1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2014 Facebook. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include <linux/device-mapper.h>
9
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/blkdev.h>
13 #include <linux/bio.h>
14 #include <linux/dax.h>
15 #include <linux/slab.h>
16 #include <linux/kthread.h>
17 #include <linux/freezer.h>
18 #include <linux/uio.h>
19
20 #define DM_MSG_PREFIX "log-writes"
21
22 /*
23 * This target will sequentially log all writes to the target device onto the
24 * log device. This is helpful for replaying writes to check for fs consistency
25 * at all times. This target provides a mechanism to mark specific events to
26 * check data at a later time. So for example you would:
27 *
28 * write data
29 * fsync
30 * dmsetup message /dev/whatever mark mymark
31 * unmount /mnt/test
32 *
33 * Then replay the log up to mymark and check the contents of the replay to
34 * verify it matches what was written.
35 *
36 * We log writes only after they have been flushed, this makes the log describe
37 * close to the order in which the data hits the actual disk, not its cache. So
38 * for example the following sequence (W means write, C means complete)
39 *
40 * Wa,Wb,Wc,Cc,Ca,FLUSH,FUAd,Cb,CFLUSH,CFUAd
41 *
42 * Would result in the log looking like this:
43 *
44 * c,a,b,flush,fuad,<other writes>,<next flush>
45 *
46 * This is meant to help expose problems where file systems do not properly wait
47 * on data being written before invoking a FLUSH. FUA bypasses cache so once it
48 * completes it is added to the log as it should be on disk.
49 *
50 * We treat DISCARDs as if they don't bypass cache so that they are logged in
51 * order of completion along with the normal writes. If we didn't do it this
52 * way we would process all the discards first and then write all the data, when
53 * in fact we want to do the data and the discard in the order that they
54 * completed.
55 */
56 #define LOG_FLUSH_FLAG (1 << 0)
57 #define LOG_FUA_FLAG (1 << 1)
58 #define LOG_DISCARD_FLAG (1 << 2)
59 #define LOG_MARK_FLAG (1 << 3)
60 #define LOG_METADATA_FLAG (1 << 4)
61
62 #define WRITE_LOG_VERSION 1ULL
63 #define WRITE_LOG_MAGIC 0x6a736677736872ULL
64 #define WRITE_LOG_SUPER_SECTOR 0
65
66 /*
67 * The disk format for this is braindead simple.
68 *
69 * At byte 0 we have our super, followed by the following sequence for
70 * nr_entries:
71 *
72 * [ 1 sector ][ entry->nr_sectors ]
73 * [log_write_entry][ data written ]
74 *
75 * The log_write_entry takes up a full sector so we can have arbitrary length
76 * marks and it leaves us room for extra content in the future.
77 */
78
79 /*
80 * Basic info about the log for userspace.
81 */
82 struct log_write_super {
83 __le64 magic;
84 __le64 version;
85 __le64 nr_entries;
86 __le32 sectorsize;
87 };
88
89 /*
90 * sector - the sector we wrote.
91 * nr_sectors - the number of sectors we wrote.
92 * flags - flags for this log entry.
93 * data_len - the size of the data in this log entry, this is for private log
94 * entry stuff, the MARK data provided by userspace for example.
95 */
96 struct log_write_entry {
97 __le64 sector;
98 __le64 nr_sectors;
99 __le64 flags;
100 __le64 data_len;
101 };
102
103 struct log_writes_c {
104 struct dm_dev *dev;
105 struct dm_dev *logdev;
106 u64 logged_entries;
107 u32 sectorsize;
108 u32 sectorshift;
109 atomic_t io_blocks;
110 atomic_t pending_blocks;
111 sector_t next_sector;
112 sector_t end_sector;
113 bool logging_enabled;
114 bool device_supports_discard;
115 spinlock_t blocks_lock;
116 struct list_head unflushed_blocks;
117 struct list_head logging_blocks;
118 wait_queue_head_t wait;
119 struct task_struct *log_kthread;
120 struct completion super_done;
121 };
122
123 struct pending_block {
124 int vec_cnt;
125 u64 flags;
126 sector_t sector;
127 sector_t nr_sectors;
128 char *data;
129 u32 datalen;
130 struct list_head list;
131 struct bio_vec vecs[];
132 };
133
134 struct per_bio_data {
135 struct pending_block *block;
136 };
137
bio_to_dev_sectors(struct log_writes_c * lc,sector_t sectors)138 static inline sector_t bio_to_dev_sectors(struct log_writes_c *lc,
139 sector_t sectors)
140 {
141 return sectors >> (lc->sectorshift - SECTOR_SHIFT);
142 }
143
dev_to_bio_sectors(struct log_writes_c * lc,sector_t sectors)144 static inline sector_t dev_to_bio_sectors(struct log_writes_c *lc,
145 sector_t sectors)
146 {
147 return sectors << (lc->sectorshift - SECTOR_SHIFT);
148 }
149
put_pending_block(struct log_writes_c * lc)150 static void put_pending_block(struct log_writes_c *lc)
151 {
152 if (atomic_dec_and_test(&lc->pending_blocks)) {
153 smp_mb__after_atomic();
154 if (waitqueue_active(&lc->wait))
155 wake_up(&lc->wait);
156 }
157 }
158
put_io_block(struct log_writes_c * lc)159 static void put_io_block(struct log_writes_c *lc)
160 {
161 if (atomic_dec_and_test(&lc->io_blocks)) {
162 smp_mb__after_atomic();
163 if (waitqueue_active(&lc->wait))
164 wake_up(&lc->wait);
165 }
166 }
167
log_end_io(struct bio * bio)168 static void log_end_io(struct bio *bio)
169 {
170 struct log_writes_c *lc = bio->bi_private;
171
172 if (bio->bi_status) {
173 unsigned long flags;
174
175 DMERR("Error writing log block, error=%d", bio->bi_status);
176 spin_lock_irqsave(&lc->blocks_lock, flags);
177 lc->logging_enabled = false;
178 spin_unlock_irqrestore(&lc->blocks_lock, flags);
179 }
180
181 bio_free_pages(bio);
182 put_io_block(lc);
183 bio_put(bio);
184 }
185
log_end_super(struct bio * bio)186 static void log_end_super(struct bio *bio)
187 {
188 struct log_writes_c *lc = bio->bi_private;
189
190 complete(&lc->super_done);
191 log_end_io(bio);
192 }
193
194 /*
195 * Meant to be called if there is an error, it will free all the pages
196 * associated with the block.
197 */
free_pending_block(struct log_writes_c * lc,struct pending_block * block)198 static void free_pending_block(struct log_writes_c *lc,
199 struct pending_block *block)
200 {
201 int i;
202
203 for (i = 0; i < block->vec_cnt; i++) {
204 if (block->vecs[i].bv_page)
205 __free_page(block->vecs[i].bv_page);
206 }
207 kfree(block->data);
208 kfree(block);
209 put_pending_block(lc);
210 }
211
write_metadata(struct log_writes_c * lc,void * entry,size_t entrylen,void * data,size_t datalen,sector_t sector)212 static int write_metadata(struct log_writes_c *lc, void *entry,
213 size_t entrylen, void *data, size_t datalen,
214 sector_t sector)
215 {
216 struct bio *bio;
217 struct page *page;
218 void *ptr;
219 size_t ret;
220
221 bio = bio_alloc(lc->logdev->bdev, 1, REQ_OP_WRITE, GFP_KERNEL);
222 bio->bi_iter.bi_size = 0;
223 bio->bi_iter.bi_sector = sector;
224 bio->bi_end_io = (sector == WRITE_LOG_SUPER_SECTOR) ?
225 log_end_super : log_end_io;
226 bio->bi_private = lc;
227
228 page = alloc_page(GFP_KERNEL);
229 if (!page) {
230 DMERR("Couldn't alloc log page");
231 bio_put(bio);
232 goto error;
233 }
234
235 ptr = kmap_local_page(page);
236 memcpy(ptr, entry, entrylen);
237 if (datalen)
238 memcpy(ptr + entrylen, data, datalen);
239 memset(ptr + entrylen + datalen, 0,
240 lc->sectorsize - entrylen - datalen);
241 kunmap_local(ptr);
242
243 ret = bio_add_page(bio, page, lc->sectorsize, 0);
244 if (ret != lc->sectorsize) {
245 DMERR("Couldn't add page to the log block");
246 goto error_bio;
247 }
248 submit_bio(bio);
249 return 0;
250 error_bio:
251 bio_put(bio);
252 __free_page(page);
253 error:
254 put_io_block(lc);
255 return -1;
256 }
257
write_inline_data(struct log_writes_c * lc,void * entry,size_t entrylen,void * data,size_t datalen,sector_t sector)258 static int write_inline_data(struct log_writes_c *lc, void *entry,
259 size_t entrylen, void *data, size_t datalen,
260 sector_t sector)
261 {
262 int bio_pages, pg_datalen, pg_sectorlen, i;
263 struct page *page;
264 struct bio *bio;
265 size_t ret;
266 void *ptr;
267
268 while (datalen) {
269 bio_pages = bio_max_segs(DIV_ROUND_UP(datalen, PAGE_SIZE));
270
271 atomic_inc(&lc->io_blocks);
272
273 bio = bio_alloc(lc->logdev->bdev, bio_pages, REQ_OP_WRITE,
274 GFP_KERNEL);
275 bio->bi_iter.bi_size = 0;
276 bio->bi_iter.bi_sector = sector;
277 bio->bi_end_io = log_end_io;
278 bio->bi_private = lc;
279
280 for (i = 0; i < bio_pages; i++) {
281 pg_datalen = min_t(int, datalen, PAGE_SIZE);
282 pg_sectorlen = ALIGN(pg_datalen, lc->sectorsize);
283
284 page = alloc_page(GFP_KERNEL);
285 if (!page) {
286 DMERR("Couldn't alloc inline data page");
287 goto error_bio;
288 }
289
290 ptr = kmap_local_page(page);
291 memcpy(ptr, data, pg_datalen);
292 if (pg_sectorlen > pg_datalen)
293 memset(ptr + pg_datalen, 0, pg_sectorlen - pg_datalen);
294 kunmap_local(ptr);
295
296 ret = bio_add_page(bio, page, pg_sectorlen, 0);
297 if (ret != pg_sectorlen) {
298 DMERR("Couldn't add page of inline data");
299 __free_page(page);
300 goto error_bio;
301 }
302
303 datalen -= pg_datalen;
304 data += pg_datalen;
305 }
306 submit_bio(bio);
307
308 sector += bio_pages * PAGE_SECTORS;
309 }
310 return 0;
311 error_bio:
312 bio_free_pages(bio);
313 bio_put(bio);
314 put_io_block(lc);
315 return -1;
316 }
317
log_one_block(struct log_writes_c * lc,struct pending_block * block,sector_t sector)318 static int log_one_block(struct log_writes_c *lc,
319 struct pending_block *block, sector_t sector)
320 {
321 struct bio *bio;
322 struct log_write_entry entry;
323 size_t metadatalen, ret;
324 int i;
325
326 entry.sector = cpu_to_le64(block->sector);
327 entry.nr_sectors = cpu_to_le64(block->nr_sectors);
328 entry.flags = cpu_to_le64(block->flags);
329 entry.data_len = cpu_to_le64(block->datalen);
330
331 metadatalen = (block->flags & LOG_MARK_FLAG) ? block->datalen : 0;
332 if (write_metadata(lc, &entry, sizeof(entry), block->data,
333 metadatalen, sector)) {
334 free_pending_block(lc, block);
335 return -1;
336 }
337
338 sector += dev_to_bio_sectors(lc, 1);
339
340 if (block->datalen && metadatalen == 0) {
341 if (write_inline_data(lc, &entry, sizeof(entry), block->data,
342 block->datalen, sector)) {
343 free_pending_block(lc, block);
344 return -1;
345 }
346 /* we don't support both inline data & bio data */
347 goto out;
348 }
349
350 if (!block->vec_cnt)
351 goto out;
352
353 atomic_inc(&lc->io_blocks);
354 bio = bio_alloc(lc->logdev->bdev, bio_max_segs(block->vec_cnt),
355 REQ_OP_WRITE, GFP_KERNEL);
356 bio->bi_iter.bi_size = 0;
357 bio->bi_iter.bi_sector = sector;
358 bio->bi_end_io = log_end_io;
359 bio->bi_private = lc;
360
361 for (i = 0; i < block->vec_cnt; i++) {
362 /*
363 * The page offset is always 0 because we allocate a new page
364 * for every bvec in the original bio for simplicity sake.
365 */
366 ret = bio_add_page(bio, block->vecs[i].bv_page,
367 block->vecs[i].bv_len, 0);
368 if (ret != block->vecs[i].bv_len) {
369 atomic_inc(&lc->io_blocks);
370 submit_bio(bio);
371 bio = bio_alloc(lc->logdev->bdev,
372 bio_max_segs(block->vec_cnt - i),
373 REQ_OP_WRITE, GFP_KERNEL);
374 bio->bi_iter.bi_size = 0;
375 bio->bi_iter.bi_sector = sector;
376 bio->bi_end_io = log_end_io;
377 bio->bi_private = lc;
378
379 ret = bio_add_page(bio, block->vecs[i].bv_page,
380 block->vecs[i].bv_len, 0);
381 if (ret != block->vecs[i].bv_len) {
382 DMERR("Couldn't add page on new bio?");
383 bio_put(bio);
384 goto error;
385 }
386 }
387 sector += block->vecs[i].bv_len >> SECTOR_SHIFT;
388 }
389 submit_bio(bio);
390 out:
391 kfree(block->data);
392 kfree(block);
393 put_pending_block(lc);
394 return 0;
395 error:
396 free_pending_block(lc, block);
397 put_io_block(lc);
398 return -1;
399 }
400
log_super(struct log_writes_c * lc)401 static int log_super(struct log_writes_c *lc)
402 {
403 struct log_write_super super;
404
405 super.magic = cpu_to_le64(WRITE_LOG_MAGIC);
406 super.version = cpu_to_le64(WRITE_LOG_VERSION);
407 super.nr_entries = cpu_to_le64(lc->logged_entries);
408 super.sectorsize = cpu_to_le32(lc->sectorsize);
409
410 if (write_metadata(lc, &super, sizeof(super), NULL, 0,
411 WRITE_LOG_SUPER_SECTOR)) {
412 DMERR("Couldn't write super");
413 return -1;
414 }
415
416 /*
417 * Super sector should be written in-order, otherwise the
418 * nr_entries could be rewritten incorrectly by an old bio.
419 */
420 wait_for_completion_io(&lc->super_done);
421
422 return 0;
423 }
424
logdev_last_sector(struct log_writes_c * lc)425 static inline sector_t logdev_last_sector(struct log_writes_c *lc)
426 {
427 return bdev_nr_sectors(lc->logdev->bdev);
428 }
429
log_writes_kthread(void * arg)430 static int log_writes_kthread(void *arg)
431 {
432 struct log_writes_c *lc = arg;
433 sector_t sector = 0;
434
435 set_freezable();
436 while (!kthread_should_stop()) {
437 bool super = false;
438 bool logging_enabled;
439 struct pending_block *block = NULL;
440 int ret;
441
442 spin_lock_irq(&lc->blocks_lock);
443 if (!list_empty(&lc->logging_blocks)) {
444 block = list_first_entry(&lc->logging_blocks,
445 struct pending_block, list);
446 list_del_init(&block->list);
447 if (!lc->logging_enabled)
448 goto next;
449
450 sector = lc->next_sector;
451 if (!(block->flags & LOG_DISCARD_FLAG))
452 lc->next_sector += dev_to_bio_sectors(lc, block->nr_sectors);
453 lc->next_sector += dev_to_bio_sectors(lc, 1);
454
455 /*
456 * Apparently the size of the device may not be known
457 * right away, so handle this properly.
458 */
459 if (!lc->end_sector)
460 lc->end_sector = logdev_last_sector(lc);
461 if (lc->end_sector &&
462 lc->next_sector >= lc->end_sector) {
463 DMERR("Ran out of space on the logdev");
464 lc->logging_enabled = false;
465 goto next;
466 }
467 lc->logged_entries++;
468 atomic_inc(&lc->io_blocks);
469
470 super = (block->flags & (LOG_FUA_FLAG | LOG_MARK_FLAG));
471 if (super)
472 atomic_inc(&lc->io_blocks);
473 }
474 next:
475 logging_enabled = lc->logging_enabled;
476 spin_unlock_irq(&lc->blocks_lock);
477 if (block) {
478 if (logging_enabled) {
479 ret = log_one_block(lc, block, sector);
480 if (!ret && super)
481 ret = log_super(lc);
482 if (ret) {
483 spin_lock_irq(&lc->blocks_lock);
484 lc->logging_enabled = false;
485 spin_unlock_irq(&lc->blocks_lock);
486 }
487 } else
488 free_pending_block(lc, block);
489 continue;
490 }
491
492 if (!try_to_freeze()) {
493 set_current_state(TASK_INTERRUPTIBLE);
494 if (!kthread_should_stop() &&
495 list_empty(&lc->logging_blocks))
496 schedule();
497 __set_current_state(TASK_RUNNING);
498 }
499 }
500 return 0;
501 }
502
503 /*
504 * Construct a log-writes mapping:
505 * log-writes <dev_path> <log_dev_path>
506 */
log_writes_ctr(struct dm_target * ti,unsigned int argc,char ** argv)507 static int log_writes_ctr(struct dm_target *ti, unsigned int argc, char **argv)
508 {
509 struct log_writes_c *lc;
510 struct dm_arg_set as;
511 const char *devname, *logdevname;
512 int ret;
513
514 as.argc = argc;
515 as.argv = argv;
516
517 if (argc < 2) {
518 ti->error = "Invalid argument count";
519 return -EINVAL;
520 }
521
522 lc = kzalloc(sizeof(struct log_writes_c), GFP_KERNEL);
523 if (!lc) {
524 ti->error = "Cannot allocate context";
525 return -ENOMEM;
526 }
527 spin_lock_init(&lc->blocks_lock);
528 INIT_LIST_HEAD(&lc->unflushed_blocks);
529 INIT_LIST_HEAD(&lc->logging_blocks);
530 init_waitqueue_head(&lc->wait);
531 init_completion(&lc->super_done);
532 atomic_set(&lc->io_blocks, 0);
533 atomic_set(&lc->pending_blocks, 0);
534
535 devname = dm_shift_arg(&as);
536 ret = dm_get_device(ti, devname, dm_table_get_mode(ti->table), &lc->dev);
537 if (ret) {
538 ti->error = "Device lookup failed";
539 goto bad;
540 }
541
542 logdevname = dm_shift_arg(&as);
543 ret = dm_get_device(ti, logdevname, dm_table_get_mode(ti->table),
544 &lc->logdev);
545 if (ret) {
546 ti->error = "Log device lookup failed";
547 dm_put_device(ti, lc->dev);
548 goto bad;
549 }
550
551 lc->sectorsize = bdev_logical_block_size(lc->dev->bdev);
552 lc->sectorshift = ilog2(lc->sectorsize);
553 lc->log_kthread = kthread_run(log_writes_kthread, lc, "log-write");
554 if (IS_ERR(lc->log_kthread)) {
555 ret = PTR_ERR(lc->log_kthread);
556 ti->error = "Couldn't alloc kthread";
557 dm_put_device(ti, lc->dev);
558 dm_put_device(ti, lc->logdev);
559 goto bad;
560 }
561
562 /*
563 * next_sector is in 512b sectors to correspond to what bi_sector expects.
564 * The super starts at sector 0, and the next_sector is the next logical
565 * one based on the sectorsize of the device.
566 */
567 lc->next_sector = lc->sectorsize >> SECTOR_SHIFT;
568 lc->logging_enabled = true;
569 lc->end_sector = logdev_last_sector(lc);
570 lc->device_supports_discard = true;
571
572 ti->num_flush_bios = 1;
573 ti->flush_supported = true;
574 ti->num_discard_bios = 1;
575 ti->discards_supported = true;
576 ti->per_io_data_size = sizeof(struct per_bio_data);
577 ti->private = lc;
578 return 0;
579
580 bad:
581 kfree(lc);
582 return ret;
583 }
584
log_mark(struct log_writes_c * lc,char * data)585 static int log_mark(struct log_writes_c *lc, char *data)
586 {
587 struct pending_block *block;
588 size_t maxsize = lc->sectorsize - sizeof(struct log_write_entry);
589
590 block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
591 if (!block) {
592 DMERR("Error allocating pending block");
593 return -ENOMEM;
594 }
595
596 block->data = kstrndup(data, maxsize - 1, GFP_KERNEL);
597 if (!block->data) {
598 DMERR("Error copying mark data");
599 kfree(block);
600 return -ENOMEM;
601 }
602 atomic_inc(&lc->pending_blocks);
603 block->datalen = strlen(block->data);
604 block->flags |= LOG_MARK_FLAG;
605 spin_lock_irq(&lc->blocks_lock);
606 list_add_tail(&block->list, &lc->logging_blocks);
607 spin_unlock_irq(&lc->blocks_lock);
608 wake_up_process(lc->log_kthread);
609 return 0;
610 }
611
log_writes_dtr(struct dm_target * ti)612 static void log_writes_dtr(struct dm_target *ti)
613 {
614 struct log_writes_c *lc = ti->private;
615
616 spin_lock_irq(&lc->blocks_lock);
617 list_splice_init(&lc->unflushed_blocks, &lc->logging_blocks);
618 spin_unlock_irq(&lc->blocks_lock);
619
620 /*
621 * This is just nice to have since it'll update the super to include the
622 * unflushed blocks, if it fails we don't really care.
623 */
624 log_mark(lc, "dm-log-writes-end");
625 wake_up_process(lc->log_kthread);
626 wait_event(lc->wait, !atomic_read(&lc->io_blocks) &&
627 !atomic_read(&lc->pending_blocks));
628 kthread_stop(lc->log_kthread);
629
630 WARN_ON(!list_empty(&lc->logging_blocks));
631 WARN_ON(!list_empty(&lc->unflushed_blocks));
632 dm_put_device(ti, lc->dev);
633 dm_put_device(ti, lc->logdev);
634 kfree(lc);
635 }
636
normal_map_bio(struct dm_target * ti,struct bio * bio)637 static void normal_map_bio(struct dm_target *ti, struct bio *bio)
638 {
639 struct log_writes_c *lc = ti->private;
640
641 bio_set_dev(bio, lc->dev->bdev);
642 }
643
log_writes_map(struct dm_target * ti,struct bio * bio)644 static int log_writes_map(struct dm_target *ti, struct bio *bio)
645 {
646 struct log_writes_c *lc = ti->private;
647 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
648 struct pending_block *block;
649 struct bvec_iter iter;
650 struct bio_vec bv;
651 size_t alloc_size;
652 int i = 0;
653 bool flush_bio = (bio->bi_opf & REQ_PREFLUSH);
654 bool fua_bio = (bio->bi_opf & REQ_FUA);
655 bool discard_bio = (bio_op(bio) == REQ_OP_DISCARD);
656 bool meta_bio = (bio->bi_opf & REQ_META);
657
658 pb->block = NULL;
659
660 /* Don't bother doing anything if logging has been disabled */
661 if (!lc->logging_enabled)
662 goto map_bio;
663
664 /*
665 * Map reads as normal.
666 */
667 if (bio_data_dir(bio) == READ)
668 goto map_bio;
669
670 /* No sectors and not a flush? Don't care */
671 if (!bio_sectors(bio) && !flush_bio)
672 goto map_bio;
673
674 /*
675 * Discards will have bi_size set but there's no actual data, so just
676 * allocate the size of the pending block.
677 */
678 if (discard_bio)
679 alloc_size = sizeof(struct pending_block);
680 else
681 alloc_size = struct_size(block, vecs, bio_segments(bio));
682
683 block = kzalloc(alloc_size, GFP_NOIO);
684 if (!block) {
685 DMERR("Error allocating pending block");
686 spin_lock_irq(&lc->blocks_lock);
687 lc->logging_enabled = false;
688 spin_unlock_irq(&lc->blocks_lock);
689 return DM_MAPIO_KILL;
690 }
691 INIT_LIST_HEAD(&block->list);
692 pb->block = block;
693 atomic_inc(&lc->pending_blocks);
694
695 if (flush_bio)
696 block->flags |= LOG_FLUSH_FLAG;
697 if (fua_bio)
698 block->flags |= LOG_FUA_FLAG;
699 if (discard_bio)
700 block->flags |= LOG_DISCARD_FLAG;
701 if (meta_bio)
702 block->flags |= LOG_METADATA_FLAG;
703
704 block->sector = bio_to_dev_sectors(lc, bio->bi_iter.bi_sector);
705 block->nr_sectors = bio_to_dev_sectors(lc, bio_sectors(bio));
706
707 /* We don't need the data, just submit */
708 if (discard_bio) {
709 WARN_ON(flush_bio || fua_bio);
710 if (lc->device_supports_discard)
711 goto map_bio;
712 bio_endio(bio);
713 return DM_MAPIO_SUBMITTED;
714 }
715
716 /* Flush bio, splice the unflushed blocks onto this list and submit */
717 if (flush_bio && !bio_sectors(bio)) {
718 spin_lock_irq(&lc->blocks_lock);
719 list_splice_init(&lc->unflushed_blocks, &block->list);
720 spin_unlock_irq(&lc->blocks_lock);
721 goto map_bio;
722 }
723
724 /*
725 * We will write this bio somewhere else way later so we need to copy
726 * the actual contents into new pages so we know the data will always be
727 * there.
728 *
729 * We do this because this could be a bio from O_DIRECT in which case we
730 * can't just hold onto the page until some later point, we have to
731 * manually copy the contents.
732 */
733 bio_for_each_segment(bv, bio, iter) {
734 struct page *page;
735 void *dst;
736
737 page = alloc_page(GFP_NOIO);
738 if (!page) {
739 DMERR("Error allocing page");
740 free_pending_block(lc, block);
741 spin_lock_irq(&lc->blocks_lock);
742 lc->logging_enabled = false;
743 spin_unlock_irq(&lc->blocks_lock);
744 return DM_MAPIO_KILL;
745 }
746
747 dst = kmap_local_page(page);
748 memcpy_from_bvec(dst, &bv);
749 kunmap_local(dst);
750 block->vecs[i].bv_page = page;
751 block->vecs[i].bv_len = bv.bv_len;
752 block->vec_cnt++;
753 i++;
754 }
755
756 /* Had a flush with data in it, weird */
757 if (flush_bio) {
758 spin_lock_irq(&lc->blocks_lock);
759 list_splice_init(&lc->unflushed_blocks, &block->list);
760 spin_unlock_irq(&lc->blocks_lock);
761 }
762 map_bio:
763 normal_map_bio(ti, bio);
764 return DM_MAPIO_REMAPPED;
765 }
766
normal_end_io(struct dm_target * ti,struct bio * bio,blk_status_t * error)767 static int normal_end_io(struct dm_target *ti, struct bio *bio,
768 blk_status_t *error)
769 {
770 struct log_writes_c *lc = ti->private;
771 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
772
773 if (bio_data_dir(bio) == WRITE && pb->block) {
774 struct pending_block *block = pb->block;
775 unsigned long flags;
776
777 spin_lock_irqsave(&lc->blocks_lock, flags);
778 if (block->flags & LOG_FLUSH_FLAG) {
779 list_splice_tail_init(&block->list, &lc->logging_blocks);
780 list_add_tail(&block->list, &lc->logging_blocks);
781 wake_up_process(lc->log_kthread);
782 } else if (block->flags & LOG_FUA_FLAG) {
783 list_add_tail(&block->list, &lc->logging_blocks);
784 wake_up_process(lc->log_kthread);
785 } else
786 list_add_tail(&block->list, &lc->unflushed_blocks);
787 spin_unlock_irqrestore(&lc->blocks_lock, flags);
788 }
789
790 return DM_ENDIO_DONE;
791 }
792
793 /*
794 * INFO format: <logged entries> <highest allocated sector>
795 */
log_writes_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)796 static void log_writes_status(struct dm_target *ti, status_type_t type,
797 unsigned int status_flags, char *result,
798 unsigned int maxlen)
799 {
800 unsigned int sz = 0;
801 struct log_writes_c *lc = ti->private;
802
803 switch (type) {
804 case STATUSTYPE_INFO:
805 DMEMIT("%llu %llu", lc->logged_entries,
806 (unsigned long long)lc->next_sector - 1);
807 if (!lc->logging_enabled)
808 DMEMIT(" logging_disabled");
809 break;
810
811 case STATUSTYPE_TABLE:
812 DMEMIT("%s %s", lc->dev->name, lc->logdev->name);
813 break;
814
815 case STATUSTYPE_IMA:
816 *result = '\0';
817 break;
818 }
819 }
820
log_writes_prepare_ioctl(struct dm_target * ti,struct block_device ** bdev,unsigned int cmd,unsigned long arg,bool * forward)821 static int log_writes_prepare_ioctl(struct dm_target *ti,
822 struct block_device **bdev,
823 unsigned int cmd, unsigned long arg,
824 bool *forward)
825 {
826 struct log_writes_c *lc = ti->private;
827 struct dm_dev *dev = lc->dev;
828
829 *bdev = dev->bdev;
830 /*
831 * Only pass ioctls through if the device sizes match exactly.
832 */
833 if (ti->len != bdev_nr_sectors(dev->bdev))
834 return 1;
835 return 0;
836 }
837
log_writes_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)838 static int log_writes_iterate_devices(struct dm_target *ti,
839 iterate_devices_callout_fn fn,
840 void *data)
841 {
842 struct log_writes_c *lc = ti->private;
843
844 return fn(ti, lc->dev, 0, ti->len, data);
845 }
846
847 /*
848 * Messages supported:
849 * mark <mark data> - specify the marked data.
850 */
log_writes_message(struct dm_target * ti,unsigned int argc,char ** argv,char * result,unsigned int maxlen)851 static int log_writes_message(struct dm_target *ti, unsigned int argc, char **argv,
852 char *result, unsigned int maxlen)
853 {
854 int r = -EINVAL;
855 struct log_writes_c *lc = ti->private;
856
857 if (argc != 2) {
858 DMWARN("Invalid log-writes message arguments, expect 2 arguments, got %d", argc);
859 return r;
860 }
861
862 if (!strcasecmp(argv[0], "mark"))
863 r = log_mark(lc, argv[1]);
864 else
865 DMWARN("Unrecognised log writes target message received: %s", argv[0]);
866
867 return r;
868 }
869
log_writes_io_hints(struct dm_target * ti,struct queue_limits * limits)870 static void log_writes_io_hints(struct dm_target *ti, struct queue_limits *limits)
871 {
872 struct log_writes_c *lc = ti->private;
873
874 if (!bdev_max_discard_sectors(lc->dev->bdev)) {
875 lc->device_supports_discard = false;
876 limits->discard_granularity = lc->sectorsize;
877 limits->max_hw_discard_sectors = (UINT_MAX >> SECTOR_SHIFT);
878 }
879 limits->logical_block_size = bdev_logical_block_size(lc->dev->bdev);
880 limits->physical_block_size = bdev_physical_block_size(lc->dev->bdev);
881 limits->io_min = limits->physical_block_size;
882 limits->dma_alignment = limits->logical_block_size - 1;
883 }
884
885 #if IS_ENABLED(CONFIG_FS_DAX)
log_writes_dax_pgoff(struct dm_target * ti,pgoff_t * pgoff)886 static struct dax_device *log_writes_dax_pgoff(struct dm_target *ti,
887 pgoff_t *pgoff)
888 {
889 struct log_writes_c *lc = ti->private;
890
891 *pgoff += (get_start_sect(lc->dev->bdev) >> PAGE_SECTORS_SHIFT);
892 return lc->dev->dax_dev;
893 }
894
log_writes_dax_direct_access(struct dm_target * ti,pgoff_t pgoff,long nr_pages,enum dax_access_mode mode,void ** kaddr,unsigned long * pfn)895 static long log_writes_dax_direct_access(struct dm_target *ti, pgoff_t pgoff,
896 long nr_pages, enum dax_access_mode mode, void **kaddr,
897 unsigned long *pfn)
898 {
899 struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
900
901 return dax_direct_access(dax_dev, pgoff, nr_pages, mode, kaddr, pfn);
902 }
903
log_writes_dax_zero_page_range(struct dm_target * ti,pgoff_t pgoff,size_t nr_pages)904 static int log_writes_dax_zero_page_range(struct dm_target *ti, pgoff_t pgoff,
905 size_t nr_pages)
906 {
907 struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
908
909 return dax_zero_page_range(dax_dev, pgoff, nr_pages << PAGE_SHIFT);
910 }
911
log_writes_dax_recovery_write(struct dm_target * ti,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)912 static size_t log_writes_dax_recovery_write(struct dm_target *ti,
913 pgoff_t pgoff, void *addr, size_t bytes, struct iov_iter *i)
914 {
915 struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
916
917 return dax_recovery_write(dax_dev, pgoff, addr, bytes, i);
918 }
919
920 #else
921 #define log_writes_dax_direct_access NULL
922 #define log_writes_dax_zero_page_range NULL
923 #define log_writes_dax_recovery_write NULL
924 #endif
925
926 static struct target_type log_writes_target = {
927 .name = "log-writes",
928 .version = {1, 1, 0},
929 .module = THIS_MODULE,
930 .ctr = log_writes_ctr,
931 .dtr = log_writes_dtr,
932 .map = log_writes_map,
933 .end_io = normal_end_io,
934 .status = log_writes_status,
935 .prepare_ioctl = log_writes_prepare_ioctl,
936 .message = log_writes_message,
937 .iterate_devices = log_writes_iterate_devices,
938 .io_hints = log_writes_io_hints,
939 .direct_access = log_writes_dax_direct_access,
940 .dax_zero_page_range = log_writes_dax_zero_page_range,
941 .dax_recovery_write = log_writes_dax_recovery_write,
942 };
943 module_dm(log_writes);
944
945 MODULE_DESCRIPTION(DM_NAME " log writes target");
946 MODULE_AUTHOR("Josef Bacik <jbacik@fb.com>");
947 MODULE_LICENSE("GPL");
948