1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2017, Microsoft Corporation.
4 *
5 * Author(s): Long Li <longli@microsoft.com>
6 */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include <linux/folio_queue.h>
10 #include "../common/smbdirect/smbdirect_pdu.h"
11 #include "smbdirect.h"
12 #include "cifs_debug.h"
13 #include "cifsproto.h"
14 #include "smb2proto.h"
15
16 static struct smbdirect_recv_io *get_receive_buffer(
17 struct smbd_connection *info);
18 static void put_receive_buffer(
19 struct smbd_connection *info,
20 struct smbdirect_recv_io *response);
21 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
22 static void destroy_receive_buffers(struct smbd_connection *info);
23
24 static void enqueue_reassembly(
25 struct smbd_connection *info,
26 struct smbdirect_recv_io *response, int data_length);
27 static struct smbdirect_recv_io *_get_first_reassembly(
28 struct smbd_connection *info);
29
30 static int smbd_post_recv(
31 struct smbd_connection *info,
32 struct smbdirect_recv_io *response);
33
34 static int smbd_post_send_empty(struct smbd_connection *info);
35
36 static void destroy_mr_list(struct smbd_connection *info);
37 static int allocate_mr_list(struct smbd_connection *info);
38
39 struct smb_extract_to_rdma {
40 struct ib_sge *sge;
41 unsigned int nr_sge;
42 unsigned int max_sge;
43 struct ib_device *device;
44 u32 local_dma_lkey;
45 enum dma_data_direction direction;
46 };
47 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
48 struct smb_extract_to_rdma *rdma);
49
50 /* Port numbers for SMBD transport */
51 #define SMB_PORT 445
52 #define SMBD_PORT 5445
53
54 /* Address lookup and resolve timeout in ms */
55 #define RDMA_RESOLVE_TIMEOUT 5000
56
57 /* SMBD negotiation timeout in seconds */
58 #define SMBD_NEGOTIATE_TIMEOUT 120
59
60 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
61 #define SMBD_MIN_RECEIVE_SIZE 128
62 #define SMBD_MIN_FRAGMENTED_SIZE 131072
63
64 /*
65 * Default maximum number of RDMA read/write outstanding on this connection
66 * This value is possibly decreased during QP creation on hardware limit
67 */
68 #define SMBD_CM_RESPONDER_RESOURCES 32
69
70 /* Maximum number of retries on data transfer operations */
71 #define SMBD_CM_RETRY 6
72 /* No need to retry on Receiver Not Ready since SMBD manages credits */
73 #define SMBD_CM_RNR_RETRY 0
74
75 /*
76 * User configurable initial values per SMBD transport connection
77 * as defined in [MS-SMBD] 3.1.1.1
78 * Those may change after a SMBD negotiation
79 */
80 /* The local peer's maximum number of credits to grant to the peer */
81 int smbd_receive_credit_max = 255;
82
83 /* The remote peer's credit request of local peer */
84 int smbd_send_credit_target = 255;
85
86 /* The maximum single message size can be sent to remote peer */
87 int smbd_max_send_size = 1364;
88
89 /* The maximum fragmented upper-layer payload receive size supported */
90 int smbd_max_fragmented_recv_size = 1024 * 1024;
91
92 /* The maximum single-message size which can be received */
93 int smbd_max_receive_size = 1364;
94
95 /* The timeout to initiate send of a keepalive message on idle */
96 int smbd_keep_alive_interval = 120;
97
98 /*
99 * User configurable initial values for RDMA transport
100 * The actual values used may be lower and are limited to hardware capabilities
101 */
102 /* Default maximum number of pages in a single RDMA write/read */
103 int smbd_max_frmr_depth = 2048;
104
105 /* If payload is less than this byte, use RDMA send/recv not read/write */
106 int rdma_readwrite_threshold = 4096;
107
108 /* Transport logging functions
109 * Logging are defined as classes. They can be OR'ed to define the actual
110 * logging level via module parameter smbd_logging_class
111 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
112 * log_rdma_event()
113 */
114 #define LOG_OUTGOING 0x1
115 #define LOG_INCOMING 0x2
116 #define LOG_READ 0x4
117 #define LOG_WRITE 0x8
118 #define LOG_RDMA_SEND 0x10
119 #define LOG_RDMA_RECV 0x20
120 #define LOG_KEEP_ALIVE 0x40
121 #define LOG_RDMA_EVENT 0x80
122 #define LOG_RDMA_MR 0x100
123 static unsigned int smbd_logging_class;
124 module_param(smbd_logging_class, uint, 0644);
125 MODULE_PARM_DESC(smbd_logging_class,
126 "Logging class for SMBD transport 0x0 to 0x100");
127
128 #define ERR 0x0
129 #define INFO 0x1
130 static unsigned int smbd_logging_level = ERR;
131 module_param(smbd_logging_level, uint, 0644);
132 MODULE_PARM_DESC(smbd_logging_level,
133 "Logging level for SMBD transport, 0 (default): error, 1: info");
134
135 #define log_rdma(level, class, fmt, args...) \
136 do { \
137 if (level <= smbd_logging_level || class & smbd_logging_class) \
138 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
139 } while (0)
140
141 #define log_outgoing(level, fmt, args...) \
142 log_rdma(level, LOG_OUTGOING, fmt, ##args)
143 #define log_incoming(level, fmt, args...) \
144 log_rdma(level, LOG_INCOMING, fmt, ##args)
145 #define log_read(level, fmt, args...) log_rdma(level, LOG_READ, fmt, ##args)
146 #define log_write(level, fmt, args...) log_rdma(level, LOG_WRITE, fmt, ##args)
147 #define log_rdma_send(level, fmt, args...) \
148 log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
149 #define log_rdma_recv(level, fmt, args...) \
150 log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
151 #define log_keep_alive(level, fmt, args...) \
152 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
153 #define log_rdma_event(level, fmt, args...) \
154 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
155 #define log_rdma_mr(level, fmt, args...) \
156 log_rdma(level, LOG_RDMA_MR, fmt, ##args)
157
smbd_disconnect_rdma_work(struct work_struct * work)158 static void smbd_disconnect_rdma_work(struct work_struct *work)
159 {
160 struct smbd_connection *info =
161 container_of(work, struct smbd_connection, disconnect_work);
162 struct smbdirect_socket *sc = &info->socket;
163
164 if (sc->status == SMBDIRECT_SOCKET_CONNECTED) {
165 sc->status = SMBDIRECT_SOCKET_DISCONNECTING;
166 rdma_disconnect(sc->rdma.cm_id);
167 }
168 }
169
smbd_disconnect_rdma_connection(struct smbd_connection * info)170 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
171 {
172 queue_work(info->workqueue, &info->disconnect_work);
173 }
174
175 /* Upcall from RDMA CM */
smbd_conn_upcall(struct rdma_cm_id * id,struct rdma_cm_event * event)176 static int smbd_conn_upcall(
177 struct rdma_cm_id *id, struct rdma_cm_event *event)
178 {
179 struct smbd_connection *info = id->context;
180 struct smbdirect_socket *sc = &info->socket;
181 const char *event_name = rdma_event_msg(event->event);
182
183 log_rdma_event(INFO, "event=%s status=%d\n",
184 event_name, event->status);
185
186 switch (event->event) {
187 case RDMA_CM_EVENT_ADDR_RESOLVED:
188 case RDMA_CM_EVENT_ROUTE_RESOLVED:
189 info->ri_rc = 0;
190 complete(&info->ri_done);
191 break;
192
193 case RDMA_CM_EVENT_ADDR_ERROR:
194 log_rdma_event(ERR, "connecting failed event=%s\n", event_name);
195 info->ri_rc = -EHOSTUNREACH;
196 complete(&info->ri_done);
197 break;
198
199 case RDMA_CM_EVENT_ROUTE_ERROR:
200 log_rdma_event(ERR, "connecting failed event=%s\n", event_name);
201 info->ri_rc = -ENETUNREACH;
202 complete(&info->ri_done);
203 break;
204
205 case RDMA_CM_EVENT_ESTABLISHED:
206 log_rdma_event(INFO, "connected event=%s\n", event_name);
207 sc->status = SMBDIRECT_SOCKET_CONNECTED;
208 wake_up_interruptible(&info->status_wait);
209 break;
210
211 case RDMA_CM_EVENT_CONNECT_ERROR:
212 case RDMA_CM_EVENT_UNREACHABLE:
213 case RDMA_CM_EVENT_REJECTED:
214 log_rdma_event(ERR, "connecting failed event=%s\n", event_name);
215 sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
216 wake_up_interruptible(&info->status_wait);
217 break;
218
219 case RDMA_CM_EVENT_DEVICE_REMOVAL:
220 case RDMA_CM_EVENT_DISCONNECTED:
221 /* This happens when we fail the negotiation */
222 if (sc->status == SMBDIRECT_SOCKET_NEGOTIATE_FAILED) {
223 log_rdma_event(ERR, "event=%s during negotiation\n", event_name);
224 sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
225 wake_up(&info->status_wait);
226 break;
227 }
228
229 sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
230 wake_up_interruptible(&info->status_wait);
231 wake_up_interruptible(&sc->recv_io.reassembly.wait_queue);
232 wake_up_interruptible_all(&info->wait_send_queue);
233 break;
234
235 default:
236 log_rdma_event(ERR, "unexpected event=%s status=%d\n",
237 event_name, event->status);
238 break;
239 }
240
241 return 0;
242 }
243
244 /* Upcall from RDMA QP */
245 static void
smbd_qp_async_error_upcall(struct ib_event * event,void * context)246 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
247 {
248 struct smbd_connection *info = context;
249
250 log_rdma_event(ERR, "%s on device %s info %p\n",
251 ib_event_msg(event->event), event->device->name, info);
252
253 switch (event->event) {
254 case IB_EVENT_CQ_ERR:
255 case IB_EVENT_QP_FATAL:
256 smbd_disconnect_rdma_connection(info);
257 break;
258
259 default:
260 break;
261 }
262 }
263
smbdirect_send_io_payload(struct smbdirect_send_io * request)264 static inline void *smbdirect_send_io_payload(struct smbdirect_send_io *request)
265 {
266 return (void *)request->packet;
267 }
268
smbdirect_recv_io_payload(struct smbdirect_recv_io * response)269 static inline void *smbdirect_recv_io_payload(struct smbdirect_recv_io *response)
270 {
271 return (void *)response->packet;
272 }
273
274 /* Called when a RDMA send is done */
send_done(struct ib_cq * cq,struct ib_wc * wc)275 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
276 {
277 int i;
278 struct smbdirect_send_io *request =
279 container_of(wc->wr_cqe, struct smbdirect_send_io, cqe);
280 struct smbdirect_socket *sc = request->socket;
281 struct smbd_connection *info =
282 container_of(sc, struct smbd_connection, socket);
283
284 log_rdma_send(INFO, "smbdirect_send_io 0x%p completed wc->status=%d\n",
285 request, wc->status);
286
287 for (i = 0; i < request->num_sge; i++)
288 ib_dma_unmap_single(sc->ib.dev,
289 request->sge[i].addr,
290 request->sge[i].length,
291 DMA_TO_DEVICE);
292
293 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
294 log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
295 wc->status, wc->opcode);
296 mempool_free(request, sc->send_io.mem.pool);
297 smbd_disconnect_rdma_connection(info);
298 return;
299 }
300
301 if (atomic_dec_and_test(&info->send_pending))
302 wake_up(&info->wait_send_pending);
303
304 wake_up(&info->wait_post_send);
305
306 mempool_free(request, sc->send_io.mem.pool);
307 }
308
dump_smbdirect_negotiate_resp(struct smbdirect_negotiate_resp * resp)309 static void dump_smbdirect_negotiate_resp(struct smbdirect_negotiate_resp *resp)
310 {
311 log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
312 resp->min_version, resp->max_version,
313 resp->negotiated_version, resp->credits_requested,
314 resp->credits_granted, resp->status,
315 resp->max_readwrite_size, resp->preferred_send_size,
316 resp->max_receive_size, resp->max_fragmented_size);
317 }
318
319 /*
320 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
321 * response, packet_length: the negotiation response message
322 * return value: true if negotiation is a success, false if failed
323 */
process_negotiation_response(struct smbdirect_recv_io * response,int packet_length)324 static bool process_negotiation_response(
325 struct smbdirect_recv_io *response, int packet_length)
326 {
327 struct smbdirect_socket *sc = response->socket;
328 struct smbd_connection *info =
329 container_of(sc, struct smbd_connection, socket);
330 struct smbdirect_socket_parameters *sp = &sc->parameters;
331 struct smbdirect_negotiate_resp *packet = smbdirect_recv_io_payload(response);
332
333 if (packet_length < sizeof(struct smbdirect_negotiate_resp)) {
334 log_rdma_event(ERR,
335 "error: packet_length=%d\n", packet_length);
336 return false;
337 }
338
339 if (le16_to_cpu(packet->negotiated_version) != SMBDIRECT_V1) {
340 log_rdma_event(ERR, "error: negotiated_version=%x\n",
341 le16_to_cpu(packet->negotiated_version));
342 return false;
343 }
344 info->protocol = le16_to_cpu(packet->negotiated_version);
345
346 if (packet->credits_requested == 0) {
347 log_rdma_event(ERR, "error: credits_requested==0\n");
348 return false;
349 }
350 info->receive_credit_target = le16_to_cpu(packet->credits_requested);
351
352 if (packet->credits_granted == 0) {
353 log_rdma_event(ERR, "error: credits_granted==0\n");
354 return false;
355 }
356 atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
357
358 atomic_set(&info->receive_credits, 0);
359
360 if (le32_to_cpu(packet->preferred_send_size) > sp->max_recv_size) {
361 log_rdma_event(ERR, "error: preferred_send_size=%d\n",
362 le32_to_cpu(packet->preferred_send_size));
363 return false;
364 }
365 sp->max_recv_size = le32_to_cpu(packet->preferred_send_size);
366
367 if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
368 log_rdma_event(ERR, "error: max_receive_size=%d\n",
369 le32_to_cpu(packet->max_receive_size));
370 return false;
371 }
372 sp->max_send_size = min_t(u32, sp->max_send_size,
373 le32_to_cpu(packet->max_receive_size));
374
375 if (le32_to_cpu(packet->max_fragmented_size) <
376 SMBD_MIN_FRAGMENTED_SIZE) {
377 log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
378 le32_to_cpu(packet->max_fragmented_size));
379 return false;
380 }
381 sp->max_fragmented_send_size =
382 le32_to_cpu(packet->max_fragmented_size);
383 info->rdma_readwrite_threshold =
384 rdma_readwrite_threshold > sp->max_fragmented_send_size ?
385 sp->max_fragmented_send_size :
386 rdma_readwrite_threshold;
387
388
389 sp->max_read_write_size = min_t(u32,
390 le32_to_cpu(packet->max_readwrite_size),
391 info->max_frmr_depth * PAGE_SIZE);
392 info->max_frmr_depth = sp->max_read_write_size / PAGE_SIZE;
393
394 sc->recv_io.expected = SMBDIRECT_EXPECT_DATA_TRANSFER;
395 return true;
396 }
397
smbd_post_send_credits(struct work_struct * work)398 static void smbd_post_send_credits(struct work_struct *work)
399 {
400 int ret = 0;
401 int rc;
402 struct smbdirect_recv_io *response;
403 struct smbd_connection *info =
404 container_of(work, struct smbd_connection,
405 post_send_credits_work);
406 struct smbdirect_socket *sc = &info->socket;
407
408 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
409 wake_up(&info->wait_receive_queues);
410 return;
411 }
412
413 if (info->receive_credit_target >
414 atomic_read(&info->receive_credits)) {
415 while (true) {
416 response = get_receive_buffer(info);
417 if (!response)
418 break;
419
420 response->first_segment = false;
421 rc = smbd_post_recv(info, response);
422 if (rc) {
423 log_rdma_recv(ERR,
424 "post_recv failed rc=%d\n", rc);
425 put_receive_buffer(info, response);
426 break;
427 }
428
429 ret++;
430 }
431 }
432
433 spin_lock(&info->lock_new_credits_offered);
434 info->new_credits_offered += ret;
435 spin_unlock(&info->lock_new_credits_offered);
436
437 /* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
438 info->send_immediate = true;
439 if (atomic_read(&info->receive_credits) <
440 info->receive_credit_target - 1) {
441 if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
442 info->send_immediate) {
443 log_keep_alive(INFO, "send an empty message\n");
444 smbd_post_send_empty(info);
445 }
446 }
447 }
448
449 /* Called from softirq, when recv is done */
recv_done(struct ib_cq * cq,struct ib_wc * wc)450 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
451 {
452 struct smbdirect_data_transfer *data_transfer;
453 struct smbdirect_recv_io *response =
454 container_of(wc->wr_cqe, struct smbdirect_recv_io, cqe);
455 struct smbdirect_socket *sc = response->socket;
456 struct smbd_connection *info =
457 container_of(sc, struct smbd_connection, socket);
458 int data_length = 0;
459
460 log_rdma_recv(INFO, "response=0x%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%u\n",
461 response, sc->recv_io.expected, wc->status, wc->opcode,
462 wc->byte_len, wc->pkey_index);
463
464 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
465 log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
466 wc->status, wc->opcode);
467 goto error;
468 }
469
470 ib_dma_sync_single_for_cpu(
471 wc->qp->device,
472 response->sge.addr,
473 response->sge.length,
474 DMA_FROM_DEVICE);
475
476 switch (sc->recv_io.expected) {
477 /* SMBD negotiation response */
478 case SMBDIRECT_EXPECT_NEGOTIATE_REP:
479 dump_smbdirect_negotiate_resp(smbdirect_recv_io_payload(response));
480 sc->recv_io.reassembly.full_packet_received = true;
481 info->negotiate_done =
482 process_negotiation_response(response, wc->byte_len);
483 put_receive_buffer(info, response);
484 complete(&info->negotiate_completion);
485 return;
486
487 /* SMBD data transfer packet */
488 case SMBDIRECT_EXPECT_DATA_TRANSFER:
489 data_transfer = smbdirect_recv_io_payload(response);
490 data_length = le32_to_cpu(data_transfer->data_length);
491
492 if (data_length) {
493 if (sc->recv_io.reassembly.full_packet_received)
494 response->first_segment = true;
495
496 if (le32_to_cpu(data_transfer->remaining_data_length))
497 sc->recv_io.reassembly.full_packet_received = false;
498 else
499 sc->recv_io.reassembly.full_packet_received = true;
500 }
501
502 atomic_dec(&info->receive_credits);
503 info->receive_credit_target =
504 le16_to_cpu(data_transfer->credits_requested);
505 if (le16_to_cpu(data_transfer->credits_granted)) {
506 atomic_add(le16_to_cpu(data_transfer->credits_granted),
507 &info->send_credits);
508 /*
509 * We have new send credits granted from remote peer
510 * If any sender is waiting for credits, unblock it
511 */
512 wake_up_interruptible(&info->wait_send_queue);
513 }
514
515 log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
516 le16_to_cpu(data_transfer->flags),
517 le32_to_cpu(data_transfer->data_offset),
518 le32_to_cpu(data_transfer->data_length),
519 le32_to_cpu(data_transfer->remaining_data_length));
520
521 /* Send a KEEP_ALIVE response right away if requested */
522 info->keep_alive_requested = KEEP_ALIVE_NONE;
523 if (le16_to_cpu(data_transfer->flags) &
524 SMBDIRECT_FLAG_RESPONSE_REQUESTED) {
525 info->keep_alive_requested = KEEP_ALIVE_PENDING;
526 }
527
528 /*
529 * If this is a packet with data playload place the data in
530 * reassembly queue and wake up the reading thread
531 */
532 if (data_length) {
533 enqueue_reassembly(info, response, data_length);
534 wake_up_interruptible(&sc->recv_io.reassembly.wait_queue);
535 } else
536 put_receive_buffer(info, response);
537
538 return;
539
540 case SMBDIRECT_EXPECT_NEGOTIATE_REQ:
541 /* Only server... */
542 break;
543 }
544
545 /*
546 * This is an internal error!
547 */
548 log_rdma_recv(ERR, "unexpected response type=%d\n", sc->recv_io.expected);
549 WARN_ON_ONCE(sc->recv_io.expected != SMBDIRECT_EXPECT_DATA_TRANSFER);
550 error:
551 put_receive_buffer(info, response);
552 smbd_disconnect_rdma_connection(info);
553 }
554
smbd_create_id(struct smbd_connection * info,struct sockaddr * dstaddr,int port)555 static struct rdma_cm_id *smbd_create_id(
556 struct smbd_connection *info,
557 struct sockaddr *dstaddr, int port)
558 {
559 struct rdma_cm_id *id;
560 int rc;
561 __be16 *sport;
562
563 id = rdma_create_id(&init_net, smbd_conn_upcall, info,
564 RDMA_PS_TCP, IB_QPT_RC);
565 if (IS_ERR(id)) {
566 rc = PTR_ERR(id);
567 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
568 return id;
569 }
570
571 if (dstaddr->sa_family == AF_INET6)
572 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
573 else
574 sport = &((struct sockaddr_in *)dstaddr)->sin_port;
575
576 *sport = htons(port);
577
578 init_completion(&info->ri_done);
579 info->ri_rc = -ETIMEDOUT;
580
581 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
582 RDMA_RESOLVE_TIMEOUT);
583 if (rc) {
584 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
585 goto out;
586 }
587 rc = wait_for_completion_interruptible_timeout(
588 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
589 /* e.g. if interrupted returns -ERESTARTSYS */
590 if (rc < 0) {
591 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
592 goto out;
593 }
594 rc = info->ri_rc;
595 if (rc) {
596 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
597 goto out;
598 }
599
600 info->ri_rc = -ETIMEDOUT;
601 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
602 if (rc) {
603 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
604 goto out;
605 }
606 rc = wait_for_completion_interruptible_timeout(
607 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
608 /* e.g. if interrupted returns -ERESTARTSYS */
609 if (rc < 0) {
610 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
611 goto out;
612 }
613 rc = info->ri_rc;
614 if (rc) {
615 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
616 goto out;
617 }
618
619 return id;
620
621 out:
622 rdma_destroy_id(id);
623 return ERR_PTR(rc);
624 }
625
626 /*
627 * Test if FRWR (Fast Registration Work Requests) is supported on the device
628 * This implementation requires FRWR on RDMA read/write
629 * return value: true if it is supported
630 */
frwr_is_supported(struct ib_device_attr * attrs)631 static bool frwr_is_supported(struct ib_device_attr *attrs)
632 {
633 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
634 return false;
635 if (attrs->max_fast_reg_page_list_len == 0)
636 return false;
637 return true;
638 }
639
smbd_ia_open(struct smbd_connection * info,struct sockaddr * dstaddr,int port)640 static int smbd_ia_open(
641 struct smbd_connection *info,
642 struct sockaddr *dstaddr, int port)
643 {
644 struct smbdirect_socket *sc = &info->socket;
645 int rc;
646
647 sc->rdma.cm_id = smbd_create_id(info, dstaddr, port);
648 if (IS_ERR(sc->rdma.cm_id)) {
649 rc = PTR_ERR(sc->rdma.cm_id);
650 goto out1;
651 }
652 sc->ib.dev = sc->rdma.cm_id->device;
653
654 if (!frwr_is_supported(&sc->ib.dev->attrs)) {
655 log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
656 log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
657 sc->ib.dev->attrs.device_cap_flags,
658 sc->ib.dev->attrs.max_fast_reg_page_list_len);
659 rc = -EPROTONOSUPPORT;
660 goto out2;
661 }
662 info->max_frmr_depth = min_t(int,
663 smbd_max_frmr_depth,
664 sc->ib.dev->attrs.max_fast_reg_page_list_len);
665 info->mr_type = IB_MR_TYPE_MEM_REG;
666 if (sc->ib.dev->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
667 info->mr_type = IB_MR_TYPE_SG_GAPS;
668
669 sc->ib.pd = ib_alloc_pd(sc->ib.dev, 0);
670 if (IS_ERR(sc->ib.pd)) {
671 rc = PTR_ERR(sc->ib.pd);
672 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
673 goto out2;
674 }
675
676 return 0;
677
678 out2:
679 rdma_destroy_id(sc->rdma.cm_id);
680 sc->rdma.cm_id = NULL;
681
682 out1:
683 return rc;
684 }
685
686 /*
687 * Send a negotiation request message to the peer
688 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
689 * After negotiation, the transport is connected and ready for
690 * carrying upper layer SMB payload
691 */
smbd_post_send_negotiate_req(struct smbd_connection * info)692 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
693 {
694 struct smbdirect_socket *sc = &info->socket;
695 struct smbdirect_socket_parameters *sp = &sc->parameters;
696 struct ib_send_wr send_wr;
697 int rc = -ENOMEM;
698 struct smbdirect_send_io *request;
699 struct smbdirect_negotiate_req *packet;
700
701 request = mempool_alloc(sc->send_io.mem.pool, GFP_KERNEL);
702 if (!request)
703 return rc;
704
705 request->socket = sc;
706
707 packet = smbdirect_send_io_payload(request);
708 packet->min_version = cpu_to_le16(SMBDIRECT_V1);
709 packet->max_version = cpu_to_le16(SMBDIRECT_V1);
710 packet->reserved = 0;
711 packet->credits_requested = cpu_to_le16(sp->send_credit_target);
712 packet->preferred_send_size = cpu_to_le32(sp->max_send_size);
713 packet->max_receive_size = cpu_to_le32(sp->max_recv_size);
714 packet->max_fragmented_size =
715 cpu_to_le32(sp->max_fragmented_recv_size);
716
717 request->num_sge = 1;
718 request->sge[0].addr = ib_dma_map_single(
719 sc->ib.dev, (void *)packet,
720 sizeof(*packet), DMA_TO_DEVICE);
721 if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
722 rc = -EIO;
723 goto dma_mapping_failed;
724 }
725
726 request->sge[0].length = sizeof(*packet);
727 request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
728
729 ib_dma_sync_single_for_device(
730 sc->ib.dev, request->sge[0].addr,
731 request->sge[0].length, DMA_TO_DEVICE);
732
733 request->cqe.done = send_done;
734
735 send_wr.next = NULL;
736 send_wr.wr_cqe = &request->cqe;
737 send_wr.sg_list = request->sge;
738 send_wr.num_sge = request->num_sge;
739 send_wr.opcode = IB_WR_SEND;
740 send_wr.send_flags = IB_SEND_SIGNALED;
741
742 log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n",
743 request->sge[0].addr,
744 request->sge[0].length, request->sge[0].lkey);
745
746 atomic_inc(&info->send_pending);
747 rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
748 if (!rc)
749 return 0;
750
751 /* if we reach here, post send failed */
752 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
753 atomic_dec(&info->send_pending);
754 ib_dma_unmap_single(sc->ib.dev, request->sge[0].addr,
755 request->sge[0].length, DMA_TO_DEVICE);
756
757 smbd_disconnect_rdma_connection(info);
758
759 dma_mapping_failed:
760 mempool_free(request, sc->send_io.mem.pool);
761 return rc;
762 }
763
764 /*
765 * Extend the credits to remote peer
766 * This implements [MS-SMBD] 3.1.5.9
767 * The idea is that we should extend credits to remote peer as quickly as
768 * it's allowed, to maintain data flow. We allocate as much receive
769 * buffer as possible, and extend the receive credits to remote peer
770 * return value: the new credtis being granted.
771 */
manage_credits_prior_sending(struct smbd_connection * info)772 static int manage_credits_prior_sending(struct smbd_connection *info)
773 {
774 int new_credits;
775
776 spin_lock(&info->lock_new_credits_offered);
777 new_credits = info->new_credits_offered;
778 info->new_credits_offered = 0;
779 spin_unlock(&info->lock_new_credits_offered);
780
781 return new_credits;
782 }
783
784 /*
785 * Check if we need to send a KEEP_ALIVE message
786 * The idle connection timer triggers a KEEP_ALIVE message when expires
787 * SMBDIRECT_FLAG_RESPONSE_REQUESTED is set in the message flag to have peer send
788 * back a response.
789 * return value:
790 * 1 if SMBDIRECT_FLAG_RESPONSE_REQUESTED needs to be set
791 * 0: otherwise
792 */
manage_keep_alive_before_sending(struct smbd_connection * info)793 static int manage_keep_alive_before_sending(struct smbd_connection *info)
794 {
795 if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
796 info->keep_alive_requested = KEEP_ALIVE_SENT;
797 return 1;
798 }
799 return 0;
800 }
801
802 /* Post the send request */
smbd_post_send(struct smbd_connection * info,struct smbdirect_send_io * request)803 static int smbd_post_send(struct smbd_connection *info,
804 struct smbdirect_send_io *request)
805 {
806 struct smbdirect_socket *sc = &info->socket;
807 struct smbdirect_socket_parameters *sp = &sc->parameters;
808 struct ib_send_wr send_wr;
809 int rc, i;
810
811 for (i = 0; i < request->num_sge; i++) {
812 log_rdma_send(INFO,
813 "rdma_request sge[%d] addr=0x%llx length=%u\n",
814 i, request->sge[i].addr, request->sge[i].length);
815 ib_dma_sync_single_for_device(
816 sc->ib.dev,
817 request->sge[i].addr,
818 request->sge[i].length,
819 DMA_TO_DEVICE);
820 }
821
822 request->cqe.done = send_done;
823
824 send_wr.next = NULL;
825 send_wr.wr_cqe = &request->cqe;
826 send_wr.sg_list = request->sge;
827 send_wr.num_sge = request->num_sge;
828 send_wr.opcode = IB_WR_SEND;
829 send_wr.send_flags = IB_SEND_SIGNALED;
830
831 rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
832 if (rc) {
833 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
834 smbd_disconnect_rdma_connection(info);
835 rc = -EAGAIN;
836 } else
837 /* Reset timer for idle connection after packet is sent */
838 mod_delayed_work(info->workqueue, &info->idle_timer_work,
839 msecs_to_jiffies(sp->keepalive_interval_msec));
840
841 return rc;
842 }
843
smbd_post_send_iter(struct smbd_connection * info,struct iov_iter * iter,int * _remaining_data_length)844 static int smbd_post_send_iter(struct smbd_connection *info,
845 struct iov_iter *iter,
846 int *_remaining_data_length)
847 {
848 struct smbdirect_socket *sc = &info->socket;
849 struct smbdirect_socket_parameters *sp = &sc->parameters;
850 int i, rc;
851 int header_length;
852 int data_length;
853 struct smbdirect_send_io *request;
854 struct smbdirect_data_transfer *packet;
855 int new_credits = 0;
856
857 wait_credit:
858 /* Wait for send credits. A SMBD packet needs one credit */
859 rc = wait_event_interruptible(info->wait_send_queue,
860 atomic_read(&info->send_credits) > 0 ||
861 sc->status != SMBDIRECT_SOCKET_CONNECTED);
862 if (rc)
863 goto err_wait_credit;
864
865 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
866 log_outgoing(ERR, "disconnected not sending on wait_credit\n");
867 rc = -EAGAIN;
868 goto err_wait_credit;
869 }
870 if (unlikely(atomic_dec_return(&info->send_credits) < 0)) {
871 atomic_inc(&info->send_credits);
872 goto wait_credit;
873 }
874
875 wait_send_queue:
876 wait_event(info->wait_post_send,
877 atomic_read(&info->send_pending) < sp->send_credit_target ||
878 sc->status != SMBDIRECT_SOCKET_CONNECTED);
879
880 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
881 log_outgoing(ERR, "disconnected not sending on wait_send_queue\n");
882 rc = -EAGAIN;
883 goto err_wait_send_queue;
884 }
885
886 if (unlikely(atomic_inc_return(&info->send_pending) >
887 sp->send_credit_target)) {
888 atomic_dec(&info->send_pending);
889 goto wait_send_queue;
890 }
891
892 request = mempool_alloc(sc->send_io.mem.pool, GFP_KERNEL);
893 if (!request) {
894 rc = -ENOMEM;
895 goto err_alloc;
896 }
897
898 request->socket = sc;
899 memset(request->sge, 0, sizeof(request->sge));
900
901 /* Fill in the data payload to find out how much data we can add */
902 if (iter) {
903 struct smb_extract_to_rdma extract = {
904 .nr_sge = 1,
905 .max_sge = SMBDIRECT_SEND_IO_MAX_SGE,
906 .sge = request->sge,
907 .device = sc->ib.dev,
908 .local_dma_lkey = sc->ib.pd->local_dma_lkey,
909 .direction = DMA_TO_DEVICE,
910 };
911 size_t payload_len = umin(*_remaining_data_length,
912 sp->max_send_size - sizeof(*packet));
913
914 rc = smb_extract_iter_to_rdma(iter, payload_len,
915 &extract);
916 if (rc < 0)
917 goto err_dma;
918 data_length = rc;
919 request->num_sge = extract.nr_sge;
920 *_remaining_data_length -= data_length;
921 } else {
922 data_length = 0;
923 request->num_sge = 1;
924 }
925
926 /* Fill in the packet header */
927 packet = smbdirect_send_io_payload(request);
928 packet->credits_requested = cpu_to_le16(sp->send_credit_target);
929
930 new_credits = manage_credits_prior_sending(info);
931 atomic_add(new_credits, &info->receive_credits);
932 packet->credits_granted = cpu_to_le16(new_credits);
933
934 info->send_immediate = false;
935
936 packet->flags = 0;
937 if (manage_keep_alive_before_sending(info))
938 packet->flags |= cpu_to_le16(SMBDIRECT_FLAG_RESPONSE_REQUESTED);
939
940 packet->reserved = 0;
941 if (!data_length)
942 packet->data_offset = 0;
943 else
944 packet->data_offset = cpu_to_le32(24);
945 packet->data_length = cpu_to_le32(data_length);
946 packet->remaining_data_length = cpu_to_le32(*_remaining_data_length);
947 packet->padding = 0;
948
949 log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
950 le16_to_cpu(packet->credits_requested),
951 le16_to_cpu(packet->credits_granted),
952 le32_to_cpu(packet->data_offset),
953 le32_to_cpu(packet->data_length),
954 le32_to_cpu(packet->remaining_data_length));
955
956 /* Map the packet to DMA */
957 header_length = sizeof(struct smbdirect_data_transfer);
958 /* If this is a packet without payload, don't send padding */
959 if (!data_length)
960 header_length = offsetof(struct smbdirect_data_transfer, padding);
961
962 request->sge[0].addr = ib_dma_map_single(sc->ib.dev,
963 (void *)packet,
964 header_length,
965 DMA_TO_DEVICE);
966 if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
967 rc = -EIO;
968 request->sge[0].addr = 0;
969 goto err_dma;
970 }
971
972 request->sge[0].length = header_length;
973 request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
974
975 rc = smbd_post_send(info, request);
976 if (!rc)
977 return 0;
978
979 err_dma:
980 for (i = 0; i < request->num_sge; i++)
981 if (request->sge[i].addr)
982 ib_dma_unmap_single(sc->ib.dev,
983 request->sge[i].addr,
984 request->sge[i].length,
985 DMA_TO_DEVICE);
986 mempool_free(request, sc->send_io.mem.pool);
987
988 /* roll back receive credits and credits to be offered */
989 spin_lock(&info->lock_new_credits_offered);
990 info->new_credits_offered += new_credits;
991 spin_unlock(&info->lock_new_credits_offered);
992 atomic_sub(new_credits, &info->receive_credits);
993
994 err_alloc:
995 if (atomic_dec_and_test(&info->send_pending))
996 wake_up(&info->wait_send_pending);
997
998 err_wait_send_queue:
999 /* roll back send credits and pending */
1000 atomic_inc(&info->send_credits);
1001
1002 err_wait_credit:
1003 return rc;
1004 }
1005
1006 /*
1007 * Send an empty message
1008 * Empty message is used to extend credits to peer to for keep live
1009 * while there is no upper layer payload to send at the time
1010 */
smbd_post_send_empty(struct smbd_connection * info)1011 static int smbd_post_send_empty(struct smbd_connection *info)
1012 {
1013 int remaining_data_length = 0;
1014
1015 info->count_send_empty++;
1016 return smbd_post_send_iter(info, NULL, &remaining_data_length);
1017 }
1018
smbd_post_send_full_iter(struct smbd_connection * info,struct iov_iter * iter,int * _remaining_data_length)1019 static int smbd_post_send_full_iter(struct smbd_connection *info,
1020 struct iov_iter *iter,
1021 int *_remaining_data_length)
1022 {
1023 int rc = 0;
1024
1025 /*
1026 * smbd_post_send_iter() respects the
1027 * negotiated max_send_size, so we need to
1028 * loop until the full iter is posted
1029 */
1030
1031 while (iov_iter_count(iter) > 0) {
1032 rc = smbd_post_send_iter(info, iter, _remaining_data_length);
1033 if (rc < 0)
1034 break;
1035 }
1036
1037 return rc;
1038 }
1039
1040 /*
1041 * Post a receive request to the transport
1042 * The remote peer can only send data when a receive request is posted
1043 * The interaction is controlled by send/receive credit system
1044 */
smbd_post_recv(struct smbd_connection * info,struct smbdirect_recv_io * response)1045 static int smbd_post_recv(
1046 struct smbd_connection *info, struct smbdirect_recv_io *response)
1047 {
1048 struct smbdirect_socket *sc = &info->socket;
1049 struct smbdirect_socket_parameters *sp = &sc->parameters;
1050 struct ib_recv_wr recv_wr;
1051 int rc = -EIO;
1052
1053 response->sge.addr = ib_dma_map_single(
1054 sc->ib.dev, response->packet,
1055 sp->max_recv_size, DMA_FROM_DEVICE);
1056 if (ib_dma_mapping_error(sc->ib.dev, response->sge.addr))
1057 return rc;
1058
1059 response->sge.length = sp->max_recv_size;
1060 response->sge.lkey = sc->ib.pd->local_dma_lkey;
1061
1062 response->cqe.done = recv_done;
1063
1064 recv_wr.wr_cqe = &response->cqe;
1065 recv_wr.next = NULL;
1066 recv_wr.sg_list = &response->sge;
1067 recv_wr.num_sge = 1;
1068
1069 rc = ib_post_recv(sc->ib.qp, &recv_wr, NULL);
1070 if (rc) {
1071 ib_dma_unmap_single(sc->ib.dev, response->sge.addr,
1072 response->sge.length, DMA_FROM_DEVICE);
1073 response->sge.length = 0;
1074 smbd_disconnect_rdma_connection(info);
1075 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1076 }
1077
1078 return rc;
1079 }
1080
1081 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
smbd_negotiate(struct smbd_connection * info)1082 static int smbd_negotiate(struct smbd_connection *info)
1083 {
1084 struct smbdirect_socket *sc = &info->socket;
1085 int rc;
1086 struct smbdirect_recv_io *response = get_receive_buffer(info);
1087
1088 sc->recv_io.expected = SMBDIRECT_EXPECT_NEGOTIATE_REP;
1089 rc = smbd_post_recv(info, response);
1090 log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n",
1091 rc, response->sge.addr,
1092 response->sge.length, response->sge.lkey);
1093 if (rc)
1094 return rc;
1095
1096 init_completion(&info->negotiate_completion);
1097 info->negotiate_done = false;
1098 rc = smbd_post_send_negotiate_req(info);
1099 if (rc)
1100 return rc;
1101
1102 rc = wait_for_completion_interruptible_timeout(
1103 &info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1104 log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1105
1106 if (info->negotiate_done)
1107 return 0;
1108
1109 if (rc == 0)
1110 rc = -ETIMEDOUT;
1111 else if (rc == -ERESTARTSYS)
1112 rc = -EINTR;
1113 else
1114 rc = -ENOTCONN;
1115
1116 return rc;
1117 }
1118
1119 /*
1120 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1121 * This is a queue for reassembling upper layer payload and present to upper
1122 * layer. All the inncoming payload go to the reassembly queue, regardless of
1123 * if reassembly is required. The uuper layer code reads from the queue for all
1124 * incoming payloads.
1125 * Put a received packet to the reassembly queue
1126 * response: the packet received
1127 * data_length: the size of payload in this packet
1128 */
enqueue_reassembly(struct smbd_connection * info,struct smbdirect_recv_io * response,int data_length)1129 static void enqueue_reassembly(
1130 struct smbd_connection *info,
1131 struct smbdirect_recv_io *response,
1132 int data_length)
1133 {
1134 struct smbdirect_socket *sc = &info->socket;
1135
1136 spin_lock(&sc->recv_io.reassembly.lock);
1137 list_add_tail(&response->list, &sc->recv_io.reassembly.list);
1138 sc->recv_io.reassembly.queue_length++;
1139 /*
1140 * Make sure reassembly_data_length is updated after list and
1141 * reassembly_queue_length are updated. On the dequeue side
1142 * reassembly_data_length is checked without a lock to determine
1143 * if reassembly_queue_length and list is up to date
1144 */
1145 virt_wmb();
1146 sc->recv_io.reassembly.data_length += data_length;
1147 spin_unlock(&sc->recv_io.reassembly.lock);
1148 info->count_reassembly_queue++;
1149 info->count_enqueue_reassembly_queue++;
1150 }
1151
1152 /*
1153 * Get the first entry at the front of reassembly queue
1154 * Caller is responsible for locking
1155 * return value: the first entry if any, NULL if queue is empty
1156 */
_get_first_reassembly(struct smbd_connection * info)1157 static struct smbdirect_recv_io *_get_first_reassembly(struct smbd_connection *info)
1158 {
1159 struct smbdirect_socket *sc = &info->socket;
1160 struct smbdirect_recv_io *ret = NULL;
1161
1162 if (!list_empty(&sc->recv_io.reassembly.list)) {
1163 ret = list_first_entry(
1164 &sc->recv_io.reassembly.list,
1165 struct smbdirect_recv_io, list);
1166 }
1167 return ret;
1168 }
1169
1170 /*
1171 * Get a receive buffer
1172 * For each remote send, we need to post a receive. The receive buffers are
1173 * pre-allocated in advance.
1174 * return value: the receive buffer, NULL if none is available
1175 */
get_receive_buffer(struct smbd_connection * info)1176 static struct smbdirect_recv_io *get_receive_buffer(struct smbd_connection *info)
1177 {
1178 struct smbdirect_socket *sc = &info->socket;
1179 struct smbdirect_recv_io *ret = NULL;
1180 unsigned long flags;
1181
1182 spin_lock_irqsave(&sc->recv_io.free.lock, flags);
1183 if (!list_empty(&sc->recv_io.free.list)) {
1184 ret = list_first_entry(
1185 &sc->recv_io.free.list,
1186 struct smbdirect_recv_io, list);
1187 list_del(&ret->list);
1188 info->count_receive_queue--;
1189 info->count_get_receive_buffer++;
1190 }
1191 spin_unlock_irqrestore(&sc->recv_io.free.lock, flags);
1192
1193 return ret;
1194 }
1195
1196 /*
1197 * Return a receive buffer
1198 * Upon returning of a receive buffer, we can post new receive and extend
1199 * more receive credits to remote peer. This is done immediately after a
1200 * receive buffer is returned.
1201 */
put_receive_buffer(struct smbd_connection * info,struct smbdirect_recv_io * response)1202 static void put_receive_buffer(
1203 struct smbd_connection *info, struct smbdirect_recv_io *response)
1204 {
1205 struct smbdirect_socket *sc = &info->socket;
1206 unsigned long flags;
1207
1208 if (likely(response->sge.length != 0)) {
1209 ib_dma_unmap_single(sc->ib.dev,
1210 response->sge.addr,
1211 response->sge.length,
1212 DMA_FROM_DEVICE);
1213 response->sge.length = 0;
1214 }
1215
1216 spin_lock_irqsave(&sc->recv_io.free.lock, flags);
1217 list_add_tail(&response->list, &sc->recv_io.free.list);
1218 info->count_receive_queue++;
1219 info->count_put_receive_buffer++;
1220 spin_unlock_irqrestore(&sc->recv_io.free.lock, flags);
1221
1222 queue_work(info->workqueue, &info->post_send_credits_work);
1223 }
1224
1225 /* Preallocate all receive buffer on transport establishment */
allocate_receive_buffers(struct smbd_connection * info,int num_buf)1226 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1227 {
1228 struct smbdirect_socket *sc = &info->socket;
1229 struct smbdirect_recv_io *response;
1230 int i;
1231
1232 INIT_LIST_HEAD(&sc->recv_io.reassembly.list);
1233 spin_lock_init(&sc->recv_io.reassembly.lock);
1234 sc->recv_io.reassembly.data_length = 0;
1235 sc->recv_io.reassembly.queue_length = 0;
1236
1237 INIT_LIST_HEAD(&sc->recv_io.free.list);
1238 spin_lock_init(&sc->recv_io.free.lock);
1239 info->count_receive_queue = 0;
1240
1241 init_waitqueue_head(&info->wait_receive_queues);
1242
1243 for (i = 0; i < num_buf; i++) {
1244 response = mempool_alloc(sc->recv_io.mem.pool, GFP_KERNEL);
1245 if (!response)
1246 goto allocate_failed;
1247
1248 response->socket = sc;
1249 response->sge.length = 0;
1250 list_add_tail(&response->list, &sc->recv_io.free.list);
1251 info->count_receive_queue++;
1252 }
1253
1254 return 0;
1255
1256 allocate_failed:
1257 while (!list_empty(&sc->recv_io.free.list)) {
1258 response = list_first_entry(
1259 &sc->recv_io.free.list,
1260 struct smbdirect_recv_io, list);
1261 list_del(&response->list);
1262 info->count_receive_queue--;
1263
1264 mempool_free(response, sc->recv_io.mem.pool);
1265 }
1266 return -ENOMEM;
1267 }
1268
destroy_receive_buffers(struct smbd_connection * info)1269 static void destroy_receive_buffers(struct smbd_connection *info)
1270 {
1271 struct smbdirect_socket *sc = &info->socket;
1272 struct smbdirect_recv_io *response;
1273
1274 while ((response = get_receive_buffer(info)))
1275 mempool_free(response, sc->recv_io.mem.pool);
1276 }
1277
1278 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
idle_connection_timer(struct work_struct * work)1279 static void idle_connection_timer(struct work_struct *work)
1280 {
1281 struct smbd_connection *info = container_of(
1282 work, struct smbd_connection,
1283 idle_timer_work.work);
1284 struct smbdirect_socket *sc = &info->socket;
1285 struct smbdirect_socket_parameters *sp = &sc->parameters;
1286
1287 if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1288 log_keep_alive(ERR,
1289 "error status info->keep_alive_requested=%d\n",
1290 info->keep_alive_requested);
1291 smbd_disconnect_rdma_connection(info);
1292 return;
1293 }
1294
1295 log_keep_alive(INFO, "about to send an empty idle message\n");
1296 smbd_post_send_empty(info);
1297
1298 /* Setup the next idle timeout work */
1299 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1300 msecs_to_jiffies(sp->keepalive_interval_msec));
1301 }
1302
1303 /*
1304 * Destroy the transport and related RDMA and memory resources
1305 * Need to go through all the pending counters and make sure on one is using
1306 * the transport while it is destroyed
1307 */
smbd_destroy(struct TCP_Server_Info * server)1308 void smbd_destroy(struct TCP_Server_Info *server)
1309 {
1310 struct smbd_connection *info = server->smbd_conn;
1311 struct smbdirect_socket *sc;
1312 struct smbdirect_socket_parameters *sp;
1313 struct smbdirect_recv_io *response;
1314 unsigned long flags;
1315
1316 if (!info) {
1317 log_rdma_event(INFO, "rdma session already destroyed\n");
1318 return;
1319 }
1320 sc = &info->socket;
1321 sp = &sc->parameters;
1322
1323 log_rdma_event(INFO, "destroying rdma session\n");
1324 if (sc->status != SMBDIRECT_SOCKET_DISCONNECTED) {
1325 rdma_disconnect(sc->rdma.cm_id);
1326 log_rdma_event(INFO, "wait for transport being disconnected\n");
1327 wait_event_interruptible(
1328 info->status_wait,
1329 sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
1330 }
1331
1332 log_rdma_event(INFO, "destroying qp\n");
1333 ib_drain_qp(sc->ib.qp);
1334 rdma_destroy_qp(sc->rdma.cm_id);
1335 sc->ib.qp = NULL;
1336
1337 log_rdma_event(INFO, "cancelling idle timer\n");
1338 cancel_delayed_work_sync(&info->idle_timer_work);
1339
1340 /* It's not possible for upper layer to get to reassembly */
1341 log_rdma_event(INFO, "drain the reassembly queue\n");
1342 do {
1343 spin_lock_irqsave(&sc->recv_io.reassembly.lock, flags);
1344 response = _get_first_reassembly(info);
1345 if (response) {
1346 list_del(&response->list);
1347 spin_unlock_irqrestore(
1348 &sc->recv_io.reassembly.lock, flags);
1349 put_receive_buffer(info, response);
1350 } else
1351 spin_unlock_irqrestore(
1352 &sc->recv_io.reassembly.lock, flags);
1353 } while (response);
1354 sc->recv_io.reassembly.data_length = 0;
1355
1356 log_rdma_event(INFO, "free receive buffers\n");
1357 wait_event(info->wait_receive_queues,
1358 info->count_receive_queue == sp->recv_credit_max);
1359 destroy_receive_buffers(info);
1360
1361 /*
1362 * For performance reasons, memory registration and deregistration
1363 * are not locked by srv_mutex. It is possible some processes are
1364 * blocked on transport srv_mutex while holding memory registration.
1365 * Release the transport srv_mutex to allow them to hit the failure
1366 * path when sending data, and then release memory registrations.
1367 */
1368 log_rdma_event(INFO, "freeing mr list\n");
1369 wake_up_interruptible_all(&info->wait_mr);
1370 while (atomic_read(&info->mr_used_count)) {
1371 cifs_server_unlock(server);
1372 msleep(1000);
1373 cifs_server_lock(server);
1374 }
1375 destroy_mr_list(info);
1376
1377 ib_free_cq(sc->ib.send_cq);
1378 ib_free_cq(sc->ib.recv_cq);
1379 ib_dealloc_pd(sc->ib.pd);
1380 rdma_destroy_id(sc->rdma.cm_id);
1381
1382 /* free mempools */
1383 mempool_destroy(sc->send_io.mem.pool);
1384 kmem_cache_destroy(sc->send_io.mem.cache);
1385
1386 mempool_destroy(sc->recv_io.mem.pool);
1387 kmem_cache_destroy(sc->recv_io.mem.cache);
1388
1389 sc->status = SMBDIRECT_SOCKET_DESTROYED;
1390
1391 destroy_workqueue(info->workqueue);
1392 log_rdma_event(INFO, "rdma session destroyed\n");
1393 kfree(info);
1394 server->smbd_conn = NULL;
1395 }
1396
1397 /*
1398 * Reconnect this SMBD connection, called from upper layer
1399 * return value: 0 on success, or actual error code
1400 */
smbd_reconnect(struct TCP_Server_Info * server)1401 int smbd_reconnect(struct TCP_Server_Info *server)
1402 {
1403 log_rdma_event(INFO, "reconnecting rdma session\n");
1404
1405 if (!server->smbd_conn) {
1406 log_rdma_event(INFO, "rdma session already destroyed\n");
1407 goto create_conn;
1408 }
1409
1410 /*
1411 * This is possible if transport is disconnected and we haven't received
1412 * notification from RDMA, but upper layer has detected timeout
1413 */
1414 if (server->smbd_conn->socket.status == SMBDIRECT_SOCKET_CONNECTED) {
1415 log_rdma_event(INFO, "disconnecting transport\n");
1416 smbd_destroy(server);
1417 }
1418
1419 create_conn:
1420 log_rdma_event(INFO, "creating rdma session\n");
1421 server->smbd_conn = smbd_get_connection(
1422 server, (struct sockaddr *) &server->dstaddr);
1423
1424 if (server->smbd_conn) {
1425 cifs_dbg(VFS, "RDMA transport re-established\n");
1426 trace_smb3_smbd_connect_done(server->hostname, server->conn_id, &server->dstaddr);
1427 return 0;
1428 }
1429 trace_smb3_smbd_connect_err(server->hostname, server->conn_id, &server->dstaddr);
1430 return -ENOENT;
1431 }
1432
destroy_caches_and_workqueue(struct smbd_connection * info)1433 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1434 {
1435 struct smbdirect_socket *sc = &info->socket;
1436
1437 destroy_receive_buffers(info);
1438 destroy_workqueue(info->workqueue);
1439 mempool_destroy(sc->recv_io.mem.pool);
1440 kmem_cache_destroy(sc->recv_io.mem.cache);
1441 mempool_destroy(sc->send_io.mem.pool);
1442 kmem_cache_destroy(sc->send_io.mem.cache);
1443 }
1444
1445 #define MAX_NAME_LEN 80
allocate_caches_and_workqueue(struct smbd_connection * info)1446 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1447 {
1448 struct smbdirect_socket *sc = &info->socket;
1449 struct smbdirect_socket_parameters *sp = &sc->parameters;
1450 char name[MAX_NAME_LEN];
1451 int rc;
1452
1453 if (WARN_ON_ONCE(sp->max_recv_size < sizeof(struct smbdirect_data_transfer)))
1454 return -ENOMEM;
1455
1456 scnprintf(name, MAX_NAME_LEN, "smbdirect_send_io_%p", info);
1457 sc->send_io.mem.cache =
1458 kmem_cache_create(
1459 name,
1460 sizeof(struct smbdirect_send_io) +
1461 sizeof(struct smbdirect_data_transfer),
1462 0, SLAB_HWCACHE_ALIGN, NULL);
1463 if (!sc->send_io.mem.cache)
1464 return -ENOMEM;
1465
1466 sc->send_io.mem.pool =
1467 mempool_create(sp->send_credit_target, mempool_alloc_slab,
1468 mempool_free_slab, sc->send_io.mem.cache);
1469 if (!sc->send_io.mem.pool)
1470 goto out1;
1471
1472 scnprintf(name, MAX_NAME_LEN, "smbdirect_recv_io_%p", info);
1473
1474 struct kmem_cache_args response_args = {
1475 .align = __alignof__(struct smbdirect_recv_io),
1476 .useroffset = (offsetof(struct smbdirect_recv_io, packet) +
1477 sizeof(struct smbdirect_data_transfer)),
1478 .usersize = sp->max_recv_size - sizeof(struct smbdirect_data_transfer),
1479 };
1480 sc->recv_io.mem.cache =
1481 kmem_cache_create(name,
1482 sizeof(struct smbdirect_recv_io) + sp->max_recv_size,
1483 &response_args, SLAB_HWCACHE_ALIGN);
1484 if (!sc->recv_io.mem.cache)
1485 goto out2;
1486
1487 sc->recv_io.mem.pool =
1488 mempool_create(sp->recv_credit_max, mempool_alloc_slab,
1489 mempool_free_slab, sc->recv_io.mem.cache);
1490 if (!sc->recv_io.mem.pool)
1491 goto out3;
1492
1493 scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1494 info->workqueue = create_workqueue(name);
1495 if (!info->workqueue)
1496 goto out4;
1497
1498 rc = allocate_receive_buffers(info, sp->recv_credit_max);
1499 if (rc) {
1500 log_rdma_event(ERR, "failed to allocate receive buffers\n");
1501 goto out5;
1502 }
1503
1504 return 0;
1505
1506 out5:
1507 destroy_workqueue(info->workqueue);
1508 out4:
1509 mempool_destroy(sc->recv_io.mem.pool);
1510 out3:
1511 kmem_cache_destroy(sc->recv_io.mem.cache);
1512 out2:
1513 mempool_destroy(sc->send_io.mem.pool);
1514 out1:
1515 kmem_cache_destroy(sc->send_io.mem.cache);
1516 return -ENOMEM;
1517 }
1518
1519 /* Create a SMBD connection, called by upper layer */
_smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr,int port)1520 static struct smbd_connection *_smbd_get_connection(
1521 struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1522 {
1523 int rc;
1524 struct smbd_connection *info;
1525 struct smbdirect_socket *sc;
1526 struct smbdirect_socket_parameters *sp;
1527 struct rdma_conn_param conn_param;
1528 struct ib_qp_init_attr qp_attr;
1529 struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1530 struct ib_port_immutable port_immutable;
1531 u32 ird_ord_hdr[2];
1532
1533 info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1534 if (!info)
1535 return NULL;
1536 sc = &info->socket;
1537 sp = &sc->parameters;
1538
1539 sc->status = SMBDIRECT_SOCKET_CONNECTING;
1540 rc = smbd_ia_open(info, dstaddr, port);
1541 if (rc) {
1542 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1543 goto create_id_failed;
1544 }
1545
1546 if (smbd_send_credit_target > sc->ib.dev->attrs.max_cqe ||
1547 smbd_send_credit_target > sc->ib.dev->attrs.max_qp_wr) {
1548 log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1549 smbd_send_credit_target,
1550 sc->ib.dev->attrs.max_cqe,
1551 sc->ib.dev->attrs.max_qp_wr);
1552 goto config_failed;
1553 }
1554
1555 if (smbd_receive_credit_max > sc->ib.dev->attrs.max_cqe ||
1556 smbd_receive_credit_max > sc->ib.dev->attrs.max_qp_wr) {
1557 log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1558 smbd_receive_credit_max,
1559 sc->ib.dev->attrs.max_cqe,
1560 sc->ib.dev->attrs.max_qp_wr);
1561 goto config_failed;
1562 }
1563
1564 sp->recv_credit_max = smbd_receive_credit_max;
1565 sp->send_credit_target = smbd_send_credit_target;
1566 sp->max_send_size = smbd_max_send_size;
1567 sp->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1568 sp->max_recv_size = smbd_max_receive_size;
1569 sp->keepalive_interval_msec = smbd_keep_alive_interval * 1000;
1570
1571 if (sc->ib.dev->attrs.max_send_sge < SMBDIRECT_SEND_IO_MAX_SGE ||
1572 sc->ib.dev->attrs.max_recv_sge < SMBDIRECT_RECV_IO_MAX_SGE) {
1573 log_rdma_event(ERR,
1574 "device %.*s max_send_sge/max_recv_sge = %d/%d too small\n",
1575 IB_DEVICE_NAME_MAX,
1576 sc->ib.dev->name,
1577 sc->ib.dev->attrs.max_send_sge,
1578 sc->ib.dev->attrs.max_recv_sge);
1579 goto config_failed;
1580 }
1581
1582 sc->ib.send_cq =
1583 ib_alloc_cq_any(sc->ib.dev, info,
1584 sp->send_credit_target, IB_POLL_SOFTIRQ);
1585 if (IS_ERR(sc->ib.send_cq)) {
1586 sc->ib.send_cq = NULL;
1587 goto alloc_cq_failed;
1588 }
1589
1590 sc->ib.recv_cq =
1591 ib_alloc_cq_any(sc->ib.dev, info,
1592 sp->recv_credit_max, IB_POLL_SOFTIRQ);
1593 if (IS_ERR(sc->ib.recv_cq)) {
1594 sc->ib.recv_cq = NULL;
1595 goto alloc_cq_failed;
1596 }
1597
1598 memset(&qp_attr, 0, sizeof(qp_attr));
1599 qp_attr.event_handler = smbd_qp_async_error_upcall;
1600 qp_attr.qp_context = info;
1601 qp_attr.cap.max_send_wr = sp->send_credit_target;
1602 qp_attr.cap.max_recv_wr = sp->recv_credit_max;
1603 qp_attr.cap.max_send_sge = SMBDIRECT_SEND_IO_MAX_SGE;
1604 qp_attr.cap.max_recv_sge = SMBDIRECT_RECV_IO_MAX_SGE;
1605 qp_attr.cap.max_inline_data = 0;
1606 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1607 qp_attr.qp_type = IB_QPT_RC;
1608 qp_attr.send_cq = sc->ib.send_cq;
1609 qp_attr.recv_cq = sc->ib.recv_cq;
1610 qp_attr.port_num = ~0;
1611
1612 rc = rdma_create_qp(sc->rdma.cm_id, sc->ib.pd, &qp_attr);
1613 if (rc) {
1614 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1615 goto create_qp_failed;
1616 }
1617 sc->ib.qp = sc->rdma.cm_id->qp;
1618
1619 memset(&conn_param, 0, sizeof(conn_param));
1620 conn_param.initiator_depth = 0;
1621
1622 conn_param.responder_resources =
1623 min(sc->ib.dev->attrs.max_qp_rd_atom,
1624 SMBD_CM_RESPONDER_RESOURCES);
1625 info->responder_resources = conn_param.responder_resources;
1626 log_rdma_mr(INFO, "responder_resources=%d\n",
1627 info->responder_resources);
1628
1629 /* Need to send IRD/ORD in private data for iWARP */
1630 sc->ib.dev->ops.get_port_immutable(
1631 sc->ib.dev, sc->rdma.cm_id->port_num, &port_immutable);
1632 if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1633 ird_ord_hdr[0] = info->responder_resources;
1634 ird_ord_hdr[1] = 1;
1635 conn_param.private_data = ird_ord_hdr;
1636 conn_param.private_data_len = sizeof(ird_ord_hdr);
1637 } else {
1638 conn_param.private_data = NULL;
1639 conn_param.private_data_len = 0;
1640 }
1641
1642 conn_param.retry_count = SMBD_CM_RETRY;
1643 conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1644 conn_param.flow_control = 0;
1645
1646 log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1647 &addr_in->sin_addr, port);
1648
1649 init_waitqueue_head(&info->status_wait);
1650 init_waitqueue_head(&sc->recv_io.reassembly.wait_queue);
1651 rc = rdma_connect(sc->rdma.cm_id, &conn_param);
1652 if (rc) {
1653 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1654 goto rdma_connect_failed;
1655 }
1656
1657 wait_event_interruptible_timeout(
1658 info->status_wait,
1659 sc->status != SMBDIRECT_SOCKET_CONNECTING,
1660 msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
1661
1662 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1663 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1664 goto rdma_connect_failed;
1665 }
1666
1667 log_rdma_event(INFO, "rdma_connect connected\n");
1668
1669 rc = allocate_caches_and_workqueue(info);
1670 if (rc) {
1671 log_rdma_event(ERR, "cache allocation failed\n");
1672 goto allocate_cache_failed;
1673 }
1674
1675 init_waitqueue_head(&info->wait_send_queue);
1676 INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1677 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1678 msecs_to_jiffies(sp->keepalive_interval_msec));
1679
1680 init_waitqueue_head(&info->wait_send_pending);
1681 atomic_set(&info->send_pending, 0);
1682
1683 init_waitqueue_head(&info->wait_post_send);
1684
1685 INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1686 INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1687 info->new_credits_offered = 0;
1688 spin_lock_init(&info->lock_new_credits_offered);
1689
1690 rc = smbd_negotiate(info);
1691 if (rc) {
1692 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1693 goto negotiation_failed;
1694 }
1695
1696 rc = allocate_mr_list(info);
1697 if (rc) {
1698 log_rdma_mr(ERR, "memory registration allocation failed\n");
1699 goto allocate_mr_failed;
1700 }
1701
1702 return info;
1703
1704 allocate_mr_failed:
1705 /* At this point, need to a full transport shutdown */
1706 server->smbd_conn = info;
1707 smbd_destroy(server);
1708 return NULL;
1709
1710 negotiation_failed:
1711 cancel_delayed_work_sync(&info->idle_timer_work);
1712 destroy_caches_and_workqueue(info);
1713 sc->status = SMBDIRECT_SOCKET_NEGOTIATE_FAILED;
1714 rdma_disconnect(sc->rdma.cm_id);
1715 wait_event(info->status_wait,
1716 sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
1717
1718 allocate_cache_failed:
1719 rdma_connect_failed:
1720 rdma_destroy_qp(sc->rdma.cm_id);
1721
1722 create_qp_failed:
1723 alloc_cq_failed:
1724 if (sc->ib.send_cq)
1725 ib_free_cq(sc->ib.send_cq);
1726 if (sc->ib.recv_cq)
1727 ib_free_cq(sc->ib.recv_cq);
1728
1729 config_failed:
1730 ib_dealloc_pd(sc->ib.pd);
1731 rdma_destroy_id(sc->rdma.cm_id);
1732
1733 create_id_failed:
1734 kfree(info);
1735 return NULL;
1736 }
1737
smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr)1738 struct smbd_connection *smbd_get_connection(
1739 struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1740 {
1741 struct smbd_connection *ret;
1742 int port = SMBD_PORT;
1743
1744 try_again:
1745 ret = _smbd_get_connection(server, dstaddr, port);
1746
1747 /* Try SMB_PORT if SMBD_PORT doesn't work */
1748 if (!ret && port == SMBD_PORT) {
1749 port = SMB_PORT;
1750 goto try_again;
1751 }
1752 return ret;
1753 }
1754
1755 /*
1756 * Receive data from the transport's receive reassembly queue
1757 * All the incoming data packets are placed in reassembly queue
1758 * iter: the buffer to read data into
1759 * size: the length of data to read
1760 * return value: actual data read
1761 *
1762 * Note: this implementation copies the data from reassembly queue to receive
1763 * buffers used by upper layer. This is not the optimal code path. A better way
1764 * to do it is to not have upper layer allocate its receive buffers but rather
1765 * borrow the buffer from reassembly queue, and return it after data is
1766 * consumed. But this will require more changes to upper layer code, and also
1767 * need to consider packet boundaries while they still being reassembled.
1768 */
smbd_recv(struct smbd_connection * info,struct msghdr * msg)1769 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
1770 {
1771 struct smbdirect_socket *sc = &info->socket;
1772 struct smbdirect_recv_io *response;
1773 struct smbdirect_data_transfer *data_transfer;
1774 size_t size = iov_iter_count(&msg->msg_iter);
1775 int to_copy, to_read, data_read, offset;
1776 u32 data_length, remaining_data_length, data_offset;
1777 int rc;
1778
1779 if (WARN_ON_ONCE(iov_iter_rw(&msg->msg_iter) == WRITE))
1780 return -EINVAL; /* It's a bug in upper layer to get there */
1781
1782 again:
1783 /*
1784 * No need to hold the reassembly queue lock all the time as we are
1785 * the only one reading from the front of the queue. The transport
1786 * may add more entries to the back of the queue at the same time
1787 */
1788 log_read(INFO, "size=%zd sc->recv_io.reassembly.data_length=%d\n", size,
1789 sc->recv_io.reassembly.data_length);
1790 if (sc->recv_io.reassembly.data_length >= size) {
1791 int queue_length;
1792 int queue_removed = 0;
1793
1794 /*
1795 * Need to make sure reassembly_data_length is read before
1796 * reading reassembly_queue_length and calling
1797 * _get_first_reassembly. This call is lock free
1798 * as we never read at the end of the queue which are being
1799 * updated in SOFTIRQ as more data is received
1800 */
1801 virt_rmb();
1802 queue_length = sc->recv_io.reassembly.queue_length;
1803 data_read = 0;
1804 to_read = size;
1805 offset = sc->recv_io.reassembly.first_entry_offset;
1806 while (data_read < size) {
1807 response = _get_first_reassembly(info);
1808 data_transfer = smbdirect_recv_io_payload(response);
1809 data_length = le32_to_cpu(data_transfer->data_length);
1810 remaining_data_length =
1811 le32_to_cpu(
1812 data_transfer->remaining_data_length);
1813 data_offset = le32_to_cpu(data_transfer->data_offset);
1814
1815 /*
1816 * The upper layer expects RFC1002 length at the
1817 * beginning of the payload. Return it to indicate
1818 * the total length of the packet. This minimize the
1819 * change to upper layer packet processing logic. This
1820 * will be eventually remove when an intermediate
1821 * transport layer is added
1822 */
1823 if (response->first_segment && size == 4) {
1824 unsigned int rfc1002_len =
1825 data_length + remaining_data_length;
1826 __be32 rfc1002_hdr = cpu_to_be32(rfc1002_len);
1827 if (copy_to_iter(&rfc1002_hdr, sizeof(rfc1002_hdr),
1828 &msg->msg_iter) != sizeof(rfc1002_hdr))
1829 return -EFAULT;
1830 data_read = 4;
1831 response->first_segment = false;
1832 log_read(INFO, "returning rfc1002 length %d\n",
1833 rfc1002_len);
1834 goto read_rfc1002_done;
1835 }
1836
1837 to_copy = min_t(int, data_length - offset, to_read);
1838 if (copy_to_iter((char *)data_transfer + data_offset + offset,
1839 to_copy, &msg->msg_iter) != to_copy)
1840 return -EFAULT;
1841
1842 /* move on to the next buffer? */
1843 if (to_copy == data_length - offset) {
1844 queue_length--;
1845 /*
1846 * No need to lock if we are not at the
1847 * end of the queue
1848 */
1849 if (queue_length)
1850 list_del(&response->list);
1851 else {
1852 spin_lock_irq(
1853 &sc->recv_io.reassembly.lock);
1854 list_del(&response->list);
1855 spin_unlock_irq(
1856 &sc->recv_io.reassembly.lock);
1857 }
1858 queue_removed++;
1859 info->count_reassembly_queue--;
1860 info->count_dequeue_reassembly_queue++;
1861 put_receive_buffer(info, response);
1862 offset = 0;
1863 log_read(INFO, "put_receive_buffer offset=0\n");
1864 } else
1865 offset += to_copy;
1866
1867 to_read -= to_copy;
1868 data_read += to_copy;
1869
1870 log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
1871 to_copy, data_length - offset,
1872 to_read, data_read, offset);
1873 }
1874
1875 spin_lock_irq(&sc->recv_io.reassembly.lock);
1876 sc->recv_io.reassembly.data_length -= data_read;
1877 sc->recv_io.reassembly.queue_length -= queue_removed;
1878 spin_unlock_irq(&sc->recv_io.reassembly.lock);
1879
1880 sc->recv_io.reassembly.first_entry_offset = offset;
1881 log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
1882 data_read, sc->recv_io.reassembly.data_length,
1883 sc->recv_io.reassembly.first_entry_offset);
1884 read_rfc1002_done:
1885 return data_read;
1886 }
1887
1888 log_read(INFO, "wait_event on more data\n");
1889 rc = wait_event_interruptible(
1890 sc->recv_io.reassembly.wait_queue,
1891 sc->recv_io.reassembly.data_length >= size ||
1892 sc->status != SMBDIRECT_SOCKET_CONNECTED);
1893 /* Don't return any data if interrupted */
1894 if (rc)
1895 return rc;
1896
1897 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1898 log_read(ERR, "disconnected\n");
1899 return -ECONNABORTED;
1900 }
1901
1902 goto again;
1903 }
1904
1905 /*
1906 * Send data to transport
1907 * Each rqst is transported as a SMBDirect payload
1908 * rqst: the data to write
1909 * return value: 0 if successfully write, otherwise error code
1910 */
smbd_send(struct TCP_Server_Info * server,int num_rqst,struct smb_rqst * rqst_array)1911 int smbd_send(struct TCP_Server_Info *server,
1912 int num_rqst, struct smb_rqst *rqst_array)
1913 {
1914 struct smbd_connection *info = server->smbd_conn;
1915 struct smbdirect_socket *sc = &info->socket;
1916 struct smbdirect_socket_parameters *sp = &sc->parameters;
1917 struct smb_rqst *rqst;
1918 struct iov_iter iter;
1919 unsigned int remaining_data_length, klen;
1920 int rc, i, rqst_idx;
1921
1922 if (sc->status != SMBDIRECT_SOCKET_CONNECTED)
1923 return -EAGAIN;
1924
1925 /*
1926 * Add in the page array if there is one. The caller needs to set
1927 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
1928 * ends at page boundary
1929 */
1930 remaining_data_length = 0;
1931 for (i = 0; i < num_rqst; i++)
1932 remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
1933
1934 if (unlikely(remaining_data_length > sp->max_fragmented_send_size)) {
1935 /* assertion: payload never exceeds negotiated maximum */
1936 log_write(ERR, "payload size %d > max size %d\n",
1937 remaining_data_length, sp->max_fragmented_send_size);
1938 return -EINVAL;
1939 }
1940
1941 log_write(INFO, "num_rqst=%d total length=%u\n",
1942 num_rqst, remaining_data_length);
1943
1944 rqst_idx = 0;
1945 do {
1946 rqst = &rqst_array[rqst_idx];
1947
1948 cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
1949 rqst_idx, smb_rqst_len(server, rqst));
1950 for (i = 0; i < rqst->rq_nvec; i++)
1951 dump_smb(rqst->rq_iov[i].iov_base, rqst->rq_iov[i].iov_len);
1952
1953 log_write(INFO, "RDMA-WR[%u] nvec=%d len=%u iter=%zu rqlen=%lu\n",
1954 rqst_idx, rqst->rq_nvec, remaining_data_length,
1955 iov_iter_count(&rqst->rq_iter), smb_rqst_len(server, rqst));
1956
1957 /* Send the metadata pages. */
1958 klen = 0;
1959 for (i = 0; i < rqst->rq_nvec; i++)
1960 klen += rqst->rq_iov[i].iov_len;
1961 iov_iter_kvec(&iter, ITER_SOURCE, rqst->rq_iov, rqst->rq_nvec, klen);
1962
1963 rc = smbd_post_send_full_iter(info, &iter, &remaining_data_length);
1964 if (rc < 0)
1965 break;
1966
1967 if (iov_iter_count(&rqst->rq_iter) > 0) {
1968 /* And then the data pages if there are any */
1969 rc = smbd_post_send_full_iter(info, &rqst->rq_iter,
1970 &remaining_data_length);
1971 if (rc < 0)
1972 break;
1973 }
1974
1975 } while (++rqst_idx < num_rqst);
1976
1977 /*
1978 * As an optimization, we don't wait for individual I/O to finish
1979 * before sending the next one.
1980 * Send them all and wait for pending send count to get to 0
1981 * that means all the I/Os have been out and we are good to return
1982 */
1983
1984 wait_event(info->wait_send_pending,
1985 atomic_read(&info->send_pending) == 0 ||
1986 sc->status != SMBDIRECT_SOCKET_CONNECTED);
1987
1988 if (sc->status != SMBDIRECT_SOCKET_CONNECTED && rc == 0)
1989 rc = -EAGAIN;
1990
1991 return rc;
1992 }
1993
register_mr_done(struct ib_cq * cq,struct ib_wc * wc)1994 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
1995 {
1996 struct smbd_mr *mr;
1997 struct ib_cqe *cqe;
1998
1999 if (wc->status) {
2000 log_rdma_mr(ERR, "status=%d\n", wc->status);
2001 cqe = wc->wr_cqe;
2002 mr = container_of(cqe, struct smbd_mr, cqe);
2003 smbd_disconnect_rdma_connection(mr->conn);
2004 }
2005 }
2006
2007 /*
2008 * The work queue function that recovers MRs
2009 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2010 * again. Both calls are slow, so finish them in a workqueue. This will not
2011 * block I/O path.
2012 * There is one workqueue that recovers MRs, there is no need to lock as the
2013 * I/O requests calling smbd_register_mr will never update the links in the
2014 * mr_list.
2015 */
smbd_mr_recovery_work(struct work_struct * work)2016 static void smbd_mr_recovery_work(struct work_struct *work)
2017 {
2018 struct smbd_connection *info =
2019 container_of(work, struct smbd_connection, mr_recovery_work);
2020 struct smbdirect_socket *sc = &info->socket;
2021 struct smbd_mr *smbdirect_mr;
2022 int rc;
2023
2024 list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2025 if (smbdirect_mr->state == MR_ERROR) {
2026
2027 /* recover this MR entry */
2028 rc = ib_dereg_mr(smbdirect_mr->mr);
2029 if (rc) {
2030 log_rdma_mr(ERR,
2031 "ib_dereg_mr failed rc=%x\n",
2032 rc);
2033 smbd_disconnect_rdma_connection(info);
2034 continue;
2035 }
2036
2037 smbdirect_mr->mr = ib_alloc_mr(
2038 sc->ib.pd, info->mr_type,
2039 info->max_frmr_depth);
2040 if (IS_ERR(smbdirect_mr->mr)) {
2041 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2042 info->mr_type,
2043 info->max_frmr_depth);
2044 smbd_disconnect_rdma_connection(info);
2045 continue;
2046 }
2047 } else
2048 /* This MR is being used, don't recover it */
2049 continue;
2050
2051 smbdirect_mr->state = MR_READY;
2052
2053 /* smbdirect_mr->state is updated by this function
2054 * and is read and updated by I/O issuing CPUs trying
2055 * to get a MR, the call to atomic_inc_return
2056 * implicates a memory barrier and guarantees this
2057 * value is updated before waking up any calls to
2058 * get_mr() from the I/O issuing CPUs
2059 */
2060 if (atomic_inc_return(&info->mr_ready_count) == 1)
2061 wake_up_interruptible(&info->wait_mr);
2062 }
2063 }
2064
destroy_mr_list(struct smbd_connection * info)2065 static void destroy_mr_list(struct smbd_connection *info)
2066 {
2067 struct smbdirect_socket *sc = &info->socket;
2068 struct smbd_mr *mr, *tmp;
2069
2070 cancel_work_sync(&info->mr_recovery_work);
2071 list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2072 if (mr->state == MR_INVALIDATED)
2073 ib_dma_unmap_sg(sc->ib.dev, mr->sgt.sgl,
2074 mr->sgt.nents, mr->dir);
2075 ib_dereg_mr(mr->mr);
2076 kfree(mr->sgt.sgl);
2077 kfree(mr);
2078 }
2079 }
2080
2081 /*
2082 * Allocate MRs used for RDMA read/write
2083 * The number of MRs will not exceed hardware capability in responder_resources
2084 * All MRs are kept in mr_list. The MR can be recovered after it's used
2085 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2086 * as MRs are used and recovered for I/O, but the list links will not change
2087 */
allocate_mr_list(struct smbd_connection * info)2088 static int allocate_mr_list(struct smbd_connection *info)
2089 {
2090 struct smbdirect_socket *sc = &info->socket;
2091 int i;
2092 struct smbd_mr *smbdirect_mr, *tmp;
2093
2094 INIT_LIST_HEAD(&info->mr_list);
2095 init_waitqueue_head(&info->wait_mr);
2096 spin_lock_init(&info->mr_list_lock);
2097 atomic_set(&info->mr_ready_count, 0);
2098 atomic_set(&info->mr_used_count, 0);
2099 init_waitqueue_head(&info->wait_for_mr_cleanup);
2100 INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2101 /* Allocate more MRs (2x) than hardware responder_resources */
2102 for (i = 0; i < info->responder_resources * 2; i++) {
2103 smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2104 if (!smbdirect_mr)
2105 goto cleanup_entries;
2106 smbdirect_mr->mr = ib_alloc_mr(sc->ib.pd, info->mr_type,
2107 info->max_frmr_depth);
2108 if (IS_ERR(smbdirect_mr->mr)) {
2109 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2110 info->mr_type, info->max_frmr_depth);
2111 goto out;
2112 }
2113 smbdirect_mr->sgt.sgl = kcalloc(info->max_frmr_depth,
2114 sizeof(struct scatterlist),
2115 GFP_KERNEL);
2116 if (!smbdirect_mr->sgt.sgl) {
2117 log_rdma_mr(ERR, "failed to allocate sgl\n");
2118 ib_dereg_mr(smbdirect_mr->mr);
2119 goto out;
2120 }
2121 smbdirect_mr->state = MR_READY;
2122 smbdirect_mr->conn = info;
2123
2124 list_add_tail(&smbdirect_mr->list, &info->mr_list);
2125 atomic_inc(&info->mr_ready_count);
2126 }
2127 return 0;
2128
2129 out:
2130 kfree(smbdirect_mr);
2131 cleanup_entries:
2132 list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2133 list_del(&smbdirect_mr->list);
2134 ib_dereg_mr(smbdirect_mr->mr);
2135 kfree(smbdirect_mr->sgt.sgl);
2136 kfree(smbdirect_mr);
2137 }
2138 return -ENOMEM;
2139 }
2140
2141 /*
2142 * Get a MR from mr_list. This function waits until there is at least one
2143 * MR available in the list. It may access the list while the
2144 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2145 * as they never modify the same places. However, there may be several CPUs
2146 * issuing I/O trying to get MR at the same time, mr_list_lock is used to
2147 * protect this situation.
2148 */
get_mr(struct smbd_connection * info)2149 static struct smbd_mr *get_mr(struct smbd_connection *info)
2150 {
2151 struct smbdirect_socket *sc = &info->socket;
2152 struct smbd_mr *ret;
2153 int rc;
2154 again:
2155 rc = wait_event_interruptible(info->wait_mr,
2156 atomic_read(&info->mr_ready_count) ||
2157 sc->status != SMBDIRECT_SOCKET_CONNECTED);
2158 if (rc) {
2159 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2160 return NULL;
2161 }
2162
2163 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
2164 log_rdma_mr(ERR, "sc->status=%x\n", sc->status);
2165 return NULL;
2166 }
2167
2168 spin_lock(&info->mr_list_lock);
2169 list_for_each_entry(ret, &info->mr_list, list) {
2170 if (ret->state == MR_READY) {
2171 ret->state = MR_REGISTERED;
2172 spin_unlock(&info->mr_list_lock);
2173 atomic_dec(&info->mr_ready_count);
2174 atomic_inc(&info->mr_used_count);
2175 return ret;
2176 }
2177 }
2178
2179 spin_unlock(&info->mr_list_lock);
2180 /*
2181 * It is possible that we could fail to get MR because other processes may
2182 * try to acquire a MR at the same time. If this is the case, retry it.
2183 */
2184 goto again;
2185 }
2186
2187 /*
2188 * Transcribe the pages from an iterator into an MR scatterlist.
2189 */
smbd_iter_to_mr(struct smbd_connection * info,struct iov_iter * iter,struct sg_table * sgt,unsigned int max_sg)2190 static int smbd_iter_to_mr(struct smbd_connection *info,
2191 struct iov_iter *iter,
2192 struct sg_table *sgt,
2193 unsigned int max_sg)
2194 {
2195 int ret;
2196
2197 memset(sgt->sgl, 0, max_sg * sizeof(struct scatterlist));
2198
2199 ret = extract_iter_to_sg(iter, iov_iter_count(iter), sgt, max_sg, 0);
2200 WARN_ON(ret < 0);
2201 if (sgt->nents > 0)
2202 sg_mark_end(&sgt->sgl[sgt->nents - 1]);
2203 return ret;
2204 }
2205
2206 /*
2207 * Register memory for RDMA read/write
2208 * iter: the buffer to register memory with
2209 * writing: true if this is a RDMA write (SMB read), false for RDMA read
2210 * need_invalidate: true if this MR needs to be locally invalidated after I/O
2211 * return value: the MR registered, NULL if failed.
2212 */
smbd_register_mr(struct smbd_connection * info,struct iov_iter * iter,bool writing,bool need_invalidate)2213 struct smbd_mr *smbd_register_mr(struct smbd_connection *info,
2214 struct iov_iter *iter,
2215 bool writing, bool need_invalidate)
2216 {
2217 struct smbdirect_socket *sc = &info->socket;
2218 struct smbd_mr *smbdirect_mr;
2219 int rc, num_pages;
2220 enum dma_data_direction dir;
2221 struct ib_reg_wr *reg_wr;
2222
2223 num_pages = iov_iter_npages(iter, info->max_frmr_depth + 1);
2224 if (num_pages > info->max_frmr_depth) {
2225 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2226 num_pages, info->max_frmr_depth);
2227 WARN_ON_ONCE(1);
2228 return NULL;
2229 }
2230
2231 smbdirect_mr = get_mr(info);
2232 if (!smbdirect_mr) {
2233 log_rdma_mr(ERR, "get_mr returning NULL\n");
2234 return NULL;
2235 }
2236
2237 dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2238 smbdirect_mr->dir = dir;
2239 smbdirect_mr->need_invalidate = need_invalidate;
2240 smbdirect_mr->sgt.nents = 0;
2241 smbdirect_mr->sgt.orig_nents = 0;
2242
2243 log_rdma_mr(INFO, "num_pages=0x%x count=0x%zx depth=%u\n",
2244 num_pages, iov_iter_count(iter), info->max_frmr_depth);
2245 smbd_iter_to_mr(info, iter, &smbdirect_mr->sgt, info->max_frmr_depth);
2246
2247 rc = ib_dma_map_sg(sc->ib.dev, smbdirect_mr->sgt.sgl,
2248 smbdirect_mr->sgt.nents, dir);
2249 if (!rc) {
2250 log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2251 num_pages, dir, rc);
2252 goto dma_map_error;
2253 }
2254
2255 rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgt.sgl,
2256 smbdirect_mr->sgt.nents, NULL, PAGE_SIZE);
2257 if (rc != smbdirect_mr->sgt.nents) {
2258 log_rdma_mr(ERR,
2259 "ib_map_mr_sg failed rc = %d nents = %x\n",
2260 rc, smbdirect_mr->sgt.nents);
2261 goto map_mr_error;
2262 }
2263
2264 ib_update_fast_reg_key(smbdirect_mr->mr,
2265 ib_inc_rkey(smbdirect_mr->mr->rkey));
2266 reg_wr = &smbdirect_mr->wr;
2267 reg_wr->wr.opcode = IB_WR_REG_MR;
2268 smbdirect_mr->cqe.done = register_mr_done;
2269 reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2270 reg_wr->wr.num_sge = 0;
2271 reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2272 reg_wr->mr = smbdirect_mr->mr;
2273 reg_wr->key = smbdirect_mr->mr->rkey;
2274 reg_wr->access = writing ?
2275 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2276 IB_ACCESS_REMOTE_READ;
2277
2278 /*
2279 * There is no need for waiting for complemtion on ib_post_send
2280 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2281 * on the next ib_post_send when we actually send I/O to remote peer
2282 */
2283 rc = ib_post_send(sc->ib.qp, ®_wr->wr, NULL);
2284 if (!rc)
2285 return smbdirect_mr;
2286
2287 log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2288 rc, reg_wr->key);
2289
2290 /* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2291 map_mr_error:
2292 ib_dma_unmap_sg(sc->ib.dev, smbdirect_mr->sgt.sgl,
2293 smbdirect_mr->sgt.nents, smbdirect_mr->dir);
2294
2295 dma_map_error:
2296 smbdirect_mr->state = MR_ERROR;
2297 if (atomic_dec_and_test(&info->mr_used_count))
2298 wake_up(&info->wait_for_mr_cleanup);
2299
2300 smbd_disconnect_rdma_connection(info);
2301
2302 return NULL;
2303 }
2304
local_inv_done(struct ib_cq * cq,struct ib_wc * wc)2305 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2306 {
2307 struct smbd_mr *smbdirect_mr;
2308 struct ib_cqe *cqe;
2309
2310 cqe = wc->wr_cqe;
2311 smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2312 smbdirect_mr->state = MR_INVALIDATED;
2313 if (wc->status != IB_WC_SUCCESS) {
2314 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2315 smbdirect_mr->state = MR_ERROR;
2316 }
2317 complete(&smbdirect_mr->invalidate_done);
2318 }
2319
2320 /*
2321 * Deregister a MR after I/O is done
2322 * This function may wait if remote invalidation is not used
2323 * and we have to locally invalidate the buffer to prevent data is being
2324 * modified by remote peer after upper layer consumes it
2325 */
smbd_deregister_mr(struct smbd_mr * smbdirect_mr)2326 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2327 {
2328 struct ib_send_wr *wr;
2329 struct smbd_connection *info = smbdirect_mr->conn;
2330 struct smbdirect_socket *sc = &info->socket;
2331 int rc = 0;
2332
2333 if (smbdirect_mr->need_invalidate) {
2334 /* Need to finish local invalidation before returning */
2335 wr = &smbdirect_mr->inv_wr;
2336 wr->opcode = IB_WR_LOCAL_INV;
2337 smbdirect_mr->cqe.done = local_inv_done;
2338 wr->wr_cqe = &smbdirect_mr->cqe;
2339 wr->num_sge = 0;
2340 wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2341 wr->send_flags = IB_SEND_SIGNALED;
2342
2343 init_completion(&smbdirect_mr->invalidate_done);
2344 rc = ib_post_send(sc->ib.qp, wr, NULL);
2345 if (rc) {
2346 log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2347 smbd_disconnect_rdma_connection(info);
2348 goto done;
2349 }
2350 wait_for_completion(&smbdirect_mr->invalidate_done);
2351 smbdirect_mr->need_invalidate = false;
2352 } else
2353 /*
2354 * For remote invalidation, just set it to MR_INVALIDATED
2355 * and defer to mr_recovery_work to recover the MR for next use
2356 */
2357 smbdirect_mr->state = MR_INVALIDATED;
2358
2359 if (smbdirect_mr->state == MR_INVALIDATED) {
2360 ib_dma_unmap_sg(
2361 sc->ib.dev, smbdirect_mr->sgt.sgl,
2362 smbdirect_mr->sgt.nents,
2363 smbdirect_mr->dir);
2364 smbdirect_mr->state = MR_READY;
2365 if (atomic_inc_return(&info->mr_ready_count) == 1)
2366 wake_up_interruptible(&info->wait_mr);
2367 } else
2368 /*
2369 * Schedule the work to do MR recovery for future I/Os MR
2370 * recovery is slow and don't want it to block current I/O
2371 */
2372 queue_work(info->workqueue, &info->mr_recovery_work);
2373
2374 done:
2375 if (atomic_dec_and_test(&info->mr_used_count))
2376 wake_up(&info->wait_for_mr_cleanup);
2377
2378 return rc;
2379 }
2380
smb_set_sge(struct smb_extract_to_rdma * rdma,struct page * lowest_page,size_t off,size_t len)2381 static bool smb_set_sge(struct smb_extract_to_rdma *rdma,
2382 struct page *lowest_page, size_t off, size_t len)
2383 {
2384 struct ib_sge *sge = &rdma->sge[rdma->nr_sge];
2385 u64 addr;
2386
2387 addr = ib_dma_map_page(rdma->device, lowest_page,
2388 off, len, rdma->direction);
2389 if (ib_dma_mapping_error(rdma->device, addr))
2390 return false;
2391
2392 sge->addr = addr;
2393 sge->length = len;
2394 sge->lkey = rdma->local_dma_lkey;
2395 rdma->nr_sge++;
2396 return true;
2397 }
2398
2399 /*
2400 * Extract page fragments from a BVEC-class iterator and add them to an RDMA
2401 * element list. The pages are not pinned.
2402 */
smb_extract_bvec_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2403 static ssize_t smb_extract_bvec_to_rdma(struct iov_iter *iter,
2404 struct smb_extract_to_rdma *rdma,
2405 ssize_t maxsize)
2406 {
2407 const struct bio_vec *bv = iter->bvec;
2408 unsigned long start = iter->iov_offset;
2409 unsigned int i;
2410 ssize_t ret = 0;
2411
2412 for (i = 0; i < iter->nr_segs; i++) {
2413 size_t off, len;
2414
2415 len = bv[i].bv_len;
2416 if (start >= len) {
2417 start -= len;
2418 continue;
2419 }
2420
2421 len = min_t(size_t, maxsize, len - start);
2422 off = bv[i].bv_offset + start;
2423
2424 if (!smb_set_sge(rdma, bv[i].bv_page, off, len))
2425 return -EIO;
2426
2427 ret += len;
2428 maxsize -= len;
2429 if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2430 break;
2431 start = 0;
2432 }
2433
2434 if (ret > 0)
2435 iov_iter_advance(iter, ret);
2436 return ret;
2437 }
2438
2439 /*
2440 * Extract fragments from a KVEC-class iterator and add them to an RDMA list.
2441 * This can deal with vmalloc'd buffers as well as kmalloc'd or static buffers.
2442 * The pages are not pinned.
2443 */
smb_extract_kvec_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2444 static ssize_t smb_extract_kvec_to_rdma(struct iov_iter *iter,
2445 struct smb_extract_to_rdma *rdma,
2446 ssize_t maxsize)
2447 {
2448 const struct kvec *kv = iter->kvec;
2449 unsigned long start = iter->iov_offset;
2450 unsigned int i;
2451 ssize_t ret = 0;
2452
2453 for (i = 0; i < iter->nr_segs; i++) {
2454 struct page *page;
2455 unsigned long kaddr;
2456 size_t off, len, seg;
2457
2458 len = kv[i].iov_len;
2459 if (start >= len) {
2460 start -= len;
2461 continue;
2462 }
2463
2464 kaddr = (unsigned long)kv[i].iov_base + start;
2465 off = kaddr & ~PAGE_MASK;
2466 len = min_t(size_t, maxsize, len - start);
2467 kaddr &= PAGE_MASK;
2468
2469 maxsize -= len;
2470 do {
2471 seg = min_t(size_t, len, PAGE_SIZE - off);
2472
2473 if (is_vmalloc_or_module_addr((void *)kaddr))
2474 page = vmalloc_to_page((void *)kaddr);
2475 else
2476 page = virt_to_page((void *)kaddr);
2477
2478 if (!smb_set_sge(rdma, page, off, seg))
2479 return -EIO;
2480
2481 ret += seg;
2482 len -= seg;
2483 kaddr += PAGE_SIZE;
2484 off = 0;
2485 } while (len > 0 && rdma->nr_sge < rdma->max_sge);
2486
2487 if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2488 break;
2489 start = 0;
2490 }
2491
2492 if (ret > 0)
2493 iov_iter_advance(iter, ret);
2494 return ret;
2495 }
2496
2497 /*
2498 * Extract folio fragments from a FOLIOQ-class iterator and add them to an RDMA
2499 * list. The folios are not pinned.
2500 */
smb_extract_folioq_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2501 static ssize_t smb_extract_folioq_to_rdma(struct iov_iter *iter,
2502 struct smb_extract_to_rdma *rdma,
2503 ssize_t maxsize)
2504 {
2505 const struct folio_queue *folioq = iter->folioq;
2506 unsigned int slot = iter->folioq_slot;
2507 ssize_t ret = 0;
2508 size_t offset = iter->iov_offset;
2509
2510 BUG_ON(!folioq);
2511
2512 if (slot >= folioq_nr_slots(folioq)) {
2513 folioq = folioq->next;
2514 if (WARN_ON_ONCE(!folioq))
2515 return -EIO;
2516 slot = 0;
2517 }
2518
2519 do {
2520 struct folio *folio = folioq_folio(folioq, slot);
2521 size_t fsize = folioq_folio_size(folioq, slot);
2522
2523 if (offset < fsize) {
2524 size_t part = umin(maxsize, fsize - offset);
2525
2526 if (!smb_set_sge(rdma, folio_page(folio, 0), offset, part))
2527 return -EIO;
2528
2529 offset += part;
2530 ret += part;
2531 maxsize -= part;
2532 }
2533
2534 if (offset >= fsize) {
2535 offset = 0;
2536 slot++;
2537 if (slot >= folioq_nr_slots(folioq)) {
2538 if (!folioq->next) {
2539 WARN_ON_ONCE(ret < iter->count);
2540 break;
2541 }
2542 folioq = folioq->next;
2543 slot = 0;
2544 }
2545 }
2546 } while (rdma->nr_sge < rdma->max_sge && maxsize > 0);
2547
2548 iter->folioq = folioq;
2549 iter->folioq_slot = slot;
2550 iter->iov_offset = offset;
2551 iter->count -= ret;
2552 return ret;
2553 }
2554
2555 /*
2556 * Extract page fragments from up to the given amount of the source iterator
2557 * and build up an RDMA list that refers to all of those bits. The RDMA list
2558 * is appended to, up to the maximum number of elements set in the parameter
2559 * block.
2560 *
2561 * The extracted page fragments are not pinned or ref'd in any way; if an
2562 * IOVEC/UBUF-type iterator is to be used, it should be converted to a
2563 * BVEC-type iterator and the pages pinned, ref'd or otherwise held in some
2564 * way.
2565 */
smb_extract_iter_to_rdma(struct iov_iter * iter,size_t len,struct smb_extract_to_rdma * rdma)2566 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
2567 struct smb_extract_to_rdma *rdma)
2568 {
2569 ssize_t ret;
2570 int before = rdma->nr_sge;
2571
2572 switch (iov_iter_type(iter)) {
2573 case ITER_BVEC:
2574 ret = smb_extract_bvec_to_rdma(iter, rdma, len);
2575 break;
2576 case ITER_KVEC:
2577 ret = smb_extract_kvec_to_rdma(iter, rdma, len);
2578 break;
2579 case ITER_FOLIOQ:
2580 ret = smb_extract_folioq_to_rdma(iter, rdma, len);
2581 break;
2582 default:
2583 WARN_ON_ONCE(1);
2584 return -EIO;
2585 }
2586
2587 if (ret < 0) {
2588 while (rdma->nr_sge > before) {
2589 struct ib_sge *sge = &rdma->sge[rdma->nr_sge--];
2590
2591 ib_dma_unmap_single(rdma->device, sge->addr, sge->length,
2592 rdma->direction);
2593 sge->addr = 0;
2594 }
2595 }
2596
2597 return ret;
2598 }
2599