1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
5 *
6 * Davide Libenzi <davidel@xmailserver.org>
7 */
8
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <linux/capability.h>
41 #include <net/busy_poll.h>
42
43 /*
44 * LOCKING:
45 * There are three level of locking required by epoll :
46 *
47 * 1) epnested_mutex (mutex)
48 * 2) ep->mtx (mutex)
49 * 3) ep->lock (rwlock)
50 *
51 * The acquire order is the one listed above, from 1 to 3.
52 * We need a rwlock (ep->lock) because we manipulate objects
53 * from inside the poll callback, that might be triggered from
54 * a wake_up() that in turn might be called from IRQ context.
55 * So we can't sleep inside the poll callback and hence we need
56 * a spinlock. During the event transfer loop (from kernel to
57 * user space) we could end up sleeping due a copy_to_user(), so
58 * we need a lock that will allow us to sleep. This lock is a
59 * mutex (ep->mtx). It is acquired during the event transfer loop,
60 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
61 * The epnested_mutex is acquired when inserting an epoll fd onto another
62 * epoll fd. We do this so that we walk the epoll tree and ensure that this
63 * insertion does not create a cycle of epoll file descriptors, which
64 * could lead to deadlock. We need a global mutex to prevent two
65 * simultaneous inserts (A into B and B into A) from racing and
66 * constructing a cycle without either insert observing that it is
67 * going to.
68 * It is necessary to acquire multiple "ep->mtx"es at once in the
69 * case when one epoll fd is added to another. In this case, we
70 * always acquire the locks in the order of nesting (i.e. after
71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
72 * before e2->mtx). Since we disallow cycles of epoll file
73 * descriptors, this ensures that the mutexes are well-ordered. In
74 * order to communicate this nesting to lockdep, when walking a tree
75 * of epoll file descriptors, we use the current recursion depth as
76 * the lockdep subkey.
77 * It is possible to drop the "ep->mtx" and to use the global
78 * mutex "epnested_mutex" (together with "ep->lock") to have it working,
79 * but having "ep->mtx" will make the interface more scalable.
80 * Events that require holding "epnested_mutex" are very rare, while for
81 * normal operations the epoll private "ep->mtx" will guarantee
82 * a better scalability.
83 */
84
85 /* Epoll private bits inside the event mask */
86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
87
88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
89
90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
91 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
92
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
95
96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
97
98 #define EP_UNACTIVE_PTR ((void *) -1L)
99
100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
101
102 struct epoll_filefd {
103 struct file *file;
104 int fd;
105 } __packed;
106
107 /* Wait structure used by the poll hooks */
108 struct eppoll_entry {
109 /* List header used to link this structure to the "struct epitem" */
110 struct eppoll_entry *next;
111
112 /* The "base" pointer is set to the container "struct epitem" */
113 struct epitem *base;
114
115 /*
116 * Wait queue item that will be linked to the target file wait
117 * queue head.
118 */
119 wait_queue_entry_t wait;
120
121 /* The wait queue head that linked the "wait" wait queue item */
122 wait_queue_head_t *whead;
123 };
124
125 /*
126 * Each file descriptor added to the eventpoll interface will
127 * have an entry of this type linked to the "rbr" RB tree.
128 * Avoid increasing the size of this struct, there can be many thousands
129 * of these on a server and we do not want this to take another cache line.
130 */
131 struct epitem {
132 union {
133 /* RB tree node links this structure to the eventpoll RB tree */
134 struct rb_node rbn;
135 /* Used to free the struct epitem */
136 struct rcu_head rcu;
137 };
138
139 /* List header used to link this structure to the eventpoll ready list */
140 struct llist_node rdllink;
141
142 /* The file descriptor information this item refers to */
143 struct epoll_filefd ffd;
144
145 /*
146 * Protected by file->f_lock, true for to-be-released epitem already
147 * removed from the "struct file" items list; together with
148 * eventpoll->refcount orchestrates "struct eventpoll" disposal
149 */
150 bool dying;
151
152 /* List containing poll wait queues */
153 struct eppoll_entry *pwqlist;
154
155 /* The "container" of this item */
156 struct eventpoll *ep;
157
158 /* List header used to link this item to the "struct file" items list */
159 struct hlist_node fllink;
160
161 /* wakeup_source used when EPOLLWAKEUP is set */
162 struct wakeup_source __rcu *ws;
163
164 /* The structure that describe the interested events and the source fd */
165 struct epoll_event event;
166 };
167
168 /*
169 * This structure is stored inside the "private_data" member of the file
170 * structure and represents the main data structure for the eventpoll
171 * interface.
172 */
173 struct eventpoll {
174 /*
175 * This mutex is used to ensure that files are not removed
176 * while epoll is using them. This is held during the event
177 * collection loop, the file cleanup path, the epoll file exit
178 * code and the ctl operations.
179 */
180 struct mutex mtx;
181
182 /* Wait queue used by sys_epoll_wait() */
183 wait_queue_head_t wq;
184
185 /* Wait queue used by file->poll() */
186 wait_queue_head_t poll_wait;
187
188 /*
189 * List of ready file descriptors. Adding to this list is lockless. Items can be removed
190 * only with eventpoll::mtx
191 */
192 struct llist_head rdllist;
193
194 /* RB tree root used to store monitored fd structs */
195 struct rb_root_cached rbr;
196
197 /* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */
198 struct wakeup_source *ws;
199
200 /* The user that created the eventpoll descriptor */
201 struct user_struct *user;
202
203 struct file *file;
204
205 /* used to optimize loop detection check */
206 u64 gen;
207 struct hlist_head refs;
208
209 /*
210 * usage count, used together with epitem->dying to
211 * orchestrate the disposal of this struct
212 */
213 refcount_t refcount;
214
215 #ifdef CONFIG_NET_RX_BUSY_POLL
216 /* used to track busy poll napi_id */
217 unsigned int napi_id;
218 /* busy poll timeout */
219 u32 busy_poll_usecs;
220 /* busy poll packet budget */
221 u16 busy_poll_budget;
222 bool prefer_busy_poll;
223 #endif
224
225 #ifdef CONFIG_DEBUG_LOCK_ALLOC
226 /* tracks wakeup nests for lockdep validation */
227 u8 nests;
228 #endif
229 };
230
231 /* Wrapper struct used by poll queueing */
232 struct ep_pqueue {
233 poll_table pt;
234 struct epitem *epi;
235 };
236
237 /*
238 * Configuration options available inside /proc/sys/fs/epoll/
239 */
240 /* Maximum number of epoll watched descriptors, per user */
241 static long max_user_watches __read_mostly;
242
243 /* Used for cycles detection */
244 static DEFINE_MUTEX(epnested_mutex);
245
246 static u64 loop_check_gen = 0;
247
248 /* Used to check for epoll file descriptor inclusion loops */
249 static struct eventpoll *inserting_into;
250
251 /* Slab cache used to allocate "struct epitem" */
252 static struct kmem_cache *epi_cache __ro_after_init;
253
254 /* Slab cache used to allocate "struct eppoll_entry" */
255 static struct kmem_cache *pwq_cache __ro_after_init;
256
257 /*
258 * List of files with newly added links, where we may need to limit the number
259 * of emanating paths. Protected by the epnested_mutex.
260 */
261 struct epitems_head {
262 struct hlist_head epitems;
263 struct epitems_head *next;
264 };
265 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
266
267 static struct kmem_cache *ephead_cache __ro_after_init;
268
free_ephead(struct epitems_head * head)269 static inline void free_ephead(struct epitems_head *head)
270 {
271 if (head)
272 kmem_cache_free(ephead_cache, head);
273 }
274
list_file(struct file * file)275 static void list_file(struct file *file)
276 {
277 struct epitems_head *head;
278
279 head = container_of(file->f_ep, struct epitems_head, epitems);
280 if (!head->next) {
281 head->next = tfile_check_list;
282 tfile_check_list = head;
283 }
284 }
285
unlist_file(struct epitems_head * head)286 static void unlist_file(struct epitems_head *head)
287 {
288 struct epitems_head *to_free = head;
289 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
290 if (p) {
291 struct epitem *epi= container_of(p, struct epitem, fllink);
292 spin_lock(&epi->ffd.file->f_lock);
293 if (!hlist_empty(&head->epitems))
294 to_free = NULL;
295 head->next = NULL;
296 spin_unlock(&epi->ffd.file->f_lock);
297 }
298 free_ephead(to_free);
299 }
300
301 #ifdef CONFIG_SYSCTL
302
303 #include <linux/sysctl.h>
304
305 static long long_zero;
306 static long long_max = LONG_MAX;
307
308 static const struct ctl_table epoll_table[] = {
309 {
310 .procname = "max_user_watches",
311 .data = &max_user_watches,
312 .maxlen = sizeof(max_user_watches),
313 .mode = 0644,
314 .proc_handler = proc_doulongvec_minmax,
315 .extra1 = &long_zero,
316 .extra2 = &long_max,
317 },
318 };
319
epoll_sysctls_init(void)320 static void __init epoll_sysctls_init(void)
321 {
322 register_sysctl("fs/epoll", epoll_table);
323 }
324 #else
325 #define epoll_sysctls_init() do { } while (0)
326 #endif /* CONFIG_SYSCTL */
327
328 static const struct file_operations eventpoll_fops;
329
is_file_epoll(struct file * f)330 static inline int is_file_epoll(struct file *f)
331 {
332 return f->f_op == &eventpoll_fops;
333 }
334
335 /* Setup the structure that is used as key for the RB tree */
ep_set_ffd(struct epoll_filefd * ffd,struct file * file,int fd)336 static inline void ep_set_ffd(struct epoll_filefd *ffd,
337 struct file *file, int fd)
338 {
339 ffd->file = file;
340 ffd->fd = fd;
341 }
342
343 /* Compare RB tree keys */
ep_cmp_ffd(struct epoll_filefd * p1,struct epoll_filefd * p2)344 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
345 struct epoll_filefd *p2)
346 {
347 return (p1->file > p2->file ? +1:
348 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
349 }
350
351 /*
352 * Add the item to its container eventpoll's rdllist; do nothing if the item is already on rdllist.
353 */
epitem_ready(struct epitem * epi)354 static void epitem_ready(struct epitem *epi)
355 {
356 if (&epi->rdllink == cmpxchg(&epi->rdllink.next, &epi->rdllink, NULL))
357 llist_add(&epi->rdllink, &epi->ep->rdllist);
358
359 }
360
ep_pwq_from_wait(wait_queue_entry_t * p)361 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
362 {
363 return container_of(p, struct eppoll_entry, wait);
364 }
365
366 /* Get the "struct epitem" from a wait queue pointer */
ep_item_from_wait(wait_queue_entry_t * p)367 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
368 {
369 return container_of(p, struct eppoll_entry, wait)->base;
370 }
371
372 /**
373 * ep_events_available - Checks if ready events might be available.
374 *
375 * @ep: Pointer to the eventpoll context.
376 *
377 * Return: true if ready events might be available, false otherwise.
378 */
ep_events_available(struct eventpoll * ep)379 static inline bool ep_events_available(struct eventpoll *ep)
380 {
381 bool available;
382 int locked;
383
384 locked = mutex_trylock(&ep->mtx);
385 if (!locked) {
386 /*
387 * The lock held and someone might have removed all items while inspecting it. The
388 * llist_empty() check in this case is futile. Assume that something is enqueued and
389 * let ep_try_send_events() figure it out.
390 */
391 return true;
392 }
393
394 available = !llist_empty(&ep->rdllist);
395 mutex_unlock(&ep->mtx);
396 return available;
397 }
398
399 #ifdef CONFIG_NET_RX_BUSY_POLL
400 /**
401 * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value
402 * from the epoll instance ep is preferred, but if it is not set fallback to
403 * the system-wide global via busy_loop_timeout.
404 *
405 * @start_time: The start time used to compute the remaining time until timeout.
406 * @ep: Pointer to the eventpoll context.
407 *
408 * Return: true if the timeout has expired, false otherwise.
409 */
busy_loop_ep_timeout(unsigned long start_time,struct eventpoll * ep)410 static bool busy_loop_ep_timeout(unsigned long start_time,
411 struct eventpoll *ep)
412 {
413 unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs);
414
415 if (bp_usec) {
416 unsigned long end_time = start_time + bp_usec;
417 unsigned long now = busy_loop_current_time();
418
419 return time_after(now, end_time);
420 } else {
421 return busy_loop_timeout(start_time);
422 }
423 }
424
ep_busy_loop_on(struct eventpoll * ep)425 static bool ep_busy_loop_on(struct eventpoll *ep)
426 {
427 return !!READ_ONCE(ep->busy_poll_usecs) ||
428 READ_ONCE(ep->prefer_busy_poll) ||
429 net_busy_loop_on();
430 }
431
ep_busy_loop_end(void * p,unsigned long start_time)432 static bool ep_busy_loop_end(void *p, unsigned long start_time)
433 {
434 struct eventpoll *ep = p;
435
436 return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep);
437 }
438
439 /*
440 * Busy poll if globally on and supporting sockets found && no events,
441 * busy loop will return if need_resched or ep_events_available.
442 *
443 * we must do our busy polling with irqs enabled
444 */
ep_busy_loop(struct eventpoll * ep)445 static bool ep_busy_loop(struct eventpoll *ep)
446 {
447 unsigned int napi_id = READ_ONCE(ep->napi_id);
448 u16 budget = READ_ONCE(ep->busy_poll_budget);
449 bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
450
451 if (!budget)
452 budget = BUSY_POLL_BUDGET;
453
454 if (napi_id_valid(napi_id) && ep_busy_loop_on(ep)) {
455 napi_busy_loop(napi_id, ep_busy_loop_end,
456 ep, prefer_busy_poll, budget);
457 if (ep_events_available(ep))
458 return true;
459 /*
460 * Busy poll timed out. Drop NAPI ID for now, we can add
461 * it back in when we have moved a socket with a valid NAPI
462 * ID onto the ready list.
463 */
464 if (prefer_busy_poll)
465 napi_resume_irqs(napi_id);
466 ep->napi_id = 0;
467 return false;
468 }
469 return false;
470 }
471
472 /*
473 * Set epoll busy poll NAPI ID from sk.
474 */
ep_set_busy_poll_napi_id(struct epitem * epi)475 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
476 {
477 struct eventpoll *ep = epi->ep;
478 unsigned int napi_id;
479 struct socket *sock;
480 struct sock *sk;
481
482 if (!ep_busy_loop_on(ep))
483 return;
484
485 sock = sock_from_file(epi->ffd.file);
486 if (!sock)
487 return;
488
489 sk = sock->sk;
490 if (!sk)
491 return;
492
493 napi_id = READ_ONCE(sk->sk_napi_id);
494
495 /* Non-NAPI IDs can be rejected
496 * or
497 * Nothing to do if we already have this ID
498 */
499 if (!napi_id_valid(napi_id) || napi_id == ep->napi_id)
500 return;
501
502 /* record NAPI ID for use in next busy poll */
503 ep->napi_id = napi_id;
504 }
505
ep_eventpoll_bp_ioctl(struct file * file,unsigned int cmd,unsigned long arg)506 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
507 unsigned long arg)
508 {
509 struct eventpoll *ep = file->private_data;
510 void __user *uarg = (void __user *)arg;
511 struct epoll_params epoll_params;
512
513 switch (cmd) {
514 case EPIOCSPARAMS:
515 if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params)))
516 return -EFAULT;
517
518 /* pad byte must be zero */
519 if (epoll_params.__pad)
520 return -EINVAL;
521
522 if (epoll_params.busy_poll_usecs > S32_MAX)
523 return -EINVAL;
524
525 if (epoll_params.prefer_busy_poll > 1)
526 return -EINVAL;
527
528 if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT &&
529 !capable(CAP_NET_ADMIN))
530 return -EPERM;
531
532 WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs);
533 WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget);
534 WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll);
535 return 0;
536 case EPIOCGPARAMS:
537 memset(&epoll_params, 0, sizeof(epoll_params));
538 epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs);
539 epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget);
540 epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
541 if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params)))
542 return -EFAULT;
543 return 0;
544 default:
545 return -ENOIOCTLCMD;
546 }
547 }
548
ep_suspend_napi_irqs(struct eventpoll * ep)549 static void ep_suspend_napi_irqs(struct eventpoll *ep)
550 {
551 unsigned int napi_id = READ_ONCE(ep->napi_id);
552
553 if (napi_id_valid(napi_id) && READ_ONCE(ep->prefer_busy_poll))
554 napi_suspend_irqs(napi_id);
555 }
556
ep_resume_napi_irqs(struct eventpoll * ep)557 static void ep_resume_napi_irqs(struct eventpoll *ep)
558 {
559 unsigned int napi_id = READ_ONCE(ep->napi_id);
560
561 if (napi_id_valid(napi_id) && READ_ONCE(ep->prefer_busy_poll))
562 napi_resume_irqs(napi_id);
563 }
564
565 #else
566
ep_busy_loop(struct eventpoll * ep)567 static inline bool ep_busy_loop(struct eventpoll *ep)
568 {
569 return false;
570 }
571
ep_set_busy_poll_napi_id(struct epitem * epi)572 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
573 {
574 }
575
ep_eventpoll_bp_ioctl(struct file * file,unsigned int cmd,unsigned long arg)576 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
577 unsigned long arg)
578 {
579 return -EOPNOTSUPP;
580 }
581
ep_suspend_napi_irqs(struct eventpoll * ep)582 static void ep_suspend_napi_irqs(struct eventpoll *ep)
583 {
584 }
585
ep_resume_napi_irqs(struct eventpoll * ep)586 static void ep_resume_napi_irqs(struct eventpoll *ep)
587 {
588 }
589
590 #endif /* CONFIG_NET_RX_BUSY_POLL */
591
592 /*
593 * As described in commit 0ccf831cb lockdep: annotate epoll
594 * the use of wait queues used by epoll is done in a very controlled
595 * manner. Wake ups can nest inside each other, but are never done
596 * with the same locking. For example:
597 *
598 * dfd = socket(...);
599 * efd1 = epoll_create();
600 * efd2 = epoll_create();
601 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
602 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
603 *
604 * When a packet arrives to the device underneath "dfd", the net code will
605 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
606 * callback wakeup entry on that queue, and the wake_up() performed by the
607 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
608 * (efd1) notices that it may have some event ready, so it needs to wake up
609 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
610 * that ends up in another wake_up(), after having checked about the
611 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
612 * stack blasting.
613 *
614 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
615 * this special case of epoll.
616 */
617 #ifdef CONFIG_DEBUG_LOCK_ALLOC
618
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,unsigned pollflags)619 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
620 unsigned pollflags)
621 {
622 struct eventpoll *ep_src;
623 unsigned long flags;
624 u8 nests = 0;
625
626 /*
627 * To set the subclass or nesting level for spin_lock_irqsave_nested()
628 * it might be natural to create a per-cpu nest count. However, since
629 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
630 * schedule() in the -rt kernel, the per-cpu variable are no longer
631 * protected. Thus, we are introducing a per eventpoll nest field.
632 * If we are not being call from ep_poll_callback(), epi is NULL and
633 * we are at the first level of nesting, 0. Otherwise, we are being
634 * called from ep_poll_callback() and if a previous wakeup source is
635 * not an epoll file itself, we are at depth 1 since the wakeup source
636 * is depth 0. If the wakeup source is a previous epoll file in the
637 * wakeup chain then we use its nests value and record ours as
638 * nests + 1. The previous epoll file nests value is stable since its
639 * already holding its own poll_wait.lock.
640 */
641 if (epi) {
642 if ((is_file_epoll(epi->ffd.file))) {
643 ep_src = epi->ffd.file->private_data;
644 nests = ep_src->nests;
645 } else {
646 nests = 1;
647 }
648 }
649 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
650 ep->nests = nests + 1;
651 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
652 ep->nests = 0;
653 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
654 }
655
656 #else
657
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,__poll_t pollflags)658 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
659 __poll_t pollflags)
660 {
661 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
662 }
663
664 #endif
665
ep_remove_wait_queue(struct eppoll_entry * pwq)666 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
667 {
668 wait_queue_head_t *whead;
669
670 rcu_read_lock();
671 /*
672 * If it is cleared by POLLFREE, it should be rcu-safe.
673 * If we read NULL we need a barrier paired with
674 * smp_store_release() in ep_poll_callback(), otherwise
675 * we rely on whead->lock.
676 */
677 whead = smp_load_acquire(&pwq->whead);
678 if (whead)
679 remove_wait_queue(whead, &pwq->wait);
680 rcu_read_unlock();
681 }
682
683 /*
684 * This function unregisters poll callbacks from the associated file
685 * descriptor. Must be called with "mtx" held.
686 */
ep_unregister_pollwait(struct eventpoll * ep,struct epitem * epi)687 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
688 {
689 struct eppoll_entry **p = &epi->pwqlist;
690 struct eppoll_entry *pwq;
691
692 while ((pwq = *p) != NULL) {
693 *p = pwq->next;
694 ep_remove_wait_queue(pwq);
695 kmem_cache_free(pwq_cache, pwq);
696 }
697 }
698
699 /* call only when ep->mtx is held */
ep_wakeup_source(struct epitem * epi)700 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
701 {
702 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
703 }
704
705 /* call only when ep->mtx is held */
ep_pm_stay_awake(struct epitem * epi)706 static inline void ep_pm_stay_awake(struct epitem *epi)
707 {
708 struct wakeup_source *ws = ep_wakeup_source(epi);
709
710 if (ws)
711 __pm_stay_awake(ws);
712 }
713
ep_has_wakeup_source(struct epitem * epi)714 static inline bool ep_has_wakeup_source(struct epitem *epi)
715 {
716 return rcu_access_pointer(epi->ws) ? true : false;
717 }
718
719 /* call when ep->mtx cannot be held (ep_poll_callback) */
ep_pm_stay_awake_rcu(struct epitem * epi)720 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
721 {
722 struct wakeup_source *ws;
723
724 rcu_read_lock();
725 ws = rcu_dereference(epi->ws);
726 if (ws)
727 __pm_stay_awake(ws);
728 rcu_read_unlock();
729 }
730
ep_get(struct eventpoll * ep)731 static void ep_get(struct eventpoll *ep)
732 {
733 refcount_inc(&ep->refcount);
734 }
735
736 /*
737 * Returns true if the event poll can be disposed
738 */
ep_refcount_dec_and_test(struct eventpoll * ep)739 static bool ep_refcount_dec_and_test(struct eventpoll *ep)
740 {
741 if (!refcount_dec_and_test(&ep->refcount))
742 return false;
743
744 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
745 return true;
746 }
747
ep_free(struct eventpoll * ep)748 static void ep_free(struct eventpoll *ep)
749 {
750 ep_resume_napi_irqs(ep);
751 mutex_destroy(&ep->mtx);
752 free_uid(ep->user);
753 wakeup_source_unregister(ep->ws);
754 kfree(ep);
755 }
756
757 /*
758 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
759 * all the associated resources. Must be called with "mtx" held.
760 * If the dying flag is set, do the removal only if force is true.
761 * This prevents ep_clear_and_put() from dropping all the ep references
762 * while running concurrently with eventpoll_release_file().
763 * Returns true if the eventpoll can be disposed.
764 */
__ep_remove(struct eventpoll * ep,struct epitem * epi,bool force)765 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
766 {
767 struct file *file = epi->ffd.file;
768 struct llist_node *put_back_last;
769 struct epitems_head *to_free;
770 struct hlist_head *head;
771 LLIST_HEAD(put_back);
772
773 lockdep_assert_held(&ep->mtx);
774
775 /*
776 * Removes poll wait queue hooks.
777 */
778 ep_unregister_pollwait(ep, epi);
779
780 /* Remove the current item from the list of epoll hooks */
781 spin_lock(&file->f_lock);
782 if (epi->dying && !force) {
783 spin_unlock(&file->f_lock);
784 return false;
785 }
786
787 to_free = NULL;
788 head = file->f_ep;
789 if (head->first == &epi->fllink && !epi->fllink.next) {
790 /* See eventpoll_release() for details. */
791 WRITE_ONCE(file->f_ep, NULL);
792 if (!is_file_epoll(file)) {
793 struct epitems_head *v;
794 v = container_of(head, struct epitems_head, epitems);
795 if (!smp_load_acquire(&v->next))
796 to_free = v;
797 }
798 }
799 hlist_del_rcu(&epi->fllink);
800 spin_unlock(&file->f_lock);
801 free_ephead(to_free);
802
803 rb_erase_cached(&epi->rbn, &ep->rbr);
804
805 if (llist_on_list(&epi->rdllink)) {
806 put_back_last = NULL;
807 while (true) {
808 struct llist_node *n = llist_del_first(&ep->rdllist);
809
810 if (&epi->rdllink == n || WARN_ON(!n))
811 break;
812 if (!put_back_last)
813 put_back_last = n;
814 __llist_add(n, &put_back);
815 }
816 if (put_back_last)
817 llist_add_batch(put_back.first, put_back_last, &ep->rdllist);
818 }
819
820 wakeup_source_unregister(ep_wakeup_source(epi));
821 /*
822 * At this point it is safe to free the eventpoll item. Use the union
823 * field epi->rcu, since we are trying to minimize the size of
824 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
825 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
826 * use of the rbn field.
827 */
828 kfree_rcu(epi, rcu);
829
830 percpu_counter_dec(&ep->user->epoll_watches);
831 return ep_refcount_dec_and_test(ep);
832 }
833
834 /*
835 * ep_remove variant for callers owing an additional reference to the ep
836 */
ep_remove_safe(struct eventpoll * ep,struct epitem * epi)837 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
838 {
839 WARN_ON_ONCE(__ep_remove(ep, epi, false));
840 }
841
ep_clear_and_put(struct eventpoll * ep)842 static void ep_clear_and_put(struct eventpoll *ep)
843 {
844 struct rb_node *rbp, *next;
845 struct epitem *epi;
846 bool dispose;
847
848 /* We need to release all tasks waiting for these file */
849 if (waitqueue_active(&ep->poll_wait))
850 ep_poll_safewake(ep, NULL, 0);
851
852 mutex_lock(&ep->mtx);
853
854 /*
855 * Walks through the whole tree by unregistering poll callbacks.
856 */
857 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
858 epi = rb_entry(rbp, struct epitem, rbn);
859
860 ep_unregister_pollwait(ep, epi);
861 cond_resched();
862 }
863
864 /*
865 * Walks through the whole tree and try to free each "struct epitem".
866 * Note that ep_remove_safe() will not remove the epitem in case of a
867 * racing eventpoll_release_file(); the latter will do the removal.
868 * At this point we are sure no poll callbacks will be lingering around.
869 * Since we still own a reference to the eventpoll struct, the loop can't
870 * dispose it.
871 */
872 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
873 next = rb_next(rbp);
874 epi = rb_entry(rbp, struct epitem, rbn);
875 ep_remove_safe(ep, epi);
876 cond_resched();
877 }
878
879 dispose = ep_refcount_dec_and_test(ep);
880 mutex_unlock(&ep->mtx);
881
882 if (dispose)
883 ep_free(ep);
884 }
885
ep_eventpoll_ioctl(struct file * file,unsigned int cmd,unsigned long arg)886 static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd,
887 unsigned long arg)
888 {
889 int ret;
890
891 if (!is_file_epoll(file))
892 return -EINVAL;
893
894 switch (cmd) {
895 case EPIOCSPARAMS:
896 case EPIOCGPARAMS:
897 ret = ep_eventpoll_bp_ioctl(file, cmd, arg);
898 break;
899 default:
900 ret = -EINVAL;
901 break;
902 }
903
904 return ret;
905 }
906
ep_eventpoll_release(struct inode * inode,struct file * file)907 static int ep_eventpoll_release(struct inode *inode, struct file *file)
908 {
909 struct eventpoll *ep = file->private_data;
910
911 if (ep)
912 ep_clear_and_put(ep);
913
914 return 0;
915 }
916
917 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
918
__ep_eventpoll_poll(struct file * file,poll_table * wait,int depth)919 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
920 {
921 struct eventpoll *ep = file->private_data;
922 struct wakeup_source *ws;
923 struct llist_node *n;
924 struct epitem *epi;
925 poll_table pt;
926 __poll_t res = 0;
927
928 init_poll_funcptr(&pt, NULL);
929
930 /* Insert inside our poll wait queue */
931 poll_wait(file, &ep->poll_wait, wait);
932
933 /*
934 * Proceed to find out if wanted events are really available inside
935 * the ready list.
936 */
937 mutex_lock_nested(&ep->mtx, depth);
938 while (true) {
939 n = llist_del_first_init(&ep->rdllist);
940 if (!n)
941 break;
942
943 epi = llist_entry(n, struct epitem, rdllink);
944
945 if (ep_item_poll(epi, &pt, depth + 1)) {
946 res = EPOLLIN | EPOLLRDNORM;
947 epitem_ready(epi);
948 break;
949 } else {
950 /*
951 * We need to activate ep before deactivating epi, to prevent autosuspend
952 * just in case epi becomes active after ep_item_poll() above.
953 *
954 * This is similar to ep_send_events().
955 */
956 ws = ep_wakeup_source(epi);
957 if (ws) {
958 if (ws->active)
959 __pm_stay_awake(ep->ws);
960 __pm_relax(ws);
961 }
962 __pm_relax(ep_wakeup_source(epi));
963
964 /* Just in case epi becomes active right before __pm_relax() */
965 if (unlikely(ep_item_poll(epi, &pt, depth + 1)))
966 ep_pm_stay_awake(epi);
967
968 __pm_relax(ep->ws);
969 }
970 }
971 mutex_unlock(&ep->mtx);
972 return res;
973 }
974
975 /*
976 * The ffd.file pointer may be in the process of being torn down due to
977 * being closed, but we may not have finished eventpoll_release() yet.
978 *
979 * Normally, even with the atomic_long_inc_not_zero, the file may have
980 * been free'd and then gotten re-allocated to something else (since
981 * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU).
982 *
983 * But for epoll, users hold the ep->mtx mutex, and as such any file in
984 * the process of being free'd will block in eventpoll_release_file()
985 * and thus the underlying file allocation will not be free'd, and the
986 * file re-use cannot happen.
987 *
988 * For the same reason we can avoid a rcu_read_lock() around the
989 * operation - 'ffd.file' cannot go away even if the refcount has
990 * reached zero (but we must still not call out to ->poll() functions
991 * etc).
992 */
epi_fget(const struct epitem * epi)993 static struct file *epi_fget(const struct epitem *epi)
994 {
995 struct file *file;
996
997 file = epi->ffd.file;
998 if (!file_ref_get(&file->f_ref))
999 file = NULL;
1000 return file;
1001 }
1002
1003 /*
1004 * Differs from ep_eventpoll_poll() in that internal callers already have
1005 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
1006 * is correctly annotated.
1007 */
ep_item_poll(const struct epitem * epi,poll_table * pt,int depth)1008 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
1009 int depth)
1010 {
1011 struct file *file = epi_fget(epi);
1012 __poll_t res;
1013
1014 /*
1015 * We could return EPOLLERR | EPOLLHUP or something, but let's
1016 * treat this more as "file doesn't exist, poll didn't happen".
1017 */
1018 if (!file)
1019 return 0;
1020
1021 pt->_key = epi->event.events;
1022 if (!is_file_epoll(file))
1023 res = vfs_poll(file, pt);
1024 else
1025 res = __ep_eventpoll_poll(file, pt, depth);
1026 fput(file);
1027 return res & epi->event.events;
1028 }
1029
ep_eventpoll_poll(struct file * file,poll_table * wait)1030 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
1031 {
1032 return __ep_eventpoll_poll(file, wait, 0);
1033 }
1034
1035 #ifdef CONFIG_PROC_FS
ep_show_fdinfo(struct seq_file * m,struct file * f)1036 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
1037 {
1038 struct eventpoll *ep = f->private_data;
1039 struct rb_node *rbp;
1040
1041 mutex_lock(&ep->mtx);
1042 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1043 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
1044 struct inode *inode = file_inode(epi->ffd.file);
1045
1046 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
1047 " pos:%lli ino:%lx sdev:%x\n",
1048 epi->ffd.fd, epi->event.events,
1049 (long long)epi->event.data,
1050 (long long)epi->ffd.file->f_pos,
1051 inode->i_ino, inode->i_sb->s_dev);
1052 if (seq_has_overflowed(m))
1053 break;
1054 }
1055 mutex_unlock(&ep->mtx);
1056 }
1057 #endif
1058
1059 /* File callbacks that implement the eventpoll file behaviour */
1060 static const struct file_operations eventpoll_fops = {
1061 #ifdef CONFIG_PROC_FS
1062 .show_fdinfo = ep_show_fdinfo,
1063 #endif
1064 .release = ep_eventpoll_release,
1065 .poll = ep_eventpoll_poll,
1066 .llseek = noop_llseek,
1067 .unlocked_ioctl = ep_eventpoll_ioctl,
1068 .compat_ioctl = compat_ptr_ioctl,
1069 };
1070
1071 /*
1072 * This is called from eventpoll_release() to unlink files from the eventpoll
1073 * interface. We need to have this facility to cleanup correctly files that are
1074 * closed without being removed from the eventpoll interface.
1075 */
eventpoll_release_file(struct file * file)1076 void eventpoll_release_file(struct file *file)
1077 {
1078 struct eventpoll *ep;
1079 struct epitem *epi;
1080 bool dispose;
1081
1082 /*
1083 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
1084 * touching the epitems list before eventpoll_release_file() can access
1085 * the ep->mtx.
1086 */
1087 again:
1088 spin_lock(&file->f_lock);
1089 if (file->f_ep && file->f_ep->first) {
1090 epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
1091 epi->dying = true;
1092 spin_unlock(&file->f_lock);
1093
1094 /*
1095 * ep access is safe as we still own a reference to the ep
1096 * struct
1097 */
1098 ep = epi->ep;
1099 mutex_lock(&ep->mtx);
1100 dispose = __ep_remove(ep, epi, true);
1101 mutex_unlock(&ep->mtx);
1102
1103 if (dispose)
1104 ep_free(ep);
1105 goto again;
1106 }
1107 spin_unlock(&file->f_lock);
1108 }
1109
ep_alloc(struct eventpoll ** pep)1110 static int ep_alloc(struct eventpoll **pep)
1111 {
1112 struct eventpoll *ep;
1113
1114 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1115 if (unlikely(!ep))
1116 return -ENOMEM;
1117
1118 mutex_init(&ep->mtx);
1119 init_waitqueue_head(&ep->wq);
1120 init_waitqueue_head(&ep->poll_wait);
1121 init_llist_head(&ep->rdllist);
1122 ep->rbr = RB_ROOT_CACHED;
1123 ep->user = get_current_user();
1124 refcount_set(&ep->refcount, 1);
1125
1126 *pep = ep;
1127
1128 return 0;
1129 }
1130
1131 /*
1132 * Search the file inside the eventpoll tree. The RB tree operations
1133 * are protected by the "mtx" mutex, and ep_find() must be called with
1134 * "mtx" held.
1135 */
ep_find(struct eventpoll * ep,struct file * file,int fd)1136 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1137 {
1138 int kcmp;
1139 struct rb_node *rbp;
1140 struct epitem *epi, *epir = NULL;
1141 struct epoll_filefd ffd;
1142
1143 ep_set_ffd(&ffd, file, fd);
1144 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1145 epi = rb_entry(rbp, struct epitem, rbn);
1146 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1147 if (kcmp > 0)
1148 rbp = rbp->rb_right;
1149 else if (kcmp < 0)
1150 rbp = rbp->rb_left;
1151 else {
1152 epir = epi;
1153 break;
1154 }
1155 }
1156
1157 return epir;
1158 }
1159
1160 #ifdef CONFIG_KCMP
ep_find_tfd(struct eventpoll * ep,int tfd,unsigned long toff)1161 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1162 {
1163 struct rb_node *rbp;
1164 struct epitem *epi;
1165
1166 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1167 epi = rb_entry(rbp, struct epitem, rbn);
1168 if (epi->ffd.fd == tfd) {
1169 if (toff == 0)
1170 return epi;
1171 else
1172 toff--;
1173 }
1174 cond_resched();
1175 }
1176
1177 return NULL;
1178 }
1179
get_epoll_tfile_raw_ptr(struct file * file,int tfd,unsigned long toff)1180 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1181 unsigned long toff)
1182 {
1183 struct file *file_raw;
1184 struct eventpoll *ep;
1185 struct epitem *epi;
1186
1187 if (!is_file_epoll(file))
1188 return ERR_PTR(-EINVAL);
1189
1190 ep = file->private_data;
1191
1192 mutex_lock(&ep->mtx);
1193 epi = ep_find_tfd(ep, tfd, toff);
1194 if (epi)
1195 file_raw = epi->ffd.file;
1196 else
1197 file_raw = ERR_PTR(-ENOENT);
1198 mutex_unlock(&ep->mtx);
1199
1200 return file_raw;
1201 }
1202 #endif /* CONFIG_KCMP */
1203
1204 /*
1205 * This is the callback that is passed to the wait queue wakeup
1206 * mechanism. It is called by the stored file descriptors when they
1207 * have events to report.
1208 *
1209 * Another thing worth to mention is that ep_poll_callback() can be called
1210 * concurrently for the same @epi from different CPUs if poll table was inited
1211 * with several wait queues entries. Plural wakeup from different CPUs of a
1212 * single wait queue is serialized by wq.lock, but the case when multiple wait
1213 * queues are used should be detected accordingly. This is detected using
1214 * cmpxchg() operation.
1215 */
ep_poll_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1216 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1217 {
1218 struct epitem *epi = ep_item_from_wait(wait);
1219 struct eventpoll *ep = epi->ep;
1220 __poll_t pollflags = key_to_poll(key);
1221 int ewake = 0;
1222
1223 ep_set_busy_poll_napi_id(epi);
1224
1225 /*
1226 * If the event mask does not contain any poll(2) event, we consider the
1227 * descriptor to be disabled. This condition is likely the effect of the
1228 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1229 * until the next EPOLL_CTL_MOD will be issued.
1230 */
1231 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1232 goto out;
1233
1234 /*
1235 * Check the events coming with the callback. At this stage, not
1236 * every device reports the events in the "key" parameter of the
1237 * callback. We need to be able to handle both cases here, hence the
1238 * test for "key" != NULL before the event match test.
1239 */
1240 if (pollflags && !(pollflags & epi->event.events))
1241 goto out;
1242
1243 ep_pm_stay_awake_rcu(epi);
1244 epitem_ready(epi);
1245
1246 /*
1247 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1248 * wait list.
1249 */
1250 if (waitqueue_active(&ep->wq)) {
1251 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1252 !(pollflags & POLLFREE)) {
1253 switch (pollflags & EPOLLINOUT_BITS) {
1254 case EPOLLIN:
1255 if (epi->event.events & EPOLLIN)
1256 ewake = 1;
1257 break;
1258 case EPOLLOUT:
1259 if (epi->event.events & EPOLLOUT)
1260 ewake = 1;
1261 break;
1262 case 0:
1263 ewake = 1;
1264 break;
1265 }
1266 }
1267 if (sync)
1268 wake_up_sync(&ep->wq);
1269 else
1270 wake_up(&ep->wq);
1271 }
1272 if (waitqueue_active(&ep->poll_wait))
1273 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1274
1275 out:
1276 if (!(epi->event.events & EPOLLEXCLUSIVE))
1277 ewake = 1;
1278
1279 if (pollflags & POLLFREE) {
1280 /*
1281 * If we race with ep_remove_wait_queue() it can miss
1282 * ->whead = NULL and do another remove_wait_queue() after
1283 * us, so we can't use __remove_wait_queue().
1284 */
1285 list_del_init(&wait->entry);
1286 /*
1287 * ->whead != NULL protects us from the race with
1288 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1289 * takes whead->lock held by the caller. Once we nullify it,
1290 * nothing protects ep/epi or even wait.
1291 */
1292 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1293 }
1294
1295 return ewake;
1296 }
1297
1298 /*
1299 * This is the callback that is used to add our wait queue to the
1300 * target file wakeup lists.
1301 */
ep_ptable_queue_proc(struct file * file,wait_queue_head_t * whead,poll_table * pt)1302 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1303 poll_table *pt)
1304 {
1305 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1306 struct epitem *epi = epq->epi;
1307 struct eppoll_entry *pwq;
1308
1309 if (unlikely(!epi)) // an earlier allocation has failed
1310 return;
1311
1312 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1313 if (unlikely(!pwq)) {
1314 epq->epi = NULL;
1315 return;
1316 }
1317
1318 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1319 pwq->whead = whead;
1320 pwq->base = epi;
1321 if (epi->event.events & EPOLLEXCLUSIVE)
1322 add_wait_queue_exclusive(whead, &pwq->wait);
1323 else
1324 add_wait_queue(whead, &pwq->wait);
1325 pwq->next = epi->pwqlist;
1326 epi->pwqlist = pwq;
1327 }
1328
ep_rbtree_insert(struct eventpoll * ep,struct epitem * epi)1329 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1330 {
1331 int kcmp;
1332 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1333 struct epitem *epic;
1334 bool leftmost = true;
1335
1336 while (*p) {
1337 parent = *p;
1338 epic = rb_entry(parent, struct epitem, rbn);
1339 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1340 if (kcmp > 0) {
1341 p = &parent->rb_right;
1342 leftmost = false;
1343 } else
1344 p = &parent->rb_left;
1345 }
1346 rb_link_node(&epi->rbn, parent, p);
1347 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1348 }
1349
1350
1351
1352 #define PATH_ARR_SIZE 5
1353 /*
1354 * These are the number paths of length 1 to 5, that we are allowing to emanate
1355 * from a single file of interest. For example, we allow 1000 paths of length
1356 * 1, to emanate from each file of interest. This essentially represents the
1357 * potential wakeup paths, which need to be limited in order to avoid massive
1358 * uncontrolled wakeup storms. The common use case should be a single ep which
1359 * is connected to n file sources. In this case each file source has 1 path
1360 * of length 1. Thus, the numbers below should be more than sufficient. These
1361 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1362 * and delete can't add additional paths. Protected by the epnested_mutex.
1363 */
1364 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1365 static int path_count[PATH_ARR_SIZE];
1366
path_count_inc(int nests)1367 static int path_count_inc(int nests)
1368 {
1369 /* Allow an arbitrary number of depth 1 paths */
1370 if (nests == 0)
1371 return 0;
1372
1373 if (++path_count[nests] > path_limits[nests])
1374 return -1;
1375 return 0;
1376 }
1377
path_count_init(void)1378 static void path_count_init(void)
1379 {
1380 int i;
1381
1382 for (i = 0; i < PATH_ARR_SIZE; i++)
1383 path_count[i] = 0;
1384 }
1385
reverse_path_check_proc(struct hlist_head * refs,int depth)1386 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1387 {
1388 int error = 0;
1389 struct epitem *epi;
1390
1391 if (depth > EP_MAX_NESTS) /* too deep nesting */
1392 return -1;
1393
1394 /* CTL_DEL can remove links here, but that can't increase our count */
1395 hlist_for_each_entry_rcu(epi, refs, fllink) {
1396 struct hlist_head *refs = &epi->ep->refs;
1397 if (hlist_empty(refs))
1398 error = path_count_inc(depth);
1399 else
1400 error = reverse_path_check_proc(refs, depth + 1);
1401 if (error != 0)
1402 break;
1403 }
1404 return error;
1405 }
1406
1407 /**
1408 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1409 * links that are proposed to be newly added. We need to
1410 * make sure that those added links don't add too many
1411 * paths such that we will spend all our time waking up
1412 * eventpoll objects.
1413 *
1414 * Return: %zero if the proposed links don't create too many paths,
1415 * %-1 otherwise.
1416 */
reverse_path_check(void)1417 static int reverse_path_check(void)
1418 {
1419 struct epitems_head *p;
1420
1421 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1422 int error;
1423 path_count_init();
1424 rcu_read_lock();
1425 error = reverse_path_check_proc(&p->epitems, 0);
1426 rcu_read_unlock();
1427 if (error)
1428 return error;
1429 }
1430 return 0;
1431 }
1432
ep_create_wakeup_source(struct epitem * epi)1433 static int ep_create_wakeup_source(struct epitem *epi)
1434 {
1435 struct name_snapshot n;
1436 struct wakeup_source *ws;
1437
1438 if (!epi->ep->ws) {
1439 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1440 if (!epi->ep->ws)
1441 return -ENOMEM;
1442 }
1443
1444 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1445 ws = wakeup_source_register(NULL, n.name.name);
1446 release_dentry_name_snapshot(&n);
1447
1448 if (!ws)
1449 return -ENOMEM;
1450 rcu_assign_pointer(epi->ws, ws);
1451
1452 return 0;
1453 }
1454
1455 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
ep_destroy_wakeup_source(struct epitem * epi)1456 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1457 {
1458 struct wakeup_source *ws = ep_wakeup_source(epi);
1459
1460 RCU_INIT_POINTER(epi->ws, NULL);
1461
1462 /*
1463 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1464 * used internally by wakeup_source_remove, too (called by
1465 * wakeup_source_unregister), so we cannot use call_rcu
1466 */
1467 synchronize_rcu();
1468 wakeup_source_unregister(ws);
1469 }
1470
attach_epitem(struct file * file,struct epitem * epi)1471 static int attach_epitem(struct file *file, struct epitem *epi)
1472 {
1473 struct epitems_head *to_free = NULL;
1474 struct hlist_head *head = NULL;
1475 struct eventpoll *ep = NULL;
1476
1477 if (is_file_epoll(file))
1478 ep = file->private_data;
1479
1480 if (ep) {
1481 head = &ep->refs;
1482 } else if (!READ_ONCE(file->f_ep)) {
1483 allocate:
1484 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1485 if (!to_free)
1486 return -ENOMEM;
1487 head = &to_free->epitems;
1488 }
1489 spin_lock(&file->f_lock);
1490 if (!file->f_ep) {
1491 if (unlikely(!head)) {
1492 spin_unlock(&file->f_lock);
1493 goto allocate;
1494 }
1495 /* See eventpoll_release() for details. */
1496 WRITE_ONCE(file->f_ep, head);
1497 to_free = NULL;
1498 }
1499 hlist_add_head_rcu(&epi->fllink, file->f_ep);
1500 spin_unlock(&file->f_lock);
1501 free_ephead(to_free);
1502 return 0;
1503 }
1504
1505 /*
1506 * Must be called with "mtx" held.
1507 */
ep_insert(struct eventpoll * ep,const struct epoll_event * event,struct file * tfile,int fd,int full_check)1508 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1509 struct file *tfile, int fd, int full_check)
1510 {
1511 int error, pwake = 0;
1512 __poll_t revents;
1513 struct epitem *epi;
1514 struct ep_pqueue epq;
1515 struct eventpoll *tep = NULL;
1516
1517 if (is_file_epoll(tfile))
1518 tep = tfile->private_data;
1519
1520 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1521 max_user_watches) >= 0))
1522 return -ENOSPC;
1523 percpu_counter_inc(&ep->user->epoll_watches);
1524
1525 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1526 percpu_counter_dec(&ep->user->epoll_watches);
1527 return -ENOMEM;
1528 }
1529
1530 /* Item initialization follow here ... */
1531 init_llist_node(&epi->rdllink);
1532 epi->ep = ep;
1533 ep_set_ffd(&epi->ffd, tfile, fd);
1534 epi->event = *event;
1535
1536 if (tep)
1537 mutex_lock_nested(&tep->mtx, 1);
1538 /* Add the current item to the list of active epoll hook for this file */
1539 if (unlikely(attach_epitem(tfile, epi) < 0)) {
1540 if (tep)
1541 mutex_unlock(&tep->mtx);
1542 kmem_cache_free(epi_cache, epi);
1543 percpu_counter_dec(&ep->user->epoll_watches);
1544 return -ENOMEM;
1545 }
1546
1547 if (full_check && !tep)
1548 list_file(tfile);
1549
1550 /*
1551 * Add the current item to the RB tree. All RB tree operations are
1552 * protected by "mtx", and ep_insert() is called with "mtx" held.
1553 */
1554 ep_rbtree_insert(ep, epi);
1555 if (tep)
1556 mutex_unlock(&tep->mtx);
1557
1558 /*
1559 * ep_remove_safe() calls in the later error paths can't lead to
1560 * ep_free() as the ep file itself still holds an ep reference.
1561 */
1562 ep_get(ep);
1563
1564 /* now check if we've created too many backpaths */
1565 if (unlikely(full_check && reverse_path_check())) {
1566 ep_remove_safe(ep, epi);
1567 return -EINVAL;
1568 }
1569
1570 if (epi->event.events & EPOLLWAKEUP) {
1571 error = ep_create_wakeup_source(epi);
1572 if (error) {
1573 ep_remove_safe(ep, epi);
1574 return error;
1575 }
1576 }
1577
1578 /* Initialize the poll table using the queue callback */
1579 epq.epi = epi;
1580 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1581
1582 /*
1583 * Attach the item to the poll hooks and get current event bits.
1584 * We can safely use the file* here because its usage count has
1585 * been increased by the caller of this function. Note that after
1586 * this operation completes, the poll callback can start hitting
1587 * the new item.
1588 */
1589 revents = ep_item_poll(epi, &epq.pt, 1);
1590
1591 /*
1592 * We have to check if something went wrong during the poll wait queue
1593 * install process. Namely an allocation for a wait queue failed due
1594 * high memory pressure.
1595 */
1596 if (unlikely(!epq.epi)) {
1597 ep_remove_safe(ep, epi);
1598 return -ENOMEM;
1599 }
1600
1601 /* record NAPI ID of new item if present */
1602 ep_set_busy_poll_napi_id(epi);
1603
1604 /* If the file is already "ready" we drop it inside the ready list */
1605 if (revents) {
1606 ep_pm_stay_awake(epi);
1607 epitem_ready(epi);
1608
1609 /* Notify waiting tasks that events are available */
1610 if (waitqueue_active(&ep->wq))
1611 wake_up(&ep->wq);
1612 if (waitqueue_active(&ep->poll_wait))
1613 pwake++;
1614 }
1615
1616 /* We have to call this outside the lock */
1617 if (pwake)
1618 ep_poll_safewake(ep, NULL, 0);
1619
1620 return 0;
1621 }
1622
1623 /*
1624 * Modify the interest event mask by dropping an event if the new mask
1625 * has a match in the current file status. Must be called with "mtx" held.
1626 */
ep_modify(struct eventpoll * ep,struct epitem * epi,const struct epoll_event * event)1627 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1628 const struct epoll_event *event)
1629 {
1630 poll_table pt;
1631
1632 init_poll_funcptr(&pt, NULL);
1633
1634 /*
1635 * Set the new event interest mask before calling f_op->poll();
1636 * otherwise we might miss an event that happens between the
1637 * f_op->poll() call and the new event set registering.
1638 */
1639 epi->event.events = event->events; /* need barrier below */
1640 epi->event.data = event->data; /* protected by mtx */
1641 if (epi->event.events & EPOLLWAKEUP) {
1642 if (!ep_has_wakeup_source(epi))
1643 ep_create_wakeup_source(epi);
1644 } else if (ep_has_wakeup_source(epi)) {
1645 ep_destroy_wakeup_source(epi);
1646 }
1647
1648 /*
1649 * The following barrier has two effects:
1650 *
1651 * 1) Flush epi changes above to other CPUs. This ensures
1652 * we do not miss events from ep_poll_callback if an
1653 * event occurs immediately after we call f_op->poll().
1654 * We need this because we did not take ep->lock while
1655 * changing epi above (but ep_poll_callback does take
1656 * ep->lock).
1657 *
1658 * 2) We also need to ensure we do not miss _past_ events
1659 * when calling f_op->poll(). This barrier also
1660 * pairs with the barrier in wq_has_sleeper (see
1661 * comments for wq_has_sleeper).
1662 *
1663 * This barrier will now guarantee ep_poll_callback or f_op->poll
1664 * (or both) will notice the readiness of an item.
1665 */
1666 smp_mb();
1667
1668 /*
1669 * Get current event bits. We can safely use the file* here because
1670 * its usage count has been increased by the caller of this function.
1671 * If the item is "hot" and it is not registered inside the ready
1672 * list, push it inside.
1673 */
1674 if (ep_item_poll(epi, &pt, 1)) {
1675 ep_pm_stay_awake(epi);
1676 epitem_ready(epi);
1677
1678 /* Notify waiting tasks that events are available */
1679 if (waitqueue_active(&ep->wq))
1680 wake_up(&ep->wq);
1681 if (waitqueue_active(&ep->poll_wait))
1682 ep_poll_safewake(ep, NULL, 0);
1683 }
1684
1685 return 0;
1686 }
1687
ep_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1688 static int ep_send_events(struct eventpoll *ep,
1689 struct epoll_event __user *events, int maxevents)
1690 {
1691 struct epitem *epi, *tmp;
1692 LLIST_HEAD(txlist);
1693 poll_table pt;
1694 int res = 0;
1695
1696 /*
1697 * Always short-circuit for fatal signals to allow threads to make a
1698 * timely exit without the chance of finding more events available and
1699 * fetching repeatedly.
1700 */
1701 if (fatal_signal_pending(current))
1702 return -EINTR;
1703
1704 init_poll_funcptr(&pt, NULL);
1705
1706 mutex_lock(&ep->mtx);
1707
1708 while (res < maxevents) {
1709 struct wakeup_source *ws;
1710 struct llist_node *n;
1711 __poll_t revents;
1712
1713 n = llist_del_first(&ep->rdllist);
1714 if (!n)
1715 break;
1716
1717 epi = llist_entry(n, struct epitem, rdllink);
1718
1719 /*
1720 * Activate ep->ws before deactivating epi->ws to prevent
1721 * triggering auto-suspend here (in case we reactive epi->ws
1722 * below).
1723 *
1724 * This could be rearranged to delay the deactivation of epi->ws
1725 * instead, but then epi->ws would temporarily be out of sync
1726 * with ep_is_linked().
1727 */
1728 ws = ep_wakeup_source(epi);
1729 if (ws) {
1730 if (ws->active)
1731 __pm_stay_awake(ep->ws);
1732 __pm_relax(ws);
1733 }
1734
1735 /*
1736 * If the event mask intersect the caller-requested one,
1737 * deliver the event to userspace. Again, we are holding ep->mtx,
1738 * so no operations coming from userspace can change the item.
1739 */
1740 revents = ep_item_poll(epi, &pt, 1);
1741 if (!revents) {
1742 init_llist_node(n);
1743
1744 /*
1745 * Just in case epi becomes ready after ep_item_poll() above, but before
1746 * init_llist_node(). Make sure to add it to the ready list, otherwise an
1747 * event may be lost.
1748 */
1749 if (unlikely(ep_item_poll(epi, &pt, 1))) {
1750 ep_pm_stay_awake(epi);
1751 epitem_ready(epi);
1752 }
1753 continue;
1754 }
1755
1756 events = epoll_put_uevent(revents, epi->event.data, events);
1757 if (!events) {
1758 llist_add(&epi->rdllink, &ep->rdllist);
1759 if (!res)
1760 res = -EFAULT;
1761 break;
1762 }
1763 res++;
1764 if (epi->event.events & EPOLLONESHOT)
1765 epi->event.events &= EP_PRIVATE_BITS;
1766 __llist_add(n, &txlist);
1767 }
1768
1769 llist_for_each_entry_safe(epi, tmp, txlist.first, rdllink) {
1770 init_llist_node(&epi->rdllink);
1771
1772 if (!(epi->event.events & EPOLLET)) {
1773 /*
1774 * If this file has been added with Level Trigger mode, we need to insert
1775 * back inside the ready list, so that the next call to epoll_wait() will
1776 * check again the events availability.
1777 */
1778 ep_pm_stay_awake(epi);
1779 epitem_ready(epi);
1780 }
1781 }
1782
1783 __pm_relax(ep->ws);
1784 mutex_unlock(&ep->mtx);
1785
1786 if (!llist_empty(&ep->rdllist)) {
1787 if (waitqueue_active(&ep->wq))
1788 wake_up(&ep->wq);
1789 }
1790
1791 return res;
1792 }
1793
ep_timeout_to_timespec(struct timespec64 * to,long ms)1794 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1795 {
1796 struct timespec64 now;
1797
1798 if (ms < 0)
1799 return NULL;
1800
1801 if (!ms) {
1802 to->tv_sec = 0;
1803 to->tv_nsec = 0;
1804 return to;
1805 }
1806
1807 to->tv_sec = ms / MSEC_PER_SEC;
1808 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1809
1810 ktime_get_ts64(&now);
1811 *to = timespec64_add_safe(now, *to);
1812 return to;
1813 }
1814
1815 /*
1816 * autoremove_wake_function, but remove even on failure to wake up, because we
1817 * know that default_wake_function/ttwu will only fail if the thread is already
1818 * woken, and in that case the ep_poll loop will remove the entry anyways, not
1819 * try to reuse it.
1820 */
ep_autoremove_wake_function(struct wait_queue_entry * wq_entry,unsigned int mode,int sync,void * key)1821 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1822 unsigned int mode, int sync, void *key)
1823 {
1824 int ret = default_wake_function(wq_entry, mode, sync, key);
1825
1826 /*
1827 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1828 * iterations see the cause of this wakeup.
1829 */
1830 list_del_init_careful(&wq_entry->entry);
1831 return ret;
1832 }
1833
ep_try_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1834 static int ep_try_send_events(struct eventpoll *ep,
1835 struct epoll_event __user *events, int maxevents)
1836 {
1837 int res;
1838
1839 /*
1840 * Try to transfer events to user space. In case we get 0 events and
1841 * there's still timeout left over, we go trying again in search of
1842 * more luck.
1843 */
1844 res = ep_send_events(ep, events, maxevents);
1845 if (res > 0)
1846 ep_suspend_napi_irqs(ep);
1847 return res;
1848 }
1849
ep_schedule_timeout(ktime_t * to)1850 static int ep_schedule_timeout(ktime_t *to)
1851 {
1852 if (to)
1853 return ktime_after(*to, ktime_get());
1854 else
1855 return 1;
1856 }
1857
1858 /**
1859 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1860 * event buffer.
1861 *
1862 * @ep: Pointer to the eventpoll context.
1863 * @events: Pointer to the userspace buffer where the ready events should be
1864 * stored.
1865 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1866 * @timeout: Maximum timeout for the ready events fetch operation, in
1867 * timespec. If the timeout is zero, the function will not block,
1868 * while if the @timeout ptr is NULL, the function will block
1869 * until at least one event has been retrieved (or an error
1870 * occurred).
1871 *
1872 * Return: the number of ready events which have been fetched, or an
1873 * error code, in case of error.
1874 */
ep_poll(struct eventpoll * ep,struct epoll_event __user * events,int maxevents,struct timespec64 * timeout)1875 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1876 int maxevents, struct timespec64 *timeout)
1877 {
1878 int res, eavail, timed_out = 0;
1879 u64 slack = 0;
1880 wait_queue_entry_t wait;
1881 ktime_t expires, *to = NULL;
1882
1883 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1884 slack = select_estimate_accuracy(timeout);
1885 to = &expires;
1886 *to = timespec64_to_ktime(*timeout);
1887 } else if (timeout) {
1888 /*
1889 * Avoid the unnecessary trip to the wait queue loop, if the
1890 * caller specified a non blocking operation.
1891 */
1892 timed_out = 1;
1893 }
1894
1895 /*
1896 * This call is racy: We may or may not see events that are being added
1897 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1898 * with a non-zero timeout, this thread will check the ready list under
1899 * lock and will add to the wait queue. For cases with a zero
1900 * timeout, the user by definition should not care and will have to
1901 * recheck again.
1902 */
1903 eavail = ep_events_available(ep);
1904
1905 while (1) {
1906 if (eavail) {
1907 res = ep_try_send_events(ep, events, maxevents);
1908 if (res)
1909 return res;
1910 }
1911
1912 if (timed_out)
1913 return 0;
1914
1915 eavail = ep_busy_loop(ep);
1916 if (eavail)
1917 continue;
1918
1919 if (signal_pending(current))
1920 return -EINTR;
1921
1922 /*
1923 * Internally init_wait() uses autoremove_wake_function(),
1924 * thus wait entry is removed from the wait queue on each
1925 * wakeup. Why it is important? In case of several waiters
1926 * each new wakeup will hit the next waiter, giving it the
1927 * chance to harvest new event. Otherwise wakeup can be
1928 * lost. This is also good performance-wise, because on
1929 * normal wakeup path no need to call __remove_wait_queue()
1930 * explicitly, thus ep->lock is not taken, which halts the
1931 * event delivery.
1932 *
1933 * In fact, we now use an even more aggressive function that
1934 * unconditionally removes, because we don't reuse the wait
1935 * entry between loop iterations. This lets us also avoid the
1936 * performance issue if a process is killed, causing all of its
1937 * threads to wake up without being removed normally.
1938 */
1939 init_wait(&wait);
1940 wait.func = ep_autoremove_wake_function;
1941
1942 prepare_to_wait_exclusive(&ep->wq, &wait, TASK_INTERRUPTIBLE);
1943
1944 if (!ep_events_available(ep))
1945 timed_out = !ep_schedule_timeout(to) ||
1946 !schedule_hrtimeout_range(to, slack,
1947 HRTIMER_MODE_ABS);
1948
1949 finish_wait(&ep->wq, &wait);
1950 eavail = ep_events_available(ep);
1951 }
1952 }
1953
1954 /**
1955 * ep_loop_check_proc - verify that adding an epoll file inside another
1956 * epoll structure does not violate the constraints, in
1957 * terms of closed loops, or too deep chains (which can
1958 * result in excessive stack usage).
1959 *
1960 * @ep: the &struct eventpoll to be currently checked.
1961 * @depth: Current depth of the path being checked.
1962 *
1963 * Return: %zero if adding the epoll @file inside current epoll
1964 * structure @ep does not violate the constraints, or %-1 otherwise.
1965 */
ep_loop_check_proc(struct eventpoll * ep,int depth)1966 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1967 {
1968 int error = 0;
1969 struct rb_node *rbp;
1970 struct epitem *epi;
1971
1972 mutex_lock_nested(&ep->mtx, depth + 1);
1973 ep->gen = loop_check_gen;
1974 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1975 epi = rb_entry(rbp, struct epitem, rbn);
1976 if (unlikely(is_file_epoll(epi->ffd.file))) {
1977 struct eventpoll *ep_tovisit;
1978 ep_tovisit = epi->ffd.file->private_data;
1979 if (ep_tovisit->gen == loop_check_gen)
1980 continue;
1981 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1982 error = -1;
1983 else
1984 error = ep_loop_check_proc(ep_tovisit, depth + 1);
1985 if (error != 0)
1986 break;
1987 } else {
1988 /*
1989 * If we've reached a file that is not associated with
1990 * an ep, then we need to check if the newly added
1991 * links are going to add too many wakeup paths. We do
1992 * this by adding it to the tfile_check_list, if it's
1993 * not already there, and calling reverse_path_check()
1994 * during ep_insert().
1995 */
1996 list_file(epi->ffd.file);
1997 }
1998 }
1999 mutex_unlock(&ep->mtx);
2000
2001 return error;
2002 }
2003
2004 /**
2005 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2006 * into another epoll file (represented by @ep) does not create
2007 * closed loops or too deep chains.
2008 *
2009 * @ep: Pointer to the epoll we are inserting into.
2010 * @to: Pointer to the epoll to be inserted.
2011 *
2012 * Return: %zero if adding the epoll @to inside the epoll @from
2013 * does not violate the constraints, or %-1 otherwise.
2014 */
ep_loop_check(struct eventpoll * ep,struct eventpoll * to)2015 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2016 {
2017 inserting_into = ep;
2018 return ep_loop_check_proc(to, 0);
2019 }
2020
clear_tfile_check_list(void)2021 static void clear_tfile_check_list(void)
2022 {
2023 rcu_read_lock();
2024 while (tfile_check_list != EP_UNACTIVE_PTR) {
2025 struct epitems_head *head = tfile_check_list;
2026 tfile_check_list = head->next;
2027 unlist_file(head);
2028 }
2029 rcu_read_unlock();
2030 }
2031
2032 /*
2033 * Open an eventpoll file descriptor.
2034 */
do_epoll_create(int flags)2035 static int do_epoll_create(int flags)
2036 {
2037 int error, fd;
2038 struct eventpoll *ep = NULL;
2039 struct file *file;
2040
2041 /* Check the EPOLL_* constant for consistency. */
2042 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2043
2044 if (flags & ~EPOLL_CLOEXEC)
2045 return -EINVAL;
2046 /*
2047 * Create the internal data structure ("struct eventpoll").
2048 */
2049 error = ep_alloc(&ep);
2050 if (error < 0)
2051 return error;
2052 /*
2053 * Creates all the items needed to setup an eventpoll file. That is,
2054 * a file structure and a free file descriptor.
2055 */
2056 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2057 if (fd < 0) {
2058 error = fd;
2059 goto out_free_ep;
2060 }
2061 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2062 O_RDWR | (flags & O_CLOEXEC));
2063 if (IS_ERR(file)) {
2064 error = PTR_ERR(file);
2065 goto out_free_fd;
2066 }
2067 ep->file = file;
2068 fd_install(fd, file);
2069 return fd;
2070
2071 out_free_fd:
2072 put_unused_fd(fd);
2073 out_free_ep:
2074 ep_clear_and_put(ep);
2075 return error;
2076 }
2077
SYSCALL_DEFINE1(epoll_create1,int,flags)2078 SYSCALL_DEFINE1(epoll_create1, int, flags)
2079 {
2080 return do_epoll_create(flags);
2081 }
2082
SYSCALL_DEFINE1(epoll_create,int,size)2083 SYSCALL_DEFINE1(epoll_create, int, size)
2084 {
2085 if (size <= 0)
2086 return -EINVAL;
2087
2088 return do_epoll_create(0);
2089 }
2090
2091 #ifdef CONFIG_PM_SLEEP
ep_take_care_of_epollwakeup(struct epoll_event * epev)2092 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2093 {
2094 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2095 epev->events &= ~EPOLLWAKEUP;
2096 }
2097 #else
ep_take_care_of_epollwakeup(struct epoll_event * epev)2098 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2099 {
2100 epev->events &= ~EPOLLWAKEUP;
2101 }
2102 #endif
2103
epoll_mutex_lock(struct mutex * mutex,int depth,bool nonblock)2104 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2105 bool nonblock)
2106 {
2107 if (!nonblock) {
2108 mutex_lock_nested(mutex, depth);
2109 return 0;
2110 }
2111 if (mutex_trylock(mutex))
2112 return 0;
2113 return -EAGAIN;
2114 }
2115
do_epoll_ctl(int epfd,int op,int fd,struct epoll_event * epds,bool nonblock)2116 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2117 bool nonblock)
2118 {
2119 int error;
2120 int full_check = 0;
2121 struct eventpoll *ep;
2122 struct epitem *epi;
2123 struct eventpoll *tep = NULL;
2124
2125 CLASS(fd, f)(epfd);
2126 if (fd_empty(f))
2127 return -EBADF;
2128
2129 /* Get the "struct file *" for the target file */
2130 CLASS(fd, tf)(fd);
2131 if (fd_empty(tf))
2132 return -EBADF;
2133
2134 /* The target file descriptor must support poll */
2135 if (!file_can_poll(fd_file(tf)))
2136 return -EPERM;
2137
2138 /* Check if EPOLLWAKEUP is allowed */
2139 if (ep_op_has_event(op))
2140 ep_take_care_of_epollwakeup(epds);
2141
2142 /*
2143 * We have to check that the file structure underneath the file descriptor
2144 * the user passed to us _is_ an eventpoll file. And also we do not permit
2145 * adding an epoll file descriptor inside itself.
2146 */
2147 error = -EINVAL;
2148 if (fd_file(f) == fd_file(tf) || !is_file_epoll(fd_file(f)))
2149 goto error_tgt_fput;
2150
2151 /*
2152 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2153 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2154 * Also, we do not currently supported nested exclusive wakeups.
2155 */
2156 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2157 if (op == EPOLL_CTL_MOD)
2158 goto error_tgt_fput;
2159 if (op == EPOLL_CTL_ADD && (is_file_epoll(fd_file(tf)) ||
2160 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2161 goto error_tgt_fput;
2162 }
2163
2164 /*
2165 * At this point it is safe to assume that the "private_data" contains
2166 * our own data structure.
2167 */
2168 ep = fd_file(f)->private_data;
2169
2170 /*
2171 * When we insert an epoll file descriptor inside another epoll file
2172 * descriptor, there is the chance of creating closed loops, which are
2173 * better be handled here, than in more critical paths. While we are
2174 * checking for loops we also determine the list of files reachable
2175 * and hang them on the tfile_check_list, so we can check that we
2176 * haven't created too many possible wakeup paths.
2177 *
2178 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2179 * the epoll file descriptor is attaching directly to a wakeup source,
2180 * unless the epoll file descriptor is nested. The purpose of taking the
2181 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2182 * deep wakeup paths from forming in parallel through multiple
2183 * EPOLL_CTL_ADD operations.
2184 */
2185 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2186 if (error)
2187 goto error_tgt_fput;
2188 if (op == EPOLL_CTL_ADD) {
2189 if (READ_ONCE(fd_file(f)->f_ep) || ep->gen == loop_check_gen ||
2190 is_file_epoll(fd_file(tf))) {
2191 mutex_unlock(&ep->mtx);
2192 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2193 if (error)
2194 goto error_tgt_fput;
2195 loop_check_gen++;
2196 full_check = 1;
2197 if (is_file_epoll(fd_file(tf))) {
2198 tep = fd_file(tf)->private_data;
2199 error = -ELOOP;
2200 if (ep_loop_check(ep, tep) != 0)
2201 goto error_tgt_fput;
2202 }
2203 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2204 if (error)
2205 goto error_tgt_fput;
2206 }
2207 }
2208
2209 /*
2210 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2211 * above, we can be sure to be able to use the item looked up by
2212 * ep_find() till we release the mutex.
2213 */
2214 epi = ep_find(ep, fd_file(tf), fd);
2215
2216 error = -EINVAL;
2217 switch (op) {
2218 case EPOLL_CTL_ADD:
2219 if (!epi) {
2220 epds->events |= EPOLLERR | EPOLLHUP;
2221 error = ep_insert(ep, epds, fd_file(tf), fd, full_check);
2222 } else
2223 error = -EEXIST;
2224 break;
2225 case EPOLL_CTL_DEL:
2226 if (epi) {
2227 /*
2228 * The eventpoll itself is still alive: the refcount
2229 * can't go to zero here.
2230 */
2231 ep_remove_safe(ep, epi);
2232 error = 0;
2233 } else {
2234 error = -ENOENT;
2235 }
2236 break;
2237 case EPOLL_CTL_MOD:
2238 if (epi) {
2239 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2240 epds->events |= EPOLLERR | EPOLLHUP;
2241 error = ep_modify(ep, epi, epds);
2242 }
2243 } else
2244 error = -ENOENT;
2245 break;
2246 }
2247 mutex_unlock(&ep->mtx);
2248
2249 error_tgt_fput:
2250 if (full_check) {
2251 clear_tfile_check_list();
2252 loop_check_gen++;
2253 mutex_unlock(&epnested_mutex);
2254 }
2255 return error;
2256 }
2257
2258 /*
2259 * The following function implements the controller interface for
2260 * the eventpoll file that enables the insertion/removal/change of
2261 * file descriptors inside the interest set.
2262 */
SYSCALL_DEFINE4(epoll_ctl,int,epfd,int,op,int,fd,struct epoll_event __user *,event)2263 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2264 struct epoll_event __user *, event)
2265 {
2266 struct epoll_event epds;
2267
2268 if (ep_op_has_event(op) &&
2269 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2270 return -EFAULT;
2271
2272 return do_epoll_ctl(epfd, op, fd, &epds, false);
2273 }
2274
ep_check_params(struct file * file,struct epoll_event __user * evs,int maxevents)2275 static int ep_check_params(struct file *file, struct epoll_event __user *evs,
2276 int maxevents)
2277 {
2278 /* The maximum number of event must be greater than zero */
2279 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2280 return -EINVAL;
2281
2282 /* Verify that the area passed by the user is writeable */
2283 if (!access_ok(evs, maxevents * sizeof(struct epoll_event)))
2284 return -EFAULT;
2285
2286 /*
2287 * We have to check that the file structure underneath the fd
2288 * the user passed to us _is_ an eventpoll file.
2289 */
2290 if (!is_file_epoll(file))
2291 return -EINVAL;
2292
2293 return 0;
2294 }
2295
epoll_sendevents(struct file * file,struct epoll_event __user * events,int maxevents)2296 int epoll_sendevents(struct file *file, struct epoll_event __user *events,
2297 int maxevents)
2298 {
2299 struct eventpoll *ep;
2300 int ret;
2301
2302 ret = ep_check_params(file, events, maxevents);
2303 if (unlikely(ret))
2304 return ret;
2305
2306 ep = file->private_data;
2307 /*
2308 * Racy call, but that's ok - it should get retried based on
2309 * poll readiness anyway.
2310 */
2311 if (ep_events_available(ep))
2312 return ep_try_send_events(ep, events, maxevents);
2313 return 0;
2314 }
2315
2316 /*
2317 * Implement the event wait interface for the eventpoll file. It is the kernel
2318 * part of the user space epoll_wait(2).
2319 */
do_epoll_wait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * to)2320 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2321 int maxevents, struct timespec64 *to)
2322 {
2323 struct eventpoll *ep;
2324 int ret;
2325
2326 /* Get the "struct file *" for the eventpoll file */
2327 CLASS(fd, f)(epfd);
2328 if (fd_empty(f))
2329 return -EBADF;
2330
2331 ret = ep_check_params(fd_file(f), events, maxevents);
2332 if (unlikely(ret))
2333 return ret;
2334
2335 /*
2336 * At this point it is safe to assume that the "private_data" contains
2337 * our own data structure.
2338 */
2339 ep = fd_file(f)->private_data;
2340
2341 /* Time to fish for events ... */
2342 return ep_poll(ep, events, maxevents, to);
2343 }
2344
SYSCALL_DEFINE4(epoll_wait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout)2345 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2346 int, maxevents, int, timeout)
2347 {
2348 struct timespec64 to;
2349
2350 return do_epoll_wait(epfd, events, maxevents,
2351 ep_timeout_to_timespec(&to, timeout));
2352 }
2353
2354 /*
2355 * Implement the event wait interface for the eventpoll file. It is the kernel
2356 * part of the user space epoll_pwait(2).
2357 */
do_epoll_pwait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * to,const sigset_t __user * sigmask,size_t sigsetsize)2358 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2359 int maxevents, struct timespec64 *to,
2360 const sigset_t __user *sigmask, size_t sigsetsize)
2361 {
2362 int error;
2363
2364 /*
2365 * If the caller wants a certain signal mask to be set during the wait,
2366 * we apply it here.
2367 */
2368 error = set_user_sigmask(sigmask, sigsetsize);
2369 if (error)
2370 return error;
2371
2372 error = do_epoll_wait(epfd, events, maxevents, to);
2373
2374 restore_saved_sigmask_unless(error == -EINTR);
2375
2376 return error;
2377 }
2378
SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2379 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2380 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2381 size_t, sigsetsize)
2382 {
2383 struct timespec64 to;
2384
2385 return do_epoll_pwait(epfd, events, maxevents,
2386 ep_timeout_to_timespec(&to, timeout),
2387 sigmask, sigsetsize);
2388 }
2389
SYSCALL_DEFINE6(epoll_pwait2,int,epfd,struct epoll_event __user *,events,int,maxevents,const struct __kernel_timespec __user *,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2390 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2391 int, maxevents, const struct __kernel_timespec __user *, timeout,
2392 const sigset_t __user *, sigmask, size_t, sigsetsize)
2393 {
2394 struct timespec64 ts, *to = NULL;
2395
2396 if (timeout) {
2397 if (get_timespec64(&ts, timeout))
2398 return -EFAULT;
2399 to = &ts;
2400 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2401 return -EINVAL;
2402 }
2403
2404 return do_epoll_pwait(epfd, events, maxevents, to,
2405 sigmask, sigsetsize);
2406 }
2407
2408 #ifdef CONFIG_COMPAT
do_compat_epoll_pwait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * timeout,const compat_sigset_t __user * sigmask,compat_size_t sigsetsize)2409 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2410 int maxevents, struct timespec64 *timeout,
2411 const compat_sigset_t __user *sigmask,
2412 compat_size_t sigsetsize)
2413 {
2414 long err;
2415
2416 /*
2417 * If the caller wants a certain signal mask to be set during the wait,
2418 * we apply it here.
2419 */
2420 err = set_compat_user_sigmask(sigmask, sigsetsize);
2421 if (err)
2422 return err;
2423
2424 err = do_epoll_wait(epfd, events, maxevents, timeout);
2425
2426 restore_saved_sigmask_unless(err == -EINTR);
2427
2428 return err;
2429 }
2430
COMPAT_SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2431 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2432 struct epoll_event __user *, events,
2433 int, maxevents, int, timeout,
2434 const compat_sigset_t __user *, sigmask,
2435 compat_size_t, sigsetsize)
2436 {
2437 struct timespec64 to;
2438
2439 return do_compat_epoll_pwait(epfd, events, maxevents,
2440 ep_timeout_to_timespec(&to, timeout),
2441 sigmask, sigsetsize);
2442 }
2443
COMPAT_SYSCALL_DEFINE6(epoll_pwait2,int,epfd,struct epoll_event __user *,events,int,maxevents,const struct __kernel_timespec __user *,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2444 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2445 struct epoll_event __user *, events,
2446 int, maxevents,
2447 const struct __kernel_timespec __user *, timeout,
2448 const compat_sigset_t __user *, sigmask,
2449 compat_size_t, sigsetsize)
2450 {
2451 struct timespec64 ts, *to = NULL;
2452
2453 if (timeout) {
2454 if (get_timespec64(&ts, timeout))
2455 return -EFAULT;
2456 to = &ts;
2457 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2458 return -EINVAL;
2459 }
2460
2461 return do_compat_epoll_pwait(epfd, events, maxevents, to,
2462 sigmask, sigsetsize);
2463 }
2464
2465 #endif
2466
eventpoll_init(void)2467 static int __init eventpoll_init(void)
2468 {
2469 struct sysinfo si;
2470
2471 si_meminfo(&si);
2472 /*
2473 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2474 */
2475 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2476 EP_ITEM_COST;
2477 BUG_ON(max_user_watches < 0);
2478
2479 /*
2480 * We can have many thousands of epitems, so prevent this from
2481 * using an extra cache line on 64-bit (and smaller) CPUs
2482 */
2483 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2484
2485 /* Allocates slab cache used to allocate "struct epitem" items */
2486 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2487 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2488
2489 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2490 pwq_cache = kmem_cache_create("eventpoll_pwq",
2491 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2492 epoll_sysctls_init();
2493
2494 ephead_cache = kmem_cache_create("ep_head",
2495 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2496
2497 return 0;
2498 }
2499 fs_initcall(eventpoll_init);
2500