1 /*
2 * top - a top users display for Unix
3 *
4 * DESCRIPTION:
5 * Originally written for BSD4.4 system by Christos Zoulas.
6 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
7 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
8 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
9 *
10 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu>
11 * Steven Wallace <swallace@FreeBSD.org>
12 * Wolfram Schneider <wosch@FreeBSD.org>
13 * Thomas Moestl <tmoestl@gmx.net>
14 * Eitan Adler <eadler@FreeBSD.org>
15 */
16
17 #include <sys/param.h>
18 #include <sys/cpuset.h>
19 #include <sys/errno.h>
20 #include <sys/fcntl.h>
21 #include <sys/priority.h>
22 #include <sys/proc.h>
23 #include <sys/resource.h>
24 #include <sys/sbuf.h>
25 #include <sys/sysctl.h>
26 #include <sys/time.h>
27 #include <sys/user.h>
28
29 #include <assert.h>
30 #include <err.h>
31 #include <libgen.h>
32 #include <kvm.h>
33 #include <math.h>
34 #include <paths.h>
35 #include <stdio.h>
36 #include <stdbool.h>
37 #include <stdint.h>
38 #include <stdlib.h>
39 #include <string.h>
40 #include <time.h>
41 #include <unistd.h>
42 #include <vis.h>
43
44 #include "top.h"
45 #include "display.h"
46 #include "machine.h"
47 #include "loadavg.h"
48 #include "screen.h"
49 #include "utils.h"
50 #include "layout.h"
51
52 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
53
54 extern struct timeval timeout;
55 static int smpmode;
56 enum displaymodes displaymode;
57 static const int namelength = 10;
58 /* TOP_JID_LEN based on max of 999999 */
59 #define TOP_JID_LEN 6
60 #define TOP_SWAP_LEN 5
61
62 /* get_process_info passes back a handle. This is what it looks like: */
63
64 struct handle {
65 struct kinfo_proc **next_proc; /* points to next valid proc pointer */
66 int remaining; /* number of pointers remaining */
67 };
68
69
70 /* define what weighted cpu is. */
71 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
72 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
73
74 /* what we consider to be process size: */
75 #define PROCSIZE(pp) ((pp)->ki_size / 1024)
76
77 #define RU(pp) (&(pp)->ki_rusage)
78
79 #define PCTCPU(pp) (pcpu[pp - pbase])
80
81 /* process state names for the "STATE" column of the display */
82 /* the extra nulls in the string "run" are for adding a slash and
83 the processor number when needed */
84
85 static const char *state_abbrev[] = {
86 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
87 };
88
89
90 static kvm_t *kd;
91
92 /* values that we stash away in _init and use in later routines */
93
94 static double logcpu;
95
96 /* these are retrieved from the kernel in _init */
97
98 static load_avg ccpu;
99
100 /* these are used in the get_ functions */
101
102 static int lastpid;
103
104 /* these are for calculating cpu state percentages */
105
106 static long cp_time[CPUSTATES];
107 static long cp_old[CPUSTATES];
108 static long cp_diff[CPUSTATES];
109
110 /* these are for detailing the process states */
111
112 static const char *procstatenames[] = {
113 "", " starting, ", " running, ", " sleeping, ", " stopped, ",
114 " zombie, ", " waiting, ", " lock, ",
115 NULL
116 };
117 static int process_states[nitems(procstatenames)];
118
119 /* these are for detailing the cpu states */
120
121 static int cpu_states[CPUSTATES];
122 static const char *cpustatenames[] = {
123 "user", "nice", "system", "interrupt", "idle", NULL
124 };
125
126 /* these are for detailing the memory statistics */
127
128 static const char *memorynames[] = {
129 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ",
130 "K Free", NULL
131 };
132 static int memory_stats[nitems(memorynames)];
133
134 static const char *arcnames[] = {
135 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other",
136 NULL
137 };
138 static int arc_stats[nitems(arcnames)];
139
140 static const char *carcnames[] = {
141 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ",
142 NULL
143 };
144 static int carc_stats[nitems(carcnames)];
145
146 static const char *swapnames[] = {
147 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
148 NULL
149 };
150 static int swap_stats[nitems(swapnames)];
151
152 static int has_swap;
153
154 /* these are for keeping track of the proc array */
155
156 static int nproc;
157 static int onproc = -1;
158 static int pref_len;
159 static struct kinfo_proc *pbase;
160 static struct kinfo_proc **pref;
161 static struct kinfo_proc *previous_procs;
162 static struct kinfo_proc **previous_pref;
163 static int previous_proc_count = 0;
164 static int previous_proc_count_max = 0;
165 static int previous_thread;
166
167 /* data used for recalculating pctcpu */
168 static double *pcpu;
169 static struct timespec proc_uptime;
170 static struct timeval proc_wall_time;
171 static struct timeval previous_wall_time;
172 static uint64_t previous_interval = 0;
173
174 /* total number of io operations */
175 static long total_inblock;
176 static long total_oublock;
177 static long total_majflt;
178
179 /* these are for getting the memory statistics */
180
181 static int arc_enabled;
182 static int carc_enabled;
183 static int pageshift; /* log base 2 of the pagesize */
184
185 /* define pagetok in terms of pageshift */
186
187 #define pagetok(size) ((size) << pageshift)
188
189 /* swap usage */
190 #define ki_swap(kip) \
191 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0)
192
193 /*
194 * Sorting orders. The first element is the default.
195 */
196 static const char *ordernames[] = {
197 "cpu", "size", "res", "time", "pri", "threads",
198 "total", "read", "write", "fault", "vcsw", "ivcsw",
199 "jid", "swap", "pid", NULL
200 };
201
202 /* Per-cpu time states */
203 static int maxcpu;
204 static int maxid;
205 static int ncpus;
206 static cpuset_t cpumask;
207 static long *times;
208 static long *pcpu_cp_time;
209 static long *pcpu_cp_old;
210 static long *pcpu_cp_diff;
211 static int *pcpu_cpu_states;
212
213 /* Battery units and states */
214 static int battery_units;
215 static int battery_life;
216
217 static int compare_swap(const void *a, const void *b);
218 static int compare_jid(const void *a, const void *b);
219 static int compare_pid(const void *a, const void *b);
220 static int compare_tid(const void *a, const void *b);
221 static const char *format_nice(const struct kinfo_proc *pp);
222 static void getsysctl(const char *name, void *ptr, size_t len);
223 static int swapmode(int *retavail, int *retfree);
224 static void update_layout(void);
225 static int find_uid(uid_t needle, int *haystack);
226 static int cmd_matches(struct kinfo_proc *, const char *);
227
228 static int
find_uid(uid_t needle,int * haystack)229 find_uid(uid_t needle, int *haystack)
230 {
231 size_t i = 0;
232
233 for (; i < TOP_MAX_UIDS; ++i)
234 if ((uid_t)haystack[i] == needle)
235 return 1;
236 return (0);
237 }
238
239 void
toggle_pcpustats(void)240 toggle_pcpustats(void)
241 {
242
243 if (ncpus == 1)
244 return;
245 update_layout();
246 }
247
248 /* Adjust display based on ncpus and the ARC state. */
249 static void
update_layout(void)250 update_layout(void)
251 {
252
253 y_mem = 3;
254 y_arc = 4;
255 y_carc = 5;
256 y_swap = 3 + arc_enabled + carc_enabled + has_swap;
257 y_idlecursor = 4 + arc_enabled + carc_enabled + has_swap;
258 y_message = 4 + arc_enabled + carc_enabled + has_swap;
259 y_header = 5 + arc_enabled + carc_enabled + has_swap;
260 y_procs = 6 + arc_enabled + carc_enabled + has_swap;
261 Header_lines = 6 + arc_enabled + carc_enabled + has_swap;
262
263 if (pcpu_stats) {
264 y_mem += ncpus - 1;
265 y_arc += ncpus - 1;
266 y_carc += ncpus - 1;
267 y_swap += ncpus - 1;
268 y_idlecursor += ncpus - 1;
269 y_message += ncpus - 1;
270 y_header += ncpus - 1;
271 y_procs += ncpus - 1;
272 Header_lines += ncpus - 1;
273 }
274 }
275
276 int
machine_init(struct statics * statics)277 machine_init(struct statics *statics)
278 {
279 int i, j, empty, pagesize;
280 uint64_t arc_size;
281 int carc_en, nswapdev;
282 size_t size;
283
284 size = sizeof(smpmode);
285 if (sysctlbyname("kern.smp.active", &smpmode, &size, NULL, 0) != 0 ||
286 size != sizeof(smpmode))
287 smpmode = 0;
288
289 size = sizeof(arc_size);
290 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size,
291 NULL, 0) == 0 && arc_size != 0)
292 arc_enabled = 1;
293 size = sizeof(carc_en);
294 if (arc_enabled &&
295 sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size,
296 NULL, 0) == 0 && carc_en == 1) {
297 uint64_t uncomp_sz;
298
299 /*
300 * Don't report compression stats if no data is in the ARC.
301 * Otherwise, we end up printing a blank line.
302 */
303 size = sizeof(uncomp_sz);
304 if (sysctlbyname("kstat.zfs.misc.arcstats.uncompressed_size",
305 &uncomp_sz, &size, NULL, 0) == 0 && uncomp_sz != 0)
306 carc_enabled = 1;
307 }
308
309 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
310 if (kd == NULL)
311 return (-1);
312
313 size = sizeof(nswapdev);
314 if (sysctlbyname("vm.nswapdev", &nswapdev, &size, NULL, 0) == 0 &&
315 nswapdev != 0)
316 has_swap = 1;
317
318 GETSYSCTL("kern.ccpu", ccpu);
319
320 /* this is used in calculating WCPU -- calculate it ahead of time */
321 logcpu = log(loaddouble(ccpu));
322
323 pbase = NULL;
324 pref = NULL;
325 pcpu = NULL;
326 nproc = 0;
327 onproc = -1;
328
329 /* get the page size and calculate pageshift from it */
330 pagesize = getpagesize();
331 pageshift = 0;
332 while (pagesize > 1) {
333 pageshift++;
334 pagesize >>= 1;
335 }
336
337 /* we only need the amount of log(2)1024 for our conversion */
338 pageshift -= LOG1024;
339
340 /* fill in the statics information */
341 statics->procstate_names = procstatenames;
342 statics->cpustate_names = cpustatenames;
343 statics->memory_names = memorynames;
344 if (arc_enabled)
345 statics->arc_names = arcnames;
346 else
347 statics->arc_names = NULL;
348 if (carc_enabled)
349 statics->carc_names = carcnames;
350 else
351 statics->carc_names = NULL;
352 if (has_swap)
353 statics->swap_names = swapnames;
354 else
355 statics->swap_names = NULL;
356 statics->order_names = ordernames;
357
358 /* Allocate state for per-CPU stats. */
359 GETSYSCTL("kern.smp.maxcpus", maxcpu);
360 times = calloc(maxcpu * CPUSTATES, sizeof(long));
361 if (times == NULL)
362 err(1, "calloc for kern.smp.maxcpus");
363 size = sizeof(long) * maxcpu * CPUSTATES;
364 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1)
365 err(1, "sysctlbyname kern.cp_times");
366 pcpu_cp_time = calloc(1, size);
367 maxid = MIN(size / CPUSTATES / sizeof(long) - 1, CPU_SETSIZE - 1);
368 CPU_ZERO(&cpumask);
369 for (i = 0; i <= maxid; i++) {
370 empty = 1;
371 for (j = 0; empty && j < CPUSTATES; j++) {
372 if (times[i * CPUSTATES + j] != 0)
373 empty = 0;
374 }
375 if (!empty)
376 CPU_SET(i, &cpumask);
377 }
378 ncpus = CPU_COUNT(&cpumask);
379 assert(ncpus > 0);
380 pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long));
381 pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long));
382 pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int));
383 statics->ncpus = ncpus;
384
385 /* Allocate state of battery units reported via ACPI. */
386 battery_units = 0;
387 size = sizeof(int);
388 sysctlbyname("hw.acpi.battery.units", &battery_units, &size, NULL, 0);
389 statics->nbatteries = battery_units;
390
391 update_layout();
392
393 /* all done! */
394 return (0);
395 }
396
397 char *
format_header(const char * uname_field)398 format_header(const char *uname_field)
399 {
400 static struct sbuf* header = NULL;
401
402 /* clean up from last time. */
403 if (header != NULL) {
404 sbuf_clear(header);
405 } else {
406 header = sbuf_new_auto();
407 }
408
409 switch (displaymode) {
410 case DISP_CPU: {
411 sbuf_printf(header, " %s", ps.thread_id ? " THR" : "PID");
412 sbuf_printf(header, "%*s", ps.jail ? TOP_JID_LEN : 0,
413 ps.jail ? " JID" : "");
414 sbuf_printf(header, " %-*.*s ", namelength, namelength, uname_field);
415 if (!ps.thread) {
416 sbuf_cat(header, "THR ");
417 }
418 sbuf_cat(header, "PRI NICE SIZE RES ");
419 if (ps.swap) {
420 sbuf_printf(header, "%*s ", TOP_SWAP_LEN - 1, "SWAP");
421 }
422 sbuf_cat(header, "STATE ");
423 if (smpmode) {
424 sbuf_cat(header, "C ");
425 }
426 sbuf_cat(header, "TIME ");
427 sbuf_printf(header, " %6s ", ps.wcpu ? "WCPU" : "CPU");
428 sbuf_cat(header, "COMMAND");
429 sbuf_finish(header);
430 break;
431 }
432 case DISP_IO: {
433 sbuf_printf(header, " %s%*s %-*.*s",
434 ps.thread_id ? " THR" : "PID",
435 ps.jail ? TOP_JID_LEN : 0, ps.jail ? " JID" : "",
436 namelength, namelength, uname_field);
437 sbuf_cat(header, " VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND");
438 sbuf_finish(header);
439 break;
440 }
441 case DISP_MAX:
442 assert("displaymode must not be set to DISP_MAX");
443 }
444
445 return sbuf_data(header);
446 }
447
448 static int swappgsin = -1;
449 static int swappgsout = -1;
450
451
452 void
get_system_info(struct system_info * si)453 get_system_info(struct system_info *si)
454 {
455 struct loadavg sysload;
456 int mib[2];
457 struct timeval boottime;
458 uint64_t arc_stat, arc_stat2;
459 int i, j;
460 size_t size;
461
462 /* get the CPU stats */
463 size = (maxid + 1) * CPUSTATES * sizeof(long);
464 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1)
465 err(1, "sysctlbyname kern.cp_times");
466 GETSYSCTL("kern.cp_time", cp_time);
467 GETSYSCTL("vm.loadavg", sysload);
468 GETSYSCTL("kern.lastpid", lastpid);
469
470 /* convert load averages to doubles */
471 for (i = 0; i < 3; i++)
472 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;
473
474 /* convert cp_time counts to percentages */
475 for (i = j = 0; i <= maxid; i++) {
476 if (!CPU_ISSET(i, &cpumask))
477 continue;
478 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES],
479 &pcpu_cp_time[j * CPUSTATES],
480 &pcpu_cp_old[j * CPUSTATES],
481 &pcpu_cp_diff[j * CPUSTATES]);
482 j++;
483 }
484 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
485
486 /* sum memory & swap statistics */
487 {
488 static unsigned int swap_delay = 0;
489 static int swapavail = 0;
490 static int swapfree = 0;
491 static long bufspace = 0;
492 static uint64_t nspgsin, nspgsout;
493
494 GETSYSCTL("vfs.bufspace", bufspace);
495 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
496 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
497 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]);
498 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]);
499 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
500 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
501 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
502 /* convert memory stats to Kbytes */
503 memory_stats[0] = pagetok(memory_stats[0]);
504 memory_stats[1] = pagetok(memory_stats[1]);
505 memory_stats[2] = pagetok(memory_stats[2]);
506 memory_stats[3] = pagetok(memory_stats[3]);
507 memory_stats[4] = bufspace / 1024;
508 memory_stats[5] = pagetok(memory_stats[5]);
509 memory_stats[6] = -1;
510
511 /* first interval */
512 if (swappgsin < 0) {
513 swap_stats[4] = 0;
514 swap_stats[5] = 0;
515 }
516
517 /* compute differences between old and new swap statistic */
518 else {
519 swap_stats[4] = pagetok(((nspgsin - swappgsin)));
520 swap_stats[5] = pagetok(((nspgsout - swappgsout)));
521 }
522
523 swappgsin = nspgsin;
524 swappgsout = nspgsout;
525
526 /* call CPU heavy swapmode() only for changes */
527 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
528 swap_stats[3] = swapmode(&swapavail, &swapfree);
529 swap_stats[0] = swapavail;
530 swap_stats[1] = swapavail - swapfree;
531 swap_stats[2] = swapfree;
532 }
533 swap_delay = 1;
534 swap_stats[6] = -1;
535 }
536
537 if (arc_enabled) {
538 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat);
539 arc_stats[0] = arc_stat >> 10;
540 GETSYSCTL("vfs.zfs.mfu_size", arc_stat);
541 arc_stats[1] = arc_stat >> 10;
542 GETSYSCTL("vfs.zfs.mru_size", arc_stat);
543 arc_stats[2] = arc_stat >> 10;
544 GETSYSCTL("vfs.zfs.anon_size", arc_stat);
545 arc_stats[3] = arc_stat >> 10;
546 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat);
547 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2);
548 arc_stats[4] = (arc_stat + arc_stat2) >> 10;
549 GETSYSCTL("kstat.zfs.misc.arcstats.bonus_size", arc_stat);
550 arc_stats[5] = arc_stat >> 10;
551 GETSYSCTL("kstat.zfs.misc.arcstats.dnode_size", arc_stat);
552 arc_stats[5] += arc_stat >> 10;
553 GETSYSCTL("kstat.zfs.misc.arcstats.dbuf_size", arc_stat);
554 arc_stats[5] += arc_stat >> 10;
555 si->arc = arc_stats;
556 }
557 if (carc_enabled) {
558 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat);
559 carc_stats[0] = arc_stat >> 10;
560 carc_stats[2] = arc_stat >> 10; /* For ratio */
561 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat);
562 carc_stats[1] = arc_stat >> 10;
563 si->carc = carc_stats;
564 }
565
566 /* set arrays and strings */
567 if (pcpu_stats) {
568 si->cpustates = pcpu_cpu_states;
569 si->ncpus = ncpus;
570 } else {
571 si->cpustates = cpu_states;
572 si->ncpus = 1;
573 }
574 si->memory = memory_stats;
575 si->swap = swap_stats;
576
577
578 if (lastpid > 0) {
579 si->last_pid = lastpid;
580 } else {
581 si->last_pid = -1;
582 }
583
584 /*
585 * Print how long system has been up.
586 * (Found by looking getting "boottime" from the kernel)
587 */
588 mib[0] = CTL_KERN;
589 mib[1] = KERN_BOOTTIME;
590 size = sizeof(boottime);
591 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 &&
592 boottime.tv_sec != 0) {
593 si->boottime = boottime;
594 } else {
595 si->boottime.tv_sec = -1;
596 }
597
598 battery_life = 0;
599 if (battery_units > 0) {
600 GETSYSCTL("hw.acpi.battery.life", battery_life);
601 }
602 si->battery = battery_life;
603 }
604
605 #define NOPROC ((void *)-1)
606
607 /*
608 * We need to compare data from the old process entry with the new
609 * process entry.
610 * To facilitate doing this quickly we stash a pointer in the kinfo_proc
611 * structure to cache the mapping. We also use a negative cache pointer
612 * of NOPROC to avoid duplicate lookups.
613 * XXX: this could be done when the actual processes are fetched, we do
614 * it here out of laziness.
615 */
616 static const struct kinfo_proc *
get_old_proc(struct kinfo_proc * pp)617 get_old_proc(struct kinfo_proc *pp)
618 {
619 const struct kinfo_proc * const *oldpp, *oldp;
620
621 /*
622 * If this is the first fetch of the kinfo_procs then we don't have
623 * any previous entries.
624 */
625 if (previous_proc_count == 0)
626 return (NULL);
627 /* negative cache? */
628 if (pp->ki_udata == NOPROC)
629 return (NULL);
630 /* cached? */
631 if (pp->ki_udata != NULL)
632 return (pp->ki_udata);
633 /*
634 * Not cached,
635 * 1) look up based on pid.
636 * 2) compare process start.
637 * If we fail here, then setup a negative cache entry, otherwise
638 * cache it.
639 */
640 oldpp = bsearch(&pp, previous_pref, previous_proc_count,
641 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid);
642 if (oldpp == NULL) {
643 pp->ki_udata = NOPROC;
644 return (NULL);
645 }
646 oldp = *oldpp;
647 if (memcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
648 pp->ki_udata = NOPROC;
649 return (NULL);
650 }
651 pp->ki_udata = __DECONST(void *, oldp);
652 return (oldp);
653 }
654
655 /*
656 * Return the total amount of IO done in blocks in/out and faults.
657 * store the values individually in the pointers passed in.
658 */
659 static long
get_io_stats(const struct kinfo_proc * pp,long * inp,long * oup,long * flp,long * vcsw,long * ivcsw)660 get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp,
661 long *vcsw, long *ivcsw)
662 {
663 const struct kinfo_proc *oldp;
664 static struct kinfo_proc dummy;
665 long ret;
666
667 oldp = get_old_proc(__DECONST(struct kinfo_proc *, pp));
668 if (oldp == NULL) {
669 memset(&dummy, 0, sizeof(dummy));
670 oldp = &dummy;
671 }
672 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
673 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
674 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
675 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
676 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
677 ret =
678 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
679 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
680 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
681 return (ret);
682 }
683
684 /*
685 * If there was a previous update, use the delta in ki_runtime over
686 * the previous interval to calculate pctcpu. Otherwise, fall back
687 * to using the kernel's ki_pctcpu.
688 */
689 static double
proc_calc_pctcpu(struct kinfo_proc * pp)690 proc_calc_pctcpu(struct kinfo_proc *pp)
691 {
692 const struct kinfo_proc *oldp;
693
694 if (previous_interval != 0) {
695 oldp = get_old_proc(pp);
696 if (oldp != NULL)
697 return ((double)(pp->ki_runtime - oldp->ki_runtime)
698 / previous_interval);
699
700 /*
701 * If this process/thread was created during the previous
702 * interval, charge it's total runtime to the previous
703 * interval.
704 */
705 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec ||
706 (pp->ki_start.tv_sec == previous_wall_time.tv_sec &&
707 pp->ki_start.tv_usec >= previous_wall_time.tv_usec))
708 return ((double)pp->ki_runtime / previous_interval);
709 }
710 return (pctdouble(pp->ki_pctcpu));
711 }
712
713 /*
714 * Return true if this process has used any CPU time since the
715 * previous update.
716 */
717 static int
proc_used_cpu(struct kinfo_proc * pp)718 proc_used_cpu(struct kinfo_proc *pp)
719 {
720 const struct kinfo_proc *oldp;
721
722 oldp = get_old_proc(pp);
723 if (oldp == NULL)
724 return (PCTCPU(pp) != 0);
725 return (pp->ki_runtime != oldp->ki_runtime ||
726 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw ||
727 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw);
728 }
729
730 /*
731 * Return the total number of block in/out and faults by a process.
732 */
733 static long
get_io_total(const struct kinfo_proc * pp)734 get_io_total(const struct kinfo_proc *pp)
735 {
736 long dummy;
737
738 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
739 }
740
741 static struct handle handle;
742
743 void *
get_process_info(struct system_info * si,struct process_select * sel,int (* compare)(const void *,const void *))744 get_process_info(struct system_info *si, struct process_select *sel,
745 int (*compare)(const void *, const void *))
746 {
747 int i;
748 int total_procs;
749 long p_io;
750 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
751 long nsec;
752 int active_procs;
753 struct kinfo_proc **prefp;
754 struct kinfo_proc *pp;
755 struct timespec previous_proc_uptime;
756
757 /*
758 * If thread state was toggled, don't cache the previous processes.
759 */
760 if (previous_thread != sel->thread)
761 nproc = 0;
762 previous_thread = sel->thread;
763
764 /*
765 * Save the previous process info.
766 */
767 if (previous_proc_count_max < nproc) {
768 free(previous_procs);
769 previous_procs = calloc(nproc, sizeof(*previous_procs));
770 free(previous_pref);
771 previous_pref = calloc(nproc, sizeof(*previous_pref));
772 if (previous_procs == NULL || previous_pref == NULL) {
773 fprintf(stderr, "top: Out of memory.\n");
774 quit(TOP_EX_SYS_ERROR);
775 }
776 previous_proc_count_max = nproc;
777 }
778 if (nproc) {
779 for (i = 0; i < nproc; i++)
780 previous_pref[i] = &previous_procs[i];
781 memcpy(previous_procs, pbase, nproc * sizeof(*previous_procs));
782 qsort(previous_pref, nproc, sizeof(*previous_pref),
783 ps.thread ? compare_tid : compare_pid);
784 }
785 previous_proc_count = nproc;
786 previous_proc_uptime = proc_uptime;
787 previous_wall_time = proc_wall_time;
788 previous_interval = 0;
789
790 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC,
791 0, &nproc);
792 gettimeofday(&proc_wall_time, NULL);
793 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0)
794 memset(&proc_uptime, 0, sizeof(proc_uptime));
795 else if (previous_proc_uptime.tv_sec != 0 &&
796 previous_proc_uptime.tv_nsec != 0) {
797 previous_interval = (proc_uptime.tv_sec -
798 previous_proc_uptime.tv_sec) * 1000000;
799 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec;
800 if (nsec < 0) {
801 previous_interval -= 1000000;
802 nsec += 1000000000;
803 }
804 previous_interval += nsec / 1000;
805 }
806 if (nproc > onproc) {
807 pref = realloc(pref, sizeof(*pref) * nproc);
808 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc);
809 onproc = nproc;
810 }
811 if (pref == NULL || pbase == NULL || pcpu == NULL) {
812 fprintf(stderr, "top: Out of memory.\n");
813 quit(TOP_EX_SYS_ERROR);
814 }
815 /* get a pointer to the states summary array */
816 si->procstates = process_states;
817
818 /* count up process states and get pointers to interesting procs */
819 total_procs = 0;
820 active_procs = 0;
821 total_inblock = 0;
822 total_oublock = 0;
823 total_majflt = 0;
824 memset(process_states, 0, sizeof(process_states));
825 prefp = pref;
826 for (pp = pbase, i = 0; i < nproc; pp++, i++) {
827
828 if (pp->ki_stat == 0)
829 /* not in use */
830 continue;
831
832 if (!sel->self && pp->ki_pid == mypid && sel->pid == -1)
833 /* skip self */
834 continue;
835
836 if (!sel->system && (pp->ki_flag & P_SYSTEM) && sel->pid == -1)
837 /* skip system process */
838 continue;
839
840 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt,
841 &p_vcsw, &p_ivcsw);
842 total_inblock += p_inblock;
843 total_oublock += p_oublock;
844 total_majflt += p_majflt;
845 total_procs++;
846 process_states[(unsigned char)pp->ki_stat]++;
847
848 if (pp->ki_stat == SZOMB)
849 /* skip zombies */
850 continue;
851
852 if (!sel->kidle && pp->ki_tdflags & TDF_IDLETD && sel->pid == -1)
853 /* skip kernel idle process */
854 continue;
855
856 PCTCPU(pp) = proc_calc_pctcpu(pp);
857 if (sel->thread && PCTCPU(pp) > 1.0)
858 PCTCPU(pp) = 1.0;
859 if (displaymode == DISP_CPU && !sel->idle &&
860 (!proc_used_cpu(pp) ||
861 pp->ki_stat == SSTOP || pp->ki_stat == SIDL))
862 /* skip idle or non-running processes */
863 continue;
864
865 if (displaymode == DISP_IO && !sel->idle && p_io == 0)
866 /* skip processes that aren't doing I/O */
867 continue;
868
869 if (sel->jid != -1 && pp->ki_jid != sel->jid)
870 /* skip proc. that don't belong to the selected JID */
871 continue;
872
873 if (sel->uid[0] != -1 && !find_uid(pp->ki_ruid, sel->uid))
874 /* skip proc. that don't belong to the selected UID */
875 continue;
876
877 if (sel->pid != -1 && pp->ki_pid != sel->pid)
878 continue;
879
880 if (!cmd_matches(pp, sel->command))
881 /* skip proc. that doesn't match grep string */
882 continue;
883
884 *prefp++ = pp;
885 active_procs++;
886 }
887
888 /* if requested, sort the "interesting" processes */
889 if (compare != NULL)
890 qsort(pref, active_procs, sizeof(*pref), compare);
891
892 /* remember active and total counts */
893 si->p_total = total_procs;
894 si->p_pactive = pref_len = active_procs;
895
896 /* pass back a handle */
897 handle.next_proc = pref;
898 handle.remaining = active_procs;
899 return (&handle);
900 }
901
902 static int
cmd_matches(struct kinfo_proc * proc,const char * term)903 cmd_matches(struct kinfo_proc *proc, const char *term)
904 {
905 char **args = NULL;
906
907 if (!term) {
908 /* No command filter set */
909 return 1;
910 } else {
911 /* Filter set, does process name contain term? */
912 if (strstr(proc->ki_comm, term))
913 return 1;
914 /* Search arguments only if arguments are displayed */
915 if (show_args) {
916 args = kvm_getargv(kd, proc, 1024);
917 if (args == NULL) {
918 /* Failed to get arguments so can't search them */
919 return 0;
920 }
921 while (*args != NULL) {
922 if (strstr(*args, term))
923 return 1;
924 args++;
925 }
926 }
927 }
928 return 0;
929 }
930
931 char *
format_next_process(struct handle * xhandle,char * (* get_userid)(int),int flags)932 format_next_process(struct handle * xhandle, char *(*get_userid)(int), int flags)
933 {
934 struct kinfo_proc *pp;
935 const struct kinfo_proc *oldp;
936 long cputime;
937 char status[22];
938 size_t state;
939 struct rusage ru, *rup;
940 long p_tot, s_tot;
941 char *cmdbuf = NULL;
942 char **args;
943 static struct sbuf* procbuf = NULL;
944
945 /* clean up from last time. */
946 if (procbuf != NULL) {
947 sbuf_clear(procbuf);
948 } else {
949 procbuf = sbuf_new_auto();
950 }
951
952
953 /* find and remember the next proc structure */
954 pp = *(xhandle->next_proc++);
955 xhandle->remaining--;
956
957 /* get the process's command name */
958 if ((pp->ki_flag & P_INMEM) == 0) {
959 /*
960 * Print swapped processes as <pname>
961 */
962 size_t len;
963
964 len = strlen(pp->ki_comm);
965 if (len > sizeof(pp->ki_comm) - 3)
966 len = sizeof(pp->ki_comm) - 3;
967 memmove(pp->ki_comm + 1, pp->ki_comm, len);
968 pp->ki_comm[0] = '<';
969 pp->ki_comm[len + 1] = '>';
970 pp->ki_comm[len + 2] = '\0';
971 }
972
973 /*
974 * Convert the process's runtime from microseconds to seconds. This
975 * time includes the interrupt time although that is not wanted here.
976 * ps(1) is similarly sloppy.
977 */
978 cputime = (pp->ki_runtime + 500000) / 1000000;
979
980 /* generate "STATE" field */
981 switch (state = pp->ki_stat) {
982 case SRUN:
983 if (smpmode && pp->ki_oncpu != NOCPU)
984 sprintf(status, "CPU%d", pp->ki_oncpu);
985 else
986 strcpy(status, "RUN");
987 break;
988 case SLOCK:
989 if (pp->ki_kiflag & KI_LOCKBLOCK) {
990 sprintf(status, "*%.6s", pp->ki_lockname);
991 break;
992 }
993 /* fall through */
994 case SSLEEP:
995 sprintf(status, "%.6s", pp->ki_wmesg);
996 break;
997 default:
998
999 if (state < nitems(state_abbrev)) {
1000 sprintf(status, "%.6s", state_abbrev[state]);
1001 } else {
1002 sprintf(status, "?%5zu", state);
1003 }
1004 break;
1005 }
1006
1007 cmdbuf = calloc(screen_width + 1, 1);
1008 if (cmdbuf == NULL) {
1009 warn("calloc(%d)", screen_width + 1);
1010 return NULL;
1011 }
1012
1013 if (!(flags & FMT_SHOWARGS)) {
1014 if (ps.thread && pp->ki_flag & P_HADTHREADS &&
1015 pp->ki_tdname[0]) {
1016 snprintf(cmdbuf, screen_width, "%s{%s%s}", pp->ki_comm,
1017 pp->ki_tdname, pp->ki_moretdname);
1018 } else {
1019 snprintf(cmdbuf, screen_width, "%s", pp->ki_comm);
1020 }
1021 } else {
1022 if (pp->ki_flag & P_SYSTEM ||
1023 (args = kvm_getargv(kd, pp, screen_width)) == NULL ||
1024 !(*args)) {
1025 if (ps.thread && pp->ki_flag & P_HADTHREADS &&
1026 pp->ki_tdname[0]) {
1027 snprintf(cmdbuf, screen_width,
1028 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname,
1029 pp->ki_moretdname);
1030 } else {
1031 snprintf(cmdbuf, screen_width,
1032 "[%s]", pp->ki_comm);
1033 }
1034 } else {
1035 const char *src;
1036 char *dst, *argbuf;
1037 const char *cmd;
1038 size_t argbuflen;
1039 size_t len;
1040
1041 argbuflen = screen_width * 4;
1042 argbuf = calloc(argbuflen + 1, 1);
1043 if (argbuf == NULL) {
1044 warn("calloc(%zu)", argbuflen + 1);
1045 free(cmdbuf);
1046 return NULL;
1047 }
1048
1049 dst = argbuf;
1050
1051 /* Extract cmd name from argv */
1052 cmd = basename(*args);
1053
1054 for (; (src = *args++) != NULL; ) {
1055 if (*src == '\0')
1056 continue;
1057 len = (argbuflen - (dst - argbuf) - 1) / 4;
1058 strvisx(dst, src,
1059 MIN(strlen(src), len),
1060 VIS_NL | VIS_TAB | VIS_CSTYLE | VIS_OCTAL);
1061 while (*dst != '\0')
1062 dst++;
1063 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0)
1064 *dst++ = ' '; /* add delimiting space */
1065 }
1066 if (dst != argbuf && dst[-1] == ' ')
1067 dst--;
1068 *dst = '\0';
1069
1070 if (strcmp(cmd, pp->ki_comm) != 0) {
1071 if (ps.thread && pp->ki_flag & P_HADTHREADS &&
1072 pp->ki_tdname[0])
1073 snprintf(cmdbuf, screen_width,
1074 "%s (%s){%s%s}", argbuf,
1075 pp->ki_comm, pp->ki_tdname,
1076 pp->ki_moretdname);
1077 else
1078 snprintf(cmdbuf, screen_width,
1079 "%s (%s)", argbuf, pp->ki_comm);
1080 } else {
1081 if (ps.thread && pp->ki_flag & P_HADTHREADS &&
1082 pp->ki_tdname[0])
1083 snprintf(cmdbuf, screen_width,
1084 "%s{%s%s}", argbuf, pp->ki_tdname,
1085 pp->ki_moretdname);
1086 else
1087 strlcpy(cmdbuf, argbuf, screen_width);
1088 }
1089 free(argbuf);
1090 }
1091 }
1092
1093 if (displaymode == DISP_IO) {
1094 oldp = get_old_proc(pp);
1095 if (oldp != NULL) {
1096 ru.ru_inblock = RU(pp)->ru_inblock -
1097 RU(oldp)->ru_inblock;
1098 ru.ru_oublock = RU(pp)->ru_oublock -
1099 RU(oldp)->ru_oublock;
1100 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
1101 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
1102 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
1103 rup = &ru;
1104 } else {
1105 rup = RU(pp);
1106 }
1107 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
1108 s_tot = total_inblock + total_oublock + total_majflt;
1109
1110 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid);
1111
1112 if (ps.jail) {
1113 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid);
1114 }
1115 sbuf_printf(procbuf, "%-*.*s", namelength, namelength, (*get_userid)(pp->ki_ruid));
1116 sbuf_printf(procbuf, "%6ld ", rup->ru_nvcsw);
1117 sbuf_printf(procbuf, "%6ld ", rup->ru_nivcsw);
1118 sbuf_printf(procbuf, "%6ld ", rup->ru_inblock);
1119 sbuf_printf(procbuf, "%6ld ", rup->ru_oublock);
1120 sbuf_printf(procbuf, "%6ld ", rup->ru_majflt);
1121 sbuf_printf(procbuf, "%6ld ", p_tot);
1122 sbuf_printf(procbuf, "%6.2f%% ", s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot));
1123
1124 } else {
1125 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid);
1126 if (ps.jail) {
1127 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid);
1128 }
1129 sbuf_printf(procbuf, "%-*.*s ", namelength, namelength, (*get_userid)(pp->ki_ruid));
1130
1131 if (!ps.thread) {
1132 sbuf_printf(procbuf, "%4d ", pp->ki_numthreads);
1133 } else {
1134 sbuf_printf(procbuf, " ");
1135 }
1136
1137 sbuf_printf(procbuf, "%3d ", pp->ki_pri.pri_level - PZERO);
1138 sbuf_printf(procbuf, "%4s", format_nice(pp));
1139 sbuf_printf(procbuf, "%7s ", format_k(PROCSIZE(pp)));
1140 sbuf_printf(procbuf, "%6s ", format_k(pagetok(pp->ki_rssize)));
1141 if (ps.swap) {
1142 sbuf_printf(procbuf, "%*s ",
1143 TOP_SWAP_LEN - 1,
1144 format_k(pagetok(ki_swap(pp))));
1145 }
1146 sbuf_printf(procbuf, "%-6.6s ", status);
1147 if (smpmode) {
1148 int cpu;
1149 if (state == SRUN && pp->ki_oncpu != NOCPU) {
1150 cpu = pp->ki_oncpu;
1151 } else {
1152 cpu = pp->ki_lastcpu;
1153 }
1154 sbuf_printf(procbuf, "%3d ", cpu);
1155 }
1156 sbuf_printf(procbuf, "%6s ", format_time(cputime));
1157 sbuf_printf(procbuf, "%6.2f%% ", ps.wcpu ? 100.0 * weighted_cpu(PCTCPU(pp), pp) : 100.0 * PCTCPU(pp));
1158 }
1159 sbuf_printf(procbuf, "%s", cmdbuf);
1160 free(cmdbuf);
1161 return (sbuf_data(procbuf));
1162 }
1163
1164 static void
getsysctl(const char * name,void * ptr,size_t len)1165 getsysctl(const char *name, void *ptr, size_t len)
1166 {
1167 size_t nlen = len;
1168
1169 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
1170 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
1171 strerror(errno));
1172 quit(TOP_EX_SYS_ERROR);
1173 }
1174 if (nlen != len) {
1175 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n",
1176 name, (unsigned long)len, (unsigned long)nlen);
1177 quit(TOP_EX_SYS_ERROR);
1178 }
1179 }
1180
1181 static const char *
format_nice(const struct kinfo_proc * pp)1182 format_nice(const struct kinfo_proc *pp)
1183 {
1184 const char *fifo, *kproc;
1185 int rtpri;
1186 static char nicebuf[4 + 1];
1187
1188 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F";
1189 kproc = (pp->ki_flag & P_KPROC) ? "k" : "";
1190 switch (PRI_BASE(pp->ki_pri.pri_class)) {
1191 case PRI_ITHD:
1192 return ("-");
1193 case PRI_REALTIME:
1194 /*
1195 * XXX: the kernel doesn't tell us the original rtprio and
1196 * doesn't really know what it was, so to recover it we
1197 * must be more chummy with the implementation than the
1198 * implementation is with itself. pri_user gives a
1199 * constant "base" priority, but is only initialized
1200 * properly for user threads. pri_native gives what the
1201 * kernel calls the "base" priority, but it isn't constant
1202 * since it is changed by priority propagation. pri_native
1203 * also isn't properly initialized for all threads, but it
1204 * is properly initialized for kernel realtime and idletime
1205 * threads. Thus we use pri_user for the base priority of
1206 * user threads (it is always correct) and pri_native for
1207 * the base priority of kernel realtime and idletime threads
1208 * (there is nothing better, and it is usually correct).
1209 *
1210 * The field width and thus the buffer are too small for
1211 * values like "kr31F", but such values shouldn't occur,
1212 * and if they do then the tailing "F" is not displayed.
1213 */
1214 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native :
1215 pp->ki_pri.pri_user) - PRI_MIN_REALTIME;
1216 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s",
1217 kproc, rtpri, fifo);
1218 break;
1219 case PRI_TIMESHARE:
1220 if (pp->ki_flag & P_KPROC)
1221 return ("-");
1222 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO);
1223 break;
1224 case PRI_IDLE:
1225 /* XXX: as above. */
1226 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native :
1227 pp->ki_pri.pri_user) - PRI_MIN_IDLE;
1228 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s",
1229 kproc, rtpri, fifo);
1230 break;
1231 default:
1232 return ("?");
1233 }
1234 return (nicebuf);
1235 }
1236
1237 /* comparison routines for qsort */
1238
1239 static int
compare_pid(const void * p1,const void * p2)1240 compare_pid(const void *p1, const void *p2)
1241 {
1242 const struct kinfo_proc * const *pp1 = p1;
1243 const struct kinfo_proc * const *pp2 = p2;
1244
1245 assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0);
1246
1247 return ((*pp1)->ki_pid - (*pp2)->ki_pid);
1248 }
1249
1250 static int
compare_tid(const void * p1,const void * p2)1251 compare_tid(const void *p1, const void *p2)
1252 {
1253 const struct kinfo_proc * const *pp1 = p1;
1254 const struct kinfo_proc * const *pp2 = p2;
1255
1256 assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0);
1257
1258 return ((*pp1)->ki_tid - (*pp2)->ki_tid);
1259 }
1260
1261 /*
1262 * proc_compare - comparison function for "qsort"
1263 * Compares the resource consumption of two processes using five
1264 * distinct keys. The keys (in descending order of importance) are:
1265 * percent cpu, cpu ticks, state, resident set size, total virtual
1266 * memory usage. The process states are ordered as follows (from least
1267 * to most important): run, zombie, idle, interrupt wait, stop, sleep.
1268 * The array declaration below maps a process state index into a
1269 * number that reflects this ordering.
1270 */
1271
1272 static const int sorted_state[] = {
1273 [SIDL] = 3, /* being created */
1274 [SRUN] = 1, /* running/runnable */
1275 [SSLEEP] = 6, /* sleeping */
1276 [SSTOP] = 5, /* stopped/suspended */
1277 [SZOMB] = 2, /* zombie */
1278 [SWAIT] = 4, /* intr */
1279 [SLOCK] = 7, /* blocked on lock */
1280 };
1281
1282
1283 #define ORDERKEY_PCTCPU(a, b) do { \
1284 double diff; \
1285 if (ps.wcpu) \
1286 diff = weighted_cpu(PCTCPU((b)), (b)) - \
1287 weighted_cpu(PCTCPU((a)), (a)); \
1288 else \
1289 diff = PCTCPU((b)) - PCTCPU((a)); \
1290 if (diff != 0) \
1291 return (diff > 0 ? 1 : -1); \
1292 } while (0)
1293
1294 #define ORDERKEY_CPTICKS(a, b) do { \
1295 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
1296 if (diff != 0) \
1297 return (diff > 0 ? 1 : -1); \
1298 } while (0)
1299
1300 #define ORDERKEY_STATE(a, b) do { \
1301 int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \
1302 if (diff != 0) \
1303 return (diff > 0 ? 1 : -1); \
1304 } while (0)
1305
1306 #define ORDERKEY_PRIO(a, b) do { \
1307 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
1308 if (diff != 0) \
1309 return (diff > 0 ? 1 : -1); \
1310 } while (0)
1311
1312 #define ORDERKEY_THREADS(a, b) do { \
1313 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \
1314 if (diff != 0) \
1315 return (diff > 0 ? 1 : -1); \
1316 } while (0)
1317
1318 #define ORDERKEY_RSSIZE(a, b) do { \
1319 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
1320 if (diff != 0) \
1321 return (diff > 0 ? 1 : -1); \
1322 } while (0)
1323
1324 #define ORDERKEY_MEM(a, b) do { \
1325 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
1326 if (diff != 0) \
1327 return (diff > 0 ? 1 : -1); \
1328 } while (0)
1329
1330 #define ORDERKEY_JID(a, b) do { \
1331 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \
1332 if (diff != 0) \
1333 return (diff > 0 ? 1 : -1); \
1334 } while (0)
1335
1336 #define ORDERKEY_SWAP(a, b) do { \
1337 int diff = (int)ki_swap(b) - (int)ki_swap(a); \
1338 if (diff != 0) \
1339 return (diff > 0 ? 1 : -1); \
1340 } while (0)
1341
1342 /* compare_cpu - the comparison function for sorting by cpu percentage */
1343
1344 static int
compare_cpu(const void * arg1,const void * arg2)1345 compare_cpu(const void *arg1, const void *arg2)
1346 {
1347 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1348 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1349
1350 ORDERKEY_PCTCPU(p1, p2);
1351 ORDERKEY_CPTICKS(p1, p2);
1352 ORDERKEY_STATE(p1, p2);
1353 ORDERKEY_PRIO(p1, p2);
1354 ORDERKEY_RSSIZE(p1, p2);
1355 ORDERKEY_MEM(p1, p2);
1356
1357 return (0);
1358 }
1359
1360 /* compare_size - the comparison function for sorting by total memory usage */
1361
1362 static int
compare_size(const void * arg1,const void * arg2)1363 compare_size(const void *arg1, const void *arg2)
1364 {
1365 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1366 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1367
1368 ORDERKEY_MEM(p1, p2);
1369 ORDERKEY_RSSIZE(p1, p2);
1370 ORDERKEY_PCTCPU(p1, p2);
1371 ORDERKEY_CPTICKS(p1, p2);
1372 ORDERKEY_STATE(p1, p2);
1373 ORDERKEY_PRIO(p1, p2);
1374
1375 return (0);
1376 }
1377
1378 /* compare_res - the comparison function for sorting by resident set size */
1379
1380 static int
compare_res(const void * arg1,const void * arg2)1381 compare_res(const void *arg1, const void *arg2)
1382 {
1383 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1384 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1385
1386 ORDERKEY_RSSIZE(p1, p2);
1387 ORDERKEY_MEM(p1, p2);
1388 ORDERKEY_PCTCPU(p1, p2);
1389 ORDERKEY_CPTICKS(p1, p2);
1390 ORDERKEY_STATE(p1, p2);
1391 ORDERKEY_PRIO(p1, p2);
1392
1393 return (0);
1394 }
1395
1396 /* compare_time - the comparison function for sorting by total cpu time */
1397
1398 static int
compare_time(const void * arg1,const void * arg2)1399 compare_time(const void *arg1, const void *arg2)
1400 {
1401 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1402 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2;
1403
1404 ORDERKEY_CPTICKS(p1, p2);
1405 ORDERKEY_PCTCPU(p1, p2);
1406 ORDERKEY_STATE(p1, p2);
1407 ORDERKEY_PRIO(p1, p2);
1408 ORDERKEY_RSSIZE(p1, p2);
1409 ORDERKEY_MEM(p1, p2);
1410
1411 return (0);
1412 }
1413
1414 /* compare_prio - the comparison function for sorting by priority */
1415
1416 static int
compare_prio(const void * arg1,const void * arg2)1417 compare_prio(const void *arg1, const void *arg2)
1418 {
1419 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1420 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1421
1422 ORDERKEY_PRIO(p1, p2);
1423 ORDERKEY_CPTICKS(p1, p2);
1424 ORDERKEY_PCTCPU(p1, p2);
1425 ORDERKEY_STATE(p1, p2);
1426 ORDERKEY_RSSIZE(p1, p2);
1427 ORDERKEY_MEM(p1, p2);
1428
1429 return (0);
1430 }
1431
1432 /* compare_threads - the comparison function for sorting by threads */
1433 static int
compare_threads(const void * arg1,const void * arg2)1434 compare_threads(const void *arg1, const void *arg2)
1435 {
1436 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1437 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1438
1439 ORDERKEY_THREADS(p1, p2);
1440 ORDERKEY_PCTCPU(p1, p2);
1441 ORDERKEY_CPTICKS(p1, p2);
1442 ORDERKEY_STATE(p1, p2);
1443 ORDERKEY_PRIO(p1, p2);
1444 ORDERKEY_RSSIZE(p1, p2);
1445 ORDERKEY_MEM(p1, p2);
1446
1447 return (0);
1448 }
1449
1450 /* compare_jid - the comparison function for sorting by jid */
1451 static int
compare_jid(const void * arg1,const void * arg2)1452 compare_jid(const void *arg1, const void *arg2)
1453 {
1454 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1455 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1456
1457 ORDERKEY_JID(p1, p2);
1458 ORDERKEY_PCTCPU(p1, p2);
1459 ORDERKEY_CPTICKS(p1, p2);
1460 ORDERKEY_STATE(p1, p2);
1461 ORDERKEY_PRIO(p1, p2);
1462 ORDERKEY_RSSIZE(p1, p2);
1463 ORDERKEY_MEM(p1, p2);
1464
1465 return (0);
1466 }
1467
1468 /* compare_swap - the comparison function for sorting by swap */
1469 static int
compare_swap(const void * arg1,const void * arg2)1470 compare_swap(const void *arg1, const void *arg2)
1471 {
1472 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1473 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1474
1475 ORDERKEY_SWAP(p1, p2);
1476 ORDERKEY_PCTCPU(p1, p2);
1477 ORDERKEY_CPTICKS(p1, p2);
1478 ORDERKEY_STATE(p1, p2);
1479 ORDERKEY_PRIO(p1, p2);
1480 ORDERKEY_RSSIZE(p1, p2);
1481 ORDERKEY_MEM(p1, p2);
1482
1483 return (0);
1484 }
1485
1486 /* assorted comparison functions for sorting by i/o */
1487
1488 static int
compare_iototal(const void * arg1,const void * arg2)1489 compare_iototal(const void *arg1, const void *arg2)
1490 {
1491 const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1;
1492 const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2;
1493
1494 return (get_io_total(p2) - get_io_total(p1));
1495 }
1496
1497 static int
compare_ioread(const void * arg1,const void * arg2)1498 compare_ioread(const void *arg1, const void *arg2)
1499 {
1500 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1501 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1502 long dummy, inp1, inp2;
1503
1504 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
1505 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);
1506
1507 return (inp2 - inp1);
1508 }
1509
1510 static int
compare_iowrite(const void * arg1,const void * arg2)1511 compare_iowrite(const void *arg1, const void *arg2)
1512 {
1513 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1514 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1515 long dummy, oup1, oup2;
1516
1517 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
1518 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);
1519
1520 return (oup2 - oup1);
1521 }
1522
1523 static int
compare_iofault(const void * arg1,const void * arg2)1524 compare_iofault(const void *arg1, const void *arg2)
1525 {
1526 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1527 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1528 long dummy, flp1, flp2;
1529
1530 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
1531 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);
1532
1533 return (flp2 - flp1);
1534 }
1535
1536 static int
compare_vcsw(const void * arg1,const void * arg2)1537 compare_vcsw(const void *arg1, const void *arg2)
1538 {
1539 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1540 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1541 long dummy, flp1, flp2;
1542
1543 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
1544 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);
1545
1546 return (flp2 - flp1);
1547 }
1548
1549 static int
compare_ivcsw(const void * arg1,const void * arg2)1550 compare_ivcsw(const void *arg1, const void *arg2)
1551 {
1552 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1553 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1554 long dummy, flp1, flp2;
1555
1556 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
1557 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);
1558
1559 return (flp2 - flp1);
1560 }
1561
1562 int (*compares[])(const void *arg1, const void *arg2) = {
1563 compare_cpu,
1564 compare_size,
1565 compare_res,
1566 compare_time,
1567 compare_prio,
1568 compare_threads,
1569 compare_iototal,
1570 compare_ioread,
1571 compare_iowrite,
1572 compare_iofault,
1573 compare_vcsw,
1574 compare_ivcsw,
1575 compare_jid,
1576 compare_swap,
1577 compare_pid,
1578 NULL
1579 };
1580
1581
1582 static int
swapmode(int * retavail,int * retfree)1583 swapmode(int *retavail, int *retfree)
1584 {
1585 int n;
1586 struct kvm_swap swapary[1];
1587 static int pagesize = 0;
1588 static unsigned long swap_maxpages = 0;
1589
1590 *retavail = 0;
1591 *retfree = 0;
1592
1593 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
1594
1595 n = kvm_getswapinfo(kd, swapary, 1, 0);
1596 if (n < 0 || swapary[0].ksw_total == 0)
1597 return (0);
1598
1599 if (pagesize == 0)
1600 pagesize = getpagesize();
1601 if (swap_maxpages == 0)
1602 GETSYSCTL("vm.swap_maxpages", swap_maxpages);
1603
1604 /* ksw_total contains the total size of swap all devices which may
1605 exceed the maximum swap size allocatable in the system */
1606 if ( swapary[0].ksw_total > swap_maxpages )
1607 swapary[0].ksw_total = swap_maxpages;
1608
1609 *retavail = CONVERT(swapary[0].ksw_total);
1610 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1611
1612 #undef CONVERT
1613
1614 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
1615 return (n);
1616 }
1617