1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 */ 10 11 #ifndef _LINUX_MEMCONTROL_H 12 #define _LINUX_MEMCONTROL_H 13 #include <linux/cgroup.h> 14 #include <linux/vm_event_item.h> 15 #include <linux/hardirq.h> 16 #include <linux/jump_label.h> 17 #include <linux/kernel.h> 18 #include <linux/page_counter.h> 19 #include <linux/vmpressure.h> 20 #include <linux/eventfd.h> 21 #include <linux/mm.h> 22 #include <linux/vmstat.h> 23 #include <linux/writeback.h> 24 #include <linux/page-flags.h> 25 #include <linux/shrinker.h> 26 27 struct mem_cgroup; 28 struct obj_cgroup; 29 struct page; 30 struct mm_struct; 31 struct kmem_cache; 32 33 /* Cgroup-specific page state, on top of universal node page state */ 34 enum memcg_stat_item { 35 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 36 MEMCG_SOCK, 37 MEMCG_PERCPU_B, 38 MEMCG_VMALLOC, 39 MEMCG_KMEM, 40 MEMCG_ZSWAP_B, 41 MEMCG_ZSWAPPED, 42 MEMCG_NR_STAT, 43 }; 44 45 enum memcg_memory_event { 46 MEMCG_LOW, 47 MEMCG_HIGH, 48 MEMCG_MAX, 49 MEMCG_OOM, 50 MEMCG_OOM_KILL, 51 MEMCG_OOM_GROUP_KILL, 52 MEMCG_SWAP_HIGH, 53 MEMCG_SWAP_MAX, 54 MEMCG_SWAP_FAIL, 55 MEMCG_SOCK_THROTTLED, 56 MEMCG_NR_MEMORY_EVENTS, 57 }; 58 59 struct mem_cgroup_reclaim_cookie { 60 pg_data_t *pgdat; 61 int generation; 62 }; 63 64 #ifdef CONFIG_MEMCG 65 66 #define MEM_CGROUP_ID_SHIFT 16 67 68 struct mem_cgroup_private_id { 69 int id; 70 refcount_t ref; 71 }; 72 73 struct memcg_vmstats_percpu; 74 struct memcg1_events_percpu; 75 struct memcg_vmstats; 76 struct lruvec_stats_percpu; 77 struct lruvec_stats; 78 79 struct mem_cgroup_reclaim_iter { 80 struct mem_cgroup *position; 81 /* scan generation, increased every round-trip */ 82 atomic_t generation; 83 }; 84 85 /* 86 * per-node information in memory controller. 87 */ 88 struct mem_cgroup_per_node { 89 /* Keep the read-only fields at the start */ 90 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 91 /* use container_of */ 92 93 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; 94 struct lruvec_stats *lruvec_stats; 95 struct shrinker_info __rcu *shrinker_info; 96 97 #ifdef CONFIG_MEMCG_V1 98 /* 99 * Memcg-v1 only stuff in middle as buffer between read mostly fields 100 * and update often fields to avoid false sharing. If v1 stuff is 101 * not present, an explicit padding is needed. 102 */ 103 104 struct rb_node tree_node; /* RB tree node */ 105 unsigned long usage_in_excess;/* Set to the value by which */ 106 /* the soft limit is exceeded*/ 107 bool on_tree; 108 #else 109 CACHELINE_PADDING(_pad1_); 110 #endif 111 112 /* Fields which get updated often at the end. */ 113 struct lruvec lruvec; 114 CACHELINE_PADDING(_pad2_); 115 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 116 struct mem_cgroup_reclaim_iter iter; 117 118 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC 119 /* slab stats for nmi context */ 120 atomic_t slab_reclaimable; 121 atomic_t slab_unreclaimable; 122 #endif 123 }; 124 125 struct mem_cgroup_threshold { 126 struct eventfd_ctx *eventfd; 127 unsigned long threshold; 128 }; 129 130 /* For threshold */ 131 struct mem_cgroup_threshold_ary { 132 /* An array index points to threshold just below or equal to usage. */ 133 int current_threshold; 134 /* Size of entries[] */ 135 unsigned int size; 136 /* Array of thresholds */ 137 struct mem_cgroup_threshold entries[] __counted_by(size); 138 }; 139 140 struct mem_cgroup_thresholds { 141 /* Primary thresholds array */ 142 struct mem_cgroup_threshold_ary *primary; 143 /* 144 * Spare threshold array. 145 * This is needed to make mem_cgroup_unregister_event() "never fail". 146 * It must be able to store at least primary->size - 1 entries. 147 */ 148 struct mem_cgroup_threshold_ary *spare; 149 }; 150 151 /* 152 * Remember four most recent foreign writebacks with dirty pages in this 153 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 154 * one in a given round, we're likely to catch it later if it keeps 155 * foreign-dirtying, so a fairly low count should be enough. 156 * 157 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 158 */ 159 #define MEMCG_CGWB_FRN_CNT 4 160 161 struct memcg_cgwb_frn { 162 u64 bdi_id; /* bdi->id of the foreign inode */ 163 int memcg_id; /* memcg->css.id of foreign inode */ 164 u64 at; /* jiffies_64 at the time of dirtying */ 165 struct wb_completion done; /* tracks in-flight foreign writebacks */ 166 }; 167 168 /* 169 * Bucket for arbitrarily byte-sized objects charged to a memory 170 * cgroup. The bucket can be reparented in one piece when the cgroup 171 * is destroyed, without having to round up the individual references 172 * of all live memory objects in the wild. 173 */ 174 struct obj_cgroup { 175 struct percpu_ref refcnt; 176 struct mem_cgroup *memcg; 177 atomic_t nr_charged_bytes; 178 union { 179 struct list_head list; /* protected by objcg_lock */ 180 struct rcu_head rcu; 181 }; 182 }; 183 184 /* 185 * The memory controller data structure. The memory controller controls both 186 * page cache and RSS per cgroup. We would eventually like to provide 187 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 188 * to help the administrator determine what knobs to tune. 189 */ 190 struct mem_cgroup { 191 struct cgroup_subsys_state css; 192 193 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 194 struct mem_cgroup_private_id id; 195 196 /* Accounted resources */ 197 struct page_counter memory; /* Both v1 & v2 */ 198 199 union { 200 struct page_counter swap; /* v2 only */ 201 struct page_counter memsw; /* v1 only */ 202 }; 203 204 /* registered local peak watchers */ 205 struct list_head memory_peaks; 206 struct list_head swap_peaks; 207 spinlock_t peaks_lock; 208 209 /* Range enforcement for interrupt charges */ 210 struct work_struct high_work; 211 212 #ifdef CONFIG_ZSWAP 213 unsigned long zswap_max; 214 215 /* 216 * Prevent pages from this memcg from being written back from zswap to 217 * swap, and from being swapped out on zswap store failures. 218 */ 219 bool zswap_writeback; 220 #endif 221 222 /* vmpressure notifications */ 223 struct vmpressure vmpressure; 224 225 /* 226 * Should the OOM killer kill all belonging tasks, had it kill one? 227 */ 228 bool oom_group; 229 230 int swappiness; 231 232 /* memory.events and memory.events.local */ 233 struct cgroup_file events_file; 234 struct cgroup_file events_local_file; 235 236 /* handle for "memory.swap.events" */ 237 struct cgroup_file swap_events_file; 238 239 /* memory.stat */ 240 struct memcg_vmstats *vmstats; 241 242 /* memory.events */ 243 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 244 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 245 246 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC 247 /* MEMCG_KMEM for nmi context */ 248 atomic_t kmem_stat; 249 #endif 250 /* 251 * Hint of reclaim pressure for socket memroy management. Note 252 * that this indicator should NOT be used in legacy cgroup mode 253 * where socket memory is accounted/charged separately. 254 */ 255 u64 socket_pressure; 256 #if BITS_PER_LONG < 64 257 seqlock_t socket_pressure_seqlock; 258 #endif 259 int kmemcg_id; 260 /* 261 * memcg->objcg is wiped out as a part of the objcg repaprenting 262 * process. memcg->orig_objcg preserves a pointer (and a reference) 263 * to the original objcg until the end of live of memcg. 264 */ 265 struct obj_cgroup __rcu *objcg; 266 struct obj_cgroup *orig_objcg; 267 /* list of inherited objcgs, protected by objcg_lock */ 268 struct list_head objcg_list; 269 270 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 271 272 #ifdef CONFIG_CGROUP_WRITEBACK 273 struct list_head cgwb_list; 274 struct wb_domain cgwb_domain; 275 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 276 #endif 277 278 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 279 struct deferred_split deferred_split_queue; 280 #endif 281 282 #ifdef CONFIG_LRU_GEN_WALKS_MMU 283 /* per-memcg mm_struct list */ 284 struct lru_gen_mm_list mm_list; 285 #endif 286 287 #ifdef CONFIG_MEMCG_V1 288 /* Legacy consumer-oriented counters */ 289 struct page_counter kmem; /* v1 only */ 290 struct page_counter tcpmem; /* v1 only */ 291 292 struct memcg1_events_percpu __percpu *events_percpu; 293 294 unsigned long soft_limit; 295 296 /* protected by memcg_oom_lock */ 297 bool oom_lock; 298 int under_oom; 299 300 /* OOM-Killer disable */ 301 int oom_kill_disable; 302 303 /* protect arrays of thresholds */ 304 struct mutex thresholds_lock; 305 306 /* thresholds for memory usage. RCU-protected */ 307 struct mem_cgroup_thresholds thresholds; 308 309 /* thresholds for mem+swap usage. RCU-protected */ 310 struct mem_cgroup_thresholds memsw_thresholds; 311 312 /* For oom notifier event fd */ 313 struct list_head oom_notify; 314 315 /* Legacy tcp memory accounting */ 316 bool tcpmem_active; 317 int tcpmem_pressure; 318 319 /* List of events which userspace want to receive */ 320 struct list_head event_list; 321 spinlock_t event_list_lock; 322 #endif /* CONFIG_MEMCG_V1 */ 323 324 struct mem_cgroup_per_node *nodeinfo[]; 325 }; 326 327 /* 328 * size of first charge trial. 329 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the 330 * workload. 331 */ 332 #define MEMCG_CHARGE_BATCH 64U 333 334 extern struct mem_cgroup *root_mem_cgroup; 335 336 enum page_memcg_data_flags { 337 /* page->memcg_data is a pointer to an slabobj_ext vector */ 338 MEMCG_DATA_OBJEXTS = (1UL << 0), 339 /* page has been accounted as a non-slab kernel page */ 340 MEMCG_DATA_KMEM = (1UL << 1), 341 /* the next bit after the last actual flag */ 342 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 343 }; 344 345 #define __OBJEXTS_ALLOC_FAIL MEMCG_DATA_OBJEXTS 346 #define __FIRST_OBJEXT_FLAG __NR_MEMCG_DATA_FLAGS 347 348 #else /* CONFIG_MEMCG */ 349 350 #define __OBJEXTS_ALLOC_FAIL (1UL << 0) 351 #define __FIRST_OBJEXT_FLAG (1UL << 0) 352 353 #endif /* CONFIG_MEMCG */ 354 355 enum objext_flags { 356 /* 357 * Use bit 0 with zero other bits to signal that slabobj_ext vector 358 * failed to allocate. The same bit 0 with valid upper bits means 359 * MEMCG_DATA_OBJEXTS. 360 */ 361 OBJEXTS_ALLOC_FAIL = __OBJEXTS_ALLOC_FAIL, 362 /* slabobj_ext vector allocated with kmalloc_nolock() */ 363 OBJEXTS_NOSPIN_ALLOC = __FIRST_OBJEXT_FLAG, 364 /* the next bit after the last actual flag */ 365 __NR_OBJEXTS_FLAGS = (__FIRST_OBJEXT_FLAG << 1), 366 }; 367 368 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1) 369 370 #ifdef CONFIG_MEMCG 371 372 static inline bool folio_memcg_kmem(struct folio *folio); 373 374 /* 375 * After the initialization objcg->memcg is always pointing at 376 * a valid memcg, but can be atomically swapped to the parent memcg. 377 * 378 * The caller must ensure that the returned memcg won't be released. 379 */ 380 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 381 { 382 lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex)); 383 return READ_ONCE(objcg->memcg); 384 } 385 386 /* 387 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio 388 * @folio: Pointer to the folio. 389 * 390 * Returns a pointer to the memory cgroup associated with the folio, 391 * or NULL. This function assumes that the folio is known to have a 392 * proper memory cgroup pointer. It's not safe to call this function 393 * against some type of folios, e.g. slab folios or ex-slab folios or 394 * kmem folios. 395 */ 396 static inline struct mem_cgroup *__folio_memcg(struct folio *folio) 397 { 398 unsigned long memcg_data = folio->memcg_data; 399 400 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 401 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio); 402 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio); 403 404 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 405 } 406 407 /* 408 * __folio_objcg - get the object cgroup associated with a kmem folio. 409 * @folio: Pointer to the folio. 410 * 411 * Returns a pointer to the object cgroup associated with the folio, 412 * or NULL. This function assumes that the folio is known to have a 413 * proper object cgroup pointer. It's not safe to call this function 414 * against some type of folios, e.g. slab folios or ex-slab folios or 415 * LRU folios. 416 */ 417 static inline struct obj_cgroup *__folio_objcg(struct folio *folio) 418 { 419 unsigned long memcg_data = folio->memcg_data; 420 421 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 422 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio); 423 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio); 424 425 return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 426 } 427 428 /* 429 * folio_memcg - Get the memory cgroup associated with a folio. 430 * @folio: Pointer to the folio. 431 * 432 * Returns a pointer to the memory cgroup associated with the folio, 433 * or NULL. This function assumes that the folio is known to have a 434 * proper memory cgroup pointer. It's not safe to call this function 435 * against some type of folios, e.g. slab folios or ex-slab folios. 436 * 437 * For a non-kmem folio any of the following ensures folio and memcg binding 438 * stability: 439 * 440 * - the folio lock 441 * - LRU isolation 442 * - exclusive reference 443 * 444 * For a kmem folio a caller should hold an rcu read lock to protect memcg 445 * associated with a kmem folio from being released. 446 */ 447 static inline struct mem_cgroup *folio_memcg(struct folio *folio) 448 { 449 if (folio_memcg_kmem(folio)) 450 return obj_cgroup_memcg(__folio_objcg(folio)); 451 return __folio_memcg(folio); 452 } 453 454 /* 455 * folio_memcg_charged - If a folio is charged to a memory cgroup. 456 * @folio: Pointer to the folio. 457 * 458 * Returns true if folio is charged to a memory cgroup, otherwise returns false. 459 */ 460 static inline bool folio_memcg_charged(struct folio *folio) 461 { 462 return folio->memcg_data != 0; 463 } 464 465 /* 466 * folio_memcg_check - Get the memory cgroup associated with a folio. 467 * @folio: Pointer to the folio. 468 * 469 * Returns a pointer to the memory cgroup associated with the folio, 470 * or NULL. This function unlike folio_memcg() can take any folio 471 * as an argument. It has to be used in cases when it's not known if a folio 472 * has an associated memory cgroup pointer or an object cgroups vector or 473 * an object cgroup. 474 * 475 * For a non-kmem folio any of the following ensures folio and memcg binding 476 * stability: 477 * 478 * - the folio lock 479 * - LRU isolation 480 * - exclusive reference 481 * 482 * For a kmem folio a caller should hold an rcu read lock to protect memcg 483 * associated with a kmem folio from being released. 484 */ 485 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 486 { 487 /* 488 * Because folio->memcg_data might be changed asynchronously 489 * for slabs, READ_ONCE() should be used here. 490 */ 491 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 492 493 if (memcg_data & MEMCG_DATA_OBJEXTS) 494 return NULL; 495 496 if (memcg_data & MEMCG_DATA_KMEM) { 497 struct obj_cgroup *objcg; 498 499 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 500 return obj_cgroup_memcg(objcg); 501 } 502 503 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 504 } 505 506 static inline struct mem_cgroup *page_memcg_check(struct page *page) 507 { 508 if (PageTail(page)) 509 return NULL; 510 return folio_memcg_check((struct folio *)page); 511 } 512 513 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 514 { 515 struct mem_cgroup *memcg; 516 517 rcu_read_lock(); 518 retry: 519 memcg = obj_cgroup_memcg(objcg); 520 if (unlikely(!css_tryget(&memcg->css))) 521 goto retry; 522 rcu_read_unlock(); 523 524 return memcg; 525 } 526 527 /* 528 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set. 529 * @folio: Pointer to the folio. 530 * 531 * Checks if the folio has MemcgKmem flag set. The caller must ensure 532 * that the folio has an associated memory cgroup. It's not safe to call 533 * this function against some types of folios, e.g. slab folios. 534 */ 535 static inline bool folio_memcg_kmem(struct folio *folio) 536 { 537 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page); 538 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio); 539 return folio->memcg_data & MEMCG_DATA_KMEM; 540 } 541 542 static inline bool PageMemcgKmem(struct page *page) 543 { 544 return folio_memcg_kmem(page_folio(page)); 545 } 546 547 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 548 { 549 return (memcg == root_mem_cgroup); 550 } 551 552 static inline bool mem_cgroup_disabled(void) 553 { 554 return !cgroup_subsys_enabled(memory_cgrp_subsys); 555 } 556 557 static inline void mem_cgroup_protection(struct mem_cgroup *root, 558 struct mem_cgroup *memcg, 559 unsigned long *min, 560 unsigned long *low, 561 unsigned long *usage) 562 { 563 *min = *low = *usage = 0; 564 565 if (mem_cgroup_disabled()) 566 return; 567 568 *usage = page_counter_read(&memcg->memory); 569 /* 570 * There is no reclaim protection applied to a targeted reclaim. 571 * We are special casing this specific case here because 572 * mem_cgroup_calculate_protection is not robust enough to keep 573 * the protection invariant for calculated effective values for 574 * parallel reclaimers with different reclaim target. This is 575 * especially a problem for tail memcgs (as they have pages on LRU) 576 * which would want to have effective values 0 for targeted reclaim 577 * but a different value for external reclaim. 578 * 579 * Example 580 * Let's have global and A's reclaim in parallel: 581 * | 582 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 583 * |\ 584 * | C (low = 1G, usage = 2.5G) 585 * B (low = 1G, usage = 0.5G) 586 * 587 * For the global reclaim 588 * A.elow = A.low 589 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 590 * C.elow = min(C.usage, C.low) 591 * 592 * With the effective values resetting we have A reclaim 593 * A.elow = 0 594 * B.elow = B.low 595 * C.elow = C.low 596 * 597 * If the global reclaim races with A's reclaim then 598 * B.elow = C.elow = 0 because children_low_usage > A.elow) 599 * is possible and reclaiming B would be violating the protection. 600 * 601 */ 602 if (root == memcg) 603 return; 604 605 *min = READ_ONCE(memcg->memory.emin); 606 *low = READ_ONCE(memcg->memory.elow); 607 } 608 609 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 610 struct mem_cgroup *memcg); 611 612 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 613 struct mem_cgroup *memcg) 614 { 615 /* 616 * The root memcg doesn't account charges, and doesn't support 617 * protection. The target memcg's protection is ignored, see 618 * mem_cgroup_calculate_protection() and mem_cgroup_protection() 619 */ 620 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) || 621 memcg == target; 622 } 623 624 static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 625 struct mem_cgroup *memcg) 626 { 627 if (mem_cgroup_unprotected(target, memcg)) 628 return false; 629 630 return READ_ONCE(memcg->memory.elow) >= 631 page_counter_read(&memcg->memory); 632 } 633 634 static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 635 struct mem_cgroup *memcg) 636 { 637 if (mem_cgroup_unprotected(target, memcg)) 638 return false; 639 640 return READ_ONCE(memcg->memory.emin) >= 641 page_counter_read(&memcg->memory); 642 } 643 644 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp); 645 646 /** 647 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup. 648 * @folio: Folio to charge. 649 * @mm: mm context of the allocating task. 650 * @gfp: Reclaim mode. 651 * 652 * Try to charge @folio to the memcg that @mm belongs to, reclaiming 653 * pages according to @gfp if necessary. If @mm is NULL, try to 654 * charge to the active memcg. 655 * 656 * Do not use this for folios allocated for swapin. 657 * 658 * Return: 0 on success. Otherwise, an error code is returned. 659 */ 660 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, 661 gfp_t gfp) 662 { 663 if (mem_cgroup_disabled()) 664 return 0; 665 return __mem_cgroup_charge(folio, mm, gfp); 666 } 667 668 int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp); 669 670 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 671 gfp_t gfp, swp_entry_t entry); 672 673 void __mem_cgroup_uncharge(struct folio *folio); 674 675 /** 676 * mem_cgroup_uncharge - Uncharge a folio. 677 * @folio: Folio to uncharge. 678 * 679 * Uncharge a folio previously charged with mem_cgroup_charge(). 680 */ 681 static inline void mem_cgroup_uncharge(struct folio *folio) 682 { 683 if (mem_cgroup_disabled()) 684 return; 685 __mem_cgroup_uncharge(folio); 686 } 687 688 void __mem_cgroup_uncharge_folios(struct folio_batch *folios); 689 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios) 690 { 691 if (mem_cgroup_disabled()) 692 return; 693 __mem_cgroup_uncharge_folios(folios); 694 } 695 696 void mem_cgroup_replace_folio(struct folio *old, struct folio *new); 697 void mem_cgroup_migrate(struct folio *old, struct folio *new); 698 699 /** 700 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 701 * @memcg: memcg of the wanted lruvec 702 * @pgdat: pglist_data 703 * 704 * Returns the lru list vector holding pages for a given @memcg & 705 * @pgdat combination. This can be the node lruvec, if the memory 706 * controller is disabled. 707 */ 708 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 709 struct pglist_data *pgdat) 710 { 711 struct mem_cgroup_per_node *mz; 712 struct lruvec *lruvec; 713 714 if (mem_cgroup_disabled()) { 715 lruvec = &pgdat->__lruvec; 716 goto out; 717 } 718 719 if (!memcg) 720 memcg = root_mem_cgroup; 721 722 mz = memcg->nodeinfo[pgdat->node_id]; 723 lruvec = &mz->lruvec; 724 out: 725 /* 726 * Since a node can be onlined after the mem_cgroup was created, 727 * we have to be prepared to initialize lruvec->pgdat here; 728 * and if offlined then reonlined, we need to reinitialize it. 729 */ 730 if (unlikely(lruvec->pgdat != pgdat)) 731 lruvec->pgdat = pgdat; 732 return lruvec; 733 } 734 735 /** 736 * folio_lruvec - return lruvec for isolating/putting an LRU folio 737 * @folio: Pointer to the folio. 738 * 739 * This function relies on folio->mem_cgroup being stable. 740 */ 741 static inline struct lruvec *folio_lruvec(struct folio *folio) 742 { 743 struct mem_cgroup *memcg = folio_memcg(folio); 744 745 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio); 746 return mem_cgroup_lruvec(memcg, folio_pgdat(folio)); 747 } 748 749 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 750 751 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 752 753 struct mem_cgroup *get_mem_cgroup_from_current(void); 754 755 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio); 756 757 struct lruvec *folio_lruvec_lock(struct folio *folio); 758 struct lruvec *folio_lruvec_lock_irq(struct folio *folio); 759 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 760 unsigned long *flags); 761 762 #ifdef CONFIG_DEBUG_VM 763 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio); 764 #else 765 static inline 766 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 767 { 768 } 769 #endif 770 771 static inline 772 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 773 return css ? container_of(css, struct mem_cgroup, css) : NULL; 774 } 775 776 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 777 { 778 return percpu_ref_tryget(&objcg->refcnt); 779 } 780 781 static inline void obj_cgroup_get(struct obj_cgroup *objcg) 782 { 783 percpu_ref_get(&objcg->refcnt); 784 } 785 786 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 787 unsigned long nr) 788 { 789 percpu_ref_get_many(&objcg->refcnt, nr); 790 } 791 792 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 793 { 794 if (objcg) 795 percpu_ref_put(&objcg->refcnt); 796 } 797 798 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 799 { 800 return !memcg || css_tryget(&memcg->css); 801 } 802 803 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg) 804 { 805 return !memcg || css_tryget_online(&memcg->css); 806 } 807 808 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 809 { 810 if (memcg) 811 css_put(&memcg->css); 812 } 813 814 #define mem_cgroup_from_counter(counter, member) \ 815 container_of(counter, struct mem_cgroup, member) 816 817 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 818 struct mem_cgroup *, 819 struct mem_cgroup_reclaim_cookie *); 820 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 821 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 822 int (*)(struct task_struct *, void *), void *arg); 823 824 static inline unsigned short mem_cgroup_private_id(struct mem_cgroup *memcg) 825 { 826 if (mem_cgroup_disabled()) 827 return 0; 828 829 return memcg->id.id; 830 } 831 struct mem_cgroup *mem_cgroup_from_private_id(unsigned short id); 832 833 static inline u64 mem_cgroup_id(struct mem_cgroup *memcg) 834 { 835 return memcg ? cgroup_id(memcg->css.cgroup) : 0; 836 } 837 838 struct mem_cgroup *mem_cgroup_get_from_id(u64 id); 839 840 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 841 { 842 return mem_cgroup_from_css(seq_css(m)); 843 } 844 845 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 846 { 847 struct mem_cgroup_per_node *mz; 848 849 if (mem_cgroup_disabled()) 850 return NULL; 851 852 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 853 return mz->memcg; 854 } 855 856 /** 857 * parent_mem_cgroup - find the accounting parent of a memcg 858 * @memcg: memcg whose parent to find 859 * 860 * Returns the parent memcg, or NULL if this is the root. 861 */ 862 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 863 { 864 return mem_cgroup_from_css(memcg->css.parent); 865 } 866 867 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 868 struct mem_cgroup *root) 869 { 870 if (root == memcg) 871 return true; 872 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 873 } 874 875 static inline bool mm_match_cgroup(struct mm_struct *mm, 876 struct mem_cgroup *memcg) 877 { 878 struct mem_cgroup *task_memcg; 879 bool match = false; 880 881 rcu_read_lock(); 882 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 883 if (task_memcg) 884 match = mem_cgroup_is_descendant(task_memcg, memcg); 885 rcu_read_unlock(); 886 return match; 887 } 888 889 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio); 890 ino_t page_cgroup_ino(struct page *page); 891 892 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 893 { 894 if (mem_cgroup_disabled()) 895 return true; 896 return css_is_online(&memcg->css); 897 } 898 899 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 900 int zid, int nr_pages); 901 902 static inline 903 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 904 enum lru_list lru, int zone_idx) 905 { 906 struct mem_cgroup_per_node *mz; 907 908 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 909 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 910 } 911 912 void __mem_cgroup_handle_over_high(gfp_t gfp_mask); 913 914 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask) 915 { 916 if (unlikely(current->memcg_nr_pages_over_high)) 917 __mem_cgroup_handle_over_high(gfp_mask); 918 } 919 920 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 921 922 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 923 struct task_struct *p); 924 925 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 926 927 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 928 struct mem_cgroup *oom_domain); 929 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 930 931 /* idx can be of type enum memcg_stat_item or node_stat_item */ 932 void mod_memcg_state(struct mem_cgroup *memcg, 933 enum memcg_stat_item idx, int val); 934 935 static inline void mod_memcg_page_state(struct page *page, 936 enum memcg_stat_item idx, int val) 937 { 938 struct mem_cgroup *memcg; 939 940 if (mem_cgroup_disabled()) 941 return; 942 943 rcu_read_lock(); 944 memcg = folio_memcg(page_folio(page)); 945 if (memcg) 946 mod_memcg_state(memcg, idx, val); 947 rcu_read_unlock(); 948 } 949 950 unsigned long memcg_events(struct mem_cgroup *memcg, int event); 951 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx); 952 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item); 953 bool memcg_stat_item_valid(int idx); 954 bool memcg_vm_event_item_valid(enum vm_event_item idx); 955 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx); 956 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 957 enum node_stat_item idx); 958 959 void mem_cgroup_flush_stats(struct mem_cgroup *memcg); 960 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg); 961 962 void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 963 964 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 965 unsigned long count); 966 967 static inline void count_memcg_folio_events(struct folio *folio, 968 enum vm_event_item idx, unsigned long nr) 969 { 970 struct mem_cgroup *memcg = folio_memcg(folio); 971 972 if (memcg) 973 count_memcg_events(memcg, idx, nr); 974 } 975 976 static inline void count_memcg_events_mm(struct mm_struct *mm, 977 enum vm_event_item idx, unsigned long count) 978 { 979 struct mem_cgroup *memcg; 980 981 if (mem_cgroup_disabled()) 982 return; 983 984 rcu_read_lock(); 985 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 986 if (likely(memcg)) 987 count_memcg_events(memcg, idx, count); 988 rcu_read_unlock(); 989 } 990 991 static inline void count_memcg_event_mm(struct mm_struct *mm, 992 enum vm_event_item idx) 993 { 994 count_memcg_events_mm(mm, idx, 1); 995 } 996 997 void __memcg_memory_event(struct mem_cgroup *memcg, 998 enum memcg_memory_event event, bool allow_spinning); 999 1000 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1001 enum memcg_memory_event event) 1002 { 1003 __memcg_memory_event(memcg, event, true); 1004 } 1005 1006 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1007 enum memcg_memory_event event) 1008 { 1009 struct mem_cgroup *memcg; 1010 1011 if (mem_cgroup_disabled()) 1012 return; 1013 1014 rcu_read_lock(); 1015 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1016 if (likely(memcg)) 1017 memcg_memory_event(memcg, event); 1018 rcu_read_unlock(); 1019 } 1020 1021 void split_page_memcg(struct page *first, unsigned order); 1022 void folio_split_memcg_refs(struct folio *folio, unsigned old_order, 1023 unsigned new_order); 1024 1025 static inline u64 cgroup_id_from_mm(struct mm_struct *mm) 1026 { 1027 struct mem_cgroup *memcg; 1028 u64 id; 1029 1030 if (mem_cgroup_disabled()) 1031 return 0; 1032 1033 rcu_read_lock(); 1034 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1035 if (!memcg) 1036 memcg = root_mem_cgroup; 1037 id = cgroup_id(memcg->css.cgroup); 1038 rcu_read_unlock(); 1039 return id; 1040 } 1041 1042 void mem_cgroup_flush_workqueue(void); 1043 1044 extern int mem_cgroup_init(void); 1045 #else /* CONFIG_MEMCG */ 1046 1047 #define MEM_CGROUP_ID_SHIFT 0 1048 1049 #define root_mem_cgroup (NULL) 1050 1051 static inline struct mem_cgroup *folio_memcg(struct folio *folio) 1052 { 1053 return NULL; 1054 } 1055 1056 static inline bool folio_memcg_charged(struct folio *folio) 1057 { 1058 return false; 1059 } 1060 1061 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 1062 { 1063 return NULL; 1064 } 1065 1066 static inline struct mem_cgroup *page_memcg_check(struct page *page) 1067 { 1068 return NULL; 1069 } 1070 1071 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 1072 { 1073 return NULL; 1074 } 1075 1076 static inline bool folio_memcg_kmem(struct folio *folio) 1077 { 1078 return false; 1079 } 1080 1081 static inline bool PageMemcgKmem(struct page *page) 1082 { 1083 return false; 1084 } 1085 1086 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1087 { 1088 return true; 1089 } 1090 1091 static inline bool mem_cgroup_disabled(void) 1092 { 1093 return true; 1094 } 1095 1096 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1097 enum memcg_memory_event event) 1098 { 1099 } 1100 1101 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1102 enum memcg_memory_event event) 1103 { 1104 } 1105 1106 static inline void mem_cgroup_protection(struct mem_cgroup *root, 1107 struct mem_cgroup *memcg, 1108 unsigned long *min, 1109 unsigned long *low, 1110 unsigned long *usage) 1111 { 1112 *min = *low = *usage = 0; 1113 } 1114 1115 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1116 struct mem_cgroup *memcg) 1117 { 1118 } 1119 1120 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 1121 struct mem_cgroup *memcg) 1122 { 1123 return true; 1124 } 1125 static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 1126 struct mem_cgroup *memcg) 1127 { 1128 return false; 1129 } 1130 1131 static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 1132 struct mem_cgroup *memcg) 1133 { 1134 return false; 1135 } 1136 1137 static inline int mem_cgroup_charge(struct folio *folio, 1138 struct mm_struct *mm, gfp_t gfp) 1139 { 1140 return 0; 1141 } 1142 1143 static inline int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp) 1144 { 1145 return 0; 1146 } 1147 1148 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio, 1149 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1150 { 1151 return 0; 1152 } 1153 1154 static inline void mem_cgroup_uncharge(struct folio *folio) 1155 { 1156 } 1157 1158 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios) 1159 { 1160 } 1161 1162 static inline void mem_cgroup_replace_folio(struct folio *old, 1163 struct folio *new) 1164 { 1165 } 1166 1167 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new) 1168 { 1169 } 1170 1171 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1172 struct pglist_data *pgdat) 1173 { 1174 return &pgdat->__lruvec; 1175 } 1176 1177 static inline struct lruvec *folio_lruvec(struct folio *folio) 1178 { 1179 struct pglist_data *pgdat = folio_pgdat(folio); 1180 return &pgdat->__lruvec; 1181 } 1182 1183 static inline 1184 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1185 { 1186 } 1187 1188 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1189 { 1190 return NULL; 1191 } 1192 1193 static inline bool mm_match_cgroup(struct mm_struct *mm, 1194 struct mem_cgroup *memcg) 1195 { 1196 return true; 1197 } 1198 1199 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1200 { 1201 return NULL; 1202 } 1203 1204 static inline struct mem_cgroup *get_mem_cgroup_from_current(void) 1205 { 1206 return NULL; 1207 } 1208 1209 static inline struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 1210 { 1211 return NULL; 1212 } 1213 1214 static inline 1215 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1216 { 1217 return NULL; 1218 } 1219 1220 static inline void obj_cgroup_get(struct obj_cgroup *objcg) 1221 { 1222 } 1223 1224 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 1225 { 1226 } 1227 1228 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 1229 { 1230 return true; 1231 } 1232 1233 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg) 1234 { 1235 return true; 1236 } 1237 1238 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1239 { 1240 } 1241 1242 static inline struct lruvec *folio_lruvec_lock(struct folio *folio) 1243 { 1244 struct pglist_data *pgdat = folio_pgdat(folio); 1245 1246 spin_lock(&pgdat->__lruvec.lru_lock); 1247 return &pgdat->__lruvec; 1248 } 1249 1250 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1251 { 1252 struct pglist_data *pgdat = folio_pgdat(folio); 1253 1254 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1255 return &pgdat->__lruvec; 1256 } 1257 1258 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1259 unsigned long *flagsp) 1260 { 1261 struct pglist_data *pgdat = folio_pgdat(folio); 1262 1263 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1264 return &pgdat->__lruvec; 1265 } 1266 1267 static inline struct mem_cgroup * 1268 mem_cgroup_iter(struct mem_cgroup *root, 1269 struct mem_cgroup *prev, 1270 struct mem_cgroup_reclaim_cookie *reclaim) 1271 { 1272 return NULL; 1273 } 1274 1275 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1276 struct mem_cgroup *prev) 1277 { 1278 } 1279 1280 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1281 int (*fn)(struct task_struct *, void *), void *arg) 1282 { 1283 } 1284 1285 static inline unsigned short mem_cgroup_private_id(struct mem_cgroup *memcg) 1286 { 1287 return 0; 1288 } 1289 1290 static inline struct mem_cgroup *mem_cgroup_from_private_id(unsigned short id) 1291 { 1292 WARN_ON_ONCE(id); 1293 /* XXX: This should always return root_mem_cgroup */ 1294 return NULL; 1295 } 1296 1297 static inline u64 mem_cgroup_id(struct mem_cgroup *memcg) 1298 { 1299 return 0; 1300 } 1301 1302 static inline struct mem_cgroup *mem_cgroup_get_from_id(u64 id) 1303 { 1304 return NULL; 1305 } 1306 1307 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1308 { 1309 return NULL; 1310 } 1311 1312 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1313 { 1314 return NULL; 1315 } 1316 1317 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1318 { 1319 return true; 1320 } 1321 1322 static inline 1323 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1324 enum lru_list lru, int zone_idx) 1325 { 1326 return 0; 1327 } 1328 1329 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1330 { 1331 return 0; 1332 } 1333 1334 static inline void 1335 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1336 { 1337 } 1338 1339 static inline void 1340 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1341 { 1342 } 1343 1344 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask) 1345 { 1346 } 1347 1348 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1349 struct task_struct *victim, struct mem_cgroup *oom_domain) 1350 { 1351 return NULL; 1352 } 1353 1354 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1355 { 1356 } 1357 1358 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1359 enum memcg_stat_item idx, 1360 int nr) 1361 { 1362 } 1363 1364 static inline void mod_memcg_page_state(struct page *page, 1365 enum memcg_stat_item idx, int val) 1366 { 1367 } 1368 1369 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1370 { 1371 return 0; 1372 } 1373 1374 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) 1375 { 1376 return 0; 1377 } 1378 1379 static inline bool memcg_stat_item_valid(int idx) 1380 { 1381 return false; 1382 } 1383 1384 static inline bool memcg_vm_event_item_valid(enum vm_event_item idx) 1385 { 1386 return false; 1387 } 1388 1389 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1390 enum node_stat_item idx) 1391 { 1392 return node_page_state(lruvec_pgdat(lruvec), idx); 1393 } 1394 1395 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1396 enum node_stat_item idx) 1397 { 1398 return node_page_state(lruvec_pgdat(lruvec), idx); 1399 } 1400 1401 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 1402 { 1403 } 1404 1405 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 1406 { 1407 } 1408 1409 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1410 int val) 1411 { 1412 struct page *page = virt_to_head_page(p); 1413 1414 mod_node_page_state(page_pgdat(page), idx, val); 1415 } 1416 1417 static inline void count_memcg_events(struct mem_cgroup *memcg, 1418 enum vm_event_item idx, 1419 unsigned long count) 1420 { 1421 } 1422 1423 static inline void count_memcg_folio_events(struct folio *folio, 1424 enum vm_event_item idx, unsigned long nr) 1425 { 1426 } 1427 1428 static inline void count_memcg_events_mm(struct mm_struct *mm, 1429 enum vm_event_item idx, unsigned long count) 1430 { 1431 } 1432 1433 static inline 1434 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1435 { 1436 } 1437 1438 static inline void split_page_memcg(struct page *first, unsigned order) 1439 { 1440 } 1441 1442 static inline void folio_split_memcg_refs(struct folio *folio, 1443 unsigned old_order, unsigned new_order) 1444 { 1445 } 1446 1447 static inline u64 cgroup_id_from_mm(struct mm_struct *mm) 1448 { 1449 return 0; 1450 } 1451 1452 static inline void mem_cgroup_flush_workqueue(void) { } 1453 1454 static inline int mem_cgroup_init(void) { return 0; } 1455 #endif /* CONFIG_MEMCG */ 1456 1457 /* 1458 * Extended information for slab objects stored as an array in page->memcg_data 1459 * if MEMCG_DATA_OBJEXTS is set. 1460 */ 1461 struct slabobj_ext { 1462 #ifdef CONFIG_MEMCG 1463 struct obj_cgroup *objcg; 1464 #endif 1465 #ifdef CONFIG_MEM_ALLOC_PROFILING 1466 union codetag_ref ref; 1467 #endif 1468 } __aligned(8); 1469 1470 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1471 { 1472 struct mem_cgroup *memcg; 1473 1474 memcg = lruvec_memcg(lruvec); 1475 if (!memcg) 1476 return NULL; 1477 memcg = parent_mem_cgroup(memcg); 1478 if (!memcg) 1479 return NULL; 1480 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1481 } 1482 1483 static inline void unlock_page_lruvec(struct lruvec *lruvec) 1484 { 1485 spin_unlock(&lruvec->lru_lock); 1486 } 1487 1488 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1489 { 1490 spin_unlock_irq(&lruvec->lru_lock); 1491 } 1492 1493 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1494 unsigned long flags) 1495 { 1496 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1497 } 1498 1499 /* Test requires a stable folio->memcg binding, see folio_memcg() */ 1500 static inline bool folio_matches_lruvec(struct folio *folio, 1501 struct lruvec *lruvec) 1502 { 1503 return lruvec_pgdat(lruvec) == folio_pgdat(folio) && 1504 lruvec_memcg(lruvec) == folio_memcg(folio); 1505 } 1506 1507 /* Don't lock again iff page's lruvec locked */ 1508 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio, 1509 struct lruvec *locked_lruvec) 1510 { 1511 if (locked_lruvec) { 1512 if (folio_matches_lruvec(folio, locked_lruvec)) 1513 return locked_lruvec; 1514 1515 unlock_page_lruvec_irq(locked_lruvec); 1516 } 1517 1518 return folio_lruvec_lock_irq(folio); 1519 } 1520 1521 /* Don't lock again iff folio's lruvec locked */ 1522 static inline void folio_lruvec_relock_irqsave(struct folio *folio, 1523 struct lruvec **lruvecp, unsigned long *flags) 1524 { 1525 if (*lruvecp) { 1526 if (folio_matches_lruvec(folio, *lruvecp)) 1527 return; 1528 1529 unlock_page_lruvec_irqrestore(*lruvecp, *flags); 1530 } 1531 1532 *lruvecp = folio_lruvec_lock_irqsave(folio, flags); 1533 } 1534 1535 #ifdef CONFIG_CGROUP_WRITEBACK 1536 1537 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1538 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1539 unsigned long *pheadroom, unsigned long *pdirty, 1540 unsigned long *pwriteback); 1541 1542 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 1543 struct bdi_writeback *wb); 1544 1545 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1546 struct bdi_writeback *wb) 1547 { 1548 struct mem_cgroup *memcg; 1549 1550 if (mem_cgroup_disabled()) 1551 return; 1552 1553 memcg = folio_memcg(folio); 1554 if (unlikely(memcg && &memcg->css != wb->memcg_css)) 1555 mem_cgroup_track_foreign_dirty_slowpath(folio, wb); 1556 } 1557 1558 void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1559 1560 #else /* CONFIG_CGROUP_WRITEBACK */ 1561 1562 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1563 { 1564 return NULL; 1565 } 1566 1567 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1568 unsigned long *pfilepages, 1569 unsigned long *pheadroom, 1570 unsigned long *pdirty, 1571 unsigned long *pwriteback) 1572 { 1573 } 1574 1575 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1576 struct bdi_writeback *wb) 1577 { 1578 } 1579 1580 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1581 { 1582 } 1583 1584 #endif /* CONFIG_CGROUP_WRITEBACK */ 1585 1586 struct sock; 1587 #ifdef CONFIG_MEMCG 1588 extern struct static_key_false memcg_sockets_enabled_key; 1589 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1590 1591 void mem_cgroup_sk_alloc(struct sock *sk); 1592 void mem_cgroup_sk_free(struct sock *sk); 1593 void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk); 1594 bool mem_cgroup_sk_charge(const struct sock *sk, unsigned int nr_pages, 1595 gfp_t gfp_mask); 1596 void mem_cgroup_sk_uncharge(const struct sock *sk, unsigned int nr_pages); 1597 1598 #if BITS_PER_LONG < 64 1599 static inline void mem_cgroup_set_socket_pressure(struct mem_cgroup *memcg) 1600 { 1601 u64 val = get_jiffies_64() + HZ; 1602 unsigned long flags; 1603 1604 write_seqlock_irqsave(&memcg->socket_pressure_seqlock, flags); 1605 memcg->socket_pressure = val; 1606 write_sequnlock_irqrestore(&memcg->socket_pressure_seqlock, flags); 1607 } 1608 1609 static inline u64 mem_cgroup_get_socket_pressure(struct mem_cgroup *memcg) 1610 { 1611 unsigned int seq; 1612 u64 val; 1613 1614 do { 1615 seq = read_seqbegin(&memcg->socket_pressure_seqlock); 1616 val = memcg->socket_pressure; 1617 } while (read_seqretry(&memcg->socket_pressure_seqlock, seq)); 1618 1619 return val; 1620 } 1621 #else 1622 static inline void mem_cgroup_set_socket_pressure(struct mem_cgroup *memcg) 1623 { 1624 WRITE_ONCE(memcg->socket_pressure, jiffies + HZ); 1625 } 1626 1627 static inline u64 mem_cgroup_get_socket_pressure(struct mem_cgroup *memcg) 1628 { 1629 return READ_ONCE(memcg->socket_pressure); 1630 } 1631 #endif 1632 1633 int alloc_shrinker_info(struct mem_cgroup *memcg); 1634 void free_shrinker_info(struct mem_cgroup *memcg); 1635 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1636 void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1637 1638 static inline int shrinker_id(struct shrinker *shrinker) 1639 { 1640 return shrinker->id; 1641 } 1642 #else 1643 #define mem_cgroup_sockets_enabled 0 1644 1645 static inline void mem_cgroup_sk_alloc(struct sock *sk) 1646 { 1647 } 1648 1649 static inline void mem_cgroup_sk_free(struct sock *sk) 1650 { 1651 } 1652 1653 static inline void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk) 1654 { 1655 } 1656 1657 static inline bool mem_cgroup_sk_charge(const struct sock *sk, 1658 unsigned int nr_pages, 1659 gfp_t gfp_mask) 1660 { 1661 return false; 1662 } 1663 1664 static inline void mem_cgroup_sk_uncharge(const struct sock *sk, 1665 unsigned int nr_pages) 1666 { 1667 } 1668 1669 static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1670 int nid, int shrinker_id) 1671 { 1672 } 1673 1674 static inline int shrinker_id(struct shrinker *shrinker) 1675 { 1676 return -1; 1677 } 1678 #endif 1679 1680 #ifdef CONFIG_MEMCG 1681 bool mem_cgroup_kmem_disabled(void); 1682 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1683 void __memcg_kmem_uncharge_page(struct page *page, int order); 1684 1685 /* 1686 * The returned objcg pointer is safe to use without additional 1687 * protection within a scope. The scope is defined either by 1688 * the current task (similar to the "current" global variable) 1689 * or by set_active_memcg() pair. 1690 * Please, use obj_cgroup_get() to get a reference if the pointer 1691 * needs to be used outside of the local scope. 1692 */ 1693 struct obj_cgroup *current_obj_cgroup(void); 1694 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio); 1695 1696 static inline struct obj_cgroup *get_obj_cgroup_from_current(void) 1697 { 1698 struct obj_cgroup *objcg = current_obj_cgroup(); 1699 1700 if (objcg) 1701 obj_cgroup_get(objcg); 1702 1703 return objcg; 1704 } 1705 1706 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1707 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1708 1709 extern struct static_key_false memcg_bpf_enabled_key; 1710 static inline bool memcg_bpf_enabled(void) 1711 { 1712 return static_branch_likely(&memcg_bpf_enabled_key); 1713 } 1714 1715 extern struct static_key_false memcg_kmem_online_key; 1716 1717 static inline bool memcg_kmem_online(void) 1718 { 1719 return static_branch_likely(&memcg_kmem_online_key); 1720 } 1721 1722 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1723 int order) 1724 { 1725 if (memcg_kmem_online()) 1726 return __memcg_kmem_charge_page(page, gfp, order); 1727 return 0; 1728 } 1729 1730 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1731 { 1732 if (memcg_kmem_online()) 1733 __memcg_kmem_uncharge_page(page, order); 1734 } 1735 1736 /* 1737 * A helper for accessing memcg's kmem_id, used for getting 1738 * corresponding LRU lists. 1739 */ 1740 static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1741 { 1742 return memcg ? memcg->kmemcg_id : -1; 1743 } 1744 1745 struct mem_cgroup *mem_cgroup_from_virt(void *p); 1746 1747 static inline void count_objcg_events(struct obj_cgroup *objcg, 1748 enum vm_event_item idx, 1749 unsigned long count) 1750 { 1751 struct mem_cgroup *memcg; 1752 1753 if (!memcg_kmem_online()) 1754 return; 1755 1756 rcu_read_lock(); 1757 memcg = obj_cgroup_memcg(objcg); 1758 count_memcg_events(memcg, idx, count); 1759 rcu_read_unlock(); 1760 } 1761 1762 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid); 1763 1764 void mem_cgroup_show_protected_memory(struct mem_cgroup *memcg); 1765 1766 static inline bool memcg_is_dying(struct mem_cgroup *memcg) 1767 { 1768 return memcg ? css_is_dying(&memcg->css) : false; 1769 } 1770 1771 #else 1772 static inline bool mem_cgroup_kmem_disabled(void) 1773 { 1774 return true; 1775 } 1776 1777 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1778 int order) 1779 { 1780 return 0; 1781 } 1782 1783 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1784 { 1785 } 1786 1787 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1788 int order) 1789 { 1790 return 0; 1791 } 1792 1793 static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1794 { 1795 } 1796 1797 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 1798 { 1799 return NULL; 1800 } 1801 1802 static inline bool memcg_bpf_enabled(void) 1803 { 1804 return false; 1805 } 1806 1807 static inline bool memcg_kmem_online(void) 1808 { 1809 return false; 1810 } 1811 1812 static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1813 { 1814 return -1; 1815 } 1816 1817 static inline struct mem_cgroup *mem_cgroup_from_virt(void *p) 1818 { 1819 return NULL; 1820 } 1821 1822 static inline void count_objcg_events(struct obj_cgroup *objcg, 1823 enum vm_event_item idx, 1824 unsigned long count) 1825 { 1826 } 1827 1828 static inline ino_t page_cgroup_ino(struct page *page) 1829 { 1830 return 0; 1831 } 1832 1833 static inline bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid) 1834 { 1835 return true; 1836 } 1837 1838 static inline void mem_cgroup_show_protected_memory(struct mem_cgroup *memcg) 1839 { 1840 } 1841 1842 static inline bool memcg_is_dying(struct mem_cgroup *memcg) 1843 { 1844 return false; 1845 } 1846 #endif /* CONFIG_MEMCG */ 1847 1848 #if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP) 1849 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg); 1850 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size); 1851 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size); 1852 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg); 1853 #else 1854 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 1855 { 1856 return true; 1857 } 1858 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, 1859 size_t size) 1860 { 1861 } 1862 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, 1863 size_t size) 1864 { 1865 } 1866 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 1867 { 1868 /* if zswap is disabled, do not block pages going to the swapping device */ 1869 return true; 1870 } 1871 #endif 1872 1873 1874 /* Cgroup v1-related declarations */ 1875 1876 #ifdef CONFIG_MEMCG_V1 1877 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, 1878 gfp_t gfp_mask, 1879 unsigned long *total_scanned); 1880 1881 bool mem_cgroup_oom_synchronize(bool wait); 1882 1883 static inline bool task_in_memcg_oom(struct task_struct *p) 1884 { 1885 return p->memcg_in_oom; 1886 } 1887 1888 static inline void mem_cgroup_enter_user_fault(void) 1889 { 1890 WARN_ON(current->in_user_fault); 1891 current->in_user_fault = 1; 1892 } 1893 1894 static inline void mem_cgroup_exit_user_fault(void) 1895 { 1896 WARN_ON(!current->in_user_fault); 1897 current->in_user_fault = 0; 1898 } 1899 1900 void memcg1_swapout(struct folio *folio, swp_entry_t entry); 1901 void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages); 1902 1903 #else /* CONFIG_MEMCG_V1 */ 1904 static inline 1905 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, 1906 gfp_t gfp_mask, 1907 unsigned long *total_scanned) 1908 { 1909 return 0; 1910 } 1911 1912 static inline bool task_in_memcg_oom(struct task_struct *p) 1913 { 1914 return false; 1915 } 1916 1917 static inline bool mem_cgroup_oom_synchronize(bool wait) 1918 { 1919 return false; 1920 } 1921 1922 static inline void mem_cgroup_enter_user_fault(void) 1923 { 1924 } 1925 1926 static inline void mem_cgroup_exit_user_fault(void) 1927 { 1928 } 1929 1930 static inline void memcg1_swapout(struct folio *folio, swp_entry_t entry) 1931 { 1932 } 1933 1934 static inline void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages) 1935 { 1936 } 1937 1938 #endif /* CONFIG_MEMCG_V1 */ 1939 1940 #endif /* _LINUX_MEMCONTROL_H */ 1941