentry))
4696 goto out4;
4697 error = -EBUSY;
4698 if (new_mnt == root_mnt || old_mnt == root_mnt)
4699 goto out4; /* loop, on the same file system */
4700 error = -EINVAL;
4701 if (!path_mounted(&root))
4702 goto out4; /* not a mountpoint */
4703 if (!mnt_has_parent(root_mnt))
4704 goto out4; /* absolute root */
4705 if (!path_mounted(&new))
4706 goto out4; /* not a mountpoint */
4707 if (!mnt_has_parent(new_mnt))
4708 goto out4; /* absolute root */
4709 /* make sure we can reach put_old from new_root */
4710 if (!is_path_reachable(old_mnt, old.dentry, &new))
4711 goto out4;
4712 /* make certain new is below the root */
4713 if (!is_path_reachable(new_mnt, new.dentry, &root))
4714 goto out4;
4715 lock_mount_hash();
4716 umount_mnt(new_mnt);
4717 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4718 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4719 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4720 }
4721 /* mount new_root on / */
4722 attach_mnt(new_mnt, root_parent, root_mnt->mnt_mp);
4723 umount_mnt(root_mnt);
4724 /* mount old root on put_old */
4725 attach_mnt(root_mnt, old_mnt, old_mp.mp);
4726 touch_mnt_namespace(current->nsproxy->mnt_ns);
4727 /* A moved mount should not expire automatically */
4728 list_del_init(&new_mnt->mnt_expire);
4729 unlock_mount_hash();
4730 mnt_notify_add(root_mnt);
4731 mnt_notify_add(new_mnt);
4732 chroot_fs_refs(&root, &new);
4733 error = 0;
4734 out4:
4735 unlock_mount(&old_mp);
4736 out3:
4737 path_put(&root);
4738 out2:
4739 path_put(&old);
4740 out1:
4741 path_put(&new);
4742 out0:
4743 return error;
4744 }
4745
recalc_flags(struct mount_kattr * kattr,struct mount * mnt)4746 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4747 {
4748 unsigned int flags = mnt->mnt.mnt_flags;
4749
4750 /* flags to clear */
4751 flags &= ~kattr->attr_clr;
4752 /* flags to raise */
4753 flags |= kattr->attr_set;
4754
4755 return flags;
4756 }
4757
can_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4758 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4759 {
4760 struct vfsmount *m = &mnt->mnt;
4761 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4762
4763 if (!kattr->mnt_idmap)
4764 return 0;
4765
4766 /*
4767 * Creating an idmapped mount with the filesystem wide idmapping
4768 * doesn't make sense so block that. We don't allow mushy semantics.
4769 */
4770 if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4771 return -EINVAL;
4772
4773 /*
4774 * We only allow an mount to change it's idmapping if it has
4775 * never been accessible to userspace.
4776 */
4777 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m))
4778 return -EPERM;
4779
4780 /* The underlying filesystem doesn't support idmapped mounts yet. */
4781 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4782 return -EINVAL;
4783
4784 /* The filesystem has turned off idmapped mounts. */
4785 if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4786 return -EINVAL;
4787
4788 /* We're not controlling the superblock. */
4789 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4790 return -EPERM;
4791
4792 /* Mount has already been visible in the filesystem hierarchy. */
4793 if (!is_anon_ns(mnt->mnt_ns))
4794 return -EINVAL;
4795
4796 return 0;
4797 }
4798
4799 /**
4800 * mnt_allow_writers() - check whether the attribute change allows writers
4801 * @kattr: the new mount attributes
4802 * @mnt: the mount to which @kattr will be applied
4803 *
4804 * Check whether thew new mount attributes in @kattr allow concurrent writers.
4805 *
4806 * Return: true if writers need to be held, false if not
4807 */
mnt_allow_writers(const struct mount_kattr * kattr,const struct mount * mnt)4808 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4809 const struct mount *mnt)
4810 {
4811 return (!(kattr->attr_set & MNT_READONLY) ||
4812 (mnt->mnt.mnt_flags & MNT_READONLY)) &&
4813 !kattr->mnt_idmap;
4814 }
4815
mount_setattr_prepare(struct mount_kattr * kattr,struct mount * mnt)4816 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4817 {
4818 struct mount *m;
4819 int err;
4820
4821 for (m = mnt; m; m = next_mnt(m, mnt)) {
4822 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4823 err = -EPERM;
4824 break;
4825 }
4826
4827 err = can_idmap_mount(kattr, m);
4828 if (err)
4829 break;
4830
4831 if (!mnt_allow_writers(kattr, m)) {
4832 err = mnt_hold_writers(m);
4833 if (err)
4834 break;
4835 }
4836
4837 if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4838 return 0;
4839 }
4840
4841 if (err) {
4842 struct mount *p;
4843
4844 /*
4845 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4846 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4847 * mounts and needs to take care to include the first mount.
4848 */
4849 for (p = mnt; p; p = next_mnt(p, mnt)) {
4850 /* If we had to hold writers unblock them. */
4851 if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4852 mnt_unhold_writers(p);
4853
4854 /*
4855 * We're done once the first mount we changed got
4856 * MNT_WRITE_HOLD unset.
4857 */
4858 if (p == m)
4859 break;
4860 }
4861 }
4862 return err;
4863 }
4864
do_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4865 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4866 {
4867 struct mnt_idmap *old_idmap;
4868
4869 if (!kattr->mnt_idmap)
4870 return;
4871
4872 old_idmap = mnt_idmap(&mnt->mnt);
4873
4874 /* Pairs with smp_load_acquire() in mnt_idmap(). */
4875 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4876 mnt_idmap_put(old_idmap);
4877 }
4878
mount_setattr_commit(struct mount_kattr * kattr,struct mount * mnt)4879 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4880 {
4881 struct mount *m;
4882
4883 for (m = mnt; m; m = next_mnt(m, mnt)) {
4884 unsigned int flags;
4885
4886 do_idmap_mount(kattr, m);
4887 flags = recalc_flags(kattr, m);
4888 WRITE_ONCE(m->mnt.mnt_flags, flags);
4889
4890 /* If we had to hold writers unblock them. */
4891 if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4892 mnt_unhold_writers(m);
4893
4894 if (kattr->propagation)
4895 change_mnt_propagation(m, kattr->propagation);
4896 if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4897 break;
4898 }
4899 touch_mnt_namespace(mnt->mnt_ns);
4900 }
4901
do_mount_setattr(struct path * path,struct mount_kattr * kattr)4902 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4903 {
4904 struct mount *mnt = real_mount(path->mnt);
4905 int err = 0;
4906
4907 if (!path_mounted(path))
4908 return -EINVAL;
4909
4910 if (kattr->mnt_userns) {
4911 struct mnt_idmap *mnt_idmap;
4912
4913 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4914 if (IS_ERR(mnt_idmap))
4915 return PTR_ERR(mnt_idmap);
4916 kattr->mnt_idmap = mnt_idmap;
4917 }
4918
4919 if (kattr->propagation) {
4920 /*
4921 * Only take namespace_lock() if we're actually changing
4922 * propagation.
4923 */
4924 namespace_lock();
4925 if (kattr->propagation == MS_SHARED) {
4926 err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE);
4927 if (err) {
4928 namespace_unlock();
4929 return err;
4930 }
4931 }
4932 }
4933
4934 err = -EINVAL;
4935 lock_mount_hash();
4936
4937 if (!anon_ns_root(mnt) && !check_mnt(mnt))
4938 goto out;
4939
4940 /*
4941 * First, we get the mount tree in a shape where we can change mount
4942 * properties without failure. If we succeeded to do so we commit all
4943 * changes and if we failed we clean up.
4944 */
4945 err = mount_setattr_prepare(kattr, mnt);
4946 if (!err)
4947 mount_setattr_commit(kattr, mnt);
4948
4949 out:
4950 unlock_mount_hash();
4951
4952 if (kattr->propagation) {
4953 if (err)
4954 cleanup_group_ids(mnt, NULL);
4955 namespace_unlock();
4956 }
4957
4958 return err;
4959 }
4960
build_mount_idmapped(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr)4961 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4962 struct mount_kattr *kattr)
4963 {
4964 struct ns_common *ns;
4965 struct user_namespace *mnt_userns;
4966
4967 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4968 return 0;
4969
4970 if (attr->attr_clr & MOUNT_ATTR_IDMAP) {
4971 /*
4972 * We can only remove an idmapping if it's never been
4973 * exposed to userspace.
4974 */
4975 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE))
4976 return -EINVAL;
4977
4978 /*
4979 * Removal of idmappings is equivalent to setting
4980 * nop_mnt_idmap.
4981 */
4982 if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) {
4983 kattr->mnt_idmap = &nop_mnt_idmap;
4984 return 0;
4985 }
4986 }
4987
4988 if (attr->userns_fd > INT_MAX)
4989 return -EINVAL;
4990
4991 CLASS(fd, f)(attr->userns_fd);
4992 if (fd_empty(f))
4993 return -EBADF;
4994
4995 if (!proc_ns_file(fd_file(f)))
4996 return -EINVAL;
4997
4998 ns = get_proc_ns(file_inode(fd_file(f)));
4999 if (ns->ops->type != CLONE_NEWUSER)
5000 return -EINVAL;
5001
5002 /*
5003 * The initial idmapping cannot be used to create an idmapped
5004 * mount. We use the initial idmapping as an indicator of a mount
5005 * that is not idmapped. It can simply be passed into helpers that
5006 * are aware of idmapped mounts as a convenient shortcut. A user
5007 * can just create a dedicated identity mapping to achieve the same
5008 * result.
5009 */
5010 mnt_userns = container_of(ns, struct user_namespace, ns);
5011 if (mnt_userns == &init_user_ns)
5012 return -EPERM;
5013
5014 /* We're not controlling the target namespace. */
5015 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
5016 return -EPERM;
5017
5018 kattr->mnt_userns = get_user_ns(mnt_userns);
5019 return 0;
5020 }
5021
build_mount_kattr(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr)5022 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
5023 struct mount_kattr *kattr)
5024 {
5025 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
5026 return -EINVAL;
5027 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
5028 return -EINVAL;
5029 kattr->propagation = attr->propagation;
5030
5031 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
5032 return -EINVAL;
5033
5034 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
5035 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
5036
5037 /*
5038 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
5039 * users wanting to transition to a different atime setting cannot
5040 * simply specify the atime setting in @attr_set, but must also
5041 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
5042 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
5043 * @attr_clr and that @attr_set can't have any atime bits set if
5044 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
5045 */
5046 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
5047 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
5048 return -EINVAL;
5049
5050 /*
5051 * Clear all previous time settings as they are mutually
5052 * exclusive.
5053 */
5054 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
5055 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
5056 case MOUNT_ATTR_RELATIME:
5057 kattr->attr_set |= MNT_RELATIME;
5058 break;
5059 case MOUNT_ATTR_NOATIME:
5060 kattr->attr_set |= MNT_NOATIME;
5061 break;
5062 case MOUNT_ATTR_STRICTATIME:
5063 break;
5064 default:
5065 return -EINVAL;
5066 }
5067 } else {
5068 if (attr->attr_set & MOUNT_ATTR__ATIME)
5069 return -EINVAL;
5070 }
5071
5072 return build_mount_idmapped(attr, usize, kattr);
5073 }
5074
finish_mount_kattr(struct mount_kattr * kattr)5075 static void finish_mount_kattr(struct mount_kattr *kattr)
5076 {
5077 if (kattr->mnt_userns) {
5078 put_user_ns(kattr->mnt_userns);
5079 kattr->mnt_userns = NULL;
5080 }
5081
5082 if (kattr->mnt_idmap)
5083 mnt_idmap_put(kattr->mnt_idmap);
5084 }
5085
wants_mount_setattr(struct mount_attr __user * uattr,size_t usize,struct mount_kattr * kattr)5086 static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize,
5087 struct mount_kattr *kattr)
5088 {
5089 int ret;
5090 struct mount_attr attr;
5091
5092 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
5093
5094 if (unlikely(usize > PAGE_SIZE))
5095 return -E2BIG;
5096 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
5097 return -EINVAL;
5098
5099 if (!may_mount())
5100 return -EPERM;
5101
5102 ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
5103 if (ret)
5104 return ret;
5105
5106 /* Don't bother walking through the mounts if this is a nop. */
5107 if (attr.attr_set == 0 &&
5108 attr.attr_clr == 0 &&
5109 attr.propagation == 0)
5110 return 0; /* Tell caller to not bother. */
5111
5112 ret = build_mount_kattr(&attr, usize, kattr);
5113 if (ret < 0)
5114 return ret;
5115
5116 return 1;
5117 }
5118
SYSCALL_DEFINE5(mount_setattr,int,dfd,const char __user *,path,unsigned int,flags,struct mount_attr __user *,uattr,size_t,usize)5119 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
5120 unsigned int, flags, struct mount_attr __user *, uattr,
5121 size_t, usize)
5122 {
5123 int err;
5124 struct path target;
5125 struct mount_kattr kattr;
5126 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
5127
5128 if (flags & ~(AT_EMPTY_PATH |
5129 AT_RECURSIVE |
5130 AT_SYMLINK_NOFOLLOW |
5131 AT_NO_AUTOMOUNT))
5132 return -EINVAL;
5133
5134 if (flags & AT_NO_AUTOMOUNT)
5135 lookup_flags &= ~LOOKUP_AUTOMOUNT;
5136 if (flags & AT_SYMLINK_NOFOLLOW)
5137 lookup_flags &= ~LOOKUP_FOLLOW;
5138 if (flags & AT_EMPTY_PATH)
5139 lookup_flags |= LOOKUP_EMPTY;
5140
5141 kattr = (struct mount_kattr) {
5142 .lookup_flags = lookup_flags,
5143 };
5144
5145 if (flags & AT_RECURSIVE)
5146 kattr.kflags |= MOUNT_KATTR_RECURSE;
5147
5148 err = wants_mount_setattr(uattr, usize, &kattr);
5149 if (err <= 0)
5150 return err;
5151
5152 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
5153 if (!err) {
5154 err = do_mount_setattr(&target, &kattr);
5155 path_put(&target);
5156 }
5157 finish_mount_kattr(&kattr);
5158 return err;
5159 }
5160
SYSCALL_DEFINE5(open_tree_attr,int,dfd,const char __user *,filename,unsigned,flags,struct mount_attr __user *,uattr,size_t,usize)5161 SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename,
5162 unsigned, flags, struct mount_attr __user *, uattr,
5163 size_t, usize)
5164 {
5165 struct file __free(fput) *file = NULL;
5166 int fd;
5167
5168 if (!uattr && usize)
5169 return -EINVAL;
5170
5171 file = vfs_open_tree(dfd, filename, flags);
5172 if (IS_ERR(file))
5173 return PTR_ERR(file);
5174
5175 if (uattr) {
5176 int ret;
5177 struct mount_kattr kattr = {};
5178
5179 kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE;
5180 if (flags & AT_RECURSIVE)
5181 kattr.kflags |= MOUNT_KATTR_RECURSE;
5182
5183 ret = wants_mount_setattr(uattr, usize, &kattr);
5184 if (ret > 0) {
5185 ret = do_mount_setattr(&file->f_path, &kattr);
5186 finish_mount_kattr(&kattr);
5187 }
5188 if (ret)
5189 return ret;
5190 }
5191
5192 fd = get_unused_fd_flags(flags & O_CLOEXEC);
5193 if (fd < 0)
5194 return fd;
5195
5196 fd_install(fd, no_free_ptr(file));
5197 return fd;
5198 }
5199
show_path(struct seq_file * m,struct dentry * root)5200 int show_path(struct seq_file *m, struct dentry *root)
5201 {
5202 if (root->d_sb->s_op->show_path)
5203 return root->d_sb->s_op->show_path(m, root);
5204
5205 seq_dentry(m, root, " \t\n\\");
5206 return 0;
5207 }
5208
lookup_mnt_in_ns(u64 id,struct mnt_namespace * ns)5209 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
5210 {
5211 struct mount *mnt = mnt_find_id_at(ns, id);
5212
5213 if (!mnt || mnt->mnt_id_unique != id)
5214 return NULL;
5215
5216 return &mnt->mnt;
5217 }
5218
5219 struct kstatmount {
5220 struct statmount __user *buf;
5221 size_t bufsize;
5222 struct vfsmount *mnt;
5223 struct mnt_idmap *idmap;
5224 u64 mask;
5225 struct path root;
5226 struct seq_file seq;
5227
5228 /* Must be last --ends in a flexible-array member. */
5229 struct statmount sm;
5230 };
5231
mnt_to_attr_flags(struct vfsmount * mnt)5232 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
5233 {
5234 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
5235 u64 attr_flags = 0;
5236
5237 if (mnt_flags & MNT_READONLY)
5238 attr_flags |= MOUNT_ATTR_RDONLY;
5239 if (mnt_flags & MNT_NOSUID)
5240 attr_flags |= MOUNT_ATTR_NOSUID;
5241 if (mnt_flags & MNT_NODEV)
5242 attr_flags |= MOUNT_ATTR_NODEV;
5243 if (mnt_flags & MNT_NOEXEC)
5244 attr_flags |= MOUNT_ATTR_NOEXEC;
5245 if (mnt_flags & MNT_NODIRATIME)
5246 attr_flags |= MOUNT_ATTR_NODIRATIME;
5247 if (mnt_flags & MNT_NOSYMFOLLOW)
5248 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
5249
5250 if (mnt_flags & MNT_NOATIME)
5251 attr_flags |= MOUNT_ATTR_NOATIME;
5252 else if (mnt_flags & MNT_RELATIME)
5253 attr_flags |= MOUNT_ATTR_RELATIME;
5254 else
5255 attr_flags |= MOUNT_ATTR_STRICTATIME;
5256
5257 if (is_idmapped_mnt(mnt))
5258 attr_flags |= MOUNT_ATTR_IDMAP;
5259
5260 return attr_flags;
5261 }
5262
mnt_to_propagation_flags(struct mount * m)5263 static u64 mnt_to_propagation_flags(struct mount *m)
5264 {
5265 u64 propagation = 0;
5266
5267 if (IS_MNT_SHARED(m))
5268 propagation |= MS_SHARED;
5269 if (IS_MNT_SLAVE(m))
5270 propagation |= MS_SLAVE;
5271 if (IS_MNT_UNBINDABLE(m))
5272 propagation |= MS_UNBINDABLE;
5273 if (!propagation)
5274 propagation |= MS_PRIVATE;
5275
5276 return propagation;
5277 }
5278
statmount_sb_basic(struct kstatmount * s)5279 static void statmount_sb_basic(struct kstatmount *s)
5280 {
5281 struct super_block *sb = s->mnt->mnt_sb;
5282
5283 s->sm.mask |= STATMOUNT_SB_BASIC;
5284 s->sm.sb_dev_major = MAJOR(sb->s_dev);
5285 s->sm.sb_dev_minor = MINOR(sb->s_dev);
5286 s->sm.sb_magic = sb->s_magic;
5287 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
5288 }
5289
statmount_mnt_basic(struct kstatmount * s)5290 static void statmount_mnt_basic(struct kstatmount *s)
5291 {
5292 struct mount *m = real_mount(s->mnt);
5293
5294 s->sm.mask |= STATMOUNT_MNT_BASIC;
5295 s->sm.mnt_id = m->mnt_id_unique;
5296 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
5297 s->sm.mnt_id_old = m->mnt_id;
5298 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
5299 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
5300 s->sm.mnt_propagation = mnt_to_propagation_flags(m);
5301 s->sm.mnt_peer_group = m->mnt_group_id;
5302 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
5303 }
5304
statmount_propagate_from(struct kstatmount * s)5305 static void statmount_propagate_from(struct kstatmount *s)
5306 {
5307 struct mount *m = real_mount(s->mnt);
5308
5309 s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
5310 if (IS_MNT_SLAVE(m))
5311 s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root);
5312 }
5313
statmount_mnt_root(struct kstatmount * s,struct seq_file * seq)5314 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
5315 {
5316 int ret;
5317 size_t start = seq->count;
5318
5319 ret = show_path(seq, s->mnt->mnt_root);
5320 if (ret)
5321 return ret;
5322
5323 if (unlikely(seq_has_overflowed(seq)))
5324 return -EAGAIN;
5325
5326 /*
5327 * Unescape the result. It would be better if supplied string was not
5328 * escaped in the first place, but that's a pretty invasive change.
5329 */
5330 seq->buf[seq->count] = '\0';
5331 seq->count = start;
5332 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5333 return 0;
5334 }
5335
statmount_mnt_point(struct kstatmount * s,struct seq_file * seq)5336 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
5337 {
5338 struct vfsmount *mnt = s->mnt;
5339 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
5340 int err;
5341
5342 err = seq_path_root(seq, &mnt_path, &s->root, "");
5343 return err == SEQ_SKIP ? 0 : err;
5344 }
5345
statmount_fs_type(struct kstatmount * s,struct seq_file * seq)5346 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5347 {
5348 struct super_block *sb = s->mnt->mnt_sb;
5349
5350 seq_puts(seq, sb->s_type->name);
5351 return 0;
5352 }
5353
statmount_fs_subtype(struct kstatmount * s,struct seq_file * seq)5354 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
5355 {
5356 struct super_block *sb = s->mnt->mnt_sb;
5357
5358 if (sb->s_subtype)
5359 seq_puts(seq, sb->s_subtype);
5360 }
5361
statmount_sb_source(struct kstatmount * s,struct seq_file * seq)5362 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5363 {
5364 struct super_block *sb = s->mnt->mnt_sb;
5365 struct mount *r = real_mount(s->mnt);
5366
5367 if (sb->s_op->show_devname) {
5368 size_t start = seq->count;
5369 int ret;
5370
5371 ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5372 if (ret)
5373 return ret;
5374
5375 if (unlikely(seq_has_overflowed(seq)))
5376 return -EAGAIN;
5377
5378 /* Unescape the result */
5379 seq->buf[seq->count] = '\0';
5380 seq->count = start;
5381 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5382 } else {
5383 seq_puts(seq, r->mnt_devname);
5384 }
5385 return 0;
5386 }
5387
statmount_mnt_ns_id(struct kstatmount * s,struct mnt_namespace * ns)5388 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5389 {
5390 s->sm.mask |= STATMOUNT_MNT_NS_ID;
5391 s->sm.mnt_ns_id = ns->seq;
5392 }
5393
statmount_mnt_opts(struct kstatmount * s,struct seq_file * seq)5394 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5395 {
5396 struct vfsmount *mnt = s->mnt;
5397 struct super_block *sb = mnt->mnt_sb;
5398 size_t start = seq->count;
5399 int err;
5400
5401 err = security_sb_show_options(seq, sb);
5402 if (err)
5403 return err;
5404
5405 if (sb->s_op->show_options) {
5406 err = sb->s_op->show_options(seq, mnt->mnt_root);
5407 if (err)
5408 return err;
5409 }
5410
5411 if (unlikely(seq_has_overflowed(seq)))
5412 return -EAGAIN;
5413
5414 if (seq->count == start)
5415 return 0;
5416
5417 /* skip leading comma */
5418 memmove(seq->buf + start, seq->buf + start + 1,
5419 seq->count - start - 1);
5420 seq->count--;
5421
5422 return 0;
5423 }
5424
statmount_opt_process(struct seq_file * seq,size_t start)5425 static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5426 {
5427 char *buf_end, *opt_end, *src, *dst;
5428 int count = 0;
5429
5430 if (unlikely(seq_has_overflowed(seq)))
5431 return -EAGAIN;
5432
5433 buf_end = seq->buf + seq->count;
5434 dst = seq->buf + start;
5435 src = dst + 1; /* skip initial comma */
5436
5437 if (src >= buf_end) {
5438 seq->count = start;
5439 return 0;
5440 }
5441
5442 *buf_end = '\0';
5443 for (; src < buf_end; src = opt_end + 1) {
5444 opt_end = strchrnul(src, ',');
5445 *opt_end = '\0';
5446 dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5447 if (WARN_ON_ONCE(++count == INT_MAX))
5448 return -EOVERFLOW;
5449 }
5450 seq->count = dst - 1 - seq->buf;
5451 return count;
5452 }
5453
statmount_opt_array(struct kstatmount * s,struct seq_file * seq)5454 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5455 {
5456 struct vfsmount *mnt = s->mnt;
5457 struct super_block *sb = mnt->mnt_sb;
5458 size_t start = seq->count;
5459 int err;
5460
5461 if (!sb->s_op->show_options)
5462 return 0;
5463
5464 err = sb->s_op->show_options(seq, mnt->mnt_root);
5465 if (err)
5466 return err;
5467
5468 err = statmount_opt_process(seq, start);
5469 if (err < 0)
5470 return err;
5471
5472 s->sm.opt_num = err;
5473 return 0;
5474 }
5475
statmount_opt_sec_array(struct kstatmount * s,struct seq_file * seq)5476 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5477 {
5478 struct vfsmount *mnt = s->mnt;
5479 struct super_block *sb = mnt->mnt_sb;
5480 size_t start = seq->count;
5481 int err;
5482
5483 err = security_sb_show_options(seq, sb);
5484 if (err)
5485 return err;
5486
5487 err = statmount_opt_process(seq, start);
5488 if (err < 0)
5489 return err;
5490
5491 s->sm.opt_sec_num = err;
5492 return 0;
5493 }
5494
statmount_mnt_uidmap(struct kstatmount * s,struct seq_file * seq)5495 static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq)
5496 {
5497 int ret;
5498
5499 ret = statmount_mnt_idmap(s->idmap, seq, true);
5500 if (ret < 0)
5501 return ret;
5502
5503 s->sm.mnt_uidmap_num = ret;
5504 /*
5505 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid
5506 * mappings. This allows userspace to distinguish between a
5507 * non-idmapped mount and an idmapped mount where none of the
5508 * individual mappings are valid in the caller's idmapping.
5509 */
5510 if (is_valid_mnt_idmap(s->idmap))
5511 s->sm.mask |= STATMOUNT_MNT_UIDMAP;
5512 return 0;
5513 }
5514
statmount_mnt_gidmap(struct kstatmount * s,struct seq_file * seq)5515 static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq)
5516 {
5517 int ret;
5518
5519 ret = statmount_mnt_idmap(s->idmap, seq, false);
5520 if (ret < 0)
5521 return ret;
5522
5523 s->sm.mnt_gidmap_num = ret;
5524 /*
5525 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid
5526 * mappings. This allows userspace to distinguish between a
5527 * non-idmapped mount and an idmapped mount where none of the
5528 * individual mappings are valid in the caller's idmapping.
5529 */
5530 if (is_valid_mnt_idmap(s->idmap))
5531 s->sm.mask |= STATMOUNT_MNT_GIDMAP;
5532 return 0;
5533 }
5534
statmount_string(struct kstatmount * s,u64 flag)5535 static int statmount_string(struct kstatmount *s, u64 flag)
5536 {
5537 int ret = 0;
5538 size_t kbufsize;
5539 struct seq_file *seq = &s->seq;
5540 struct statmount *sm = &s->sm;
5541 u32 start, *offp;
5542
5543 /* Reserve an empty string at the beginning for any unset offsets */
5544 if (!seq->count)
5545 seq_putc(seq, 0);
5546
5547 start = seq->count;
5548
5549 switch (flag) {
5550 case STATMOUNT_FS_TYPE:
5551 offp = &sm->fs_type;
5552 ret = statmount_fs_type(s, seq);
5553 break;
5554 case STATMOUNT_MNT_ROOT:
5555 offp = &sm->mnt_root;
5556 ret = statmount_mnt_root(s, seq);
5557 break;
5558 case STATMOUNT_MNT_POINT:
5559 offp = &sm->mnt_point;
5560 ret = statmount_mnt_point(s, seq);
5561 break;
5562 case STATMOUNT_MNT_OPTS:
5563 offp = &sm->mnt_opts;
5564 ret = statmount_mnt_opts(s, seq);
5565 break;
5566 case STATMOUNT_OPT_ARRAY:
5567 offp = &sm->opt_array;
5568 ret = statmount_opt_array(s, seq);
5569 break;
5570 case STATMOUNT_OPT_SEC_ARRAY:
5571 offp = &sm->opt_sec_array;
5572 ret = statmount_opt_sec_array(s, seq);
5573 break;
5574 case STATMOUNT_FS_SUBTYPE:
5575 offp = &sm->fs_subtype;
5576 statmount_fs_subtype(s, seq);
5577 break;
5578 case STATMOUNT_SB_SOURCE:
5579 offp = &sm->sb_source;
5580 ret = statmount_sb_source(s, seq);
5581 break;
5582 case STATMOUNT_MNT_UIDMAP:
5583 sm->mnt_uidmap = start;
5584 ret = statmount_mnt_uidmap(s, seq);
5585 break;
5586 case STATMOUNT_MNT_GIDMAP:
5587 sm->mnt_gidmap = start;
5588 ret = statmount_mnt_gidmap(s, seq);
5589 break;
5590 default:
5591 WARN_ON_ONCE(true);
5592 return -EINVAL;
5593 }
5594
5595 /*
5596 * If nothing was emitted, return to avoid setting the flag
5597 * and terminating the buffer.
5598 */
5599 if (seq->count == start)
5600 return ret;
5601 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5602 return -EOVERFLOW;
5603 if (kbufsize >= s->bufsize)
5604 return -EOVERFLOW;
5605
5606 /* signal a retry */
5607 if (unlikely(seq_has_overflowed(seq)))
5608 return -EAGAIN;
5609
5610 if (ret)
5611 return ret;
5612
5613 seq->buf[seq->count++] = '\0';
5614 sm->mask |= flag;
5615 *offp = start;
5616 return 0;
5617 }
5618
copy_statmount_to_user(struct kstatmount * s)5619 static int copy_statmount_to_user(struct kstatmount *s)
5620 {
5621 struct statmount *sm = &s->sm;
5622 struct seq_file *seq = &s->seq;
5623 char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5624 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5625
5626 if (seq->count && copy_to_user(str, seq->buf, seq->count))
5627 return -EFAULT;
5628
5629 /* Return the number of bytes copied to the buffer */
5630 sm->size = copysize + seq->count;
5631 if (copy_to_user(s->buf, sm, copysize))
5632 return -EFAULT;
5633
5634 return 0;
5635 }
5636
listmnt_next(struct mount * curr,bool reverse)5637 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5638 {
5639 struct rb_node *node;
5640
5641 if (reverse)
5642 node = rb_prev(&curr->mnt_node);
5643 else
5644 node = rb_next(&curr->mnt_node);
5645
5646 return node_to_mount(node);
5647 }
5648
grab_requested_root(struct mnt_namespace * ns,struct path * root)5649 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5650 {
5651 struct mount *first, *child;
5652
5653 rwsem_assert_held(&namespace_sem);
5654
5655 /* We're looking at our own ns, just use get_fs_root. */
5656 if (ns == current->nsproxy->mnt_ns) {
5657 get_fs_root(current->fs, root);
5658 return 0;
5659 }
5660
5661 /*
5662 * We have to find the first mount in our ns and use that, however it
5663 * may not exist, so handle that properly.
5664 */
5665 if (mnt_ns_empty(ns))
5666 return -ENOENT;
5667
5668 first = child = ns->root;
5669 for (;;) {
5670 child = listmnt_next(child, false);
5671 if (!child)
5672 return -ENOENT;
5673 if (child->mnt_parent == first)
5674 break;
5675 }
5676
5677 root->mnt = mntget(&child->mnt);
5678 root->dentry = dget(root->mnt->mnt_root);
5679 return 0;
5680 }
5681
5682 /* This must be updated whenever a new flag is added */
5683 #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \
5684 STATMOUNT_MNT_BASIC | \
5685 STATMOUNT_PROPAGATE_FROM | \
5686 STATMOUNT_MNT_ROOT | \
5687 STATMOUNT_MNT_POINT | \
5688 STATMOUNT_FS_TYPE | \
5689 STATMOUNT_MNT_NS_ID | \
5690 STATMOUNT_MNT_OPTS | \
5691 STATMOUNT_FS_SUBTYPE | \
5692 STATMOUNT_SB_SOURCE | \
5693 STATMOUNT_OPT_ARRAY | \
5694 STATMOUNT_OPT_SEC_ARRAY | \
5695 STATMOUNT_SUPPORTED_MASK | \
5696 STATMOUNT_MNT_UIDMAP | \
5697 STATMOUNT_MNT_GIDMAP)
5698
do_statmount(struct kstatmount * s,u64 mnt_id,u64 mnt_ns_id,struct mnt_namespace * ns)5699 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5700 struct mnt_namespace *ns)
5701 {
5702 struct path root __free(path_put) = {};
5703 struct mount *m;
5704 int err;
5705
5706 /* Has the namespace already been emptied? */
5707 if (mnt_ns_id && mnt_ns_empty(ns))
5708 return -ENOENT;
5709
5710 s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5711 if (!s->mnt)
5712 return -ENOENT;
5713
5714 err = grab_requested_root(ns, &root);
5715 if (err)
5716 return err;
5717
5718 /*
5719 * Don't trigger audit denials. We just want to determine what
5720 * mounts to show users.
5721 */
5722 m = real_mount(s->mnt);
5723 if (!is_path_reachable(m, m->mnt.mnt_root, &root) &&
5724 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5725 return -EPERM;
5726
5727 err = security_sb_statfs(s->mnt->mnt_root);
5728 if (err)
5729 return err;
5730
5731 s->root = root;
5732
5733 /*
5734 * Note that mount properties in mnt->mnt_flags, mnt->mnt_idmap
5735 * can change concurrently as we only hold the read-side of the
5736 * namespace semaphore and mount properties may change with only
5737 * the mount lock held.
5738 *
5739 * We could sample the mount lock sequence counter to detect
5740 * those changes and retry. But it's not worth it. Worst that
5741 * happens is that the mnt->mnt_idmap pointer is already changed
5742 * while mnt->mnt_flags isn't or vica versa. So what.
5743 *
5744 * Both mnt->mnt_flags and mnt->mnt_idmap are set and retrieved
5745 * via READ_ONCE()/WRITE_ONCE() and guard against theoretical
5746 * torn read/write. That's all we care about right now.
5747 */
5748 s->idmap = mnt_idmap(s->mnt);
5749 if (s->mask & STATMOUNT_MNT_BASIC)
5750 statmount_mnt_basic(s);
5751
5752 if (s->mask & STATMOUNT_SB_BASIC)
5753 statmount_sb_basic(s);
5754
5755 if (s->mask & STATMOUNT_PROPAGATE_FROM)
5756 statmount_propagate_from(s);
5757
5758 if (s->mask & STATMOUNT_FS_TYPE)
5759 err = statmount_string(s, STATMOUNT_FS_TYPE);
5760
5761 if (!err && s->mask & STATMOUNT_MNT_ROOT)
5762 err = statmount_string(s, STATMOUNT_MNT_ROOT);
5763
5764 if (!err && s->mask & STATMOUNT_MNT_POINT)
5765 err = statmount_string(s, STATMOUNT_MNT_POINT);
5766
5767 if (!err && s->mask & STATMOUNT_MNT_OPTS)
5768 err = statmount_string(s, STATMOUNT_MNT_OPTS);
5769
5770 if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5771 err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5772
5773 if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5774 err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5775
5776 if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5777 err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5778
5779 if (!err && s->mask & STATMOUNT_SB_SOURCE)
5780 err = statmount_string(s, STATMOUNT_SB_SOURCE);
5781
5782 if (!err && s->mask & STATMOUNT_MNT_UIDMAP)
5783 err = statmount_string(s, STATMOUNT_MNT_UIDMAP);
5784
5785 if (!err && s->mask & STATMOUNT_MNT_GIDMAP)
5786 err = statmount_string(s, STATMOUNT_MNT_GIDMAP);
5787
5788 if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5789 statmount_mnt_ns_id(s, ns);
5790
5791 if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) {
5792 s->sm.mask |= STATMOUNT_SUPPORTED_MASK;
5793 s->sm.supported_mask = STATMOUNT_SUPPORTED;
5794 }
5795
5796 if (err)
5797 return err;
5798
5799 /* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */
5800 WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask);
5801
5802 return 0;
5803 }
5804
retry_statmount(const long ret,size_t * seq_size)5805 static inline bool retry_statmount(const long ret, size_t *seq_size)
5806 {
5807 if (likely(ret != -EAGAIN))
5808 return false;
5809 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5810 return false;
5811 if (unlikely(*seq_size > MAX_RW_COUNT))
5812 return false;
5813 return true;
5814 }
5815
5816 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5817 STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5818 STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5819 STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \
5820 STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP)
5821
prepare_kstatmount(struct kstatmount * ks,struct mnt_id_req * kreq,struct statmount __user * buf,size_t bufsize,size_t seq_size)5822 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5823 struct statmount __user *buf, size_t bufsize,
5824 size_t seq_size)
5825 {
5826 if (!access_ok(buf, bufsize))
5827 return -EFAULT;
5828
5829 memset(ks, 0, sizeof(*ks));
5830 ks->mask = kreq->param;
5831 ks->buf = buf;
5832 ks->bufsize = bufsize;
5833
5834 if (ks->mask & STATMOUNT_STRING_REQ) {
5835 if (bufsize == sizeof(ks->sm))
5836 return -EOVERFLOW;
5837
5838 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5839 if (!ks->seq.buf)
5840 return -ENOMEM;
5841
5842 ks->seq.size = seq_size;
5843 }
5844
5845 return 0;
5846 }
5847
copy_mnt_id_req(const struct mnt_id_req __user * req,struct mnt_id_req * kreq)5848 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5849 struct mnt_id_req *kreq)
5850 {
5851 int ret;
5852 size_t usize;
5853
5854 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5855
5856 ret = get_user(usize, &req->size);
5857 if (ret)
5858 return -EFAULT;
5859 if (unlikely(usize > PAGE_SIZE))
5860 return -E2BIG;
5861 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5862 return -EINVAL;
5863 memset(kreq, 0, sizeof(*kreq));
5864 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5865 if (ret)
5866 return ret;
5867 if (kreq->spare != 0)
5868 return -EINVAL;
5869 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5870 if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5871 return -EINVAL;
5872 return 0;
5873 }
5874
5875 /*
5876 * If the user requested a specific mount namespace id, look that up and return
5877 * that, or if not simply grab a passive reference on our mount namespace and
5878 * return that.
5879 */
grab_requested_mnt_ns(const struct mnt_id_req * kreq)5880 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5881 {
5882 struct mnt_namespace *mnt_ns;
5883
5884 if (kreq->mnt_ns_id && kreq->spare)
5885 return ERR_PTR(-EINVAL);
5886
5887 if (kreq->mnt_ns_id)
5888 return lookup_mnt_ns(kreq->mnt_ns_id);
5889
5890 if (kreq->spare) {
5891 struct ns_common *ns;
5892
5893 CLASS(fd, f)(kreq->spare);
5894 if (fd_empty(f))
5895 return ERR_PTR(-EBADF);
5896
5897 if (!proc_ns_file(fd_file(f)))
5898 return ERR_PTR(-EINVAL);
5899
5900 ns = get_proc_ns(file_inode(fd_file(f)));
5901 if (ns->ops->type != CLONE_NEWNS)
5902 return ERR_PTR(-EINVAL);
5903
5904 mnt_ns = to_mnt_ns(ns);
5905 } else {
5906 mnt_ns = current->nsproxy->mnt_ns;
5907 }
5908
5909 refcount_inc(&mnt_ns->passive);
5910 return mnt_ns;
5911 }
5912
SYSCALL_DEFINE4(statmount,const struct mnt_id_req __user *,req,struct statmount __user *,buf,size_t,bufsize,unsigned int,flags)5913 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5914 struct statmount __user *, buf, size_t, bufsize,
5915 unsigned int, flags)
5916 {
5917 struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5918 struct kstatmount *ks __free(kfree) = NULL;
5919 struct mnt_id_req kreq;
5920 /* We currently support retrieval of 3 strings. */
5921 size_t seq_size = 3 * PATH_MAX;
5922 int ret;
5923
5924 if (flags)
5925 return -EINVAL;
5926
5927 ret = copy_mnt_id_req(req, &kreq);
5928 if (ret)
5929 return ret;
5930
5931 ns = grab_requested_mnt_ns(&kreq);
5932 if (!ns)
5933 return -ENOENT;
5934
5935 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5936 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5937 return -ENOENT;
5938
5939 ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5940 if (!ks)
5941 return -ENOMEM;
5942
5943 retry:
5944 ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5945 if (ret)
5946 return ret;
5947
5948 scoped_guard(rwsem_read, &namespace_sem)
5949 ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5950
5951 if (!ret)
5952 ret = copy_statmount_to_user(ks);
5953 kvfree(ks->seq.buf);
5954 if (retry_statmount(ret, &seq_size))
5955 goto retry;
5956 return ret;
5957 }
5958
do_listmount(struct mnt_namespace * ns,u64 mnt_parent_id,u64 last_mnt_id,u64 * mnt_ids,size_t nr_mnt_ids,bool reverse)5959 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id,
5960 u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids,
5961 bool reverse)
5962 {
5963 struct path root __free(path_put) = {};
5964 struct path orig;
5965 struct mount *r, *first;
5966 ssize_t ret;
5967
5968 rwsem_assert_held(&namespace_sem);
5969
5970 ret = grab_requested_root(ns, &root);
5971 if (ret)
5972 return ret;
5973
5974 if (mnt_parent_id == LSMT_ROOT) {
5975 orig = root;
5976 } else {
5977 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5978 if (!orig.mnt)
5979 return -ENOENT;
5980 orig.dentry = orig.mnt->mnt_root;
5981 }
5982
5983 /*
5984 * Don't trigger audit denials. We just want to determine what
5985 * mounts to show users.
5986 */
5987 if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) &&
5988 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5989 return -EPERM;
5990
5991 ret = security_sb_statfs(orig.dentry);
5992 if (ret)
5993 return ret;
5994
5995 if (!last_mnt_id) {
5996 if (reverse)
5997 first = node_to_mount(ns->mnt_last_node);
5998 else
5999 first = node_to_mount(ns->mnt_first_node);
6000 } else {
6001 if (reverse)
6002 first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
6003 else
6004 first = mnt_find_id_at(ns, last_mnt_id + 1);
6005 }
6006
6007 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
6008 if (r->mnt_id_unique == mnt_parent_id)
6009 continue;
6010 if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
6011 continue;
6012 *mnt_ids = r->mnt_id_unique;
6013 mnt_ids++;
6014 nr_mnt_ids--;
6015 ret++;
6016 }
6017 return ret;
6018 }
6019
SYSCALL_DEFINE4(listmount,const struct mnt_id_req __user *,req,u64 __user *,mnt_ids,size_t,nr_mnt_ids,unsigned int,flags)6020 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
6021 u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
6022 {
6023 u64 *kmnt_ids __free(kvfree) = NULL;
6024 const size_t maxcount = 1000000;
6025 struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
6026 struct mnt_id_req kreq;
6027 u64 last_mnt_id;
6028 ssize_t ret;
6029
6030 if (flags & ~LISTMOUNT_REVERSE)
6031 return -EINVAL;
6032
6033 /*
6034 * If the mount namespace really has more than 1 million mounts the
6035 * caller must iterate over the mount namespace (and reconsider their
6036 * system design...).
6037 */
6038 if (unlikely(nr_mnt_ids > maxcount))
6039 return -EOVERFLOW;
6040
6041 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
6042 return -EFAULT;
6043
6044 ret = copy_mnt_id_req(req, &kreq);
6045 if (ret)
6046 return ret;
6047
6048 last_mnt_id = kreq.param;
6049 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
6050 if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
6051 return -EINVAL;
6052
6053 kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids),
6054 GFP_KERNEL_ACCOUNT);
6055 if (!kmnt_ids)
6056 return -ENOMEM;
6057
6058 ns = grab_requested_mnt_ns(&kreq);
6059 if (!ns)
6060 return -ENOENT;
6061
6062 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
6063 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
6064 return -ENOENT;
6065
6066 /*
6067 * We only need to guard against mount topology changes as
6068 * listmount() doesn't care about any mount properties.
6069 */
6070 scoped_guard(rwsem_read, &namespace_sem)
6071 ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids,
6072 nr_mnt_ids, (flags & LISTMOUNT_REVERSE));
6073 if (ret <= 0)
6074 return ret;
6075
6076 if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids)))
6077 return -EFAULT;
6078
6079 return ret;
6080 }
6081
init_mount_tree(void)6082 static void __init init_mount_tree(void)
6083 {
6084 struct vfsmount *mnt;
6085 struct mount *m;
6086 struct mnt_namespace *ns;
6087 struct path root;
6088
6089 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
6090 if (IS_ERR(mnt))
6091 panic("Can't create rootfs");
6092
6093 ns = alloc_mnt_ns(&init_user_ns, true);
6094 if (IS_ERR(ns))
6095 panic("Can't allocate initial namespace");
6096 ns->seq = atomic64_inc_return(&mnt_ns_seq);
6097 ns->ns.inum = PROC_MNT_INIT_INO;
6098 m = real_mount(mnt);
6099 ns->root = m;
6100 ns->nr_mounts = 1;
6101 mnt_add_to_ns(ns, m);
6102 init_task.nsproxy->mnt_ns = ns;
6103 get_mnt_ns(ns);
6104
6105 root.mnt = mnt;
6106 root.dentry = mnt->mnt_root;
6107
6108 set_fs_pwd(current->fs, &root);
6109 set_fs_root(current->fs, &root);
6110
6111 mnt_ns_tree_add(ns);
6112 }
6113
mnt_init(void)6114 void __init mnt_init(void)
6115 {
6116 int err;
6117
6118 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
6119 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
6120
6121 mount_hashtable = alloc_large_system_hash("Mount-cache",
6122 sizeof(struct hlist_head),
6123 mhash_entries, 19,
6124 HASH_ZERO,
6125 &m_hash_shift, &m_hash_mask, 0, 0);
6126 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
6127 sizeof(struct hlist_head),
6128 mphash_entries, 19,
6129 HASH_ZERO,
6130 &mp_hash_shift, &mp_hash_mask, 0, 0);
6131
6132 if (!mount_hashtable || !mountpoint_hashtable)
6133 panic("Failed to allocate mount hash table\n");
6134
6135 kernfs_init();
6136
6137 err = sysfs_init();
6138 if (err)
6139 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
6140 __func__, err);
6141 fs_kobj = kobject_create_and_add("fs", NULL);
6142 if (!fs_kobj)
6143 printk(KERN_WARNING "%s: kobj create error\n", __func__);
6144 shmem_init();
6145 init_rootfs();
6146 init_mount_tree();
6147 }
6148
put_mnt_ns(struct mnt_namespace * ns)6149 void put_mnt_ns(struct mnt_namespace *ns)
6150 {
6151 if (!refcount_dec_and_test(&ns->ns.count))
6152 return;
6153 namespace_lock();
6154 emptied_ns = ns;
6155 lock_mount_hash();
6156 umount_tree(ns->root, 0);
6157 unlock_mount_hash();
6158 namespace_unlock();
6159 }
6160
kern_mount(struct file_system_type * type)6161 struct vfsmount *kern_mount(struct file_system_type *type)
6162 {
6163 struct vfsmount *mnt;
6164 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
6165 if (!IS_ERR(mnt)) {
6166 /*
6167 * it is a longterm mount, don't release mnt until
6168 * we unmount before file sys is unregistered
6169 */
6170 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
6171 }
6172 return mnt;
6173 }
6174 EXPORT_SYMBOL_GPL(kern_mount);
6175
kern_unmount(struct vfsmount * mnt)6176 void kern_unmount(struct vfsmount *mnt)
6177 {
6178 /* release long term mount so mount point can be released */
6179 if (!IS_ERR(mnt)) {
6180 mnt_make_shortterm(mnt);
6181 synchronize_rcu(); /* yecchhh... */
6182 mntput(mnt);
6183 }
6184 }
6185 EXPORT_SYMBOL(kern_unmount);
6186
kern_unmount_array(struct vfsmount * mnt[],unsigned int num)6187 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
6188 {
6189 unsigned int i;
6190
6191 for (i = 0; i < num; i++)
6192 mnt_make_shortterm(mnt[i]);
6193 synchronize_rcu_expedited();
6194 for (i = 0; i < num; i++)
6195 mntput(mnt[i]);
6196 }
6197 EXPORT_SYMBOL(kern_unmount_array);
6198
our_mnt(struct vfsmount * mnt)6199 bool our_mnt(struct vfsmount *mnt)
6200 {
6201 return check_mnt(real_mount(mnt));
6202 }
6203
current_chrooted(void)6204 bool current_chrooted(void)
6205 {
6206 /* Does the current process have a non-standard root */
6207 struct path ns_root;
6208 struct path fs_root;
6209 bool chrooted;
6210
6211 /* Find the namespace root */
6212 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
6213 ns_root.dentry = ns_root.mnt->mnt_root;
6214 path_get(&ns_root);
6215 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
6216 ;
6217
6218 get_fs_root(current->fs, &fs_root);
6219
6220 chrooted = !path_equal(&fs_root, &ns_root);
6221
6222 path_put(&fs_root);
6223 path_put(&ns_root);
6224
6225 return chrooted;
6226 }
6227
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)6228 static bool mnt_already_visible(struct mnt_namespace *ns,
6229 const struct super_block *sb,
6230 int *new_mnt_flags)
6231 {
6232 int new_flags = *new_mnt_flags;
6233 struct mount *mnt, *n;
6234 bool visible = false;
6235
6236 down_read(&namespace_sem);
6237 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
6238 struct mount *child;
6239 int mnt_flags;
6240
6241 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
6242 continue;
6243
6244 /* This mount is not fully visible if it's root directory
6245 * is not the root directory of the filesystem.
6246 */
6247 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
6248 continue;
6249
6250 /* A local view of the mount flags */
6251 mnt_flags = mnt->mnt.mnt_flags;
6252
6253 /* Don't miss readonly hidden in the superblock flags */
6254 if (sb_rdonly(mnt->mnt.mnt_sb))
6255 mnt_flags |= MNT_LOCK_READONLY;
6256
6257 /* Verify the mount flags are equal to or more permissive
6258 * than the proposed new mount.
6259 */
6260 if ((mnt_flags & MNT_LOCK_READONLY) &&
6261 !(new_flags & MNT_READONLY))
6262 continue;
6263 if ((mnt_flags & MNT_LOCK_ATIME) &&
6264 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
6265 continue;
6266
6267 /* This mount is not fully visible if there are any
6268 * locked child mounts that cover anything except for
6269 * empty directories.
6270 */
6271 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
6272 struct inode *inode = child->mnt_mountpoint->d_inode;
6273 /* Only worry about locked mounts */
6274 if (!(child->mnt.mnt_flags & MNT_LOCKED))
6275 continue;
6276 /* Is the directory permanently empty? */
6277 if (!is_empty_dir_inode(inode))
6278 goto next;
6279 }
6280 /* Preserve the locked attributes */
6281 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
6282 MNT_LOCK_ATIME);
6283 visible = true;
6284 goto found;
6285 next: ;
6286 }
6287 found:
6288 up_read(&namespace_sem);
6289 return visible;
6290 }
6291
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)6292 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
6293 {
6294 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
6295 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
6296 unsigned long s_iflags;
6297
6298 if (ns->user_ns == &init_user_ns)
6299 return false;
6300
6301 /* Can this filesystem be too revealing? */
6302 s_iflags = sb->s_iflags;
6303 if (!(s_iflags & SB_I_USERNS_VISIBLE))
6304 return false;
6305
6306 if ((s_iflags & required_iflags) != required_iflags) {
6307 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
6308 required_iflags);
6309 return true;
6310 }
6311
6312 return !mnt_already_visible(ns, sb, new_mnt_flags);
6313 }
6314
mnt_may_suid(struct vfsmount * mnt)6315 bool mnt_may_suid(struct vfsmount *mnt)
6316 {
6317 /*
6318 * Foreign mounts (accessed via fchdir or through /proc
6319 * symlinks) are always treated as if they are nosuid. This
6320 * prevents namespaces from trusting potentially unsafe
6321 * suid/sgid bits, file caps, or security labels that originate
6322 * in other namespaces.
6323 */
6324 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
6325 current_in_userns(mnt->mnt_sb->s_user_ns);
6326 }
6327
mntns_get(struct task_struct * task)6328 static struct ns_common *mntns_get(struct task_struct *task)
6329 {
6330 struct ns_common *ns = NULL;
6331 struct nsproxy *nsproxy;
6332
6333 task_lock(task);
6334 nsproxy = task->nsproxy;
6335 if (nsproxy) {
6336 ns = &nsproxy->mnt_ns->ns;
6337 get_mnt_ns(to_mnt_ns(ns));
6338 }
6339 task_unlock(task);
6340
6341 return ns;
6342 }
6343
mntns_put(struct ns_common * ns)6344 static void mntns_put(struct ns_common *ns)
6345 {
6346 put_mnt_ns(to_mnt_ns(ns));
6347 }
6348
mntns_install(struct nsset * nsset,struct ns_common * ns)6349 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
6350 {
6351 struct nsproxy *nsproxy = nsset->nsproxy;
6352 struct fs_struct *fs = nsset->fs;
6353 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
6354 struct user_namespace *user_ns = nsset->cred->user_ns;
6355 struct path root;
6356 int err;
6357
6358 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
6359 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
6360 !ns_capable(user_ns, CAP_SYS_ADMIN))
6361 return -EPERM;
6362
6363 if (is_anon_ns(mnt_ns))
6364 return -EINVAL;
6365
6366 if (fs->users != 1)
6367 return -EINVAL;
6368
6369 get_mnt_ns(mnt_ns);
6370 old_mnt_ns = nsproxy->mnt_ns;
6371 nsproxy->mnt_ns = mnt_ns;
6372
6373 /* Find the root */
6374 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
6375 "/", LOOKUP_DOWN, &root);
6376 if (err) {
6377 /* revert to old namespace */
6378 nsproxy->mnt_ns = old_mnt_ns;
6379 put_mnt_ns(mnt_ns);
6380 return err;
6381 }
6382
6383 put_mnt_ns(old_mnt_ns);
6384
6385 /* Update the pwd and root */
6386 set_fs_pwd(fs, &root);
6387 set_fs_root(fs, &root);
6388
6389 path_put(&root);
6390 return 0;
6391 }
6392
mntns_owner(struct ns_common * ns)6393 static struct user_namespace *mntns_owner(struct ns_common *ns)
6394 {
6395 return to_mnt_ns(ns)->user_ns;
6396 }
6397
6398 const struct proc_ns_operations mntns_operations = {
6399 .name = "mnt",
6400 .type = CLONE_NEWNS,
6401 .get = mntns_get,
6402 .put = mntns_put,
6403 .install = mntns_install,
6404 .owner = mntns_owner,
6405 };
6406
6407 #ifdef CONFIG_SYSCTL
6408 static const struct ctl_table fs_namespace_sysctls[] = {
6409 {
6410 .procname = "mount-max",
6411 .data = &sysctl_mount_max,
6412 .maxlen = sizeof(unsigned int),
6413 .mode = 0644,
6414 .proc_handler = proc_dointvec_minmax,
6415 .extra1 = SYSCTL_ONE,
6416 },
6417 };
6418
init_fs_namespace_sysctls(void)6419 static int __init init_fs_namespace_sysctls(void)
6420 {
6421 register_sysctl_init("fs", fs_namespace_sysctls);
6422 return 0;
6423 }
6424 fs_initcall(init_fs_namespace_sysctls);
6425
6426 #endif /* CONFIG_SYSCTL */
6427