1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "discard.h"
34 #include "zoned.h"
35 #include "dev-replace.h"
36 #include "fs.h"
37 #include "accessors.h"
38 #include "root-tree.h"
39 #include "file-item.h"
40 #include "orphan.h"
41 #include "tree-checker.h"
42 #include "raid-stripe-tree.h"
43
44 #undef SCRAMBLE_DELAYED_REFS
45
46
47 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
48 struct btrfs_delayed_ref_head *href,
49 struct btrfs_delayed_ref_node *node,
50 struct btrfs_delayed_extent_op *extra_op);
51 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
52 struct extent_buffer *leaf,
53 struct btrfs_extent_item *ei);
54 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
55 u64 parent, u64 root_objectid,
56 u64 flags, u64 owner, u64 offset,
57 struct btrfs_key *ins, int ref_mod, u64 oref_root);
58 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
59 struct btrfs_delayed_ref_node *node,
60 struct btrfs_delayed_extent_op *extent_op);
61 static int find_next_key(struct btrfs_path *path, int level,
62 struct btrfs_key *key);
63
block_group_bits(struct btrfs_block_group * cache,u64 bits)64 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
65 {
66 return (cache->flags & bits) == bits;
67 }
68
69 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)70 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
71 {
72 struct btrfs_root *root = btrfs_extent_root(fs_info, start);
73 int ret;
74 struct btrfs_key key;
75 struct btrfs_path *path;
76
77 path = btrfs_alloc_path();
78 if (!path)
79 return -ENOMEM;
80
81 key.objectid = start;
82 key.offset = len;
83 key.type = BTRFS_EXTENT_ITEM_KEY;
84 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
85 btrfs_free_path(path);
86 return ret;
87 }
88
89 /*
90 * helper function to lookup reference count and flags of a tree block.
91 *
92 * the head node for delayed ref is used to store the sum of all the
93 * reference count modifications queued up in the rbtree. the head
94 * node may also store the extent flags to set. This way you can check
95 * to see what the reference count and extent flags would be if all of
96 * the delayed refs are not processed.
97 */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags,u64 * owning_root)98 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
99 struct btrfs_fs_info *fs_info, u64 bytenr,
100 u64 offset, int metadata, u64 *refs, u64 *flags,
101 u64 *owning_root)
102 {
103 struct btrfs_root *extent_root;
104 struct btrfs_delayed_ref_head *head;
105 struct btrfs_delayed_ref_root *delayed_refs;
106 struct btrfs_path *path;
107 struct btrfs_key key;
108 u64 num_refs;
109 u64 extent_flags;
110 u64 owner = 0;
111 int ret;
112
113 /*
114 * If we don't have skinny metadata, don't bother doing anything
115 * different
116 */
117 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
118 offset = fs_info->nodesize;
119 metadata = 0;
120 }
121
122 path = btrfs_alloc_path();
123 if (!path)
124 return -ENOMEM;
125
126 search_again:
127 key.objectid = bytenr;
128 key.offset = offset;
129 if (metadata)
130 key.type = BTRFS_METADATA_ITEM_KEY;
131 else
132 key.type = BTRFS_EXTENT_ITEM_KEY;
133
134 extent_root = btrfs_extent_root(fs_info, bytenr);
135 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
136 if (ret < 0)
137 goto out_free;
138
139 if (ret > 0 && key.type == BTRFS_METADATA_ITEM_KEY) {
140 if (path->slots[0]) {
141 path->slots[0]--;
142 btrfs_item_key_to_cpu(path->nodes[0], &key,
143 path->slots[0]);
144 if (key.objectid == bytenr &&
145 key.type == BTRFS_EXTENT_ITEM_KEY &&
146 key.offset == fs_info->nodesize)
147 ret = 0;
148 }
149 }
150
151 if (ret == 0) {
152 struct extent_buffer *leaf = path->nodes[0];
153 struct btrfs_extent_item *ei;
154 const u32 item_size = btrfs_item_size(leaf, path->slots[0]);
155
156 if (unlikely(item_size < sizeof(*ei))) {
157 ret = -EUCLEAN;
158 btrfs_err(fs_info,
159 "unexpected extent item size, has %u expect >= %zu",
160 item_size, sizeof(*ei));
161 btrfs_abort_transaction(trans, ret);
162 goto out_free;
163 }
164
165 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
166 num_refs = btrfs_extent_refs(leaf, ei);
167 if (unlikely(num_refs == 0)) {
168 ret = -EUCLEAN;
169 btrfs_err(fs_info,
170 "unexpected zero reference count for extent item (%llu %u %llu)",
171 key.objectid, key.type, key.offset);
172 btrfs_abort_transaction(trans, ret);
173 goto out_free;
174 }
175 extent_flags = btrfs_extent_flags(leaf, ei);
176 owner = btrfs_get_extent_owner_root(fs_info, leaf, path->slots[0]);
177 } else {
178 num_refs = 0;
179 extent_flags = 0;
180 ret = 0;
181 }
182
183 delayed_refs = &trans->transaction->delayed_refs;
184 spin_lock(&delayed_refs->lock);
185 head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
186 if (head) {
187 if (!mutex_trylock(&head->mutex)) {
188 refcount_inc(&head->refs);
189 spin_unlock(&delayed_refs->lock);
190
191 btrfs_release_path(path);
192
193 /*
194 * Mutex was contended, block until it's released and try
195 * again
196 */
197 mutex_lock(&head->mutex);
198 mutex_unlock(&head->mutex);
199 btrfs_put_delayed_ref_head(head);
200 goto search_again;
201 }
202 spin_lock(&head->lock);
203 if (head->extent_op && head->extent_op->update_flags)
204 extent_flags |= head->extent_op->flags_to_set;
205
206 num_refs += head->ref_mod;
207 spin_unlock(&head->lock);
208 mutex_unlock(&head->mutex);
209 }
210 spin_unlock(&delayed_refs->lock);
211
212 WARN_ON(num_refs == 0);
213 if (refs)
214 *refs = num_refs;
215 if (flags)
216 *flags = extent_flags;
217 if (owning_root)
218 *owning_root = owner;
219 out_free:
220 btrfs_free_path(path);
221 return ret;
222 }
223
224 /*
225 * Back reference rules. Back refs have three main goals:
226 *
227 * 1) differentiate between all holders of references to an extent so that
228 * when a reference is dropped we can make sure it was a valid reference
229 * before freeing the extent.
230 *
231 * 2) Provide enough information to quickly find the holders of an extent
232 * if we notice a given block is corrupted or bad.
233 *
234 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
235 * maintenance. This is actually the same as #2, but with a slightly
236 * different use case.
237 *
238 * There are two kinds of back refs. The implicit back refs is optimized
239 * for pointers in non-shared tree blocks. For a given pointer in a block,
240 * back refs of this kind provide information about the block's owner tree
241 * and the pointer's key. These information allow us to find the block by
242 * b-tree searching. The full back refs is for pointers in tree blocks not
243 * referenced by their owner trees. The location of tree block is recorded
244 * in the back refs. Actually the full back refs is generic, and can be
245 * used in all cases the implicit back refs is used. The major shortcoming
246 * of the full back refs is its overhead. Every time a tree block gets
247 * COWed, we have to update back refs entry for all pointers in it.
248 *
249 * For a newly allocated tree block, we use implicit back refs for
250 * pointers in it. This means most tree related operations only involve
251 * implicit back refs. For a tree block created in old transaction, the
252 * only way to drop a reference to it is COW it. So we can detect the
253 * event that tree block loses its owner tree's reference and do the
254 * back refs conversion.
255 *
256 * When a tree block is COWed through a tree, there are four cases:
257 *
258 * The reference count of the block is one and the tree is the block's
259 * owner tree. Nothing to do in this case.
260 *
261 * The reference count of the block is one and the tree is not the
262 * block's owner tree. In this case, full back refs is used for pointers
263 * in the block. Remove these full back refs, add implicit back refs for
264 * every pointers in the new block.
265 *
266 * The reference count of the block is greater than one and the tree is
267 * the block's owner tree. In this case, implicit back refs is used for
268 * pointers in the block. Add full back refs for every pointers in the
269 * block, increase lower level extents' reference counts. The original
270 * implicit back refs are entailed to the new block.
271 *
272 * The reference count of the block is greater than one and the tree is
273 * not the block's owner tree. Add implicit back refs for every pointer in
274 * the new block, increase lower level extents' reference count.
275 *
276 * Back Reference Key composing:
277 *
278 * The key objectid corresponds to the first byte in the extent,
279 * The key type is used to differentiate between types of back refs.
280 * There are different meanings of the key offset for different types
281 * of back refs.
282 *
283 * File extents can be referenced by:
284 *
285 * - multiple snapshots, subvolumes, or different generations in one subvol
286 * - different files inside a single subvolume
287 * - different offsets inside a file (bookend extents in file.c)
288 *
289 * The extent ref structure for the implicit back refs has fields for:
290 *
291 * - Objectid of the subvolume root
292 * - objectid of the file holding the reference
293 * - original offset in the file
294 * - how many bookend extents
295 *
296 * The key offset for the implicit back refs is hash of the first
297 * three fields.
298 *
299 * The extent ref structure for the full back refs has field for:
300 *
301 * - number of pointers in the tree leaf
302 *
303 * The key offset for the implicit back refs is the first byte of
304 * the tree leaf
305 *
306 * When a file extent is allocated, The implicit back refs is used.
307 * the fields are filled in:
308 *
309 * (root_key.objectid, inode objectid, offset in file, 1)
310 *
311 * When a file extent is removed file truncation, we find the
312 * corresponding implicit back refs and check the following fields:
313 *
314 * (btrfs_header_owner(leaf), inode objectid, offset in file)
315 *
316 * Btree extents can be referenced by:
317 *
318 * - Different subvolumes
319 *
320 * Both the implicit back refs and the full back refs for tree blocks
321 * only consist of key. The key offset for the implicit back refs is
322 * objectid of block's owner tree. The key offset for the full back refs
323 * is the first byte of parent block.
324 *
325 * When implicit back refs is used, information about the lowest key and
326 * level of the tree block are required. These information are stored in
327 * tree block info structure.
328 */
329
330 /*
331 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
332 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
333 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
334 */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)335 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
336 struct btrfs_extent_inline_ref *iref,
337 enum btrfs_inline_ref_type is_data)
338 {
339 struct btrfs_fs_info *fs_info = eb->fs_info;
340 int type = btrfs_extent_inline_ref_type(eb, iref);
341 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
342
343 if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
344 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
345 return type;
346 }
347
348 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
349 type == BTRFS_SHARED_BLOCK_REF_KEY ||
350 type == BTRFS_SHARED_DATA_REF_KEY ||
351 type == BTRFS_EXTENT_DATA_REF_KEY) {
352 if (is_data == BTRFS_REF_TYPE_BLOCK) {
353 if (type == BTRFS_TREE_BLOCK_REF_KEY)
354 return type;
355 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
356 ASSERT(fs_info);
357 /*
358 * Every shared one has parent tree block,
359 * which must be aligned to sector size.
360 */
361 if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
362 return type;
363 }
364 } else if (is_data == BTRFS_REF_TYPE_DATA) {
365 if (type == BTRFS_EXTENT_DATA_REF_KEY)
366 return type;
367 if (type == BTRFS_SHARED_DATA_REF_KEY) {
368 ASSERT(fs_info);
369 /*
370 * Every shared one has parent tree block,
371 * which must be aligned to sector size.
372 */
373 if (offset &&
374 IS_ALIGNED(offset, fs_info->sectorsize))
375 return type;
376 }
377 } else {
378 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
379 return type;
380 }
381 }
382
383 WARN_ON(1);
384 btrfs_print_leaf(eb);
385 btrfs_err(fs_info,
386 "eb %llu iref 0x%lx invalid extent inline ref type %d",
387 eb->start, (unsigned long)iref, type);
388
389 return BTRFS_REF_TYPE_INVALID;
390 }
391
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)392 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
393 {
394 u32 high_crc = ~(u32)0;
395 u32 low_crc = ~(u32)0;
396 __le64 lenum;
397
398 lenum = cpu_to_le64(root_objectid);
399 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
400 lenum = cpu_to_le64(owner);
401 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
402 lenum = cpu_to_le64(offset);
403 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
404
405 return ((u64)high_crc << 31) ^ (u64)low_crc;
406 }
407
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)408 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
409 struct btrfs_extent_data_ref *ref)
410 {
411 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
412 btrfs_extent_data_ref_objectid(leaf, ref),
413 btrfs_extent_data_ref_offset(leaf, ref));
414 }
415
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)416 static int match_extent_data_ref(struct extent_buffer *leaf,
417 struct btrfs_extent_data_ref *ref,
418 u64 root_objectid, u64 owner, u64 offset)
419 {
420 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
421 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
422 btrfs_extent_data_ref_offset(leaf, ref) != offset)
423 return 0;
424 return 1;
425 }
426
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)427 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
428 struct btrfs_path *path,
429 u64 bytenr, u64 parent,
430 u64 root_objectid,
431 u64 owner, u64 offset)
432 {
433 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
434 struct btrfs_key key;
435 struct btrfs_extent_data_ref *ref;
436 struct extent_buffer *leaf;
437 u32 nritems;
438 int recow;
439 int ret;
440
441 key.objectid = bytenr;
442 if (parent) {
443 key.type = BTRFS_SHARED_DATA_REF_KEY;
444 key.offset = parent;
445 } else {
446 key.type = BTRFS_EXTENT_DATA_REF_KEY;
447 key.offset = hash_extent_data_ref(root_objectid,
448 owner, offset);
449 }
450 again:
451 recow = 0;
452 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
453 if (ret < 0)
454 return ret;
455
456 if (parent) {
457 if (ret)
458 return -ENOENT;
459 return 0;
460 }
461
462 ret = -ENOENT;
463 leaf = path->nodes[0];
464 nritems = btrfs_header_nritems(leaf);
465 while (1) {
466 if (path->slots[0] >= nritems) {
467 ret = btrfs_next_leaf(root, path);
468 if (ret) {
469 if (ret > 0)
470 return -ENOENT;
471 return ret;
472 }
473
474 leaf = path->nodes[0];
475 nritems = btrfs_header_nritems(leaf);
476 recow = 1;
477 }
478
479 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
480 if (key.objectid != bytenr ||
481 key.type != BTRFS_EXTENT_DATA_REF_KEY)
482 goto fail;
483
484 ref = btrfs_item_ptr(leaf, path->slots[0],
485 struct btrfs_extent_data_ref);
486
487 if (match_extent_data_ref(leaf, ref, root_objectid,
488 owner, offset)) {
489 if (recow) {
490 btrfs_release_path(path);
491 goto again;
492 }
493 ret = 0;
494 break;
495 }
496 path->slots[0]++;
497 }
498 fail:
499 return ret;
500 }
501
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_ref_node * node,u64 bytenr)502 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
503 struct btrfs_path *path,
504 struct btrfs_delayed_ref_node *node,
505 u64 bytenr)
506 {
507 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
508 struct btrfs_key key;
509 struct extent_buffer *leaf;
510 u64 owner = btrfs_delayed_ref_owner(node);
511 u64 offset = btrfs_delayed_ref_offset(node);
512 u32 size;
513 u32 num_refs;
514 int ret;
515
516 key.objectid = bytenr;
517 if (node->parent) {
518 key.type = BTRFS_SHARED_DATA_REF_KEY;
519 key.offset = node->parent;
520 size = sizeof(struct btrfs_shared_data_ref);
521 } else {
522 key.type = BTRFS_EXTENT_DATA_REF_KEY;
523 key.offset = hash_extent_data_ref(node->ref_root, owner, offset);
524 size = sizeof(struct btrfs_extent_data_ref);
525 }
526
527 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
528 if (ret && ret != -EEXIST)
529 goto fail;
530
531 leaf = path->nodes[0];
532 if (node->parent) {
533 struct btrfs_shared_data_ref *ref;
534 ref = btrfs_item_ptr(leaf, path->slots[0],
535 struct btrfs_shared_data_ref);
536 if (ret == 0) {
537 btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod);
538 } else {
539 num_refs = btrfs_shared_data_ref_count(leaf, ref);
540 num_refs += node->ref_mod;
541 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
542 }
543 } else {
544 struct btrfs_extent_data_ref *ref;
545 while (ret == -EEXIST) {
546 ref = btrfs_item_ptr(leaf, path->slots[0],
547 struct btrfs_extent_data_ref);
548 if (match_extent_data_ref(leaf, ref, node->ref_root,
549 owner, offset))
550 break;
551 btrfs_release_path(path);
552 key.offset++;
553 ret = btrfs_insert_empty_item(trans, root, path, &key,
554 size);
555 if (ret && ret != -EEXIST)
556 goto fail;
557
558 leaf = path->nodes[0];
559 }
560 ref = btrfs_item_ptr(leaf, path->slots[0],
561 struct btrfs_extent_data_ref);
562 if (ret == 0) {
563 btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root);
564 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
565 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
566 btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod);
567 } else {
568 num_refs = btrfs_extent_data_ref_count(leaf, ref);
569 num_refs += node->ref_mod;
570 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
571 }
572 }
573 btrfs_mark_buffer_dirty(trans, leaf);
574 ret = 0;
575 fail:
576 btrfs_release_path(path);
577 return ret;
578 }
579
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int refs_to_drop)580 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
581 struct btrfs_root *root,
582 struct btrfs_path *path,
583 int refs_to_drop)
584 {
585 struct btrfs_key key;
586 struct btrfs_extent_data_ref *ref1 = NULL;
587 struct btrfs_shared_data_ref *ref2 = NULL;
588 struct extent_buffer *leaf;
589 u32 num_refs = 0;
590 int ret = 0;
591
592 leaf = path->nodes[0];
593 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
594
595 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
596 ref1 = btrfs_item_ptr(leaf, path->slots[0],
597 struct btrfs_extent_data_ref);
598 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
599 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
600 ref2 = btrfs_item_ptr(leaf, path->slots[0],
601 struct btrfs_shared_data_ref);
602 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
603 } else {
604 btrfs_err(trans->fs_info,
605 "unrecognized backref key (%llu %u %llu)",
606 key.objectid, key.type, key.offset);
607 btrfs_abort_transaction(trans, -EUCLEAN);
608 return -EUCLEAN;
609 }
610
611 BUG_ON(num_refs < refs_to_drop);
612 num_refs -= refs_to_drop;
613
614 if (num_refs == 0) {
615 ret = btrfs_del_item(trans, root, path);
616 } else {
617 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
618 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
619 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
620 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
621 btrfs_mark_buffer_dirty(trans, leaf);
622 }
623 return ret;
624 }
625
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)626 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
627 struct btrfs_extent_inline_ref *iref)
628 {
629 struct btrfs_key key;
630 struct extent_buffer *leaf;
631 struct btrfs_extent_data_ref *ref1;
632 struct btrfs_shared_data_ref *ref2;
633 u32 num_refs = 0;
634 int type;
635
636 leaf = path->nodes[0];
637 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
638
639 if (iref) {
640 /*
641 * If type is invalid, we should have bailed out earlier than
642 * this call.
643 */
644 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
645 ASSERT(type != BTRFS_REF_TYPE_INVALID);
646 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
647 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
648 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
649 } else {
650 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
651 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
652 }
653 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
654 ref1 = btrfs_item_ptr(leaf, path->slots[0],
655 struct btrfs_extent_data_ref);
656 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
657 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
658 ref2 = btrfs_item_ptr(leaf, path->slots[0],
659 struct btrfs_shared_data_ref);
660 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
661 } else {
662 WARN_ON(1);
663 }
664 return num_refs;
665 }
666
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)667 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
668 struct btrfs_path *path,
669 u64 bytenr, u64 parent,
670 u64 root_objectid)
671 {
672 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
673 struct btrfs_key key;
674 int ret;
675
676 key.objectid = bytenr;
677 if (parent) {
678 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
679 key.offset = parent;
680 } else {
681 key.type = BTRFS_TREE_BLOCK_REF_KEY;
682 key.offset = root_objectid;
683 }
684
685 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
686 if (ret > 0)
687 ret = -ENOENT;
688 return ret;
689 }
690
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_ref_node * node,u64 bytenr)691 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
692 struct btrfs_path *path,
693 struct btrfs_delayed_ref_node *node,
694 u64 bytenr)
695 {
696 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
697 struct btrfs_key key;
698 int ret;
699
700 key.objectid = bytenr;
701 if (node->parent) {
702 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
703 key.offset = node->parent;
704 } else {
705 key.type = BTRFS_TREE_BLOCK_REF_KEY;
706 key.offset = node->ref_root;
707 }
708
709 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
710 btrfs_release_path(path);
711 return ret;
712 }
713
extent_ref_type(u64 parent,u64 owner)714 static inline int extent_ref_type(u64 parent, u64 owner)
715 {
716 int type;
717 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
718 if (parent > 0)
719 type = BTRFS_SHARED_BLOCK_REF_KEY;
720 else
721 type = BTRFS_TREE_BLOCK_REF_KEY;
722 } else {
723 if (parent > 0)
724 type = BTRFS_SHARED_DATA_REF_KEY;
725 else
726 type = BTRFS_EXTENT_DATA_REF_KEY;
727 }
728 return type;
729 }
730
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)731 static int find_next_key(struct btrfs_path *path, int level,
732 struct btrfs_key *key)
733
734 {
735 for (; level < BTRFS_MAX_LEVEL; level++) {
736 if (!path->nodes[level])
737 break;
738 if (path->slots[level] + 1 >=
739 btrfs_header_nritems(path->nodes[level]))
740 continue;
741 if (level == 0)
742 btrfs_item_key_to_cpu(path->nodes[level], key,
743 path->slots[level] + 1);
744 else
745 btrfs_node_key_to_cpu(path->nodes[level], key,
746 path->slots[level] + 1);
747 return 0;
748 }
749 return 1;
750 }
751
752 /*
753 * look for inline back ref. if back ref is found, *ref_ret is set
754 * to the address of inline back ref, and 0 is returned.
755 *
756 * if back ref isn't found, *ref_ret is set to the address where it
757 * should be inserted, and -ENOENT is returned.
758 *
759 * if insert is true and there are too many inline back refs, the path
760 * points to the extent item, and -EAGAIN is returned.
761 *
762 * NOTE: inline back refs are ordered in the same way that back ref
763 * items in the tree are ordered.
764 */
765 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)766 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
767 struct btrfs_path *path,
768 struct btrfs_extent_inline_ref **ref_ret,
769 u64 bytenr, u64 num_bytes,
770 u64 parent, u64 root_objectid,
771 u64 owner, u64 offset, int insert)
772 {
773 struct btrfs_fs_info *fs_info = trans->fs_info;
774 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
775 struct btrfs_key key;
776 struct extent_buffer *leaf;
777 struct btrfs_extent_item *ei;
778 struct btrfs_extent_inline_ref *iref;
779 u64 flags;
780 u64 item_size;
781 unsigned long ptr;
782 unsigned long end;
783 int extra_size;
784 int type;
785 int want;
786 int ret;
787 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
788 int needed;
789
790 key.objectid = bytenr;
791 key.type = BTRFS_EXTENT_ITEM_KEY;
792 key.offset = num_bytes;
793
794 want = extent_ref_type(parent, owner);
795 if (insert) {
796 extra_size = btrfs_extent_inline_ref_size(want);
797 path->search_for_extension = 1;
798 } else
799 extra_size = -1;
800
801 /*
802 * Owner is our level, so we can just add one to get the level for the
803 * block we are interested in.
804 */
805 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
806 key.type = BTRFS_METADATA_ITEM_KEY;
807 key.offset = owner;
808 }
809
810 again:
811 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
812 if (ret < 0)
813 goto out;
814
815 /*
816 * We may be a newly converted file system which still has the old fat
817 * extent entries for metadata, so try and see if we have one of those.
818 */
819 if (ret > 0 && skinny_metadata) {
820 skinny_metadata = false;
821 if (path->slots[0]) {
822 path->slots[0]--;
823 btrfs_item_key_to_cpu(path->nodes[0], &key,
824 path->slots[0]);
825 if (key.objectid == bytenr &&
826 key.type == BTRFS_EXTENT_ITEM_KEY &&
827 key.offset == num_bytes)
828 ret = 0;
829 }
830 if (ret) {
831 key.objectid = bytenr;
832 key.type = BTRFS_EXTENT_ITEM_KEY;
833 key.offset = num_bytes;
834 btrfs_release_path(path);
835 goto again;
836 }
837 }
838
839 if (ret && !insert) {
840 ret = -ENOENT;
841 goto out;
842 } else if (WARN_ON(ret)) {
843 btrfs_print_leaf(path->nodes[0]);
844 btrfs_err(fs_info,
845 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
846 bytenr, num_bytes, parent, root_objectid, owner,
847 offset);
848 ret = -EUCLEAN;
849 goto out;
850 }
851
852 leaf = path->nodes[0];
853 item_size = btrfs_item_size(leaf, path->slots[0]);
854 if (unlikely(item_size < sizeof(*ei))) {
855 ret = -EUCLEAN;
856 btrfs_err(fs_info,
857 "unexpected extent item size, has %llu expect >= %zu",
858 item_size, sizeof(*ei));
859 btrfs_abort_transaction(trans, ret);
860 goto out;
861 }
862
863 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
864 flags = btrfs_extent_flags(leaf, ei);
865
866 ptr = (unsigned long)(ei + 1);
867 end = (unsigned long)ei + item_size;
868
869 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
870 ptr += sizeof(struct btrfs_tree_block_info);
871 BUG_ON(ptr > end);
872 }
873
874 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
875 needed = BTRFS_REF_TYPE_DATA;
876 else
877 needed = BTRFS_REF_TYPE_BLOCK;
878
879 ret = -ENOENT;
880 while (ptr < end) {
881 iref = (struct btrfs_extent_inline_ref *)ptr;
882 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
883 if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
884 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
885 ptr += btrfs_extent_inline_ref_size(type);
886 continue;
887 }
888 if (type == BTRFS_REF_TYPE_INVALID) {
889 ret = -EUCLEAN;
890 goto out;
891 }
892
893 if (want < type)
894 break;
895 if (want > type) {
896 ptr += btrfs_extent_inline_ref_size(type);
897 continue;
898 }
899
900 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
901 struct btrfs_extent_data_ref *dref;
902 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
903 if (match_extent_data_ref(leaf, dref, root_objectid,
904 owner, offset)) {
905 ret = 0;
906 break;
907 }
908 if (hash_extent_data_ref_item(leaf, dref) <
909 hash_extent_data_ref(root_objectid, owner, offset))
910 break;
911 } else {
912 u64 ref_offset;
913 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
914 if (parent > 0) {
915 if (parent == ref_offset) {
916 ret = 0;
917 break;
918 }
919 if (ref_offset < parent)
920 break;
921 } else {
922 if (root_objectid == ref_offset) {
923 ret = 0;
924 break;
925 }
926 if (ref_offset < root_objectid)
927 break;
928 }
929 }
930 ptr += btrfs_extent_inline_ref_size(type);
931 }
932
933 if (unlikely(ptr > end)) {
934 ret = -EUCLEAN;
935 btrfs_print_leaf(path->nodes[0]);
936 btrfs_crit(fs_info,
937 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
938 path->slots[0], root_objectid, owner, offset, parent);
939 goto out;
940 }
941
942 if (ret == -ENOENT && insert) {
943 if (item_size + extra_size >=
944 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
945 ret = -EAGAIN;
946 goto out;
947 }
948
949 if (path->slots[0] + 1 < btrfs_header_nritems(path->nodes[0])) {
950 struct btrfs_key tmp_key;
951
952 btrfs_item_key_to_cpu(path->nodes[0], &tmp_key, path->slots[0] + 1);
953 if (tmp_key.objectid == bytenr &&
954 tmp_key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
955 ret = -EAGAIN;
956 goto out;
957 }
958 goto out_no_entry;
959 }
960
961 if (!path->keep_locks) {
962 btrfs_release_path(path);
963 path->keep_locks = 1;
964 goto again;
965 }
966
967 /*
968 * To add new inline back ref, we have to make sure
969 * there is no corresponding back ref item.
970 * For simplicity, we just do not add new inline back
971 * ref if there is any kind of item for this block
972 */
973 if (find_next_key(path, 0, &key) == 0 &&
974 key.objectid == bytenr &&
975 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
976 ret = -EAGAIN;
977 goto out;
978 }
979 }
980 out_no_entry:
981 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
982 out:
983 if (path->keep_locks) {
984 path->keep_locks = 0;
985 btrfs_unlock_up_safe(path, 1);
986 }
987 if (insert)
988 path->search_for_extension = 0;
989 return ret;
990 }
991
992 /*
993 * helper to add new inline back ref
994 */
995 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)996 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
997 struct btrfs_path *path,
998 struct btrfs_extent_inline_ref *iref,
999 u64 parent, u64 root_objectid,
1000 u64 owner, u64 offset, int refs_to_add,
1001 struct btrfs_delayed_extent_op *extent_op)
1002 {
1003 struct extent_buffer *leaf;
1004 struct btrfs_extent_item *ei;
1005 unsigned long ptr;
1006 unsigned long end;
1007 unsigned long item_offset;
1008 u64 refs;
1009 int size;
1010 int type;
1011
1012 leaf = path->nodes[0];
1013 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1014 item_offset = (unsigned long)iref - (unsigned long)ei;
1015
1016 type = extent_ref_type(parent, owner);
1017 size = btrfs_extent_inline_ref_size(type);
1018
1019 btrfs_extend_item(trans, path, size);
1020
1021 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1022 refs = btrfs_extent_refs(leaf, ei);
1023 refs += refs_to_add;
1024 btrfs_set_extent_refs(leaf, ei, refs);
1025 if (extent_op)
1026 __run_delayed_extent_op(extent_op, leaf, ei);
1027
1028 ptr = (unsigned long)ei + item_offset;
1029 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1030 if (ptr < end - size)
1031 memmove_extent_buffer(leaf, ptr + size, ptr,
1032 end - size - ptr);
1033
1034 iref = (struct btrfs_extent_inline_ref *)ptr;
1035 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1036 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1037 struct btrfs_extent_data_ref *dref;
1038 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1039 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1040 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1041 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1042 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1043 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1044 struct btrfs_shared_data_ref *sref;
1045 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1046 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1047 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1048 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1049 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1050 } else {
1051 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1052 }
1053 btrfs_mark_buffer_dirty(trans, leaf);
1054 }
1055
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1056 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1057 struct btrfs_path *path,
1058 struct btrfs_extent_inline_ref **ref_ret,
1059 u64 bytenr, u64 num_bytes, u64 parent,
1060 u64 root_objectid, u64 owner, u64 offset)
1061 {
1062 int ret;
1063
1064 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1065 num_bytes, parent, root_objectid,
1066 owner, offset, 0);
1067 if (ret != -ENOENT)
1068 return ret;
1069
1070 btrfs_release_path(path);
1071 *ref_ret = NULL;
1072
1073 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1074 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1075 root_objectid);
1076 } else {
1077 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1078 root_objectid, owner, offset);
1079 }
1080 return ret;
1081 }
1082
1083 /*
1084 * helper to update/remove inline back ref
1085 */
update_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op)1086 static noinline_for_stack int update_inline_extent_backref(
1087 struct btrfs_trans_handle *trans,
1088 struct btrfs_path *path,
1089 struct btrfs_extent_inline_ref *iref,
1090 int refs_to_mod,
1091 struct btrfs_delayed_extent_op *extent_op)
1092 {
1093 struct extent_buffer *leaf = path->nodes[0];
1094 struct btrfs_fs_info *fs_info = leaf->fs_info;
1095 struct btrfs_extent_item *ei;
1096 struct btrfs_extent_data_ref *dref = NULL;
1097 struct btrfs_shared_data_ref *sref = NULL;
1098 unsigned long ptr;
1099 unsigned long end;
1100 u32 item_size;
1101 int size;
1102 int type;
1103 u64 refs;
1104
1105 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1106 refs = btrfs_extent_refs(leaf, ei);
1107 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1108 struct btrfs_key key;
1109 u32 extent_size;
1110
1111 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1112 if (key.type == BTRFS_METADATA_ITEM_KEY)
1113 extent_size = fs_info->nodesize;
1114 else
1115 extent_size = key.offset;
1116 btrfs_print_leaf(leaf);
1117 btrfs_err(fs_info,
1118 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1119 key.objectid, extent_size, refs_to_mod, refs);
1120 return -EUCLEAN;
1121 }
1122 refs += refs_to_mod;
1123 btrfs_set_extent_refs(leaf, ei, refs);
1124 if (extent_op)
1125 __run_delayed_extent_op(extent_op, leaf, ei);
1126
1127 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1128 /*
1129 * Function btrfs_get_extent_inline_ref_type() has already printed
1130 * error messages.
1131 */
1132 if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1133 return -EUCLEAN;
1134
1135 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1136 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1137 refs = btrfs_extent_data_ref_count(leaf, dref);
1138 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1139 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1140 refs = btrfs_shared_data_ref_count(leaf, sref);
1141 } else {
1142 refs = 1;
1143 /*
1144 * For tree blocks we can only drop one ref for it, and tree
1145 * blocks should not have refs > 1.
1146 *
1147 * Furthermore if we're inserting a new inline backref, we
1148 * won't reach this path either. That would be
1149 * setup_inline_extent_backref().
1150 */
1151 if (unlikely(refs_to_mod != -1)) {
1152 struct btrfs_key key;
1153
1154 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1155
1156 btrfs_print_leaf(leaf);
1157 btrfs_err(fs_info,
1158 "invalid refs_to_mod for tree block %llu, has %d expect -1",
1159 key.objectid, refs_to_mod);
1160 return -EUCLEAN;
1161 }
1162 }
1163
1164 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1165 struct btrfs_key key;
1166 u32 extent_size;
1167
1168 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1169 if (key.type == BTRFS_METADATA_ITEM_KEY)
1170 extent_size = fs_info->nodesize;
1171 else
1172 extent_size = key.offset;
1173 btrfs_print_leaf(leaf);
1174 btrfs_err(fs_info,
1175 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1176 (unsigned long)iref, key.objectid, extent_size,
1177 refs_to_mod, refs);
1178 return -EUCLEAN;
1179 }
1180 refs += refs_to_mod;
1181
1182 if (refs > 0) {
1183 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1184 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1185 else
1186 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1187 } else {
1188 size = btrfs_extent_inline_ref_size(type);
1189 item_size = btrfs_item_size(leaf, path->slots[0]);
1190 ptr = (unsigned long)iref;
1191 end = (unsigned long)ei + item_size;
1192 if (ptr + size < end)
1193 memmove_extent_buffer(leaf, ptr, ptr + size,
1194 end - ptr - size);
1195 item_size -= size;
1196 btrfs_truncate_item(trans, path, item_size, 1);
1197 }
1198 btrfs_mark_buffer_dirty(trans, leaf);
1199 return 0;
1200 }
1201
1202 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1203 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1204 struct btrfs_path *path,
1205 u64 bytenr, u64 num_bytes, u64 parent,
1206 u64 root_objectid, u64 owner,
1207 u64 offset, int refs_to_add,
1208 struct btrfs_delayed_extent_op *extent_op)
1209 {
1210 struct btrfs_extent_inline_ref *iref;
1211 int ret;
1212
1213 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1214 num_bytes, parent, root_objectid,
1215 owner, offset, 1);
1216 if (ret == 0) {
1217 /*
1218 * We're adding refs to a tree block we already own, this
1219 * should not happen at all.
1220 */
1221 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1222 btrfs_print_leaf(path->nodes[0]);
1223 btrfs_crit(trans->fs_info,
1224 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1225 bytenr, num_bytes, root_objectid, path->slots[0]);
1226 return -EUCLEAN;
1227 }
1228 ret = update_inline_extent_backref(trans, path, iref,
1229 refs_to_add, extent_op);
1230 } else if (ret == -ENOENT) {
1231 setup_inline_extent_backref(trans, path, iref, parent,
1232 root_objectid, owner, offset,
1233 refs_to_add, extent_op);
1234 ret = 0;
1235 }
1236 return ret;
1237 }
1238
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data)1239 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1240 struct btrfs_root *root,
1241 struct btrfs_path *path,
1242 struct btrfs_extent_inline_ref *iref,
1243 int refs_to_drop, int is_data)
1244 {
1245 int ret = 0;
1246
1247 BUG_ON(!is_data && refs_to_drop != 1);
1248 if (iref)
1249 ret = update_inline_extent_backref(trans, path, iref,
1250 -refs_to_drop, NULL);
1251 else if (is_data)
1252 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1253 else
1254 ret = btrfs_del_item(trans, root, path);
1255 return ret;
1256 }
1257
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1258 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1259 u64 *discarded_bytes)
1260 {
1261 int j, ret = 0;
1262 u64 bytes_left, end;
1263 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1264
1265 /* Adjust the range to be aligned to 512B sectors if necessary. */
1266 if (start != aligned_start) {
1267 len -= aligned_start - start;
1268 len = round_down(len, 1 << SECTOR_SHIFT);
1269 start = aligned_start;
1270 }
1271
1272 *discarded_bytes = 0;
1273
1274 if (!len)
1275 return 0;
1276
1277 end = start + len;
1278 bytes_left = len;
1279
1280 /* Skip any superblocks on this device. */
1281 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1282 u64 sb_start = btrfs_sb_offset(j);
1283 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1284 u64 size = sb_start - start;
1285
1286 if (!in_range(sb_start, start, bytes_left) &&
1287 !in_range(sb_end, start, bytes_left) &&
1288 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1289 continue;
1290
1291 /*
1292 * Superblock spans beginning of range. Adjust start and
1293 * try again.
1294 */
1295 if (sb_start <= start) {
1296 start += sb_end - start;
1297 if (start > end) {
1298 bytes_left = 0;
1299 break;
1300 }
1301 bytes_left = end - start;
1302 continue;
1303 }
1304
1305 if (size) {
1306 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1307 size >> SECTOR_SHIFT,
1308 GFP_NOFS);
1309 if (!ret)
1310 *discarded_bytes += size;
1311 else if (ret != -EOPNOTSUPP)
1312 return ret;
1313 }
1314
1315 start = sb_end;
1316 if (start > end) {
1317 bytes_left = 0;
1318 break;
1319 }
1320 bytes_left = end - start;
1321 }
1322
1323 while (bytes_left) {
1324 u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left);
1325
1326 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1327 bytes_to_discard >> SECTOR_SHIFT,
1328 GFP_NOFS);
1329
1330 if (ret) {
1331 if (ret != -EOPNOTSUPP)
1332 break;
1333 continue;
1334 }
1335
1336 start += bytes_to_discard;
1337 bytes_left -= bytes_to_discard;
1338 *discarded_bytes += bytes_to_discard;
1339
1340 if (btrfs_trim_interrupted()) {
1341 ret = -ERESTARTSYS;
1342 break;
1343 }
1344 }
1345
1346 return ret;
1347 }
1348
do_discard_extent(struct btrfs_discard_stripe * stripe,u64 * bytes)1349 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1350 {
1351 struct btrfs_device *dev = stripe->dev;
1352 struct btrfs_fs_info *fs_info = dev->fs_info;
1353 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1354 u64 phys = stripe->physical;
1355 u64 len = stripe->length;
1356 u64 discarded = 0;
1357 int ret = 0;
1358
1359 /* Zone reset on a zoned filesystem */
1360 if (btrfs_can_zone_reset(dev, phys, len)) {
1361 u64 src_disc;
1362
1363 ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1364 if (ret)
1365 goto out;
1366
1367 if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1368 dev != dev_replace->srcdev)
1369 goto out;
1370
1371 src_disc = discarded;
1372
1373 /* Send to replace target as well */
1374 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1375 &discarded);
1376 discarded += src_disc;
1377 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1378 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1379 } else {
1380 ret = 0;
1381 *bytes = 0;
1382 }
1383
1384 out:
1385 *bytes = discarded;
1386 return ret;
1387 }
1388
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1389 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1390 u64 num_bytes, u64 *actual_bytes)
1391 {
1392 int ret = 0;
1393 u64 discarded_bytes = 0;
1394 u64 end = bytenr + num_bytes;
1395 u64 cur = bytenr;
1396
1397 /*
1398 * Avoid races with device replace and make sure the devices in the
1399 * stripes don't go away while we are discarding.
1400 */
1401 btrfs_bio_counter_inc_blocked(fs_info);
1402 while (cur < end) {
1403 struct btrfs_discard_stripe *stripes;
1404 unsigned int num_stripes;
1405 int i;
1406
1407 num_bytes = end - cur;
1408 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1409 if (IS_ERR(stripes)) {
1410 ret = PTR_ERR(stripes);
1411 if (ret == -EOPNOTSUPP)
1412 ret = 0;
1413 break;
1414 }
1415
1416 for (i = 0; i < num_stripes; i++) {
1417 struct btrfs_discard_stripe *stripe = stripes + i;
1418 u64 bytes;
1419
1420 if (!stripe->dev->bdev) {
1421 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1422 continue;
1423 }
1424
1425 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1426 &stripe->dev->dev_state))
1427 continue;
1428
1429 ret = do_discard_extent(stripe, &bytes);
1430 if (ret) {
1431 /*
1432 * Keep going if discard is not supported by the
1433 * device.
1434 */
1435 if (ret != -EOPNOTSUPP)
1436 break;
1437 ret = 0;
1438 } else {
1439 discarded_bytes += bytes;
1440 }
1441 }
1442 kfree(stripes);
1443 if (ret)
1444 break;
1445 cur += num_bytes;
1446 }
1447 btrfs_bio_counter_dec(fs_info);
1448 if (actual_bytes)
1449 *actual_bytes = discarded_bytes;
1450 return ret;
1451 }
1452
1453 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref)1454 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1455 struct btrfs_ref *generic_ref)
1456 {
1457 struct btrfs_fs_info *fs_info = trans->fs_info;
1458 int ret;
1459
1460 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1461 generic_ref->action);
1462 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1463 generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID);
1464
1465 if (generic_ref->type == BTRFS_REF_METADATA)
1466 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1467 else
1468 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1469
1470 btrfs_ref_tree_mod(fs_info, generic_ref);
1471
1472 return ret;
1473 }
1474
1475 /*
1476 * Insert backreference for a given extent.
1477 *
1478 * The counterpart is in __btrfs_free_extent(), with examples and more details
1479 * how it works.
1480 *
1481 * @trans: Handle of transaction
1482 *
1483 * @node: The delayed ref node used to get the bytenr/length for
1484 * extent whose references are incremented.
1485 *
1486 * @extent_op Pointer to a structure, holding information necessary when
1487 * updating a tree block's flags
1488 *
1489 */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)1490 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1491 struct btrfs_delayed_ref_node *node,
1492 struct btrfs_delayed_extent_op *extent_op)
1493 {
1494 struct btrfs_path *path;
1495 struct extent_buffer *leaf;
1496 struct btrfs_extent_item *item;
1497 struct btrfs_key key;
1498 u64 bytenr = node->bytenr;
1499 u64 num_bytes = node->num_bytes;
1500 u64 owner = btrfs_delayed_ref_owner(node);
1501 u64 offset = btrfs_delayed_ref_offset(node);
1502 u64 refs;
1503 int refs_to_add = node->ref_mod;
1504 int ret;
1505
1506 path = btrfs_alloc_path();
1507 if (!path)
1508 return -ENOMEM;
1509
1510 /* this will setup the path even if it fails to insert the back ref */
1511 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1512 node->parent, node->ref_root, owner,
1513 offset, refs_to_add, extent_op);
1514 if ((ret < 0 && ret != -EAGAIN) || !ret)
1515 goto out;
1516
1517 /*
1518 * Ok we had -EAGAIN which means we didn't have space to insert and
1519 * inline extent ref, so just update the reference count and add a
1520 * normal backref.
1521 */
1522 leaf = path->nodes[0];
1523 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1524 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1525 refs = btrfs_extent_refs(leaf, item);
1526 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1527 if (extent_op)
1528 __run_delayed_extent_op(extent_op, leaf, item);
1529
1530 btrfs_mark_buffer_dirty(trans, leaf);
1531 btrfs_release_path(path);
1532
1533 /* now insert the actual backref */
1534 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1535 ret = insert_tree_block_ref(trans, path, node, bytenr);
1536 else
1537 ret = insert_extent_data_ref(trans, path, node, bytenr);
1538
1539 if (ret)
1540 btrfs_abort_transaction(trans, ret);
1541 out:
1542 btrfs_free_path(path);
1543 return ret;
1544 }
1545
free_head_ref_squota_rsv(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_head * href)1546 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info,
1547 struct btrfs_delayed_ref_head *href)
1548 {
1549 u64 root = href->owning_root;
1550
1551 /*
1552 * Don't check must_insert_reserved, as this is called from contexts
1553 * where it has already been unset.
1554 */
1555 if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE ||
1556 !href->is_data || !is_fstree(root))
1557 return;
1558
1559 btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes,
1560 BTRFS_QGROUP_RSV_DATA);
1561 }
1562
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1563 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1564 struct btrfs_delayed_ref_head *href,
1565 struct btrfs_delayed_ref_node *node,
1566 struct btrfs_delayed_extent_op *extent_op,
1567 bool insert_reserved)
1568 {
1569 int ret = 0;
1570 u64 parent = 0;
1571 u64 flags = 0;
1572
1573 trace_run_delayed_data_ref(trans->fs_info, node);
1574
1575 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1576 parent = node->parent;
1577
1578 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1579 struct btrfs_key key;
1580 struct btrfs_squota_delta delta = {
1581 .root = href->owning_root,
1582 .num_bytes = node->num_bytes,
1583 .is_data = true,
1584 .is_inc = true,
1585 .generation = trans->transid,
1586 };
1587 u64 owner = btrfs_delayed_ref_owner(node);
1588 u64 offset = btrfs_delayed_ref_offset(node);
1589
1590 if (extent_op)
1591 flags |= extent_op->flags_to_set;
1592
1593 key.objectid = node->bytenr;
1594 key.type = BTRFS_EXTENT_ITEM_KEY;
1595 key.offset = node->num_bytes;
1596
1597 ret = alloc_reserved_file_extent(trans, parent, node->ref_root,
1598 flags, owner, offset, &key,
1599 node->ref_mod,
1600 href->owning_root);
1601 free_head_ref_squota_rsv(trans->fs_info, href);
1602 if (!ret)
1603 ret = btrfs_record_squota_delta(trans->fs_info, &delta);
1604 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1605 ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1606 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1607 ret = __btrfs_free_extent(trans, href, node, extent_op);
1608 } else {
1609 BUG();
1610 }
1611 return ret;
1612 }
1613
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)1614 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1615 struct extent_buffer *leaf,
1616 struct btrfs_extent_item *ei)
1617 {
1618 u64 flags = btrfs_extent_flags(leaf, ei);
1619 if (extent_op->update_flags) {
1620 flags |= extent_op->flags_to_set;
1621 btrfs_set_extent_flags(leaf, ei, flags);
1622 }
1623
1624 if (extent_op->update_key) {
1625 struct btrfs_tree_block_info *bi;
1626 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1627 bi = (struct btrfs_tree_block_info *)(ei + 1);
1628 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1629 }
1630 }
1631
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)1632 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1633 struct btrfs_delayed_ref_head *head,
1634 struct btrfs_delayed_extent_op *extent_op)
1635 {
1636 struct btrfs_fs_info *fs_info = trans->fs_info;
1637 struct btrfs_root *root;
1638 struct btrfs_key key;
1639 struct btrfs_path *path;
1640 struct btrfs_extent_item *ei;
1641 struct extent_buffer *leaf;
1642 u32 item_size;
1643 int ret;
1644 int metadata = 1;
1645
1646 if (TRANS_ABORTED(trans))
1647 return 0;
1648
1649 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1650 metadata = 0;
1651
1652 path = btrfs_alloc_path();
1653 if (!path)
1654 return -ENOMEM;
1655
1656 key.objectid = head->bytenr;
1657
1658 if (metadata) {
1659 key.type = BTRFS_METADATA_ITEM_KEY;
1660 key.offset = head->level;
1661 } else {
1662 key.type = BTRFS_EXTENT_ITEM_KEY;
1663 key.offset = head->num_bytes;
1664 }
1665
1666 root = btrfs_extent_root(fs_info, key.objectid);
1667 again:
1668 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1669 if (ret < 0) {
1670 goto out;
1671 } else if (ret > 0) {
1672 if (metadata) {
1673 if (path->slots[0] > 0) {
1674 path->slots[0]--;
1675 btrfs_item_key_to_cpu(path->nodes[0], &key,
1676 path->slots[0]);
1677 if (key.objectid == head->bytenr &&
1678 key.type == BTRFS_EXTENT_ITEM_KEY &&
1679 key.offset == head->num_bytes)
1680 ret = 0;
1681 }
1682 if (ret > 0) {
1683 btrfs_release_path(path);
1684 metadata = 0;
1685
1686 key.objectid = head->bytenr;
1687 key.offset = head->num_bytes;
1688 key.type = BTRFS_EXTENT_ITEM_KEY;
1689 goto again;
1690 }
1691 } else {
1692 ret = -EUCLEAN;
1693 btrfs_err(fs_info,
1694 "missing extent item for extent %llu num_bytes %llu level %d",
1695 head->bytenr, head->num_bytes, head->level);
1696 goto out;
1697 }
1698 }
1699
1700 leaf = path->nodes[0];
1701 item_size = btrfs_item_size(leaf, path->slots[0]);
1702
1703 if (unlikely(item_size < sizeof(*ei))) {
1704 ret = -EUCLEAN;
1705 btrfs_err(fs_info,
1706 "unexpected extent item size, has %u expect >= %zu",
1707 item_size, sizeof(*ei));
1708 btrfs_abort_transaction(trans, ret);
1709 goto out;
1710 }
1711
1712 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1713 __run_delayed_extent_op(extent_op, leaf, ei);
1714
1715 btrfs_mark_buffer_dirty(trans, leaf);
1716 out:
1717 btrfs_free_path(path);
1718 return ret;
1719 }
1720
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1721 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1722 struct btrfs_delayed_ref_head *href,
1723 struct btrfs_delayed_ref_node *node,
1724 struct btrfs_delayed_extent_op *extent_op,
1725 bool insert_reserved)
1726 {
1727 int ret = 0;
1728 struct btrfs_fs_info *fs_info = trans->fs_info;
1729 u64 parent = 0;
1730 u64 ref_root = 0;
1731
1732 trace_run_delayed_tree_ref(trans->fs_info, node);
1733
1734 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1735 parent = node->parent;
1736 ref_root = node->ref_root;
1737
1738 if (unlikely(node->ref_mod != 1)) {
1739 btrfs_err(trans->fs_info,
1740 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1741 node->bytenr, node->ref_mod, node->action, ref_root,
1742 parent);
1743 return -EUCLEAN;
1744 }
1745 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1746 struct btrfs_squota_delta delta = {
1747 .root = href->owning_root,
1748 .num_bytes = fs_info->nodesize,
1749 .is_data = false,
1750 .is_inc = true,
1751 .generation = trans->transid,
1752 };
1753
1754 ret = alloc_reserved_tree_block(trans, node, extent_op);
1755 if (!ret)
1756 btrfs_record_squota_delta(fs_info, &delta);
1757 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1758 ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1759 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1760 ret = __btrfs_free_extent(trans, href, node, extent_op);
1761 } else {
1762 BUG();
1763 }
1764 return ret;
1765 }
1766
1767 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1768 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1769 struct btrfs_delayed_ref_head *href,
1770 struct btrfs_delayed_ref_node *node,
1771 struct btrfs_delayed_extent_op *extent_op,
1772 bool insert_reserved)
1773 {
1774 int ret = 0;
1775
1776 if (TRANS_ABORTED(trans)) {
1777 if (insert_reserved) {
1778 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1779 free_head_ref_squota_rsv(trans->fs_info, href);
1780 }
1781 return 0;
1782 }
1783
1784 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1785 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1786 ret = run_delayed_tree_ref(trans, href, node, extent_op,
1787 insert_reserved);
1788 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1789 node->type == BTRFS_SHARED_DATA_REF_KEY)
1790 ret = run_delayed_data_ref(trans, href, node, extent_op,
1791 insert_reserved);
1792 else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1793 ret = 0;
1794 else
1795 BUG();
1796 if (ret && insert_reserved)
1797 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1798 if (ret < 0)
1799 btrfs_err(trans->fs_info,
1800 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1801 node->bytenr, node->num_bytes, node->type,
1802 node->action, node->ref_mod, ret);
1803 return ret;
1804 }
1805
1806 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)1807 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1808 {
1809 struct btrfs_delayed_ref_node *ref;
1810
1811 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1812 return NULL;
1813
1814 /*
1815 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1816 * This is to prevent a ref count from going down to zero, which deletes
1817 * the extent item from the extent tree, when there still are references
1818 * to add, which would fail because they would not find the extent item.
1819 */
1820 if (!list_empty(&head->ref_add_list))
1821 return list_first_entry(&head->ref_add_list,
1822 struct btrfs_delayed_ref_node, add_list);
1823
1824 ref = rb_entry(rb_first_cached(&head->ref_tree),
1825 struct btrfs_delayed_ref_node, ref_node);
1826 ASSERT(list_empty(&ref->add_list));
1827 return ref;
1828 }
1829
cleanup_extent_op(struct btrfs_delayed_ref_head * head)1830 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1831 struct btrfs_delayed_ref_head *head)
1832 {
1833 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1834
1835 if (!extent_op)
1836 return NULL;
1837
1838 if (head->must_insert_reserved) {
1839 head->extent_op = NULL;
1840 btrfs_free_delayed_extent_op(extent_op);
1841 return NULL;
1842 }
1843 return extent_op;
1844 }
1845
run_and_cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1846 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1847 struct btrfs_delayed_ref_head *head)
1848 {
1849 struct btrfs_delayed_extent_op *extent_op;
1850 int ret;
1851
1852 extent_op = cleanup_extent_op(head);
1853 if (!extent_op)
1854 return 0;
1855 head->extent_op = NULL;
1856 spin_unlock(&head->lock);
1857 ret = run_delayed_extent_op(trans, head, extent_op);
1858 btrfs_free_delayed_extent_op(extent_op);
1859 return ret ? ret : 1;
1860 }
1861
btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1862 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1863 struct btrfs_delayed_ref_root *delayed_refs,
1864 struct btrfs_delayed_ref_head *head)
1865 {
1866 u64 ret = 0;
1867
1868 /*
1869 * We had csum deletions accounted for in our delayed refs rsv, we need
1870 * to drop the csum leaves for this update from our delayed_refs_rsv.
1871 */
1872 if (head->total_ref_mod < 0 && head->is_data) {
1873 int nr_csums;
1874
1875 spin_lock(&delayed_refs->lock);
1876 delayed_refs->pending_csums -= head->num_bytes;
1877 spin_unlock(&delayed_refs->lock);
1878 nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1879
1880 btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums);
1881
1882 ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
1883 }
1884 /* must_insert_reserved can be set only if we didn't run the head ref. */
1885 if (head->must_insert_reserved)
1886 free_head_ref_squota_rsv(fs_info, head);
1887
1888 return ret;
1889 }
1890
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,u64 * bytes_released)1891 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1892 struct btrfs_delayed_ref_head *head,
1893 u64 *bytes_released)
1894 {
1895
1896 struct btrfs_fs_info *fs_info = trans->fs_info;
1897 struct btrfs_delayed_ref_root *delayed_refs;
1898 int ret;
1899
1900 delayed_refs = &trans->transaction->delayed_refs;
1901
1902 ret = run_and_cleanup_extent_op(trans, head);
1903 if (ret < 0) {
1904 btrfs_unselect_ref_head(delayed_refs, head);
1905 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1906 return ret;
1907 } else if (ret) {
1908 return ret;
1909 }
1910
1911 /*
1912 * Need to drop our head ref lock and re-acquire the delayed ref lock
1913 * and then re-check to make sure nobody got added.
1914 */
1915 spin_unlock(&head->lock);
1916 spin_lock(&delayed_refs->lock);
1917 spin_lock(&head->lock);
1918 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1919 spin_unlock(&head->lock);
1920 spin_unlock(&delayed_refs->lock);
1921 return 1;
1922 }
1923 btrfs_delete_ref_head(fs_info, delayed_refs, head);
1924 spin_unlock(&head->lock);
1925 spin_unlock(&delayed_refs->lock);
1926
1927 if (head->must_insert_reserved) {
1928 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1929 if (head->is_data) {
1930 struct btrfs_root *csum_root;
1931
1932 csum_root = btrfs_csum_root(fs_info, head->bytenr);
1933 ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1934 head->num_bytes);
1935 }
1936 }
1937
1938 *bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1939
1940 trace_run_delayed_ref_head(fs_info, head, 0);
1941 btrfs_delayed_ref_unlock(head);
1942 btrfs_put_delayed_ref_head(head);
1943 return ret;
1944 }
1945
btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * locked_ref,u64 * bytes_released)1946 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1947 struct btrfs_delayed_ref_head *locked_ref,
1948 u64 *bytes_released)
1949 {
1950 struct btrfs_fs_info *fs_info = trans->fs_info;
1951 struct btrfs_delayed_ref_root *delayed_refs;
1952 struct btrfs_delayed_extent_op *extent_op;
1953 struct btrfs_delayed_ref_node *ref;
1954 bool must_insert_reserved;
1955 int ret;
1956
1957 delayed_refs = &trans->transaction->delayed_refs;
1958
1959 lockdep_assert_held(&locked_ref->mutex);
1960 lockdep_assert_held(&locked_ref->lock);
1961
1962 while ((ref = select_delayed_ref(locked_ref))) {
1963 if (ref->seq &&
1964 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1965 spin_unlock(&locked_ref->lock);
1966 btrfs_unselect_ref_head(delayed_refs, locked_ref);
1967 return -EAGAIN;
1968 }
1969
1970 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1971 RB_CLEAR_NODE(&ref->ref_node);
1972 if (!list_empty(&ref->add_list))
1973 list_del(&ref->add_list);
1974 /*
1975 * When we play the delayed ref, also correct the ref_mod on
1976 * head
1977 */
1978 switch (ref->action) {
1979 case BTRFS_ADD_DELAYED_REF:
1980 case BTRFS_ADD_DELAYED_EXTENT:
1981 locked_ref->ref_mod -= ref->ref_mod;
1982 break;
1983 case BTRFS_DROP_DELAYED_REF:
1984 locked_ref->ref_mod += ref->ref_mod;
1985 break;
1986 default:
1987 WARN_ON(1);
1988 }
1989
1990 /*
1991 * Record the must_insert_reserved flag before we drop the
1992 * spin lock.
1993 */
1994 must_insert_reserved = locked_ref->must_insert_reserved;
1995 /*
1996 * Unsetting this on the head ref relinquishes ownership of
1997 * the rsv_bytes, so it is critical that every possible code
1998 * path from here forward frees all reserves including qgroup
1999 * reserve.
2000 */
2001 locked_ref->must_insert_reserved = false;
2002
2003 extent_op = locked_ref->extent_op;
2004 locked_ref->extent_op = NULL;
2005 spin_unlock(&locked_ref->lock);
2006
2007 ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op,
2008 must_insert_reserved);
2009 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
2010 *bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1);
2011
2012 btrfs_free_delayed_extent_op(extent_op);
2013 if (ret) {
2014 btrfs_unselect_ref_head(delayed_refs, locked_ref);
2015 btrfs_put_delayed_ref(ref);
2016 return ret;
2017 }
2018
2019 btrfs_put_delayed_ref(ref);
2020 cond_resched();
2021
2022 spin_lock(&locked_ref->lock);
2023 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2024 }
2025
2026 return 0;
2027 }
2028
2029 /*
2030 * Returns 0 on success or if called with an already aborted transaction.
2031 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2032 */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,u64 min_bytes)2033 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2034 u64 min_bytes)
2035 {
2036 struct btrfs_fs_info *fs_info = trans->fs_info;
2037 struct btrfs_delayed_ref_root *delayed_refs;
2038 struct btrfs_delayed_ref_head *locked_ref = NULL;
2039 int ret;
2040 unsigned long count = 0;
2041 unsigned long max_count = 0;
2042 u64 bytes_processed = 0;
2043
2044 delayed_refs = &trans->transaction->delayed_refs;
2045 if (min_bytes == 0) {
2046 max_count = delayed_refs->num_heads_ready;
2047 min_bytes = U64_MAX;
2048 }
2049
2050 do {
2051 if (!locked_ref) {
2052 locked_ref = btrfs_select_ref_head(fs_info, delayed_refs);
2053 if (IS_ERR_OR_NULL(locked_ref)) {
2054 if (PTR_ERR(locked_ref) == -EAGAIN) {
2055 continue;
2056 } else {
2057 break;
2058 }
2059 }
2060 count++;
2061 }
2062 /*
2063 * We need to try and merge add/drops of the same ref since we
2064 * can run into issues with relocate dropping the implicit ref
2065 * and then it being added back again before the drop can
2066 * finish. If we merged anything we need to re-loop so we can
2067 * get a good ref.
2068 * Or we can get node references of the same type that weren't
2069 * merged when created due to bumps in the tree mod seq, and
2070 * we need to merge them to prevent adding an inline extent
2071 * backref before dropping it (triggering a BUG_ON at
2072 * insert_inline_extent_backref()).
2073 */
2074 spin_lock(&locked_ref->lock);
2075 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2076
2077 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed);
2078 if (ret < 0 && ret != -EAGAIN) {
2079 /*
2080 * Error, btrfs_run_delayed_refs_for_head already
2081 * unlocked everything so just bail out
2082 */
2083 return ret;
2084 } else if (!ret) {
2085 /*
2086 * Success, perform the usual cleanup of a processed
2087 * head
2088 */
2089 ret = cleanup_ref_head(trans, locked_ref, &bytes_processed);
2090 if (ret > 0 ) {
2091 /* We dropped our lock, we need to loop. */
2092 ret = 0;
2093 continue;
2094 } else if (ret) {
2095 return ret;
2096 }
2097 }
2098
2099 /*
2100 * Either success case or btrfs_run_delayed_refs_for_head
2101 * returned -EAGAIN, meaning we need to select another head
2102 */
2103
2104 locked_ref = NULL;
2105 cond_resched();
2106 } while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2107 (max_count > 0 && count < max_count) ||
2108 locked_ref);
2109
2110 return 0;
2111 }
2112
2113 #ifdef SCRAMBLE_DELAYED_REFS
2114 /*
2115 * Normally delayed refs get processed in ascending bytenr order. This
2116 * correlates in most cases to the order added. To expose dependencies on this
2117 * order, we start to process the tree in the middle instead of the beginning
2118 */
find_middle(struct rb_root * root)2119 static u64 find_middle(struct rb_root *root)
2120 {
2121 struct rb_node *n = root->rb_node;
2122 struct btrfs_delayed_ref_node *entry;
2123 int alt = 1;
2124 u64 middle;
2125 u64 first = 0, last = 0;
2126
2127 n = rb_first(root);
2128 if (n) {
2129 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2130 first = entry->bytenr;
2131 }
2132 n = rb_last(root);
2133 if (n) {
2134 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2135 last = entry->bytenr;
2136 }
2137 n = root->rb_node;
2138
2139 while (n) {
2140 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2141 WARN_ON(!entry->in_tree);
2142
2143 middle = entry->bytenr;
2144
2145 if (alt)
2146 n = n->rb_left;
2147 else
2148 n = n->rb_right;
2149
2150 alt = 1 - alt;
2151 }
2152 return middle;
2153 }
2154 #endif
2155
2156 /*
2157 * Start processing the delayed reference count updates and extent insertions
2158 * we have queued up so far.
2159 *
2160 * @trans: Transaction handle.
2161 * @min_bytes: How many bytes of delayed references to process. After this
2162 * many bytes we stop processing delayed references if there are
2163 * any more. If 0 it means to run all existing delayed references,
2164 * but not new ones added after running all existing ones.
2165 * Use (u64)-1 (U64_MAX) to run all existing delayed references
2166 * plus any new ones that are added.
2167 *
2168 * Returns 0 on success or if called with an aborted transaction
2169 * Returns <0 on error and aborts the transaction
2170 */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,u64 min_bytes)2171 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
2172 {
2173 struct btrfs_fs_info *fs_info = trans->fs_info;
2174 struct btrfs_delayed_ref_root *delayed_refs;
2175 int ret;
2176
2177 /* We'll clean this up in btrfs_cleanup_transaction */
2178 if (TRANS_ABORTED(trans))
2179 return 0;
2180
2181 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2182 return 0;
2183
2184 delayed_refs = &trans->transaction->delayed_refs;
2185 again:
2186 #ifdef SCRAMBLE_DELAYED_REFS
2187 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2188 #endif
2189 ret = __btrfs_run_delayed_refs(trans, min_bytes);
2190 if (ret < 0) {
2191 btrfs_abort_transaction(trans, ret);
2192 return ret;
2193 }
2194
2195 if (min_bytes == U64_MAX) {
2196 btrfs_create_pending_block_groups(trans);
2197
2198 spin_lock(&delayed_refs->lock);
2199 if (xa_empty(&delayed_refs->head_refs)) {
2200 spin_unlock(&delayed_refs->lock);
2201 return 0;
2202 }
2203 spin_unlock(&delayed_refs->lock);
2204
2205 cond_resched();
2206 goto again;
2207 }
2208
2209 return 0;
2210 }
2211
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct extent_buffer * eb,u64 flags)2212 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2213 struct extent_buffer *eb, u64 flags)
2214 {
2215 struct btrfs_delayed_extent_op *extent_op;
2216 int ret;
2217
2218 extent_op = btrfs_alloc_delayed_extent_op();
2219 if (!extent_op)
2220 return -ENOMEM;
2221
2222 extent_op->flags_to_set = flags;
2223 extent_op->update_flags = true;
2224 extent_op->update_key = false;
2225
2226 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len,
2227 btrfs_header_level(eb), extent_op);
2228 if (ret)
2229 btrfs_free_delayed_extent_op(extent_op);
2230 return ret;
2231 }
2232
check_delayed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2233 static noinline int check_delayed_ref(struct btrfs_root *root,
2234 struct btrfs_path *path,
2235 u64 objectid, u64 offset, u64 bytenr)
2236 {
2237 struct btrfs_delayed_ref_head *head;
2238 struct btrfs_delayed_ref_node *ref;
2239 struct btrfs_delayed_ref_root *delayed_refs;
2240 struct btrfs_transaction *cur_trans;
2241 struct rb_node *node;
2242 int ret = 0;
2243
2244 spin_lock(&root->fs_info->trans_lock);
2245 cur_trans = root->fs_info->running_transaction;
2246 if (cur_trans)
2247 refcount_inc(&cur_trans->use_count);
2248 spin_unlock(&root->fs_info->trans_lock);
2249 if (!cur_trans)
2250 return 0;
2251
2252 delayed_refs = &cur_trans->delayed_refs;
2253 spin_lock(&delayed_refs->lock);
2254 head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
2255 if (!head) {
2256 spin_unlock(&delayed_refs->lock);
2257 btrfs_put_transaction(cur_trans);
2258 return 0;
2259 }
2260
2261 if (!mutex_trylock(&head->mutex)) {
2262 if (path->nowait) {
2263 spin_unlock(&delayed_refs->lock);
2264 btrfs_put_transaction(cur_trans);
2265 return -EAGAIN;
2266 }
2267
2268 refcount_inc(&head->refs);
2269 spin_unlock(&delayed_refs->lock);
2270
2271 btrfs_release_path(path);
2272
2273 /*
2274 * Mutex was contended, block until it's released and let
2275 * caller try again
2276 */
2277 mutex_lock(&head->mutex);
2278 mutex_unlock(&head->mutex);
2279 btrfs_put_delayed_ref_head(head);
2280 btrfs_put_transaction(cur_trans);
2281 return -EAGAIN;
2282 }
2283 spin_unlock(&delayed_refs->lock);
2284
2285 spin_lock(&head->lock);
2286 /*
2287 * XXX: We should replace this with a proper search function in the
2288 * future.
2289 */
2290 for (node = rb_first_cached(&head->ref_tree); node;
2291 node = rb_next(node)) {
2292 u64 ref_owner;
2293 u64 ref_offset;
2294
2295 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2296 /* If it's a shared ref we know a cross reference exists */
2297 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2298 ret = 1;
2299 break;
2300 }
2301
2302 ref_owner = btrfs_delayed_ref_owner(ref);
2303 ref_offset = btrfs_delayed_ref_offset(ref);
2304
2305 /*
2306 * If our ref doesn't match the one we're currently looking at
2307 * then we have a cross reference.
2308 */
2309 if (ref->ref_root != btrfs_root_id(root) ||
2310 ref_owner != objectid || ref_offset != offset) {
2311 ret = 1;
2312 break;
2313 }
2314 }
2315 spin_unlock(&head->lock);
2316 mutex_unlock(&head->mutex);
2317 btrfs_put_transaction(cur_trans);
2318 return ret;
2319 }
2320
check_committed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr,bool strict)2321 static noinline int check_committed_ref(struct btrfs_root *root,
2322 struct btrfs_path *path,
2323 u64 objectid, u64 offset, u64 bytenr,
2324 bool strict)
2325 {
2326 struct btrfs_fs_info *fs_info = root->fs_info;
2327 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2328 struct extent_buffer *leaf;
2329 struct btrfs_extent_data_ref *ref;
2330 struct btrfs_extent_inline_ref *iref;
2331 struct btrfs_extent_item *ei;
2332 struct btrfs_key key;
2333 u32 item_size;
2334 u32 expected_size;
2335 int type;
2336 int ret;
2337
2338 key.objectid = bytenr;
2339 key.offset = (u64)-1;
2340 key.type = BTRFS_EXTENT_ITEM_KEY;
2341
2342 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2343 if (ret < 0)
2344 goto out;
2345 if (ret == 0) {
2346 /*
2347 * Key with offset -1 found, there would have to exist an extent
2348 * item with such offset, but this is out of the valid range.
2349 */
2350 ret = -EUCLEAN;
2351 goto out;
2352 }
2353
2354 ret = -ENOENT;
2355 if (path->slots[0] == 0)
2356 goto out;
2357
2358 path->slots[0]--;
2359 leaf = path->nodes[0];
2360 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2361
2362 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2363 goto out;
2364
2365 ret = 1;
2366 item_size = btrfs_item_size(leaf, path->slots[0]);
2367 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2368 expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2369
2370 /* No inline refs; we need to bail before checking for owner ref. */
2371 if (item_size == sizeof(*ei))
2372 goto out;
2373
2374 /* Check for an owner ref; skip over it to the real inline refs. */
2375 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2376 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2377 if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2378 expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2379 iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2380 }
2381
2382 /* If extent item has more than 1 inline ref then it's shared */
2383 if (item_size != expected_size)
2384 goto out;
2385
2386 /*
2387 * If extent created before last snapshot => it's shared unless the
2388 * snapshot has been deleted. Use the heuristic if strict is false.
2389 */
2390 if (!strict &&
2391 (btrfs_extent_generation(leaf, ei) <=
2392 btrfs_root_last_snapshot(&root->root_item)))
2393 goto out;
2394
2395 /* If this extent has SHARED_DATA_REF then it's shared */
2396 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2397 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2398 goto out;
2399
2400 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2401 if (btrfs_extent_refs(leaf, ei) !=
2402 btrfs_extent_data_ref_count(leaf, ref) ||
2403 btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) ||
2404 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2405 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2406 goto out;
2407
2408 ret = 0;
2409 out:
2410 return ret;
2411 }
2412
btrfs_cross_ref_exist(struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr,bool strict,struct btrfs_path * path)2413 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2414 u64 bytenr, bool strict, struct btrfs_path *path)
2415 {
2416 int ret;
2417
2418 do {
2419 ret = check_committed_ref(root, path, objectid,
2420 offset, bytenr, strict);
2421 if (ret && ret != -ENOENT)
2422 goto out;
2423
2424 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2425 } while (ret == -EAGAIN && !path->nowait);
2426
2427 out:
2428 btrfs_release_path(path);
2429 if (btrfs_is_data_reloc_root(root))
2430 WARN_ON(ret > 0);
2431 return ret;
2432 }
2433
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)2434 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2435 struct btrfs_root *root,
2436 struct extent_buffer *buf,
2437 int full_backref, int inc)
2438 {
2439 struct btrfs_fs_info *fs_info = root->fs_info;
2440 u64 parent;
2441 u64 ref_root;
2442 u32 nritems;
2443 struct btrfs_key key;
2444 struct btrfs_file_extent_item *fi;
2445 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2446 int i;
2447 int action;
2448 int level;
2449 int ret = 0;
2450
2451 if (btrfs_is_testing(fs_info))
2452 return 0;
2453
2454 ref_root = btrfs_header_owner(buf);
2455 nritems = btrfs_header_nritems(buf);
2456 level = btrfs_header_level(buf);
2457
2458 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2459 return 0;
2460
2461 if (full_backref)
2462 parent = buf->start;
2463 else
2464 parent = 0;
2465 if (inc)
2466 action = BTRFS_ADD_DELAYED_REF;
2467 else
2468 action = BTRFS_DROP_DELAYED_REF;
2469
2470 for (i = 0; i < nritems; i++) {
2471 struct btrfs_ref ref = {
2472 .action = action,
2473 .parent = parent,
2474 .ref_root = ref_root,
2475 };
2476
2477 if (level == 0) {
2478 btrfs_item_key_to_cpu(buf, &key, i);
2479 if (key.type != BTRFS_EXTENT_DATA_KEY)
2480 continue;
2481 fi = btrfs_item_ptr(buf, i,
2482 struct btrfs_file_extent_item);
2483 if (btrfs_file_extent_type(buf, fi) ==
2484 BTRFS_FILE_EXTENT_INLINE)
2485 continue;
2486 ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2487 if (ref.bytenr == 0)
2488 continue;
2489
2490 ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2491 ref.owning_root = ref_root;
2492
2493 key.offset -= btrfs_file_extent_offset(buf, fi);
2494 btrfs_init_data_ref(&ref, key.objectid, key.offset,
2495 btrfs_root_id(root), for_reloc);
2496 if (inc)
2497 ret = btrfs_inc_extent_ref(trans, &ref);
2498 else
2499 ret = btrfs_free_extent(trans, &ref);
2500 if (ret)
2501 goto fail;
2502 } else {
2503 /* We don't know the owning_root, leave as 0. */
2504 ref.bytenr = btrfs_node_blockptr(buf, i);
2505 ref.num_bytes = fs_info->nodesize;
2506
2507 btrfs_init_tree_ref(&ref, level - 1,
2508 btrfs_root_id(root), for_reloc);
2509 if (inc)
2510 ret = btrfs_inc_extent_ref(trans, &ref);
2511 else
2512 ret = btrfs_free_extent(trans, &ref);
2513 if (ret)
2514 goto fail;
2515 }
2516 }
2517 return 0;
2518 fail:
2519 return ret;
2520 }
2521
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2522 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2523 struct extent_buffer *buf, int full_backref)
2524 {
2525 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2526 }
2527
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2528 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2529 struct extent_buffer *buf, int full_backref)
2530 {
2531 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2532 }
2533
get_alloc_profile_by_root(struct btrfs_root * root,int data)2534 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2535 {
2536 struct btrfs_fs_info *fs_info = root->fs_info;
2537 u64 flags;
2538 u64 ret;
2539
2540 if (data)
2541 flags = BTRFS_BLOCK_GROUP_DATA;
2542 else if (root == fs_info->chunk_root)
2543 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2544 else
2545 flags = BTRFS_BLOCK_GROUP_METADATA;
2546
2547 ret = btrfs_get_alloc_profile(fs_info, flags);
2548 return ret;
2549 }
2550
first_logical_byte(struct btrfs_fs_info * fs_info)2551 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2552 {
2553 struct rb_node *leftmost;
2554 u64 bytenr = 0;
2555
2556 read_lock(&fs_info->block_group_cache_lock);
2557 /* Get the block group with the lowest logical start address. */
2558 leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2559 if (leftmost) {
2560 struct btrfs_block_group *bg;
2561
2562 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2563 bytenr = bg->start;
2564 }
2565 read_unlock(&fs_info->block_group_cache_lock);
2566
2567 return bytenr;
2568 }
2569
pin_down_extent(struct btrfs_trans_handle * trans,struct btrfs_block_group * cache,u64 bytenr,u64 num_bytes,int reserved)2570 static int pin_down_extent(struct btrfs_trans_handle *trans,
2571 struct btrfs_block_group *cache,
2572 u64 bytenr, u64 num_bytes, int reserved)
2573 {
2574 struct btrfs_fs_info *fs_info = cache->fs_info;
2575
2576 spin_lock(&cache->space_info->lock);
2577 spin_lock(&cache->lock);
2578 cache->pinned += num_bytes;
2579 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2580 num_bytes);
2581 if (reserved) {
2582 cache->reserved -= num_bytes;
2583 cache->space_info->bytes_reserved -= num_bytes;
2584 }
2585 spin_unlock(&cache->lock);
2586 spin_unlock(&cache->space_info->lock);
2587
2588 set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2589 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2590 return 0;
2591 }
2592
btrfs_pin_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int reserved)2593 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2594 u64 bytenr, u64 num_bytes, int reserved)
2595 {
2596 struct btrfs_block_group *cache;
2597
2598 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2599 BUG_ON(!cache); /* Logic error */
2600
2601 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2602
2603 btrfs_put_block_group(cache);
2604 return 0;
2605 }
2606
btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle * trans,const struct extent_buffer * eb)2607 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2608 const struct extent_buffer *eb)
2609 {
2610 struct btrfs_block_group *cache;
2611 int ret;
2612
2613 cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
2614 if (!cache)
2615 return -EINVAL;
2616
2617 /*
2618 * Fully cache the free space first so that our pin removes the free space
2619 * from the cache.
2620 */
2621 ret = btrfs_cache_block_group(cache, true);
2622 if (ret)
2623 goto out;
2624
2625 pin_down_extent(trans, cache, eb->start, eb->len, 0);
2626
2627 /* remove us from the free space cache (if we're there at all) */
2628 ret = btrfs_remove_free_space(cache, eb->start, eb->len);
2629 out:
2630 btrfs_put_block_group(cache);
2631 return ret;
2632 }
2633
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)2634 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2635 u64 start, u64 num_bytes)
2636 {
2637 int ret;
2638 struct btrfs_block_group *block_group;
2639
2640 block_group = btrfs_lookup_block_group(fs_info, start);
2641 if (!block_group)
2642 return -EINVAL;
2643
2644 ret = btrfs_cache_block_group(block_group, true);
2645 if (ret)
2646 goto out;
2647
2648 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2649 out:
2650 btrfs_put_block_group(block_group);
2651 return ret;
2652 }
2653
btrfs_exclude_logged_extents(struct extent_buffer * eb)2654 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2655 {
2656 struct btrfs_fs_info *fs_info = eb->fs_info;
2657 struct btrfs_file_extent_item *item;
2658 struct btrfs_key key;
2659 int found_type;
2660 int i;
2661 int ret = 0;
2662
2663 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2664 return 0;
2665
2666 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2667 btrfs_item_key_to_cpu(eb, &key, i);
2668 if (key.type != BTRFS_EXTENT_DATA_KEY)
2669 continue;
2670 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2671 found_type = btrfs_file_extent_type(eb, item);
2672 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2673 continue;
2674 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2675 continue;
2676 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2677 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2678 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2679 if (ret)
2680 break;
2681 }
2682
2683 return ret;
2684 }
2685
2686 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group * bg)2687 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2688 {
2689 atomic_inc(&bg->reservations);
2690 }
2691
2692 /*
2693 * Returns the free cluster for the given space info and sets empty_cluster to
2694 * what it should be based on the mount options.
2695 */
2696 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)2697 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2698 struct btrfs_space_info *space_info, u64 *empty_cluster)
2699 {
2700 struct btrfs_free_cluster *ret = NULL;
2701
2702 *empty_cluster = 0;
2703 if (btrfs_mixed_space_info(space_info))
2704 return ret;
2705
2706 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2707 ret = &fs_info->meta_alloc_cluster;
2708 if (btrfs_test_opt(fs_info, SSD))
2709 *empty_cluster = SZ_2M;
2710 else
2711 *empty_cluster = SZ_64K;
2712 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2713 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2714 *empty_cluster = SZ_2M;
2715 ret = &fs_info->data_alloc_cluster;
2716 }
2717
2718 return ret;
2719 }
2720
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)2721 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2722 u64 start, u64 end,
2723 const bool return_free_space)
2724 {
2725 struct btrfs_block_group *cache = NULL;
2726 struct btrfs_space_info *space_info;
2727 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2728 struct btrfs_free_cluster *cluster = NULL;
2729 u64 len;
2730 u64 total_unpinned = 0;
2731 u64 empty_cluster = 0;
2732 bool readonly;
2733 int ret = 0;
2734
2735 while (start <= end) {
2736 readonly = false;
2737 if (!cache ||
2738 start >= cache->start + cache->length) {
2739 if (cache)
2740 btrfs_put_block_group(cache);
2741 total_unpinned = 0;
2742 cache = btrfs_lookup_block_group(fs_info, start);
2743 if (cache == NULL) {
2744 /* Logic error, something removed the block group. */
2745 ret = -EUCLEAN;
2746 goto out;
2747 }
2748
2749 cluster = fetch_cluster_info(fs_info,
2750 cache->space_info,
2751 &empty_cluster);
2752 empty_cluster <<= 1;
2753 }
2754
2755 len = cache->start + cache->length - start;
2756 len = min(len, end + 1 - start);
2757
2758 if (return_free_space)
2759 btrfs_add_free_space(cache, start, len);
2760
2761 start += len;
2762 total_unpinned += len;
2763 space_info = cache->space_info;
2764
2765 /*
2766 * If this space cluster has been marked as fragmented and we've
2767 * unpinned enough in this block group to potentially allow a
2768 * cluster to be created inside of it go ahead and clear the
2769 * fragmented check.
2770 */
2771 if (cluster && cluster->fragmented &&
2772 total_unpinned > empty_cluster) {
2773 spin_lock(&cluster->lock);
2774 cluster->fragmented = 0;
2775 spin_unlock(&cluster->lock);
2776 }
2777
2778 spin_lock(&space_info->lock);
2779 spin_lock(&cache->lock);
2780 cache->pinned -= len;
2781 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2782 space_info->max_extent_size = 0;
2783 if (cache->ro) {
2784 space_info->bytes_readonly += len;
2785 readonly = true;
2786 } else if (btrfs_is_zoned(fs_info)) {
2787 /* Need reset before reusing in a zoned block group */
2788 btrfs_space_info_update_bytes_zone_unusable(fs_info, space_info,
2789 len);
2790 readonly = true;
2791 }
2792 spin_unlock(&cache->lock);
2793 if (!readonly && return_free_space &&
2794 global_rsv->space_info == space_info) {
2795 spin_lock(&global_rsv->lock);
2796 if (!global_rsv->full) {
2797 u64 to_add = min(len, global_rsv->size -
2798 global_rsv->reserved);
2799
2800 global_rsv->reserved += to_add;
2801 btrfs_space_info_update_bytes_may_use(fs_info,
2802 space_info, to_add);
2803 if (global_rsv->reserved >= global_rsv->size)
2804 global_rsv->full = 1;
2805 len -= to_add;
2806 }
2807 spin_unlock(&global_rsv->lock);
2808 }
2809 /* Add to any tickets we may have */
2810 if (!readonly && return_free_space && len)
2811 btrfs_try_granting_tickets(fs_info, space_info);
2812 spin_unlock(&space_info->lock);
2813 }
2814
2815 if (cache)
2816 btrfs_put_block_group(cache);
2817 out:
2818 return ret;
2819 }
2820
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)2821 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2822 {
2823 struct btrfs_fs_info *fs_info = trans->fs_info;
2824 struct btrfs_block_group *block_group, *tmp;
2825 struct list_head *deleted_bgs;
2826 struct extent_io_tree *unpin;
2827 u64 start;
2828 u64 end;
2829 int ret;
2830
2831 unpin = &trans->transaction->pinned_extents;
2832
2833 while (!TRANS_ABORTED(trans)) {
2834 struct extent_state *cached_state = NULL;
2835
2836 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2837 if (!find_first_extent_bit(unpin, 0, &start, &end,
2838 EXTENT_DIRTY, &cached_state)) {
2839 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2840 break;
2841 }
2842
2843 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2844 ret = btrfs_discard_extent(fs_info, start,
2845 end + 1 - start, NULL);
2846
2847 clear_extent_dirty(unpin, start, end, &cached_state);
2848 ret = unpin_extent_range(fs_info, start, end, true);
2849 BUG_ON(ret);
2850 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2851 free_extent_state(cached_state);
2852 cond_resched();
2853 }
2854
2855 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2856 btrfs_discard_calc_delay(&fs_info->discard_ctl);
2857 btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2858 }
2859
2860 /*
2861 * Transaction is finished. We don't need the lock anymore. We
2862 * do need to clean up the block groups in case of a transaction
2863 * abort.
2864 */
2865 deleted_bgs = &trans->transaction->deleted_bgs;
2866 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2867 u64 trimmed = 0;
2868
2869 ret = -EROFS;
2870 if (!TRANS_ABORTED(trans))
2871 ret = btrfs_discard_extent(fs_info,
2872 block_group->start,
2873 block_group->length,
2874 &trimmed);
2875
2876 list_del_init(&block_group->bg_list);
2877 btrfs_unfreeze_block_group(block_group);
2878 btrfs_put_block_group(block_group);
2879
2880 if (ret) {
2881 const char *errstr = btrfs_decode_error(ret);
2882 btrfs_warn(fs_info,
2883 "discard failed while removing blockgroup: errno=%d %s",
2884 ret, errstr);
2885 }
2886 }
2887
2888 return 0;
2889 }
2890
2891 /*
2892 * Parse an extent item's inline extents looking for a simple quotas owner ref.
2893 *
2894 * @fs_info: the btrfs_fs_info for this mount
2895 * @leaf: a leaf in the extent tree containing the extent item
2896 * @slot: the slot in the leaf where the extent item is found
2897 *
2898 * Returns the objectid of the root that originally allocated the extent item
2899 * if the inline owner ref is expected and present, otherwise 0.
2900 *
2901 * If an extent item has an owner ref item, it will be the first inline ref
2902 * item. Therefore the logic is to check whether there are any inline ref
2903 * items, then check the type of the first one.
2904 */
btrfs_get_extent_owner_root(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,int slot)2905 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2906 struct extent_buffer *leaf, int slot)
2907 {
2908 struct btrfs_extent_item *ei;
2909 struct btrfs_extent_inline_ref *iref;
2910 struct btrfs_extent_owner_ref *oref;
2911 unsigned long ptr;
2912 unsigned long end;
2913 int type;
2914
2915 if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2916 return 0;
2917
2918 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2919 ptr = (unsigned long)(ei + 1);
2920 end = (unsigned long)ei + btrfs_item_size(leaf, slot);
2921
2922 /* No inline ref items of any kind, can't check type. */
2923 if (ptr == end)
2924 return 0;
2925
2926 iref = (struct btrfs_extent_inline_ref *)ptr;
2927 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
2928
2929 /* We found an owner ref, get the root out of it. */
2930 if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2931 oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2932 return btrfs_extent_owner_ref_root_id(leaf, oref);
2933 }
2934
2935 /* We have inline refs, but not an owner ref. */
2936 return 0;
2937 }
2938
do_free_extent_accounting(struct btrfs_trans_handle * trans,u64 bytenr,struct btrfs_squota_delta * delta)2939 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2940 u64 bytenr, struct btrfs_squota_delta *delta)
2941 {
2942 int ret;
2943 u64 num_bytes = delta->num_bytes;
2944
2945 if (delta->is_data) {
2946 struct btrfs_root *csum_root;
2947
2948 csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2949 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2950 if (ret) {
2951 btrfs_abort_transaction(trans, ret);
2952 return ret;
2953 }
2954
2955 ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes);
2956 if (ret) {
2957 btrfs_abort_transaction(trans, ret);
2958 return ret;
2959 }
2960 }
2961
2962 ret = btrfs_record_squota_delta(trans->fs_info, delta);
2963 if (ret) {
2964 btrfs_abort_transaction(trans, ret);
2965 return ret;
2966 }
2967
2968 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2969 if (ret) {
2970 btrfs_abort_transaction(trans, ret);
2971 return ret;
2972 }
2973
2974 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2975 if (ret)
2976 btrfs_abort_transaction(trans, ret);
2977
2978 return ret;
2979 }
2980
2981 #define abort_and_dump(trans, path, fmt, args...) \
2982 ({ \
2983 btrfs_abort_transaction(trans, -EUCLEAN); \
2984 btrfs_print_leaf(path->nodes[0]); \
2985 btrfs_crit(trans->fs_info, fmt, ##args); \
2986 })
2987
2988 /*
2989 * Drop one or more refs of @node.
2990 *
2991 * 1. Locate the extent refs.
2992 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2993 * Locate it, then reduce the refs number or remove the ref line completely.
2994 *
2995 * 2. Update the refs count in EXTENT/METADATA_ITEM
2996 *
2997 * Inline backref case:
2998 *
2999 * in extent tree we have:
3000 *
3001 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3002 * refs 2 gen 6 flags DATA
3003 * extent data backref root FS_TREE objectid 258 offset 0 count 1
3004 * extent data backref root FS_TREE objectid 257 offset 0 count 1
3005 *
3006 * This function gets called with:
3007 *
3008 * node->bytenr = 13631488
3009 * node->num_bytes = 1048576
3010 * root_objectid = FS_TREE
3011 * owner_objectid = 257
3012 * owner_offset = 0
3013 * refs_to_drop = 1
3014 *
3015 * Then we should get some like:
3016 *
3017 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3018 * refs 1 gen 6 flags DATA
3019 * extent data backref root FS_TREE objectid 258 offset 0 count 1
3020 *
3021 * Keyed backref case:
3022 *
3023 * in extent tree we have:
3024 *
3025 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3026 * refs 754 gen 6 flags DATA
3027 * [...]
3028 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3029 * extent data backref root FS_TREE objectid 866 offset 0 count 1
3030 *
3031 * This function get called with:
3032 *
3033 * node->bytenr = 13631488
3034 * node->num_bytes = 1048576
3035 * root_objectid = FS_TREE
3036 * owner_objectid = 866
3037 * owner_offset = 0
3038 * refs_to_drop = 1
3039 *
3040 * Then we should get some like:
3041 *
3042 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3043 * refs 753 gen 6 flags DATA
3044 *
3045 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3046 */
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)3047 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3048 struct btrfs_delayed_ref_head *href,
3049 struct btrfs_delayed_ref_node *node,
3050 struct btrfs_delayed_extent_op *extent_op)
3051 {
3052 struct btrfs_fs_info *info = trans->fs_info;
3053 struct btrfs_key key;
3054 struct btrfs_path *path;
3055 struct btrfs_root *extent_root;
3056 struct extent_buffer *leaf;
3057 struct btrfs_extent_item *ei;
3058 struct btrfs_extent_inline_ref *iref;
3059 int ret;
3060 int is_data;
3061 int extent_slot = 0;
3062 int found_extent = 0;
3063 int num_to_del = 1;
3064 int refs_to_drop = node->ref_mod;
3065 u32 item_size;
3066 u64 refs;
3067 u64 bytenr = node->bytenr;
3068 u64 num_bytes = node->num_bytes;
3069 u64 owner_objectid = btrfs_delayed_ref_owner(node);
3070 u64 owner_offset = btrfs_delayed_ref_offset(node);
3071 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3072 u64 delayed_ref_root = href->owning_root;
3073
3074 extent_root = btrfs_extent_root(info, bytenr);
3075 ASSERT(extent_root);
3076
3077 path = btrfs_alloc_path();
3078 if (!path)
3079 return -ENOMEM;
3080
3081 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3082
3083 if (!is_data && refs_to_drop != 1) {
3084 btrfs_crit(info,
3085 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3086 node->bytenr, refs_to_drop);
3087 ret = -EINVAL;
3088 btrfs_abort_transaction(trans, ret);
3089 goto out;
3090 }
3091
3092 if (is_data)
3093 skinny_metadata = false;
3094
3095 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3096 node->parent, node->ref_root, owner_objectid,
3097 owner_offset);
3098 if (ret == 0) {
3099 /*
3100 * Either the inline backref or the SHARED_DATA_REF/
3101 * SHARED_BLOCK_REF is found
3102 *
3103 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3104 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3105 */
3106 extent_slot = path->slots[0];
3107 while (extent_slot >= 0) {
3108 btrfs_item_key_to_cpu(path->nodes[0], &key,
3109 extent_slot);
3110 if (key.objectid != bytenr)
3111 break;
3112 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3113 key.offset == num_bytes) {
3114 found_extent = 1;
3115 break;
3116 }
3117 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3118 key.offset == owner_objectid) {
3119 found_extent = 1;
3120 break;
3121 }
3122
3123 /* Quick path didn't find the EXTENT/METADATA_ITEM */
3124 if (path->slots[0] - extent_slot > 5)
3125 break;
3126 extent_slot--;
3127 }
3128
3129 if (!found_extent) {
3130 if (iref) {
3131 abort_and_dump(trans, path,
3132 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3133 path->slots[0]);
3134 ret = -EUCLEAN;
3135 goto out;
3136 }
3137 /* Must be SHARED_* item, remove the backref first */
3138 ret = remove_extent_backref(trans, extent_root, path,
3139 NULL, refs_to_drop, is_data);
3140 if (ret) {
3141 btrfs_abort_transaction(trans, ret);
3142 goto out;
3143 }
3144 btrfs_release_path(path);
3145
3146 /* Slow path to locate EXTENT/METADATA_ITEM */
3147 key.objectid = bytenr;
3148 key.type = BTRFS_EXTENT_ITEM_KEY;
3149 key.offset = num_bytes;
3150
3151 if (!is_data && skinny_metadata) {
3152 key.type = BTRFS_METADATA_ITEM_KEY;
3153 key.offset = owner_objectid;
3154 }
3155
3156 ret = btrfs_search_slot(trans, extent_root,
3157 &key, path, -1, 1);
3158 if (ret > 0 && skinny_metadata && path->slots[0]) {
3159 /*
3160 * Couldn't find our skinny metadata item,
3161 * see if we have ye olde extent item.
3162 */
3163 path->slots[0]--;
3164 btrfs_item_key_to_cpu(path->nodes[0], &key,
3165 path->slots[0]);
3166 if (key.objectid == bytenr &&
3167 key.type == BTRFS_EXTENT_ITEM_KEY &&
3168 key.offset == num_bytes)
3169 ret = 0;
3170 }
3171
3172 if (ret > 0 && skinny_metadata) {
3173 skinny_metadata = false;
3174 key.objectid = bytenr;
3175 key.type = BTRFS_EXTENT_ITEM_KEY;
3176 key.offset = num_bytes;
3177 btrfs_release_path(path);
3178 ret = btrfs_search_slot(trans, extent_root,
3179 &key, path, -1, 1);
3180 }
3181
3182 if (ret) {
3183 if (ret > 0)
3184 btrfs_print_leaf(path->nodes[0]);
3185 btrfs_err(info,
3186 "umm, got %d back from search, was looking for %llu, slot %d",
3187 ret, bytenr, path->slots[0]);
3188 }
3189 if (ret < 0) {
3190 btrfs_abort_transaction(trans, ret);
3191 goto out;
3192 }
3193 extent_slot = path->slots[0];
3194 }
3195 } else if (WARN_ON(ret == -ENOENT)) {
3196 abort_and_dump(trans, path,
3197 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3198 bytenr, node->parent, node->ref_root, owner_objectid,
3199 owner_offset, path->slots[0]);
3200 goto out;
3201 } else {
3202 btrfs_abort_transaction(trans, ret);
3203 goto out;
3204 }
3205
3206 leaf = path->nodes[0];
3207 item_size = btrfs_item_size(leaf, extent_slot);
3208 if (unlikely(item_size < sizeof(*ei))) {
3209 ret = -EUCLEAN;
3210 btrfs_err(trans->fs_info,
3211 "unexpected extent item size, has %u expect >= %zu",
3212 item_size, sizeof(*ei));
3213 btrfs_abort_transaction(trans, ret);
3214 goto out;
3215 }
3216 ei = btrfs_item_ptr(leaf, extent_slot,
3217 struct btrfs_extent_item);
3218 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3219 key.type == BTRFS_EXTENT_ITEM_KEY) {
3220 struct btrfs_tree_block_info *bi;
3221
3222 if (item_size < sizeof(*ei) + sizeof(*bi)) {
3223 abort_and_dump(trans, path,
3224 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3225 key.objectid, key.type, key.offset,
3226 path->slots[0], owner_objectid, item_size,
3227 sizeof(*ei) + sizeof(*bi));
3228 ret = -EUCLEAN;
3229 goto out;
3230 }
3231 bi = (struct btrfs_tree_block_info *)(ei + 1);
3232 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3233 }
3234
3235 refs = btrfs_extent_refs(leaf, ei);
3236 if (refs < refs_to_drop) {
3237 abort_and_dump(trans, path,
3238 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3239 refs_to_drop, refs, bytenr, path->slots[0]);
3240 ret = -EUCLEAN;
3241 goto out;
3242 }
3243 refs -= refs_to_drop;
3244
3245 if (refs > 0) {
3246 if (extent_op)
3247 __run_delayed_extent_op(extent_op, leaf, ei);
3248 /*
3249 * In the case of inline back ref, reference count will
3250 * be updated by remove_extent_backref
3251 */
3252 if (iref) {
3253 if (!found_extent) {
3254 abort_and_dump(trans, path,
3255 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3256 path->slots[0]);
3257 ret = -EUCLEAN;
3258 goto out;
3259 }
3260 } else {
3261 btrfs_set_extent_refs(leaf, ei, refs);
3262 btrfs_mark_buffer_dirty(trans, leaf);
3263 }
3264 if (found_extent) {
3265 ret = remove_extent_backref(trans, extent_root, path,
3266 iref, refs_to_drop, is_data);
3267 if (ret) {
3268 btrfs_abort_transaction(trans, ret);
3269 goto out;
3270 }
3271 }
3272 } else {
3273 struct btrfs_squota_delta delta = {
3274 .root = delayed_ref_root,
3275 .num_bytes = num_bytes,
3276 .is_data = is_data,
3277 .is_inc = false,
3278 .generation = btrfs_extent_generation(leaf, ei),
3279 };
3280
3281 /* In this branch refs == 1 */
3282 if (found_extent) {
3283 if (is_data && refs_to_drop !=
3284 extent_data_ref_count(path, iref)) {
3285 abort_and_dump(trans, path,
3286 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3287 extent_data_ref_count(path, iref),
3288 refs_to_drop, path->slots[0]);
3289 ret = -EUCLEAN;
3290 goto out;
3291 }
3292 if (iref) {
3293 if (path->slots[0] != extent_slot) {
3294 abort_and_dump(trans, path,
3295 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3296 key.objectid, key.type,
3297 key.offset, path->slots[0]);
3298 ret = -EUCLEAN;
3299 goto out;
3300 }
3301 } else {
3302 /*
3303 * No inline ref, we must be at SHARED_* item,
3304 * And it's single ref, it must be:
3305 * | extent_slot ||extent_slot + 1|
3306 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3307 */
3308 if (path->slots[0] != extent_slot + 1) {
3309 abort_and_dump(trans, path,
3310 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3311 path->slots[0]);
3312 ret = -EUCLEAN;
3313 goto out;
3314 }
3315 path->slots[0] = extent_slot;
3316 num_to_del = 2;
3317 }
3318 }
3319 /*
3320 * We can't infer the data owner from the delayed ref, so we need
3321 * to try to get it from the owning ref item.
3322 *
3323 * If it is not present, then that extent was not written under
3324 * simple quotas mode, so we don't need to account for its deletion.
3325 */
3326 if (is_data)
3327 delta.root = btrfs_get_extent_owner_root(trans->fs_info,
3328 leaf, extent_slot);
3329
3330 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3331 num_to_del);
3332 if (ret) {
3333 btrfs_abort_transaction(trans, ret);
3334 goto out;
3335 }
3336 btrfs_release_path(path);
3337
3338 ret = do_free_extent_accounting(trans, bytenr, &delta);
3339 }
3340 btrfs_release_path(path);
3341
3342 out:
3343 btrfs_free_path(path);
3344 return ret;
3345 }
3346
3347 /*
3348 * when we free an block, it is possible (and likely) that we free the last
3349 * delayed ref for that extent as well. This searches the delayed ref tree for
3350 * a given extent, and if there are no other delayed refs to be processed, it
3351 * removes it from the tree.
3352 */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)3353 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3354 u64 bytenr)
3355 {
3356 struct btrfs_fs_info *fs_info = trans->fs_info;
3357 struct btrfs_delayed_ref_head *head;
3358 struct btrfs_delayed_ref_root *delayed_refs;
3359 int ret = 0;
3360
3361 delayed_refs = &trans->transaction->delayed_refs;
3362 spin_lock(&delayed_refs->lock);
3363 head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
3364 if (!head)
3365 goto out_delayed_unlock;
3366
3367 spin_lock(&head->lock);
3368 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3369 goto out;
3370
3371 if (cleanup_extent_op(head) != NULL)
3372 goto out;
3373
3374 /*
3375 * waiting for the lock here would deadlock. If someone else has it
3376 * locked they are already in the process of dropping it anyway
3377 */
3378 if (!mutex_trylock(&head->mutex))
3379 goto out;
3380
3381 btrfs_delete_ref_head(fs_info, delayed_refs, head);
3382 head->processing = false;
3383
3384 spin_unlock(&head->lock);
3385 spin_unlock(&delayed_refs->lock);
3386
3387 BUG_ON(head->extent_op);
3388 if (head->must_insert_reserved)
3389 ret = 1;
3390
3391 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
3392 mutex_unlock(&head->mutex);
3393 btrfs_put_delayed_ref_head(head);
3394 return ret;
3395 out:
3396 spin_unlock(&head->lock);
3397
3398 out_delayed_unlock:
3399 spin_unlock(&delayed_refs->lock);
3400 return 0;
3401 }
3402
btrfs_free_tree_block(struct btrfs_trans_handle * trans,u64 root_id,struct extent_buffer * buf,u64 parent,int last_ref)3403 int btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3404 u64 root_id,
3405 struct extent_buffer *buf,
3406 u64 parent, int last_ref)
3407 {
3408 struct btrfs_fs_info *fs_info = trans->fs_info;
3409 struct btrfs_block_group *bg;
3410 int ret;
3411
3412 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3413 struct btrfs_ref generic_ref = {
3414 .action = BTRFS_DROP_DELAYED_REF,
3415 .bytenr = buf->start,
3416 .num_bytes = buf->len,
3417 .parent = parent,
3418 .owning_root = btrfs_header_owner(buf),
3419 .ref_root = root_id,
3420 };
3421
3422 /*
3423 * Assert that the extent buffer is not cleared due to
3424 * EXTENT_BUFFER_ZONED_ZEROOUT. Please refer
3425 * btrfs_clear_buffer_dirty() and btree_csum_one_bio() for
3426 * detail.
3427 */
3428 ASSERT(btrfs_header_bytenr(buf) != 0);
3429
3430 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false);
3431 btrfs_ref_tree_mod(fs_info, &generic_ref);
3432 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3433 if (ret < 0)
3434 return ret;
3435 }
3436
3437 if (!last_ref)
3438 return 0;
3439
3440 if (btrfs_header_generation(buf) != trans->transid)
3441 goto out;
3442
3443 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3444 ret = check_ref_cleanup(trans, buf->start);
3445 if (!ret)
3446 goto out;
3447 }
3448
3449 bg = btrfs_lookup_block_group(fs_info, buf->start);
3450
3451 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3452 pin_down_extent(trans, bg, buf->start, buf->len, 1);
3453 btrfs_put_block_group(bg);
3454 goto out;
3455 }
3456
3457 /*
3458 * If there are tree mod log users we may have recorded mod log
3459 * operations for this node. If we re-allocate this node we
3460 * could replay operations on this node that happened when it
3461 * existed in a completely different root. For example if it
3462 * was part of root A, then was reallocated to root B, and we
3463 * are doing a btrfs_old_search_slot(root b), we could replay
3464 * operations that happened when the block was part of root A,
3465 * giving us an inconsistent view of the btree.
3466 *
3467 * We are safe from races here because at this point no other
3468 * node or root points to this extent buffer, so if after this
3469 * check a new tree mod log user joins we will not have an
3470 * existing log of operations on this node that we have to
3471 * contend with.
3472 */
3473
3474 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)
3475 || btrfs_is_zoned(fs_info)) {
3476 pin_down_extent(trans, bg, buf->start, buf->len, 1);
3477 btrfs_put_block_group(bg);
3478 goto out;
3479 }
3480
3481 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3482
3483 btrfs_add_free_space(bg, buf->start, buf->len);
3484 btrfs_free_reserved_bytes(bg, buf->len, 0);
3485 btrfs_put_block_group(bg);
3486 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3487
3488 out:
3489
3490 /*
3491 * Deleting the buffer, clear the corrupt flag since it doesn't
3492 * matter anymore.
3493 */
3494 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3495 return 0;
3496 }
3497
3498 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_ref * ref)3499 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3500 {
3501 struct btrfs_fs_info *fs_info = trans->fs_info;
3502 int ret;
3503
3504 if (btrfs_is_testing(fs_info))
3505 return 0;
3506
3507 /*
3508 * tree log blocks never actually go into the extent allocation
3509 * tree, just update pinning info and exit early.
3510 */
3511 if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) {
3512 btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes, 1);
3513 ret = 0;
3514 } else if (ref->type == BTRFS_REF_METADATA) {
3515 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3516 } else {
3517 ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3518 }
3519
3520 if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID)
3521 btrfs_ref_tree_mod(fs_info, ref);
3522
3523 return ret;
3524 }
3525
3526 enum btrfs_loop_type {
3527 /*
3528 * Start caching block groups but do not wait for progress or for them
3529 * to be done.
3530 */
3531 LOOP_CACHING_NOWAIT,
3532
3533 /*
3534 * Wait for the block group free_space >= the space we're waiting for if
3535 * the block group isn't cached.
3536 */
3537 LOOP_CACHING_WAIT,
3538
3539 /*
3540 * Allow allocations to happen from block groups that do not yet have a
3541 * size classification.
3542 */
3543 LOOP_UNSET_SIZE_CLASS,
3544
3545 /*
3546 * Allocate a chunk and then retry the allocation.
3547 */
3548 LOOP_ALLOC_CHUNK,
3549
3550 /*
3551 * Ignore the size class restrictions for this allocation.
3552 */
3553 LOOP_WRONG_SIZE_CLASS,
3554
3555 /*
3556 * Ignore the empty size, only try to allocate the number of bytes
3557 * needed for this allocation.
3558 */
3559 LOOP_NO_EMPTY_SIZE,
3560 };
3561
3562 static inline void
btrfs_lock_block_group(struct btrfs_block_group * cache,int delalloc)3563 btrfs_lock_block_group(struct btrfs_block_group *cache,
3564 int delalloc)
3565 {
3566 if (delalloc)
3567 down_read(&cache->data_rwsem);
3568 }
3569
btrfs_grab_block_group(struct btrfs_block_group * cache,int delalloc)3570 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3571 int delalloc)
3572 {
3573 btrfs_get_block_group(cache);
3574 if (delalloc)
3575 down_read(&cache->data_rwsem);
3576 }
3577
btrfs_lock_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,int delalloc)3578 static struct btrfs_block_group *btrfs_lock_cluster(
3579 struct btrfs_block_group *block_group,
3580 struct btrfs_free_cluster *cluster,
3581 int delalloc)
3582 __acquires(&cluster->refill_lock)
3583 {
3584 struct btrfs_block_group *used_bg = NULL;
3585
3586 spin_lock(&cluster->refill_lock);
3587 while (1) {
3588 used_bg = cluster->block_group;
3589 if (!used_bg)
3590 return NULL;
3591
3592 if (used_bg == block_group)
3593 return used_bg;
3594
3595 btrfs_get_block_group(used_bg);
3596
3597 if (!delalloc)
3598 return used_bg;
3599
3600 if (down_read_trylock(&used_bg->data_rwsem))
3601 return used_bg;
3602
3603 spin_unlock(&cluster->refill_lock);
3604
3605 /* We should only have one-level nested. */
3606 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3607
3608 spin_lock(&cluster->refill_lock);
3609 if (used_bg == cluster->block_group)
3610 return used_bg;
3611
3612 up_read(&used_bg->data_rwsem);
3613 btrfs_put_block_group(used_bg);
3614 }
3615 }
3616
3617 static inline void
btrfs_release_block_group(struct btrfs_block_group * cache,int delalloc)3618 btrfs_release_block_group(struct btrfs_block_group *cache,
3619 int delalloc)
3620 {
3621 if (delalloc)
3622 up_read(&cache->data_rwsem);
3623 btrfs_put_block_group(cache);
3624 }
3625
3626 /*
3627 * Helper function for find_free_extent().
3628 *
3629 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3630 * Return >0 to inform caller that we find nothing
3631 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3632 */
find_free_extent_clustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** cluster_bg_ret)3633 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3634 struct find_free_extent_ctl *ffe_ctl,
3635 struct btrfs_block_group **cluster_bg_ret)
3636 {
3637 struct btrfs_block_group *cluster_bg;
3638 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3639 u64 aligned_cluster;
3640 u64 offset;
3641 int ret;
3642
3643 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3644 if (!cluster_bg)
3645 goto refill_cluster;
3646 if (cluster_bg != bg && (cluster_bg->ro ||
3647 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3648 goto release_cluster;
3649
3650 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3651 ffe_ctl->num_bytes, cluster_bg->start,
3652 &ffe_ctl->max_extent_size);
3653 if (offset) {
3654 /* We have a block, we're done */
3655 spin_unlock(&last_ptr->refill_lock);
3656 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3657 *cluster_bg_ret = cluster_bg;
3658 ffe_ctl->found_offset = offset;
3659 return 0;
3660 }
3661 WARN_ON(last_ptr->block_group != cluster_bg);
3662
3663 release_cluster:
3664 /*
3665 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3666 * lets just skip it and let the allocator find whatever block it can
3667 * find. If we reach this point, we will have tried the cluster
3668 * allocator plenty of times and not have found anything, so we are
3669 * likely way too fragmented for the clustering stuff to find anything.
3670 *
3671 * However, if the cluster is taken from the current block group,
3672 * release the cluster first, so that we stand a better chance of
3673 * succeeding in the unclustered allocation.
3674 */
3675 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3676 spin_unlock(&last_ptr->refill_lock);
3677 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3678 return -ENOENT;
3679 }
3680
3681 /* This cluster didn't work out, free it and start over */
3682 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3683
3684 if (cluster_bg != bg)
3685 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3686
3687 refill_cluster:
3688 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3689 spin_unlock(&last_ptr->refill_lock);
3690 return -ENOENT;
3691 }
3692
3693 aligned_cluster = max_t(u64,
3694 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3695 bg->full_stripe_len);
3696 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3697 ffe_ctl->num_bytes, aligned_cluster);
3698 if (ret == 0) {
3699 /* Now pull our allocation out of this cluster */
3700 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3701 ffe_ctl->num_bytes, ffe_ctl->search_start,
3702 &ffe_ctl->max_extent_size);
3703 if (offset) {
3704 /* We found one, proceed */
3705 spin_unlock(&last_ptr->refill_lock);
3706 ffe_ctl->found_offset = offset;
3707 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3708 return 0;
3709 }
3710 }
3711 /*
3712 * At this point we either didn't find a cluster or we weren't able to
3713 * allocate a block from our cluster. Free the cluster we've been
3714 * trying to use, and go to the next block group.
3715 */
3716 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3717 spin_unlock(&last_ptr->refill_lock);
3718 return 1;
3719 }
3720
3721 /*
3722 * Return >0 to inform caller that we find nothing
3723 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3724 */
find_free_extent_unclustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl)3725 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3726 struct find_free_extent_ctl *ffe_ctl)
3727 {
3728 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3729 u64 offset;
3730
3731 /*
3732 * We are doing an unclustered allocation, set the fragmented flag so
3733 * we don't bother trying to setup a cluster again until we get more
3734 * space.
3735 */
3736 if (unlikely(last_ptr)) {
3737 spin_lock(&last_ptr->lock);
3738 last_ptr->fragmented = 1;
3739 spin_unlock(&last_ptr->lock);
3740 }
3741 if (ffe_ctl->cached) {
3742 struct btrfs_free_space_ctl *free_space_ctl;
3743
3744 free_space_ctl = bg->free_space_ctl;
3745 spin_lock(&free_space_ctl->tree_lock);
3746 if (free_space_ctl->free_space <
3747 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3748 ffe_ctl->empty_size) {
3749 ffe_ctl->total_free_space = max_t(u64,
3750 ffe_ctl->total_free_space,
3751 free_space_ctl->free_space);
3752 spin_unlock(&free_space_ctl->tree_lock);
3753 return 1;
3754 }
3755 spin_unlock(&free_space_ctl->tree_lock);
3756 }
3757
3758 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3759 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3760 &ffe_ctl->max_extent_size);
3761 if (!offset)
3762 return 1;
3763 ffe_ctl->found_offset = offset;
3764 return 0;
3765 }
3766
do_allocation_clustered(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3767 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3768 struct find_free_extent_ctl *ffe_ctl,
3769 struct btrfs_block_group **bg_ret)
3770 {
3771 int ret;
3772
3773 /* We want to try and use the cluster allocator, so lets look there */
3774 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3775 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3776 if (ret >= 0)
3777 return ret;
3778 /* ret == -ENOENT case falls through */
3779 }
3780
3781 return find_free_extent_unclustered(block_group, ffe_ctl);
3782 }
3783
3784 /*
3785 * Tree-log block group locking
3786 * ============================
3787 *
3788 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3789 * indicates the starting address of a block group, which is reserved only
3790 * for tree-log metadata.
3791 *
3792 * Lock nesting
3793 * ============
3794 *
3795 * space_info::lock
3796 * block_group::lock
3797 * fs_info::treelog_bg_lock
3798 */
3799
3800 /*
3801 * Simple allocator for sequential-only block group. It only allows sequential
3802 * allocation. No need to play with trees. This function also reserves the
3803 * bytes as in btrfs_add_reserved_bytes.
3804 */
do_allocation_zoned(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3805 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3806 struct find_free_extent_ctl *ffe_ctl,
3807 struct btrfs_block_group **bg_ret)
3808 {
3809 struct btrfs_fs_info *fs_info = block_group->fs_info;
3810 struct btrfs_space_info *space_info = block_group->space_info;
3811 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3812 u64 start = block_group->start;
3813 u64 num_bytes = ffe_ctl->num_bytes;
3814 u64 avail;
3815 u64 bytenr = block_group->start;
3816 u64 log_bytenr;
3817 u64 data_reloc_bytenr;
3818 int ret = 0;
3819 bool skip = false;
3820
3821 ASSERT(btrfs_is_zoned(block_group->fs_info));
3822
3823 /*
3824 * Do not allow non-tree-log blocks in the dedicated tree-log block
3825 * group, and vice versa.
3826 */
3827 spin_lock(&fs_info->treelog_bg_lock);
3828 log_bytenr = fs_info->treelog_bg;
3829 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3830 (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3831 skip = true;
3832 spin_unlock(&fs_info->treelog_bg_lock);
3833 if (skip)
3834 return 1;
3835
3836 /*
3837 * Do not allow non-relocation blocks in the dedicated relocation block
3838 * group, and vice versa.
3839 */
3840 spin_lock(&fs_info->relocation_bg_lock);
3841 data_reloc_bytenr = fs_info->data_reloc_bg;
3842 if (data_reloc_bytenr &&
3843 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3844 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3845 skip = true;
3846 spin_unlock(&fs_info->relocation_bg_lock);
3847 if (skip)
3848 return 1;
3849
3850 /* Check RO and no space case before trying to activate it */
3851 spin_lock(&block_group->lock);
3852 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3853 ret = 1;
3854 /*
3855 * May need to clear fs_info->{treelog,data_reloc}_bg.
3856 * Return the error after taking the locks.
3857 */
3858 }
3859 spin_unlock(&block_group->lock);
3860
3861 /* Metadata block group is activated at write time. */
3862 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3863 !btrfs_zone_activate(block_group)) {
3864 ret = 1;
3865 /*
3866 * May need to clear fs_info->{treelog,data_reloc}_bg.
3867 * Return the error after taking the locks.
3868 */
3869 }
3870
3871 spin_lock(&space_info->lock);
3872 spin_lock(&block_group->lock);
3873 spin_lock(&fs_info->treelog_bg_lock);
3874 spin_lock(&fs_info->relocation_bg_lock);
3875
3876 if (ret)
3877 goto out;
3878
3879 ASSERT(!ffe_ctl->for_treelog ||
3880 block_group->start == fs_info->treelog_bg ||
3881 fs_info->treelog_bg == 0);
3882 ASSERT(!ffe_ctl->for_data_reloc ||
3883 block_group->start == fs_info->data_reloc_bg ||
3884 fs_info->data_reloc_bg == 0);
3885
3886 if (block_group->ro ||
3887 (!ffe_ctl->for_data_reloc &&
3888 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3889 ret = 1;
3890 goto out;
3891 }
3892
3893 /*
3894 * Do not allow currently using block group to be tree-log dedicated
3895 * block group.
3896 */
3897 if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3898 (block_group->used || block_group->reserved)) {
3899 ret = 1;
3900 goto out;
3901 }
3902
3903 /*
3904 * Do not allow currently used block group to be the data relocation
3905 * dedicated block group.
3906 */
3907 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3908 (block_group->used || block_group->reserved)) {
3909 ret = 1;
3910 goto out;
3911 }
3912
3913 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3914 avail = block_group->zone_capacity - block_group->alloc_offset;
3915 if (avail < num_bytes) {
3916 if (ffe_ctl->max_extent_size < avail) {
3917 /*
3918 * With sequential allocator, free space is always
3919 * contiguous
3920 */
3921 ffe_ctl->max_extent_size = avail;
3922 ffe_ctl->total_free_space = avail;
3923 }
3924 ret = 1;
3925 goto out;
3926 }
3927
3928 if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3929 fs_info->treelog_bg = block_group->start;
3930
3931 if (ffe_ctl->for_data_reloc) {
3932 if (!fs_info->data_reloc_bg)
3933 fs_info->data_reloc_bg = block_group->start;
3934 /*
3935 * Do not allow allocations from this block group, unless it is
3936 * for data relocation. Compared to increasing the ->ro, setting
3937 * the ->zoned_data_reloc_ongoing flag still allows nocow
3938 * writers to come in. See btrfs_inc_nocow_writers().
3939 *
3940 * We need to disable an allocation to avoid an allocation of
3941 * regular (non-relocation data) extent. With mix of relocation
3942 * extents and regular extents, we can dispatch WRITE commands
3943 * (for relocation extents) and ZONE APPEND commands (for
3944 * regular extents) at the same time to the same zone, which
3945 * easily break the write pointer.
3946 *
3947 * Also, this flag avoids this block group to be zone finished.
3948 */
3949 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3950 }
3951
3952 ffe_ctl->found_offset = start + block_group->alloc_offset;
3953 block_group->alloc_offset += num_bytes;
3954 spin_lock(&ctl->tree_lock);
3955 ctl->free_space -= num_bytes;
3956 spin_unlock(&ctl->tree_lock);
3957
3958 /*
3959 * We do not check if found_offset is aligned to stripesize. The
3960 * address is anyway rewritten when using zone append writing.
3961 */
3962
3963 ffe_ctl->search_start = ffe_ctl->found_offset;
3964
3965 out:
3966 if (ret && ffe_ctl->for_treelog)
3967 fs_info->treelog_bg = 0;
3968 if (ret && ffe_ctl->for_data_reloc)
3969 fs_info->data_reloc_bg = 0;
3970 spin_unlock(&fs_info->relocation_bg_lock);
3971 spin_unlock(&fs_info->treelog_bg_lock);
3972 spin_unlock(&block_group->lock);
3973 spin_unlock(&space_info->lock);
3974 return ret;
3975 }
3976
do_allocation(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3977 static int do_allocation(struct btrfs_block_group *block_group,
3978 struct find_free_extent_ctl *ffe_ctl,
3979 struct btrfs_block_group **bg_ret)
3980 {
3981 switch (ffe_ctl->policy) {
3982 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3983 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3984 case BTRFS_EXTENT_ALLOC_ZONED:
3985 return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3986 default:
3987 BUG();
3988 }
3989 }
3990
release_block_group(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,int delalloc)3991 static void release_block_group(struct btrfs_block_group *block_group,
3992 struct find_free_extent_ctl *ffe_ctl,
3993 int delalloc)
3994 {
3995 switch (ffe_ctl->policy) {
3996 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3997 ffe_ctl->retry_uncached = false;
3998 break;
3999 case BTRFS_EXTENT_ALLOC_ZONED:
4000 /* Nothing to do */
4001 break;
4002 default:
4003 BUG();
4004 }
4005
4006 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4007 ffe_ctl->index);
4008 btrfs_release_block_group(block_group, delalloc);
4009 }
4010
found_extent_clustered(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)4011 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4012 struct btrfs_key *ins)
4013 {
4014 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4015
4016 if (!ffe_ctl->use_cluster && last_ptr) {
4017 spin_lock(&last_ptr->lock);
4018 last_ptr->window_start = ins->objectid;
4019 spin_unlock(&last_ptr->lock);
4020 }
4021 }
4022
found_extent(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)4023 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4024 struct btrfs_key *ins)
4025 {
4026 switch (ffe_ctl->policy) {
4027 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4028 found_extent_clustered(ffe_ctl, ins);
4029 break;
4030 case BTRFS_EXTENT_ALLOC_ZONED:
4031 /* Nothing to do */
4032 break;
4033 default:
4034 BUG();
4035 }
4036 }
4037
can_allocate_chunk_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4038 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4039 struct find_free_extent_ctl *ffe_ctl)
4040 {
4041 /* Block group's activeness is not a requirement for METADATA block groups. */
4042 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4043 return 0;
4044
4045 /* If we can activate new zone, just allocate a chunk and use it */
4046 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
4047 return 0;
4048
4049 /*
4050 * We already reached the max active zones. Try to finish one block
4051 * group to make a room for a new block group. This is only possible
4052 * for a data block group because btrfs_zone_finish() may need to wait
4053 * for a running transaction which can cause a deadlock for metadata
4054 * allocation.
4055 */
4056 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4057 int ret = btrfs_zone_finish_one_bg(fs_info);
4058
4059 if (ret == 1)
4060 return 0;
4061 else if (ret < 0)
4062 return ret;
4063 }
4064
4065 /*
4066 * If we have enough free space left in an already active block group
4067 * and we can't activate any other zone now, do not allow allocating a
4068 * new chunk and let find_free_extent() retry with a smaller size.
4069 */
4070 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4071 return -ENOSPC;
4072
4073 /*
4074 * Even min_alloc_size is not left in any block groups. Since we cannot
4075 * activate a new block group, allocating it may not help. Let's tell a
4076 * caller to try again and hope it progress something by writing some
4077 * parts of the region. That is only possible for data block groups,
4078 * where a part of the region can be written.
4079 */
4080 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4081 return -EAGAIN;
4082
4083 /*
4084 * We cannot activate a new block group and no enough space left in any
4085 * block groups. So, allocating a new block group may not help. But,
4086 * there is nothing to do anyway, so let's go with it.
4087 */
4088 return 0;
4089 }
4090
can_allocate_chunk(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4091 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4092 struct find_free_extent_ctl *ffe_ctl)
4093 {
4094 switch (ffe_ctl->policy) {
4095 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4096 return 0;
4097 case BTRFS_EXTENT_ALLOC_ZONED:
4098 return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4099 default:
4100 BUG();
4101 }
4102 }
4103
4104 /*
4105 * Return >0 means caller needs to re-search for free extent
4106 * Return 0 means we have the needed free extent.
4107 * Return <0 means we failed to locate any free extent.
4108 */
find_free_extent_update_loop(struct btrfs_fs_info * fs_info,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl,bool full_search)4109 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4110 struct btrfs_key *ins,
4111 struct find_free_extent_ctl *ffe_ctl,
4112 bool full_search)
4113 {
4114 struct btrfs_root *root = fs_info->chunk_root;
4115 int ret;
4116
4117 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4118 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4119 ffe_ctl->orig_have_caching_bg = true;
4120
4121 if (ins->objectid) {
4122 found_extent(ffe_ctl, ins);
4123 return 0;
4124 }
4125
4126 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4127 return 1;
4128
4129 ffe_ctl->index++;
4130 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4131 return 1;
4132
4133 /* See the comments for btrfs_loop_type for an explanation of the phases. */
4134 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4135 ffe_ctl->index = 0;
4136 /*
4137 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4138 * any uncached bgs and we've already done a full search
4139 * through.
4140 */
4141 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4142 (!ffe_ctl->orig_have_caching_bg && full_search))
4143 ffe_ctl->loop++;
4144 ffe_ctl->loop++;
4145
4146 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4147 struct btrfs_trans_handle *trans;
4148 int exist = 0;
4149
4150 /* Check if allocation policy allows to create a new chunk */
4151 ret = can_allocate_chunk(fs_info, ffe_ctl);
4152 if (ret)
4153 return ret;
4154
4155 trans = current->journal_info;
4156 if (trans)
4157 exist = 1;
4158 else
4159 trans = btrfs_join_transaction(root);
4160
4161 if (IS_ERR(trans)) {
4162 ret = PTR_ERR(trans);
4163 return ret;
4164 }
4165
4166 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4167 CHUNK_ALLOC_FORCE_FOR_EXTENT);
4168
4169 /* Do not bail out on ENOSPC since we can do more. */
4170 if (ret == -ENOSPC) {
4171 ret = 0;
4172 ffe_ctl->loop++;
4173 }
4174 else if (ret < 0)
4175 btrfs_abort_transaction(trans, ret);
4176 else
4177 ret = 0;
4178 if (!exist)
4179 btrfs_end_transaction(trans);
4180 if (ret)
4181 return ret;
4182 }
4183
4184 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4185 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4186 return -ENOSPC;
4187
4188 /*
4189 * Don't loop again if we already have no empty_size and
4190 * no empty_cluster.
4191 */
4192 if (ffe_ctl->empty_size == 0 &&
4193 ffe_ctl->empty_cluster == 0)
4194 return -ENOSPC;
4195 ffe_ctl->empty_size = 0;
4196 ffe_ctl->empty_cluster = 0;
4197 }
4198 return 1;
4199 }
4200 return -ENOSPC;
4201 }
4202
find_free_extent_check_size_class(struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group * bg)4203 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4204 struct btrfs_block_group *bg)
4205 {
4206 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4207 return true;
4208 if (!btrfs_block_group_should_use_size_class(bg))
4209 return true;
4210 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4211 return true;
4212 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4213 bg->size_class == BTRFS_BG_SZ_NONE)
4214 return true;
4215 return ffe_ctl->size_class == bg->size_class;
4216 }
4217
prepare_allocation_clustered(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4218 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4219 struct find_free_extent_ctl *ffe_ctl,
4220 struct btrfs_space_info *space_info,
4221 struct btrfs_key *ins)
4222 {
4223 /*
4224 * If our free space is heavily fragmented we may not be able to make
4225 * big contiguous allocations, so instead of doing the expensive search
4226 * for free space, simply return ENOSPC with our max_extent_size so we
4227 * can go ahead and search for a more manageable chunk.
4228 *
4229 * If our max_extent_size is large enough for our allocation simply
4230 * disable clustering since we will likely not be able to find enough
4231 * space to create a cluster and induce latency trying.
4232 */
4233 if (space_info->max_extent_size) {
4234 spin_lock(&space_info->lock);
4235 if (space_info->max_extent_size &&
4236 ffe_ctl->num_bytes > space_info->max_extent_size) {
4237 ins->offset = space_info->max_extent_size;
4238 spin_unlock(&space_info->lock);
4239 return -ENOSPC;
4240 } else if (space_info->max_extent_size) {
4241 ffe_ctl->use_cluster = false;
4242 }
4243 spin_unlock(&space_info->lock);
4244 }
4245
4246 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4247 &ffe_ctl->empty_cluster);
4248 if (ffe_ctl->last_ptr) {
4249 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4250
4251 spin_lock(&last_ptr->lock);
4252 if (last_ptr->block_group)
4253 ffe_ctl->hint_byte = last_ptr->window_start;
4254 if (last_ptr->fragmented) {
4255 /*
4256 * We still set window_start so we can keep track of the
4257 * last place we found an allocation to try and save
4258 * some time.
4259 */
4260 ffe_ctl->hint_byte = last_ptr->window_start;
4261 ffe_ctl->use_cluster = false;
4262 }
4263 spin_unlock(&last_ptr->lock);
4264 }
4265
4266 return 0;
4267 }
4268
prepare_allocation_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4269 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4270 struct find_free_extent_ctl *ffe_ctl)
4271 {
4272 if (ffe_ctl->for_treelog) {
4273 spin_lock(&fs_info->treelog_bg_lock);
4274 if (fs_info->treelog_bg)
4275 ffe_ctl->hint_byte = fs_info->treelog_bg;
4276 spin_unlock(&fs_info->treelog_bg_lock);
4277 } else if (ffe_ctl->for_data_reloc) {
4278 spin_lock(&fs_info->relocation_bg_lock);
4279 if (fs_info->data_reloc_bg)
4280 ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4281 spin_unlock(&fs_info->relocation_bg_lock);
4282 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4283 struct btrfs_block_group *block_group;
4284
4285 spin_lock(&fs_info->zone_active_bgs_lock);
4286 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4287 /*
4288 * No lock is OK here because avail is monotinically
4289 * decreasing, and this is just a hint.
4290 */
4291 u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4292
4293 if (block_group_bits(block_group, ffe_ctl->flags) &&
4294 avail >= ffe_ctl->num_bytes) {
4295 ffe_ctl->hint_byte = block_group->start;
4296 break;
4297 }
4298 }
4299 spin_unlock(&fs_info->zone_active_bgs_lock);
4300 }
4301
4302 return 0;
4303 }
4304
prepare_allocation(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4305 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4306 struct find_free_extent_ctl *ffe_ctl,
4307 struct btrfs_space_info *space_info,
4308 struct btrfs_key *ins)
4309 {
4310 switch (ffe_ctl->policy) {
4311 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4312 return prepare_allocation_clustered(fs_info, ffe_ctl,
4313 space_info, ins);
4314 case BTRFS_EXTENT_ALLOC_ZONED:
4315 return prepare_allocation_zoned(fs_info, ffe_ctl);
4316 default:
4317 BUG();
4318 }
4319 }
4320
4321 /*
4322 * walks the btree of allocated extents and find a hole of a given size.
4323 * The key ins is changed to record the hole:
4324 * ins->objectid == start position
4325 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4326 * ins->offset == the size of the hole.
4327 * Any available blocks before search_start are skipped.
4328 *
4329 * If there is no suitable free space, we will record the max size of
4330 * the free space extent currently.
4331 *
4332 * The overall logic and call chain:
4333 *
4334 * find_free_extent()
4335 * |- Iterate through all block groups
4336 * | |- Get a valid block group
4337 * | |- Try to do clustered allocation in that block group
4338 * | |- Try to do unclustered allocation in that block group
4339 * | |- Check if the result is valid
4340 * | | |- If valid, then exit
4341 * | |- Jump to next block group
4342 * |
4343 * |- Push harder to find free extents
4344 * |- If not found, re-iterate all block groups
4345 */
find_free_extent(struct btrfs_root * root,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl)4346 static noinline int find_free_extent(struct btrfs_root *root,
4347 struct btrfs_key *ins,
4348 struct find_free_extent_ctl *ffe_ctl)
4349 {
4350 struct btrfs_fs_info *fs_info = root->fs_info;
4351 int ret = 0;
4352 int cache_block_group_error = 0;
4353 struct btrfs_block_group *block_group = NULL;
4354 struct btrfs_space_info *space_info;
4355 bool full_search = false;
4356
4357 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4358
4359 ffe_ctl->search_start = 0;
4360 /* For clustered allocation */
4361 ffe_ctl->empty_cluster = 0;
4362 ffe_ctl->last_ptr = NULL;
4363 ffe_ctl->use_cluster = true;
4364 ffe_ctl->have_caching_bg = false;
4365 ffe_ctl->orig_have_caching_bg = false;
4366 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4367 ffe_ctl->loop = 0;
4368 ffe_ctl->retry_uncached = false;
4369 ffe_ctl->cached = 0;
4370 ffe_ctl->max_extent_size = 0;
4371 ffe_ctl->total_free_space = 0;
4372 ffe_ctl->found_offset = 0;
4373 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4374 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4375
4376 if (btrfs_is_zoned(fs_info))
4377 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4378
4379 ins->type = BTRFS_EXTENT_ITEM_KEY;
4380 ins->objectid = 0;
4381 ins->offset = 0;
4382
4383 trace_find_free_extent(root, ffe_ctl);
4384
4385 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4386 if (!space_info) {
4387 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4388 return -ENOSPC;
4389 }
4390
4391 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4392 if (ret < 0)
4393 return ret;
4394
4395 ffe_ctl->search_start = max(ffe_ctl->search_start,
4396 first_logical_byte(fs_info));
4397 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4398 if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4399 block_group = btrfs_lookup_block_group(fs_info,
4400 ffe_ctl->search_start);
4401 /*
4402 * we don't want to use the block group if it doesn't match our
4403 * allocation bits, or if its not cached.
4404 *
4405 * However if we are re-searching with an ideal block group
4406 * picked out then we don't care that the block group is cached.
4407 */
4408 if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4409 block_group->cached != BTRFS_CACHE_NO) {
4410 down_read(&space_info->groups_sem);
4411 if (list_empty(&block_group->list) ||
4412 block_group->ro) {
4413 /*
4414 * someone is removing this block group,
4415 * we can't jump into the have_block_group
4416 * target because our list pointers are not
4417 * valid
4418 */
4419 btrfs_put_block_group(block_group);
4420 up_read(&space_info->groups_sem);
4421 } else {
4422 ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4423 block_group->flags);
4424 btrfs_lock_block_group(block_group,
4425 ffe_ctl->delalloc);
4426 ffe_ctl->hinted = true;
4427 goto have_block_group;
4428 }
4429 } else if (block_group) {
4430 btrfs_put_block_group(block_group);
4431 }
4432 }
4433 search:
4434 trace_find_free_extent_search_loop(root, ffe_ctl);
4435 ffe_ctl->have_caching_bg = false;
4436 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4437 ffe_ctl->index == 0)
4438 full_search = true;
4439 down_read(&space_info->groups_sem);
4440 list_for_each_entry(block_group,
4441 &space_info->block_groups[ffe_ctl->index], list) {
4442 struct btrfs_block_group *bg_ret;
4443
4444 ffe_ctl->hinted = false;
4445 /* If the block group is read-only, we can skip it entirely. */
4446 if (unlikely(block_group->ro)) {
4447 if (ffe_ctl->for_treelog)
4448 btrfs_clear_treelog_bg(block_group);
4449 if (ffe_ctl->for_data_reloc)
4450 btrfs_clear_data_reloc_bg(block_group);
4451 continue;
4452 }
4453
4454 btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4455 ffe_ctl->search_start = block_group->start;
4456
4457 /*
4458 * this can happen if we end up cycling through all the
4459 * raid types, but we want to make sure we only allocate
4460 * for the proper type.
4461 */
4462 if (!block_group_bits(block_group, ffe_ctl->flags)) {
4463 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4464 BTRFS_BLOCK_GROUP_RAID1_MASK |
4465 BTRFS_BLOCK_GROUP_RAID56_MASK |
4466 BTRFS_BLOCK_GROUP_RAID10;
4467
4468 /*
4469 * if they asked for extra copies and this block group
4470 * doesn't provide them, bail. This does allow us to
4471 * fill raid0 from raid1.
4472 */
4473 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4474 goto loop;
4475
4476 /*
4477 * This block group has different flags than we want.
4478 * It's possible that we have MIXED_GROUP flag but no
4479 * block group is mixed. Just skip such block group.
4480 */
4481 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4482 continue;
4483 }
4484
4485 have_block_group:
4486 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4487 ffe_ctl->cached = btrfs_block_group_done(block_group);
4488 if (unlikely(!ffe_ctl->cached)) {
4489 ffe_ctl->have_caching_bg = true;
4490 ret = btrfs_cache_block_group(block_group, false);
4491
4492 /*
4493 * If we get ENOMEM here or something else we want to
4494 * try other block groups, because it may not be fatal.
4495 * However if we can't find anything else we need to
4496 * save our return here so that we return the actual
4497 * error that caused problems, not ENOSPC.
4498 */
4499 if (ret < 0) {
4500 if (!cache_block_group_error)
4501 cache_block_group_error = ret;
4502 ret = 0;
4503 goto loop;
4504 }
4505 ret = 0;
4506 }
4507
4508 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4509 if (!cache_block_group_error)
4510 cache_block_group_error = -EIO;
4511 goto loop;
4512 }
4513
4514 if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4515 goto loop;
4516
4517 bg_ret = NULL;
4518 ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4519 if (ret > 0)
4520 goto loop;
4521
4522 if (bg_ret && bg_ret != block_group) {
4523 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4524 block_group = bg_ret;
4525 }
4526
4527 /* Checks */
4528 ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4529 fs_info->stripesize);
4530
4531 /* move on to the next group */
4532 if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4533 block_group->start + block_group->length) {
4534 btrfs_add_free_space_unused(block_group,
4535 ffe_ctl->found_offset,
4536 ffe_ctl->num_bytes);
4537 goto loop;
4538 }
4539
4540 if (ffe_ctl->found_offset < ffe_ctl->search_start)
4541 btrfs_add_free_space_unused(block_group,
4542 ffe_ctl->found_offset,
4543 ffe_ctl->search_start - ffe_ctl->found_offset);
4544
4545 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4546 ffe_ctl->num_bytes,
4547 ffe_ctl->delalloc,
4548 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4549 if (ret == -EAGAIN) {
4550 btrfs_add_free_space_unused(block_group,
4551 ffe_ctl->found_offset,
4552 ffe_ctl->num_bytes);
4553 goto loop;
4554 }
4555 btrfs_inc_block_group_reservations(block_group);
4556
4557 /* we are all good, lets return */
4558 ins->objectid = ffe_ctl->search_start;
4559 ins->offset = ffe_ctl->num_bytes;
4560
4561 trace_btrfs_reserve_extent(block_group, ffe_ctl);
4562 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4563 break;
4564 loop:
4565 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4566 !ffe_ctl->retry_uncached) {
4567 ffe_ctl->retry_uncached = true;
4568 btrfs_wait_block_group_cache_progress(block_group,
4569 ffe_ctl->num_bytes +
4570 ffe_ctl->empty_cluster +
4571 ffe_ctl->empty_size);
4572 goto have_block_group;
4573 }
4574 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4575 cond_resched();
4576 }
4577 up_read(&space_info->groups_sem);
4578
4579 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4580 if (ret > 0)
4581 goto search;
4582
4583 if (ret == -ENOSPC && !cache_block_group_error) {
4584 /*
4585 * Use ffe_ctl->total_free_space as fallback if we can't find
4586 * any contiguous hole.
4587 */
4588 if (!ffe_ctl->max_extent_size)
4589 ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4590 spin_lock(&space_info->lock);
4591 space_info->max_extent_size = ffe_ctl->max_extent_size;
4592 spin_unlock(&space_info->lock);
4593 ins->offset = ffe_ctl->max_extent_size;
4594 } else if (ret == -ENOSPC) {
4595 ret = cache_block_group_error;
4596 }
4597 return ret;
4598 }
4599
4600 /*
4601 * Entry point to the extent allocator. Tries to find a hole that is at least
4602 * as big as @num_bytes.
4603 *
4604 * @root - The root that will contain this extent
4605 *
4606 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4607 * is used for accounting purposes. This value differs
4608 * from @num_bytes only in the case of compressed extents.
4609 *
4610 * @num_bytes - Number of bytes to allocate on-disk.
4611 *
4612 * @min_alloc_size - Indicates the minimum amount of space that the
4613 * allocator should try to satisfy. In some cases
4614 * @num_bytes may be larger than what is required and if
4615 * the filesystem is fragmented then allocation fails.
4616 * However, the presence of @min_alloc_size gives a
4617 * chance to try and satisfy the smaller allocation.
4618 *
4619 * @empty_size - A hint that you plan on doing more COW. This is the
4620 * size in bytes the allocator should try to find free
4621 * next to the block it returns. This is just a hint and
4622 * may be ignored by the allocator.
4623 *
4624 * @hint_byte - Hint to the allocator to start searching above the byte
4625 * address passed. It might be ignored.
4626 *
4627 * @ins - This key is modified to record the found hole. It will
4628 * have the following values:
4629 * ins->objectid == start position
4630 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4631 * ins->offset == the size of the hole.
4632 *
4633 * @is_data - Boolean flag indicating whether an extent is
4634 * allocated for data (true) or metadata (false)
4635 *
4636 * @delalloc - Boolean flag indicating whether this allocation is for
4637 * delalloc or not. If 'true' data_rwsem of block groups
4638 * is going to be acquired.
4639 *
4640 *
4641 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4642 * case -ENOSPC is returned then @ins->offset will contain the size of the
4643 * largest available hole the allocator managed to find.
4644 */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)4645 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4646 u64 num_bytes, u64 min_alloc_size,
4647 u64 empty_size, u64 hint_byte,
4648 struct btrfs_key *ins, int is_data, int delalloc)
4649 {
4650 struct btrfs_fs_info *fs_info = root->fs_info;
4651 struct find_free_extent_ctl ffe_ctl = {};
4652 bool final_tried = num_bytes == min_alloc_size;
4653 u64 flags;
4654 int ret;
4655 bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
4656 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4657
4658 flags = get_alloc_profile_by_root(root, is_data);
4659 again:
4660 WARN_ON(num_bytes < fs_info->sectorsize);
4661
4662 ffe_ctl.ram_bytes = ram_bytes;
4663 ffe_ctl.num_bytes = num_bytes;
4664 ffe_ctl.min_alloc_size = min_alloc_size;
4665 ffe_ctl.empty_size = empty_size;
4666 ffe_ctl.flags = flags;
4667 ffe_ctl.delalloc = delalloc;
4668 ffe_ctl.hint_byte = hint_byte;
4669 ffe_ctl.for_treelog = for_treelog;
4670 ffe_ctl.for_data_reloc = for_data_reloc;
4671
4672 ret = find_free_extent(root, ins, &ffe_ctl);
4673 if (!ret && !is_data) {
4674 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4675 } else if (ret == -ENOSPC) {
4676 if (!final_tried && ins->offset) {
4677 num_bytes = min(num_bytes >> 1, ins->offset);
4678 num_bytes = round_down(num_bytes,
4679 fs_info->sectorsize);
4680 num_bytes = max(num_bytes, min_alloc_size);
4681 ram_bytes = num_bytes;
4682 if (num_bytes == min_alloc_size)
4683 final_tried = true;
4684 goto again;
4685 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4686 struct btrfs_space_info *sinfo;
4687
4688 sinfo = btrfs_find_space_info(fs_info, flags);
4689 btrfs_err(fs_info,
4690 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4691 flags, num_bytes, for_treelog, for_data_reloc);
4692 if (sinfo)
4693 btrfs_dump_space_info(fs_info, sinfo,
4694 num_bytes, 1);
4695 }
4696 }
4697
4698 return ret;
4699 }
4700
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)4701 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4702 u64 start, u64 len, int delalloc)
4703 {
4704 struct btrfs_block_group *cache;
4705
4706 cache = btrfs_lookup_block_group(fs_info, start);
4707 if (!cache) {
4708 btrfs_err(fs_info, "Unable to find block group for %llu",
4709 start);
4710 return -ENOSPC;
4711 }
4712
4713 btrfs_add_free_space(cache, start, len);
4714 btrfs_free_reserved_bytes(cache, len, delalloc);
4715 trace_btrfs_reserved_extent_free(fs_info, start, len);
4716
4717 btrfs_put_block_group(cache);
4718 return 0;
4719 }
4720
btrfs_pin_reserved_extent(struct btrfs_trans_handle * trans,const struct extent_buffer * eb)4721 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4722 const struct extent_buffer *eb)
4723 {
4724 struct btrfs_block_group *cache;
4725 int ret = 0;
4726
4727 cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
4728 if (!cache) {
4729 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4730 eb->start);
4731 return -ENOSPC;
4732 }
4733
4734 ret = pin_down_extent(trans, cache, eb->start, eb->len, 1);
4735 btrfs_put_block_group(cache);
4736 return ret;
4737 }
4738
alloc_reserved_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)4739 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4740 u64 num_bytes)
4741 {
4742 struct btrfs_fs_info *fs_info = trans->fs_info;
4743 int ret;
4744
4745 ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4746 if (ret)
4747 return ret;
4748
4749 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4750 if (ret) {
4751 ASSERT(!ret);
4752 btrfs_err(fs_info, "update block group failed for %llu %llu",
4753 bytenr, num_bytes);
4754 return ret;
4755 }
4756
4757 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4758 return 0;
4759 }
4760
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod,u64 oref_root)4761 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4762 u64 parent, u64 root_objectid,
4763 u64 flags, u64 owner, u64 offset,
4764 struct btrfs_key *ins, int ref_mod, u64 oref_root)
4765 {
4766 struct btrfs_fs_info *fs_info = trans->fs_info;
4767 struct btrfs_root *extent_root;
4768 int ret;
4769 struct btrfs_extent_item *extent_item;
4770 struct btrfs_extent_owner_ref *oref;
4771 struct btrfs_extent_inline_ref *iref;
4772 struct btrfs_path *path;
4773 struct extent_buffer *leaf;
4774 int type;
4775 u32 size;
4776 const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4777
4778 if (parent > 0)
4779 type = BTRFS_SHARED_DATA_REF_KEY;
4780 else
4781 type = BTRFS_EXTENT_DATA_REF_KEY;
4782
4783 size = sizeof(*extent_item);
4784 if (simple_quota)
4785 size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4786 size += btrfs_extent_inline_ref_size(type);
4787
4788 path = btrfs_alloc_path();
4789 if (!path)
4790 return -ENOMEM;
4791
4792 extent_root = btrfs_extent_root(fs_info, ins->objectid);
4793 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4794 if (ret) {
4795 btrfs_free_path(path);
4796 return ret;
4797 }
4798
4799 leaf = path->nodes[0];
4800 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4801 struct btrfs_extent_item);
4802 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4803 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4804 btrfs_set_extent_flags(leaf, extent_item,
4805 flags | BTRFS_EXTENT_FLAG_DATA);
4806
4807 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4808 if (simple_quota) {
4809 btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY);
4810 oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4811 btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root);
4812 iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4813 }
4814 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4815
4816 if (parent > 0) {
4817 struct btrfs_shared_data_ref *ref;
4818 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4819 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4820 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4821 } else {
4822 struct btrfs_extent_data_ref *ref;
4823 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4824 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4825 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4826 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4827 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4828 }
4829
4830 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
4831 btrfs_free_path(path);
4832
4833 return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4834 }
4835
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)4836 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4837 struct btrfs_delayed_ref_node *node,
4838 struct btrfs_delayed_extent_op *extent_op)
4839 {
4840 struct btrfs_fs_info *fs_info = trans->fs_info;
4841 struct btrfs_root *extent_root;
4842 int ret;
4843 struct btrfs_extent_item *extent_item;
4844 struct btrfs_key extent_key;
4845 struct btrfs_tree_block_info *block_info;
4846 struct btrfs_extent_inline_ref *iref;
4847 struct btrfs_path *path;
4848 struct extent_buffer *leaf;
4849 u32 size = sizeof(*extent_item) + sizeof(*iref);
4850 const u64 flags = (extent_op ? extent_op->flags_to_set : 0);
4851 /* The owner of a tree block is the level. */
4852 int level = btrfs_delayed_ref_owner(node);
4853 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4854
4855 extent_key.objectid = node->bytenr;
4856 if (skinny_metadata) {
4857 /* The owner of a tree block is the level. */
4858 extent_key.offset = level;
4859 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4860 } else {
4861 extent_key.offset = node->num_bytes;
4862 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4863 size += sizeof(*block_info);
4864 }
4865
4866 path = btrfs_alloc_path();
4867 if (!path)
4868 return -ENOMEM;
4869
4870 extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4871 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4872 size);
4873 if (ret) {
4874 btrfs_free_path(path);
4875 return ret;
4876 }
4877
4878 leaf = path->nodes[0];
4879 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4880 struct btrfs_extent_item);
4881 btrfs_set_extent_refs(leaf, extent_item, 1);
4882 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4883 btrfs_set_extent_flags(leaf, extent_item,
4884 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4885
4886 if (skinny_metadata) {
4887 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4888 } else {
4889 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4890 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4891 btrfs_set_tree_block_level(leaf, block_info, level);
4892 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4893 }
4894
4895 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4896 btrfs_set_extent_inline_ref_type(leaf, iref,
4897 BTRFS_SHARED_BLOCK_REF_KEY);
4898 btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent);
4899 } else {
4900 btrfs_set_extent_inline_ref_type(leaf, iref,
4901 BTRFS_TREE_BLOCK_REF_KEY);
4902 btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root);
4903 }
4904
4905 btrfs_mark_buffer_dirty(trans, leaf);
4906 btrfs_free_path(path);
4907
4908 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4909 }
4910
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)4911 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4912 struct btrfs_root *root, u64 owner,
4913 u64 offset, u64 ram_bytes,
4914 struct btrfs_key *ins)
4915 {
4916 struct btrfs_ref generic_ref = {
4917 .action = BTRFS_ADD_DELAYED_EXTENT,
4918 .bytenr = ins->objectid,
4919 .num_bytes = ins->offset,
4920 .owning_root = btrfs_root_id(root),
4921 .ref_root = btrfs_root_id(root),
4922 };
4923
4924 ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID);
4925
4926 if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root))
4927 generic_ref.owning_root = root->relocation_src_root;
4928
4929 btrfs_init_data_ref(&generic_ref, owner, offset, 0, false);
4930 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4931
4932 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4933 }
4934
4935 /*
4936 * this is used by the tree logging recovery code. It records that
4937 * an extent has been allocated and makes sure to clear the free
4938 * space cache bits as well
4939 */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)4940 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4941 u64 root_objectid, u64 owner, u64 offset,
4942 struct btrfs_key *ins)
4943 {
4944 struct btrfs_fs_info *fs_info = trans->fs_info;
4945 int ret;
4946 struct btrfs_block_group *block_group;
4947 struct btrfs_space_info *space_info;
4948 struct btrfs_squota_delta delta = {
4949 .root = root_objectid,
4950 .num_bytes = ins->offset,
4951 .generation = trans->transid,
4952 .is_data = true,
4953 .is_inc = true,
4954 };
4955
4956 /*
4957 * Mixed block groups will exclude before processing the log so we only
4958 * need to do the exclude dance if this fs isn't mixed.
4959 */
4960 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4961 ret = __exclude_logged_extent(fs_info, ins->objectid,
4962 ins->offset);
4963 if (ret)
4964 return ret;
4965 }
4966
4967 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4968 if (!block_group)
4969 return -EINVAL;
4970
4971 space_info = block_group->space_info;
4972 spin_lock(&space_info->lock);
4973 spin_lock(&block_group->lock);
4974 space_info->bytes_reserved += ins->offset;
4975 block_group->reserved += ins->offset;
4976 spin_unlock(&block_group->lock);
4977 spin_unlock(&space_info->lock);
4978
4979 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4980 offset, ins, 1, root_objectid);
4981 if (ret)
4982 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4983 ret = btrfs_record_squota_delta(fs_info, &delta);
4984 btrfs_put_block_group(block_group);
4985 return ret;
4986 }
4987
4988 #ifdef CONFIG_BTRFS_DEBUG
4989 /*
4990 * Extra safety check in case the extent tree is corrupted and extent allocator
4991 * chooses to use a tree block which is already used and locked.
4992 */
check_eb_lock_owner(const struct extent_buffer * eb)4993 static bool check_eb_lock_owner(const struct extent_buffer *eb)
4994 {
4995 if (eb->lock_owner == current->pid) {
4996 btrfs_err_rl(eb->fs_info,
4997 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4998 eb->start, btrfs_header_owner(eb), current->pid);
4999 return true;
5000 }
5001 return false;
5002 }
5003 #else
check_eb_lock_owner(struct extent_buffer * eb)5004 static bool check_eb_lock_owner(struct extent_buffer *eb)
5005 {
5006 return false;
5007 }
5008 #endif
5009
5010 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner,enum btrfs_lock_nesting nest)5011 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5012 u64 bytenr, int level, u64 owner,
5013 enum btrfs_lock_nesting nest)
5014 {
5015 struct btrfs_fs_info *fs_info = root->fs_info;
5016 struct extent_buffer *buf;
5017 u64 lockdep_owner = owner;
5018
5019 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
5020 if (IS_ERR(buf))
5021 return buf;
5022
5023 if (check_eb_lock_owner(buf)) {
5024 free_extent_buffer(buf);
5025 return ERR_PTR(-EUCLEAN);
5026 }
5027
5028 /*
5029 * The reloc trees are just snapshots, so we need them to appear to be
5030 * just like any other fs tree WRT lockdep.
5031 *
5032 * The exception however is in replace_path() in relocation, where we
5033 * hold the lock on the original fs root and then search for the reloc
5034 * root. At that point we need to make sure any reloc root buffers are
5035 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5036 * lockdep happy.
5037 */
5038 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5039 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5040 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5041
5042 /* btrfs_clear_buffer_dirty() accesses generation field. */
5043 btrfs_set_header_generation(buf, trans->transid);
5044
5045 /*
5046 * This needs to stay, because we could allocate a freed block from an
5047 * old tree into a new tree, so we need to make sure this new block is
5048 * set to the appropriate level and owner.
5049 */
5050 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
5051
5052 btrfs_tree_lock_nested(buf, nest);
5053 btrfs_clear_buffer_dirty(trans, buf);
5054 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
5055 clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags);
5056
5057 set_extent_buffer_uptodate(buf);
5058
5059 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
5060 btrfs_set_header_level(buf, level);
5061 btrfs_set_header_bytenr(buf, buf->start);
5062 btrfs_set_header_generation(buf, trans->transid);
5063 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
5064 btrfs_set_header_owner(buf, owner);
5065 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
5066 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
5067 if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
5068 buf->log_index = root->log_transid % 2;
5069 /*
5070 * we allow two log transactions at a time, use different
5071 * EXTENT bit to differentiate dirty pages.
5072 */
5073 if (buf->log_index == 0)
5074 set_extent_bit(&root->dirty_log_pages, buf->start,
5075 buf->start + buf->len - 1,
5076 EXTENT_DIRTY, NULL);
5077 else
5078 set_extent_bit(&root->dirty_log_pages, buf->start,
5079 buf->start + buf->len - 1,
5080 EXTENT_NEW, NULL);
5081 } else {
5082 buf->log_index = -1;
5083 set_extent_bit(&trans->transaction->dirty_pages, buf->start,
5084 buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
5085 }
5086 /* this returns a buffer locked for blocking */
5087 return buf;
5088 }
5089
5090 /*
5091 * finds a free extent and does all the dirty work required for allocation
5092 * returns the tree buffer or an ERR_PTR on error.
5093 */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size,u64 reloc_src_root,enum btrfs_lock_nesting nest)5094 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5095 struct btrfs_root *root,
5096 u64 parent, u64 root_objectid,
5097 const struct btrfs_disk_key *key,
5098 int level, u64 hint,
5099 u64 empty_size,
5100 u64 reloc_src_root,
5101 enum btrfs_lock_nesting nest)
5102 {
5103 struct btrfs_fs_info *fs_info = root->fs_info;
5104 struct btrfs_key ins;
5105 struct btrfs_block_rsv *block_rsv;
5106 struct extent_buffer *buf;
5107 u64 flags = 0;
5108 int ret;
5109 u32 blocksize = fs_info->nodesize;
5110 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5111 u64 owning_root;
5112
5113 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5114 if (btrfs_is_testing(fs_info)) {
5115 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5116 level, root_objectid, nest);
5117 if (!IS_ERR(buf))
5118 root->alloc_bytenr += blocksize;
5119 return buf;
5120 }
5121 #endif
5122
5123 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5124 if (IS_ERR(block_rsv))
5125 return ERR_CAST(block_rsv);
5126
5127 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5128 empty_size, hint, &ins, 0, 0);
5129 if (ret)
5130 goto out_unuse;
5131
5132 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5133 root_objectid, nest);
5134 if (IS_ERR(buf)) {
5135 ret = PTR_ERR(buf);
5136 goto out_free_reserved;
5137 }
5138 owning_root = btrfs_header_owner(buf);
5139
5140 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5141 if (parent == 0)
5142 parent = ins.objectid;
5143 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5144 owning_root = reloc_src_root;
5145 } else
5146 BUG_ON(parent > 0);
5147
5148 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5149 struct btrfs_delayed_extent_op *extent_op;
5150 struct btrfs_ref generic_ref = {
5151 .action = BTRFS_ADD_DELAYED_EXTENT,
5152 .bytenr = ins.objectid,
5153 .num_bytes = ins.offset,
5154 .parent = parent,
5155 .owning_root = owning_root,
5156 .ref_root = root_objectid,
5157 };
5158
5159 if (!skinny_metadata || flags != 0) {
5160 extent_op = btrfs_alloc_delayed_extent_op();
5161 if (!extent_op) {
5162 ret = -ENOMEM;
5163 goto out_free_buf;
5164 }
5165 if (key)
5166 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5167 else
5168 memset(&extent_op->key, 0, sizeof(extent_op->key));
5169 extent_op->flags_to_set = flags;
5170 extent_op->update_key = (skinny_metadata ? false : true);
5171 extent_op->update_flags = (flags != 0);
5172 } else {
5173 extent_op = NULL;
5174 }
5175
5176 btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false);
5177 btrfs_ref_tree_mod(fs_info, &generic_ref);
5178 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5179 if (ret) {
5180 btrfs_free_delayed_extent_op(extent_op);
5181 goto out_free_buf;
5182 }
5183 }
5184 return buf;
5185
5186 out_free_buf:
5187 btrfs_tree_unlock(buf);
5188 free_extent_buffer(buf);
5189 out_free_reserved:
5190 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5191 out_unuse:
5192 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5193 return ERR_PTR(ret);
5194 }
5195
5196 struct walk_control {
5197 u64 refs[BTRFS_MAX_LEVEL];
5198 u64 flags[BTRFS_MAX_LEVEL];
5199 struct btrfs_key update_progress;
5200 struct btrfs_key drop_progress;
5201 int drop_level;
5202 int stage;
5203 int level;
5204 int shared_level;
5205 int update_ref;
5206 int keep_locks;
5207 int reada_slot;
5208 int reada_count;
5209 int restarted;
5210 /* Indicate that extent info needs to be looked up when walking the tree. */
5211 int lookup_info;
5212 };
5213
5214 /*
5215 * This is our normal stage. We are traversing blocks the current snapshot owns
5216 * and we are dropping any of our references to any children we are able to, and
5217 * then freeing the block once we've processed all of the children.
5218 */
5219 #define DROP_REFERENCE 1
5220
5221 /*
5222 * We enter this stage when we have to walk into a child block (meaning we can't
5223 * simply drop our reference to it from our current parent node) and there are
5224 * more than one reference on it. If we are the owner of any of the children
5225 * blocks from the current parent node then we have to do the FULL_BACKREF dance
5226 * on them in order to drop our normal ref and add the shared ref.
5227 */
5228 #define UPDATE_BACKREF 2
5229
5230 /*
5231 * Decide if we need to walk down into this node to adjust the references.
5232 *
5233 * @root: the root we are currently deleting
5234 * @wc: the walk control for this deletion
5235 * @eb: the parent eb that we're currently visiting
5236 * @refs: the number of refs for wc->level - 1
5237 * @flags: the flags for wc->level - 1
5238 * @slot: the slot in the eb that we're currently checking
5239 *
5240 * This is meant to be called when we're evaluating if a node we point to at
5241 * wc->level should be read and walked into, or if we can simply delete our
5242 * reference to it. We return true if we should walk into the node, false if we
5243 * can skip it.
5244 *
5245 * We have assertions in here to make sure this is called correctly. We assume
5246 * that sanity checking on the blocks read to this point has been done, so any
5247 * corrupted file systems must have been caught before calling this function.
5248 */
visit_node_for_delete(struct btrfs_root * root,struct walk_control * wc,struct extent_buffer * eb,u64 flags,int slot)5249 static bool visit_node_for_delete(struct btrfs_root *root, struct walk_control *wc,
5250 struct extent_buffer *eb, u64 flags, int slot)
5251 {
5252 struct btrfs_key key;
5253 u64 generation;
5254 int level = wc->level;
5255
5256 ASSERT(level > 0);
5257 ASSERT(wc->refs[level - 1] > 0);
5258
5259 /*
5260 * The update backref stage we only want to skip if we already have
5261 * FULL_BACKREF set, otherwise we need to read.
5262 */
5263 if (wc->stage == UPDATE_BACKREF) {
5264 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5265 return false;
5266 return true;
5267 }
5268
5269 /*
5270 * We're the last ref on this block, we must walk into it and process
5271 * any refs it's pointing at.
5272 */
5273 if (wc->refs[level - 1] == 1)
5274 return true;
5275
5276 /*
5277 * If we're already FULL_BACKREF then we know we can just drop our
5278 * current reference.
5279 */
5280 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5281 return false;
5282
5283 /*
5284 * This block is older than our creation generation, we can drop our
5285 * reference to it.
5286 */
5287 generation = btrfs_node_ptr_generation(eb, slot);
5288 if (!wc->update_ref || generation <= btrfs_root_origin_generation(root))
5289 return false;
5290
5291 /*
5292 * This block was processed from a previous snapshot deletion run, we
5293 * can skip it.
5294 */
5295 btrfs_node_key_to_cpu(eb, &key, slot);
5296 if (btrfs_comp_cpu_keys(&key, &wc->update_progress) < 0)
5297 return false;
5298
5299 /* All other cases we need to wander into the node. */
5300 return true;
5301 }
5302
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)5303 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5304 struct btrfs_root *root,
5305 struct walk_control *wc,
5306 struct btrfs_path *path)
5307 {
5308 struct btrfs_fs_info *fs_info = root->fs_info;
5309 u64 bytenr;
5310 u64 generation;
5311 u64 refs;
5312 u64 flags;
5313 u32 nritems;
5314 struct extent_buffer *eb;
5315 int ret;
5316 int slot;
5317 int nread = 0;
5318
5319 if (path->slots[wc->level] < wc->reada_slot) {
5320 wc->reada_count = wc->reada_count * 2 / 3;
5321 wc->reada_count = max(wc->reada_count, 2);
5322 } else {
5323 wc->reada_count = wc->reada_count * 3 / 2;
5324 wc->reada_count = min_t(int, wc->reada_count,
5325 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5326 }
5327
5328 eb = path->nodes[wc->level];
5329 nritems = btrfs_header_nritems(eb);
5330
5331 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5332 if (nread >= wc->reada_count)
5333 break;
5334
5335 cond_resched();
5336 bytenr = btrfs_node_blockptr(eb, slot);
5337 generation = btrfs_node_ptr_generation(eb, slot);
5338
5339 if (slot == path->slots[wc->level])
5340 goto reada;
5341
5342 if (wc->stage == UPDATE_BACKREF &&
5343 generation <= btrfs_root_origin_generation(root))
5344 continue;
5345
5346 /* We don't lock the tree block, it's OK to be racy here */
5347 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5348 wc->level - 1, 1, &refs,
5349 &flags, NULL);
5350 /* We don't care about errors in readahead. */
5351 if (ret < 0)
5352 continue;
5353
5354 /*
5355 * This could be racey, it's conceivable that we raced and end
5356 * up with a bogus refs count, if that's the case just skip, if
5357 * we are actually corrupt we will notice when we look up
5358 * everything again with our locks.
5359 */
5360 if (refs == 0)
5361 continue;
5362
5363 /* If we don't need to visit this node don't reada. */
5364 if (!visit_node_for_delete(root, wc, eb, flags, slot))
5365 continue;
5366 reada:
5367 btrfs_readahead_node_child(eb, slot);
5368 nread++;
5369 }
5370 wc->reada_slot = slot;
5371 }
5372
5373 /*
5374 * helper to process tree block while walking down the tree.
5375 *
5376 * when wc->stage == UPDATE_BACKREF, this function updates
5377 * back refs for pointers in the block.
5378 *
5379 * NOTE: return value 1 means we should stop walking down.
5380 */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5381 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5382 struct btrfs_root *root,
5383 struct btrfs_path *path,
5384 struct walk_control *wc)
5385 {
5386 struct btrfs_fs_info *fs_info = root->fs_info;
5387 int level = wc->level;
5388 struct extent_buffer *eb = path->nodes[level];
5389 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5390 int ret;
5391
5392 if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root))
5393 return 1;
5394
5395 /*
5396 * when reference count of tree block is 1, it won't increase
5397 * again. once full backref flag is set, we never clear it.
5398 */
5399 if (wc->lookup_info &&
5400 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5401 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5402 ASSERT(path->locks[level]);
5403 ret = btrfs_lookup_extent_info(trans, fs_info,
5404 eb->start, level, 1,
5405 &wc->refs[level],
5406 &wc->flags[level],
5407 NULL);
5408 if (ret)
5409 return ret;
5410 if (unlikely(wc->refs[level] == 0)) {
5411 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5412 eb->start);
5413 return -EUCLEAN;
5414 }
5415 }
5416
5417 if (wc->stage == DROP_REFERENCE) {
5418 if (wc->refs[level] > 1)
5419 return 1;
5420
5421 if (path->locks[level] && !wc->keep_locks) {
5422 btrfs_tree_unlock_rw(eb, path->locks[level]);
5423 path->locks[level] = 0;
5424 }
5425 return 0;
5426 }
5427
5428 /* wc->stage == UPDATE_BACKREF */
5429 if (!(wc->flags[level] & flag)) {
5430 ASSERT(path->locks[level]);
5431 ret = btrfs_inc_ref(trans, root, eb, 1);
5432 if (ret) {
5433 btrfs_abort_transaction(trans, ret);
5434 return ret;
5435 }
5436 ret = btrfs_dec_ref(trans, root, eb, 0);
5437 if (ret) {
5438 btrfs_abort_transaction(trans, ret);
5439 return ret;
5440 }
5441 ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5442 if (ret) {
5443 btrfs_abort_transaction(trans, ret);
5444 return ret;
5445 }
5446 wc->flags[level] |= flag;
5447 }
5448
5449 /*
5450 * the block is shared by multiple trees, so it's not good to
5451 * keep the tree lock
5452 */
5453 if (path->locks[level] && level > 0) {
5454 btrfs_tree_unlock_rw(eb, path->locks[level]);
5455 path->locks[level] = 0;
5456 }
5457 return 0;
5458 }
5459
5460 /*
5461 * This is used to verify a ref exists for this root to deal with a bug where we
5462 * would have a drop_progress key that hadn't been updated properly.
5463 */
check_ref_exists(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 parent,int level)5464 static int check_ref_exists(struct btrfs_trans_handle *trans,
5465 struct btrfs_root *root, u64 bytenr, u64 parent,
5466 int level)
5467 {
5468 struct btrfs_delayed_ref_root *delayed_refs;
5469 struct btrfs_delayed_ref_head *head;
5470 struct btrfs_path *path;
5471 struct btrfs_extent_inline_ref *iref;
5472 int ret;
5473 bool exists = false;
5474
5475 path = btrfs_alloc_path();
5476 if (!path)
5477 return -ENOMEM;
5478 again:
5479 ret = lookup_extent_backref(trans, path, &iref, bytenr,
5480 root->fs_info->nodesize, parent,
5481 btrfs_root_id(root), level, 0);
5482 if (ret != -ENOENT) {
5483 /*
5484 * If we get 0 then we found our reference, return 1, else
5485 * return the error if it's not -ENOENT;
5486 */
5487 btrfs_free_path(path);
5488 return (ret < 0 ) ? ret : 1;
5489 }
5490
5491 /*
5492 * We could have a delayed ref with this reference, so look it up while
5493 * we're holding the path open to make sure we don't race with the
5494 * delayed ref running.
5495 */
5496 delayed_refs = &trans->transaction->delayed_refs;
5497 spin_lock(&delayed_refs->lock);
5498 head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
5499 if (!head)
5500 goto out;
5501 if (!mutex_trylock(&head->mutex)) {
5502 /*
5503 * We're contended, means that the delayed ref is running, get a
5504 * reference and wait for the ref head to be complete and then
5505 * try again.
5506 */
5507 refcount_inc(&head->refs);
5508 spin_unlock(&delayed_refs->lock);
5509
5510 btrfs_release_path(path);
5511
5512 mutex_lock(&head->mutex);
5513 mutex_unlock(&head->mutex);
5514 btrfs_put_delayed_ref_head(head);
5515 goto again;
5516 }
5517
5518 exists = btrfs_find_delayed_tree_ref(head, root->root_key.objectid, parent);
5519 mutex_unlock(&head->mutex);
5520 out:
5521 spin_unlock(&delayed_refs->lock);
5522 btrfs_free_path(path);
5523 return exists ? 1 : 0;
5524 }
5525
5526 /*
5527 * We may not have an uptodate block, so if we are going to walk down into this
5528 * block we need to drop the lock, read it off of the disk, re-lock it and
5529 * return to continue dropping the snapshot.
5530 */
check_next_block_uptodate(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,struct extent_buffer * next)5531 static int check_next_block_uptodate(struct btrfs_trans_handle *trans,
5532 struct btrfs_root *root,
5533 struct btrfs_path *path,
5534 struct walk_control *wc,
5535 struct extent_buffer *next)
5536 {
5537 struct btrfs_tree_parent_check check = { 0 };
5538 u64 generation;
5539 int level = wc->level;
5540 int ret;
5541
5542 btrfs_assert_tree_write_locked(next);
5543
5544 generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]);
5545
5546 if (btrfs_buffer_uptodate(next, generation, 0))
5547 return 0;
5548
5549 check.level = level - 1;
5550 check.transid = generation;
5551 check.owner_root = btrfs_root_id(root);
5552 check.has_first_key = true;
5553 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]);
5554
5555 btrfs_tree_unlock(next);
5556 if (level == 1)
5557 reada_walk_down(trans, root, wc, path);
5558 ret = btrfs_read_extent_buffer(next, &check);
5559 if (ret) {
5560 free_extent_buffer(next);
5561 return ret;
5562 }
5563 btrfs_tree_lock(next);
5564 wc->lookup_info = 1;
5565 return 0;
5566 }
5567
5568 /*
5569 * If we determine that we don't have to visit wc->level - 1 then we need to
5570 * determine if we can drop our reference.
5571 *
5572 * If we are UPDATE_BACKREF then we will not, we need to update our backrefs.
5573 *
5574 * If we are DROP_REFERENCE this will figure out if we need to drop our current
5575 * reference, skipping it if we dropped it from a previous incompleted drop, or
5576 * dropping it if we still have a reference to it.
5577 */
maybe_drop_reference(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,struct extent_buffer * next,u64 owner_root)5578 static int maybe_drop_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5579 struct btrfs_path *path, struct walk_control *wc,
5580 struct extent_buffer *next, u64 owner_root)
5581 {
5582 struct btrfs_ref ref = {
5583 .action = BTRFS_DROP_DELAYED_REF,
5584 .bytenr = next->start,
5585 .num_bytes = root->fs_info->nodesize,
5586 .owning_root = owner_root,
5587 .ref_root = btrfs_root_id(root),
5588 };
5589 int level = wc->level;
5590 int ret;
5591
5592 /* We are UPDATE_BACKREF, we're not dropping anything. */
5593 if (wc->stage == UPDATE_BACKREF)
5594 return 0;
5595
5596 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5597 ref.parent = path->nodes[level]->start;
5598 } else {
5599 ASSERT(btrfs_root_id(root) == btrfs_header_owner(path->nodes[level]));
5600 if (btrfs_root_id(root) != btrfs_header_owner(path->nodes[level])) {
5601 btrfs_err(root->fs_info, "mismatched block owner");
5602 return -EIO;
5603 }
5604 }
5605
5606 /*
5607 * If we had a drop_progress we need to verify the refs are set as
5608 * expected. If we find our ref then we know that from here on out
5609 * everything should be correct, and we can clear the
5610 * ->restarted flag.
5611 */
5612 if (wc->restarted) {
5613 ret = check_ref_exists(trans, root, next->start, ref.parent,
5614 level - 1);
5615 if (ret <= 0)
5616 return ret;
5617 ret = 0;
5618 wc->restarted = 0;
5619 }
5620
5621 /*
5622 * Reloc tree doesn't contribute to qgroup numbers, and we have already
5623 * accounted them at merge time (replace_path), thus we could skip
5624 * expensive subtree trace here.
5625 */
5626 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
5627 wc->refs[level - 1] > 1) {
5628 u64 generation = btrfs_node_ptr_generation(path->nodes[level],
5629 path->slots[level]);
5630
5631 ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1);
5632 if (ret) {
5633 btrfs_err_rl(root->fs_info,
5634 "error %d accounting shared subtree, quota is out of sync, rescan required",
5635 ret);
5636 }
5637 }
5638
5639 /*
5640 * We need to update the next key in our walk control so we can update
5641 * the drop_progress key accordingly. We don't care if find_next_key
5642 * doesn't find a key because that means we're at the end and are going
5643 * to clean up now.
5644 */
5645 wc->drop_level = level;
5646 find_next_key(path, level, &wc->drop_progress);
5647
5648 btrfs_init_tree_ref(&ref, level - 1, 0, false);
5649 return btrfs_free_extent(trans, &ref);
5650 }
5651
5652 /*
5653 * helper to process tree block pointer.
5654 *
5655 * when wc->stage == DROP_REFERENCE, this function checks
5656 * reference count of the block pointed to. if the block
5657 * is shared and we need update back refs for the subtree
5658 * rooted at the block, this function changes wc->stage to
5659 * UPDATE_BACKREF. if the block is shared and there is no
5660 * need to update back, this function drops the reference
5661 * to the block.
5662 *
5663 * NOTE: return value 1 means we should stop walking down.
5664 */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5665 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5666 struct btrfs_root *root,
5667 struct btrfs_path *path,
5668 struct walk_control *wc)
5669 {
5670 struct btrfs_fs_info *fs_info = root->fs_info;
5671 u64 bytenr;
5672 u64 generation;
5673 u64 owner_root = 0;
5674 struct extent_buffer *next;
5675 int level = wc->level;
5676 int ret = 0;
5677
5678 generation = btrfs_node_ptr_generation(path->nodes[level],
5679 path->slots[level]);
5680 /*
5681 * if the lower level block was created before the snapshot
5682 * was created, we know there is no need to update back refs
5683 * for the subtree
5684 */
5685 if (wc->stage == UPDATE_BACKREF &&
5686 generation <= btrfs_root_origin_generation(root)) {
5687 wc->lookup_info = 1;
5688 return 1;
5689 }
5690
5691 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5692
5693 next = btrfs_find_create_tree_block(fs_info, bytenr, btrfs_root_id(root),
5694 level - 1);
5695 if (IS_ERR(next))
5696 return PTR_ERR(next);
5697
5698 btrfs_tree_lock(next);
5699
5700 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5701 &wc->refs[level - 1],
5702 &wc->flags[level - 1],
5703 &owner_root);
5704 if (ret < 0)
5705 goto out_unlock;
5706
5707 if (unlikely(wc->refs[level - 1] == 0)) {
5708 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5709 bytenr);
5710 ret = -EUCLEAN;
5711 goto out_unlock;
5712 }
5713 wc->lookup_info = 0;
5714
5715 /* If we don't have to walk into this node skip it. */
5716 if (!visit_node_for_delete(root, wc, path->nodes[level],
5717 wc->flags[level - 1], path->slots[level]))
5718 goto skip;
5719
5720 /*
5721 * We have to walk down into this node, and if we're currently at the
5722 * DROP_REFERNCE stage and this block is shared then we need to switch
5723 * to the UPDATE_BACKREF stage in order to convert to FULL_BACKREF.
5724 */
5725 if (wc->stage == DROP_REFERENCE && wc->refs[level - 1] > 1) {
5726 wc->stage = UPDATE_BACKREF;
5727 wc->shared_level = level - 1;
5728 }
5729
5730 ret = check_next_block_uptodate(trans, root, path, wc, next);
5731 if (ret)
5732 return ret;
5733
5734 level--;
5735 ASSERT(level == btrfs_header_level(next));
5736 if (level != btrfs_header_level(next)) {
5737 btrfs_err(root->fs_info, "mismatched level");
5738 ret = -EIO;
5739 goto out_unlock;
5740 }
5741 path->nodes[level] = next;
5742 path->slots[level] = 0;
5743 path->locks[level] = BTRFS_WRITE_LOCK;
5744 wc->level = level;
5745 if (wc->level == 1)
5746 wc->reada_slot = 0;
5747 return 0;
5748 skip:
5749 ret = maybe_drop_reference(trans, root, path, wc, next, owner_root);
5750 if (ret)
5751 goto out_unlock;
5752 wc->refs[level - 1] = 0;
5753 wc->flags[level - 1] = 0;
5754 wc->lookup_info = 1;
5755 ret = 1;
5756
5757 out_unlock:
5758 btrfs_tree_unlock(next);
5759 free_extent_buffer(next);
5760
5761 return ret;
5762 }
5763
5764 /*
5765 * helper to process tree block while walking up the tree.
5766 *
5767 * when wc->stage == DROP_REFERENCE, this function drops
5768 * reference count on the block.
5769 *
5770 * when wc->stage == UPDATE_BACKREF, this function changes
5771 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5772 * to UPDATE_BACKREF previously while processing the block.
5773 *
5774 * NOTE: return value 1 means we should stop walking up.
5775 */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5776 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5777 struct btrfs_root *root,
5778 struct btrfs_path *path,
5779 struct walk_control *wc)
5780 {
5781 struct btrfs_fs_info *fs_info = root->fs_info;
5782 int ret = 0;
5783 int level = wc->level;
5784 struct extent_buffer *eb = path->nodes[level];
5785 u64 parent = 0;
5786
5787 if (wc->stage == UPDATE_BACKREF) {
5788 ASSERT(wc->shared_level >= level);
5789 if (level < wc->shared_level)
5790 goto out;
5791
5792 ret = find_next_key(path, level + 1, &wc->update_progress);
5793 if (ret > 0)
5794 wc->update_ref = 0;
5795
5796 wc->stage = DROP_REFERENCE;
5797 wc->shared_level = -1;
5798 path->slots[level] = 0;
5799
5800 /*
5801 * check reference count again if the block isn't locked.
5802 * we should start walking down the tree again if reference
5803 * count is one.
5804 */
5805 if (!path->locks[level]) {
5806 ASSERT(level > 0);
5807 btrfs_tree_lock(eb);
5808 path->locks[level] = BTRFS_WRITE_LOCK;
5809
5810 ret = btrfs_lookup_extent_info(trans, fs_info,
5811 eb->start, level, 1,
5812 &wc->refs[level],
5813 &wc->flags[level],
5814 NULL);
5815 if (ret < 0) {
5816 btrfs_tree_unlock_rw(eb, path->locks[level]);
5817 path->locks[level] = 0;
5818 return ret;
5819 }
5820 if (unlikely(wc->refs[level] == 0)) {
5821 btrfs_tree_unlock_rw(eb, path->locks[level]);
5822 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5823 eb->start);
5824 return -EUCLEAN;
5825 }
5826 if (wc->refs[level] == 1) {
5827 btrfs_tree_unlock_rw(eb, path->locks[level]);
5828 path->locks[level] = 0;
5829 return 1;
5830 }
5831 }
5832 }
5833
5834 /* wc->stage == DROP_REFERENCE */
5835 ASSERT(path->locks[level] || wc->refs[level] == 1);
5836
5837 if (wc->refs[level] == 1) {
5838 if (level == 0) {
5839 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5840 ret = btrfs_dec_ref(trans, root, eb, 1);
5841 else
5842 ret = btrfs_dec_ref(trans, root, eb, 0);
5843 if (ret) {
5844 btrfs_abort_transaction(trans, ret);
5845 return ret;
5846 }
5847 if (is_fstree(btrfs_root_id(root))) {
5848 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5849 if (ret) {
5850 btrfs_err_rl(fs_info,
5851 "error %d accounting leaf items, quota is out of sync, rescan required",
5852 ret);
5853 }
5854 }
5855 }
5856 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5857 if (!path->locks[level]) {
5858 btrfs_tree_lock(eb);
5859 path->locks[level] = BTRFS_WRITE_LOCK;
5860 }
5861 btrfs_clear_buffer_dirty(trans, eb);
5862 }
5863
5864 if (eb == root->node) {
5865 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5866 parent = eb->start;
5867 else if (btrfs_root_id(root) != btrfs_header_owner(eb))
5868 goto owner_mismatch;
5869 } else {
5870 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5871 parent = path->nodes[level + 1]->start;
5872 else if (btrfs_root_id(root) !=
5873 btrfs_header_owner(path->nodes[level + 1]))
5874 goto owner_mismatch;
5875 }
5876
5877 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5878 wc->refs[level] == 1);
5879 if (ret < 0)
5880 btrfs_abort_transaction(trans, ret);
5881 out:
5882 wc->refs[level] = 0;
5883 wc->flags[level] = 0;
5884 return ret;
5885
5886 owner_mismatch:
5887 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5888 btrfs_header_owner(eb), btrfs_root_id(root));
5889 return -EUCLEAN;
5890 }
5891
5892 /*
5893 * walk_down_tree consists of two steps.
5894 *
5895 * walk_down_proc(). Look up the reference count and reference of our current
5896 * wc->level. At this point path->nodes[wc->level] should be populated and
5897 * uptodate, and in most cases should already be locked. If we are in
5898 * DROP_REFERENCE and our refcount is > 1 then we've entered a shared node and
5899 * we can walk back up the tree. If we are UPDATE_BACKREF we have to set
5900 * FULL_BACKREF on this node if it's not already set, and then do the
5901 * FULL_BACKREF conversion dance, which is to drop the root reference and add
5902 * the shared reference to all of this nodes children.
5903 *
5904 * do_walk_down(). This is where we actually start iterating on the children of
5905 * our current path->nodes[wc->level]. For DROP_REFERENCE that means dropping
5906 * our reference to the children that return false from visit_node_for_delete(),
5907 * which has various conditions where we know we can just drop our reference
5908 * without visiting the node. For UPDATE_BACKREF we will skip any children that
5909 * visit_node_for_delete() returns false for, only walking down when necessary.
5910 * The bulk of the work for UPDATE_BACKREF occurs in the walk_up_tree() part of
5911 * snapshot deletion.
5912 */
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5913 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5914 struct btrfs_root *root,
5915 struct btrfs_path *path,
5916 struct walk_control *wc)
5917 {
5918 int level = wc->level;
5919 int ret = 0;
5920
5921 wc->lookup_info = 1;
5922 while (level >= 0) {
5923 ret = walk_down_proc(trans, root, path, wc);
5924 if (ret)
5925 break;
5926
5927 if (level == 0)
5928 break;
5929
5930 if (path->slots[level] >=
5931 btrfs_header_nritems(path->nodes[level]))
5932 break;
5933
5934 ret = do_walk_down(trans, root, path, wc);
5935 if (ret > 0) {
5936 path->slots[level]++;
5937 continue;
5938 } else if (ret < 0)
5939 break;
5940 level = wc->level;
5941 }
5942 return (ret == 1) ? 0 : ret;
5943 }
5944
5945 /*
5946 * walk_up_tree() is responsible for making sure we visit every slot on our
5947 * current node, and if we're at the end of that node then we call
5948 * walk_up_proc() on our current node which will do one of a few things based on
5949 * our stage.
5950 *
5951 * UPDATE_BACKREF. If we wc->level is currently less than our wc->shared_level
5952 * then we need to walk back up the tree, and then going back down into the
5953 * other slots via walk_down_tree to update any other children from our original
5954 * wc->shared_level. Once we're at or above our wc->shared_level we can switch
5955 * back to DROP_REFERENCE, lookup the current nodes refs and flags, and carry on.
5956 *
5957 * DROP_REFERENCE. If our refs == 1 then we're going to free this tree block.
5958 * If we're level 0 then we need to btrfs_dec_ref() on all of the data extents
5959 * in our current leaf. After that we call btrfs_free_tree_block() on the
5960 * current node and walk up to the next node to walk down the next slot.
5961 */
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)5962 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5963 struct btrfs_root *root,
5964 struct btrfs_path *path,
5965 struct walk_control *wc, int max_level)
5966 {
5967 int level = wc->level;
5968 int ret;
5969
5970 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5971 while (level < max_level && path->nodes[level]) {
5972 wc->level = level;
5973 if (path->slots[level] + 1 <
5974 btrfs_header_nritems(path->nodes[level])) {
5975 path->slots[level]++;
5976 return 0;
5977 } else {
5978 ret = walk_up_proc(trans, root, path, wc);
5979 if (ret > 0)
5980 return 0;
5981 if (ret < 0)
5982 return ret;
5983
5984 if (path->locks[level]) {
5985 btrfs_tree_unlock_rw(path->nodes[level],
5986 path->locks[level]);
5987 path->locks[level] = 0;
5988 }
5989 free_extent_buffer(path->nodes[level]);
5990 path->nodes[level] = NULL;
5991 level++;
5992 }
5993 }
5994 return 1;
5995 }
5996
5997 /*
5998 * drop a subvolume tree.
5999 *
6000 * this function traverses the tree freeing any blocks that only
6001 * referenced by the tree.
6002 *
6003 * when a shared tree block is found. this function decreases its
6004 * reference count by one. if update_ref is true, this function
6005 * also make sure backrefs for the shared block and all lower level
6006 * blocks are properly updated.
6007 *
6008 * If called with for_reloc == 0, may exit early with -EAGAIN
6009 */
btrfs_drop_snapshot(struct btrfs_root * root,int update_ref,int for_reloc)6010 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
6011 {
6012 const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID);
6013 struct btrfs_fs_info *fs_info = root->fs_info;
6014 struct btrfs_path *path;
6015 struct btrfs_trans_handle *trans;
6016 struct btrfs_root *tree_root = fs_info->tree_root;
6017 struct btrfs_root_item *root_item = &root->root_item;
6018 struct walk_control *wc;
6019 struct btrfs_key key;
6020 const u64 rootid = btrfs_root_id(root);
6021 int ret = 0;
6022 int level;
6023 bool root_dropped = false;
6024 bool unfinished_drop = false;
6025
6026 btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root));
6027
6028 path = btrfs_alloc_path();
6029 if (!path) {
6030 ret = -ENOMEM;
6031 goto out;
6032 }
6033
6034 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6035 if (!wc) {
6036 btrfs_free_path(path);
6037 ret = -ENOMEM;
6038 goto out;
6039 }
6040
6041 /*
6042 * Use join to avoid potential EINTR from transaction start. See
6043 * wait_reserve_ticket and the whole reservation callchain.
6044 */
6045 if (for_reloc)
6046 trans = btrfs_join_transaction(tree_root);
6047 else
6048 trans = btrfs_start_transaction(tree_root, 0);
6049 if (IS_ERR(trans)) {
6050 ret = PTR_ERR(trans);
6051 goto out_free;
6052 }
6053
6054 ret = btrfs_run_delayed_items(trans);
6055 if (ret)
6056 goto out_end_trans;
6057
6058 /*
6059 * This will help us catch people modifying the fs tree while we're
6060 * dropping it. It is unsafe to mess with the fs tree while it's being
6061 * dropped as we unlock the root node and parent nodes as we walk down
6062 * the tree, assuming nothing will change. If something does change
6063 * then we'll have stale information and drop references to blocks we've
6064 * already dropped.
6065 */
6066 set_bit(BTRFS_ROOT_DELETING, &root->state);
6067 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
6068
6069 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6070 level = btrfs_header_level(root->node);
6071 path->nodes[level] = btrfs_lock_root_node(root);
6072 path->slots[level] = 0;
6073 path->locks[level] = BTRFS_WRITE_LOCK;
6074 memset(&wc->update_progress, 0,
6075 sizeof(wc->update_progress));
6076 } else {
6077 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6078 memcpy(&wc->update_progress, &key,
6079 sizeof(wc->update_progress));
6080
6081 level = btrfs_root_drop_level(root_item);
6082 BUG_ON(level == 0);
6083 path->lowest_level = level;
6084 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6085 path->lowest_level = 0;
6086 if (ret < 0)
6087 goto out_end_trans;
6088
6089 WARN_ON(ret > 0);
6090 ret = 0;
6091
6092 /*
6093 * unlock our path, this is safe because only this
6094 * function is allowed to delete this snapshot
6095 */
6096 btrfs_unlock_up_safe(path, 0);
6097
6098 level = btrfs_header_level(root->node);
6099 while (1) {
6100 btrfs_tree_lock(path->nodes[level]);
6101 path->locks[level] = BTRFS_WRITE_LOCK;
6102
6103 /*
6104 * btrfs_lookup_extent_info() returns 0 for success,
6105 * or < 0 for error.
6106 */
6107 ret = btrfs_lookup_extent_info(trans, fs_info,
6108 path->nodes[level]->start,
6109 level, 1, &wc->refs[level],
6110 &wc->flags[level], NULL);
6111 if (ret < 0)
6112 goto out_end_trans;
6113
6114 BUG_ON(wc->refs[level] == 0);
6115
6116 if (level == btrfs_root_drop_level(root_item))
6117 break;
6118
6119 btrfs_tree_unlock(path->nodes[level]);
6120 path->locks[level] = 0;
6121 WARN_ON(wc->refs[level] != 1);
6122 level--;
6123 }
6124 }
6125
6126 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
6127 wc->level = level;
6128 wc->shared_level = -1;
6129 wc->stage = DROP_REFERENCE;
6130 wc->update_ref = update_ref;
6131 wc->keep_locks = 0;
6132 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6133
6134 while (1) {
6135
6136 ret = walk_down_tree(trans, root, path, wc);
6137 if (ret < 0) {
6138 btrfs_abort_transaction(trans, ret);
6139 break;
6140 }
6141
6142 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6143 if (ret < 0) {
6144 btrfs_abort_transaction(trans, ret);
6145 break;
6146 }
6147
6148 if (ret > 0) {
6149 BUG_ON(wc->stage != DROP_REFERENCE);
6150 ret = 0;
6151 break;
6152 }
6153
6154 if (wc->stage == DROP_REFERENCE) {
6155 wc->drop_level = wc->level;
6156 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
6157 &wc->drop_progress,
6158 path->slots[wc->drop_level]);
6159 }
6160 btrfs_cpu_key_to_disk(&root_item->drop_progress,
6161 &wc->drop_progress);
6162 btrfs_set_root_drop_level(root_item, wc->drop_level);
6163
6164 BUG_ON(wc->level == 0);
6165 if (btrfs_should_end_transaction(trans) ||
6166 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
6167 ret = btrfs_update_root(trans, tree_root,
6168 &root->root_key,
6169 root_item);
6170 if (ret) {
6171 btrfs_abort_transaction(trans, ret);
6172 goto out_end_trans;
6173 }
6174
6175 if (!is_reloc_root)
6176 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6177
6178 btrfs_end_transaction_throttle(trans);
6179 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
6180 btrfs_debug(fs_info,
6181 "drop snapshot early exit");
6182 ret = -EAGAIN;
6183 goto out_free;
6184 }
6185
6186 /*
6187 * Use join to avoid potential EINTR from transaction
6188 * start. See wait_reserve_ticket and the whole
6189 * reservation callchain.
6190 */
6191 if (for_reloc)
6192 trans = btrfs_join_transaction(tree_root);
6193 else
6194 trans = btrfs_start_transaction(tree_root, 0);
6195 if (IS_ERR(trans)) {
6196 ret = PTR_ERR(trans);
6197 goto out_free;
6198 }
6199 }
6200 }
6201 btrfs_release_path(path);
6202 if (ret)
6203 goto out_end_trans;
6204
6205 ret = btrfs_del_root(trans, &root->root_key);
6206 if (ret) {
6207 btrfs_abort_transaction(trans, ret);
6208 goto out_end_trans;
6209 }
6210
6211 if (!is_reloc_root) {
6212 ret = btrfs_find_root(tree_root, &root->root_key, path,
6213 NULL, NULL);
6214 if (ret < 0) {
6215 btrfs_abort_transaction(trans, ret);
6216 goto out_end_trans;
6217 } else if (ret > 0) {
6218 ret = 0;
6219 /*
6220 * If we fail to delete the orphan item this time
6221 * around, it'll get picked up the next time.
6222 *
6223 * The most common failure here is just -ENOENT.
6224 */
6225 btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root));
6226 }
6227 }
6228
6229 /*
6230 * This subvolume is going to be completely dropped, and won't be
6231 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
6232 * commit transaction time. So free it here manually.
6233 */
6234 btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6235 btrfs_qgroup_free_meta_all_pertrans(root);
6236
6237 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6238 btrfs_add_dropped_root(trans, root);
6239 else
6240 btrfs_put_root(root);
6241 root_dropped = true;
6242 out_end_trans:
6243 if (!is_reloc_root)
6244 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6245
6246 btrfs_end_transaction_throttle(trans);
6247 out_free:
6248 kfree(wc);
6249 btrfs_free_path(path);
6250 out:
6251 if (!ret && root_dropped) {
6252 ret = btrfs_qgroup_cleanup_dropped_subvolume(fs_info, rootid);
6253 if (ret < 0)
6254 btrfs_warn_rl(fs_info,
6255 "failed to cleanup qgroup 0/%llu: %d",
6256 rootid, ret);
6257 ret = 0;
6258 }
6259 /*
6260 * We were an unfinished drop root, check to see if there are any
6261 * pending, and if not clear and wake up any waiters.
6262 */
6263 if (!ret && unfinished_drop)
6264 btrfs_maybe_wake_unfinished_drop(fs_info);
6265
6266 /*
6267 * So if we need to stop dropping the snapshot for whatever reason we
6268 * need to make sure to add it back to the dead root list so that we
6269 * keep trying to do the work later. This also cleans up roots if we
6270 * don't have it in the radix (like when we recover after a power fail
6271 * or unmount) so we don't leak memory.
6272 */
6273 if (!for_reloc && !root_dropped)
6274 btrfs_add_dead_root(root);
6275 return ret;
6276 }
6277
6278 /*
6279 * drop subtree rooted at tree block 'node'.
6280 *
6281 * NOTE: this function will unlock and release tree block 'node'
6282 * only used by relocation code
6283 */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)6284 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6285 struct btrfs_root *root,
6286 struct extent_buffer *node,
6287 struct extent_buffer *parent)
6288 {
6289 struct btrfs_fs_info *fs_info = root->fs_info;
6290 struct btrfs_path *path;
6291 struct walk_control *wc;
6292 int level;
6293 int parent_level;
6294 int ret = 0;
6295
6296 BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
6297
6298 path = btrfs_alloc_path();
6299 if (!path)
6300 return -ENOMEM;
6301
6302 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6303 if (!wc) {
6304 btrfs_free_path(path);
6305 return -ENOMEM;
6306 }
6307
6308 btrfs_assert_tree_write_locked(parent);
6309 parent_level = btrfs_header_level(parent);
6310 atomic_inc(&parent->refs);
6311 path->nodes[parent_level] = parent;
6312 path->slots[parent_level] = btrfs_header_nritems(parent);
6313
6314 btrfs_assert_tree_write_locked(node);
6315 level = btrfs_header_level(node);
6316 path->nodes[level] = node;
6317 path->slots[level] = 0;
6318 path->locks[level] = BTRFS_WRITE_LOCK;
6319
6320 wc->refs[parent_level] = 1;
6321 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6322 wc->level = level;
6323 wc->shared_level = -1;
6324 wc->stage = DROP_REFERENCE;
6325 wc->update_ref = 0;
6326 wc->keep_locks = 1;
6327 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6328
6329 while (1) {
6330 ret = walk_down_tree(trans, root, path, wc);
6331 if (ret < 0)
6332 break;
6333
6334 ret = walk_up_tree(trans, root, path, wc, parent_level);
6335 if (ret) {
6336 if (ret > 0)
6337 ret = 0;
6338 break;
6339 }
6340 }
6341
6342 kfree(wc);
6343 btrfs_free_path(path);
6344 return ret;
6345 }
6346
6347 /*
6348 * Unpin the extent range in an error context and don't add the space back.
6349 * Errors are not propagated further.
6350 */
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)6351 void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end)
6352 {
6353 unpin_extent_range(fs_info, start, end, false);
6354 }
6355
6356 /*
6357 * It used to be that old block groups would be left around forever.
6358 * Iterating over them would be enough to trim unused space. Since we
6359 * now automatically remove them, we also need to iterate over unallocated
6360 * space.
6361 *
6362 * We don't want a transaction for this since the discard may take a
6363 * substantial amount of time. We don't require that a transaction be
6364 * running, but we do need to take a running transaction into account
6365 * to ensure that we're not discarding chunks that were released or
6366 * allocated in the current transaction.
6367 *
6368 * Holding the chunks lock will prevent other threads from allocating
6369 * or releasing chunks, but it won't prevent a running transaction
6370 * from committing and releasing the memory that the pending chunks
6371 * list head uses. For that, we need to take a reference to the
6372 * transaction and hold the commit root sem. We only need to hold
6373 * it while performing the free space search since we have already
6374 * held back allocations.
6375 */
btrfs_trim_free_extents(struct btrfs_device * device,u64 * trimmed)6376 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6377 {
6378 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6379 int ret;
6380
6381 *trimmed = 0;
6382
6383 /* Discard not supported = nothing to do. */
6384 if (!bdev_max_discard_sectors(device->bdev))
6385 return 0;
6386
6387 /* Not writable = nothing to do. */
6388 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6389 return 0;
6390
6391 /* No free space = nothing to do. */
6392 if (device->total_bytes <= device->bytes_used)
6393 return 0;
6394
6395 ret = 0;
6396
6397 while (1) {
6398 struct btrfs_fs_info *fs_info = device->fs_info;
6399 u64 bytes;
6400
6401 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6402 if (ret)
6403 break;
6404
6405 find_first_clear_extent_bit(&device->alloc_state, start,
6406 &start, &end,
6407 CHUNK_TRIMMED | CHUNK_ALLOCATED);
6408
6409 /* Check if there are any CHUNK_* bits left */
6410 if (start > device->total_bytes) {
6411 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6412 btrfs_warn_in_rcu(fs_info,
6413 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6414 start, end - start + 1,
6415 btrfs_dev_name(device),
6416 device->total_bytes);
6417 mutex_unlock(&fs_info->chunk_mutex);
6418 ret = 0;
6419 break;
6420 }
6421
6422 /* Ensure we skip the reserved space on each device. */
6423 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6424
6425 /*
6426 * If find_first_clear_extent_bit find a range that spans the
6427 * end of the device it will set end to -1, in this case it's up
6428 * to the caller to trim the value to the size of the device.
6429 */
6430 end = min(end, device->total_bytes - 1);
6431
6432 len = end - start + 1;
6433
6434 /* We didn't find any extents */
6435 if (!len) {
6436 mutex_unlock(&fs_info->chunk_mutex);
6437 ret = 0;
6438 break;
6439 }
6440
6441 ret = btrfs_issue_discard(device->bdev, start, len,
6442 &bytes);
6443 if (!ret)
6444 set_extent_bit(&device->alloc_state, start,
6445 start + bytes - 1, CHUNK_TRIMMED, NULL);
6446 mutex_unlock(&fs_info->chunk_mutex);
6447
6448 if (ret)
6449 break;
6450
6451 start += len;
6452 *trimmed += bytes;
6453
6454 if (btrfs_trim_interrupted()) {
6455 ret = -ERESTARTSYS;
6456 break;
6457 }
6458
6459 cond_resched();
6460 }
6461
6462 return ret;
6463 }
6464
6465 /*
6466 * Trim the whole filesystem by:
6467 * 1) trimming the free space in each block group
6468 * 2) trimming the unallocated space on each device
6469 *
6470 * This will also continue trimming even if a block group or device encounters
6471 * an error. The return value will be the last error, or 0 if nothing bad
6472 * happens.
6473 */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)6474 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6475 {
6476 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6477 struct btrfs_block_group *cache = NULL;
6478 struct btrfs_device *device;
6479 u64 group_trimmed;
6480 u64 range_end = U64_MAX;
6481 u64 start;
6482 u64 end;
6483 u64 trimmed = 0;
6484 u64 bg_failed = 0;
6485 u64 dev_failed = 0;
6486 int bg_ret = 0;
6487 int dev_ret = 0;
6488 int ret = 0;
6489
6490 if (range->start == U64_MAX)
6491 return -EINVAL;
6492
6493 /*
6494 * Check range overflow if range->len is set.
6495 * The default range->len is U64_MAX.
6496 */
6497 if (range->len != U64_MAX &&
6498 check_add_overflow(range->start, range->len, &range_end))
6499 return -EINVAL;
6500
6501 cache = btrfs_lookup_first_block_group(fs_info, range->start);
6502 for (; cache; cache = btrfs_next_block_group(cache)) {
6503 if (cache->start >= range_end) {
6504 btrfs_put_block_group(cache);
6505 break;
6506 }
6507
6508 start = max(range->start, cache->start);
6509 end = min(range_end, cache->start + cache->length);
6510
6511 if (end - start >= range->minlen) {
6512 if (!btrfs_block_group_done(cache)) {
6513 ret = btrfs_cache_block_group(cache, true);
6514 if (ret) {
6515 bg_failed++;
6516 bg_ret = ret;
6517 continue;
6518 }
6519 }
6520 ret = btrfs_trim_block_group(cache,
6521 &group_trimmed,
6522 start,
6523 end,
6524 range->minlen);
6525
6526 trimmed += group_trimmed;
6527 if (ret) {
6528 bg_failed++;
6529 bg_ret = ret;
6530 continue;
6531 }
6532 }
6533 }
6534
6535 if (bg_failed)
6536 btrfs_warn(fs_info,
6537 "failed to trim %llu block group(s), last error %d",
6538 bg_failed, bg_ret);
6539
6540 mutex_lock(&fs_devices->device_list_mutex);
6541 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6542 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6543 continue;
6544
6545 ret = btrfs_trim_free_extents(device, &group_trimmed);
6546
6547 trimmed += group_trimmed;
6548 if (ret) {
6549 dev_failed++;
6550 dev_ret = ret;
6551 break;
6552 }
6553 }
6554 mutex_unlock(&fs_devices->device_list_mutex);
6555
6556 if (dev_failed)
6557 btrfs_warn(fs_info,
6558 "failed to trim %llu device(s), last error %d",
6559 dev_failed, dev_ret);
6560 range->len = trimmed;
6561 if (bg_ret)
6562 return bg_ret;
6563 return dev_ret;
6564 }
6565