1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/blk-cgroup.h> 9 #include <linux/file.h> 10 #include <linux/filelock.h> 11 #include <linux/fs.h> 12 #include <linux/fs_struct.h> 13 #include <linux/pagemap.h> 14 #include <linux/highmem.h> 15 #include <linux/time.h> 16 #include <linux/init.h> 17 #include <linux/string.h> 18 #include <linux/backing-dev.h> 19 #include <linux/writeback.h> 20 #include <linux/compat.h> 21 #include <linux/xattr.h> 22 #include <linux/posix_acl.h> 23 #include <linux/falloc.h> 24 #include <linux/slab.h> 25 #include <linux/ratelimit.h> 26 #include <linux/btrfs.h> 27 #include <linux/blkdev.h> 28 #include <linux/posix_acl_xattr.h> 29 #include <linux/uio.h> 30 #include <linux/magic.h> 31 #include <linux/iversion.h> 32 #include <linux/swap.h> 33 #include <linux/migrate.h> 34 #include <linux/sched/mm.h> 35 #include <linux/iomap.h> 36 #include <linux/unaligned.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "ordered-data.h" 43 #include "xattr.h" 44 #include "tree-log.h" 45 #include "bio.h" 46 #include "compression.h" 47 #include "locking.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 #include "inode-item.h" 56 #include "fs.h" 57 #include "accessors.h" 58 #include "extent-tree.h" 59 #include "root-tree.h" 60 #include "defrag.h" 61 #include "dir-item.h" 62 #include "file-item.h" 63 #include "uuid-tree.h" 64 #include "ioctl.h" 65 #include "file.h" 66 #include "acl.h" 67 #include "relocation.h" 68 #include "verity.h" 69 #include "super.h" 70 #include "orphan.h" 71 #include "backref.h" 72 #include "raid-stripe-tree.h" 73 #include "fiemap.h" 74 #include "delayed-inode.h" 75 76 #define COW_FILE_RANGE_KEEP_LOCKED (1UL << 0) 77 #define COW_FILE_RANGE_NO_INLINE (1UL << 1) 78 79 struct btrfs_iget_args { 80 u64 ino; 81 struct btrfs_root *root; 82 }; 83 84 struct btrfs_rename_ctx { 85 /* Output field. Stores the index number of the old directory entry. */ 86 u64 index; 87 }; 88 89 /* 90 * Used by data_reloc_print_warning_inode() to pass needed info for filename 91 * resolution and output of error message. 92 */ 93 struct data_reloc_warn { 94 struct btrfs_path path; 95 struct btrfs_fs_info *fs_info; 96 u64 extent_item_size; 97 u64 logical; 98 int mirror_num; 99 }; 100 101 /* 102 * For the file_extent_tree, we want to hold the inode lock when we lookup and 103 * update the disk_i_size, but lockdep will complain because our io_tree we hold 104 * the tree lock and get the inode lock when setting delalloc. These two things 105 * are unrelated, so make a class for the file_extent_tree so we don't get the 106 * two locking patterns mixed up. 107 */ 108 static struct lock_class_key file_extent_tree_class; 109 110 static const struct inode_operations btrfs_dir_inode_operations; 111 static const struct inode_operations btrfs_symlink_inode_operations; 112 static const struct inode_operations btrfs_special_inode_operations; 113 static const struct inode_operations btrfs_file_inode_operations; 114 static const struct address_space_operations btrfs_aops; 115 static const struct file_operations btrfs_dir_file_operations; 116 117 static struct kmem_cache *btrfs_inode_cachep; 118 119 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 120 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 121 122 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 123 struct folio *locked_folio, u64 start, 124 u64 end, struct writeback_control *wbc, 125 bool pages_dirty); 126 127 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 128 u64 root, void *warn_ctx) 129 { 130 struct data_reloc_warn *warn = warn_ctx; 131 struct btrfs_fs_info *fs_info = warn->fs_info; 132 struct extent_buffer *eb; 133 struct btrfs_inode_item *inode_item; 134 struct inode_fs_paths *ipath __free(inode_fs_paths) = NULL; 135 struct btrfs_root *local_root; 136 struct btrfs_key key; 137 unsigned int nofs_flag; 138 u32 nlink; 139 int ret; 140 141 local_root = btrfs_get_fs_root(fs_info, root, true); 142 if (IS_ERR(local_root)) { 143 ret = PTR_ERR(local_root); 144 goto err; 145 } 146 147 /* This makes the path point to (inum INODE_ITEM ioff). */ 148 key.objectid = inum; 149 key.type = BTRFS_INODE_ITEM_KEY; 150 key.offset = 0; 151 152 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 153 if (ret) { 154 btrfs_put_root(local_root); 155 btrfs_release_path(&warn->path); 156 goto err; 157 } 158 159 eb = warn->path.nodes[0]; 160 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 161 nlink = btrfs_inode_nlink(eb, inode_item); 162 btrfs_release_path(&warn->path); 163 164 nofs_flag = memalloc_nofs_save(); 165 ipath = init_ipath(4096, local_root, &warn->path); 166 memalloc_nofs_restore(nofs_flag); 167 if (IS_ERR(ipath)) { 168 btrfs_put_root(local_root); 169 ret = PTR_ERR(ipath); 170 ipath = NULL; 171 /* 172 * -ENOMEM, not a critical error, just output an generic error 173 * without filename. 174 */ 175 btrfs_warn(fs_info, 176 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 177 warn->logical, warn->mirror_num, root, inum, offset); 178 return ret; 179 } 180 ret = paths_from_inode(inum, ipath); 181 if (ret < 0) { 182 btrfs_put_root(local_root); 183 goto err; 184 } 185 186 /* 187 * We deliberately ignore the bit ipath might have been too small to 188 * hold all of the paths here 189 */ 190 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 191 btrfs_warn(fs_info, 192 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 193 warn->logical, warn->mirror_num, root, inum, offset, 194 fs_info->sectorsize, nlink, 195 (char *)(unsigned long)ipath->fspath->val[i]); 196 } 197 198 btrfs_put_root(local_root); 199 return 0; 200 201 err: 202 btrfs_warn(fs_info, 203 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 204 warn->logical, warn->mirror_num, root, inum, offset, ret); 205 206 return ret; 207 } 208 209 /* 210 * Do extra user-friendly error output (e.g. lookup all the affected files). 211 * 212 * Return true if we succeeded doing the backref lookup. 213 * Return false if such lookup failed, and has to fallback to the old error message. 214 */ 215 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 216 const u8 *csum, const u8 *csum_expected, 217 int mirror_num) 218 { 219 struct btrfs_fs_info *fs_info = inode->root->fs_info; 220 BTRFS_PATH_AUTO_RELEASE(path); 221 struct btrfs_key found_key = { 0 }; 222 struct extent_buffer *eb; 223 struct btrfs_extent_item *ei; 224 const u32 csum_size = fs_info->csum_size; 225 u64 logical; 226 u64 flags; 227 u32 item_size; 228 int ret; 229 230 mutex_lock(&fs_info->reloc_mutex); 231 logical = btrfs_get_reloc_bg_bytenr(fs_info); 232 mutex_unlock(&fs_info->reloc_mutex); 233 234 if (logical == U64_MAX) { 235 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 236 btrfs_warn_rl(fs_info, 237 "csum failed root %lld ino %llu off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d", 238 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 239 BTRFS_CSUM_FMT_VALUE(csum_size, csum), 240 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected), 241 mirror_num); 242 return; 243 } 244 245 logical += file_off; 246 btrfs_warn_rl(fs_info, 247 "csum failed root %lld ino %llu off %llu logical %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d", 248 btrfs_root_id(inode->root), 249 btrfs_ino(inode), file_off, logical, 250 BTRFS_CSUM_FMT_VALUE(csum_size, csum), 251 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected), 252 mirror_num); 253 254 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 255 if (ret < 0) { 256 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 257 logical, ret); 258 return; 259 } 260 eb = path.nodes[0]; 261 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 262 item_size = btrfs_item_size(eb, path.slots[0]); 263 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 264 unsigned long ptr = 0; 265 u64 ref_root; 266 u8 ref_level; 267 268 while (true) { 269 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 270 item_size, &ref_root, 271 &ref_level); 272 if (ret < 0) { 273 btrfs_warn_rl(fs_info, 274 "failed to resolve tree backref for logical %llu: %d", 275 logical, ret); 276 break; 277 } 278 if (ret > 0) 279 break; 280 281 btrfs_warn_rl(fs_info, 282 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 283 logical, mirror_num, 284 (ref_level ? "node" : "leaf"), 285 ref_level, ref_root); 286 } 287 } else { 288 struct btrfs_backref_walk_ctx ctx = { 0 }; 289 struct data_reloc_warn reloc_warn = { 0 }; 290 291 /* 292 * Do not hold the path as later iterate_extent_inodes() call 293 * can be time consuming. 294 */ 295 btrfs_release_path(&path); 296 297 ctx.bytenr = found_key.objectid; 298 ctx.extent_item_pos = logical - found_key.objectid; 299 ctx.fs_info = fs_info; 300 301 reloc_warn.logical = logical; 302 reloc_warn.extent_item_size = found_key.offset; 303 reloc_warn.mirror_num = mirror_num; 304 reloc_warn.fs_info = fs_info; 305 306 iterate_extent_inodes(&ctx, true, 307 data_reloc_print_warning_inode, &reloc_warn); 308 } 309 } 310 311 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 312 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 313 { 314 struct btrfs_root *root = inode->root; 315 const u32 csum_size = root->fs_info->csum_size; 316 317 /* For data reloc tree, it's better to do a backref lookup instead. */ 318 if (btrfs_is_data_reloc_root(root)) 319 return print_data_reloc_error(inode, logical_start, csum, 320 csum_expected, mirror_num); 321 322 /* Output without objectid, which is more meaningful */ 323 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 324 btrfs_warn_rl(root->fs_info, 325 "csum failed root %lld ino %lld off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d", 326 btrfs_root_id(root), btrfs_ino(inode), 327 logical_start, 328 BTRFS_CSUM_FMT_VALUE(csum_size, csum), 329 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected), 330 mirror_num); 331 } else { 332 btrfs_warn_rl(root->fs_info, 333 "csum failed root %llu ino %llu off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d", 334 btrfs_root_id(root), btrfs_ino(inode), 335 logical_start, 336 BTRFS_CSUM_FMT_VALUE(csum_size, csum), 337 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected), 338 mirror_num); 339 } 340 } 341 342 /* 343 * Lock inode i_rwsem based on arguments passed. 344 * 345 * ilock_flags can have the following bit set: 346 * 347 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 348 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 349 * return -EAGAIN 350 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 351 */ 352 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 353 { 354 if (ilock_flags & BTRFS_ILOCK_SHARED) { 355 if (ilock_flags & BTRFS_ILOCK_TRY) { 356 if (!inode_trylock_shared(&inode->vfs_inode)) 357 return -EAGAIN; 358 else 359 return 0; 360 } 361 inode_lock_shared(&inode->vfs_inode); 362 } else { 363 if (ilock_flags & BTRFS_ILOCK_TRY) { 364 if (!inode_trylock(&inode->vfs_inode)) 365 return -EAGAIN; 366 else 367 return 0; 368 } 369 inode_lock(&inode->vfs_inode); 370 } 371 if (ilock_flags & BTRFS_ILOCK_MMAP) 372 down_write(&inode->i_mmap_lock); 373 return 0; 374 } 375 376 /* 377 * Unlock inode i_rwsem. 378 * 379 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 380 * to decide whether the lock acquired is shared or exclusive. 381 */ 382 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 383 { 384 if (ilock_flags & BTRFS_ILOCK_MMAP) 385 up_write(&inode->i_mmap_lock); 386 if (ilock_flags & BTRFS_ILOCK_SHARED) 387 inode_unlock_shared(&inode->vfs_inode); 388 else 389 inode_unlock(&inode->vfs_inode); 390 } 391 392 /* 393 * Cleanup all submitted ordered extents in specified range to handle errors 394 * from the btrfs_run_delalloc_range() callback. 395 * 396 * NOTE: caller must ensure that when an error happens, it can not call 397 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 398 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 399 * to be released, which we want to happen only when finishing the ordered 400 * extent (btrfs_finish_ordered_io()). 401 */ 402 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 403 u64 offset, u64 bytes) 404 { 405 pgoff_t index = offset >> PAGE_SHIFT; 406 const pgoff_t end_index = (offset + bytes - 1) >> PAGE_SHIFT; 407 struct folio *folio; 408 409 while (index <= end_index) { 410 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 411 if (IS_ERR(folio)) { 412 index++; 413 continue; 414 } 415 416 index = folio_next_index(folio); 417 /* 418 * Here we just clear all Ordered bits for every page in the 419 * range, then btrfs_mark_ordered_io_finished() will handle 420 * the ordered extent accounting for the range. 421 */ 422 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio, 423 offset, bytes); 424 folio_put(folio); 425 } 426 427 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 428 } 429 430 static int btrfs_dirty_inode(struct btrfs_inode *inode); 431 432 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 433 struct btrfs_new_inode_args *args) 434 { 435 int ret; 436 437 if (args->default_acl) { 438 ret = __btrfs_set_acl(trans, args->inode, args->default_acl, 439 ACL_TYPE_DEFAULT); 440 if (ret) 441 return ret; 442 } 443 if (args->acl) { 444 ret = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 445 if (ret) 446 return ret; 447 } 448 if (!args->default_acl && !args->acl) 449 cache_no_acl(args->inode); 450 return btrfs_xattr_security_init(trans, args->inode, args->dir, 451 &args->dentry->d_name); 452 } 453 454 /* 455 * this does all the hard work for inserting an inline extent into 456 * the btree. The caller should have done a btrfs_drop_extents so that 457 * no overlapping inline items exist in the btree 458 */ 459 static int insert_inline_extent(struct btrfs_trans_handle *trans, 460 struct btrfs_path *path, 461 struct btrfs_inode *inode, bool extent_inserted, 462 size_t size, size_t compressed_size, 463 int compress_type, 464 struct folio *compressed_folio, 465 bool update_i_size) 466 { 467 struct btrfs_root *root = inode->root; 468 struct extent_buffer *leaf; 469 const u32 sectorsize = trans->fs_info->sectorsize; 470 char *kaddr; 471 unsigned long ptr; 472 struct btrfs_file_extent_item *ei; 473 int ret; 474 size_t cur_size = size; 475 u64 i_size; 476 477 /* 478 * The decompressed size must still be no larger than a sector. Under 479 * heavy race, we can have size == 0 passed in, but that shouldn't be a 480 * big deal and we can continue the insertion. 481 */ 482 ASSERT(size <= sectorsize); 483 484 /* 485 * The compressed size also needs to be no larger than a page. 486 * That's also why we only need one folio as the parameter. 487 */ 488 if (compressed_folio) { 489 ASSERT(compressed_size <= sectorsize); 490 ASSERT(compressed_size <= PAGE_SIZE); 491 } else { 492 ASSERT(compressed_size == 0); 493 } 494 495 if (compressed_size && compressed_folio) 496 cur_size = compressed_size; 497 498 if (!extent_inserted) { 499 struct btrfs_key key; 500 size_t datasize; 501 502 key.objectid = btrfs_ino(inode); 503 key.type = BTRFS_EXTENT_DATA_KEY; 504 key.offset = 0; 505 506 datasize = btrfs_file_extent_calc_inline_size(cur_size); 507 ret = btrfs_insert_empty_item(trans, root, path, &key, 508 datasize); 509 if (ret) 510 return ret; 511 } 512 leaf = path->nodes[0]; 513 ei = btrfs_item_ptr(leaf, path->slots[0], 514 struct btrfs_file_extent_item); 515 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 516 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 517 btrfs_set_file_extent_encryption(leaf, ei, 0); 518 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 519 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 520 ptr = btrfs_file_extent_inline_start(ei); 521 522 if (compress_type != BTRFS_COMPRESS_NONE) { 523 kaddr = kmap_local_folio(compressed_folio, 0); 524 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 525 kunmap_local(kaddr); 526 527 btrfs_set_file_extent_compression(leaf, ei, 528 compress_type); 529 } else { 530 struct folio *folio; 531 532 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0); 533 ASSERT(!IS_ERR(folio)); 534 btrfs_set_file_extent_compression(leaf, ei, 0); 535 kaddr = kmap_local_folio(folio, 0); 536 write_extent_buffer(leaf, kaddr, ptr, size); 537 kunmap_local(kaddr); 538 folio_put(folio); 539 } 540 btrfs_release_path(path); 541 542 /* 543 * We align size to sectorsize for inline extents just for simplicity 544 * sake. 545 */ 546 ret = btrfs_inode_set_file_extent_range(inode, 0, 547 ALIGN(size, root->fs_info->sectorsize)); 548 if (ret) 549 return ret; 550 551 /* 552 * We're an inline extent, so nobody can extend the file past i_size 553 * without locking a page we already have locked. 554 * 555 * We must do any i_size and inode updates before we unlock the pages. 556 * Otherwise we could end up racing with unlink. 557 */ 558 i_size = i_size_read(&inode->vfs_inode); 559 if (update_i_size && size > i_size) { 560 i_size_write(&inode->vfs_inode, size); 561 i_size = size; 562 } 563 inode->disk_i_size = i_size; 564 565 return 0; 566 } 567 568 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 569 u64 offset, u64 size, 570 size_t compressed_size) 571 { 572 struct btrfs_fs_info *fs_info = inode->root->fs_info; 573 u64 data_len = (compressed_size ?: size); 574 575 /* Inline extents must start at offset 0. */ 576 if (offset != 0) 577 return false; 578 579 /* 580 * Even for bs > ps cases, cow_file_range_inline() can only accept a 581 * single folio. 582 * 583 * This can be problematic and cause access beyond page boundary if a 584 * page sized folio is passed into that function. 585 * And encoded write is doing exactly that. 586 * So here limits the inlined extent size to PAGE_SIZE. 587 */ 588 if (size > PAGE_SIZE || compressed_size > PAGE_SIZE) 589 return false; 590 591 /* Inline extents are limited to sectorsize. */ 592 if (size > fs_info->sectorsize) 593 return false; 594 595 /* We do not allow a non-compressed extent to be as large as block size. */ 596 if (data_len >= fs_info->sectorsize) 597 return false; 598 599 /* We cannot exceed the maximum inline data size. */ 600 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 601 return false; 602 603 /* We cannot exceed the user specified max_inline size. */ 604 if (data_len > fs_info->max_inline) 605 return false; 606 607 /* Inline extents must be the entirety of the file. */ 608 if (size < i_size_read(&inode->vfs_inode)) 609 return false; 610 611 /* Encrypted file cannot be inlined. */ 612 if (IS_ENCRYPTED(&inode->vfs_inode)) 613 return false; 614 615 return true; 616 } 617 618 /* 619 * conditionally insert an inline extent into the file. This 620 * does the checks required to make sure the data is small enough 621 * to fit as an inline extent. 622 * 623 * If being used directly, you must have already checked we're allowed to cow 624 * the range by getting true from can_cow_file_range_inline(). 625 */ 626 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, 627 u64 size, size_t compressed_size, 628 int compress_type, 629 struct folio *compressed_folio, 630 bool update_i_size) 631 { 632 struct btrfs_drop_extents_args drop_args = { 0 }; 633 struct btrfs_root *root = inode->root; 634 struct btrfs_fs_info *fs_info = root->fs_info; 635 struct btrfs_trans_handle *trans = NULL; 636 u64 data_len = (compressed_size ?: size); 637 int ret; 638 struct btrfs_path *path; 639 640 path = btrfs_alloc_path(); 641 if (!path) { 642 ret = -ENOMEM; 643 goto out; 644 } 645 646 trans = btrfs_join_transaction(root); 647 if (IS_ERR(trans)) { 648 ret = PTR_ERR(trans); 649 trans = NULL; 650 goto out; 651 } 652 trans->block_rsv = &inode->block_rsv; 653 654 drop_args.path = path; 655 drop_args.start = 0; 656 drop_args.end = fs_info->sectorsize; 657 drop_args.drop_cache = true; 658 drop_args.replace_extent = true; 659 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 660 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 661 if (unlikely(ret)) { 662 btrfs_abort_transaction(trans, ret); 663 goto out; 664 } 665 666 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 667 size, compressed_size, compress_type, 668 compressed_folio, update_i_size); 669 if (unlikely(ret && ret != -ENOSPC)) { 670 btrfs_abort_transaction(trans, ret); 671 goto out; 672 } else if (ret == -ENOSPC) { 673 ret = 1; 674 goto out; 675 } 676 677 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 678 ret = btrfs_update_inode(trans, inode); 679 if (unlikely(ret && ret != -ENOSPC)) { 680 btrfs_abort_transaction(trans, ret); 681 goto out; 682 } else if (ret == -ENOSPC) { 683 ret = 1; 684 goto out; 685 } 686 687 btrfs_set_inode_full_sync(inode); 688 out: 689 /* 690 * Don't forget to free the reserved space, as for inlined extent 691 * it won't count as data extent, free them directly here. 692 * And at reserve time, it's always aligned to sector size, so 693 * just free one sector here. 694 * 695 * If we fallback to non-inline (ret == 1) due to -ENOSPC, then we need 696 * to keep the data reservation. 697 */ 698 if (ret <= 0) 699 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL); 700 btrfs_free_path(path); 701 if (trans) 702 btrfs_end_transaction(trans); 703 return ret; 704 } 705 706 static noinline int cow_file_range_inline(struct btrfs_inode *inode, 707 struct folio *locked_folio, 708 u64 offset, u64 end, 709 size_t compressed_size, 710 int compress_type, 711 struct folio *compressed_folio, 712 bool update_i_size) 713 { 714 struct extent_state *cached = NULL; 715 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 716 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 717 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 718 int ret; 719 720 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 721 return 1; 722 723 btrfs_lock_extent(&inode->io_tree, offset, end, &cached); 724 ret = __cow_file_range_inline(inode, size, compressed_size, 725 compress_type, compressed_folio, 726 update_i_size); 727 if (ret > 0) { 728 btrfs_unlock_extent(&inode->io_tree, offset, end, &cached); 729 return ret; 730 } 731 732 /* 733 * In the successful case (ret == 0 here), cow_file_range will return 1. 734 * 735 * Quite a bit further up the callstack in extent_writepage(), ret == 1 736 * is treated as a short circuited success and does not unlock the folio, 737 * so we must do it here. 738 * 739 * In the failure case, the locked_folio does get unlocked by 740 * btrfs_folio_end_all_writers, which asserts that it is still locked 741 * at that point, so we must *not* unlock it here. 742 * 743 * The other two callsites in compress_file_range do not have a 744 * locked_folio, so they are not relevant to this logic. 745 */ 746 if (ret == 0) 747 locked_folio = NULL; 748 749 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached, 750 clear_flags, PAGE_UNLOCK | 751 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 752 return ret; 753 } 754 755 struct async_extent { 756 u64 start; 757 u64 ram_size; 758 struct compressed_bio *cb; 759 struct list_head list; 760 }; 761 762 struct async_chunk { 763 struct btrfs_inode *inode; 764 struct folio *locked_folio; 765 u64 start; 766 u64 end; 767 blk_opf_t write_flags; 768 struct list_head extents; 769 struct cgroup_subsys_state *blkcg_css; 770 struct btrfs_work work; 771 struct async_cow *async_cow; 772 }; 773 774 struct async_cow { 775 atomic_t num_chunks; 776 struct async_chunk chunks[]; 777 }; 778 779 static int add_async_extent(struct async_chunk *cow, u64 start, u64 ram_size, 780 struct compressed_bio *cb) 781 { 782 struct async_extent *async_extent; 783 784 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 785 if (!async_extent) 786 return -ENOMEM; 787 ASSERT(ram_size < U32_MAX); 788 async_extent->start = start; 789 async_extent->ram_size = ram_size; 790 async_extent->cb = cb; 791 list_add_tail(&async_extent->list, &cow->extents); 792 return 0; 793 } 794 795 /* 796 * Check if the inode needs to be submitted to compression, based on mount 797 * options, defragmentation, properties or heuristics. 798 */ 799 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 800 u64 end) 801 { 802 struct btrfs_fs_info *fs_info = inode->root->fs_info; 803 804 if (!btrfs_inode_can_compress(inode)) { 805 DEBUG_WARN("BTRFS: unexpected compression for ino %llu", btrfs_ino(inode)); 806 return 0; 807 } 808 809 /* 810 * If the delalloc range is only one fs block and can not be inlined, 811 * do not even bother try compression, as there will be no space saving 812 * and will always fallback to regular write later. 813 */ 814 if (start != 0 && end + 1 - start <= fs_info->sectorsize) 815 return 0; 816 /* Defrag ioctl takes precedence over mount options and properties. */ 817 if (inode->defrag_compress == BTRFS_DEFRAG_DONT_COMPRESS) 818 return 0; 819 if (BTRFS_COMPRESS_NONE < inode->defrag_compress && 820 inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) 821 return 1; 822 /* force compress */ 823 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 824 return 1; 825 /* bad compression ratios */ 826 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 827 return 0; 828 if (btrfs_test_opt(fs_info, COMPRESS) || 829 inode->flags & BTRFS_INODE_COMPRESS || 830 inode->prop_compress) 831 return btrfs_compress_heuristic(inode, start, end); 832 return 0; 833 } 834 835 static inline void inode_should_defrag(struct btrfs_inode *inode, 836 u64 start, u64 end, u64 num_bytes, u32 small_write) 837 { 838 /* If this is a small write inside eof, kick off a defrag */ 839 if (num_bytes < small_write && 840 (start > 0 || end + 1 < inode->disk_i_size)) 841 btrfs_add_inode_defrag(inode, small_write); 842 } 843 844 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end) 845 { 846 const pgoff_t end_index = end >> PAGE_SHIFT; 847 struct folio *folio; 848 int ret = 0; 849 850 for (pgoff_t index = start >> PAGE_SHIFT; index <= end_index; index++) { 851 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 852 if (IS_ERR(folio)) { 853 if (!ret) 854 ret = PTR_ERR(folio); 855 continue; 856 } 857 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start, 858 end + 1 - start); 859 folio_put(folio); 860 } 861 return ret; 862 } 863 864 static struct folio *compressed_bio_last_folio(struct compressed_bio *cb) 865 { 866 struct bio *bio = &cb->bbio.bio; 867 struct bio_vec *bvec; 868 phys_addr_t paddr; 869 870 /* 871 * Make sure all folios have the same min_folio_size. 872 * 873 * Otherwise we cannot simply use offset_in_offset(folio, bi_size) to 874 * calculate the end of the last folio. 875 */ 876 if (IS_ENABLED(CONFIG_BTRFS_ASSERT)) { 877 struct btrfs_fs_info *fs_info = cb_to_fs_info(cb); 878 const u32 min_folio_size = btrfs_min_folio_size(fs_info); 879 struct folio_iter fi; 880 881 bio_for_each_folio_all(fi, bio) 882 ASSERT(folio_size(fi.folio) == min_folio_size); 883 } 884 885 /* The bio must not be empty. */ 886 ASSERT(bio->bi_vcnt); 887 888 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 889 paddr = page_to_phys(bvec->bv_page) + bvec->bv_offset + bvec->bv_len - 1; 890 return page_folio(phys_to_page(paddr)); 891 } 892 893 static void zero_last_folio(struct compressed_bio *cb) 894 { 895 struct bio *bio = &cb->bbio.bio; 896 struct folio *last_folio = compressed_bio_last_folio(cb); 897 const u32 bio_size = bio->bi_iter.bi_size; 898 const u32 foffset = offset_in_folio(last_folio, bio_size); 899 900 folio_zero_range(last_folio, foffset, folio_size(last_folio) - foffset); 901 } 902 903 static void round_up_last_block(struct compressed_bio *cb, u32 blocksize) 904 { 905 struct bio *bio = &cb->bbio.bio; 906 struct folio *last_folio = compressed_bio_last_folio(cb); 907 const u32 bio_size = bio->bi_iter.bi_size; 908 const u32 foffset = offset_in_folio(last_folio, bio_size); 909 bool ret; 910 911 if (IS_ALIGNED(bio_size, blocksize)) 912 return; 913 914 ret = bio_add_folio(bio, last_folio, round_up(foffset, blocksize) - foffset, foffset); 915 /* The remaining part should be merged thus never fail. */ 916 ASSERT(ret); 917 } 918 919 /* 920 * Work queue call back to started compression on a file and pages. 921 * 922 * This is done inside an ordered work queue, and the compression is spread 923 * across many cpus. The actual IO submission is step two, and the ordered work 924 * queue takes care of making sure that happens in the same order things were 925 * put onto the queue by writepages and friends. 926 * 927 * If this code finds it can't get good compression, it puts an entry onto the 928 * work queue to write the uncompressed bytes. This makes sure that both 929 * compressed inodes and uncompressed inodes are written in the same order that 930 * the flusher thread sent them down. 931 */ 932 static void compress_file_range(struct btrfs_work *work) 933 { 934 struct async_chunk *async_chunk = 935 container_of(work, struct async_chunk, work); 936 struct btrfs_inode *inode = async_chunk->inode; 937 struct btrfs_fs_info *fs_info = inode->root->fs_info; 938 struct address_space *mapping = inode->vfs_inode.i_mapping; 939 struct compressed_bio *cb = NULL; 940 const u32 min_folio_size = btrfs_min_folio_size(fs_info); 941 u64 blocksize = fs_info->sectorsize; 942 u64 start = async_chunk->start; 943 u64 end = async_chunk->end; 944 u64 actual_end; 945 u64 i_size; 946 u32 cur_len; 947 int ret = 0; 948 unsigned long total_compressed = 0; 949 unsigned long total_in = 0; 950 unsigned int loff; 951 int compress_type = fs_info->compress_type; 952 int compress_level = fs_info->compress_level; 953 954 if (btrfs_is_shutdown(fs_info)) 955 goto cleanup_and_bail_uncompressed; 956 957 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 958 959 /* 960 * We need to call clear_page_dirty_for_io on each page in the range. 961 * Otherwise applications with the file mmap'd can wander in and change 962 * the page contents while we are compressing them. 963 */ 964 ret = extent_range_clear_dirty_for_io(inode, start, end); 965 966 /* 967 * All the folios should have been locked thus no failure. 968 * 969 * And even if some folios are missing, btrfs_compress_bio() 970 * would handle them correctly, so here just do an ASSERT() check for 971 * early logic errors. 972 */ 973 ASSERT(ret == 0); 974 975 /* 976 * We need to save i_size before now because it could change in between 977 * us evaluating the size and assigning it. This is because we lock and 978 * unlock the page in truncate and fallocate, and then modify the i_size 979 * later on. 980 * 981 * The barriers are to emulate READ_ONCE, remove that once i_size_read 982 * does that for us. 983 */ 984 barrier(); 985 i_size = i_size_read(&inode->vfs_inode); 986 barrier(); 987 actual_end = min_t(u64, i_size, end + 1); 988 again: 989 total_in = 0; 990 cur_len = min(end + 1 - start, BTRFS_MAX_UNCOMPRESSED); 991 ret = 0; 992 cb = NULL; 993 994 /* 995 * we don't want to send crud past the end of i_size through 996 * compression, that's just a waste of CPU time. So, if the 997 * end of the file is before the start of our current 998 * requested range of bytes, we bail out to the uncompressed 999 * cleanup code that can deal with all of this. 1000 * 1001 * It isn't really the fastest way to fix things, but this is a 1002 * very uncommon corner. 1003 */ 1004 if (actual_end <= start) 1005 goto cleanup_and_bail_uncompressed; 1006 1007 /* 1008 * We do compression for mount -o compress and when the inode has not 1009 * been flagged as NOCOMPRESS. This flag can change at any time if we 1010 * discover bad compression ratios. 1011 */ 1012 if (!inode_need_compress(inode, start, end)) 1013 goto cleanup_and_bail_uncompressed; 1014 1015 if (0 < inode->defrag_compress && inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) { 1016 compress_type = inode->defrag_compress; 1017 compress_level = inode->defrag_compress_level; 1018 } else if (inode->prop_compress) { 1019 compress_type = inode->prop_compress; 1020 } 1021 1022 /* Compression level is applied here. */ 1023 cb = btrfs_compress_bio(inode, start, cur_len, compress_type, 1024 compress_level, async_chunk->write_flags); 1025 if (IS_ERR(cb)) { 1026 cb = NULL; 1027 goto mark_incompressible; 1028 } 1029 1030 total_compressed = cb->bbio.bio.bi_iter.bi_size; 1031 total_in = cur_len; 1032 1033 /* 1034 * Zero the tail end of the last folio, as we might be sending it down 1035 * to disk. 1036 */ 1037 loff = (total_compressed & (min_folio_size - 1)); 1038 if (loff) 1039 zero_last_folio(cb); 1040 1041 /* 1042 * Try to create an inline extent. 1043 * 1044 * If we didn't compress the entire range, try to create an uncompressed 1045 * inline extent, else a compressed one. 1046 * 1047 * Check cow_file_range() for why we don't even try to create inline 1048 * extent for the subpage case. 1049 */ 1050 if (total_in < actual_end) 1051 ret = cow_file_range_inline(inode, NULL, start, end, 0, 1052 BTRFS_COMPRESS_NONE, NULL, false); 1053 else 1054 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed, 1055 compress_type, 1056 bio_first_folio_all(&cb->bbio.bio), false); 1057 if (ret <= 0) { 1058 cleanup_compressed_bio(cb); 1059 if (ret < 0) 1060 mapping_set_error(mapping, -EIO); 1061 return; 1062 } 1063 1064 /* 1065 * We aren't doing an inline extent. Round the compressed size up to a 1066 * block size boundary so the allocator does sane things. 1067 */ 1068 total_compressed = ALIGN(total_compressed, blocksize); 1069 round_up_last_block(cb, blocksize); 1070 1071 /* 1072 * One last check to make sure the compression is really a win, compare 1073 * the page count read with the blocks on disk, compression must free at 1074 * least one sector. 1075 */ 1076 total_in = round_up(total_in, fs_info->sectorsize); 1077 if (total_compressed + blocksize > total_in) 1078 goto mark_incompressible; 1079 1080 1081 /* 1082 * The async work queues will take care of doing actual allocation on 1083 * disk for these compressed pages, and will submit the bios. 1084 */ 1085 ret = add_async_extent(async_chunk, start, total_in, cb); 1086 BUG_ON(ret); 1087 if (start + total_in < end) { 1088 start += total_in; 1089 cond_resched(); 1090 goto again; 1091 } 1092 return; 1093 1094 mark_incompressible: 1095 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1096 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1097 cleanup_and_bail_uncompressed: 1098 ret = add_async_extent(async_chunk, start, end - start + 1, NULL); 1099 BUG_ON(ret); 1100 if (cb) 1101 cleanup_compressed_bio(cb); 1102 } 1103 1104 static void submit_uncompressed_range(struct btrfs_inode *inode, 1105 struct async_extent *async_extent, 1106 struct folio *locked_folio) 1107 { 1108 u64 start = async_extent->start; 1109 u64 end = async_extent->start + async_extent->ram_size - 1; 1110 int ret; 1111 struct writeback_control wbc = { 1112 .sync_mode = WB_SYNC_ALL, 1113 .range_start = start, 1114 .range_end = end, 1115 .no_cgroup_owner = 1, 1116 }; 1117 1118 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1119 ret = run_delalloc_cow(inode, locked_folio, start, end, 1120 &wbc, false); 1121 wbc_detach_inode(&wbc); 1122 if (ret < 0) { 1123 if (locked_folio) 1124 btrfs_folio_end_lock(inode->root->fs_info, locked_folio, 1125 start, async_extent->ram_size); 1126 btrfs_err_rl(inode->root->fs_info, 1127 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1128 __func__, btrfs_root_id(inode->root), 1129 btrfs_ino(inode), start, async_extent->ram_size, ret); 1130 } 1131 } 1132 1133 static void submit_one_async_extent(struct async_chunk *async_chunk, 1134 struct async_extent *async_extent, 1135 u64 *alloc_hint) 1136 { 1137 struct btrfs_inode *inode = async_chunk->inode; 1138 struct extent_io_tree *io_tree = &inode->io_tree; 1139 struct btrfs_root *root = inode->root; 1140 struct btrfs_fs_info *fs_info = root->fs_info; 1141 struct btrfs_ordered_extent *ordered; 1142 struct btrfs_file_extent file_extent; 1143 struct btrfs_key ins; 1144 struct folio *locked_folio = NULL; 1145 struct extent_state *cached = NULL; 1146 struct extent_map *em; 1147 int ret = 0; 1148 u32 compressed_size; 1149 u64 start = async_extent->start; 1150 u64 end = async_extent->start + async_extent->ram_size - 1; 1151 1152 if (async_chunk->blkcg_css) 1153 kthread_associate_blkcg(async_chunk->blkcg_css); 1154 1155 /* 1156 * If async_chunk->locked_folio is in the async_extent range, we need to 1157 * handle it. 1158 */ 1159 if (async_chunk->locked_folio) { 1160 u64 locked_folio_start = folio_pos(async_chunk->locked_folio); 1161 u64 locked_folio_end = locked_folio_start + 1162 folio_size(async_chunk->locked_folio) - 1; 1163 1164 if (!(start >= locked_folio_end || end <= locked_folio_start)) 1165 locked_folio = async_chunk->locked_folio; 1166 } 1167 1168 if (!async_extent->cb) { 1169 submit_uncompressed_range(inode, async_extent, locked_folio); 1170 goto done; 1171 } 1172 1173 compressed_size = async_extent->cb->bbio.bio.bi_iter.bi_size; 1174 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1175 compressed_size, compressed_size, 1176 0, *alloc_hint, &ins, true, true); 1177 if (ret) { 1178 /* 1179 * We can't reserve contiguous space for the compressed size. 1180 * Unlikely, but it's possible that we could have enough 1181 * non-contiguous space for the uncompressed size instead. So 1182 * fall back to uncompressed. 1183 */ 1184 submit_uncompressed_range(inode, async_extent, locked_folio); 1185 cleanup_compressed_bio(async_extent->cb); 1186 async_extent->cb = NULL; 1187 goto done; 1188 } 1189 1190 btrfs_lock_extent(io_tree, start, end, &cached); 1191 1192 /* Here we're doing allocation and writeback of the compressed pages */ 1193 file_extent.disk_bytenr = ins.objectid; 1194 file_extent.disk_num_bytes = ins.offset; 1195 file_extent.ram_bytes = async_extent->ram_size; 1196 file_extent.num_bytes = async_extent->ram_size; 1197 file_extent.offset = 0; 1198 file_extent.compression = async_extent->cb->compress_type; 1199 1200 async_extent->cb->bbio.bio.bi_iter.bi_sector = ins.objectid >> SECTOR_SHIFT; 1201 1202 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1203 if (IS_ERR(em)) { 1204 ret = PTR_ERR(em); 1205 goto out_free_reserve; 1206 } 1207 btrfs_free_extent_map(em); 1208 1209 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1210 1U << BTRFS_ORDERED_COMPRESSED); 1211 if (IS_ERR(ordered)) { 1212 btrfs_drop_extent_map_range(inode, start, end, false); 1213 ret = PTR_ERR(ordered); 1214 goto out_free_reserve; 1215 } 1216 async_extent->cb->bbio.ordered = ordered; 1217 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1218 1219 /* Clear dirty, set writeback and unlock the pages. */ 1220 extent_clear_unlock_delalloc(inode, start, end, 1221 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1222 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1223 btrfs_submit_bbio(&async_extent->cb->bbio, 0); 1224 async_extent->cb = NULL; 1225 1226 *alloc_hint = ins.objectid + ins.offset; 1227 done: 1228 if (async_chunk->blkcg_css) 1229 kthread_associate_blkcg(NULL); 1230 kfree(async_extent); 1231 return; 1232 1233 out_free_reserve: 1234 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1235 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1236 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1237 extent_clear_unlock_delalloc(inode, start, end, 1238 NULL, &cached, 1239 EXTENT_LOCKED | EXTENT_DELALLOC | 1240 EXTENT_DELALLOC_NEW | 1241 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1242 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1243 PAGE_END_WRITEBACK); 1244 if (async_extent->cb) 1245 cleanup_compressed_bio(async_extent->cb); 1246 if (async_chunk->blkcg_css) 1247 kthread_associate_blkcg(NULL); 1248 btrfs_debug(fs_info, 1249 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1250 btrfs_root_id(root), btrfs_ino(inode), start, 1251 async_extent->ram_size, ret); 1252 kfree(async_extent); 1253 } 1254 1255 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1256 u64 num_bytes) 1257 { 1258 struct extent_map_tree *em_tree = &inode->extent_tree; 1259 struct extent_map *em; 1260 u64 alloc_hint = 0; 1261 1262 read_lock(&em_tree->lock); 1263 em = btrfs_search_extent_mapping(em_tree, start, num_bytes); 1264 if (em) { 1265 /* 1266 * if block start isn't an actual block number then find the 1267 * first block in this inode and use that as a hint. If that 1268 * block is also bogus then just don't worry about it. 1269 */ 1270 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1271 btrfs_free_extent_map(em); 1272 em = btrfs_search_extent_mapping(em_tree, 0, 0); 1273 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1274 alloc_hint = btrfs_extent_map_block_start(em); 1275 if (em) 1276 btrfs_free_extent_map(em); 1277 } else { 1278 alloc_hint = btrfs_extent_map_block_start(em); 1279 btrfs_free_extent_map(em); 1280 } 1281 } 1282 read_unlock(&em_tree->lock); 1283 1284 return alloc_hint; 1285 } 1286 1287 /* 1288 * Handle COW for one range. 1289 * 1290 * @ins: The key representing the allocated range. 1291 * @file_offset: The file offset of the COW range 1292 * @num_bytes: The expected length of the COW range 1293 * The actually allocated length can be smaller than it. 1294 * @min_alloc_size: The minimal extent size. 1295 * @alloc_hint: The hint for the extent allocator. 1296 * @ret_alloc_size: The COW range handles by this function. 1297 * 1298 * Return 0 if everything is fine and update @ret_alloc_size updated. The 1299 * range is still locked, and caller should unlock the range after everything 1300 * is done or for error handling. 1301 * 1302 * Return <0 for error and @is updated for where the extra cleanup should 1303 * happen. The range [file_offset, file_offset + ret_alloc_size) will be 1304 * cleaned up by this function. 1305 */ 1306 static int cow_one_range(struct btrfs_inode *inode, struct folio *locked_folio, 1307 struct btrfs_key *ins, struct extent_state **cached, 1308 u64 file_offset, u32 num_bytes, u32 min_alloc_size, 1309 u64 alloc_hint, u32 *ret_alloc_size) 1310 { 1311 struct btrfs_root *root = inode->root; 1312 struct btrfs_fs_info *fs_info = root->fs_info; 1313 struct btrfs_ordered_extent *ordered; 1314 struct btrfs_file_extent file_extent; 1315 struct extent_map *em; 1316 u32 cur_len = 0; 1317 u64 cur_end; 1318 int ret; 1319 1320 ret = btrfs_reserve_extent(root, num_bytes, num_bytes, min_alloc_size, 1321 0, alloc_hint, ins, true, true); 1322 if (ret < 0) { 1323 *ret_alloc_size = cur_len; 1324 return ret; 1325 } 1326 1327 cur_len = ins->offset; 1328 cur_end = file_offset + cur_len - 1; 1329 1330 file_extent.disk_bytenr = ins->objectid; 1331 file_extent.disk_num_bytes = ins->offset; 1332 file_extent.num_bytes = ins->offset; 1333 file_extent.ram_bytes = ins->offset; 1334 file_extent.offset = 0; 1335 file_extent.compression = BTRFS_COMPRESS_NONE; 1336 1337 /* 1338 * Locked range will be released either during error clean up (inside 1339 * this function or by the caller for previously successful ranges) or 1340 * after the whole range is finished. 1341 */ 1342 btrfs_lock_extent(&inode->io_tree, file_offset, cur_end, cached); 1343 em = btrfs_create_io_em(inode, file_offset, &file_extent, BTRFS_ORDERED_REGULAR); 1344 if (IS_ERR(em)) { 1345 ret = PTR_ERR(em); 1346 goto free_reserved; 1347 } 1348 btrfs_free_extent_map(em); 1349 1350 ordered = btrfs_alloc_ordered_extent(inode, file_offset, &file_extent, 1351 1U << BTRFS_ORDERED_REGULAR); 1352 if (IS_ERR(ordered)) { 1353 btrfs_drop_extent_map_range(inode, file_offset, cur_end, false); 1354 ret = PTR_ERR(ordered); 1355 goto free_reserved; 1356 } 1357 1358 if (btrfs_is_data_reloc_root(root)) { 1359 ret = btrfs_reloc_clone_csums(ordered); 1360 1361 /* 1362 * Only drop cache here, and process as normal. 1363 * 1364 * We must not allow extent_clear_unlock_delalloc() at 1365 * free_reserved label to free meta of this ordered extent, as 1366 * its meta should be freed by btrfs_finish_ordered_io(). 1367 * 1368 * So we must continue until @start is increased to 1369 * skip current ordered extent. 1370 */ 1371 if (ret) 1372 btrfs_drop_extent_map_range(inode, file_offset, 1373 cur_end, false); 1374 } 1375 btrfs_put_ordered_extent(ordered); 1376 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 1377 /* 1378 * Error handling for btrfs_reloc_clone_csums(). 1379 * 1380 * Treat the range as finished, thus only clear EXTENT_LOCKED | EXTENT_DELALLOC. 1381 * The accounting will be done by ordered extents. 1382 */ 1383 if (unlikely(ret < 0)) { 1384 btrfs_cleanup_ordered_extents(inode, file_offset, cur_len); 1385 extent_clear_unlock_delalloc(inode, file_offset, cur_end, locked_folio, cached, 1386 EXTENT_LOCKED | EXTENT_DELALLOC, 1387 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1388 PAGE_END_WRITEBACK); 1389 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1390 } 1391 *ret_alloc_size = cur_len; 1392 return ret; 1393 1394 free_reserved: 1395 extent_clear_unlock_delalloc(inode, file_offset, cur_end, locked_folio, cached, 1396 EXTENT_LOCKED | EXTENT_DELALLOC | 1397 EXTENT_DELALLOC_NEW | 1398 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1399 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1400 PAGE_END_WRITEBACK); 1401 btrfs_qgroup_free_data(inode, NULL, file_offset, cur_len, NULL); 1402 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 1403 btrfs_free_reserved_extent(fs_info, ins->objectid, ins->offset, true); 1404 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1405 *ret_alloc_size = cur_len; 1406 /* 1407 * We should not return -EAGAIN where it's a special return code for 1408 * zoned to catch btrfs_reserved_extent(). 1409 */ 1410 ASSERT(ret != -EAGAIN); 1411 return ret; 1412 } 1413 1414 /* 1415 * when extent_io.c finds a delayed allocation range in the file, 1416 * the call backs end up in this code. The basic idea is to 1417 * allocate extents on disk for the range, and create ordered data structs 1418 * in ram to track those extents. 1419 * 1420 * locked_folio is the folio that writepage had locked already. We use 1421 * it to make sure we don't do extra locks or unlocks. 1422 * 1423 * When this function fails, it unlocks all folios except @locked_folio. 1424 * 1425 * When this function successfully creates an inline extent, it returns 1 and 1426 * unlocks all folios including locked_folio and starts I/O on them. 1427 * (In reality inline extents are limited to a single block, so locked_folio is 1428 * the only folio handled anyway). 1429 * 1430 * When this function succeed and creates a normal extent, the folio locking 1431 * status depends on the passed in flags: 1432 * 1433 * - If COW_FILE_RANGE_KEEP_LOCKED flag is set, all folios are kept locked. 1434 * - Else all folios except for @locked_folio are unlocked. 1435 * 1436 * When a failure happens in the second or later iteration of the 1437 * while-loop, the ordered extents created in previous iterations are cleaned up. 1438 */ 1439 static noinline int cow_file_range(struct btrfs_inode *inode, 1440 struct folio *locked_folio, u64 start, 1441 u64 end, u64 *done_offset, 1442 unsigned long flags) 1443 { 1444 struct btrfs_root *root = inode->root; 1445 struct btrfs_fs_info *fs_info = root->fs_info; 1446 struct extent_state *cached = NULL; 1447 u64 alloc_hint = 0; 1448 u64 orig_start = start; 1449 u64 num_bytes; 1450 u32 min_alloc_size; 1451 u32 blocksize = fs_info->sectorsize; 1452 u32 cur_alloc_size = 0; 1453 struct btrfs_key ins; 1454 unsigned clear_bits; 1455 unsigned long page_ops; 1456 int ret = 0; 1457 1458 if (btrfs_is_shutdown(fs_info)) { 1459 ret = -EIO; 1460 goto out_unlock; 1461 } 1462 1463 if (btrfs_is_free_space_inode(inode)) { 1464 ret = -EINVAL; 1465 goto out_unlock; 1466 } 1467 1468 num_bytes = ALIGN(end - start + 1, blocksize); 1469 num_bytes = max(blocksize, num_bytes); 1470 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1471 1472 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1473 1474 if (!(flags & COW_FILE_RANGE_NO_INLINE)) { 1475 /* lets try to make an inline extent */ 1476 ret = cow_file_range_inline(inode, locked_folio, start, end, 0, 1477 BTRFS_COMPRESS_NONE, NULL, false); 1478 if (ret <= 0) { 1479 /* 1480 * We succeeded, return 1 so the caller knows we're done 1481 * with this page and already handled the IO. 1482 * 1483 * If there was an error then cow_file_range_inline() has 1484 * already done the cleanup. 1485 */ 1486 if (ret == 0) 1487 ret = 1; 1488 goto done; 1489 } 1490 } 1491 1492 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1493 1494 /* 1495 * We're not doing compressed IO, don't unlock the first page (which 1496 * the caller expects to stay locked), don't clear any dirty bits and 1497 * don't set any writeback bits. 1498 * 1499 * Do set the Ordered (Private2) bit so we know this page was properly 1500 * setup for writepage. 1501 */ 1502 page_ops = ((flags & COW_FILE_RANGE_KEEP_LOCKED) ? 0 : PAGE_UNLOCK); 1503 page_ops |= PAGE_SET_ORDERED; 1504 1505 /* 1506 * Relocation relies on the relocated extents to have exactly the same 1507 * size as the original extents. Normally writeback for relocation data 1508 * extents follows a NOCOW path because relocation preallocates the 1509 * extents. However, due to an operation such as scrub turning a block 1510 * group to RO mode, it may fallback to COW mode, so we must make sure 1511 * an extent allocated during COW has exactly the requested size and can 1512 * not be split into smaller extents, otherwise relocation breaks and 1513 * fails during the stage where it updates the bytenr of file extent 1514 * items. 1515 */ 1516 if (btrfs_is_data_reloc_root(root)) 1517 min_alloc_size = num_bytes; 1518 else 1519 min_alloc_size = fs_info->sectorsize; 1520 1521 while (num_bytes > 0) { 1522 ret = cow_one_range(inode, locked_folio, &ins, &cached, start, 1523 num_bytes, min_alloc_size, alloc_hint, &cur_alloc_size); 1524 1525 if (ret == -EAGAIN) { 1526 /* 1527 * cow_one_range() only returns -EAGAIN for zoned 1528 * file systems (from btrfs_reserve_extent()), which 1529 * is an indication that there are 1530 * no active zones to allocate from at the moment. 1531 * 1532 * If this is the first loop iteration, wait for at 1533 * least one zone to finish before retrying the 1534 * allocation. Otherwise ask the caller to write out 1535 * the already allocated blocks before coming back to 1536 * us, or return -ENOSPC if it can't handle retries. 1537 */ 1538 ASSERT(btrfs_is_zoned(fs_info)); 1539 if (start == orig_start) { 1540 wait_on_bit_io(&inode->root->fs_info->flags, 1541 BTRFS_FS_NEED_ZONE_FINISH, 1542 TASK_UNINTERRUPTIBLE); 1543 continue; 1544 } 1545 if (done_offset) { 1546 /* 1547 * Move @end to the end of the processed range, 1548 * and exit the loop to unlock the processed extents. 1549 */ 1550 end = start - 1; 1551 ret = 0; 1552 break; 1553 } 1554 ret = -ENOSPC; 1555 } 1556 if (ret < 0) 1557 goto out_unlock; 1558 1559 /* We should not allocate an extent larger than requested.*/ 1560 ASSERT(cur_alloc_size <= num_bytes); 1561 1562 num_bytes -= cur_alloc_size; 1563 alloc_hint = ins.objectid + ins.offset; 1564 start += cur_alloc_size; 1565 cur_alloc_size = 0; 1566 } 1567 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached, 1568 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops); 1569 done: 1570 if (done_offset) 1571 *done_offset = end; 1572 return ret; 1573 1574 out_unlock: 1575 /* 1576 * Now, we have three regions to clean up: 1577 * 1578 * |-------(1)----|---(2)---|-------------(3)----------| 1579 * `- orig_start `- start `- start + cur_alloc_size `- end 1580 * 1581 * We process each region below. 1582 */ 1583 1584 /* 1585 * For the range (1). We have already instantiated the ordered extents 1586 * for this region, thus we need to cleanup those ordered extents. 1587 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV 1588 * are also handled by the ordered extents cleanup. 1589 * 1590 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and 1591 * finish the writeback of the involved folios, which will be never submitted. 1592 */ 1593 if (orig_start < start) { 1594 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC; 1595 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1596 1597 if (!locked_folio) 1598 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1599 1600 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start); 1601 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1602 locked_folio, NULL, clear_bits, page_ops); 1603 } 1604 1605 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1606 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1607 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1608 1609 /* 1610 * For the range (2) the error handling is done by cow_one_range() itself. 1611 * Nothing needs to be done. 1612 * 1613 * For the range (3). We never touched the region. In addition to the 1614 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1615 * space_info's bytes_may_use counter, reserved in 1616 * btrfs_check_data_free_space(). 1617 */ 1618 if (start + cur_alloc_size < end) { 1619 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1620 extent_clear_unlock_delalloc(inode, start + cur_alloc_size, 1621 end, locked_folio, 1622 &cached, clear_bits, page_ops); 1623 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size, 1624 end - start - cur_alloc_size + 1, NULL); 1625 } 1626 btrfs_err(fs_info, 1627 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu cur_alloc_size=%u: %d", 1628 __func__, btrfs_root_id(inode->root), 1629 btrfs_ino(inode), orig_start, end + 1 - orig_start, 1630 start, cur_alloc_size, ret); 1631 return ret; 1632 } 1633 1634 /* 1635 * Phase two of compressed writeback. This is the ordered portion of the code, 1636 * which only gets called in the order the work was queued. We walk all the 1637 * async extents created by compress_file_range and send them down to the disk. 1638 * 1639 * If called with @do_free == true then it'll try to finish the work and free 1640 * the work struct eventually. 1641 */ 1642 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1643 { 1644 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1645 work); 1646 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1647 struct async_extent *async_extent; 1648 unsigned long nr_pages; 1649 u64 alloc_hint = 0; 1650 1651 if (do_free) { 1652 struct async_cow *async_cow; 1653 1654 btrfs_add_delayed_iput(async_chunk->inode); 1655 if (async_chunk->blkcg_css) 1656 css_put(async_chunk->blkcg_css); 1657 1658 async_cow = async_chunk->async_cow; 1659 if (atomic_dec_and_test(&async_cow->num_chunks)) 1660 kvfree(async_cow); 1661 return; 1662 } 1663 1664 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1665 PAGE_SHIFT; 1666 1667 while (!list_empty(&async_chunk->extents)) { 1668 async_extent = list_first_entry(&async_chunk->extents, 1669 struct async_extent, list); 1670 list_del(&async_extent->list); 1671 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1672 } 1673 1674 /* atomic_sub_return implies a barrier */ 1675 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1676 5 * SZ_1M) 1677 cond_wake_up_nomb(&fs_info->async_submit_wait); 1678 } 1679 1680 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1681 struct folio *locked_folio, u64 start, 1682 u64 end, struct writeback_control *wbc) 1683 { 1684 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1685 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1686 struct async_cow *ctx; 1687 struct async_chunk *async_chunk; 1688 unsigned long nr_pages; 1689 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1690 int i; 1691 unsigned nofs_flag; 1692 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1693 1694 nofs_flag = memalloc_nofs_save(); 1695 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1696 memalloc_nofs_restore(nofs_flag); 1697 if (!ctx) 1698 return false; 1699 1700 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1701 1702 async_chunk = ctx->chunks; 1703 atomic_set(&ctx->num_chunks, num_chunks); 1704 1705 for (i = 0; i < num_chunks; i++) { 1706 u64 cur_end = min(end, start + SZ_512K - 1); 1707 1708 /* 1709 * igrab is called higher up in the call chain, take only the 1710 * lightweight reference for the callback lifetime 1711 */ 1712 ihold(&inode->vfs_inode); 1713 async_chunk[i].async_cow = ctx; 1714 async_chunk[i].inode = inode; 1715 async_chunk[i].start = start; 1716 async_chunk[i].end = cur_end; 1717 async_chunk[i].write_flags = write_flags; 1718 INIT_LIST_HEAD(&async_chunk[i].extents); 1719 1720 /* 1721 * The locked_folio comes all the way from writepage and its 1722 * the original folio we were actually given. As we spread 1723 * this large delalloc region across multiple async_chunk 1724 * structs, only the first struct needs a pointer to 1725 * locked_folio. 1726 * 1727 * This way we don't need racey decisions about who is supposed 1728 * to unlock it. 1729 */ 1730 if (locked_folio) { 1731 /* 1732 * Depending on the compressibility, the pages might or 1733 * might not go through async. We want all of them to 1734 * be accounted against wbc once. Let's do it here 1735 * before the paths diverge. wbc accounting is used 1736 * only for foreign writeback detection and doesn't 1737 * need full accuracy. Just account the whole thing 1738 * against the first page. 1739 */ 1740 wbc_account_cgroup_owner(wbc, locked_folio, 1741 cur_end - start); 1742 async_chunk[i].locked_folio = locked_folio; 1743 locked_folio = NULL; 1744 } else { 1745 async_chunk[i].locked_folio = NULL; 1746 } 1747 1748 if (blkcg_css != blkcg_root_css) { 1749 css_get(blkcg_css); 1750 async_chunk[i].blkcg_css = blkcg_css; 1751 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1752 } else { 1753 async_chunk[i].blkcg_css = NULL; 1754 } 1755 1756 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1757 submit_compressed_extents); 1758 1759 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1760 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1761 1762 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1763 1764 start = cur_end + 1; 1765 } 1766 return true; 1767 } 1768 1769 /* 1770 * Run the delalloc range from start to end, and write back any dirty pages 1771 * covered by the range. 1772 */ 1773 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1774 struct folio *locked_folio, u64 start, 1775 u64 end, struct writeback_control *wbc, 1776 bool pages_dirty) 1777 { 1778 u64 done_offset = end; 1779 int ret; 1780 1781 while (start <= end) { 1782 ret = cow_file_range(inode, locked_folio, start, end, 1783 &done_offset, COW_FILE_RANGE_KEEP_LOCKED); 1784 if (ret) 1785 return ret; 1786 extent_write_locked_range(&inode->vfs_inode, locked_folio, 1787 start, done_offset, wbc, pages_dirty); 1788 start = done_offset + 1; 1789 } 1790 1791 return 1; 1792 } 1793 1794 static int fallback_to_cow(struct btrfs_inode *inode, 1795 struct folio *locked_folio, const u64 start, 1796 const u64 end) 1797 { 1798 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1799 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1800 const u64 range_bytes = end + 1 - start; 1801 struct extent_io_tree *io_tree = &inode->io_tree; 1802 struct extent_state *cached_state = NULL; 1803 u64 range_start = start; 1804 u64 count; 1805 int ret; 1806 1807 /* 1808 * If EXTENT_NORESERVE is set it means that when the buffered write was 1809 * made we had not enough available data space and therefore we did not 1810 * reserve data space for it, since we though we could do NOCOW for the 1811 * respective file range (either there is prealloc extent or the inode 1812 * has the NOCOW bit set). 1813 * 1814 * However when we need to fallback to COW mode (because for example the 1815 * block group for the corresponding extent was turned to RO mode by a 1816 * scrub or relocation) we need to do the following: 1817 * 1818 * 1) We increment the bytes_may_use counter of the data space info. 1819 * If COW succeeds, it allocates a new data extent and after doing 1820 * that it decrements the space info's bytes_may_use counter and 1821 * increments its bytes_reserved counter by the same amount (we do 1822 * this at btrfs_add_reserved_bytes()). So we need to increment the 1823 * bytes_may_use counter to compensate (when space is reserved at 1824 * buffered write time, the bytes_may_use counter is incremented); 1825 * 1826 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1827 * that if the COW path fails for any reason, it decrements (through 1828 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1829 * data space info, which we incremented in the step above. 1830 * 1831 * If we need to fallback to cow and the inode corresponds to a free 1832 * space cache inode or an inode of the data relocation tree, we must 1833 * also increment bytes_may_use of the data space_info for the same 1834 * reason. Space caches and relocated data extents always get a prealloc 1835 * extent for them, however scrub or balance may have set the block 1836 * group that contains that extent to RO mode and therefore force COW 1837 * when starting writeback. 1838 */ 1839 btrfs_lock_extent(io_tree, start, end, &cached_state); 1840 count = btrfs_count_range_bits(io_tree, &range_start, end, range_bytes, 1841 EXTENT_NORESERVE, 0, NULL); 1842 if (count > 0 || is_space_ino || is_reloc_ino) { 1843 u64 bytes = count; 1844 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1845 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1846 1847 if (is_space_ino || is_reloc_ino) 1848 bytes = range_bytes; 1849 1850 spin_lock(&sinfo->lock); 1851 btrfs_space_info_update_bytes_may_use(sinfo, bytes); 1852 spin_unlock(&sinfo->lock); 1853 1854 if (count > 0) 1855 btrfs_clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1856 &cached_state); 1857 } 1858 btrfs_unlock_extent(io_tree, start, end, &cached_state); 1859 1860 /* 1861 * Don't try to create inline extents, as a mix of inline extent that 1862 * is written out and unlocked directly and a normal NOCOW extent 1863 * doesn't work. 1864 * 1865 * And here we do not unlock the folio after a successful run. 1866 * The folios will be unlocked after everything is finished, or by error handling. 1867 * 1868 * This is to ensure error handling won't need to clear dirty/ordered flags without 1869 * a locked folio, which can race with writeback. 1870 */ 1871 ret = cow_file_range(inode, locked_folio, start, end, NULL, 1872 COW_FILE_RANGE_NO_INLINE | COW_FILE_RANGE_KEEP_LOCKED); 1873 ASSERT(ret != 1); 1874 return ret; 1875 } 1876 1877 struct can_nocow_file_extent_args { 1878 /* Input fields. */ 1879 1880 /* Start file offset of the range we want to NOCOW. */ 1881 u64 start; 1882 /* End file offset (inclusive) of the range we want to NOCOW. */ 1883 u64 end; 1884 bool writeback_path; 1885 /* 1886 * Free the path passed to can_nocow_file_extent() once it's not needed 1887 * anymore. 1888 */ 1889 bool free_path; 1890 1891 /* 1892 * Output fields. Only set when can_nocow_file_extent() returns 1. 1893 * The expected file extent for the NOCOW write. 1894 */ 1895 struct btrfs_file_extent file_extent; 1896 }; 1897 1898 /* 1899 * Check if we can NOCOW the file extent that the path points to. 1900 * This function may return with the path released, so the caller should check 1901 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1902 * 1903 * Returns: < 0 on error 1904 * 0 if we can not NOCOW 1905 * 1 if we can NOCOW 1906 */ 1907 static int can_nocow_file_extent(struct btrfs_path *path, 1908 struct btrfs_key *key, 1909 struct btrfs_inode *inode, 1910 struct can_nocow_file_extent_args *args) 1911 { 1912 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1913 struct extent_buffer *leaf = path->nodes[0]; 1914 struct btrfs_root *root = inode->root; 1915 struct btrfs_file_extent_item *fi; 1916 struct btrfs_root *csum_root; 1917 u64 io_start; 1918 u64 extent_end; 1919 u8 extent_type; 1920 int can_nocow = 0; 1921 int ret = 0; 1922 bool nowait = path->nowait; 1923 1924 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1925 extent_type = btrfs_file_extent_type(leaf, fi); 1926 1927 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1928 goto out; 1929 1930 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1931 extent_type == BTRFS_FILE_EXTENT_REG) 1932 goto out; 1933 1934 /* 1935 * If the extent was created before the generation where the last snapshot 1936 * for its subvolume was created, then this implies the extent is shared, 1937 * hence we must COW. 1938 */ 1939 if (btrfs_file_extent_generation(leaf, fi) <= 1940 btrfs_root_last_snapshot(&root->root_item)) 1941 goto out; 1942 1943 /* An explicit hole, must COW. */ 1944 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1945 goto out; 1946 1947 /* Compressed/encrypted/encoded extents must be COWed. */ 1948 if (btrfs_file_extent_compression(leaf, fi) || 1949 btrfs_file_extent_encryption(leaf, fi) || 1950 btrfs_file_extent_other_encoding(leaf, fi)) 1951 goto out; 1952 1953 extent_end = btrfs_file_extent_end(path); 1954 1955 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1956 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1957 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1958 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1959 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1960 1961 /* 1962 * The following checks can be expensive, as they need to take other 1963 * locks and do btree or rbtree searches, so release the path to avoid 1964 * blocking other tasks for too long. 1965 */ 1966 btrfs_release_path(path); 1967 1968 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset, 1969 args->file_extent.disk_bytenr, path); 1970 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1971 if (ret != 0) 1972 goto out; 1973 1974 if (args->free_path) { 1975 /* 1976 * We don't need the path anymore, plus through the 1977 * btrfs_lookup_csums_list() call below we will end up allocating 1978 * another path. So free the path to avoid unnecessary extra 1979 * memory usage. 1980 */ 1981 btrfs_free_path(path); 1982 path = NULL; 1983 } 1984 1985 /* If there are pending snapshots for this root, we must COW. */ 1986 if (args->writeback_path && !is_freespace_inode && 1987 atomic_read(&root->snapshot_force_cow)) 1988 goto out; 1989 1990 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1991 args->file_extent.offset += args->start - key->offset; 1992 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1993 1994 /* 1995 * Force COW if csums exist in the range. This ensures that csums for a 1996 * given extent are either valid or do not exist. 1997 */ 1998 1999 csum_root = btrfs_csum_root(root->fs_info, io_start); 2000 ret = btrfs_lookup_csums_list(csum_root, io_start, 2001 io_start + args->file_extent.num_bytes - 1, 2002 NULL, nowait); 2003 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 2004 if (ret != 0) 2005 goto out; 2006 2007 can_nocow = 1; 2008 out: 2009 if (args->free_path && path) 2010 btrfs_free_path(path); 2011 2012 return ret < 0 ? ret : can_nocow; 2013 } 2014 2015 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio, 2016 struct extent_state **cached, 2017 struct can_nocow_file_extent_args *nocow_args, 2018 u64 file_pos, bool is_prealloc) 2019 { 2020 struct btrfs_ordered_extent *ordered; 2021 const u64 len = nocow_args->file_extent.num_bytes; 2022 const u64 end = file_pos + len - 1; 2023 int ret = 0; 2024 2025 btrfs_lock_extent(&inode->io_tree, file_pos, end, cached); 2026 2027 if (is_prealloc) { 2028 struct extent_map *em; 2029 2030 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent, 2031 BTRFS_ORDERED_PREALLOC); 2032 if (IS_ERR(em)) { 2033 ret = PTR_ERR(em); 2034 goto error; 2035 } 2036 btrfs_free_extent_map(em); 2037 } 2038 2039 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent, 2040 is_prealloc 2041 ? (1U << BTRFS_ORDERED_PREALLOC) 2042 : (1U << BTRFS_ORDERED_NOCOW)); 2043 if (IS_ERR(ordered)) { 2044 if (is_prealloc) 2045 btrfs_drop_extent_map_range(inode, file_pos, end, false); 2046 ret = PTR_ERR(ordered); 2047 goto error; 2048 } 2049 2050 if (btrfs_is_data_reloc_root(inode->root)) 2051 /* 2052 * Errors are handled later, as we must prevent 2053 * extent_clear_unlock_delalloc() in error handler from freeing 2054 * metadata of the created ordered extent. 2055 */ 2056 ret = btrfs_reloc_clone_csums(ordered); 2057 btrfs_put_ordered_extent(ordered); 2058 2059 if (ret < 0) 2060 goto error; 2061 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 2062 EXTENT_LOCKED | EXTENT_DELALLOC | 2063 EXTENT_CLEAR_DATA_RESV, 2064 PAGE_SET_ORDERED); 2065 return ret; 2066 2067 error: 2068 btrfs_cleanup_ordered_extents(inode, file_pos, len); 2069 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 2070 EXTENT_LOCKED | EXTENT_DELALLOC | 2071 EXTENT_CLEAR_DATA_RESV, 2072 PAGE_UNLOCK | PAGE_START_WRITEBACK | 2073 PAGE_END_WRITEBACK); 2074 btrfs_err(inode->root->fs_info, 2075 "%s failed, root=%lld inode=%llu start=%llu len=%llu: %d", 2076 __func__, btrfs_root_id(inode->root), btrfs_ino(inode), 2077 file_pos, len, ret); 2078 return ret; 2079 } 2080 2081 /* 2082 * When nocow writeback calls back. This checks for snapshots or COW copies 2083 * of the extents that exist in the file, and COWs the file as required. 2084 * 2085 * If no cow copies or snapshots exist, we write directly to the existing 2086 * blocks on disk 2087 */ 2088 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 2089 struct folio *locked_folio, 2090 const u64 start, const u64 end) 2091 { 2092 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2093 struct btrfs_root *root = inode->root; 2094 struct btrfs_path *path = NULL; 2095 u64 cow_start = (u64)-1; 2096 /* 2097 * If not 0, represents the inclusive end of the last fallback_to_cow() 2098 * range. Only for error handling. 2099 * 2100 * The same for nocow_end, it's to avoid double cleaning up the range 2101 * already cleaned by nocow_one_range(). 2102 */ 2103 u64 cow_end = 0; 2104 u64 nocow_end = 0; 2105 u64 cur_offset = start; 2106 int ret; 2107 bool check_prev = true; 2108 u64 ino = btrfs_ino(inode); 2109 struct can_nocow_file_extent_args nocow_args = { 0 }; 2110 /* The range that has ordered extent(s). */ 2111 u64 oe_cleanup_start; 2112 u64 oe_cleanup_len = 0; 2113 /* The range that is untouched. */ 2114 u64 untouched_start; 2115 u64 untouched_len = 0; 2116 2117 /* 2118 * Normally on a zoned device we're only doing COW writes, but in case 2119 * of relocation on a zoned filesystem serializes I/O so that we're only 2120 * writing sequentially and can end up here as well. 2121 */ 2122 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2123 2124 if (btrfs_is_shutdown(fs_info)) { 2125 ret = -EIO; 2126 goto error; 2127 } 2128 path = btrfs_alloc_path(); 2129 if (!path) { 2130 ret = -ENOMEM; 2131 goto error; 2132 } 2133 2134 nocow_args.end = end; 2135 nocow_args.writeback_path = true; 2136 2137 while (cur_offset <= end) { 2138 struct btrfs_block_group *nocow_bg = NULL; 2139 struct btrfs_key found_key; 2140 struct btrfs_file_extent_item *fi; 2141 struct extent_buffer *leaf; 2142 struct extent_state *cached_state = NULL; 2143 u64 extent_end; 2144 int extent_type; 2145 2146 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2147 cur_offset, 0); 2148 if (ret < 0) 2149 goto error; 2150 2151 /* 2152 * If there is no extent for our range when doing the initial 2153 * search, then go back to the previous slot as it will be the 2154 * one containing the search offset 2155 */ 2156 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2157 leaf = path->nodes[0]; 2158 btrfs_item_key_to_cpu(leaf, &found_key, 2159 path->slots[0] - 1); 2160 if (found_key.objectid == ino && 2161 found_key.type == BTRFS_EXTENT_DATA_KEY) 2162 path->slots[0]--; 2163 } 2164 check_prev = false; 2165 next_slot: 2166 /* Go to next leaf if we have exhausted the current one */ 2167 leaf = path->nodes[0]; 2168 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2169 ret = btrfs_next_leaf(root, path); 2170 if (ret < 0) 2171 goto error; 2172 if (ret > 0) 2173 break; 2174 leaf = path->nodes[0]; 2175 } 2176 2177 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2178 2179 /* Didn't find anything for our INO */ 2180 if (found_key.objectid > ino) 2181 break; 2182 /* 2183 * Keep searching until we find an EXTENT_ITEM or there are no 2184 * more extents for this inode 2185 */ 2186 if (WARN_ON_ONCE(found_key.objectid < ino) || 2187 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2188 path->slots[0]++; 2189 goto next_slot; 2190 } 2191 2192 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2193 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2194 found_key.offset > end) 2195 break; 2196 2197 /* 2198 * If the found extent starts after requested offset, then 2199 * adjust cur_offset to be right before this extent begins. 2200 */ 2201 if (found_key.offset > cur_offset) { 2202 if (cow_start == (u64)-1) 2203 cow_start = cur_offset; 2204 cur_offset = found_key.offset; 2205 goto next_slot; 2206 } 2207 2208 /* 2209 * Found extent which begins before our range and potentially 2210 * intersect it 2211 */ 2212 fi = btrfs_item_ptr(leaf, path->slots[0], 2213 struct btrfs_file_extent_item); 2214 extent_type = btrfs_file_extent_type(leaf, fi); 2215 /* If this is triggered then we have a memory corruption. */ 2216 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2217 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2218 ret = -EUCLEAN; 2219 goto error; 2220 } 2221 extent_end = btrfs_file_extent_end(path); 2222 2223 /* 2224 * If the extent we got ends before our current offset, skip to 2225 * the next extent. 2226 */ 2227 if (extent_end <= cur_offset) { 2228 path->slots[0]++; 2229 goto next_slot; 2230 } 2231 2232 nocow_args.start = cur_offset; 2233 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2234 if (ret < 0) 2235 goto error; 2236 if (ret == 0) 2237 goto must_cow; 2238 2239 ret = 0; 2240 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2241 nocow_args.file_extent.disk_bytenr + 2242 nocow_args.file_extent.offset); 2243 if (!nocow_bg) { 2244 must_cow: 2245 /* 2246 * If we can't perform NOCOW writeback for the range, 2247 * then record the beginning of the range that needs to 2248 * be COWed. It will be written out before the next 2249 * NOCOW range if we find one, or when exiting this 2250 * loop. 2251 */ 2252 if (cow_start == (u64)-1) 2253 cow_start = cur_offset; 2254 cur_offset = extent_end; 2255 if (cur_offset > end) 2256 break; 2257 if (!path->nodes[0]) 2258 continue; 2259 path->slots[0]++; 2260 goto next_slot; 2261 } 2262 2263 /* 2264 * COW range from cow_start to found_key.offset - 1. As the key 2265 * will contain the beginning of the first extent that can be 2266 * NOCOW, following one which needs to be COW'ed 2267 */ 2268 if (cow_start != (u64)-1) { 2269 ret = fallback_to_cow(inode, locked_folio, cow_start, 2270 found_key.offset - 1); 2271 if (ret) { 2272 cow_end = found_key.offset - 1; 2273 btrfs_dec_nocow_writers(nocow_bg); 2274 goto error; 2275 } 2276 cow_start = (u64)-1; 2277 } 2278 2279 ret = nocow_one_range(inode, locked_folio, &cached_state, 2280 &nocow_args, cur_offset, 2281 extent_type == BTRFS_FILE_EXTENT_PREALLOC); 2282 btrfs_dec_nocow_writers(nocow_bg); 2283 if (ret < 0) { 2284 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1; 2285 goto error; 2286 } 2287 cur_offset = extent_end; 2288 } 2289 btrfs_release_path(path); 2290 2291 if (cur_offset <= end && cow_start == (u64)-1) 2292 cow_start = cur_offset; 2293 2294 if (cow_start != (u64)-1) { 2295 ret = fallback_to_cow(inode, locked_folio, cow_start, end); 2296 if (ret) { 2297 cow_end = end; 2298 goto error; 2299 } 2300 cow_start = (u64)-1; 2301 } 2302 2303 /* 2304 * Everything is finished without an error, can unlock the folios now. 2305 * 2306 * No need to touch the io tree range nor set folio ordered flag, as 2307 * fallback_to_cow() and nocow_one_range() have already handled them. 2308 */ 2309 extent_clear_unlock_delalloc(inode, start, end, locked_folio, NULL, 0, PAGE_UNLOCK); 2310 2311 btrfs_free_path(path); 2312 return 0; 2313 2314 error: 2315 if (cow_start == (u64)-1) { 2316 /* 2317 * case a) 2318 * start cur_offset end 2319 * | OE cleanup | Untouched | 2320 * 2321 * We finished a fallback_to_cow() or nocow_one_range() call, 2322 * but failed to check the next range. 2323 * 2324 * or 2325 * start cur_offset nocow_end end 2326 * | OE cleanup | Skip | Untouched | 2327 * 2328 * nocow_one_range() failed, the range [cur_offset, nocow_end] is 2329 * already cleaned up. 2330 */ 2331 oe_cleanup_start = start; 2332 oe_cleanup_len = cur_offset - start; 2333 if (nocow_end) 2334 untouched_start = nocow_end + 1; 2335 else 2336 untouched_start = cur_offset; 2337 untouched_len = end + 1 - untouched_start; 2338 } else if (cow_start != (u64)-1 && cow_end == 0) { 2339 /* 2340 * case b) 2341 * start cow_start cur_offset end 2342 * | OE cleanup | Untouched | 2343 * 2344 * We got a range that needs COW, but before we hit the next NOCOW range, 2345 * thus [cow_start, cur_offset) doesn't yet have any OE. 2346 */ 2347 oe_cleanup_start = start; 2348 oe_cleanup_len = cow_start - start; 2349 untouched_start = cow_start; 2350 untouched_len = end + 1 - untouched_start; 2351 } else { 2352 /* 2353 * case c) 2354 * start cow_start cow_end end 2355 * | OE cleanup | Skip | Untouched | 2356 * 2357 * fallback_to_cow() failed, and fallback_to_cow() will do the 2358 * cleanup for its range, we shouldn't touch the range 2359 * [cow_start, cow_end]. 2360 */ 2361 ASSERT(cow_start != (u64)-1 && cow_end != 0); 2362 oe_cleanup_start = start; 2363 oe_cleanup_len = cow_start - start; 2364 untouched_start = cow_end + 1; 2365 untouched_len = end + 1 - untouched_start; 2366 } 2367 2368 if (oe_cleanup_len) { 2369 const u64 oe_cleanup_end = oe_cleanup_start + oe_cleanup_len - 1; 2370 btrfs_cleanup_ordered_extents(inode, oe_cleanup_start, oe_cleanup_len); 2371 extent_clear_unlock_delalloc(inode, oe_cleanup_start, oe_cleanup_end, 2372 locked_folio, NULL, 2373 EXTENT_LOCKED | EXTENT_DELALLOC, 2374 PAGE_UNLOCK | PAGE_START_WRITEBACK | 2375 PAGE_END_WRITEBACK); 2376 } 2377 2378 if (untouched_len) { 2379 struct extent_state *cached = NULL; 2380 const u64 untouched_end = untouched_start + untouched_len - 1; 2381 2382 /* 2383 * We need to lock the extent here because we're clearing DELALLOC and 2384 * we're not locked at this point. 2385 */ 2386 btrfs_lock_extent(&inode->io_tree, untouched_start, untouched_end, &cached); 2387 extent_clear_unlock_delalloc(inode, untouched_start, untouched_end, 2388 locked_folio, &cached, 2389 EXTENT_LOCKED | EXTENT_DELALLOC | 2390 EXTENT_DEFRAG | 2391 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2392 PAGE_START_WRITEBACK | 2393 PAGE_END_WRITEBACK); 2394 btrfs_qgroup_free_data(inode, NULL, untouched_start, untouched_len, NULL); 2395 } 2396 btrfs_free_path(path); 2397 btrfs_err(fs_info, 2398 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu oe_cleanup=%llu oe_cleanup_len=%llu untouched_start=%llu untouched_len=%llu: %d", 2399 __func__, btrfs_root_id(inode->root), btrfs_ino(inode), 2400 start, end + 1 - start, cur_offset, oe_cleanup_start, oe_cleanup_len, 2401 untouched_start, untouched_len, ret); 2402 return ret; 2403 } 2404 2405 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2406 { 2407 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2408 if (inode->defrag_bytes && 2409 btrfs_test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2410 return false; 2411 return true; 2412 } 2413 return false; 2414 } 2415 2416 /* 2417 * Function to process delayed allocation (create CoW) for ranges which are 2418 * being touched for the first time. 2419 */ 2420 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 2421 u64 start, u64 end, struct writeback_control *wbc) 2422 { 2423 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2424 2425 /* 2426 * The range must cover part of the @locked_folio, or a return of 1 2427 * can confuse the caller. 2428 */ 2429 ASSERT(!(end <= folio_pos(locked_folio) || 2430 start >= folio_next_pos(locked_folio))); 2431 2432 if (should_nocow(inode, start, end)) 2433 return run_delalloc_nocow(inode, locked_folio, start, end); 2434 2435 if (btrfs_inode_can_compress(inode) && 2436 inode_need_compress(inode, start, end) && 2437 run_delalloc_compressed(inode, locked_folio, start, end, wbc)) 2438 return 1; 2439 2440 if (zoned) 2441 return run_delalloc_cow(inode, locked_folio, start, end, wbc, true); 2442 else 2443 return cow_file_range(inode, locked_folio, start, end, NULL, 0); 2444 } 2445 2446 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2447 struct extent_state *orig, u64 split) 2448 { 2449 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2450 u64 size; 2451 2452 lockdep_assert_held(&inode->io_tree.lock); 2453 2454 /* not delalloc, ignore it */ 2455 if (!(orig->state & EXTENT_DELALLOC)) 2456 return; 2457 2458 size = orig->end - orig->start + 1; 2459 if (size > fs_info->max_extent_size) { 2460 u32 num_extents; 2461 u64 new_size; 2462 2463 /* 2464 * See the explanation in btrfs_merge_delalloc_extent, the same 2465 * applies here, just in reverse. 2466 */ 2467 new_size = orig->end - split + 1; 2468 num_extents = count_max_extents(fs_info, new_size); 2469 new_size = split - orig->start; 2470 num_extents += count_max_extents(fs_info, new_size); 2471 if (count_max_extents(fs_info, size) >= num_extents) 2472 return; 2473 } 2474 2475 spin_lock(&inode->lock); 2476 btrfs_mod_outstanding_extents(inode, 1); 2477 spin_unlock(&inode->lock); 2478 } 2479 2480 /* 2481 * Handle merged delayed allocation extents so we can keep track of new extents 2482 * that are just merged onto old extents, such as when we are doing sequential 2483 * writes, so we can properly account for the metadata space we'll need. 2484 */ 2485 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2486 struct extent_state *other) 2487 { 2488 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2489 u64 new_size, old_size; 2490 u32 num_extents; 2491 2492 lockdep_assert_held(&inode->io_tree.lock); 2493 2494 /* not delalloc, ignore it */ 2495 if (!(other->state & EXTENT_DELALLOC)) 2496 return; 2497 2498 if (new->start > other->start) 2499 new_size = new->end - other->start + 1; 2500 else 2501 new_size = other->end - new->start + 1; 2502 2503 /* we're not bigger than the max, unreserve the space and go */ 2504 if (new_size <= fs_info->max_extent_size) { 2505 spin_lock(&inode->lock); 2506 btrfs_mod_outstanding_extents(inode, -1); 2507 spin_unlock(&inode->lock); 2508 return; 2509 } 2510 2511 /* 2512 * We have to add up either side to figure out how many extents were 2513 * accounted for before we merged into one big extent. If the number of 2514 * extents we accounted for is <= the amount we need for the new range 2515 * then we can return, otherwise drop. Think of it like this 2516 * 2517 * [ 4k][MAX_SIZE] 2518 * 2519 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2520 * need 2 outstanding extents, on one side we have 1 and the other side 2521 * we have 1 so they are == and we can return. But in this case 2522 * 2523 * [MAX_SIZE+4k][MAX_SIZE+4k] 2524 * 2525 * Each range on their own accounts for 2 extents, but merged together 2526 * they are only 3 extents worth of accounting, so we need to drop in 2527 * this case. 2528 */ 2529 old_size = other->end - other->start + 1; 2530 num_extents = count_max_extents(fs_info, old_size); 2531 old_size = new->end - new->start + 1; 2532 num_extents += count_max_extents(fs_info, old_size); 2533 if (count_max_extents(fs_info, new_size) >= num_extents) 2534 return; 2535 2536 spin_lock(&inode->lock); 2537 btrfs_mod_outstanding_extents(inode, -1); 2538 spin_unlock(&inode->lock); 2539 } 2540 2541 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2542 { 2543 struct btrfs_root *root = inode->root; 2544 struct btrfs_fs_info *fs_info = root->fs_info; 2545 2546 spin_lock(&root->delalloc_lock); 2547 ASSERT(list_empty(&inode->delalloc_inodes)); 2548 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2549 root->nr_delalloc_inodes++; 2550 if (root->nr_delalloc_inodes == 1) { 2551 spin_lock(&fs_info->delalloc_root_lock); 2552 ASSERT(list_empty(&root->delalloc_root)); 2553 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2554 spin_unlock(&fs_info->delalloc_root_lock); 2555 } 2556 spin_unlock(&root->delalloc_lock); 2557 } 2558 2559 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2560 { 2561 struct btrfs_root *root = inode->root; 2562 struct btrfs_fs_info *fs_info = root->fs_info; 2563 2564 lockdep_assert_held(&root->delalloc_lock); 2565 2566 /* 2567 * We may be called after the inode was already deleted from the list, 2568 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2569 * and then later through btrfs_clear_delalloc_extent() while the inode 2570 * still has ->delalloc_bytes > 0. 2571 */ 2572 if (!list_empty(&inode->delalloc_inodes)) { 2573 list_del_init(&inode->delalloc_inodes); 2574 root->nr_delalloc_inodes--; 2575 if (!root->nr_delalloc_inodes) { 2576 ASSERT(list_empty(&root->delalloc_inodes)); 2577 spin_lock(&fs_info->delalloc_root_lock); 2578 ASSERT(!list_empty(&root->delalloc_root)); 2579 list_del_init(&root->delalloc_root); 2580 spin_unlock(&fs_info->delalloc_root_lock); 2581 } 2582 } 2583 } 2584 2585 /* 2586 * Properly track delayed allocation bytes in the inode and to maintain the 2587 * list of inodes that have pending delalloc work to be done. 2588 */ 2589 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2590 u32 bits) 2591 { 2592 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2593 2594 lockdep_assert_held(&inode->io_tree.lock); 2595 2596 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2597 WARN_ON(1); 2598 /* 2599 * set_bit and clear bit hooks normally require _irqsave/restore 2600 * but in this case, we are only testing for the DELALLOC 2601 * bit, which is only set or cleared with irqs on 2602 */ 2603 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2604 u64 len = state->end + 1 - state->start; 2605 u64 prev_delalloc_bytes; 2606 u32 num_extents = count_max_extents(fs_info, len); 2607 2608 spin_lock(&inode->lock); 2609 btrfs_mod_outstanding_extents(inode, num_extents); 2610 spin_unlock(&inode->lock); 2611 2612 /* For sanity tests */ 2613 if (btrfs_is_testing(fs_info)) 2614 return; 2615 2616 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2617 fs_info->delalloc_batch); 2618 spin_lock(&inode->lock); 2619 prev_delalloc_bytes = inode->delalloc_bytes; 2620 inode->delalloc_bytes += len; 2621 if (bits & EXTENT_DEFRAG) 2622 inode->defrag_bytes += len; 2623 spin_unlock(&inode->lock); 2624 2625 /* 2626 * We don't need to be under the protection of the inode's lock, 2627 * because we are called while holding the inode's io_tree lock 2628 * and are therefore protected against concurrent calls of this 2629 * function and btrfs_clear_delalloc_extent(). 2630 */ 2631 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2632 btrfs_add_delalloc_inode(inode); 2633 } 2634 2635 if (!(state->state & EXTENT_DELALLOC_NEW) && 2636 (bits & EXTENT_DELALLOC_NEW)) { 2637 spin_lock(&inode->lock); 2638 inode->new_delalloc_bytes += state->end + 1 - state->start; 2639 spin_unlock(&inode->lock); 2640 } 2641 } 2642 2643 /* 2644 * Once a range is no longer delalloc this function ensures that proper 2645 * accounting happens. 2646 */ 2647 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2648 struct extent_state *state, u32 bits) 2649 { 2650 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2651 u64 len = state->end + 1 - state->start; 2652 u32 num_extents = count_max_extents(fs_info, len); 2653 2654 lockdep_assert_held(&inode->io_tree.lock); 2655 2656 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2657 spin_lock(&inode->lock); 2658 inode->defrag_bytes -= len; 2659 spin_unlock(&inode->lock); 2660 } 2661 2662 /* 2663 * set_bit and clear bit hooks normally require _irqsave/restore 2664 * but in this case, we are only testing for the DELALLOC 2665 * bit, which is only set or cleared with irqs on 2666 */ 2667 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2668 struct btrfs_root *root = inode->root; 2669 u64 new_delalloc_bytes; 2670 2671 spin_lock(&inode->lock); 2672 btrfs_mod_outstanding_extents(inode, -num_extents); 2673 spin_unlock(&inode->lock); 2674 2675 /* 2676 * We don't reserve metadata space for space cache inodes so we 2677 * don't need to call delalloc_release_metadata if there is an 2678 * error. 2679 */ 2680 if (bits & EXTENT_CLEAR_META_RESV && 2681 root != fs_info->tree_root) 2682 btrfs_delalloc_release_metadata(inode, len, true); 2683 2684 /* For sanity tests. */ 2685 if (btrfs_is_testing(fs_info)) 2686 return; 2687 2688 if (!btrfs_is_data_reloc_root(root) && 2689 !btrfs_is_free_space_inode(inode) && 2690 !(state->state & EXTENT_NORESERVE) && 2691 (bits & EXTENT_CLEAR_DATA_RESV)) 2692 btrfs_free_reserved_data_space_noquota(inode, len); 2693 2694 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2695 fs_info->delalloc_batch); 2696 spin_lock(&inode->lock); 2697 inode->delalloc_bytes -= len; 2698 new_delalloc_bytes = inode->delalloc_bytes; 2699 spin_unlock(&inode->lock); 2700 2701 /* 2702 * We don't need to be under the protection of the inode's lock, 2703 * because we are called while holding the inode's io_tree lock 2704 * and are therefore protected against concurrent calls of this 2705 * function and btrfs_set_delalloc_extent(). 2706 */ 2707 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2708 spin_lock(&root->delalloc_lock); 2709 btrfs_del_delalloc_inode(inode); 2710 spin_unlock(&root->delalloc_lock); 2711 } 2712 } 2713 2714 if ((state->state & EXTENT_DELALLOC_NEW) && 2715 (bits & EXTENT_DELALLOC_NEW)) { 2716 spin_lock(&inode->lock); 2717 ASSERT(inode->new_delalloc_bytes >= len); 2718 inode->new_delalloc_bytes -= len; 2719 if (bits & EXTENT_ADD_INODE_BYTES) 2720 inode_add_bytes(&inode->vfs_inode, len); 2721 spin_unlock(&inode->lock); 2722 } 2723 } 2724 2725 /* 2726 * given a list of ordered sums record them in the inode. This happens 2727 * at IO completion time based on sums calculated at bio submission time. 2728 */ 2729 static int add_pending_csums(struct btrfs_trans_handle *trans, 2730 struct list_head *list) 2731 { 2732 struct btrfs_ordered_sum *sum; 2733 struct btrfs_root *csum_root = NULL; 2734 int ret; 2735 2736 list_for_each_entry(sum, list, list) { 2737 trans->adding_csums = true; 2738 if (!csum_root) 2739 csum_root = btrfs_csum_root(trans->fs_info, 2740 sum->logical); 2741 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2742 trans->adding_csums = false; 2743 if (ret) 2744 return ret; 2745 } 2746 return 0; 2747 } 2748 2749 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2750 const u64 start, 2751 const u64 len, 2752 struct extent_state **cached_state) 2753 { 2754 u64 search_start = start; 2755 const u64 end = start + len - 1; 2756 2757 while (search_start < end) { 2758 const u64 search_len = end - search_start + 1; 2759 struct extent_map *em; 2760 u64 em_len; 2761 int ret = 0; 2762 2763 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2764 if (IS_ERR(em)) 2765 return PTR_ERR(em); 2766 2767 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2768 goto next; 2769 2770 em_len = em->len; 2771 if (em->start < search_start) 2772 em_len -= search_start - em->start; 2773 if (em_len > search_len) 2774 em_len = search_len; 2775 2776 ret = btrfs_set_extent_bit(&inode->io_tree, search_start, 2777 search_start + em_len - 1, 2778 EXTENT_DELALLOC_NEW, cached_state); 2779 next: 2780 search_start = btrfs_extent_map_end(em); 2781 btrfs_free_extent_map(em); 2782 if (ret) 2783 return ret; 2784 } 2785 return 0; 2786 } 2787 2788 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2789 unsigned int extra_bits, 2790 struct extent_state **cached_state) 2791 { 2792 WARN_ON(PAGE_ALIGNED(end)); 2793 2794 if (start >= i_size_read(&inode->vfs_inode) && 2795 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2796 /* 2797 * There can't be any extents following eof in this case so just 2798 * set the delalloc new bit for the range directly. 2799 */ 2800 extra_bits |= EXTENT_DELALLOC_NEW; 2801 } else { 2802 int ret; 2803 2804 ret = btrfs_find_new_delalloc_bytes(inode, start, 2805 end + 1 - start, 2806 cached_state); 2807 if (ret) 2808 return ret; 2809 } 2810 2811 return btrfs_set_extent_bit(&inode->io_tree, start, end, 2812 EXTENT_DELALLOC | extra_bits, cached_state); 2813 } 2814 2815 /* see btrfs_writepage_start_hook for details on why this is required */ 2816 struct btrfs_writepage_fixup { 2817 struct folio *folio; 2818 struct btrfs_inode *inode; 2819 struct btrfs_work work; 2820 }; 2821 2822 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2823 { 2824 struct btrfs_writepage_fixup *fixup = 2825 container_of(work, struct btrfs_writepage_fixup, work); 2826 struct btrfs_ordered_extent *ordered; 2827 struct extent_state *cached_state = NULL; 2828 struct extent_changeset *data_reserved = NULL; 2829 struct folio *folio = fixup->folio; 2830 struct btrfs_inode *inode = fixup->inode; 2831 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2832 u64 page_start = folio_pos(folio); 2833 u64 page_end = folio_next_pos(folio) - 1; 2834 int ret = 0; 2835 bool free_delalloc_space = true; 2836 2837 /* 2838 * This is similar to page_mkwrite, we need to reserve the space before 2839 * we take the folio lock. 2840 */ 2841 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2842 folio_size(folio)); 2843 again: 2844 folio_lock(folio); 2845 2846 /* 2847 * Before we queued this fixup, we took a reference on the folio. 2848 * folio->mapping may go NULL, but it shouldn't be moved to a different 2849 * address space. 2850 */ 2851 if (!folio->mapping || !folio_test_dirty(folio) || 2852 !folio_test_checked(folio)) { 2853 /* 2854 * Unfortunately this is a little tricky, either 2855 * 2856 * 1) We got here and our folio had already been dealt with and 2857 * we reserved our space, thus ret == 0, so we need to just 2858 * drop our space reservation and bail. This can happen the 2859 * first time we come into the fixup worker, or could happen 2860 * while waiting for the ordered extent. 2861 * 2) Our folio was already dealt with, but we happened to get an 2862 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2863 * this case we obviously don't have anything to release, but 2864 * because the folio was already dealt with we don't want to 2865 * mark the folio with an error, so make sure we're resetting 2866 * ret to 0. This is why we have this check _before_ the ret 2867 * check, because we do not want to have a surprise ENOSPC 2868 * when the folio was already properly dealt with. 2869 */ 2870 if (!ret) { 2871 btrfs_delalloc_release_extents(inode, folio_size(folio)); 2872 btrfs_delalloc_release_space(inode, data_reserved, 2873 page_start, folio_size(folio), 2874 true); 2875 } 2876 ret = 0; 2877 goto out_page; 2878 } 2879 2880 /* 2881 * We can't mess with the folio state unless it is locked, so now that 2882 * it is locked bail if we failed to make our space reservation. 2883 */ 2884 if (ret) 2885 goto out_page; 2886 2887 btrfs_lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2888 2889 /* already ordered? We're done */ 2890 if (folio_test_ordered(folio)) 2891 goto out_reserved; 2892 2893 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2894 if (ordered) { 2895 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, 2896 &cached_state); 2897 folio_unlock(folio); 2898 btrfs_start_ordered_extent(ordered); 2899 btrfs_put_ordered_extent(ordered); 2900 goto again; 2901 } 2902 2903 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2904 &cached_state); 2905 if (ret) 2906 goto out_reserved; 2907 2908 /* 2909 * Everything went as planned, we're now the owner of a dirty page with 2910 * delayed allocation bits set and space reserved for our COW 2911 * destination. 2912 * 2913 * The page was dirty when we started, nothing should have cleaned it. 2914 */ 2915 BUG_ON(!folio_test_dirty(folio)); 2916 free_delalloc_space = false; 2917 out_reserved: 2918 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2919 if (free_delalloc_space) 2920 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2921 PAGE_SIZE, true); 2922 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2923 out_page: 2924 if (ret) { 2925 /* 2926 * We hit ENOSPC or other errors. Update the mapping and page 2927 * to reflect the errors and clean the page. 2928 */ 2929 mapping_set_error(folio->mapping, ret); 2930 btrfs_mark_ordered_io_finished(inode, folio, page_start, 2931 folio_size(folio), !ret); 2932 folio_clear_dirty_for_io(folio); 2933 } 2934 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2935 folio_unlock(folio); 2936 folio_put(folio); 2937 kfree(fixup); 2938 extent_changeset_free(data_reserved); 2939 /* 2940 * As a precaution, do a delayed iput in case it would be the last iput 2941 * that could need flushing space. Recursing back to fixup worker would 2942 * deadlock. 2943 */ 2944 btrfs_add_delayed_iput(inode); 2945 } 2946 2947 /* 2948 * There are a few paths in the higher layers of the kernel that directly 2949 * set the folio dirty bit without asking the filesystem if it is a 2950 * good idea. This causes problems because we want to make sure COW 2951 * properly happens and the data=ordered rules are followed. 2952 * 2953 * In our case any range that doesn't have the ORDERED bit set 2954 * hasn't been properly setup for IO. We kick off an async process 2955 * to fix it up. The async helper will wait for ordered extents, set 2956 * the delalloc bit and make it safe to write the folio. 2957 */ 2958 int btrfs_writepage_cow_fixup(struct folio *folio) 2959 { 2960 struct inode *inode = folio->mapping->host; 2961 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2962 struct btrfs_writepage_fixup *fixup; 2963 2964 /* This folio has ordered extent covering it already */ 2965 if (folio_test_ordered(folio)) 2966 return 0; 2967 2968 /* 2969 * For experimental build, we error out instead of EAGAIN. 2970 * 2971 * We should not hit such out-of-band dirty folios anymore. 2972 */ 2973 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) { 2974 DEBUG_WARN(); 2975 btrfs_err_rl(fs_info, 2976 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 2977 btrfs_root_id(BTRFS_I(inode)->root), 2978 btrfs_ino(BTRFS_I(inode)), 2979 folio_pos(folio)); 2980 return -EUCLEAN; 2981 } 2982 2983 /* 2984 * folio_checked is set below when we create a fixup worker for this 2985 * folio, don't try to create another one if we're already 2986 * folio_test_checked. 2987 * 2988 * The extent_io writepage code will redirty the foio if we send back 2989 * EAGAIN. 2990 */ 2991 if (folio_test_checked(folio)) 2992 return -EAGAIN; 2993 2994 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2995 if (!fixup) 2996 return -EAGAIN; 2997 2998 /* 2999 * We are already holding a reference to this inode from 3000 * write_cache_pages. We need to hold it because the space reservation 3001 * takes place outside of the folio lock, and we can't trust 3002 * folio->mapping outside of the folio lock. 3003 */ 3004 ihold(inode); 3005 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 3006 folio_get(folio); 3007 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 3008 fixup->folio = folio; 3009 fixup->inode = BTRFS_I(inode); 3010 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 3011 3012 return -EAGAIN; 3013 } 3014 3015 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 3016 struct btrfs_inode *inode, u64 file_pos, 3017 struct btrfs_file_extent_item *stack_fi, 3018 const bool update_inode_bytes, 3019 u64 qgroup_reserved) 3020 { 3021 struct btrfs_root *root = inode->root; 3022 const u64 sectorsize = root->fs_info->sectorsize; 3023 BTRFS_PATH_AUTO_FREE(path); 3024 struct extent_buffer *leaf; 3025 struct btrfs_key ins; 3026 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 3027 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 3028 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 3029 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 3030 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 3031 struct btrfs_drop_extents_args drop_args = { 0 }; 3032 int ret; 3033 3034 path = btrfs_alloc_path(); 3035 if (!path) 3036 return -ENOMEM; 3037 3038 /* 3039 * we may be replacing one extent in the tree with another. 3040 * The new extent is pinned in the extent map, and we don't want 3041 * to drop it from the cache until it is completely in the btree. 3042 * 3043 * So, tell btrfs_drop_extents to leave this extent in the cache. 3044 * the caller is expected to unpin it and allow it to be merged 3045 * with the others. 3046 */ 3047 drop_args.path = path; 3048 drop_args.start = file_pos; 3049 drop_args.end = file_pos + num_bytes; 3050 drop_args.replace_extent = true; 3051 drop_args.extent_item_size = sizeof(*stack_fi); 3052 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 3053 if (ret) 3054 return ret; 3055 3056 if (!drop_args.extent_inserted) { 3057 ins.objectid = btrfs_ino(inode); 3058 ins.type = BTRFS_EXTENT_DATA_KEY; 3059 ins.offset = file_pos; 3060 3061 ret = btrfs_insert_empty_item(trans, root, path, &ins, 3062 sizeof(*stack_fi)); 3063 if (ret) 3064 return ret; 3065 } 3066 leaf = path->nodes[0]; 3067 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 3068 write_extent_buffer(leaf, stack_fi, 3069 btrfs_item_ptr_offset(leaf, path->slots[0]), 3070 sizeof(struct btrfs_file_extent_item)); 3071 3072 btrfs_release_path(path); 3073 3074 /* 3075 * If we dropped an inline extent here, we know the range where it is 3076 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 3077 * number of bytes only for that range containing the inline extent. 3078 * The remaining of the range will be processed when clearing the 3079 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 3080 */ 3081 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 3082 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 3083 3084 inline_size = drop_args.bytes_found - inline_size; 3085 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 3086 drop_args.bytes_found -= inline_size; 3087 num_bytes -= sectorsize; 3088 } 3089 3090 if (update_inode_bytes) 3091 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 3092 3093 ins.objectid = disk_bytenr; 3094 ins.type = BTRFS_EXTENT_ITEM_KEY; 3095 ins.offset = disk_num_bytes; 3096 3097 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 3098 if (ret) 3099 return ret; 3100 3101 return btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 3102 file_pos - offset, 3103 qgroup_reserved, &ins); 3104 } 3105 3106 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3107 u64 start, u64 len) 3108 { 3109 struct btrfs_block_group *cache; 3110 3111 cache = btrfs_lookup_block_group(fs_info, start); 3112 ASSERT(cache); 3113 3114 spin_lock(&cache->lock); 3115 cache->delalloc_bytes -= len; 3116 spin_unlock(&cache->lock); 3117 3118 btrfs_put_block_group(cache); 3119 } 3120 3121 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3122 struct btrfs_ordered_extent *oe) 3123 { 3124 struct btrfs_file_extent_item stack_fi; 3125 bool update_inode_bytes; 3126 u64 num_bytes = oe->num_bytes; 3127 u64 ram_bytes = oe->ram_bytes; 3128 3129 memset(&stack_fi, 0, sizeof(stack_fi)); 3130 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3131 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3132 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3133 oe->disk_num_bytes); 3134 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3135 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 3136 num_bytes = oe->truncated_len; 3137 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3138 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3139 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3140 /* Encryption and other encoding is reserved and all 0 */ 3141 3142 /* 3143 * For delalloc, when completing an ordered extent we update the inode's 3144 * bytes when clearing the range in the inode's io tree, so pass false 3145 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3146 * except if the ordered extent was truncated. 3147 */ 3148 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3149 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3150 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3151 3152 return insert_reserved_file_extent(trans, oe->inode, 3153 oe->file_offset, &stack_fi, 3154 update_inode_bytes, oe->qgroup_rsv); 3155 } 3156 3157 /* 3158 * As ordered data IO finishes, this gets called so we can finish 3159 * an ordered extent if the range of bytes in the file it covers are 3160 * fully written. 3161 */ 3162 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3163 { 3164 struct btrfs_inode *inode = ordered_extent->inode; 3165 struct btrfs_root *root = inode->root; 3166 struct btrfs_fs_info *fs_info = root->fs_info; 3167 struct btrfs_trans_handle *trans = NULL; 3168 struct extent_io_tree *io_tree = &inode->io_tree; 3169 struct extent_state *cached_state = NULL; 3170 u64 start, end; 3171 int compress_type = 0; 3172 int ret = 0; 3173 u64 logical_len = ordered_extent->num_bytes; 3174 bool freespace_inode; 3175 bool truncated = false; 3176 bool clear_reserved_extent = true; 3177 unsigned int clear_bits = EXTENT_DEFRAG; 3178 3179 start = ordered_extent->file_offset; 3180 end = start + ordered_extent->num_bytes - 1; 3181 3182 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3183 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3184 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3185 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3186 clear_bits |= EXTENT_DELALLOC_NEW; 3187 3188 freespace_inode = btrfs_is_free_space_inode(inode); 3189 if (!freespace_inode) 3190 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3191 3192 if (unlikely(test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags))) { 3193 ret = -EIO; 3194 goto out; 3195 } 3196 3197 ret = btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3198 ordered_extent->disk_num_bytes); 3199 if (ret) 3200 goto out; 3201 3202 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3203 truncated = true; 3204 logical_len = ordered_extent->truncated_len; 3205 /* Truncated the entire extent, don't bother adding */ 3206 if (!logical_len) 3207 goto out; 3208 } 3209 3210 /* 3211 * If it's a COW write we need to lock the extent range as we will be 3212 * inserting/replacing file extent items and unpinning an extent map. 3213 * This must be taken before joining a transaction, as it's a higher 3214 * level lock (like the inode's VFS lock), otherwise we can run into an 3215 * ABBA deadlock with other tasks (transactions work like a lock, 3216 * depending on their current state). 3217 */ 3218 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3219 clear_bits |= EXTENT_LOCKED | EXTENT_FINISHING_ORDERED; 3220 btrfs_lock_extent_bits(io_tree, start, end, 3221 EXTENT_LOCKED | EXTENT_FINISHING_ORDERED, 3222 &cached_state); 3223 } 3224 3225 if (freespace_inode) 3226 trans = btrfs_join_transaction_spacecache(root); 3227 else 3228 trans = btrfs_join_transaction(root); 3229 if (IS_ERR(trans)) { 3230 ret = PTR_ERR(trans); 3231 trans = NULL; 3232 goto out; 3233 } 3234 3235 trans->block_rsv = &inode->block_rsv; 3236 3237 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3238 if (unlikely(ret)) { 3239 btrfs_abort_transaction(trans, ret); 3240 goto out; 3241 } 3242 3243 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3244 /* Logic error */ 3245 ASSERT(list_empty(&ordered_extent->list)); 3246 if (unlikely(!list_empty(&ordered_extent->list))) { 3247 ret = -EINVAL; 3248 btrfs_abort_transaction(trans, ret); 3249 goto out; 3250 } 3251 3252 btrfs_inode_safe_disk_i_size_write(inode, 0); 3253 ret = btrfs_update_inode_fallback(trans, inode); 3254 if (unlikely(ret)) { 3255 /* -ENOMEM or corruption */ 3256 btrfs_abort_transaction(trans, ret); 3257 } 3258 goto out; 3259 } 3260 3261 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3262 compress_type = ordered_extent->compress_type; 3263 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3264 BUG_ON(compress_type); 3265 ret = btrfs_mark_extent_written(trans, inode, 3266 ordered_extent->file_offset, 3267 ordered_extent->file_offset + 3268 logical_len); 3269 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3270 ordered_extent->disk_num_bytes); 3271 if (unlikely(ret < 0)) { 3272 btrfs_abort_transaction(trans, ret); 3273 goto out; 3274 } 3275 } else { 3276 BUG_ON(root == fs_info->tree_root); 3277 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3278 if (unlikely(ret < 0)) { 3279 btrfs_abort_transaction(trans, ret); 3280 goto out; 3281 } 3282 clear_reserved_extent = false; 3283 btrfs_release_delalloc_bytes(fs_info, 3284 ordered_extent->disk_bytenr, 3285 ordered_extent->disk_num_bytes); 3286 } 3287 3288 ret = btrfs_unpin_extent_cache(inode, ordered_extent->file_offset, 3289 ordered_extent->num_bytes, trans->transid); 3290 if (unlikely(ret < 0)) { 3291 btrfs_abort_transaction(trans, ret); 3292 goto out; 3293 } 3294 3295 ret = add_pending_csums(trans, &ordered_extent->list); 3296 if (unlikely(ret)) { 3297 btrfs_abort_transaction(trans, ret); 3298 goto out; 3299 } 3300 3301 /* 3302 * If this is a new delalloc range, clear its new delalloc flag to 3303 * update the inode's number of bytes. This needs to be done first 3304 * before updating the inode item. 3305 */ 3306 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3307 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3308 btrfs_clear_extent_bit(&inode->io_tree, start, end, 3309 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3310 &cached_state); 3311 3312 btrfs_inode_safe_disk_i_size_write(inode, 0); 3313 ret = btrfs_update_inode_fallback(trans, inode); 3314 if (unlikely(ret)) { /* -ENOMEM or corruption */ 3315 btrfs_abort_transaction(trans, ret); 3316 goto out; 3317 } 3318 out: 3319 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3320 &cached_state); 3321 3322 if (trans) 3323 btrfs_end_transaction(trans); 3324 3325 if (ret || truncated) { 3326 /* 3327 * If we failed to finish this ordered extent for any reason we 3328 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3329 * extent, and mark the inode with the error if it wasn't 3330 * already set. Any error during writeback would have already 3331 * set the mapping error, so we need to set it if we're the ones 3332 * marking this ordered extent as failed. 3333 */ 3334 if (ret) 3335 btrfs_mark_ordered_extent_error(ordered_extent); 3336 3337 /* 3338 * Drop extent maps for the part of the extent we didn't write. 3339 * 3340 * We have an exception here for the free_space_inode, this is 3341 * because when we do btrfs_get_extent() on the free space inode 3342 * we will search the commit root. If this is a new block group 3343 * we won't find anything, and we will trip over the assert in 3344 * writepage where we do ASSERT(em->block_start != 3345 * EXTENT_MAP_HOLE). 3346 * 3347 * Theoretically we could also skip this for any NOCOW extent as 3348 * we don't mess with the extent map tree in the NOCOW case, but 3349 * for now simply skip this if we are the free space inode. 3350 */ 3351 if (!btrfs_is_free_space_inode(inode)) { 3352 u64 unwritten_start = start; 3353 3354 if (truncated) 3355 unwritten_start += logical_len; 3356 3357 btrfs_drop_extent_map_range(inode, unwritten_start, 3358 end, false); 3359 } 3360 3361 /* 3362 * If the ordered extent had an IOERR or something else went 3363 * wrong we need to return the space for this ordered extent 3364 * back to the allocator. We only free the extent in the 3365 * truncated case if we didn't write out the extent at all. 3366 * 3367 * If we made it past insert_reserved_file_extent before we 3368 * errored out then we don't need to do this as the accounting 3369 * has already been done. 3370 */ 3371 if ((ret || !logical_len) && 3372 clear_reserved_extent && 3373 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3374 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3375 /* 3376 * Discard the range before returning it back to the 3377 * free space pool 3378 */ 3379 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3380 btrfs_discard_extent(fs_info, 3381 ordered_extent->disk_bytenr, 3382 ordered_extent->disk_num_bytes, 3383 NULL, true); 3384 btrfs_free_reserved_extent(fs_info, 3385 ordered_extent->disk_bytenr, 3386 ordered_extent->disk_num_bytes, true); 3387 /* 3388 * Actually free the qgroup rsv which was released when 3389 * the ordered extent was created. 3390 */ 3391 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3392 ordered_extent->qgroup_rsv, 3393 BTRFS_QGROUP_RSV_DATA); 3394 } 3395 } 3396 3397 /* 3398 * This needs to be done to make sure anybody waiting knows we are done 3399 * updating everything for this ordered extent. 3400 */ 3401 btrfs_remove_ordered_extent(inode, ordered_extent); 3402 3403 /* once for us */ 3404 btrfs_put_ordered_extent(ordered_extent); 3405 /* once for the tree */ 3406 btrfs_put_ordered_extent(ordered_extent); 3407 3408 return ret; 3409 } 3410 3411 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3412 { 3413 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3414 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3415 list_empty(&ordered->bioc_list)) 3416 btrfs_finish_ordered_zoned(ordered); 3417 return btrfs_finish_one_ordered(ordered); 3418 } 3419 3420 /* 3421 * Calculate the checksum of an fs block at physical memory address @paddr, 3422 * and save the result to @dest. 3423 * 3424 * The folio containing @paddr must be large enough to contain a full fs block. 3425 */ 3426 void btrfs_calculate_block_csum_folio(struct btrfs_fs_info *fs_info, 3427 const phys_addr_t paddr, u8 *dest) 3428 { 3429 struct folio *folio = page_folio(phys_to_page(paddr)); 3430 const u32 blocksize = fs_info->sectorsize; 3431 const u32 step = min(blocksize, PAGE_SIZE); 3432 const u32 nr_steps = blocksize / step; 3433 phys_addr_t paddrs[BTRFS_MAX_BLOCKSIZE / PAGE_SIZE]; 3434 3435 /* The full block must be inside the folio. */ 3436 ASSERT(offset_in_folio(folio, paddr) + blocksize <= folio_size(folio)); 3437 3438 for (int i = 0; i < nr_steps; i++) { 3439 u32 pindex = offset_in_folio(folio, paddr + i * step) >> PAGE_SHIFT; 3440 3441 /* 3442 * For bs <= ps cases, we will only run the loop once, so the offset 3443 * inside the page will only added to paddrs[0]. 3444 * 3445 * For bs > ps cases, the block must be page aligned, thus offset 3446 * inside the page will always be 0. 3447 */ 3448 paddrs[i] = page_to_phys(folio_page(folio, pindex)) + offset_in_page(paddr); 3449 } 3450 return btrfs_calculate_block_csum_pages(fs_info, paddrs, dest); 3451 } 3452 3453 /* 3454 * Calculate the checksum of a fs block backed by multiple noncontiguous pages 3455 * at @paddrs[] and save the result to @dest. 3456 * 3457 * The folio containing @paddr must be large enough to contain a full fs block. 3458 */ 3459 void btrfs_calculate_block_csum_pages(struct btrfs_fs_info *fs_info, 3460 const phys_addr_t paddrs[], u8 *dest) 3461 { 3462 const u32 blocksize = fs_info->sectorsize; 3463 const u32 step = min(blocksize, PAGE_SIZE); 3464 const u32 nr_steps = blocksize / step; 3465 struct btrfs_csum_ctx csum; 3466 3467 btrfs_csum_init(&csum, fs_info->csum_type); 3468 for (int i = 0; i < nr_steps; i++) { 3469 const phys_addr_t paddr = paddrs[i]; 3470 void *kaddr; 3471 3472 ASSERT(offset_in_page(paddr) + step <= PAGE_SIZE); 3473 kaddr = kmap_local_page(phys_to_page(paddr)) + offset_in_page(paddr); 3474 btrfs_csum_update(&csum, kaddr, step); 3475 kunmap_local(kaddr); 3476 } 3477 btrfs_csum_final(&csum, dest); 3478 } 3479 3480 /* 3481 * Verify the checksum for a single sector without any extra action that depend 3482 * on the type of I/O. 3483 * 3484 * @kaddr must be a properly kmapped address. 3485 */ 3486 int btrfs_check_block_csum(struct btrfs_fs_info *fs_info, phys_addr_t paddr, u8 *csum, 3487 const u8 * const csum_expected) 3488 { 3489 btrfs_calculate_block_csum_folio(fs_info, paddr, csum); 3490 if (unlikely(memcmp(csum, csum_expected, fs_info->csum_size) != 0)) 3491 return -EIO; 3492 return 0; 3493 } 3494 3495 /* 3496 * Verify the checksum of a single data sector, which can be scattered at 3497 * different noncontiguous pages. 3498 * 3499 * @bbio: btrfs_io_bio which contains the csum 3500 * @dev: device the sector is on 3501 * @bio_offset: offset to the beginning of the bio (in bytes) 3502 * @paddrs: physical addresses which back the fs block 3503 * 3504 * Check if the checksum on a data block is valid. When a checksum mismatch is 3505 * detected, report the error and fill the corrupted range with zero. 3506 * 3507 * Return %true if the sector is ok or had no checksum to start with, else %false. 3508 */ 3509 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3510 u32 bio_offset, const phys_addr_t paddrs[]) 3511 { 3512 struct btrfs_inode *inode = bbio->inode; 3513 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3514 const u32 blocksize = fs_info->sectorsize; 3515 const u32 step = min(blocksize, PAGE_SIZE); 3516 const u32 nr_steps = blocksize / step; 3517 u64 file_offset = bbio->file_offset + bio_offset; 3518 u64 end = file_offset + blocksize - 1; 3519 u8 *csum_expected; 3520 u8 csum[BTRFS_CSUM_SIZE]; 3521 3522 if (!bbio->csum) 3523 return true; 3524 3525 if (btrfs_is_data_reloc_root(inode->root) && 3526 btrfs_test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3527 NULL)) { 3528 /* Skip the range without csum for data reloc inode */ 3529 btrfs_clear_extent_bit(&inode->io_tree, file_offset, end, 3530 EXTENT_NODATASUM, NULL); 3531 return true; 3532 } 3533 3534 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3535 fs_info->csum_size; 3536 btrfs_calculate_block_csum_pages(fs_info, paddrs, csum); 3537 if (unlikely(memcmp(csum, csum_expected, fs_info->csum_size) != 0)) 3538 goto zeroit; 3539 return true; 3540 3541 zeroit: 3542 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3543 bbio->mirror_num); 3544 if (dev) 3545 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3546 for (int i = 0; i < nr_steps; i++) 3547 memzero_page(phys_to_page(paddrs[i]), offset_in_page(paddrs[i]), step); 3548 return false; 3549 } 3550 3551 /* 3552 * Perform a delayed iput on @inode. 3553 * 3554 * @inode: The inode we want to perform iput on 3555 * 3556 * This function uses the generic vfs_inode::i_count to track whether we should 3557 * just decrement it (in case it's > 1) or if this is the last iput then link 3558 * the inode to the delayed iput machinery. Delayed iputs are processed at 3559 * transaction commit time/superblock commit/cleaner kthread. 3560 */ 3561 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3562 { 3563 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3564 unsigned long flags; 3565 3566 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3567 return; 3568 3569 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state)); 3570 atomic_inc(&fs_info->nr_delayed_iputs); 3571 /* 3572 * Need to be irq safe here because we can be called from either an irq 3573 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3574 * context. 3575 */ 3576 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3577 ASSERT(list_empty(&inode->delayed_iput)); 3578 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3579 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3580 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3581 wake_up_process(fs_info->cleaner_kthread); 3582 } 3583 3584 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3585 struct btrfs_inode *inode) 3586 { 3587 list_del_init(&inode->delayed_iput); 3588 spin_unlock_irq(&fs_info->delayed_iput_lock); 3589 iput(&inode->vfs_inode); 3590 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3591 wake_up(&fs_info->delayed_iputs_wait); 3592 spin_lock_irq(&fs_info->delayed_iput_lock); 3593 } 3594 3595 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3596 struct btrfs_inode *inode) 3597 { 3598 if (!list_empty(&inode->delayed_iput)) { 3599 spin_lock_irq(&fs_info->delayed_iput_lock); 3600 if (!list_empty(&inode->delayed_iput)) 3601 run_delayed_iput_locked(fs_info, inode); 3602 spin_unlock_irq(&fs_info->delayed_iput_lock); 3603 } 3604 } 3605 3606 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3607 { 3608 /* 3609 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3610 * calls btrfs_add_delayed_iput() and that needs to lock 3611 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3612 * prevent a deadlock. 3613 */ 3614 spin_lock_irq(&fs_info->delayed_iput_lock); 3615 while (!list_empty(&fs_info->delayed_iputs)) { 3616 struct btrfs_inode *inode; 3617 3618 inode = list_first_entry(&fs_info->delayed_iputs, 3619 struct btrfs_inode, delayed_iput); 3620 run_delayed_iput_locked(fs_info, inode); 3621 if (need_resched()) { 3622 spin_unlock_irq(&fs_info->delayed_iput_lock); 3623 cond_resched(); 3624 spin_lock_irq(&fs_info->delayed_iput_lock); 3625 } 3626 } 3627 spin_unlock_irq(&fs_info->delayed_iput_lock); 3628 } 3629 3630 /* 3631 * Wait for flushing all delayed iputs 3632 * 3633 * @fs_info: the filesystem 3634 * 3635 * This will wait on any delayed iputs that are currently running with KILLABLE 3636 * set. Once they are all done running we will return, unless we are killed in 3637 * which case we return EINTR. This helps in user operations like fallocate etc 3638 * that might get blocked on the iputs. 3639 * 3640 * Return EINTR if we were killed, 0 if nothing's pending 3641 */ 3642 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3643 { 3644 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3645 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3646 if (ret) 3647 return -EINTR; 3648 return 0; 3649 } 3650 3651 /* 3652 * This creates an orphan entry for the given inode in case something goes wrong 3653 * in the middle of an unlink. 3654 */ 3655 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3656 struct btrfs_inode *inode) 3657 { 3658 int ret; 3659 3660 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3661 if (unlikely(ret && ret != -EEXIST)) { 3662 btrfs_abort_transaction(trans, ret); 3663 return ret; 3664 } 3665 3666 return 0; 3667 } 3668 3669 /* 3670 * We have done the delete so we can go ahead and remove the orphan item for 3671 * this particular inode. 3672 */ 3673 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3674 struct btrfs_inode *inode) 3675 { 3676 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3677 } 3678 3679 /* 3680 * this cleans up any orphans that may be left on the list from the last use 3681 * of this root. 3682 */ 3683 int btrfs_orphan_cleanup(struct btrfs_root *root) 3684 { 3685 struct btrfs_fs_info *fs_info = root->fs_info; 3686 BTRFS_PATH_AUTO_FREE(path); 3687 struct extent_buffer *leaf; 3688 struct btrfs_key key, found_key; 3689 struct btrfs_trans_handle *trans; 3690 u64 last_objectid = 0; 3691 int ret = 0, nr_unlink = 0; 3692 3693 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3694 return 0; 3695 3696 path = btrfs_alloc_path(); 3697 if (!path) { 3698 ret = -ENOMEM; 3699 goto out; 3700 } 3701 path->reada = READA_BACK; 3702 3703 key.objectid = BTRFS_ORPHAN_OBJECTID; 3704 key.type = BTRFS_ORPHAN_ITEM_KEY; 3705 key.offset = (u64)-1; 3706 3707 while (1) { 3708 struct btrfs_inode *inode; 3709 3710 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3711 if (ret < 0) 3712 goto out; 3713 3714 /* 3715 * if ret == 0 means we found what we were searching for, which 3716 * is weird, but possible, so only screw with path if we didn't 3717 * find the key and see if we have stuff that matches 3718 */ 3719 if (ret > 0) { 3720 ret = 0; 3721 if (path->slots[0] == 0) 3722 break; 3723 path->slots[0]--; 3724 } 3725 3726 /* pull out the item */ 3727 leaf = path->nodes[0]; 3728 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3729 3730 /* make sure the item matches what we want */ 3731 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3732 break; 3733 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3734 break; 3735 3736 /* release the path since we're done with it */ 3737 btrfs_release_path(path); 3738 3739 /* 3740 * this is where we are basically btrfs_lookup, without the 3741 * crossing root thing. we store the inode number in the 3742 * offset of the orphan item. 3743 */ 3744 3745 if (found_key.offset == last_objectid) { 3746 /* 3747 * We found the same inode as before. This means we were 3748 * not able to remove its items via eviction triggered 3749 * by an iput(). A transaction abort may have happened, 3750 * due to -ENOSPC for example, so try to grab the error 3751 * that lead to a transaction abort, if any. 3752 */ 3753 btrfs_err(fs_info, 3754 "Error removing orphan entry, stopping orphan cleanup"); 3755 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3756 goto out; 3757 } 3758 3759 last_objectid = found_key.offset; 3760 3761 found_key.objectid = found_key.offset; 3762 found_key.type = BTRFS_INODE_ITEM_KEY; 3763 found_key.offset = 0; 3764 inode = btrfs_iget(last_objectid, root); 3765 if (IS_ERR(inode)) { 3766 ret = PTR_ERR(inode); 3767 inode = NULL; 3768 if (ret != -ENOENT) 3769 goto out; 3770 } 3771 3772 if (!inode && root == fs_info->tree_root) { 3773 struct btrfs_root *dead_root; 3774 int is_dead_root = 0; 3775 3776 /* 3777 * This is an orphan in the tree root. Currently these 3778 * could come from 2 sources: 3779 * a) a root (snapshot/subvolume) deletion in progress 3780 * b) a free space cache inode 3781 * We need to distinguish those two, as the orphan item 3782 * for a root must not get deleted before the deletion 3783 * of the snapshot/subvolume's tree completes. 3784 * 3785 * btrfs_find_orphan_roots() ran before us, which has 3786 * found all deleted roots and loaded them into 3787 * fs_info->fs_roots_radix. So here we can find if an 3788 * orphan item corresponds to a deleted root by looking 3789 * up the root from that radix tree. 3790 */ 3791 3792 spin_lock(&fs_info->fs_roots_radix_lock); 3793 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3794 (unsigned long)found_key.objectid); 3795 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3796 is_dead_root = 1; 3797 spin_unlock(&fs_info->fs_roots_radix_lock); 3798 3799 if (is_dead_root) { 3800 /* prevent this orphan from being found again */ 3801 key.offset = found_key.objectid - 1; 3802 continue; 3803 } 3804 3805 } 3806 3807 /* 3808 * If we have an inode with links, there are a couple of 3809 * possibilities: 3810 * 3811 * 1. We were halfway through creating fsverity metadata for the 3812 * file. In that case, the orphan item represents incomplete 3813 * fsverity metadata which must be cleaned up with 3814 * btrfs_drop_verity_items and deleting the orphan item. 3815 3816 * 2. Old kernels (before v3.12) used to create an 3817 * orphan item for truncate indicating that there were possibly 3818 * extent items past i_size that needed to be deleted. In v3.12, 3819 * truncate was changed to update i_size in sync with the extent 3820 * items, but the (useless) orphan item was still created. Since 3821 * v4.18, we don't create the orphan item for truncate at all. 3822 * 3823 * So, this item could mean that we need to do a truncate, but 3824 * only if this filesystem was last used on a pre-v3.12 kernel 3825 * and was not cleanly unmounted. The odds of that are quite 3826 * slim, and it's a pain to do the truncate now, so just delete 3827 * the orphan item. 3828 * 3829 * It's also possible that this orphan item was supposed to be 3830 * deleted but wasn't. The inode number may have been reused, 3831 * but either way, we can delete the orphan item. 3832 */ 3833 if (!inode || inode->vfs_inode.i_nlink) { 3834 if (inode) { 3835 ret = btrfs_drop_verity_items(inode); 3836 iput(&inode->vfs_inode); 3837 inode = NULL; 3838 if (ret) 3839 goto out; 3840 } 3841 trans = btrfs_start_transaction(root, 1); 3842 if (IS_ERR(trans)) { 3843 ret = PTR_ERR(trans); 3844 goto out; 3845 } 3846 btrfs_debug(fs_info, "auto deleting %Lu", 3847 found_key.objectid); 3848 ret = btrfs_del_orphan_item(trans, root, 3849 found_key.objectid); 3850 btrfs_end_transaction(trans); 3851 if (ret) 3852 goto out; 3853 continue; 3854 } 3855 3856 nr_unlink++; 3857 3858 /* this will do delete_inode and everything for us */ 3859 iput(&inode->vfs_inode); 3860 } 3861 /* release the path since we're done with it */ 3862 btrfs_release_path(path); 3863 3864 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3865 trans = btrfs_join_transaction(root); 3866 if (!IS_ERR(trans)) 3867 btrfs_end_transaction(trans); 3868 } 3869 3870 if (nr_unlink) 3871 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3872 3873 out: 3874 if (ret) 3875 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3876 return ret; 3877 } 3878 3879 /* 3880 * Look ahead in the leaf for xattrs. If we don't find any then we know there 3881 * can't be any ACLs. 3882 * 3883 * @leaf: the eb leaf where to search 3884 * @slot: the slot the inode is in 3885 * @objectid: the objectid of the inode 3886 * 3887 * Return true if there is xattr/ACL, false otherwise. 3888 */ 3889 static noinline bool acls_after_inode_item(struct extent_buffer *leaf, 3890 int slot, u64 objectid, 3891 int *first_xattr_slot) 3892 { 3893 u32 nritems = btrfs_header_nritems(leaf); 3894 struct btrfs_key found_key; 3895 static u64 xattr_access = 0; 3896 static u64 xattr_default = 0; 3897 int scanned = 0; 3898 3899 if (!xattr_access) { 3900 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3901 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3902 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3903 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3904 } 3905 3906 slot++; 3907 *first_xattr_slot = -1; 3908 while (slot < nritems) { 3909 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3910 3911 /* We found a different objectid, there must be no ACLs. */ 3912 if (found_key.objectid != objectid) 3913 return false; 3914 3915 /* We found an xattr, assume we've got an ACL. */ 3916 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3917 if (*first_xattr_slot == -1) 3918 *first_xattr_slot = slot; 3919 if (found_key.offset == xattr_access || 3920 found_key.offset == xattr_default) 3921 return true; 3922 } 3923 3924 /* 3925 * We found a key greater than an xattr key, there can't be any 3926 * ACLs later on. 3927 */ 3928 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3929 return false; 3930 3931 slot++; 3932 scanned++; 3933 3934 /* 3935 * The item order goes like: 3936 * - inode 3937 * - inode backrefs 3938 * - xattrs 3939 * - extents, 3940 * 3941 * so if there are lots of hard links to an inode there can be 3942 * a lot of backrefs. Don't waste time searching too hard, 3943 * this is just an optimization. 3944 */ 3945 if (scanned >= 8) 3946 break; 3947 } 3948 /* 3949 * We hit the end of the leaf before we found an xattr or something 3950 * larger than an xattr. We have to assume the inode has ACLs. 3951 */ 3952 if (*first_xattr_slot == -1) 3953 *first_xattr_slot = slot; 3954 return true; 3955 } 3956 3957 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3958 { 3959 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3960 3961 if (WARN_ON_ONCE(inode->file_extent_tree)) 3962 return 0; 3963 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3964 return 0; 3965 if (!S_ISREG(inode->vfs_inode.i_mode)) 3966 return 0; 3967 if (btrfs_is_free_space_inode(inode)) 3968 return 0; 3969 3970 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3971 if (!inode->file_extent_tree) 3972 return -ENOMEM; 3973 3974 btrfs_extent_io_tree_init(fs_info, inode->file_extent_tree, 3975 IO_TREE_INODE_FILE_EXTENT); 3976 /* Lockdep class is set only for the file extent tree. */ 3977 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3978 3979 return 0; 3980 } 3981 3982 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 3983 { 3984 struct btrfs_root *root = inode->root; 3985 struct btrfs_inode *existing; 3986 const u64 ino = btrfs_ino(inode); 3987 int ret; 3988 3989 if (inode_unhashed(&inode->vfs_inode)) 3990 return 0; 3991 3992 if (prealloc) { 3993 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 3994 if (ret) 3995 return ret; 3996 } 3997 3998 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 3999 4000 if (xa_is_err(existing)) { 4001 ret = xa_err(existing); 4002 ASSERT(ret != -EINVAL); 4003 ASSERT(ret != -ENOMEM); 4004 return ret; 4005 } else if (existing) { 4006 WARN_ON(!(inode_state_read_once(&existing->vfs_inode) & (I_WILL_FREE | I_FREEING))); 4007 } 4008 4009 return 0; 4010 } 4011 4012 /* 4013 * Read a locked inode from the btree into the in-memory inode and add it to 4014 * its root list/tree. 4015 * 4016 * On failure clean up the inode. 4017 */ 4018 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path) 4019 { 4020 struct btrfs_root *root = inode->root; 4021 struct btrfs_fs_info *fs_info = root->fs_info; 4022 struct extent_buffer *leaf; 4023 struct btrfs_inode_item *inode_item; 4024 struct inode *vfs_inode = &inode->vfs_inode; 4025 struct btrfs_key location; 4026 unsigned long ptr; 4027 int maybe_acls; 4028 u32 rdev; 4029 int ret; 4030 bool filled = false; 4031 int first_xattr_slot; 4032 4033 ret = btrfs_fill_inode(inode, &rdev); 4034 if (!ret) 4035 filled = true; 4036 4037 ASSERT(path); 4038 4039 btrfs_get_inode_key(inode, &location); 4040 4041 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 4042 if (ret) { 4043 /* 4044 * ret > 0 can come from btrfs_search_slot called by 4045 * btrfs_lookup_inode(), this means the inode was not found. 4046 */ 4047 if (ret > 0) 4048 ret = -ENOENT; 4049 goto out; 4050 } 4051 4052 leaf = path->nodes[0]; 4053 4054 if (filled) 4055 goto cache_index; 4056 4057 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4058 struct btrfs_inode_item); 4059 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item); 4060 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item)); 4061 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item)); 4062 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item)); 4063 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 4064 4065 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime), 4066 btrfs_timespec_nsec(leaf, &inode_item->atime)); 4067 4068 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 4069 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 4070 4071 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 4072 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 4073 4074 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 4075 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 4076 4077 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item)); 4078 inode->generation = btrfs_inode_generation(leaf, inode_item); 4079 inode->last_trans = btrfs_inode_transid(leaf, inode_item); 4080 4081 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item)); 4082 vfs_inode->i_generation = inode->generation; 4083 vfs_inode->i_rdev = 0; 4084 rdev = btrfs_inode_rdev(leaf, inode_item); 4085 4086 if (S_ISDIR(vfs_inode->i_mode)) 4087 inode->index_cnt = (u64)-1; 4088 4089 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 4090 &inode->flags, &inode->ro_flags); 4091 btrfs_update_inode_mapping_flags(inode); 4092 btrfs_set_inode_mapping_order(inode); 4093 4094 cache_index: 4095 /* 4096 * If we were modified in the current generation and evicted from memory 4097 * and then re-read we need to do a full sync since we don't have any 4098 * idea about which extents were modified before we were evicted from 4099 * cache. 4100 * 4101 * This is required for both inode re-read from disk and delayed inode 4102 * in the delayed_nodes xarray. 4103 */ 4104 if (inode->last_trans == btrfs_get_fs_generation(fs_info)) 4105 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 4106 4107 /* 4108 * We don't persist the id of the transaction where an unlink operation 4109 * against the inode was last made. So here we assume the inode might 4110 * have been evicted, and therefore the exact value of last_unlink_trans 4111 * lost, and set it to last_trans to avoid metadata inconsistencies 4112 * between the inode and its parent if the inode is fsync'ed and the log 4113 * replayed. For example, in the scenario: 4114 * 4115 * touch mydir/foo 4116 * ln mydir/foo mydir/bar 4117 * sync 4118 * unlink mydir/bar 4119 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 4120 * xfs_io -c fsync mydir/foo 4121 * <power failure> 4122 * mount fs, triggers fsync log replay 4123 * 4124 * We must make sure that when we fsync our inode foo we also log its 4125 * parent inode, otherwise after log replay the parent still has the 4126 * dentry with the "bar" name but our inode foo has a link count of 1 4127 * and doesn't have an inode ref with the name "bar" anymore. 4128 * 4129 * Setting last_unlink_trans to last_trans is a pessimistic approach, 4130 * but it guarantees correctness at the expense of occasional full 4131 * transaction commits on fsync if our inode is a directory, or if our 4132 * inode is not a directory, logging its parent unnecessarily. 4133 */ 4134 inode->last_unlink_trans = inode->last_trans; 4135 4136 /* 4137 * Same logic as for last_unlink_trans. We don't persist the generation 4138 * of the last transaction where this inode was used for a reflink 4139 * operation, so after eviction and reloading the inode we must be 4140 * pessimistic and assume the last transaction that modified the inode. 4141 */ 4142 inode->last_reflink_trans = inode->last_trans; 4143 4144 path->slots[0]++; 4145 if (vfs_inode->i_nlink != 1 || 4146 path->slots[0] >= btrfs_header_nritems(leaf)) 4147 goto cache_acl; 4148 4149 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 4150 if (location.objectid != btrfs_ino(inode)) 4151 goto cache_acl; 4152 4153 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4154 if (location.type == BTRFS_INODE_REF_KEY) { 4155 struct btrfs_inode_ref *ref; 4156 4157 ref = (struct btrfs_inode_ref *)ptr; 4158 inode->dir_index = btrfs_inode_ref_index(leaf, ref); 4159 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 4160 struct btrfs_inode_extref *extref; 4161 4162 extref = (struct btrfs_inode_extref *)ptr; 4163 inode->dir_index = btrfs_inode_extref_index(leaf, extref); 4164 } 4165 cache_acl: 4166 /* 4167 * try to precache a NULL acl entry for files that don't have 4168 * any xattrs or acls 4169 */ 4170 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 4171 btrfs_ino(inode), &first_xattr_slot); 4172 if (first_xattr_slot != -1) { 4173 path->slots[0] = first_xattr_slot; 4174 ret = btrfs_load_inode_props(inode, path); 4175 if (ret) 4176 btrfs_err(fs_info, 4177 "error loading props for ino %llu (root %llu): %d", 4178 btrfs_ino(inode), btrfs_root_id(root), ret); 4179 } 4180 4181 /* 4182 * We don't need the path anymore, so release it to avoid holding a read 4183 * lock on a leaf while calling btrfs_init_file_extent_tree(), which can 4184 * allocate memory that triggers reclaim (GFP_KERNEL) and cause a locking 4185 * dependency. 4186 */ 4187 btrfs_release_path(path); 4188 4189 ret = btrfs_init_file_extent_tree(inode); 4190 if (ret) 4191 goto out; 4192 btrfs_inode_set_file_extent_range(inode, 0, 4193 round_up(i_size_read(vfs_inode), fs_info->sectorsize)); 4194 4195 if (!maybe_acls) 4196 cache_no_acl(vfs_inode); 4197 4198 switch (vfs_inode->i_mode & S_IFMT) { 4199 case S_IFREG: 4200 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4201 vfs_inode->i_fop = &btrfs_file_operations; 4202 vfs_inode->i_op = &btrfs_file_inode_operations; 4203 break; 4204 case S_IFDIR: 4205 vfs_inode->i_fop = &btrfs_dir_file_operations; 4206 vfs_inode->i_op = &btrfs_dir_inode_operations; 4207 break; 4208 case S_IFLNK: 4209 vfs_inode->i_op = &btrfs_symlink_inode_operations; 4210 inode_nohighmem(vfs_inode); 4211 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4212 break; 4213 default: 4214 vfs_inode->i_op = &btrfs_special_inode_operations; 4215 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev); 4216 break; 4217 } 4218 4219 btrfs_sync_inode_flags_to_i_flags(inode); 4220 4221 ret = btrfs_add_inode_to_root(inode, true); 4222 if (ret) 4223 goto out; 4224 4225 return 0; 4226 out: 4227 /* 4228 * We may have a read locked leaf and iget_failed() triggers inode 4229 * eviction which needs to release the delayed inode and that needs 4230 * to lock the delayed inode's mutex. This can cause a ABBA deadlock 4231 * with a task running delayed items, as that require first locking 4232 * the delayed inode's mutex and then modifying its subvolume btree. 4233 * So release the path before iget_failed(). 4234 */ 4235 btrfs_release_path(path); 4236 iget_failed(vfs_inode); 4237 return ret; 4238 } 4239 4240 /* 4241 * given a leaf and an inode, copy the inode fields into the leaf 4242 */ 4243 static void fill_inode_item(struct btrfs_trans_handle *trans, 4244 struct extent_buffer *leaf, 4245 struct btrfs_inode_item *item, 4246 struct inode *inode) 4247 { 4248 u64 flags; 4249 4250 btrfs_set_inode_uid(leaf, item, i_uid_read(inode)); 4251 btrfs_set_inode_gid(leaf, item, i_gid_read(inode)); 4252 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 4253 btrfs_set_inode_mode(leaf, item, inode->i_mode); 4254 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 4255 4256 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode)); 4257 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode)); 4258 4259 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode)); 4260 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode)); 4261 4262 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode)); 4263 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode)); 4264 4265 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec); 4266 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4267 4268 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 4269 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 4270 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode)); 4271 btrfs_set_inode_transid(leaf, item, trans->transid); 4272 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 4273 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4274 BTRFS_I(inode)->ro_flags); 4275 btrfs_set_inode_flags(leaf, item, flags); 4276 btrfs_set_inode_block_group(leaf, item, 0); 4277 } 4278 4279 /* 4280 * copy everything in the in-memory inode into the btree. 4281 */ 4282 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4283 struct btrfs_inode *inode) 4284 { 4285 struct btrfs_inode_item *inode_item; 4286 BTRFS_PATH_AUTO_FREE(path); 4287 struct extent_buffer *leaf; 4288 struct btrfs_key key; 4289 int ret; 4290 4291 path = btrfs_alloc_path(); 4292 if (!path) 4293 return -ENOMEM; 4294 4295 btrfs_get_inode_key(inode, &key); 4296 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4297 if (ret) { 4298 if (ret > 0) 4299 ret = -ENOENT; 4300 return ret; 4301 } 4302 4303 leaf = path->nodes[0]; 4304 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4305 struct btrfs_inode_item); 4306 4307 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4308 btrfs_set_inode_last_trans(trans, inode); 4309 return 0; 4310 } 4311 4312 /* 4313 * copy everything in the in-memory inode into the btree. 4314 */ 4315 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4316 struct btrfs_inode *inode) 4317 { 4318 struct btrfs_root *root = inode->root; 4319 struct btrfs_fs_info *fs_info = root->fs_info; 4320 int ret; 4321 4322 /* 4323 * If the inode is a free space inode, we can deadlock during commit 4324 * if we put it into the delayed code. 4325 * 4326 * The data relocation inode should also be directly updated 4327 * without delay 4328 */ 4329 if (!btrfs_is_free_space_inode(inode) 4330 && !btrfs_is_data_reloc_root(root) 4331 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4332 btrfs_update_root_times(trans, root); 4333 4334 ret = btrfs_delayed_update_inode(trans, inode); 4335 if (!ret) 4336 btrfs_set_inode_last_trans(trans, inode); 4337 return ret; 4338 } 4339 4340 return btrfs_update_inode_item(trans, inode); 4341 } 4342 4343 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4344 struct btrfs_inode *inode) 4345 { 4346 int ret; 4347 4348 ret = btrfs_update_inode(trans, inode); 4349 if (ret == -ENOSPC) 4350 return btrfs_update_inode_item(trans, inode); 4351 return ret; 4352 } 4353 4354 static void update_time_after_link_or_unlink(struct btrfs_inode *dir) 4355 { 4356 struct timespec64 now; 4357 4358 /* 4359 * If we are replaying a log tree, we do not want to update the mtime 4360 * and ctime of the parent directory with the current time, since the 4361 * log replay procedure is responsible for setting them to their correct 4362 * values (the ones it had when the fsync was done). 4363 */ 4364 if (test_bit(BTRFS_FS_LOG_RECOVERING, &dir->root->fs_info->flags)) 4365 return; 4366 4367 now = inode_set_ctime_current(&dir->vfs_inode); 4368 inode_set_mtime_to_ts(&dir->vfs_inode, now); 4369 } 4370 4371 /* 4372 * unlink helper that gets used here in inode.c and in the tree logging 4373 * recovery code. It remove a link in a directory with a given name, and 4374 * also drops the back refs in the inode to the directory 4375 */ 4376 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4377 struct btrfs_inode *dir, 4378 struct btrfs_inode *inode, 4379 const struct fscrypt_str *name, 4380 struct btrfs_rename_ctx *rename_ctx) 4381 { 4382 struct btrfs_root *root = dir->root; 4383 struct btrfs_fs_info *fs_info = root->fs_info; 4384 struct btrfs_path *path; 4385 int ret = 0; 4386 struct btrfs_dir_item *di; 4387 u64 index; 4388 u64 ino = btrfs_ino(inode); 4389 u64 dir_ino = btrfs_ino(dir); 4390 4391 path = btrfs_alloc_path(); 4392 if (!path) 4393 return -ENOMEM; 4394 4395 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4396 if (IS_ERR_OR_NULL(di)) { 4397 btrfs_free_path(path); 4398 return di ? PTR_ERR(di) : -ENOENT; 4399 } 4400 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4401 /* 4402 * Down the call chains below we'll also need to allocate a path, so no 4403 * need to hold on to this one for longer than necessary. 4404 */ 4405 btrfs_free_path(path); 4406 if (ret) 4407 return ret; 4408 4409 /* 4410 * If we don't have dir index, we have to get it by looking up 4411 * the inode ref, since we get the inode ref, remove it directly, 4412 * it is unnecessary to do delayed deletion. 4413 * 4414 * But if we have dir index, needn't search inode ref to get it. 4415 * Since the inode ref is close to the inode item, it is better 4416 * that we delay to delete it, and just do this deletion when 4417 * we update the inode item. 4418 */ 4419 if (inode->dir_index) { 4420 ret = btrfs_delayed_delete_inode_ref(inode); 4421 if (!ret) { 4422 index = inode->dir_index; 4423 goto skip_backref; 4424 } 4425 } 4426 4427 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4428 if (unlikely(ret)) { 4429 btrfs_crit(fs_info, 4430 "failed to delete reference to %.*s, root %llu inode %llu parent %llu", 4431 name->len, name->name, btrfs_root_id(root), ino, dir_ino); 4432 btrfs_abort_transaction(trans, ret); 4433 return ret; 4434 } 4435 skip_backref: 4436 if (rename_ctx) 4437 rename_ctx->index = index; 4438 4439 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4440 if (unlikely(ret)) { 4441 btrfs_abort_transaction(trans, ret); 4442 return ret; 4443 } 4444 4445 /* 4446 * If we are in a rename context, we don't need to update anything in the 4447 * log. That will be done later during the rename by btrfs_log_new_name(). 4448 * Besides that, doing it here would only cause extra unnecessary btree 4449 * operations on the log tree, increasing latency for applications. 4450 */ 4451 if (!rename_ctx) { 4452 btrfs_del_inode_ref_in_log(trans, name, inode, dir); 4453 btrfs_del_dir_entries_in_log(trans, name, dir, index); 4454 } 4455 4456 /* 4457 * If we have a pending delayed iput we could end up with the final iput 4458 * being run in btrfs-cleaner context. If we have enough of these built 4459 * up we can end up burning a lot of time in btrfs-cleaner without any 4460 * way to throttle the unlinks. Since we're currently holding a ref on 4461 * the inode we can run the delayed iput here without any issues as the 4462 * final iput won't be done until after we drop the ref we're currently 4463 * holding. 4464 */ 4465 btrfs_run_delayed_iput(fs_info, inode); 4466 4467 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4468 inode_inc_iversion(&inode->vfs_inode); 4469 inode_set_ctime_current(&inode->vfs_inode); 4470 inode_inc_iversion(&dir->vfs_inode); 4471 update_time_after_link_or_unlink(dir); 4472 4473 return btrfs_update_inode(trans, dir); 4474 } 4475 4476 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4477 struct btrfs_inode *dir, struct btrfs_inode *inode, 4478 const struct fscrypt_str *name) 4479 { 4480 int ret; 4481 4482 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4483 if (!ret) { 4484 drop_nlink(&inode->vfs_inode); 4485 ret = btrfs_update_inode(trans, inode); 4486 } 4487 return ret; 4488 } 4489 4490 /* 4491 * helper to start transaction for unlink and rmdir. 4492 * 4493 * unlink and rmdir are special in btrfs, they do not always free space, so 4494 * if we cannot make our reservations the normal way try and see if there is 4495 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4496 * allow the unlink to occur. 4497 */ 4498 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4499 { 4500 struct btrfs_root *root = dir->root; 4501 4502 return btrfs_start_transaction_fallback_global_rsv(root, 4503 BTRFS_UNLINK_METADATA_UNITS); 4504 } 4505 4506 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4507 { 4508 struct btrfs_trans_handle *trans; 4509 struct inode *inode = d_inode(dentry); 4510 int ret; 4511 struct fscrypt_name fname; 4512 4513 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4514 if (ret) 4515 return ret; 4516 4517 /* This needs to handle no-key deletions later on */ 4518 4519 trans = __unlink_start_trans(BTRFS_I(dir)); 4520 if (IS_ERR(trans)) { 4521 ret = PTR_ERR(trans); 4522 goto fscrypt_free; 4523 } 4524 4525 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4526 false); 4527 4528 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4529 &fname.disk_name); 4530 if (ret) 4531 goto end_trans; 4532 4533 if (inode->i_nlink == 0) { 4534 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4535 if (ret) 4536 goto end_trans; 4537 } 4538 4539 end_trans: 4540 btrfs_end_transaction(trans); 4541 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4542 fscrypt_free: 4543 fscrypt_free_filename(&fname); 4544 return ret; 4545 } 4546 4547 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4548 struct btrfs_inode *dir, struct dentry *dentry) 4549 { 4550 struct btrfs_root *root = dir->root; 4551 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4552 BTRFS_PATH_AUTO_FREE(path); 4553 struct extent_buffer *leaf; 4554 struct btrfs_dir_item *di; 4555 struct btrfs_key key; 4556 u64 index; 4557 int ret; 4558 u64 objectid; 4559 u64 dir_ino = btrfs_ino(dir); 4560 struct fscrypt_name fname; 4561 4562 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4563 if (ret) 4564 return ret; 4565 4566 /* This needs to handle no-key deletions later on */ 4567 4568 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4569 objectid = btrfs_root_id(inode->root); 4570 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4571 objectid = inode->ref_root_id; 4572 } else { 4573 WARN_ON(1); 4574 fscrypt_free_filename(&fname); 4575 return -EINVAL; 4576 } 4577 4578 path = btrfs_alloc_path(); 4579 if (!path) { 4580 ret = -ENOMEM; 4581 goto out; 4582 } 4583 4584 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4585 &fname.disk_name, -1); 4586 if (IS_ERR_OR_NULL(di)) { 4587 ret = di ? PTR_ERR(di) : -ENOENT; 4588 goto out; 4589 } 4590 4591 leaf = path->nodes[0]; 4592 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4593 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4594 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4595 if (unlikely(ret)) { 4596 btrfs_abort_transaction(trans, ret); 4597 goto out; 4598 } 4599 btrfs_release_path(path); 4600 4601 /* 4602 * This is a placeholder inode for a subvolume we didn't have a 4603 * reference to at the time of the snapshot creation. In the meantime 4604 * we could have renamed the real subvol link into our snapshot, so 4605 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4606 * Instead simply lookup the dir_index_item for this entry so we can 4607 * remove it. Otherwise we know we have a ref to the root and we can 4608 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4609 */ 4610 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4611 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4612 if (IS_ERR(di)) { 4613 ret = PTR_ERR(di); 4614 btrfs_abort_transaction(trans, ret); 4615 goto out; 4616 } 4617 4618 leaf = path->nodes[0]; 4619 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4620 index = key.offset; 4621 btrfs_release_path(path); 4622 } else { 4623 ret = btrfs_del_root_ref(trans, objectid, 4624 btrfs_root_id(root), dir_ino, 4625 &index, &fname.disk_name); 4626 if (unlikely(ret)) { 4627 btrfs_abort_transaction(trans, ret); 4628 goto out; 4629 } 4630 } 4631 4632 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4633 if (unlikely(ret)) { 4634 btrfs_abort_transaction(trans, ret); 4635 goto out; 4636 } 4637 4638 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4639 inode_inc_iversion(&dir->vfs_inode); 4640 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4641 ret = btrfs_update_inode_fallback(trans, dir); 4642 if (ret) 4643 btrfs_abort_transaction(trans, ret); 4644 out: 4645 fscrypt_free_filename(&fname); 4646 return ret; 4647 } 4648 4649 /* 4650 * Helper to check if the subvolume references other subvolumes or if it's 4651 * default. 4652 */ 4653 static noinline int may_destroy_subvol(struct btrfs_root *root) 4654 { 4655 struct btrfs_fs_info *fs_info = root->fs_info; 4656 BTRFS_PATH_AUTO_FREE(path); 4657 struct btrfs_dir_item *di; 4658 struct btrfs_key key; 4659 struct fscrypt_str name = FSTR_INIT("default", 7); 4660 u64 dir_id; 4661 int ret; 4662 4663 path = btrfs_alloc_path(); 4664 if (!path) 4665 return -ENOMEM; 4666 4667 /* Make sure this root isn't set as the default subvol */ 4668 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4669 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4670 dir_id, &name, 0); 4671 if (di && !IS_ERR(di)) { 4672 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4673 if (key.objectid == btrfs_root_id(root)) { 4674 ret = -EPERM; 4675 btrfs_err(fs_info, 4676 "deleting default subvolume %llu is not allowed", 4677 key.objectid); 4678 return ret; 4679 } 4680 btrfs_release_path(path); 4681 } 4682 4683 key.objectid = btrfs_root_id(root); 4684 key.type = BTRFS_ROOT_REF_KEY; 4685 key.offset = (u64)-1; 4686 4687 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4688 if (ret < 0) 4689 return ret; 4690 if (unlikely(ret == 0)) { 4691 /* 4692 * Key with offset -1 found, there would have to exist a root 4693 * with such id, but this is out of valid range. 4694 */ 4695 return -EUCLEAN; 4696 } 4697 4698 ret = 0; 4699 if (path->slots[0] > 0) { 4700 path->slots[0]--; 4701 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4702 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4703 ret = -ENOTEMPTY; 4704 } 4705 4706 return ret; 4707 } 4708 4709 /* Delete all dentries for inodes belonging to the root */ 4710 static void btrfs_prune_dentries(struct btrfs_root *root) 4711 { 4712 struct btrfs_fs_info *fs_info = root->fs_info; 4713 struct btrfs_inode *inode; 4714 u64 min_ino = 0; 4715 4716 if (!BTRFS_FS_ERROR(fs_info)) 4717 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4718 4719 inode = btrfs_find_first_inode(root, min_ino); 4720 while (inode) { 4721 if (icount_read(&inode->vfs_inode) > 1) 4722 d_prune_aliases(&inode->vfs_inode); 4723 4724 min_ino = btrfs_ino(inode) + 1; 4725 /* 4726 * btrfs_drop_inode() will have it removed from the inode 4727 * cache when its usage count hits zero. 4728 */ 4729 iput(&inode->vfs_inode); 4730 cond_resched(); 4731 inode = btrfs_find_first_inode(root, min_ino); 4732 } 4733 } 4734 4735 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4736 { 4737 struct btrfs_root *root = dir->root; 4738 struct btrfs_fs_info *fs_info = root->fs_info; 4739 struct inode *inode = d_inode(dentry); 4740 struct btrfs_root *dest = BTRFS_I(inode)->root; 4741 struct btrfs_trans_handle *trans; 4742 struct btrfs_block_rsv block_rsv; 4743 u64 root_flags; 4744 u64 qgroup_reserved = 0; 4745 int ret; 4746 4747 down_write(&fs_info->subvol_sem); 4748 4749 /* 4750 * Don't allow to delete a subvolume with send in progress. This is 4751 * inside the inode lock so the error handling that has to drop the bit 4752 * again is not run concurrently. 4753 */ 4754 spin_lock(&dest->root_item_lock); 4755 if (dest->send_in_progress) { 4756 spin_unlock(&dest->root_item_lock); 4757 btrfs_warn(fs_info, 4758 "attempt to delete subvolume %llu during send", 4759 btrfs_root_id(dest)); 4760 ret = -EPERM; 4761 goto out_up_write; 4762 } 4763 if (atomic_read(&dest->nr_swapfiles)) { 4764 spin_unlock(&dest->root_item_lock); 4765 btrfs_warn(fs_info, 4766 "attempt to delete subvolume %llu with active swapfile", 4767 btrfs_root_id(root)); 4768 ret = -EPERM; 4769 goto out_up_write; 4770 } 4771 root_flags = btrfs_root_flags(&dest->root_item); 4772 btrfs_set_root_flags(&dest->root_item, 4773 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4774 spin_unlock(&dest->root_item_lock); 4775 4776 ret = may_destroy_subvol(dest); 4777 if (ret) 4778 goto out_undead; 4779 4780 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4781 /* 4782 * One for dir inode, 4783 * two for dir entries, 4784 * two for root ref/backref. 4785 */ 4786 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4787 if (ret) 4788 goto out_undead; 4789 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4790 4791 trans = btrfs_start_transaction(root, 0); 4792 if (IS_ERR(trans)) { 4793 ret = PTR_ERR(trans); 4794 goto out_release; 4795 } 4796 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4797 qgroup_reserved = 0; 4798 trans->block_rsv = &block_rsv; 4799 trans->bytes_reserved = block_rsv.size; 4800 4801 btrfs_record_snapshot_destroy(trans, dir); 4802 4803 ret = btrfs_unlink_subvol(trans, dir, dentry); 4804 if (unlikely(ret)) { 4805 btrfs_abort_transaction(trans, ret); 4806 goto out_end_trans; 4807 } 4808 4809 ret = btrfs_record_root_in_trans(trans, dest); 4810 if (unlikely(ret)) { 4811 btrfs_abort_transaction(trans, ret); 4812 goto out_end_trans; 4813 } 4814 4815 memset(&dest->root_item.drop_progress, 0, 4816 sizeof(dest->root_item.drop_progress)); 4817 btrfs_set_root_drop_level(&dest->root_item, 0); 4818 btrfs_set_root_refs(&dest->root_item, 0); 4819 4820 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4821 ret = btrfs_insert_orphan_item(trans, 4822 fs_info->tree_root, 4823 btrfs_root_id(dest)); 4824 if (unlikely(ret)) { 4825 btrfs_abort_transaction(trans, ret); 4826 goto out_end_trans; 4827 } 4828 } 4829 4830 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4831 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4832 if (unlikely(ret && ret != -ENOENT)) { 4833 btrfs_abort_transaction(trans, ret); 4834 goto out_end_trans; 4835 } 4836 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4837 ret = btrfs_uuid_tree_remove(trans, 4838 dest->root_item.received_uuid, 4839 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4840 btrfs_root_id(dest)); 4841 if (unlikely(ret && ret != -ENOENT)) { 4842 btrfs_abort_transaction(trans, ret); 4843 goto out_end_trans; 4844 } 4845 } 4846 4847 free_anon_bdev(dest->anon_dev); 4848 dest->anon_dev = 0; 4849 out_end_trans: 4850 trans->block_rsv = NULL; 4851 trans->bytes_reserved = 0; 4852 ret = btrfs_end_transaction(trans); 4853 inode->i_flags |= S_DEAD; 4854 out_release: 4855 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4856 if (qgroup_reserved) 4857 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4858 out_undead: 4859 if (ret) { 4860 spin_lock(&dest->root_item_lock); 4861 root_flags = btrfs_root_flags(&dest->root_item); 4862 btrfs_set_root_flags(&dest->root_item, 4863 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4864 spin_unlock(&dest->root_item_lock); 4865 } 4866 out_up_write: 4867 up_write(&fs_info->subvol_sem); 4868 if (!ret) { 4869 d_invalidate(dentry); 4870 btrfs_prune_dentries(dest); 4871 ASSERT(dest->send_in_progress == 0); 4872 } 4873 4874 return ret; 4875 } 4876 4877 static int btrfs_rmdir(struct inode *vfs_dir, struct dentry *dentry) 4878 { 4879 struct btrfs_inode *dir = BTRFS_I(vfs_dir); 4880 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4881 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4882 int ret = 0; 4883 struct btrfs_trans_handle *trans; 4884 struct fscrypt_name fname; 4885 4886 if (inode->vfs_inode.i_size > BTRFS_EMPTY_DIR_SIZE) 4887 return -ENOTEMPTY; 4888 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4889 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4890 btrfs_err(fs_info, 4891 "extent tree v2 doesn't support snapshot deletion yet"); 4892 return -EOPNOTSUPP; 4893 } 4894 return btrfs_delete_subvolume(dir, dentry); 4895 } 4896 4897 ret = fscrypt_setup_filename(vfs_dir, &dentry->d_name, 1, &fname); 4898 if (ret) 4899 return ret; 4900 4901 /* This needs to handle no-key deletions later on */ 4902 4903 trans = __unlink_start_trans(dir); 4904 if (IS_ERR(trans)) { 4905 ret = PTR_ERR(trans); 4906 goto out_notrans; 4907 } 4908 4909 /* 4910 * Propagate the last_unlink_trans value of the deleted dir to its 4911 * parent directory. This is to prevent an unrecoverable log tree in the 4912 * case we do something like this: 4913 * 1) create dir foo 4914 * 2) create snapshot under dir foo 4915 * 3) delete the snapshot 4916 * 4) rmdir foo 4917 * 5) mkdir foo 4918 * 6) fsync foo or some file inside foo 4919 * 4920 * This is because we can't unlink other roots when replaying the dir 4921 * deletes for directory foo. 4922 */ 4923 if (inode->last_unlink_trans >= trans->transid) 4924 btrfs_record_snapshot_destroy(trans, dir); 4925 4926 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4927 ret = btrfs_unlink_subvol(trans, dir, dentry); 4928 goto out; 4929 } 4930 4931 ret = btrfs_orphan_add(trans, inode); 4932 if (ret) 4933 goto out; 4934 4935 /* now the directory is empty */ 4936 ret = btrfs_unlink_inode(trans, dir, inode, &fname.disk_name); 4937 if (!ret) 4938 btrfs_i_size_write(inode, 0); 4939 out: 4940 btrfs_end_transaction(trans); 4941 out_notrans: 4942 btrfs_btree_balance_dirty(fs_info); 4943 fscrypt_free_filename(&fname); 4944 4945 return ret; 4946 } 4947 4948 static bool is_inside_block(u64 bytenr, u64 blockstart, u32 blocksize) 4949 { 4950 ASSERT(IS_ALIGNED(blockstart, blocksize), "blockstart=%llu blocksize=%u", 4951 blockstart, blocksize); 4952 4953 if (blockstart <= bytenr && bytenr <= blockstart + blocksize - 1) 4954 return true; 4955 return false; 4956 } 4957 4958 static int truncate_block_zero_beyond_eof(struct btrfs_inode *inode, u64 start) 4959 { 4960 const pgoff_t index = (start >> PAGE_SHIFT); 4961 struct address_space *mapping = inode->vfs_inode.i_mapping; 4962 struct folio *folio; 4963 u64 zero_start; 4964 u64 zero_end; 4965 int ret = 0; 4966 4967 again: 4968 folio = filemap_lock_folio(mapping, index); 4969 /* No folio present. */ 4970 if (IS_ERR(folio)) 4971 return 0; 4972 4973 if (!folio_test_uptodate(folio)) { 4974 ret = btrfs_read_folio(NULL, folio); 4975 folio_lock(folio); 4976 if (folio->mapping != mapping) { 4977 folio_unlock(folio); 4978 folio_put(folio); 4979 goto again; 4980 } 4981 if (unlikely(!folio_test_uptodate(folio))) { 4982 ret = -EIO; 4983 goto out_unlock; 4984 } 4985 } 4986 folio_wait_writeback(folio); 4987 4988 /* 4989 * We do not need to lock extents nor wait for OE, as it's already 4990 * beyond EOF. 4991 */ 4992 4993 zero_start = max_t(u64, folio_pos(folio), start); 4994 zero_end = folio_next_pos(folio); 4995 folio_zero_range(folio, zero_start - folio_pos(folio), 4996 zero_end - zero_start); 4997 4998 out_unlock: 4999 folio_unlock(folio); 5000 folio_put(folio); 5001 return ret; 5002 } 5003 5004 /* 5005 * Handle the truncation of a fs block. 5006 * 5007 * @inode - inode that we're zeroing 5008 * @offset - the file offset of the block to truncate 5009 * The value must be inside [@start, @end], and the function will do 5010 * extra checks if the block that covers @offset needs to be zeroed. 5011 * @start - the start file offset of the range we want to zero 5012 * @end - the end (inclusive) file offset of the range we want to zero. 5013 * 5014 * If the range is not block aligned, read out the folio that covers @offset, 5015 * and if needed zero blocks that are inside the folio and covered by [@start, @end). 5016 * If @start or @end + 1 lands inside a block, that block will be marked dirty 5017 * for writeback. 5018 * 5019 * This is utilized by hole punch, zero range, file expansion. 5020 */ 5021 int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end) 5022 { 5023 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5024 struct address_space *mapping = inode->vfs_inode.i_mapping; 5025 struct extent_io_tree *io_tree = &inode->io_tree; 5026 struct btrfs_ordered_extent *ordered; 5027 struct extent_state *cached_state = NULL; 5028 struct extent_changeset *data_reserved = NULL; 5029 bool only_release_metadata = false; 5030 u32 blocksize = fs_info->sectorsize; 5031 pgoff_t index = (offset >> PAGE_SHIFT); 5032 struct folio *folio; 5033 gfp_t mask = btrfs_alloc_write_mask(mapping); 5034 int ret = 0; 5035 const bool in_head_block = is_inside_block(offset, round_down(start, blocksize), 5036 blocksize); 5037 const bool in_tail_block = is_inside_block(offset, round_down(end, blocksize), 5038 blocksize); 5039 bool need_truncate_head = false; 5040 bool need_truncate_tail = false; 5041 u64 zero_start; 5042 u64 zero_end; 5043 u64 block_start; 5044 u64 block_end; 5045 5046 /* @offset should be inside the range. */ 5047 ASSERT(start <= offset && offset <= end, "offset=%llu start=%llu end=%llu", 5048 offset, start, end); 5049 5050 /* The range is aligned at both ends. */ 5051 if (IS_ALIGNED(start, blocksize) && IS_ALIGNED(end + 1, blocksize)) { 5052 /* 5053 * For block size < page size case, we may have polluted blocks 5054 * beyond EOF. So we also need to zero them out. 5055 */ 5056 if (end == (u64)-1 && blocksize < PAGE_SIZE) 5057 ret = truncate_block_zero_beyond_eof(inode, start); 5058 goto out; 5059 } 5060 5061 /* 5062 * @offset may not be inside the head nor tail block. In that case we 5063 * don't need to do anything. 5064 */ 5065 if (!in_head_block && !in_tail_block) 5066 goto out; 5067 5068 /* 5069 * Skip the truncation if the range in the target block is already aligned. 5070 * The seemingly complex check will also handle the same block case. 5071 */ 5072 if (in_head_block && !IS_ALIGNED(start, blocksize)) 5073 need_truncate_head = true; 5074 if (in_tail_block && !IS_ALIGNED(end + 1, blocksize)) 5075 need_truncate_tail = true; 5076 if (!need_truncate_head && !need_truncate_tail) 5077 goto out; 5078 5079 block_start = round_down(offset, blocksize); 5080 block_end = block_start + blocksize - 1; 5081 5082 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 5083 blocksize, false); 5084 if (ret < 0) { 5085 size_t write_bytes = blocksize; 5086 5087 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 5088 /* For nocow case, no need to reserve data space. */ 5089 ASSERT(write_bytes == blocksize, "write_bytes=%zu blocksize=%u", 5090 write_bytes, blocksize); 5091 only_release_metadata = true; 5092 } else { 5093 goto out; 5094 } 5095 } 5096 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 5097 if (ret < 0) { 5098 if (!only_release_metadata) 5099 btrfs_free_reserved_data_space(inode, data_reserved, 5100 block_start, blocksize); 5101 goto out; 5102 } 5103 again: 5104 folio = __filemap_get_folio(mapping, index, 5105 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 5106 if (IS_ERR(folio)) { 5107 if (only_release_metadata) 5108 btrfs_delalloc_release_metadata(inode, blocksize, true); 5109 else 5110 btrfs_delalloc_release_space(inode, data_reserved, 5111 block_start, blocksize, true); 5112 btrfs_delalloc_release_extents(inode, blocksize); 5113 ret = PTR_ERR(folio); 5114 goto out; 5115 } 5116 5117 if (!folio_test_uptodate(folio)) { 5118 ret = btrfs_read_folio(NULL, folio); 5119 folio_lock(folio); 5120 if (folio->mapping != mapping) { 5121 folio_unlock(folio); 5122 folio_put(folio); 5123 goto again; 5124 } 5125 if (unlikely(!folio_test_uptodate(folio))) { 5126 ret = -EIO; 5127 goto out_unlock; 5128 } 5129 } 5130 5131 /* 5132 * We unlock the page after the io is completed and then re-lock it 5133 * above. release_folio() could have come in between that and cleared 5134 * folio private, but left the page in the mapping. Set the page mapped 5135 * here to make sure it's properly set for the subpage stuff. 5136 */ 5137 ret = set_folio_extent_mapped(folio); 5138 if (ret < 0) 5139 goto out_unlock; 5140 5141 folio_wait_writeback(folio); 5142 5143 btrfs_lock_extent(io_tree, block_start, block_end, &cached_state); 5144 5145 ordered = btrfs_lookup_ordered_extent(inode, block_start); 5146 if (ordered) { 5147 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5148 folio_unlock(folio); 5149 folio_put(folio); 5150 btrfs_start_ordered_extent(ordered); 5151 btrfs_put_ordered_extent(ordered); 5152 goto again; 5153 } 5154 5155 btrfs_clear_extent_bit(&inode->io_tree, block_start, block_end, 5156 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 5157 &cached_state); 5158 5159 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 5160 &cached_state); 5161 if (ret) { 5162 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5163 goto out_unlock; 5164 } 5165 5166 if (end == (u64)-1) { 5167 /* 5168 * We're truncating beyond EOF, the remaining blocks normally are 5169 * already holes thus no need to zero again, but it's possible for 5170 * fs block size < page size cases to have memory mapped writes 5171 * to pollute ranges beyond EOF. 5172 * 5173 * In that case although such polluted blocks beyond EOF will 5174 * not reach disk, it still affects our page caches. 5175 */ 5176 zero_start = max_t(u64, folio_pos(folio), start); 5177 zero_end = min_t(u64, folio_next_pos(folio) - 1, end); 5178 } else { 5179 zero_start = max_t(u64, block_start, start); 5180 zero_end = min_t(u64, block_end, end); 5181 } 5182 folio_zero_range(folio, zero_start - folio_pos(folio), 5183 zero_end - zero_start + 1); 5184 5185 btrfs_folio_clear_checked(fs_info, folio, block_start, 5186 block_end + 1 - block_start); 5187 btrfs_folio_set_dirty(fs_info, folio, block_start, 5188 block_end + 1 - block_start); 5189 5190 if (only_release_metadata) 5191 btrfs_set_extent_bit(&inode->io_tree, block_start, block_end, 5192 EXTENT_NORESERVE, &cached_state); 5193 5194 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5195 5196 out_unlock: 5197 if (ret) { 5198 if (only_release_metadata) 5199 btrfs_delalloc_release_metadata(inode, blocksize, true); 5200 else 5201 btrfs_delalloc_release_space(inode, data_reserved, 5202 block_start, blocksize, true); 5203 } 5204 btrfs_delalloc_release_extents(inode, blocksize); 5205 folio_unlock(folio); 5206 folio_put(folio); 5207 out: 5208 if (only_release_metadata) 5209 btrfs_check_nocow_unlock(inode); 5210 extent_changeset_free(data_reserved); 5211 return ret; 5212 } 5213 5214 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 5215 { 5216 struct btrfs_root *root = inode->root; 5217 struct btrfs_fs_info *fs_info = root->fs_info; 5218 struct btrfs_trans_handle *trans; 5219 struct btrfs_drop_extents_args drop_args = { 0 }; 5220 int ret; 5221 5222 /* 5223 * If NO_HOLES is enabled, we don't need to do anything. 5224 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 5225 * or btrfs_update_inode() will be called, which guarantee that the next 5226 * fsync will know this inode was changed and needs to be logged. 5227 */ 5228 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 5229 return 0; 5230 5231 /* 5232 * 1 - for the one we're dropping 5233 * 1 - for the one we're adding 5234 * 1 - for updating the inode. 5235 */ 5236 trans = btrfs_start_transaction(root, 3); 5237 if (IS_ERR(trans)) 5238 return PTR_ERR(trans); 5239 5240 drop_args.start = offset; 5241 drop_args.end = offset + len; 5242 drop_args.drop_cache = true; 5243 5244 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 5245 if (unlikely(ret)) { 5246 btrfs_abort_transaction(trans, ret); 5247 btrfs_end_transaction(trans); 5248 return ret; 5249 } 5250 5251 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 5252 if (ret) { 5253 btrfs_abort_transaction(trans, ret); 5254 } else { 5255 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5256 btrfs_update_inode(trans, inode); 5257 } 5258 btrfs_end_transaction(trans); 5259 return ret; 5260 } 5261 5262 /* 5263 * This function puts in dummy file extents for the area we're creating a hole 5264 * for. So if we are truncating this file to a larger size we need to insert 5265 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5266 * the range between oldsize and size 5267 */ 5268 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5269 { 5270 struct btrfs_root *root = inode->root; 5271 struct btrfs_fs_info *fs_info = root->fs_info; 5272 struct extent_io_tree *io_tree = &inode->io_tree; 5273 struct extent_map *em = NULL; 5274 struct extent_state *cached_state = NULL; 5275 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5276 u64 block_end = ALIGN(size, fs_info->sectorsize); 5277 u64 last_byte; 5278 u64 cur_offset; 5279 u64 hole_size; 5280 int ret = 0; 5281 5282 /* 5283 * If our size started in the middle of a block we need to zero out the 5284 * rest of the block before we expand the i_size, otherwise we could 5285 * expose stale data. 5286 */ 5287 ret = btrfs_truncate_block(inode, oldsize, oldsize, -1); 5288 if (ret) 5289 return ret; 5290 5291 if (size <= hole_start) 5292 return 0; 5293 5294 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5295 &cached_state); 5296 cur_offset = hole_start; 5297 while (1) { 5298 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 5299 if (IS_ERR(em)) { 5300 ret = PTR_ERR(em); 5301 em = NULL; 5302 break; 5303 } 5304 last_byte = min(btrfs_extent_map_end(em), block_end); 5305 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5306 hole_size = last_byte - cur_offset; 5307 5308 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 5309 struct extent_map *hole_em; 5310 5311 ret = maybe_insert_hole(inode, cur_offset, hole_size); 5312 if (ret) 5313 break; 5314 5315 ret = btrfs_inode_set_file_extent_range(inode, 5316 cur_offset, hole_size); 5317 if (ret) 5318 break; 5319 5320 hole_em = btrfs_alloc_extent_map(); 5321 if (!hole_em) { 5322 btrfs_drop_extent_map_range(inode, cur_offset, 5323 cur_offset + hole_size - 1, 5324 false); 5325 btrfs_set_inode_full_sync(inode); 5326 goto next; 5327 } 5328 hole_em->start = cur_offset; 5329 hole_em->len = hole_size; 5330 5331 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 5332 hole_em->disk_num_bytes = 0; 5333 hole_em->ram_bytes = hole_size; 5334 hole_em->generation = btrfs_get_fs_generation(fs_info); 5335 5336 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 5337 btrfs_free_extent_map(hole_em); 5338 } else { 5339 ret = btrfs_inode_set_file_extent_range(inode, 5340 cur_offset, hole_size); 5341 if (ret) 5342 break; 5343 } 5344 next: 5345 btrfs_free_extent_map(em); 5346 em = NULL; 5347 cur_offset = last_byte; 5348 if (cur_offset >= block_end) 5349 break; 5350 } 5351 btrfs_free_extent_map(em); 5352 btrfs_unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5353 return ret; 5354 } 5355 5356 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5357 { 5358 struct btrfs_root *root = BTRFS_I(inode)->root; 5359 struct btrfs_trans_handle *trans; 5360 loff_t oldsize = i_size_read(inode); 5361 loff_t newsize = attr->ia_size; 5362 int mask = attr->ia_valid; 5363 int ret; 5364 5365 /* 5366 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5367 * special case where we need to update the times despite not having 5368 * these flags set. For all other operations the VFS set these flags 5369 * explicitly if it wants a timestamp update. 5370 */ 5371 if (newsize != oldsize) { 5372 inode_inc_iversion(inode); 5373 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5374 inode_set_mtime_to_ts(inode, 5375 inode_set_ctime_current(inode)); 5376 } 5377 } 5378 5379 if (newsize > oldsize) { 5380 /* 5381 * Don't do an expanding truncate while snapshotting is ongoing. 5382 * This is to ensure the snapshot captures a fully consistent 5383 * state of this file - if the snapshot captures this expanding 5384 * truncation, it must capture all writes that happened before 5385 * this truncation. 5386 */ 5387 btrfs_drew_write_lock(&root->snapshot_lock); 5388 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5389 if (ret) { 5390 btrfs_drew_write_unlock(&root->snapshot_lock); 5391 return ret; 5392 } 5393 5394 trans = btrfs_start_transaction(root, 1); 5395 if (IS_ERR(trans)) { 5396 btrfs_drew_write_unlock(&root->snapshot_lock); 5397 return PTR_ERR(trans); 5398 } 5399 5400 i_size_write(inode, newsize); 5401 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5402 pagecache_isize_extended(inode, oldsize, newsize); 5403 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5404 btrfs_drew_write_unlock(&root->snapshot_lock); 5405 btrfs_end_transaction(trans); 5406 } else { 5407 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5408 5409 if (btrfs_is_zoned(fs_info)) { 5410 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5411 ALIGN(newsize, fs_info->sectorsize), 5412 (u64)-1); 5413 if (ret) 5414 return ret; 5415 } 5416 5417 /* 5418 * We're truncating a file that used to have good data down to 5419 * zero. Make sure any new writes to the file get on disk 5420 * on close. 5421 */ 5422 if (newsize == 0) 5423 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5424 &BTRFS_I(inode)->runtime_flags); 5425 5426 truncate_setsize(inode, newsize); 5427 5428 inode_dio_wait(inode); 5429 5430 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5431 if (ret && inode->i_nlink) { 5432 int ret2; 5433 5434 /* 5435 * Truncate failed, so fix up the in-memory size. We 5436 * adjusted disk_i_size down as we removed extents, so 5437 * wait for disk_i_size to be stable and then update the 5438 * in-memory size to match. 5439 */ 5440 ret2 = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5441 if (ret2) 5442 return ret2; 5443 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5444 } 5445 } 5446 5447 return ret; 5448 } 5449 5450 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5451 struct iattr *attr) 5452 { 5453 struct inode *inode = d_inode(dentry); 5454 struct btrfs_root *root = BTRFS_I(inode)->root; 5455 int ret; 5456 5457 if (btrfs_root_readonly(root)) 5458 return -EROFS; 5459 5460 ret = setattr_prepare(idmap, dentry, attr); 5461 if (ret) 5462 return ret; 5463 5464 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5465 ret = btrfs_setsize(inode, attr); 5466 if (ret) 5467 return ret; 5468 } 5469 5470 if (attr->ia_valid) { 5471 setattr_copy(idmap, inode, attr); 5472 inode_inc_iversion(inode); 5473 ret = btrfs_dirty_inode(BTRFS_I(inode)); 5474 5475 if (!ret && attr->ia_valid & ATTR_MODE) 5476 ret = posix_acl_chmod(idmap, dentry, inode->i_mode); 5477 } 5478 5479 return ret; 5480 } 5481 5482 /* 5483 * While truncating the inode pages during eviction, we get the VFS 5484 * calling btrfs_invalidate_folio() against each folio of the inode. This 5485 * is slow because the calls to btrfs_invalidate_folio() result in a 5486 * huge amount of calls to lock_extent() and clear_extent_bit(), 5487 * which keep merging and splitting extent_state structures over and over, 5488 * wasting lots of time. 5489 * 5490 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5491 * skip all those expensive operations on a per folio basis and do only 5492 * the ordered io finishing, while we release here the extent_map and 5493 * extent_state structures, without the excessive merging and splitting. 5494 */ 5495 static void evict_inode_truncate_pages(struct inode *inode) 5496 { 5497 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5498 struct rb_node *node; 5499 5500 ASSERT(inode_state_read_once(inode) & I_FREEING); 5501 truncate_inode_pages_final(&inode->i_data); 5502 5503 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5504 5505 /* 5506 * Keep looping until we have no more ranges in the io tree. 5507 * We can have ongoing bios started by readahead that have 5508 * their endio callback (extent_io.c:end_bio_extent_readpage) 5509 * still in progress (unlocked the pages in the bio but did not yet 5510 * unlocked the ranges in the io tree). Therefore this means some 5511 * ranges can still be locked and eviction started because before 5512 * submitting those bios, which are executed by a separate task (work 5513 * queue kthread), inode references (inode->i_count) were not taken 5514 * (which would be dropped in the end io callback of each bio). 5515 * Therefore here we effectively end up waiting for those bios and 5516 * anyone else holding locked ranges without having bumped the inode's 5517 * reference count - if we don't do it, when they access the inode's 5518 * io_tree to unlock a range it may be too late, leading to an 5519 * use-after-free issue. 5520 */ 5521 spin_lock(&io_tree->lock); 5522 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5523 struct extent_state *state; 5524 struct extent_state *cached_state = NULL; 5525 u64 start; 5526 u64 end; 5527 unsigned state_flags; 5528 5529 node = rb_first(&io_tree->state); 5530 state = rb_entry(node, struct extent_state, rb_node); 5531 start = state->start; 5532 end = state->end; 5533 state_flags = state->state; 5534 spin_unlock(&io_tree->lock); 5535 5536 btrfs_lock_extent(io_tree, start, end, &cached_state); 5537 5538 /* 5539 * If still has DELALLOC flag, the extent didn't reach disk, 5540 * and its reserved space won't be freed by delayed_ref. 5541 * So we need to free its reserved space here. 5542 * (Refer to comment in btrfs_invalidate_folio, case 2) 5543 * 5544 * Note, end is the bytenr of last byte, so we need + 1 here. 5545 */ 5546 if (state_flags & EXTENT_DELALLOC) 5547 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5548 end - start + 1, NULL); 5549 5550 btrfs_clear_extent_bit(io_tree, start, end, 5551 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5552 &cached_state); 5553 5554 cond_resched(); 5555 spin_lock(&io_tree->lock); 5556 } 5557 spin_unlock(&io_tree->lock); 5558 } 5559 5560 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5561 struct btrfs_block_rsv *rsv) 5562 { 5563 struct btrfs_fs_info *fs_info = root->fs_info; 5564 struct btrfs_trans_handle *trans; 5565 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5566 int ret; 5567 5568 /* 5569 * Eviction should be taking place at some place safe because of our 5570 * delayed iputs. However the normal flushing code will run delayed 5571 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5572 * 5573 * We reserve the delayed_refs_extra here again because we can't use 5574 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5575 * above. We reserve our extra bit here because we generate a ton of 5576 * delayed refs activity by truncating. 5577 * 5578 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5579 * if we fail to make this reservation we can re-try without the 5580 * delayed_refs_extra so we can make some forward progress. 5581 */ 5582 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5583 BTRFS_RESERVE_FLUSH_EVICT); 5584 if (ret) { 5585 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5586 BTRFS_RESERVE_FLUSH_EVICT); 5587 if (ret) { 5588 btrfs_warn(fs_info, 5589 "could not allocate space for delete; will truncate on mount"); 5590 return ERR_PTR(-ENOSPC); 5591 } 5592 delayed_refs_extra = 0; 5593 } 5594 5595 trans = btrfs_join_transaction(root); 5596 if (IS_ERR(trans)) 5597 return trans; 5598 5599 if (delayed_refs_extra) { 5600 trans->block_rsv = &fs_info->trans_block_rsv; 5601 trans->bytes_reserved = delayed_refs_extra; 5602 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5603 delayed_refs_extra, true); 5604 } 5605 return trans; 5606 } 5607 5608 void btrfs_evict_inode(struct inode *inode) 5609 { 5610 struct btrfs_fs_info *fs_info; 5611 struct btrfs_trans_handle *trans; 5612 struct btrfs_root *root = BTRFS_I(inode)->root; 5613 struct btrfs_block_rsv rsv; 5614 int ret; 5615 5616 trace_btrfs_inode_evict(inode); 5617 5618 if (!root) 5619 goto clear_inode; 5620 5621 fs_info = inode_to_fs_info(inode); 5622 evict_inode_truncate_pages(inode); 5623 5624 if (inode->i_nlink && 5625 ((btrfs_root_refs(&root->root_item) != 0 && 5626 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5627 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5628 goto out; 5629 5630 if (is_bad_inode(inode)) 5631 goto out; 5632 5633 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5634 goto out; 5635 5636 if (inode->i_nlink > 0) { 5637 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5638 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5639 goto out; 5640 } 5641 5642 /* 5643 * This makes sure the inode item in tree is uptodate and the space for 5644 * the inode update is released. 5645 */ 5646 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5647 if (ret) 5648 goto out; 5649 5650 /* 5651 * This drops any pending insert or delete operations we have for this 5652 * inode. We could have a delayed dir index deletion queued up, but 5653 * we're removing the inode completely so that'll be taken care of in 5654 * the truncate. 5655 */ 5656 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5657 5658 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 5659 rsv.size = btrfs_calc_metadata_size(fs_info, 1); 5660 rsv.failfast = true; 5661 5662 btrfs_i_size_write(BTRFS_I(inode), 0); 5663 5664 while (1) { 5665 struct btrfs_truncate_control control = { 5666 .inode = BTRFS_I(inode), 5667 .ino = btrfs_ino(BTRFS_I(inode)), 5668 .new_size = 0, 5669 .min_type = 0, 5670 }; 5671 5672 trans = evict_refill_and_join(root, &rsv); 5673 if (IS_ERR(trans)) 5674 goto out_release; 5675 5676 trans->block_rsv = &rsv; 5677 5678 ret = btrfs_truncate_inode_items(trans, root, &control); 5679 trans->block_rsv = &fs_info->trans_block_rsv; 5680 btrfs_end_transaction(trans); 5681 /* 5682 * We have not added new delayed items for our inode after we 5683 * have flushed its delayed items, so no need to throttle on 5684 * delayed items. However we have modified extent buffers. 5685 */ 5686 btrfs_btree_balance_dirty_nodelay(fs_info); 5687 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5688 goto out_release; 5689 else if (!ret) 5690 break; 5691 } 5692 5693 /* 5694 * Errors here aren't a big deal, it just means we leave orphan items in 5695 * the tree. They will be cleaned up on the next mount. If the inode 5696 * number gets reused, cleanup deletes the orphan item without doing 5697 * anything, and unlink reuses the existing orphan item. 5698 * 5699 * If it turns out that we are dropping too many of these, we might want 5700 * to add a mechanism for retrying these after a commit. 5701 */ 5702 trans = evict_refill_and_join(root, &rsv); 5703 if (!IS_ERR(trans)) { 5704 trans->block_rsv = &rsv; 5705 btrfs_orphan_del(trans, BTRFS_I(inode)); 5706 trans->block_rsv = &fs_info->trans_block_rsv; 5707 btrfs_end_transaction(trans); 5708 } 5709 5710 out_release: 5711 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 5712 out: 5713 /* 5714 * If we didn't successfully delete, the orphan item will still be in 5715 * the tree and we'll retry on the next mount. Again, we might also want 5716 * to retry these periodically in the future. 5717 */ 5718 btrfs_remove_delayed_node(BTRFS_I(inode)); 5719 clear_inode: 5720 clear_inode(inode); 5721 } 5722 5723 /* 5724 * Return the key found in the dir entry in the location pointer, fill @type 5725 * with BTRFS_FT_*, and return 0. 5726 * 5727 * If no dir entries were found, returns -ENOENT. 5728 * If found a corrupted location in dir entry, returns -EUCLEAN. 5729 */ 5730 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5731 struct btrfs_key *location, u8 *type) 5732 { 5733 struct btrfs_dir_item *di; 5734 BTRFS_PATH_AUTO_FREE(path); 5735 struct btrfs_root *root = dir->root; 5736 int ret = 0; 5737 struct fscrypt_name fname; 5738 5739 path = btrfs_alloc_path(); 5740 if (!path) 5741 return -ENOMEM; 5742 5743 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5744 if (ret < 0) 5745 return ret; 5746 /* 5747 * fscrypt_setup_filename() should never return a positive value, but 5748 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5749 */ 5750 ASSERT(ret == 0); 5751 5752 /* This needs to handle no-key deletions later on */ 5753 5754 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5755 &fname.disk_name, 0); 5756 if (IS_ERR_OR_NULL(di)) { 5757 ret = di ? PTR_ERR(di) : -ENOENT; 5758 goto out; 5759 } 5760 5761 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5762 if (unlikely(location->type != BTRFS_INODE_ITEM_KEY && 5763 location->type != BTRFS_ROOT_ITEM_KEY)) { 5764 ret = -EUCLEAN; 5765 btrfs_warn(root->fs_info, 5766 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location " BTRFS_KEY_FMT ")", 5767 __func__, fname.disk_name.name, btrfs_ino(dir), 5768 BTRFS_KEY_FMT_VALUE(location)); 5769 } 5770 if (!ret) 5771 *type = btrfs_dir_ftype(path->nodes[0], di); 5772 out: 5773 fscrypt_free_filename(&fname); 5774 return ret; 5775 } 5776 5777 /* 5778 * when we hit a tree root in a directory, the btrfs part of the inode 5779 * needs to be changed to reflect the root directory of the tree root. This 5780 * is kind of like crossing a mount point. 5781 */ 5782 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5783 struct btrfs_inode *dir, 5784 struct dentry *dentry, 5785 struct btrfs_key *location, 5786 struct btrfs_root **sub_root) 5787 { 5788 BTRFS_PATH_AUTO_FREE(path); 5789 struct btrfs_root *new_root; 5790 struct btrfs_root_ref *ref; 5791 struct extent_buffer *leaf; 5792 struct btrfs_key key; 5793 int ret; 5794 int err = 0; 5795 struct fscrypt_name fname; 5796 5797 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5798 if (ret) 5799 return ret; 5800 5801 path = btrfs_alloc_path(); 5802 if (!path) { 5803 err = -ENOMEM; 5804 goto out; 5805 } 5806 5807 err = -ENOENT; 5808 key.objectid = btrfs_root_id(dir->root); 5809 key.type = BTRFS_ROOT_REF_KEY; 5810 key.offset = location->objectid; 5811 5812 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5813 if (ret) { 5814 if (ret < 0) 5815 err = ret; 5816 goto out; 5817 } 5818 5819 leaf = path->nodes[0]; 5820 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5821 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5822 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5823 goto out; 5824 5825 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5826 (unsigned long)(ref + 1), fname.disk_name.len); 5827 if (ret) 5828 goto out; 5829 5830 btrfs_release_path(path); 5831 5832 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5833 if (IS_ERR(new_root)) { 5834 err = PTR_ERR(new_root); 5835 goto out; 5836 } 5837 5838 *sub_root = new_root; 5839 location->objectid = btrfs_root_dirid(&new_root->root_item); 5840 location->type = BTRFS_INODE_ITEM_KEY; 5841 location->offset = 0; 5842 err = 0; 5843 out: 5844 fscrypt_free_filename(&fname); 5845 return err; 5846 } 5847 5848 5849 5850 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5851 { 5852 struct btrfs_root *root = inode->root; 5853 struct btrfs_inode *entry; 5854 bool empty = false; 5855 5856 xa_lock(&root->inodes); 5857 /* 5858 * This btrfs_inode is being freed and has already been unhashed at this 5859 * point. It's possible that another btrfs_inode has already been 5860 * allocated for the same inode and inserted itself into the root, so 5861 * don't delete it in that case. 5862 * 5863 * Note that this shouldn't need to allocate memory, so the gfp flags 5864 * don't really matter. 5865 */ 5866 entry = __xa_cmpxchg(&root->inodes, btrfs_ino(inode), inode, NULL, 5867 GFP_ATOMIC); 5868 if (entry == inode) 5869 empty = xa_empty(&root->inodes); 5870 xa_unlock(&root->inodes); 5871 5872 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5873 xa_lock(&root->inodes); 5874 empty = xa_empty(&root->inodes); 5875 xa_unlock(&root->inodes); 5876 if (empty) 5877 btrfs_add_dead_root(root); 5878 } 5879 } 5880 5881 5882 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5883 { 5884 struct btrfs_iget_args *args = p; 5885 5886 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5887 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5888 5889 if (args->root && args->root == args->root->fs_info->tree_root && 5890 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5891 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5892 &BTRFS_I(inode)->runtime_flags); 5893 return 0; 5894 } 5895 5896 static int btrfs_find_actor(struct inode *inode, void *opaque) 5897 { 5898 struct btrfs_iget_args *args = opaque; 5899 5900 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5901 args->root == BTRFS_I(inode)->root; 5902 } 5903 5904 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5905 { 5906 struct inode *inode; 5907 struct btrfs_iget_args args; 5908 unsigned long hashval = btrfs_inode_hash(ino, root); 5909 5910 args.ino = ino; 5911 args.root = root; 5912 5913 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5914 btrfs_init_locked_inode, 5915 (void *)&args); 5916 if (!inode) 5917 return NULL; 5918 return BTRFS_I(inode); 5919 } 5920 5921 /* 5922 * Get an inode object given its inode number and corresponding root. Path is 5923 * preallocated to prevent recursing back to iget through allocator. 5924 */ 5925 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5926 struct btrfs_path *path) 5927 { 5928 struct btrfs_inode *inode; 5929 int ret; 5930 5931 inode = btrfs_iget_locked(ino, root); 5932 if (!inode) 5933 return ERR_PTR(-ENOMEM); 5934 5935 if (!(inode_state_read_once(&inode->vfs_inode) & I_NEW)) 5936 return inode; 5937 5938 ret = btrfs_read_locked_inode(inode, path); 5939 if (ret) 5940 return ERR_PTR(ret); 5941 5942 unlock_new_inode(&inode->vfs_inode); 5943 return inode; 5944 } 5945 5946 /* 5947 * Get an inode object given its inode number and corresponding root. 5948 */ 5949 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5950 { 5951 struct btrfs_inode *inode; 5952 struct btrfs_path *path; 5953 int ret; 5954 5955 inode = btrfs_iget_locked(ino, root); 5956 if (!inode) 5957 return ERR_PTR(-ENOMEM); 5958 5959 if (!(inode_state_read_once(&inode->vfs_inode) & I_NEW)) 5960 return inode; 5961 5962 path = btrfs_alloc_path(); 5963 if (!path) { 5964 iget_failed(&inode->vfs_inode); 5965 return ERR_PTR(-ENOMEM); 5966 } 5967 5968 ret = btrfs_read_locked_inode(inode, path); 5969 btrfs_free_path(path); 5970 if (ret) 5971 return ERR_PTR(ret); 5972 5973 if (S_ISDIR(inode->vfs_inode.i_mode)) 5974 inode->vfs_inode.i_opflags |= IOP_FASTPERM_MAY_EXEC; 5975 unlock_new_inode(&inode->vfs_inode); 5976 return inode; 5977 } 5978 5979 static struct btrfs_inode *new_simple_dir(struct inode *dir, 5980 struct btrfs_key *key, 5981 struct btrfs_root *root) 5982 { 5983 struct timespec64 ts; 5984 struct inode *vfs_inode; 5985 struct btrfs_inode *inode; 5986 5987 vfs_inode = new_inode(dir->i_sb); 5988 if (!vfs_inode) 5989 return ERR_PTR(-ENOMEM); 5990 5991 inode = BTRFS_I(vfs_inode); 5992 inode->root = btrfs_grab_root(root); 5993 inode->ref_root_id = key->objectid; 5994 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags); 5995 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags); 5996 5997 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 5998 /* 5999 * We only need lookup, the rest is read-only and there's no inode 6000 * associated with the dentry 6001 */ 6002 vfs_inode->i_op = &simple_dir_inode_operations; 6003 vfs_inode->i_opflags &= ~IOP_XATTR; 6004 vfs_inode->i_fop = &simple_dir_operations; 6005 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 6006 6007 ts = inode_set_ctime_current(vfs_inode); 6008 inode_set_mtime_to_ts(vfs_inode, ts); 6009 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir)); 6010 inode->i_otime_sec = ts.tv_sec; 6011 inode->i_otime_nsec = ts.tv_nsec; 6012 6013 vfs_inode->i_uid = dir->i_uid; 6014 vfs_inode->i_gid = dir->i_gid; 6015 6016 return inode; 6017 } 6018 6019 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 6020 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 6021 static_assert(BTRFS_FT_DIR == FT_DIR); 6022 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 6023 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 6024 static_assert(BTRFS_FT_FIFO == FT_FIFO); 6025 static_assert(BTRFS_FT_SOCK == FT_SOCK); 6026 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 6027 6028 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode) 6029 { 6030 return fs_umode_to_ftype(inode->vfs_inode.i_mode); 6031 } 6032 6033 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 6034 { 6035 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6036 struct btrfs_inode *inode; 6037 struct btrfs_root *root = BTRFS_I(dir)->root; 6038 struct btrfs_root *sub_root = root; 6039 struct btrfs_key location = { 0 }; 6040 u8 di_type = 0; 6041 int ret = 0; 6042 6043 if (dentry->d_name.len > BTRFS_NAME_LEN) 6044 return ERR_PTR(-ENAMETOOLONG); 6045 6046 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 6047 if (ret < 0) 6048 return ERR_PTR(ret); 6049 6050 if (location.type == BTRFS_INODE_ITEM_KEY) { 6051 inode = btrfs_iget(location.objectid, root); 6052 if (IS_ERR(inode)) 6053 return ERR_CAST(inode); 6054 6055 /* Do extra check against inode mode with di_type */ 6056 if (unlikely(btrfs_inode_type(inode) != di_type)) { 6057 btrfs_crit(fs_info, 6058 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 6059 inode->vfs_inode.i_mode, btrfs_inode_type(inode), 6060 di_type); 6061 iput(&inode->vfs_inode); 6062 return ERR_PTR(-EUCLEAN); 6063 } 6064 return &inode->vfs_inode; 6065 } 6066 6067 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 6068 &location, &sub_root); 6069 if (ret < 0) { 6070 if (ret != -ENOENT) 6071 inode = ERR_PTR(ret); 6072 else 6073 inode = new_simple_dir(dir, &location, root); 6074 } else { 6075 inode = btrfs_iget(location.objectid, sub_root); 6076 btrfs_put_root(sub_root); 6077 6078 if (IS_ERR(inode)) 6079 return ERR_CAST(inode); 6080 6081 down_read(&fs_info->cleanup_work_sem); 6082 if (!sb_rdonly(inode->vfs_inode.i_sb)) 6083 ret = btrfs_orphan_cleanup(sub_root); 6084 up_read(&fs_info->cleanup_work_sem); 6085 if (ret) { 6086 iput(&inode->vfs_inode); 6087 inode = ERR_PTR(ret); 6088 } 6089 } 6090 6091 if (IS_ERR(inode)) 6092 return ERR_CAST(inode); 6093 6094 return &inode->vfs_inode; 6095 } 6096 6097 static int btrfs_dentry_delete(const struct dentry *dentry) 6098 { 6099 struct btrfs_root *root; 6100 struct inode *inode = d_inode(dentry); 6101 6102 if (!inode && !IS_ROOT(dentry)) 6103 inode = d_inode(dentry->d_parent); 6104 6105 if (inode) { 6106 root = BTRFS_I(inode)->root; 6107 if (btrfs_root_refs(&root->root_item) == 0) 6108 return 1; 6109 6110 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 6111 return 1; 6112 } 6113 return 0; 6114 } 6115 6116 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 6117 unsigned int flags) 6118 { 6119 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 6120 6121 if (inode == ERR_PTR(-ENOENT)) 6122 inode = NULL; 6123 return d_splice_alias(inode, dentry); 6124 } 6125 6126 /* 6127 * Find the highest existing sequence number in a directory and then set the 6128 * in-memory index_cnt variable to the first free sequence number. 6129 */ 6130 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6131 { 6132 struct btrfs_root *root = inode->root; 6133 struct btrfs_key key, found_key; 6134 BTRFS_PATH_AUTO_FREE(path); 6135 struct extent_buffer *leaf; 6136 int ret; 6137 6138 key.objectid = btrfs_ino(inode); 6139 key.type = BTRFS_DIR_INDEX_KEY; 6140 key.offset = (u64)-1; 6141 6142 path = btrfs_alloc_path(); 6143 if (!path) 6144 return -ENOMEM; 6145 6146 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6147 if (ret < 0) 6148 return ret; 6149 /* FIXME: we should be able to handle this */ 6150 if (ret == 0) 6151 return ret; 6152 6153 if (path->slots[0] == 0) { 6154 inode->index_cnt = BTRFS_DIR_START_INDEX; 6155 return 0; 6156 } 6157 6158 path->slots[0]--; 6159 6160 leaf = path->nodes[0]; 6161 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6162 6163 if (found_key.objectid != btrfs_ino(inode) || 6164 found_key.type != BTRFS_DIR_INDEX_KEY) { 6165 inode->index_cnt = BTRFS_DIR_START_INDEX; 6166 return 0; 6167 } 6168 6169 inode->index_cnt = found_key.offset + 1; 6170 6171 return 0; 6172 } 6173 6174 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 6175 { 6176 int ret = 0; 6177 6178 btrfs_inode_lock(dir, 0); 6179 if (dir->index_cnt == (u64)-1) { 6180 ret = btrfs_inode_delayed_dir_index_count(dir); 6181 if (ret) { 6182 ret = btrfs_set_inode_index_count(dir); 6183 if (ret) 6184 goto out; 6185 } 6186 } 6187 6188 /* index_cnt is the index number of next new entry, so decrement it. */ 6189 *index = dir->index_cnt - 1; 6190 out: 6191 btrfs_inode_unlock(dir, 0); 6192 6193 return ret; 6194 } 6195 6196 /* 6197 * All this infrastructure exists because dir_emit can fault, and we are holding 6198 * the tree lock when doing readdir. For now just allocate a buffer and copy 6199 * our information into that, and then dir_emit from the buffer. This is 6200 * similar to what NFS does, only we don't keep the buffer around in pagecache 6201 * because I'm afraid I'll mess that up. Long term we need to make filldir do 6202 * copy_to_user_inatomic so we don't have to worry about page faulting under the 6203 * tree lock. 6204 */ 6205 static int btrfs_opendir(struct inode *inode, struct file *file) 6206 { 6207 struct btrfs_file_private *private; 6208 u64 last_index; 6209 int ret; 6210 6211 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 6212 if (ret) 6213 return ret; 6214 6215 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 6216 if (!private) 6217 return -ENOMEM; 6218 private->last_index = last_index; 6219 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 6220 if (!private->filldir_buf) { 6221 kfree(private); 6222 return -ENOMEM; 6223 } 6224 file->private_data = private; 6225 return 0; 6226 } 6227 6228 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 6229 { 6230 struct btrfs_file_private *private = file->private_data; 6231 int ret; 6232 6233 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 6234 &private->last_index); 6235 if (ret) 6236 return ret; 6237 6238 return generic_file_llseek(file, offset, whence); 6239 } 6240 6241 struct dir_entry { 6242 u64 ino; 6243 u64 offset; 6244 unsigned type; 6245 int name_len; 6246 }; 6247 6248 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 6249 { 6250 while (entries--) { 6251 struct dir_entry *entry = addr; 6252 char *name = (char *)(entry + 1); 6253 6254 ctx->pos = get_unaligned(&entry->offset); 6255 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 6256 get_unaligned(&entry->ino), 6257 get_unaligned(&entry->type))) 6258 return 1; 6259 addr += sizeof(struct dir_entry) + 6260 get_unaligned(&entry->name_len); 6261 ctx->pos++; 6262 } 6263 return 0; 6264 } 6265 6266 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 6267 { 6268 struct inode *inode = file_inode(file); 6269 struct btrfs_root *root = BTRFS_I(inode)->root; 6270 struct btrfs_file_private *private = file->private_data; 6271 struct btrfs_dir_item *di; 6272 struct btrfs_key key; 6273 struct btrfs_key found_key; 6274 BTRFS_PATH_AUTO_FREE(path); 6275 void *addr; 6276 LIST_HEAD(ins_list); 6277 LIST_HEAD(del_list); 6278 int ret; 6279 char *name_ptr; 6280 int name_len; 6281 int entries = 0; 6282 int total_len = 0; 6283 bool put = false; 6284 struct btrfs_key location; 6285 6286 if (!dir_emit_dots(file, ctx)) 6287 return 0; 6288 6289 path = btrfs_alloc_path(); 6290 if (!path) 6291 return -ENOMEM; 6292 6293 addr = private->filldir_buf; 6294 path->reada = READA_FORWARD; 6295 6296 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 6297 &ins_list, &del_list); 6298 6299 again: 6300 key.type = BTRFS_DIR_INDEX_KEY; 6301 key.offset = ctx->pos; 6302 key.objectid = btrfs_ino(BTRFS_I(inode)); 6303 6304 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 6305 struct dir_entry *entry; 6306 struct extent_buffer *leaf = path->nodes[0]; 6307 u8 ftype; 6308 6309 if (found_key.objectid != key.objectid) 6310 break; 6311 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6312 break; 6313 if (found_key.offset < ctx->pos) 6314 continue; 6315 if (found_key.offset > private->last_index) 6316 break; 6317 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6318 continue; 6319 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 6320 name_len = btrfs_dir_name_len(leaf, di); 6321 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6322 PAGE_SIZE) { 6323 btrfs_release_path(path); 6324 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6325 if (ret) 6326 goto nopos; 6327 addr = private->filldir_buf; 6328 entries = 0; 6329 total_len = 0; 6330 goto again; 6331 } 6332 6333 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 6334 entry = addr; 6335 name_ptr = (char *)(entry + 1); 6336 read_extent_buffer(leaf, name_ptr, 6337 (unsigned long)(di + 1), name_len); 6338 put_unaligned(name_len, &entry->name_len); 6339 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 6340 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6341 put_unaligned(location.objectid, &entry->ino); 6342 put_unaligned(found_key.offset, &entry->offset); 6343 entries++; 6344 addr += sizeof(struct dir_entry) + name_len; 6345 total_len += sizeof(struct dir_entry) + name_len; 6346 } 6347 /* Catch error encountered during iteration */ 6348 if (ret < 0) 6349 goto err; 6350 6351 btrfs_release_path(path); 6352 6353 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6354 if (ret) 6355 goto nopos; 6356 6357 if (btrfs_readdir_delayed_dir_index(ctx, &ins_list)) 6358 goto nopos; 6359 6360 /* 6361 * Stop new entries from being returned after we return the last 6362 * entry. 6363 * 6364 * New directory entries are assigned a strictly increasing 6365 * offset. This means that new entries created during readdir 6366 * are *guaranteed* to be seen in the future by that readdir. 6367 * This has broken buggy programs which operate on names as 6368 * they're returned by readdir. Until we reuse freed offsets 6369 * we have this hack to stop new entries from being returned 6370 * under the assumption that they'll never reach this huge 6371 * offset. 6372 * 6373 * This is being careful not to overflow 32bit loff_t unless the 6374 * last entry requires it because doing so has broken 32bit apps 6375 * in the past. 6376 */ 6377 if (ctx->pos >= INT_MAX) 6378 ctx->pos = LLONG_MAX; 6379 else 6380 ctx->pos = INT_MAX; 6381 nopos: 6382 ret = 0; 6383 err: 6384 if (put) 6385 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6386 return ret; 6387 } 6388 6389 /* 6390 * This is somewhat expensive, updating the tree every time the 6391 * inode changes. But, it is most likely to find the inode in cache. 6392 * FIXME, needs more benchmarking...there are no reasons other than performance 6393 * to keep or drop this code. 6394 */ 6395 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6396 { 6397 struct btrfs_root *root = inode->root; 6398 struct btrfs_fs_info *fs_info = root->fs_info; 6399 struct btrfs_trans_handle *trans; 6400 int ret; 6401 6402 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6403 return 0; 6404 6405 trans = btrfs_join_transaction(root); 6406 if (IS_ERR(trans)) 6407 return PTR_ERR(trans); 6408 6409 ret = btrfs_update_inode(trans, inode); 6410 if (ret == -ENOSPC || ret == -EDQUOT) { 6411 /* whoops, lets try again with the full transaction */ 6412 btrfs_end_transaction(trans); 6413 trans = btrfs_start_transaction(root, 1); 6414 if (IS_ERR(trans)) 6415 return PTR_ERR(trans); 6416 6417 ret = btrfs_update_inode(trans, inode); 6418 } 6419 btrfs_end_transaction(trans); 6420 if (inode->delayed_node) 6421 btrfs_balance_delayed_items(fs_info); 6422 6423 return ret; 6424 } 6425 6426 /* 6427 * We need our own ->update_time so that we can return error on ENOSPC for 6428 * updating the inode in the case of file write and mmap writes. 6429 */ 6430 static int btrfs_update_time(struct inode *inode, enum fs_update_time type, 6431 unsigned int flags) 6432 { 6433 struct btrfs_root *root = BTRFS_I(inode)->root; 6434 int dirty; 6435 6436 if (btrfs_root_readonly(root)) 6437 return -EROFS; 6438 if (flags & IOCB_NOWAIT) 6439 return -EAGAIN; 6440 6441 dirty = inode_update_time(inode, type, flags); 6442 if (dirty <= 0) 6443 return dirty; 6444 return btrfs_dirty_inode(BTRFS_I(inode)); 6445 } 6446 6447 /* 6448 * helper to find a free sequence number in a given directory. This current 6449 * code is very simple, later versions will do smarter things in the btree 6450 */ 6451 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6452 { 6453 int ret = 0; 6454 6455 if (dir->index_cnt == (u64)-1) { 6456 ret = btrfs_inode_delayed_dir_index_count(dir); 6457 if (ret) { 6458 ret = btrfs_set_inode_index_count(dir); 6459 if (ret) 6460 return ret; 6461 } 6462 } 6463 6464 *index = dir->index_cnt; 6465 dir->index_cnt++; 6466 6467 return ret; 6468 } 6469 6470 static int btrfs_insert_inode_locked(struct inode *inode) 6471 { 6472 struct btrfs_iget_args args; 6473 6474 args.ino = btrfs_ino(BTRFS_I(inode)); 6475 args.root = BTRFS_I(inode)->root; 6476 6477 return insert_inode_locked4(inode, 6478 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6479 btrfs_find_actor, &args); 6480 } 6481 6482 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6483 unsigned int *trans_num_items) 6484 { 6485 struct inode *dir = args->dir; 6486 struct inode *inode = args->inode; 6487 int ret; 6488 6489 if (!args->orphan) { 6490 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6491 &args->fname); 6492 if (ret) 6493 return ret; 6494 } 6495 6496 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6497 if (ret) { 6498 fscrypt_free_filename(&args->fname); 6499 return ret; 6500 } 6501 6502 /* 1 to add inode item */ 6503 *trans_num_items = 1; 6504 /* 1 to add compression property */ 6505 if (BTRFS_I(dir)->prop_compress) 6506 (*trans_num_items)++; 6507 /* 1 to add default ACL xattr */ 6508 if (args->default_acl) 6509 (*trans_num_items)++; 6510 /* 1 to add access ACL xattr */ 6511 if (args->acl) 6512 (*trans_num_items)++; 6513 #ifdef CONFIG_SECURITY 6514 /* 1 to add LSM xattr */ 6515 if (dir->i_security) 6516 (*trans_num_items)++; 6517 #endif 6518 if (args->orphan) { 6519 /* 1 to add orphan item */ 6520 (*trans_num_items)++; 6521 } else { 6522 /* 6523 * 1 to add dir item 6524 * 1 to add dir index 6525 * 1 to update parent inode item 6526 * 6527 * No need for 1 unit for the inode ref item because it is 6528 * inserted in a batch together with the inode item at 6529 * btrfs_create_new_inode(). 6530 */ 6531 *trans_num_items += 3; 6532 } 6533 return 0; 6534 } 6535 6536 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6537 { 6538 posix_acl_release(args->acl); 6539 posix_acl_release(args->default_acl); 6540 fscrypt_free_filename(&args->fname); 6541 } 6542 6543 /* 6544 * Inherit flags from the parent inode. 6545 * 6546 * Currently only the compression flags and the cow flags are inherited. 6547 */ 6548 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6549 { 6550 unsigned int flags; 6551 6552 flags = dir->flags; 6553 6554 if (flags & BTRFS_INODE_NOCOMPRESS) { 6555 inode->flags &= ~BTRFS_INODE_COMPRESS; 6556 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6557 } else if (flags & BTRFS_INODE_COMPRESS) { 6558 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6559 inode->flags |= BTRFS_INODE_COMPRESS; 6560 } 6561 6562 if (flags & BTRFS_INODE_NODATACOW) { 6563 inode->flags |= BTRFS_INODE_NODATACOW; 6564 if (S_ISREG(inode->vfs_inode.i_mode)) 6565 inode->flags |= BTRFS_INODE_NODATASUM; 6566 } 6567 6568 btrfs_sync_inode_flags_to_i_flags(inode); 6569 } 6570 6571 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6572 struct btrfs_new_inode_args *args) 6573 { 6574 struct timespec64 ts; 6575 struct inode *dir = args->dir; 6576 struct inode *inode = args->inode; 6577 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6578 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6579 struct btrfs_root *root; 6580 struct btrfs_inode_item *inode_item; 6581 struct btrfs_path *path; 6582 u64 objectid; 6583 struct btrfs_inode_ref *ref; 6584 struct btrfs_key key[2]; 6585 u32 sizes[2]; 6586 struct btrfs_item_batch batch; 6587 unsigned long ptr; 6588 int ret; 6589 bool xa_reserved = false; 6590 6591 path = btrfs_alloc_path(); 6592 if (!path) 6593 return -ENOMEM; 6594 6595 if (!args->subvol) 6596 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6597 root = BTRFS_I(inode)->root; 6598 6599 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6600 if (ret) 6601 goto out; 6602 6603 ret = btrfs_get_free_objectid(root, &objectid); 6604 if (ret) 6605 goto out; 6606 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6607 6608 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6609 if (ret) 6610 goto out; 6611 xa_reserved = true; 6612 6613 if (args->orphan) { 6614 /* 6615 * O_TMPFILE, set link count to 0, so that after this point, we 6616 * fill in an inode item with the correct link count. 6617 */ 6618 set_nlink(inode, 0); 6619 } else { 6620 trace_btrfs_inode_request(dir); 6621 6622 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6623 if (ret) 6624 goto out; 6625 } 6626 6627 if (S_ISDIR(inode->i_mode)) 6628 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6629 6630 BTRFS_I(inode)->generation = trans->transid; 6631 inode->i_generation = BTRFS_I(inode)->generation; 6632 6633 /* 6634 * We don't have any capability xattrs set here yet, shortcut any 6635 * queries for the xattrs here. If we add them later via the inode 6636 * security init path or any other path this flag will be cleared. 6637 */ 6638 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6639 6640 /* 6641 * Subvolumes don't inherit flags from their parent directory. 6642 * Originally this was probably by accident, but we probably can't 6643 * change it now without compatibility issues. 6644 */ 6645 if (!args->subvol) 6646 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6647 6648 btrfs_set_inode_mapping_order(BTRFS_I(inode)); 6649 if (S_ISREG(inode->i_mode)) { 6650 if (btrfs_test_opt(fs_info, NODATASUM)) 6651 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6652 if (btrfs_test_opt(fs_info, NODATACOW)) 6653 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6654 BTRFS_INODE_NODATASUM; 6655 btrfs_update_inode_mapping_flags(BTRFS_I(inode)); 6656 } 6657 6658 ret = btrfs_insert_inode_locked(inode); 6659 if (ret < 0) { 6660 if (!args->orphan) 6661 BTRFS_I(dir)->index_cnt--; 6662 goto out; 6663 } 6664 6665 /* 6666 * We could have gotten an inode number from somebody who was fsynced 6667 * and then removed in this same transaction, so let's just set full 6668 * sync since it will be a full sync anyway and this will blow away the 6669 * old info in the log. 6670 */ 6671 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6672 6673 key[0].objectid = objectid; 6674 key[0].type = BTRFS_INODE_ITEM_KEY; 6675 key[0].offset = 0; 6676 6677 sizes[0] = sizeof(struct btrfs_inode_item); 6678 6679 if (!args->orphan) { 6680 /* 6681 * Start new inodes with an inode_ref. This is slightly more 6682 * efficient for small numbers of hard links since they will 6683 * be packed into one item. Extended refs will kick in if we 6684 * add more hard links than can fit in the ref item. 6685 */ 6686 key[1].objectid = objectid; 6687 key[1].type = BTRFS_INODE_REF_KEY; 6688 if (args->subvol) { 6689 key[1].offset = objectid; 6690 sizes[1] = 2 + sizeof(*ref); 6691 } else { 6692 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6693 sizes[1] = name->len + sizeof(*ref); 6694 } 6695 } 6696 6697 batch.keys = &key[0]; 6698 batch.data_sizes = &sizes[0]; 6699 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6700 batch.nr = args->orphan ? 1 : 2; 6701 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6702 if (unlikely(ret != 0)) { 6703 btrfs_abort_transaction(trans, ret); 6704 goto discard; 6705 } 6706 6707 ts = simple_inode_init_ts(inode); 6708 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6709 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6710 6711 /* 6712 * We're going to fill the inode item now, so at this point the inode 6713 * must be fully initialized. 6714 */ 6715 6716 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6717 struct btrfs_inode_item); 6718 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6719 sizeof(*inode_item)); 6720 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6721 6722 if (!args->orphan) { 6723 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6724 struct btrfs_inode_ref); 6725 ptr = (unsigned long)(ref + 1); 6726 if (args->subvol) { 6727 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6728 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6729 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6730 } else { 6731 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6732 name->len); 6733 btrfs_set_inode_ref_index(path->nodes[0], ref, 6734 BTRFS_I(inode)->dir_index); 6735 write_extent_buffer(path->nodes[0], name->name, ptr, 6736 name->len); 6737 } 6738 } 6739 6740 /* 6741 * We don't need the path anymore, plus inheriting properties, adding 6742 * ACLs, security xattrs, orphan item or adding the link, will result in 6743 * allocating yet another path. So just free our path. 6744 */ 6745 btrfs_free_path(path); 6746 path = NULL; 6747 6748 if (args->subvol) { 6749 struct btrfs_inode *parent; 6750 6751 /* 6752 * Subvolumes inherit properties from their parent subvolume, 6753 * not the directory they were created in. 6754 */ 6755 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6756 if (IS_ERR(parent)) { 6757 ret = PTR_ERR(parent); 6758 } else { 6759 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6760 parent); 6761 iput(&parent->vfs_inode); 6762 } 6763 } else { 6764 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6765 BTRFS_I(dir)); 6766 } 6767 if (ret) { 6768 btrfs_err(fs_info, 6769 "error inheriting props for ino %llu (root %llu): %d", 6770 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6771 } 6772 6773 /* 6774 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6775 * probably a bug. 6776 */ 6777 if (!args->subvol) { 6778 ret = btrfs_init_inode_security(trans, args); 6779 if (unlikely(ret)) { 6780 btrfs_abort_transaction(trans, ret); 6781 goto discard; 6782 } 6783 } 6784 6785 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6786 if (WARN_ON(ret)) { 6787 /* Shouldn't happen, we used xa_reserve() before. */ 6788 btrfs_abort_transaction(trans, ret); 6789 goto discard; 6790 } 6791 6792 trace_btrfs_inode_new(inode); 6793 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6794 6795 btrfs_update_root_times(trans, root); 6796 6797 if (args->orphan) { 6798 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6799 if (unlikely(ret)) { 6800 btrfs_abort_transaction(trans, ret); 6801 goto discard; 6802 } 6803 } else { 6804 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6805 0, BTRFS_I(inode)->dir_index); 6806 if (unlikely(ret)) { 6807 btrfs_abort_transaction(trans, ret); 6808 goto discard; 6809 } 6810 } 6811 6812 return 0; 6813 6814 discard: 6815 /* 6816 * discard_new_inode() calls iput(), but the caller owns the reference 6817 * to the inode. 6818 */ 6819 ihold(inode); 6820 discard_new_inode(inode); 6821 out: 6822 if (xa_reserved) 6823 xa_release(&root->inodes, objectid); 6824 6825 btrfs_free_path(path); 6826 return ret; 6827 } 6828 6829 /* 6830 * utility function to add 'inode' into 'parent_inode' with 6831 * a give name and a given sequence number. 6832 * if 'add_backref' is true, also insert a backref from the 6833 * inode to the parent directory. 6834 */ 6835 int btrfs_add_link(struct btrfs_trans_handle *trans, 6836 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6837 const struct fscrypt_str *name, bool add_backref, u64 index) 6838 { 6839 int ret = 0; 6840 struct btrfs_key key; 6841 struct btrfs_root *root = parent_inode->root; 6842 u64 ino = btrfs_ino(inode); 6843 u64 parent_ino = btrfs_ino(parent_inode); 6844 6845 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6846 memcpy(&key, &inode->root->root_key, sizeof(key)); 6847 } else { 6848 key.objectid = ino; 6849 key.type = BTRFS_INODE_ITEM_KEY; 6850 key.offset = 0; 6851 } 6852 6853 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6854 ret = btrfs_add_root_ref(trans, key.objectid, 6855 btrfs_root_id(root), parent_ino, 6856 index, name); 6857 } else if (add_backref) { 6858 ret = btrfs_insert_inode_ref(trans, root, name, 6859 ino, parent_ino, index); 6860 } 6861 6862 /* Nothing to clean up yet */ 6863 if (ret) 6864 return ret; 6865 6866 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6867 btrfs_inode_type(inode), index); 6868 if (ret == -EEXIST || ret == -EOVERFLOW) 6869 goto fail_dir_item; 6870 else if (unlikely(ret)) { 6871 btrfs_abort_transaction(trans, ret); 6872 return ret; 6873 } 6874 6875 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6876 name->len * 2); 6877 inode_inc_iversion(&parent_inode->vfs_inode); 6878 update_time_after_link_or_unlink(parent_inode); 6879 6880 ret = btrfs_update_inode(trans, parent_inode); 6881 if (ret) 6882 btrfs_abort_transaction(trans, ret); 6883 return ret; 6884 6885 fail_dir_item: 6886 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6887 u64 local_index; 6888 int ret2; 6889 6890 ret2 = btrfs_del_root_ref(trans, key.objectid, btrfs_root_id(root), 6891 parent_ino, &local_index, name); 6892 if (ret2) 6893 btrfs_abort_transaction(trans, ret2); 6894 } else if (add_backref) { 6895 int ret2; 6896 6897 ret2 = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, NULL); 6898 if (ret2) 6899 btrfs_abort_transaction(trans, ret2); 6900 } 6901 6902 /* Return the original error code */ 6903 return ret; 6904 } 6905 6906 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6907 struct inode *inode) 6908 { 6909 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6910 struct btrfs_root *root = BTRFS_I(dir)->root; 6911 struct btrfs_new_inode_args new_inode_args = { 6912 .dir = dir, 6913 .dentry = dentry, 6914 .inode = inode, 6915 }; 6916 unsigned int trans_num_items; 6917 struct btrfs_trans_handle *trans; 6918 int ret; 6919 6920 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6921 if (ret) 6922 goto out_inode; 6923 6924 trans = btrfs_start_transaction(root, trans_num_items); 6925 if (IS_ERR(trans)) { 6926 ret = PTR_ERR(trans); 6927 goto out_new_inode_args; 6928 } 6929 6930 ret = btrfs_create_new_inode(trans, &new_inode_args); 6931 if (!ret) { 6932 if (S_ISDIR(inode->i_mode)) 6933 inode->i_opflags |= IOP_FASTPERM_MAY_EXEC; 6934 d_instantiate_new(dentry, inode); 6935 } 6936 6937 btrfs_end_transaction(trans); 6938 btrfs_btree_balance_dirty(fs_info); 6939 out_new_inode_args: 6940 btrfs_new_inode_args_destroy(&new_inode_args); 6941 out_inode: 6942 if (ret) 6943 iput(inode); 6944 return ret; 6945 } 6946 6947 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6948 struct dentry *dentry, umode_t mode, dev_t rdev) 6949 { 6950 struct inode *inode; 6951 6952 inode = new_inode(dir->i_sb); 6953 if (!inode) 6954 return -ENOMEM; 6955 inode_init_owner(idmap, inode, dir, mode); 6956 inode->i_op = &btrfs_special_inode_operations; 6957 init_special_inode(inode, inode->i_mode, rdev); 6958 return btrfs_create_common(dir, dentry, inode); 6959 } 6960 6961 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6962 struct dentry *dentry, umode_t mode, bool excl) 6963 { 6964 struct inode *inode; 6965 6966 inode = new_inode(dir->i_sb); 6967 if (!inode) 6968 return -ENOMEM; 6969 inode_init_owner(idmap, inode, dir, mode); 6970 inode->i_fop = &btrfs_file_operations; 6971 inode->i_op = &btrfs_file_inode_operations; 6972 inode->i_mapping->a_ops = &btrfs_aops; 6973 return btrfs_create_common(dir, dentry, inode); 6974 } 6975 6976 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6977 struct dentry *dentry) 6978 { 6979 struct btrfs_trans_handle *trans = NULL; 6980 struct btrfs_root *root = BTRFS_I(dir)->root; 6981 struct inode *inode = d_inode(old_dentry); 6982 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6983 struct fscrypt_name fname; 6984 u64 index; 6985 int ret; 6986 6987 /* do not allow sys_link's with other subvols of the same device */ 6988 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6989 return -EXDEV; 6990 6991 if (inode->i_nlink >= BTRFS_LINK_MAX) 6992 return -EMLINK; 6993 6994 ret = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6995 if (ret) 6996 goto fail; 6997 6998 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 6999 if (ret) 7000 goto fail; 7001 7002 /* 7003 * 2 items for inode and inode ref 7004 * 2 items for dir items 7005 * 1 item for parent inode 7006 * 1 item for orphan item deletion if O_TMPFILE 7007 */ 7008 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 7009 if (IS_ERR(trans)) { 7010 ret = PTR_ERR(trans); 7011 trans = NULL; 7012 goto fail; 7013 } 7014 7015 /* There are several dir indexes for this inode, clear the cache. */ 7016 BTRFS_I(inode)->dir_index = 0ULL; 7017 inode_inc_iversion(inode); 7018 inode_set_ctime_current(inode); 7019 7020 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 7021 &fname.disk_name, 1, index); 7022 if (ret) 7023 goto fail; 7024 7025 /* Link added now we update the inode item with the new link count. */ 7026 inc_nlink(inode); 7027 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 7028 if (unlikely(ret)) { 7029 btrfs_abort_transaction(trans, ret); 7030 goto fail; 7031 } 7032 7033 if (inode->i_nlink == 1) { 7034 /* 7035 * If the new hard link count is 1, it's a file created with the 7036 * open(2) O_TMPFILE flag. 7037 */ 7038 ret = btrfs_orphan_del(trans, BTRFS_I(inode)); 7039 if (unlikely(ret)) { 7040 btrfs_abort_transaction(trans, ret); 7041 goto fail; 7042 } 7043 } 7044 7045 /* Grab reference for the new dentry passed to d_instantiate(). */ 7046 ihold(inode); 7047 d_instantiate(dentry, inode); 7048 btrfs_log_new_name(trans, old_dentry, NULL, 0, dentry->d_parent); 7049 7050 fail: 7051 fscrypt_free_filename(&fname); 7052 if (trans) 7053 btrfs_end_transaction(trans); 7054 btrfs_btree_balance_dirty(fs_info); 7055 return ret; 7056 } 7057 7058 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 7059 struct dentry *dentry, umode_t mode) 7060 { 7061 struct inode *inode; 7062 7063 inode = new_inode(dir->i_sb); 7064 if (!inode) 7065 return ERR_PTR(-ENOMEM); 7066 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 7067 inode->i_op = &btrfs_dir_inode_operations; 7068 inode->i_fop = &btrfs_dir_file_operations; 7069 return ERR_PTR(btrfs_create_common(dir, dentry, inode)); 7070 } 7071 7072 static noinline int uncompress_inline(struct btrfs_path *path, 7073 struct folio *folio, 7074 struct btrfs_file_extent_item *item) 7075 { 7076 int ret; 7077 struct extent_buffer *leaf = path->nodes[0]; 7078 const u32 blocksize = leaf->fs_info->sectorsize; 7079 char *tmp; 7080 size_t max_size; 7081 unsigned long inline_size; 7082 unsigned long ptr; 7083 int compress_type; 7084 7085 compress_type = btrfs_file_extent_compression(leaf, item); 7086 max_size = btrfs_file_extent_ram_bytes(leaf, item); 7087 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 7088 tmp = kmalloc(inline_size, GFP_NOFS); 7089 if (!tmp) 7090 return -ENOMEM; 7091 ptr = btrfs_file_extent_inline_start(item); 7092 7093 read_extent_buffer(leaf, tmp, ptr, inline_size); 7094 7095 max_size = min_t(unsigned long, blocksize, max_size); 7096 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size, 7097 max_size); 7098 7099 /* 7100 * decompression code contains a memset to fill in any space between the end 7101 * of the uncompressed data and the end of max_size in case the decompressed 7102 * data ends up shorter than ram_bytes. That doesn't cover the hole between 7103 * the end of an inline extent and the beginning of the next block, so we 7104 * cover that region here. 7105 */ 7106 7107 if (max_size < blocksize) 7108 folio_zero_range(folio, max_size, blocksize - max_size); 7109 kfree(tmp); 7110 return ret; 7111 } 7112 7113 static int read_inline_extent(struct btrfs_path *path, struct folio *folio) 7114 { 7115 const u32 blocksize = path->nodes[0]->fs_info->sectorsize; 7116 struct btrfs_file_extent_item *fi; 7117 void *kaddr; 7118 size_t copy_size; 7119 7120 if (!folio || folio_test_uptodate(folio)) 7121 return 0; 7122 7123 ASSERT(folio_pos(folio) == 0); 7124 7125 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 7126 struct btrfs_file_extent_item); 7127 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 7128 return uncompress_inline(path, folio, fi); 7129 7130 copy_size = min_t(u64, blocksize, 7131 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 7132 kaddr = kmap_local_folio(folio, 0); 7133 read_extent_buffer(path->nodes[0], kaddr, 7134 btrfs_file_extent_inline_start(fi), copy_size); 7135 kunmap_local(kaddr); 7136 if (copy_size < blocksize) 7137 folio_zero_range(folio, copy_size, blocksize - copy_size); 7138 return 0; 7139 } 7140 7141 /* 7142 * Lookup the first extent overlapping a range in a file. 7143 * 7144 * @inode: file to search in 7145 * @page: page to read extent data into if the extent is inline 7146 * @start: file offset 7147 * @len: length of range starting at @start 7148 * 7149 * Return the first &struct extent_map which overlaps the given range, reading 7150 * it from the B-tree and caching it if necessary. Note that there may be more 7151 * extents which overlap the given range after the returned extent_map. 7152 * 7153 * If @page is not NULL and the extent is inline, this also reads the extent 7154 * data directly into the page and marks the extent up to date in the io_tree. 7155 * 7156 * Return: ERR_PTR on error, non-NULL extent_map on success. 7157 */ 7158 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 7159 struct folio *folio, u64 start, u64 len) 7160 { 7161 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7162 int ret = 0; 7163 u64 extent_start = 0; 7164 u64 extent_end = 0; 7165 u64 objectid = btrfs_ino(inode); 7166 int extent_type = -1; 7167 struct btrfs_path *path = NULL; 7168 struct btrfs_root *root = inode->root; 7169 struct btrfs_file_extent_item *item; 7170 struct extent_buffer *leaf; 7171 struct btrfs_key found_key; 7172 struct extent_map *em = NULL; 7173 struct extent_map_tree *em_tree = &inode->extent_tree; 7174 7175 read_lock(&em_tree->lock); 7176 em = btrfs_lookup_extent_mapping(em_tree, start, len); 7177 read_unlock(&em_tree->lock); 7178 7179 if (em) { 7180 if (em->start > start || btrfs_extent_map_end(em) <= start) 7181 btrfs_free_extent_map(em); 7182 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio) 7183 btrfs_free_extent_map(em); 7184 else 7185 goto out; 7186 } 7187 em = btrfs_alloc_extent_map(); 7188 if (!em) { 7189 ret = -ENOMEM; 7190 goto out; 7191 } 7192 em->start = EXTENT_MAP_HOLE; 7193 em->disk_bytenr = EXTENT_MAP_HOLE; 7194 em->len = (u64)-1; 7195 7196 path = btrfs_alloc_path(); 7197 if (!path) { 7198 ret = -ENOMEM; 7199 goto out; 7200 } 7201 7202 /* Chances are we'll be called again, so go ahead and do readahead */ 7203 path->reada = READA_FORWARD; 7204 7205 /* 7206 * The same explanation in load_free_space_cache applies here as well, 7207 * we only read when we're loading the free space cache, and at that 7208 * point the commit_root has everything we need. 7209 */ 7210 if (btrfs_is_free_space_inode(inode)) { 7211 path->search_commit_root = true; 7212 path->skip_locking = true; 7213 } 7214 7215 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 7216 if (ret < 0) { 7217 goto out; 7218 } else if (ret > 0) { 7219 if (path->slots[0] == 0) 7220 goto not_found; 7221 path->slots[0]--; 7222 ret = 0; 7223 } 7224 7225 leaf = path->nodes[0]; 7226 item = btrfs_item_ptr(leaf, path->slots[0], 7227 struct btrfs_file_extent_item); 7228 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7229 if (found_key.objectid != objectid || 7230 found_key.type != BTRFS_EXTENT_DATA_KEY) { 7231 /* 7232 * If we backup past the first extent we want to move forward 7233 * and see if there is an extent in front of us, otherwise we'll 7234 * say there is a hole for our whole search range which can 7235 * cause problems. 7236 */ 7237 extent_end = start; 7238 goto next; 7239 } 7240 7241 extent_type = btrfs_file_extent_type(leaf, item); 7242 extent_start = found_key.offset; 7243 extent_end = btrfs_file_extent_end(path); 7244 if (extent_type == BTRFS_FILE_EXTENT_REG || 7245 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7246 /* Only regular file could have regular/prealloc extent */ 7247 if (unlikely(!S_ISREG(inode->vfs_inode.i_mode))) { 7248 ret = -EUCLEAN; 7249 btrfs_crit(fs_info, 7250 "regular/prealloc extent found for non-regular inode %llu", 7251 btrfs_ino(inode)); 7252 goto out; 7253 } 7254 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7255 extent_start); 7256 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7257 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7258 path->slots[0], 7259 extent_start); 7260 } 7261 next: 7262 if (start >= extent_end) { 7263 path->slots[0]++; 7264 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7265 ret = btrfs_next_leaf(root, path); 7266 if (ret < 0) 7267 goto out; 7268 else if (ret > 0) 7269 goto not_found; 7270 7271 leaf = path->nodes[0]; 7272 } 7273 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7274 if (found_key.objectid != objectid || 7275 found_key.type != BTRFS_EXTENT_DATA_KEY) 7276 goto not_found; 7277 if (start + len <= found_key.offset) 7278 goto not_found; 7279 if (start > found_key.offset) 7280 goto next; 7281 7282 /* New extent overlaps with existing one */ 7283 em->start = start; 7284 em->len = found_key.offset - start; 7285 em->disk_bytenr = EXTENT_MAP_HOLE; 7286 goto insert; 7287 } 7288 7289 btrfs_extent_item_to_extent_map(inode, path, item, em); 7290 7291 if (extent_type == BTRFS_FILE_EXTENT_REG || 7292 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7293 goto insert; 7294 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7295 /* 7296 * Inline extent can only exist at file offset 0. This is 7297 * ensured by tree-checker and inline extent creation path. 7298 * Thus all members representing file offsets should be zero. 7299 */ 7300 ASSERT(extent_start == 0); 7301 ASSERT(em->start == 0); 7302 7303 /* 7304 * btrfs_extent_item_to_extent_map() should have properly 7305 * initialized em members already. 7306 * 7307 * Other members are not utilized for inline extents. 7308 */ 7309 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 7310 ASSERT(em->len == fs_info->sectorsize); 7311 7312 ret = read_inline_extent(path, folio); 7313 if (ret < 0) 7314 goto out; 7315 goto insert; 7316 } 7317 not_found: 7318 em->start = start; 7319 em->len = len; 7320 em->disk_bytenr = EXTENT_MAP_HOLE; 7321 insert: 7322 ret = 0; 7323 btrfs_release_path(path); 7324 if (unlikely(em->start > start || btrfs_extent_map_end(em) <= start)) { 7325 btrfs_err(fs_info, 7326 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7327 em->start, em->len, start, len); 7328 ret = -EIO; 7329 goto out; 7330 } 7331 7332 write_lock(&em_tree->lock); 7333 ret = btrfs_add_extent_mapping(inode, &em, start, len); 7334 write_unlock(&em_tree->lock); 7335 out: 7336 btrfs_free_path(path); 7337 7338 trace_btrfs_get_extent(root, inode, em); 7339 7340 if (ret) { 7341 btrfs_free_extent_map(em); 7342 return ERR_PTR(ret); 7343 } 7344 return em; 7345 } 7346 7347 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7348 { 7349 struct btrfs_block_group *block_group; 7350 bool readonly = false; 7351 7352 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7353 if (!block_group || block_group->ro) 7354 readonly = true; 7355 if (block_group) 7356 btrfs_put_block_group(block_group); 7357 return readonly; 7358 } 7359 7360 /* 7361 * Check if we can do nocow write into the range [@offset, @offset + @len) 7362 * 7363 * @offset: File offset 7364 * @len: The length to write, will be updated to the nocow writeable 7365 * range 7366 * @orig_start: (optional) Return the original file offset of the file extent 7367 * @orig_len: (optional) Return the original on-disk length of the file extent 7368 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7369 * 7370 * Return: 7371 * >0 and update @len if we can do nocow write 7372 * 0 if we can't do nocow write 7373 * <0 if error happened 7374 * 7375 * NOTE: This only checks the file extents, caller is responsible to wait for 7376 * any ordered extents. 7377 */ 7378 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len, 7379 struct btrfs_file_extent *file_extent, 7380 bool nowait) 7381 { 7382 struct btrfs_root *root = inode->root; 7383 struct btrfs_fs_info *fs_info = root->fs_info; 7384 struct can_nocow_file_extent_args nocow_args = { 0 }; 7385 BTRFS_PATH_AUTO_FREE(path); 7386 int ret; 7387 struct extent_buffer *leaf; 7388 struct extent_io_tree *io_tree = &inode->io_tree; 7389 struct btrfs_file_extent_item *fi; 7390 struct btrfs_key key; 7391 int found_type; 7392 7393 path = btrfs_alloc_path(); 7394 if (!path) 7395 return -ENOMEM; 7396 path->nowait = nowait; 7397 7398 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7399 offset, 0); 7400 if (ret < 0) 7401 return ret; 7402 7403 if (ret == 1) { 7404 if (path->slots[0] == 0) { 7405 /* Can't find the item, must COW. */ 7406 return 0; 7407 } 7408 path->slots[0]--; 7409 } 7410 ret = 0; 7411 leaf = path->nodes[0]; 7412 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7413 if (key.objectid != btrfs_ino(inode) || 7414 key.type != BTRFS_EXTENT_DATA_KEY) { 7415 /* Not our file or wrong item type, must COW. */ 7416 return 0; 7417 } 7418 7419 if (key.offset > offset) { 7420 /* Wrong offset, must COW. */ 7421 return 0; 7422 } 7423 7424 if (btrfs_file_extent_end(path) <= offset) 7425 return 0; 7426 7427 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7428 found_type = btrfs_file_extent_type(leaf, fi); 7429 7430 nocow_args.start = offset; 7431 nocow_args.end = offset + *len - 1; 7432 nocow_args.free_path = true; 7433 7434 ret = can_nocow_file_extent(path, &key, inode, &nocow_args); 7435 /* can_nocow_file_extent() has freed the path. */ 7436 path = NULL; 7437 7438 if (ret != 1) { 7439 /* Treat errors as not being able to NOCOW. */ 7440 return 0; 7441 } 7442 7443 if (btrfs_extent_readonly(fs_info, 7444 nocow_args.file_extent.disk_bytenr + 7445 nocow_args.file_extent.offset)) 7446 return 0; 7447 7448 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 7449 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7450 u64 range_end; 7451 7452 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7453 root->fs_info->sectorsize) - 1; 7454 ret = btrfs_test_range_bit_exists(io_tree, offset, range_end, 7455 EXTENT_DELALLOC); 7456 if (ret) 7457 return -EAGAIN; 7458 } 7459 7460 if (file_extent) 7461 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7462 7463 *len = nocow_args.file_extent.num_bytes; 7464 7465 return 1; 7466 } 7467 7468 /* The callers of this must take lock_extent() */ 7469 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7470 const struct btrfs_file_extent *file_extent, 7471 int type) 7472 { 7473 struct extent_map *em; 7474 int ret; 7475 7476 /* 7477 * Note the missing NOCOW type. 7478 * 7479 * For pure NOCOW writes, we should not create an io extent map, but 7480 * just reusing the existing one. 7481 * Only PREALLOC writes (NOCOW write into preallocated range) can 7482 * create an io extent map. 7483 */ 7484 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7485 type == BTRFS_ORDERED_COMPRESSED || 7486 type == BTRFS_ORDERED_REGULAR); 7487 7488 switch (type) { 7489 case BTRFS_ORDERED_PREALLOC: 7490 /* We're only referring part of a larger preallocated extent. */ 7491 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7492 break; 7493 case BTRFS_ORDERED_REGULAR: 7494 /* COW results a new extent matching our file extent size. */ 7495 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7496 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7497 7498 /* Since it's a new extent, we should not have any offset. */ 7499 ASSERT(file_extent->offset == 0); 7500 break; 7501 case BTRFS_ORDERED_COMPRESSED: 7502 /* Must be compressed. */ 7503 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7504 7505 /* 7506 * Encoded write can make us to refer to part of the 7507 * uncompressed extent. 7508 */ 7509 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7510 break; 7511 } 7512 7513 em = btrfs_alloc_extent_map(); 7514 if (!em) 7515 return ERR_PTR(-ENOMEM); 7516 7517 em->start = start; 7518 em->len = file_extent->num_bytes; 7519 em->disk_bytenr = file_extent->disk_bytenr; 7520 em->disk_num_bytes = file_extent->disk_num_bytes; 7521 em->ram_bytes = file_extent->ram_bytes; 7522 em->generation = -1; 7523 em->offset = file_extent->offset; 7524 em->flags |= EXTENT_FLAG_PINNED; 7525 if (type == BTRFS_ORDERED_COMPRESSED) 7526 btrfs_extent_map_set_compression(em, file_extent->compression); 7527 7528 ret = btrfs_replace_extent_map_range(inode, em, true); 7529 if (ret) { 7530 btrfs_free_extent_map(em); 7531 return ERR_PTR(ret); 7532 } 7533 7534 /* em got 2 refs now, callers needs to do btrfs_free_extent_map once. */ 7535 return em; 7536 } 7537 7538 /* 7539 * For release_folio() and invalidate_folio() we have a race window where 7540 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7541 * If we continue to release/invalidate the page, we could cause use-after-free 7542 * for subpage spinlock. So this function is to spin and wait for subpage 7543 * spinlock. 7544 */ 7545 static void wait_subpage_spinlock(struct folio *folio) 7546 { 7547 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 7548 struct btrfs_folio_state *bfs; 7549 7550 if (!btrfs_is_subpage(fs_info, folio)) 7551 return; 7552 7553 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7554 bfs = folio_get_private(folio); 7555 7556 /* 7557 * This may look insane as we just acquire the spinlock and release it, 7558 * without doing anything. But we just want to make sure no one is 7559 * still holding the subpage spinlock. 7560 * And since the page is not dirty nor writeback, and we have page 7561 * locked, the only possible way to hold a spinlock is from the endio 7562 * function to clear page writeback. 7563 * 7564 * Here we just acquire the spinlock so that all existing callers 7565 * should exit and we're safe to release/invalidate the page. 7566 */ 7567 spin_lock_irq(&bfs->lock); 7568 spin_unlock_irq(&bfs->lock); 7569 } 7570 7571 static int btrfs_launder_folio(struct folio *folio) 7572 { 7573 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio), 7574 folio_size(folio), NULL); 7575 } 7576 7577 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7578 { 7579 if (try_release_extent_mapping(folio, gfp_flags)) { 7580 wait_subpage_spinlock(folio); 7581 clear_folio_extent_mapped(folio); 7582 return true; 7583 } 7584 return false; 7585 } 7586 7587 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7588 { 7589 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7590 return false; 7591 return __btrfs_release_folio(folio, gfp_flags); 7592 } 7593 7594 #ifdef CONFIG_MIGRATION 7595 static int btrfs_migrate_folio(struct address_space *mapping, 7596 struct folio *dst, struct folio *src, 7597 enum migrate_mode mode) 7598 { 7599 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7600 7601 if (ret) 7602 return ret; 7603 7604 if (folio_test_ordered(src)) { 7605 folio_clear_ordered(src); 7606 folio_set_ordered(dst); 7607 } 7608 7609 return 0; 7610 } 7611 #else 7612 #define btrfs_migrate_folio NULL 7613 #endif 7614 7615 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7616 size_t length) 7617 { 7618 struct btrfs_inode *inode = folio_to_inode(folio); 7619 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7620 struct extent_io_tree *tree = &inode->io_tree; 7621 struct extent_state *cached_state = NULL; 7622 u64 page_start = folio_pos(folio); 7623 u64 page_end = page_start + folio_size(folio) - 1; 7624 u64 cur; 7625 int inode_evicting = inode_state_read_once(&inode->vfs_inode) & I_FREEING; 7626 7627 /* 7628 * We have folio locked so no new ordered extent can be created on this 7629 * page, nor bio can be submitted for this folio. 7630 * 7631 * But already submitted bio can still be finished on this folio. 7632 * Furthermore, endio function won't skip folio which has Ordered 7633 * already cleared, so it's possible for endio and 7634 * invalidate_folio to do the same ordered extent accounting twice 7635 * on one folio. 7636 * 7637 * So here we wait for any submitted bios to finish, so that we won't 7638 * do double ordered extent accounting on the same folio. 7639 */ 7640 folio_wait_writeback(folio); 7641 wait_subpage_spinlock(folio); 7642 7643 /* 7644 * For subpage case, we have call sites like 7645 * btrfs_punch_hole_lock_range() which passes range not aligned to 7646 * sectorsize. 7647 * If the range doesn't cover the full folio, we don't need to and 7648 * shouldn't clear page extent mapped, as folio->private can still 7649 * record subpage dirty bits for other part of the range. 7650 * 7651 * For cases that invalidate the full folio even the range doesn't 7652 * cover the full folio, like invalidating the last folio, we're 7653 * still safe to wait for ordered extent to finish. 7654 */ 7655 if (!(offset == 0 && length == folio_size(folio))) { 7656 btrfs_release_folio(folio, GFP_NOFS); 7657 return; 7658 } 7659 7660 if (!inode_evicting) 7661 btrfs_lock_extent(tree, page_start, page_end, &cached_state); 7662 7663 cur = page_start; 7664 while (cur < page_end) { 7665 struct btrfs_ordered_extent *ordered; 7666 u64 range_end; 7667 u32 range_len; 7668 u32 extra_flags = 0; 7669 7670 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7671 page_end + 1 - cur); 7672 if (!ordered) { 7673 range_end = page_end; 7674 /* 7675 * No ordered extent covering this range, we are safe 7676 * to delete all extent states in the range. 7677 */ 7678 extra_flags = EXTENT_CLEAR_ALL_BITS; 7679 goto next; 7680 } 7681 if (ordered->file_offset > cur) { 7682 /* 7683 * There is a range between [cur, oe->file_offset) not 7684 * covered by any ordered extent. 7685 * We are safe to delete all extent states, and handle 7686 * the ordered extent in the next iteration. 7687 */ 7688 range_end = ordered->file_offset - 1; 7689 extra_flags = EXTENT_CLEAR_ALL_BITS; 7690 goto next; 7691 } 7692 7693 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7694 page_end); 7695 ASSERT(range_end + 1 - cur < U32_MAX); 7696 range_len = range_end + 1 - cur; 7697 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7698 /* 7699 * If Ordered is cleared, it means endio has 7700 * already been executed for the range. 7701 * We can't delete the extent states as 7702 * btrfs_finish_ordered_io() may still use some of them. 7703 */ 7704 goto next; 7705 } 7706 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7707 7708 /* 7709 * IO on this page will never be started, so we need to account 7710 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7711 * here, must leave that up for the ordered extent completion. 7712 * 7713 * This will also unlock the range for incoming 7714 * btrfs_finish_ordered_io(). 7715 */ 7716 if (!inode_evicting) 7717 btrfs_clear_extent_bit(tree, cur, range_end, 7718 EXTENT_DELALLOC | 7719 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7720 EXTENT_DEFRAG, &cached_state); 7721 7722 spin_lock(&inode->ordered_tree_lock); 7723 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7724 ordered->truncated_len = min(ordered->truncated_len, 7725 cur - ordered->file_offset); 7726 spin_unlock(&inode->ordered_tree_lock); 7727 7728 /* 7729 * If the ordered extent has finished, we're safe to delete all 7730 * the extent states of the range, otherwise 7731 * btrfs_finish_ordered_io() will get executed by endio for 7732 * other pages, so we can't delete extent states. 7733 */ 7734 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7735 cur, range_end + 1 - cur)) { 7736 btrfs_finish_ordered_io(ordered); 7737 /* 7738 * The ordered extent has finished, now we're again 7739 * safe to delete all extent states of the range. 7740 */ 7741 extra_flags = EXTENT_CLEAR_ALL_BITS; 7742 } 7743 next: 7744 if (ordered) 7745 btrfs_put_ordered_extent(ordered); 7746 /* 7747 * Qgroup reserved space handler 7748 * Sector(s) here will be either: 7749 * 7750 * 1) Already written to disk or bio already finished 7751 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7752 * Qgroup will be handled by its qgroup_record then. 7753 * btrfs_qgroup_free_data() call will do nothing here. 7754 * 7755 * 2) Not written to disk yet 7756 * Then btrfs_qgroup_free_data() call will clear the 7757 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7758 * reserved data space. 7759 * Since the IO will never happen for this page. 7760 */ 7761 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7762 if (!inode_evicting) 7763 btrfs_clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7764 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 7765 EXTENT_DEFRAG | extra_flags, 7766 &cached_state); 7767 cur = range_end + 1; 7768 } 7769 /* 7770 * We have iterated through all ordered extents of the page, the page 7771 * should not have Ordered anymore, or the above iteration 7772 * did something wrong. 7773 */ 7774 ASSERT(!folio_test_ordered(folio)); 7775 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7776 if (!inode_evicting) 7777 __btrfs_release_folio(folio, GFP_NOFS); 7778 clear_folio_extent_mapped(folio); 7779 } 7780 7781 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7782 { 7783 struct btrfs_truncate_control control = { 7784 .inode = inode, 7785 .ino = btrfs_ino(inode), 7786 .min_type = BTRFS_EXTENT_DATA_KEY, 7787 .clear_extent_range = true, 7788 .new_size = inode->vfs_inode.i_size, 7789 }; 7790 struct btrfs_root *root = inode->root; 7791 struct btrfs_fs_info *fs_info = root->fs_info; 7792 struct btrfs_block_rsv rsv; 7793 int ret; 7794 struct btrfs_trans_handle *trans; 7795 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7796 const u64 lock_start = round_down(inode->vfs_inode.i_size, fs_info->sectorsize); 7797 const u64 i_size_up = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 7798 7799 /* Our inode is locked and the i_size can't be changed concurrently. */ 7800 btrfs_assert_inode_locked(inode); 7801 7802 if (!skip_writeback) { 7803 ret = btrfs_wait_ordered_range(inode, lock_start, (u64)-1); 7804 if (ret) 7805 return ret; 7806 } 7807 7808 /* 7809 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7810 * things going on here: 7811 * 7812 * 1) We need to reserve space to update our inode. 7813 * 7814 * 2) We need to have something to cache all the space that is going to 7815 * be free'd up by the truncate operation, but also have some slack 7816 * space reserved in case it uses space during the truncate (thank you 7817 * very much snapshotting). 7818 * 7819 * And we need these to be separate. The fact is we can use a lot of 7820 * space doing the truncate, and we have no earthly idea how much space 7821 * we will use, so we need the truncate reservation to be separate so it 7822 * doesn't end up using space reserved for updating the inode. We also 7823 * need to be able to stop the transaction and start a new one, which 7824 * means we need to be able to update the inode several times, and we 7825 * have no idea of knowing how many times that will be, so we can't just 7826 * reserve 1 item for the entirety of the operation, so that has to be 7827 * done separately as well. 7828 * 7829 * So that leaves us with 7830 * 7831 * 1) rsv - for the truncate reservation, which we will steal from the 7832 * transaction reservation. 7833 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7834 * updating the inode. 7835 */ 7836 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 7837 rsv.size = min_size; 7838 rsv.failfast = true; 7839 7840 /* 7841 * 1 for the truncate slack space 7842 * 1 for updating the inode. 7843 */ 7844 trans = btrfs_start_transaction(root, 2); 7845 if (IS_ERR(trans)) { 7846 ret = PTR_ERR(trans); 7847 goto out; 7848 } 7849 7850 /* Migrate the slack space for the truncate to our reserve */ 7851 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv, 7852 min_size, false); 7853 /* 7854 * We have reserved 2 metadata units when we started the transaction and 7855 * min_size matches 1 unit, so this should never fail, but if it does, 7856 * it's not critical we just fail truncation. 7857 */ 7858 if (WARN_ON(ret)) { 7859 btrfs_end_transaction(trans); 7860 goto out; 7861 } 7862 7863 trans->block_rsv = &rsv; 7864 7865 while (1) { 7866 struct extent_state *cached_state = NULL; 7867 7868 btrfs_lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7869 /* 7870 * We want to drop from the next block forward in case this new 7871 * size is not block aligned since we will be keeping the last 7872 * block of the extent just the way it is. 7873 */ 7874 btrfs_drop_extent_map_range(inode, i_size_up, (u64)-1, false); 7875 7876 ret = btrfs_truncate_inode_items(trans, root, &control); 7877 7878 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7879 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7880 7881 btrfs_unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7882 7883 trans->block_rsv = &fs_info->trans_block_rsv; 7884 if (ret != -ENOSPC && ret != -EAGAIN) 7885 break; 7886 7887 ret = btrfs_update_inode(trans, inode); 7888 if (ret) 7889 break; 7890 7891 btrfs_end_transaction(trans); 7892 btrfs_btree_balance_dirty(fs_info); 7893 7894 trans = btrfs_start_transaction(root, 2); 7895 if (IS_ERR(trans)) { 7896 ret = PTR_ERR(trans); 7897 trans = NULL; 7898 break; 7899 } 7900 7901 btrfs_block_rsv_release(fs_info, &rsv, -1, NULL); 7902 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7903 &rsv, min_size, false); 7904 /* 7905 * We have reserved 2 metadata units when we started the 7906 * transaction and min_size matches 1 unit, so this should never 7907 * fail, but if it does, it's not critical we just fail truncation. 7908 */ 7909 if (WARN_ON(ret)) 7910 break; 7911 7912 trans->block_rsv = &rsv; 7913 } 7914 7915 /* 7916 * We can't call btrfs_truncate_block inside a trans handle as we could 7917 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7918 * know we've truncated everything except the last little bit, and can 7919 * do btrfs_truncate_block and then update the disk_i_size. 7920 */ 7921 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7922 btrfs_end_transaction(trans); 7923 btrfs_btree_balance_dirty(fs_info); 7924 7925 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 7926 inode->vfs_inode.i_size, (u64)-1); 7927 if (ret) 7928 goto out; 7929 trans = btrfs_start_transaction(root, 1); 7930 if (IS_ERR(trans)) { 7931 ret = PTR_ERR(trans); 7932 goto out; 7933 } 7934 btrfs_inode_safe_disk_i_size_write(inode, 0); 7935 } 7936 7937 if (trans) { 7938 int ret2; 7939 7940 trans->block_rsv = &fs_info->trans_block_rsv; 7941 ret2 = btrfs_update_inode(trans, inode); 7942 if (ret2 && !ret) 7943 ret = ret2; 7944 7945 ret2 = btrfs_end_transaction(trans); 7946 if (ret2 && !ret) 7947 ret = ret2; 7948 btrfs_btree_balance_dirty(fs_info); 7949 } 7950 out: 7951 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 7952 /* 7953 * So if we truncate and then write and fsync we normally would just 7954 * write the extents that changed, which is a problem if we need to 7955 * first truncate that entire inode. So set this flag so we write out 7956 * all of the extents in the inode to the sync log so we're completely 7957 * safe. 7958 * 7959 * If no extents were dropped or trimmed we don't need to force the next 7960 * fsync to truncate all the inode's items from the log and re-log them 7961 * all. This means the truncate operation did not change the file size, 7962 * or changed it to a smaller size but there was only an implicit hole 7963 * between the old i_size and the new i_size, and there were no prealloc 7964 * extents beyond i_size to drop. 7965 */ 7966 if (control.extents_found > 0) 7967 btrfs_set_inode_full_sync(inode); 7968 7969 return ret; 7970 } 7971 7972 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7973 struct inode *dir) 7974 { 7975 struct inode *inode; 7976 7977 inode = new_inode(dir->i_sb); 7978 if (inode) { 7979 /* 7980 * Subvolumes don't inherit the sgid bit or the parent's gid if 7981 * the parent's sgid bit is set. This is probably a bug. 7982 */ 7983 inode_init_owner(idmap, inode, NULL, 7984 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7985 inode->i_op = &btrfs_dir_inode_operations; 7986 inode->i_fop = &btrfs_dir_file_operations; 7987 } 7988 return inode; 7989 } 7990 7991 struct inode *btrfs_alloc_inode(struct super_block *sb) 7992 { 7993 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7994 struct btrfs_inode *ei; 7995 struct inode *inode; 7996 7997 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 7998 if (!ei) 7999 return NULL; 8000 8001 ei->root = NULL; 8002 ei->generation = 0; 8003 ei->last_trans = 0; 8004 ei->last_sub_trans = 0; 8005 ei->logged_trans = 0; 8006 ei->delalloc_bytes = 0; 8007 /* new_delalloc_bytes and last_dir_index_offset are in a union. */ 8008 ei->new_delalloc_bytes = 0; 8009 ei->defrag_bytes = 0; 8010 ei->disk_i_size = 0; 8011 ei->flags = 0; 8012 ei->ro_flags = 0; 8013 /* 8014 * ->index_cnt will be properly initialized later when creating a new 8015 * inode (btrfs_create_new_inode()) or when reading an existing inode 8016 * from disk (btrfs_read_locked_inode()). 8017 */ 8018 ei->csum_bytes = 0; 8019 ei->dir_index = 0; 8020 ei->last_unlink_trans = 0; 8021 ei->last_reflink_trans = 0; 8022 ei->last_log_commit = 0; 8023 8024 spin_lock_init(&ei->lock); 8025 ei->outstanding_extents = 0; 8026 if (sb->s_magic != BTRFS_TEST_MAGIC) 8027 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8028 BTRFS_BLOCK_RSV_DELALLOC); 8029 ei->runtime_flags = 0; 8030 ei->prop_compress = BTRFS_COMPRESS_NONE; 8031 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8032 8033 ei->delayed_node = NULL; 8034 8035 ei->i_otime_sec = 0; 8036 ei->i_otime_nsec = 0; 8037 8038 inode = &ei->vfs_inode; 8039 btrfs_extent_map_tree_init(&ei->extent_tree); 8040 8041 /* This io tree sets the valid inode. */ 8042 btrfs_extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 8043 ei->io_tree.inode = ei; 8044 8045 ei->file_extent_tree = NULL; 8046 8047 mutex_init(&ei->log_mutex); 8048 spin_lock_init(&ei->ordered_tree_lock); 8049 ei->ordered_tree = RB_ROOT; 8050 ei->ordered_tree_last = NULL; 8051 INIT_LIST_HEAD(&ei->delalloc_inodes); 8052 INIT_LIST_HEAD(&ei->delayed_iput); 8053 init_rwsem(&ei->i_mmap_lock); 8054 8055 return inode; 8056 } 8057 8058 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8059 void btrfs_test_destroy_inode(struct inode *inode) 8060 { 8061 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 8062 kfree(BTRFS_I(inode)->file_extent_tree); 8063 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8064 } 8065 #endif 8066 8067 void btrfs_free_inode(struct inode *inode) 8068 { 8069 kfree(BTRFS_I(inode)->file_extent_tree); 8070 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8071 } 8072 8073 void btrfs_destroy_inode(struct inode *vfs_inode) 8074 { 8075 struct btrfs_ordered_extent *ordered; 8076 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8077 struct btrfs_root *root = inode->root; 8078 bool freespace_inode; 8079 8080 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8081 WARN_ON(vfs_inode->i_data.nrpages); 8082 WARN_ON(inode->block_rsv.reserved); 8083 WARN_ON(inode->block_rsv.size); 8084 WARN_ON(inode->outstanding_extents); 8085 if (!S_ISDIR(vfs_inode->i_mode)) { 8086 WARN_ON(inode->delalloc_bytes); 8087 WARN_ON(inode->new_delalloc_bytes); 8088 WARN_ON(inode->csum_bytes); 8089 } 8090 if (!root || !btrfs_is_data_reloc_root(root)) 8091 WARN_ON(inode->defrag_bytes); 8092 8093 /* 8094 * This can happen where we create an inode, but somebody else also 8095 * created the same inode and we need to destroy the one we already 8096 * created. 8097 */ 8098 if (!root) 8099 return; 8100 8101 /* 8102 * If this is a free space inode do not take the ordered extents lockdep 8103 * map. 8104 */ 8105 freespace_inode = btrfs_is_free_space_inode(inode); 8106 8107 while (1) { 8108 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8109 if (!ordered) 8110 break; 8111 else { 8112 btrfs_err(root->fs_info, 8113 "found ordered extent %llu %llu on inode cleanup", 8114 ordered->file_offset, ordered->num_bytes); 8115 8116 if (!freespace_inode) 8117 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 8118 8119 btrfs_remove_ordered_extent(inode, ordered); 8120 btrfs_put_ordered_extent(ordered); 8121 btrfs_put_ordered_extent(ordered); 8122 } 8123 } 8124 btrfs_qgroup_check_reserved_leak(inode); 8125 btrfs_del_inode_from_root(inode); 8126 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 8127 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8128 btrfs_put_root(inode->root); 8129 } 8130 8131 int btrfs_drop_inode(struct inode *inode) 8132 { 8133 struct btrfs_root *root = BTRFS_I(inode)->root; 8134 8135 if (root == NULL) 8136 return 1; 8137 8138 /* the snap/subvol tree is on deleting */ 8139 if (btrfs_root_refs(&root->root_item) == 0) 8140 return 1; 8141 else 8142 return inode_generic_drop(inode); 8143 } 8144 8145 static void init_once(void *foo) 8146 { 8147 struct btrfs_inode *ei = foo; 8148 8149 inode_init_once(&ei->vfs_inode); 8150 } 8151 8152 void __cold btrfs_destroy_cachep(void) 8153 { 8154 /* 8155 * Make sure all delayed rcu free inodes are flushed before we 8156 * destroy cache. 8157 */ 8158 rcu_barrier(); 8159 kmem_cache_destroy(btrfs_inode_cachep); 8160 } 8161 8162 int __init btrfs_init_cachep(void) 8163 { 8164 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8165 sizeof(struct btrfs_inode), 0, 8166 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 8167 init_once); 8168 if (!btrfs_inode_cachep) 8169 return -ENOMEM; 8170 8171 return 0; 8172 } 8173 8174 static int btrfs_getattr(struct mnt_idmap *idmap, 8175 const struct path *path, struct kstat *stat, 8176 u32 request_mask, unsigned int flags) 8177 { 8178 u64 delalloc_bytes; 8179 u64 inode_bytes; 8180 struct inode *inode = d_inode(path->dentry); 8181 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 8182 u32 bi_flags = BTRFS_I(inode)->flags; 8183 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8184 8185 stat->result_mask |= STATX_BTIME; 8186 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 8187 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 8188 if (bi_flags & BTRFS_INODE_APPEND) 8189 stat->attributes |= STATX_ATTR_APPEND; 8190 if (bi_flags & BTRFS_INODE_COMPRESS) 8191 stat->attributes |= STATX_ATTR_COMPRESSED; 8192 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8193 stat->attributes |= STATX_ATTR_IMMUTABLE; 8194 if (bi_flags & BTRFS_INODE_NODUMP) 8195 stat->attributes |= STATX_ATTR_NODUMP; 8196 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8197 stat->attributes |= STATX_ATTR_VERITY; 8198 8199 stat->attributes_mask |= (STATX_ATTR_APPEND | 8200 STATX_ATTR_COMPRESSED | 8201 STATX_ATTR_IMMUTABLE | 8202 STATX_ATTR_NODUMP); 8203 8204 generic_fillattr(idmap, request_mask, inode, stat); 8205 stat->dev = BTRFS_I(inode)->root->anon_dev; 8206 8207 stat->subvol = btrfs_root_id(BTRFS_I(inode)->root); 8208 stat->result_mask |= STATX_SUBVOL; 8209 8210 spin_lock(&BTRFS_I(inode)->lock); 8211 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8212 inode_bytes = inode_get_bytes(inode); 8213 spin_unlock(&BTRFS_I(inode)->lock); 8214 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8215 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 8216 return 0; 8217 } 8218 8219 static int btrfs_rename_exchange(struct inode *old_dir, 8220 struct dentry *old_dentry, 8221 struct inode *new_dir, 8222 struct dentry *new_dentry) 8223 { 8224 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8225 struct btrfs_trans_handle *trans; 8226 unsigned int trans_num_items; 8227 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8228 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8229 struct inode *new_inode = new_dentry->d_inode; 8230 struct inode *old_inode = old_dentry->d_inode; 8231 struct btrfs_rename_ctx old_rename_ctx; 8232 struct btrfs_rename_ctx new_rename_ctx; 8233 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8234 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8235 u64 old_idx = 0; 8236 u64 new_idx = 0; 8237 int ret; 8238 int ret2; 8239 bool need_abort = false; 8240 bool logs_pinned = false; 8241 struct fscrypt_name old_fname, new_fname; 8242 struct fscrypt_str *old_name, *new_name; 8243 8244 /* 8245 * For non-subvolumes allow exchange only within one subvolume, in the 8246 * same inode namespace. Two subvolumes (represented as directory) can 8247 * be exchanged as they're a logical link and have a fixed inode number. 8248 */ 8249 if (root != dest && 8250 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8251 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8252 return -EXDEV; 8253 8254 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8255 if (ret) 8256 return ret; 8257 8258 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8259 if (ret) { 8260 fscrypt_free_filename(&old_fname); 8261 return ret; 8262 } 8263 8264 old_name = &old_fname.disk_name; 8265 new_name = &new_fname.disk_name; 8266 8267 /* close the race window with snapshot create/destroy ioctl */ 8268 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8269 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8270 down_read(&fs_info->subvol_sem); 8271 8272 /* 8273 * For each inode: 8274 * 1 to remove old dir item 8275 * 1 to remove old dir index 8276 * 1 to add new dir item 8277 * 1 to add new dir index 8278 * 1 to update parent inode 8279 * 8280 * If the parents are the same, we only need to account for one 8281 */ 8282 trans_num_items = (old_dir == new_dir ? 9 : 10); 8283 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8284 /* 8285 * 1 to remove old root ref 8286 * 1 to remove old root backref 8287 * 1 to add new root ref 8288 * 1 to add new root backref 8289 */ 8290 trans_num_items += 4; 8291 } else { 8292 /* 8293 * 1 to update inode item 8294 * 1 to remove old inode ref 8295 * 1 to add new inode ref 8296 */ 8297 trans_num_items += 3; 8298 } 8299 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8300 trans_num_items += 4; 8301 else 8302 trans_num_items += 3; 8303 trans = btrfs_start_transaction(root, trans_num_items); 8304 if (IS_ERR(trans)) { 8305 ret = PTR_ERR(trans); 8306 goto out_notrans; 8307 } 8308 8309 if (dest != root) { 8310 ret = btrfs_record_root_in_trans(trans, dest); 8311 if (ret) 8312 goto out_fail; 8313 } 8314 8315 /* 8316 * We need to find a free sequence number both in the source and 8317 * in the destination directory for the exchange. 8318 */ 8319 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8320 if (ret) 8321 goto out_fail; 8322 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8323 if (ret) 8324 goto out_fail; 8325 8326 BTRFS_I(old_inode)->dir_index = 0ULL; 8327 BTRFS_I(new_inode)->dir_index = 0ULL; 8328 8329 /* Reference for the source. */ 8330 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8331 /* force full log commit if subvolume involved. */ 8332 btrfs_set_log_full_commit(trans); 8333 } else { 8334 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8335 btrfs_ino(BTRFS_I(new_dir)), 8336 old_idx); 8337 if (ret) 8338 goto out_fail; 8339 need_abort = true; 8340 } 8341 8342 /* And now for the dest. */ 8343 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8344 /* force full log commit if subvolume involved. */ 8345 btrfs_set_log_full_commit(trans); 8346 } else { 8347 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8348 btrfs_ino(BTRFS_I(old_dir)), 8349 new_idx); 8350 if (ret) { 8351 if (unlikely(need_abort)) 8352 btrfs_abort_transaction(trans, ret); 8353 goto out_fail; 8354 } 8355 } 8356 8357 /* Update inode version and ctime/mtime. */ 8358 inode_inc_iversion(old_dir); 8359 inode_inc_iversion(new_dir); 8360 inode_inc_iversion(old_inode); 8361 inode_inc_iversion(new_inode); 8362 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8363 8364 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && 8365 new_ino != BTRFS_FIRST_FREE_OBJECTID) { 8366 /* 8367 * If we are renaming in the same directory (and it's not for 8368 * root entries) pin the log early to prevent any concurrent 8369 * task from logging the directory after we removed the old 8370 * entries and before we add the new entries, otherwise that 8371 * task can sync a log without any entry for the inodes we are 8372 * renaming and therefore replaying that log, if a power failure 8373 * happens after syncing the log, would result in deleting the 8374 * inodes. 8375 * 8376 * If the rename affects two different directories, we want to 8377 * make sure the that there's no log commit that contains 8378 * updates for only one of the directories but not for the 8379 * other. 8380 * 8381 * If we are renaming an entry for a root, we don't care about 8382 * log updates since we called btrfs_set_log_full_commit(). 8383 */ 8384 btrfs_pin_log_trans(root); 8385 btrfs_pin_log_trans(dest); 8386 logs_pinned = true; 8387 } 8388 8389 if (old_dentry->d_parent != new_dentry->d_parent) { 8390 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8391 BTRFS_I(old_inode), true); 8392 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8393 BTRFS_I(new_inode), true); 8394 } 8395 8396 /* src is a subvolume */ 8397 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8398 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8399 if (unlikely(ret)) { 8400 btrfs_abort_transaction(trans, ret); 8401 goto out_fail; 8402 } 8403 } else { /* src is an inode */ 8404 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8405 BTRFS_I(old_dentry->d_inode), 8406 old_name, &old_rename_ctx); 8407 if (unlikely(ret)) { 8408 btrfs_abort_transaction(trans, ret); 8409 goto out_fail; 8410 } 8411 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8412 if (unlikely(ret)) { 8413 btrfs_abort_transaction(trans, ret); 8414 goto out_fail; 8415 } 8416 } 8417 8418 /* dest is a subvolume */ 8419 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8420 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8421 if (unlikely(ret)) { 8422 btrfs_abort_transaction(trans, ret); 8423 goto out_fail; 8424 } 8425 } else { /* dest is an inode */ 8426 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8427 BTRFS_I(new_dentry->d_inode), 8428 new_name, &new_rename_ctx); 8429 if (unlikely(ret)) { 8430 btrfs_abort_transaction(trans, ret); 8431 goto out_fail; 8432 } 8433 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8434 if (unlikely(ret)) { 8435 btrfs_abort_transaction(trans, ret); 8436 goto out_fail; 8437 } 8438 } 8439 8440 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8441 new_name, 0, old_idx); 8442 if (unlikely(ret)) { 8443 btrfs_abort_transaction(trans, ret); 8444 goto out_fail; 8445 } 8446 8447 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8448 old_name, 0, new_idx); 8449 if (unlikely(ret)) { 8450 btrfs_abort_transaction(trans, ret); 8451 goto out_fail; 8452 } 8453 8454 if (old_inode->i_nlink == 1) 8455 BTRFS_I(old_inode)->dir_index = old_idx; 8456 if (new_inode->i_nlink == 1) 8457 BTRFS_I(new_inode)->dir_index = new_idx; 8458 8459 /* 8460 * Do the log updates for all inodes. 8461 * 8462 * If either entry is for a root we don't need to update the logs since 8463 * we've called btrfs_set_log_full_commit() before. 8464 */ 8465 if (logs_pinned) { 8466 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8467 old_rename_ctx.index, new_dentry->d_parent); 8468 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8469 new_rename_ctx.index, old_dentry->d_parent); 8470 } 8471 8472 out_fail: 8473 if (logs_pinned) { 8474 btrfs_end_log_trans(root); 8475 btrfs_end_log_trans(dest); 8476 } 8477 ret2 = btrfs_end_transaction(trans); 8478 ret = ret ? ret : ret2; 8479 out_notrans: 8480 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8481 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8482 up_read(&fs_info->subvol_sem); 8483 8484 fscrypt_free_filename(&new_fname); 8485 fscrypt_free_filename(&old_fname); 8486 return ret; 8487 } 8488 8489 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8490 struct inode *dir) 8491 { 8492 struct inode *inode; 8493 8494 inode = new_inode(dir->i_sb); 8495 if (inode) { 8496 inode_init_owner(idmap, inode, dir, 8497 S_IFCHR | WHITEOUT_MODE); 8498 inode->i_op = &btrfs_special_inode_operations; 8499 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8500 } 8501 return inode; 8502 } 8503 8504 static int btrfs_rename(struct mnt_idmap *idmap, 8505 struct inode *old_dir, struct dentry *old_dentry, 8506 struct inode *new_dir, struct dentry *new_dentry, 8507 unsigned int flags) 8508 { 8509 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8510 struct btrfs_new_inode_args whiteout_args = { 8511 .dir = old_dir, 8512 .dentry = old_dentry, 8513 }; 8514 struct btrfs_trans_handle *trans; 8515 unsigned int trans_num_items; 8516 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8517 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8518 struct inode *new_inode = d_inode(new_dentry); 8519 struct inode *old_inode = d_inode(old_dentry); 8520 struct btrfs_rename_ctx rename_ctx; 8521 u64 index = 0; 8522 int ret; 8523 int ret2; 8524 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8525 struct fscrypt_name old_fname, new_fname; 8526 bool logs_pinned = false; 8527 8528 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8529 return -EPERM; 8530 8531 /* we only allow rename subvolume link between subvolumes */ 8532 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8533 return -EXDEV; 8534 8535 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8536 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8537 return -ENOTEMPTY; 8538 8539 if (S_ISDIR(old_inode->i_mode) && new_inode && 8540 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8541 return -ENOTEMPTY; 8542 8543 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8544 if (ret) 8545 return ret; 8546 8547 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8548 if (ret) { 8549 fscrypt_free_filename(&old_fname); 8550 return ret; 8551 } 8552 8553 /* check for collisions, even if the name isn't there */ 8554 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8555 if (ret) { 8556 if (ret == -EEXIST) { 8557 /* we shouldn't get 8558 * eexist without a new_inode */ 8559 if (WARN_ON(!new_inode)) { 8560 goto out_fscrypt_names; 8561 } 8562 } else { 8563 /* maybe -EOVERFLOW */ 8564 goto out_fscrypt_names; 8565 } 8566 } 8567 ret = 0; 8568 8569 /* 8570 * we're using rename to replace one file with another. Start IO on it 8571 * now so we don't add too much work to the end of the transaction 8572 */ 8573 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8574 filemap_flush(old_inode->i_mapping); 8575 8576 if (flags & RENAME_WHITEOUT) { 8577 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8578 if (!whiteout_args.inode) { 8579 ret = -ENOMEM; 8580 goto out_fscrypt_names; 8581 } 8582 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8583 if (ret) 8584 goto out_whiteout_inode; 8585 } else { 8586 /* 1 to update the old parent inode. */ 8587 trans_num_items = 1; 8588 } 8589 8590 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8591 /* Close the race window with snapshot create/destroy ioctl */ 8592 down_read(&fs_info->subvol_sem); 8593 /* 8594 * 1 to remove old root ref 8595 * 1 to remove old root backref 8596 * 1 to add new root ref 8597 * 1 to add new root backref 8598 */ 8599 trans_num_items += 4; 8600 } else { 8601 /* 8602 * 1 to update inode 8603 * 1 to remove old inode ref 8604 * 1 to add new inode ref 8605 */ 8606 trans_num_items += 3; 8607 } 8608 /* 8609 * 1 to remove old dir item 8610 * 1 to remove old dir index 8611 * 1 to add new dir item 8612 * 1 to add new dir index 8613 */ 8614 trans_num_items += 4; 8615 /* 1 to update new parent inode if it's not the same as the old parent */ 8616 if (new_dir != old_dir) 8617 trans_num_items++; 8618 if (new_inode) { 8619 /* 8620 * 1 to update inode 8621 * 1 to remove inode ref 8622 * 1 to remove dir item 8623 * 1 to remove dir index 8624 * 1 to possibly add orphan item 8625 */ 8626 trans_num_items += 5; 8627 } 8628 trans = btrfs_start_transaction(root, trans_num_items); 8629 if (IS_ERR(trans)) { 8630 ret = PTR_ERR(trans); 8631 goto out_notrans; 8632 } 8633 8634 if (dest != root) { 8635 ret = btrfs_record_root_in_trans(trans, dest); 8636 if (ret) 8637 goto out_fail; 8638 } 8639 8640 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8641 if (ret) 8642 goto out_fail; 8643 8644 BTRFS_I(old_inode)->dir_index = 0ULL; 8645 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8646 /* force full log commit if subvolume involved. */ 8647 btrfs_set_log_full_commit(trans); 8648 } else { 8649 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8650 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8651 index); 8652 if (ret) 8653 goto out_fail; 8654 } 8655 8656 inode_inc_iversion(old_dir); 8657 inode_inc_iversion(new_dir); 8658 inode_inc_iversion(old_inode); 8659 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8660 8661 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8662 /* 8663 * If we are renaming in the same directory (and it's not a 8664 * root entry) pin the log to prevent any concurrent task from 8665 * logging the directory after we removed the old entry and 8666 * before we add the new entry, otherwise that task can sync 8667 * a log without any entry for the inode we are renaming and 8668 * therefore replaying that log, if a power failure happens 8669 * after syncing the log, would result in deleting the inode. 8670 * 8671 * If the rename affects two different directories, we want to 8672 * make sure the that there's no log commit that contains 8673 * updates for only one of the directories but not for the 8674 * other. 8675 * 8676 * If we are renaming an entry for a root, we don't care about 8677 * log updates since we called btrfs_set_log_full_commit(). 8678 */ 8679 btrfs_pin_log_trans(root); 8680 btrfs_pin_log_trans(dest); 8681 logs_pinned = true; 8682 } 8683 8684 if (old_dentry->d_parent != new_dentry->d_parent) 8685 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8686 BTRFS_I(old_inode), true); 8687 8688 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8689 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8690 if (unlikely(ret)) { 8691 btrfs_abort_transaction(trans, ret); 8692 goto out_fail; 8693 } 8694 } else { 8695 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8696 BTRFS_I(d_inode(old_dentry)), 8697 &old_fname.disk_name, &rename_ctx); 8698 if (unlikely(ret)) { 8699 btrfs_abort_transaction(trans, ret); 8700 goto out_fail; 8701 } 8702 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8703 if (unlikely(ret)) { 8704 btrfs_abort_transaction(trans, ret); 8705 goto out_fail; 8706 } 8707 } 8708 8709 if (new_inode) { 8710 inode_inc_iversion(new_inode); 8711 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8712 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8713 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8714 if (unlikely(ret)) { 8715 btrfs_abort_transaction(trans, ret); 8716 goto out_fail; 8717 } 8718 BUG_ON(new_inode->i_nlink == 0); 8719 } else { 8720 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8721 BTRFS_I(d_inode(new_dentry)), 8722 &new_fname.disk_name); 8723 if (unlikely(ret)) { 8724 btrfs_abort_transaction(trans, ret); 8725 goto out_fail; 8726 } 8727 } 8728 if (new_inode->i_nlink == 0) { 8729 ret = btrfs_orphan_add(trans, 8730 BTRFS_I(d_inode(new_dentry))); 8731 if (unlikely(ret)) { 8732 btrfs_abort_transaction(trans, ret); 8733 goto out_fail; 8734 } 8735 } 8736 } 8737 8738 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8739 &new_fname.disk_name, 0, index); 8740 if (unlikely(ret)) { 8741 btrfs_abort_transaction(trans, ret); 8742 goto out_fail; 8743 } 8744 8745 if (old_inode->i_nlink == 1) 8746 BTRFS_I(old_inode)->dir_index = index; 8747 8748 if (logs_pinned) 8749 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8750 rename_ctx.index, new_dentry->d_parent); 8751 8752 if (flags & RENAME_WHITEOUT) { 8753 ret = btrfs_create_new_inode(trans, &whiteout_args); 8754 if (unlikely(ret)) { 8755 btrfs_abort_transaction(trans, ret); 8756 goto out_fail; 8757 } else { 8758 unlock_new_inode(whiteout_args.inode); 8759 iput(whiteout_args.inode); 8760 whiteout_args.inode = NULL; 8761 } 8762 } 8763 out_fail: 8764 if (logs_pinned) { 8765 btrfs_end_log_trans(root); 8766 btrfs_end_log_trans(dest); 8767 } 8768 ret2 = btrfs_end_transaction(trans); 8769 ret = ret ? ret : ret2; 8770 out_notrans: 8771 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8772 up_read(&fs_info->subvol_sem); 8773 if (flags & RENAME_WHITEOUT) 8774 btrfs_new_inode_args_destroy(&whiteout_args); 8775 out_whiteout_inode: 8776 if (flags & RENAME_WHITEOUT) 8777 iput(whiteout_args.inode); 8778 out_fscrypt_names: 8779 fscrypt_free_filename(&old_fname); 8780 fscrypt_free_filename(&new_fname); 8781 return ret; 8782 } 8783 8784 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8785 struct dentry *old_dentry, struct inode *new_dir, 8786 struct dentry *new_dentry, unsigned int flags) 8787 { 8788 int ret; 8789 8790 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8791 return -EINVAL; 8792 8793 if (flags & RENAME_EXCHANGE) 8794 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8795 new_dentry); 8796 else 8797 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8798 new_dentry, flags); 8799 8800 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8801 8802 return ret; 8803 } 8804 8805 struct btrfs_delalloc_work { 8806 struct inode *inode; 8807 struct completion completion; 8808 struct list_head list; 8809 struct btrfs_work work; 8810 }; 8811 8812 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8813 { 8814 struct btrfs_delalloc_work *delalloc_work; 8815 struct inode *inode; 8816 8817 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8818 work); 8819 inode = delalloc_work->inode; 8820 filemap_flush(inode->i_mapping); 8821 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8822 &BTRFS_I(inode)->runtime_flags)) 8823 filemap_flush(inode->i_mapping); 8824 8825 iput(inode); 8826 complete(&delalloc_work->completion); 8827 } 8828 8829 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8830 { 8831 struct btrfs_delalloc_work *work; 8832 8833 work = kmalloc(sizeof(*work), GFP_NOFS); 8834 if (!work) 8835 return NULL; 8836 8837 init_completion(&work->completion); 8838 INIT_LIST_HEAD(&work->list); 8839 work->inode = inode; 8840 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8841 8842 return work; 8843 } 8844 8845 /* 8846 * some fairly slow code that needs optimization. This walks the list 8847 * of all the inodes with pending delalloc and forces them to disk. 8848 */ 8849 static int start_delalloc_inodes(struct btrfs_root *root, long *nr_to_write, 8850 bool snapshot, bool in_reclaim_context) 8851 { 8852 struct btrfs_delalloc_work *work, *next; 8853 LIST_HEAD(works); 8854 LIST_HEAD(splice); 8855 int ret = 0; 8856 8857 mutex_lock(&root->delalloc_mutex); 8858 spin_lock(&root->delalloc_lock); 8859 list_splice_init(&root->delalloc_inodes, &splice); 8860 while (!list_empty(&splice)) { 8861 struct btrfs_inode *inode; 8862 struct inode *tmp_inode; 8863 8864 inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes); 8865 8866 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 8867 8868 if (in_reclaim_context && 8869 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags)) 8870 continue; 8871 8872 tmp_inode = igrab(&inode->vfs_inode); 8873 if (!tmp_inode) { 8874 cond_resched_lock(&root->delalloc_lock); 8875 continue; 8876 } 8877 spin_unlock(&root->delalloc_lock); 8878 8879 if (snapshot) 8880 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags); 8881 if (nr_to_write == NULL) { 8882 work = btrfs_alloc_delalloc_work(tmp_inode); 8883 if (!work) { 8884 iput(tmp_inode); 8885 ret = -ENOMEM; 8886 goto out; 8887 } 8888 list_add_tail(&work->list, &works); 8889 btrfs_queue_work(root->fs_info->flush_workers, 8890 &work->work); 8891 } else { 8892 ret = filemap_flush_nr(tmp_inode->i_mapping, 8893 nr_to_write); 8894 btrfs_add_delayed_iput(inode); 8895 8896 if (ret || *nr_to_write <= 0) 8897 goto out; 8898 } 8899 cond_resched(); 8900 spin_lock(&root->delalloc_lock); 8901 } 8902 spin_unlock(&root->delalloc_lock); 8903 8904 out: 8905 list_for_each_entry_safe(work, next, &works, list) { 8906 list_del_init(&work->list); 8907 wait_for_completion(&work->completion); 8908 kfree(work); 8909 } 8910 8911 if (!list_empty(&splice)) { 8912 spin_lock(&root->delalloc_lock); 8913 list_splice_tail(&splice, &root->delalloc_inodes); 8914 spin_unlock(&root->delalloc_lock); 8915 } 8916 mutex_unlock(&root->delalloc_mutex); 8917 return ret; 8918 } 8919 8920 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8921 { 8922 struct btrfs_fs_info *fs_info = root->fs_info; 8923 8924 if (BTRFS_FS_ERROR(fs_info)) 8925 return -EROFS; 8926 return start_delalloc_inodes(root, NULL, true, in_reclaim_context); 8927 } 8928 8929 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8930 bool in_reclaim_context) 8931 { 8932 long *nr_to_write = nr == LONG_MAX ? NULL : &nr; 8933 struct btrfs_root *root; 8934 LIST_HEAD(splice); 8935 int ret; 8936 8937 if (BTRFS_FS_ERROR(fs_info)) 8938 return -EROFS; 8939 8940 mutex_lock(&fs_info->delalloc_root_mutex); 8941 spin_lock(&fs_info->delalloc_root_lock); 8942 list_splice_init(&fs_info->delalloc_roots, &splice); 8943 while (!list_empty(&splice)) { 8944 root = list_first_entry(&splice, struct btrfs_root, 8945 delalloc_root); 8946 root = btrfs_grab_root(root); 8947 BUG_ON(!root); 8948 list_move_tail(&root->delalloc_root, 8949 &fs_info->delalloc_roots); 8950 spin_unlock(&fs_info->delalloc_root_lock); 8951 8952 ret = start_delalloc_inodes(root, nr_to_write, false, 8953 in_reclaim_context); 8954 btrfs_put_root(root); 8955 if (ret < 0 || nr <= 0) 8956 goto out; 8957 spin_lock(&fs_info->delalloc_root_lock); 8958 } 8959 spin_unlock(&fs_info->delalloc_root_lock); 8960 8961 ret = 0; 8962 out: 8963 if (!list_empty(&splice)) { 8964 spin_lock(&fs_info->delalloc_root_lock); 8965 list_splice_tail(&splice, &fs_info->delalloc_roots); 8966 spin_unlock(&fs_info->delalloc_root_lock); 8967 } 8968 mutex_unlock(&fs_info->delalloc_root_mutex); 8969 return ret; 8970 } 8971 8972 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8973 struct dentry *dentry, const char *symname) 8974 { 8975 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8976 struct btrfs_trans_handle *trans; 8977 struct btrfs_root *root = BTRFS_I(dir)->root; 8978 struct btrfs_path *path; 8979 struct btrfs_key key; 8980 struct inode *inode; 8981 struct btrfs_new_inode_args new_inode_args = { 8982 .dir = dir, 8983 .dentry = dentry, 8984 }; 8985 unsigned int trans_num_items; 8986 int ret; 8987 int name_len; 8988 int datasize; 8989 unsigned long ptr; 8990 struct btrfs_file_extent_item *ei; 8991 struct extent_buffer *leaf; 8992 8993 name_len = strlen(symname); 8994 /* 8995 * Symlinks utilize uncompressed inline extent data, which should not 8996 * reach block size. 8997 */ 8998 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 8999 name_len >= fs_info->sectorsize) 9000 return -ENAMETOOLONG; 9001 9002 inode = new_inode(dir->i_sb); 9003 if (!inode) 9004 return -ENOMEM; 9005 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 9006 inode->i_op = &btrfs_symlink_inode_operations; 9007 inode_nohighmem(inode); 9008 inode->i_mapping->a_ops = &btrfs_aops; 9009 btrfs_i_size_write(BTRFS_I(inode), name_len); 9010 inode_set_bytes(inode, name_len); 9011 9012 new_inode_args.inode = inode; 9013 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9014 if (ret) 9015 goto out_inode; 9016 /* 1 additional item for the inline extent */ 9017 trans_num_items++; 9018 9019 trans = btrfs_start_transaction(root, trans_num_items); 9020 if (IS_ERR(trans)) { 9021 ret = PTR_ERR(trans); 9022 goto out_new_inode_args; 9023 } 9024 9025 ret = btrfs_create_new_inode(trans, &new_inode_args); 9026 if (ret) 9027 goto out; 9028 9029 path = btrfs_alloc_path(); 9030 if (unlikely(!path)) { 9031 ret = -ENOMEM; 9032 btrfs_abort_transaction(trans, ret); 9033 discard_new_inode(inode); 9034 inode = NULL; 9035 goto out; 9036 } 9037 key.objectid = btrfs_ino(BTRFS_I(inode)); 9038 key.type = BTRFS_EXTENT_DATA_KEY; 9039 key.offset = 0; 9040 datasize = btrfs_file_extent_calc_inline_size(name_len); 9041 ret = btrfs_insert_empty_item(trans, root, path, &key, datasize); 9042 if (unlikely(ret)) { 9043 btrfs_abort_transaction(trans, ret); 9044 btrfs_free_path(path); 9045 discard_new_inode(inode); 9046 inode = NULL; 9047 goto out; 9048 } 9049 leaf = path->nodes[0]; 9050 ei = btrfs_item_ptr(leaf, path->slots[0], 9051 struct btrfs_file_extent_item); 9052 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9053 btrfs_set_file_extent_type(leaf, ei, 9054 BTRFS_FILE_EXTENT_INLINE); 9055 btrfs_set_file_extent_encryption(leaf, ei, 0); 9056 btrfs_set_file_extent_compression(leaf, ei, 0); 9057 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9058 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9059 9060 ptr = btrfs_file_extent_inline_start(ei); 9061 write_extent_buffer(leaf, symname, ptr, name_len); 9062 btrfs_free_path(path); 9063 9064 d_instantiate_new(dentry, inode); 9065 ret = 0; 9066 out: 9067 btrfs_end_transaction(trans); 9068 btrfs_btree_balance_dirty(fs_info); 9069 out_new_inode_args: 9070 btrfs_new_inode_args_destroy(&new_inode_args); 9071 out_inode: 9072 if (ret) 9073 iput(inode); 9074 return ret; 9075 } 9076 9077 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9078 struct btrfs_trans_handle *trans_in, 9079 struct btrfs_inode *inode, 9080 struct btrfs_key *ins, 9081 u64 file_offset) 9082 { 9083 struct btrfs_file_extent_item stack_fi; 9084 struct btrfs_replace_extent_info extent_info; 9085 struct btrfs_trans_handle *trans = trans_in; 9086 struct btrfs_path *path; 9087 u64 start = ins->objectid; 9088 u64 len = ins->offset; 9089 u64 qgroup_released = 0; 9090 int ret; 9091 9092 memset(&stack_fi, 0, sizeof(stack_fi)); 9093 9094 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9095 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9096 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9097 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9098 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9099 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9100 /* Encryption and other encoding is reserved and all 0 */ 9101 9102 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 9103 if (ret < 0) 9104 return ERR_PTR(ret); 9105 9106 if (trans) { 9107 ret = insert_reserved_file_extent(trans, inode, 9108 file_offset, &stack_fi, 9109 true, qgroup_released); 9110 if (ret) 9111 goto free_qgroup; 9112 return trans; 9113 } 9114 9115 extent_info.disk_offset = start; 9116 extent_info.disk_len = len; 9117 extent_info.data_offset = 0; 9118 extent_info.data_len = len; 9119 extent_info.file_offset = file_offset; 9120 extent_info.extent_buf = (char *)&stack_fi; 9121 extent_info.is_new_extent = true; 9122 extent_info.update_times = true; 9123 extent_info.qgroup_reserved = qgroup_released; 9124 extent_info.insertions = 0; 9125 9126 path = btrfs_alloc_path(); 9127 if (!path) { 9128 ret = -ENOMEM; 9129 goto free_qgroup; 9130 } 9131 9132 ret = btrfs_replace_file_extents(inode, path, file_offset, 9133 file_offset + len - 1, &extent_info, 9134 &trans); 9135 btrfs_free_path(path); 9136 if (ret) 9137 goto free_qgroup; 9138 return trans; 9139 9140 free_qgroup: 9141 /* 9142 * We have released qgroup data range at the beginning of the function, 9143 * and normally qgroup_released bytes will be freed when committing 9144 * transaction. 9145 * But if we error out early, we have to free what we have released 9146 * or we leak qgroup data reservation. 9147 */ 9148 btrfs_qgroup_free_refroot(inode->root->fs_info, 9149 btrfs_root_id(inode->root), qgroup_released, 9150 BTRFS_QGROUP_RSV_DATA); 9151 return ERR_PTR(ret); 9152 } 9153 9154 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9155 u64 start, u64 num_bytes, u64 min_size, 9156 loff_t actual_len, u64 *alloc_hint, 9157 struct btrfs_trans_handle *trans) 9158 { 9159 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 9160 struct extent_map *em; 9161 struct btrfs_root *root = BTRFS_I(inode)->root; 9162 struct btrfs_key ins; 9163 u64 cur_offset = start; 9164 u64 clear_offset = start; 9165 u64 i_size; 9166 u64 cur_bytes; 9167 u64 last_alloc = (u64)-1; 9168 int ret = 0; 9169 bool own_trans = true; 9170 u64 end = start + num_bytes - 1; 9171 9172 if (trans) 9173 own_trans = false; 9174 while (num_bytes > 0) { 9175 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9176 cur_bytes = max(cur_bytes, min_size); 9177 /* 9178 * If we are severely fragmented we could end up with really 9179 * small allocations, so if the allocator is returning small 9180 * chunks lets make its job easier by only searching for those 9181 * sized chunks. 9182 */ 9183 cur_bytes = min(cur_bytes, last_alloc); 9184 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9185 min_size, 0, *alloc_hint, &ins, true, false); 9186 if (ret) 9187 break; 9188 9189 /* 9190 * We've reserved this space, and thus converted it from 9191 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9192 * from here on out we will only need to clear our reservation 9193 * for the remaining unreserved area, so advance our 9194 * clear_offset by our extent size. 9195 */ 9196 clear_offset += ins.offset; 9197 9198 last_alloc = ins.offset; 9199 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9200 &ins, cur_offset); 9201 /* 9202 * Now that we inserted the prealloc extent we can finally 9203 * decrement the number of reservations in the block group. 9204 * If we did it before, we could race with relocation and have 9205 * relocation miss the reserved extent, making it fail later. 9206 */ 9207 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9208 if (IS_ERR(trans)) { 9209 ret = PTR_ERR(trans); 9210 btrfs_free_reserved_extent(fs_info, ins.objectid, 9211 ins.offset, false); 9212 break; 9213 } 9214 9215 em = btrfs_alloc_extent_map(); 9216 if (!em) { 9217 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9218 cur_offset + ins.offset - 1, false); 9219 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9220 goto next; 9221 } 9222 9223 em->start = cur_offset; 9224 em->len = ins.offset; 9225 em->disk_bytenr = ins.objectid; 9226 em->offset = 0; 9227 em->disk_num_bytes = ins.offset; 9228 em->ram_bytes = ins.offset; 9229 em->flags |= EXTENT_FLAG_PREALLOC; 9230 em->generation = trans->transid; 9231 9232 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9233 btrfs_free_extent_map(em); 9234 next: 9235 num_bytes -= ins.offset; 9236 cur_offset += ins.offset; 9237 *alloc_hint = ins.objectid + ins.offset; 9238 9239 inode_inc_iversion(inode); 9240 inode_set_ctime_current(inode); 9241 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9242 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9243 (actual_len > inode->i_size) && 9244 (cur_offset > inode->i_size)) { 9245 if (cur_offset > actual_len) 9246 i_size = actual_len; 9247 else 9248 i_size = cur_offset; 9249 i_size_write(inode, i_size); 9250 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9251 } 9252 9253 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 9254 9255 if (unlikely(ret)) { 9256 btrfs_abort_transaction(trans, ret); 9257 if (own_trans) 9258 btrfs_end_transaction(trans); 9259 break; 9260 } 9261 9262 if (own_trans) { 9263 btrfs_end_transaction(trans); 9264 trans = NULL; 9265 } 9266 } 9267 if (clear_offset < end) 9268 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9269 end - clear_offset + 1); 9270 return ret; 9271 } 9272 9273 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9274 u64 start, u64 num_bytes, u64 min_size, 9275 loff_t actual_len, u64 *alloc_hint) 9276 { 9277 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9278 min_size, actual_len, alloc_hint, 9279 NULL); 9280 } 9281 9282 int btrfs_prealloc_file_range_trans(struct inode *inode, 9283 struct btrfs_trans_handle *trans, int mode, 9284 u64 start, u64 num_bytes, u64 min_size, 9285 loff_t actual_len, u64 *alloc_hint) 9286 { 9287 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9288 min_size, actual_len, alloc_hint, trans); 9289 } 9290 9291 /* 9292 * NOTE: in case you are adding MAY_EXEC check for directories: 9293 * we are marking them with IOP_FASTPERM_MAY_EXEC, allowing path lookup to 9294 * elide calls here. 9295 */ 9296 static int btrfs_permission(struct mnt_idmap *idmap, 9297 struct inode *inode, int mask) 9298 { 9299 struct btrfs_root *root = BTRFS_I(inode)->root; 9300 umode_t mode = inode->i_mode; 9301 9302 if (mask & MAY_WRITE && 9303 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9304 if (btrfs_root_readonly(root)) 9305 return -EROFS; 9306 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9307 return -EACCES; 9308 } 9309 return generic_permission(idmap, inode, mask); 9310 } 9311 9312 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9313 struct file *file, umode_t mode) 9314 { 9315 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 9316 struct btrfs_trans_handle *trans; 9317 struct btrfs_root *root = BTRFS_I(dir)->root; 9318 struct inode *inode; 9319 struct btrfs_new_inode_args new_inode_args = { 9320 .dir = dir, 9321 .dentry = file->f_path.dentry, 9322 .orphan = true, 9323 }; 9324 unsigned int trans_num_items; 9325 int ret; 9326 9327 inode = new_inode(dir->i_sb); 9328 if (!inode) 9329 return -ENOMEM; 9330 inode_init_owner(idmap, inode, dir, mode); 9331 inode->i_fop = &btrfs_file_operations; 9332 inode->i_op = &btrfs_file_inode_operations; 9333 inode->i_mapping->a_ops = &btrfs_aops; 9334 9335 new_inode_args.inode = inode; 9336 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9337 if (ret) 9338 goto out_inode; 9339 9340 trans = btrfs_start_transaction(root, trans_num_items); 9341 if (IS_ERR(trans)) { 9342 ret = PTR_ERR(trans); 9343 goto out_new_inode_args; 9344 } 9345 9346 ret = btrfs_create_new_inode(trans, &new_inode_args); 9347 9348 /* 9349 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9350 * set it to 1 because d_tmpfile() will issue a warning if the count is 9351 * 0, through: 9352 * 9353 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9354 */ 9355 set_nlink(inode, 1); 9356 9357 if (!ret) { 9358 d_tmpfile(file, inode); 9359 unlock_new_inode(inode); 9360 mark_inode_dirty(inode); 9361 } 9362 9363 btrfs_end_transaction(trans); 9364 btrfs_btree_balance_dirty(fs_info); 9365 out_new_inode_args: 9366 btrfs_new_inode_args_destroy(&new_inode_args); 9367 out_inode: 9368 if (ret) 9369 iput(inode); 9370 return finish_open_simple(file, ret); 9371 } 9372 9373 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9374 int compress_type) 9375 { 9376 switch (compress_type) { 9377 case BTRFS_COMPRESS_NONE: 9378 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9379 case BTRFS_COMPRESS_ZLIB: 9380 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9381 case BTRFS_COMPRESS_LZO: 9382 /* 9383 * The LZO format depends on the sector size. 64K is the maximum 9384 * sector size that we support. 9385 */ 9386 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9387 return -EINVAL; 9388 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9389 (fs_info->sectorsize_bits - 12); 9390 case BTRFS_COMPRESS_ZSTD: 9391 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9392 default: 9393 return -EUCLEAN; 9394 } 9395 } 9396 9397 static ssize_t btrfs_encoded_read_inline( 9398 struct kiocb *iocb, 9399 struct iov_iter *iter, u64 start, 9400 u64 lockend, 9401 struct extent_state **cached_state, 9402 u64 extent_start, size_t count, 9403 struct btrfs_ioctl_encoded_io_args *encoded, 9404 bool *unlocked) 9405 { 9406 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9407 struct btrfs_root *root = inode->root; 9408 struct btrfs_fs_info *fs_info = root->fs_info; 9409 struct extent_io_tree *io_tree = &inode->io_tree; 9410 BTRFS_PATH_AUTO_FREE(path); 9411 struct extent_buffer *leaf; 9412 struct btrfs_file_extent_item *item; 9413 u64 ram_bytes; 9414 unsigned long ptr; 9415 void *tmp; 9416 ssize_t ret; 9417 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9418 9419 path = btrfs_alloc_path(); 9420 if (!path) 9421 return -ENOMEM; 9422 9423 path->nowait = nowait; 9424 9425 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9426 extent_start, 0); 9427 if (ret) { 9428 if (unlikely(ret > 0)) { 9429 /* The extent item disappeared? */ 9430 return -EIO; 9431 } 9432 return ret; 9433 } 9434 leaf = path->nodes[0]; 9435 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9436 9437 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9438 ptr = btrfs_file_extent_inline_start(item); 9439 9440 encoded->len = min_t(u64, extent_start + ram_bytes, 9441 inode->vfs_inode.i_size) - iocb->ki_pos; 9442 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9443 btrfs_file_extent_compression(leaf, item)); 9444 if (ret < 0) 9445 return ret; 9446 encoded->compression = ret; 9447 if (encoded->compression) { 9448 size_t inline_size; 9449 9450 inline_size = btrfs_file_extent_inline_item_len(leaf, 9451 path->slots[0]); 9452 if (inline_size > count) 9453 return -ENOBUFS; 9454 9455 count = inline_size; 9456 encoded->unencoded_len = ram_bytes; 9457 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9458 } else { 9459 count = min_t(u64, count, encoded->len); 9460 encoded->len = count; 9461 encoded->unencoded_len = count; 9462 ptr += iocb->ki_pos - extent_start; 9463 } 9464 9465 tmp = kmalloc(count, GFP_NOFS); 9466 if (!tmp) 9467 return -ENOMEM; 9468 9469 read_extent_buffer(leaf, tmp, ptr, count); 9470 btrfs_release_path(path); 9471 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9472 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9473 *unlocked = true; 9474 9475 ret = copy_to_iter(tmp, count, iter); 9476 if (ret != count) 9477 ret = -EFAULT; 9478 kfree(tmp); 9479 9480 return ret; 9481 } 9482 9483 struct btrfs_encoded_read_private { 9484 struct completion *sync_reads; 9485 void *uring_ctx; 9486 refcount_t pending_refs; 9487 blk_status_t status; 9488 }; 9489 9490 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9491 { 9492 struct btrfs_encoded_read_private *priv = bbio->private; 9493 9494 if (bbio->bio.bi_status) { 9495 /* 9496 * The memory barrier implied by the refcount_dec_and_test() here 9497 * pairs with the memory barrier implied by the refcount_dec_and_test() 9498 * in btrfs_encoded_read_regular_fill_pages() to ensure that 9499 * this write is observed before the load of status in 9500 * btrfs_encoded_read_regular_fill_pages(). 9501 */ 9502 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9503 } 9504 if (refcount_dec_and_test(&priv->pending_refs)) { 9505 int err = blk_status_to_errno(READ_ONCE(priv->status)); 9506 9507 if (priv->uring_ctx) { 9508 btrfs_uring_read_extent_endio(priv->uring_ctx, err); 9509 kfree(priv); 9510 } else { 9511 complete(priv->sync_reads); 9512 } 9513 } 9514 bio_put(&bbio->bio); 9515 } 9516 9517 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9518 u64 disk_bytenr, u64 disk_io_size, 9519 struct page **pages, void *uring_ctx) 9520 { 9521 struct btrfs_encoded_read_private *priv, sync_priv; 9522 struct completion sync_reads; 9523 unsigned long i = 0; 9524 struct btrfs_bio *bbio; 9525 int ret; 9526 9527 /* 9528 * Fast path for synchronous reads which completes in this call, io_uring 9529 * needs longer time span. 9530 */ 9531 if (uring_ctx) { 9532 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS); 9533 if (!priv) 9534 return -ENOMEM; 9535 } else { 9536 priv = &sync_priv; 9537 init_completion(&sync_reads); 9538 priv->sync_reads = &sync_reads; 9539 } 9540 9541 refcount_set(&priv->pending_refs, 1); 9542 priv->status = 0; 9543 priv->uring_ctx = uring_ctx; 9544 9545 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, inode, 0, 9546 btrfs_encoded_read_endio, priv); 9547 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9548 9549 do { 9550 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9551 9552 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9553 refcount_inc(&priv->pending_refs); 9554 btrfs_submit_bbio(bbio, 0); 9555 9556 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, inode, 0, 9557 btrfs_encoded_read_endio, priv); 9558 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9559 continue; 9560 } 9561 9562 i++; 9563 disk_bytenr += bytes; 9564 disk_io_size -= bytes; 9565 } while (disk_io_size); 9566 9567 refcount_inc(&priv->pending_refs); 9568 btrfs_submit_bbio(bbio, 0); 9569 9570 if (uring_ctx) { 9571 if (refcount_dec_and_test(&priv->pending_refs)) { 9572 ret = blk_status_to_errno(READ_ONCE(priv->status)); 9573 btrfs_uring_read_extent_endio(uring_ctx, ret); 9574 kfree(priv); 9575 return ret; 9576 } 9577 9578 return -EIOCBQUEUED; 9579 } else { 9580 if (!refcount_dec_and_test(&priv->pending_refs)) 9581 wait_for_completion_io(&sync_reads); 9582 /* See btrfs_encoded_read_endio() for ordering. */ 9583 return blk_status_to_errno(READ_ONCE(priv->status)); 9584 } 9585 } 9586 9587 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter, 9588 u64 start, u64 lockend, 9589 struct extent_state **cached_state, 9590 u64 disk_bytenr, u64 disk_io_size, 9591 size_t count, bool compressed, bool *unlocked) 9592 { 9593 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9594 struct extent_io_tree *io_tree = &inode->io_tree; 9595 struct page **pages; 9596 unsigned long nr_pages, i; 9597 u64 cur; 9598 size_t page_offset; 9599 ssize_t ret; 9600 9601 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9602 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9603 if (!pages) 9604 return -ENOMEM; 9605 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9606 if (ret) { 9607 ret = -ENOMEM; 9608 goto out; 9609 } 9610 9611 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr, 9612 disk_io_size, pages, NULL); 9613 if (ret) 9614 goto out; 9615 9616 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9617 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9618 *unlocked = true; 9619 9620 if (compressed) { 9621 i = 0; 9622 page_offset = 0; 9623 } else { 9624 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9625 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9626 } 9627 cur = 0; 9628 while (cur < count) { 9629 size_t bytes = min_t(size_t, count - cur, 9630 PAGE_SIZE - page_offset); 9631 9632 if (copy_page_to_iter(pages[i], page_offset, bytes, 9633 iter) != bytes) { 9634 ret = -EFAULT; 9635 goto out; 9636 } 9637 i++; 9638 cur += bytes; 9639 page_offset = 0; 9640 } 9641 ret = count; 9642 out: 9643 for (i = 0; i < nr_pages; i++) { 9644 if (pages[i]) 9645 __free_page(pages[i]); 9646 } 9647 kfree(pages); 9648 return ret; 9649 } 9650 9651 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9652 struct btrfs_ioctl_encoded_io_args *encoded, 9653 struct extent_state **cached_state, 9654 u64 *disk_bytenr, u64 *disk_io_size) 9655 { 9656 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9657 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9658 struct extent_io_tree *io_tree = &inode->io_tree; 9659 ssize_t ret; 9660 size_t count = iov_iter_count(iter); 9661 u64 start, lockend; 9662 struct extent_map *em; 9663 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9664 bool unlocked = false; 9665 9666 file_accessed(iocb->ki_filp); 9667 9668 ret = btrfs_inode_lock(inode, 9669 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0)); 9670 if (ret) 9671 return ret; 9672 9673 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9674 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9675 return 0; 9676 } 9677 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9678 /* 9679 * We don't know how long the extent containing iocb->ki_pos is, but if 9680 * it's compressed we know that it won't be longer than this. 9681 */ 9682 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9683 9684 if (nowait) { 9685 struct btrfs_ordered_extent *ordered; 9686 9687 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping, 9688 start, lockend)) { 9689 ret = -EAGAIN; 9690 goto out_unlock_inode; 9691 } 9692 9693 if (!btrfs_try_lock_extent(io_tree, start, lockend, cached_state)) { 9694 ret = -EAGAIN; 9695 goto out_unlock_inode; 9696 } 9697 9698 ordered = btrfs_lookup_ordered_range(inode, start, 9699 lockend - start + 1); 9700 if (ordered) { 9701 btrfs_put_ordered_extent(ordered); 9702 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9703 ret = -EAGAIN; 9704 goto out_unlock_inode; 9705 } 9706 } else { 9707 for (;;) { 9708 struct btrfs_ordered_extent *ordered; 9709 9710 ret = btrfs_wait_ordered_range(inode, start, 9711 lockend - start + 1); 9712 if (ret) 9713 goto out_unlock_inode; 9714 9715 btrfs_lock_extent(io_tree, start, lockend, cached_state); 9716 ordered = btrfs_lookup_ordered_range(inode, start, 9717 lockend - start + 1); 9718 if (!ordered) 9719 break; 9720 btrfs_put_ordered_extent(ordered); 9721 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9722 cond_resched(); 9723 } 9724 } 9725 9726 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9727 if (IS_ERR(em)) { 9728 ret = PTR_ERR(em); 9729 goto out_unlock_extent; 9730 } 9731 9732 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9733 u64 extent_start = em->start; 9734 9735 /* 9736 * For inline extents we get everything we need out of the 9737 * extent item. 9738 */ 9739 btrfs_free_extent_map(em); 9740 em = NULL; 9741 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9742 cached_state, extent_start, 9743 count, encoded, &unlocked); 9744 goto out_unlock_extent; 9745 } 9746 9747 /* 9748 * We only want to return up to EOF even if the extent extends beyond 9749 * that. 9750 */ 9751 encoded->len = min_t(u64, btrfs_extent_map_end(em), 9752 inode->vfs_inode.i_size) - iocb->ki_pos; 9753 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9754 (em->flags & EXTENT_FLAG_PREALLOC)) { 9755 *disk_bytenr = EXTENT_MAP_HOLE; 9756 count = min_t(u64, count, encoded->len); 9757 encoded->len = count; 9758 encoded->unencoded_len = count; 9759 } else if (btrfs_extent_map_is_compressed(em)) { 9760 *disk_bytenr = em->disk_bytenr; 9761 /* 9762 * Bail if the buffer isn't large enough to return the whole 9763 * compressed extent. 9764 */ 9765 if (em->disk_num_bytes > count) { 9766 ret = -ENOBUFS; 9767 goto out_em; 9768 } 9769 *disk_io_size = em->disk_num_bytes; 9770 count = em->disk_num_bytes; 9771 encoded->unencoded_len = em->ram_bytes; 9772 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9773 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9774 btrfs_extent_map_compression(em)); 9775 if (ret < 0) 9776 goto out_em; 9777 encoded->compression = ret; 9778 } else { 9779 *disk_bytenr = btrfs_extent_map_block_start(em) + (start - em->start); 9780 if (encoded->len > count) 9781 encoded->len = count; 9782 /* 9783 * Don't read beyond what we locked. This also limits the page 9784 * allocations that we'll do. 9785 */ 9786 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9787 count = start + *disk_io_size - iocb->ki_pos; 9788 encoded->len = count; 9789 encoded->unencoded_len = count; 9790 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize); 9791 } 9792 btrfs_free_extent_map(em); 9793 em = NULL; 9794 9795 if (*disk_bytenr == EXTENT_MAP_HOLE) { 9796 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9797 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9798 unlocked = true; 9799 ret = iov_iter_zero(count, iter); 9800 if (ret != count) 9801 ret = -EFAULT; 9802 } else { 9803 ret = -EIOCBQUEUED; 9804 goto out_unlock_extent; 9805 } 9806 9807 out_em: 9808 btrfs_free_extent_map(em); 9809 out_unlock_extent: 9810 /* Leave inode and extent locked if we need to do a read. */ 9811 if (!unlocked && ret != -EIOCBQUEUED) 9812 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9813 out_unlock_inode: 9814 if (!unlocked && ret != -EIOCBQUEUED) 9815 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9816 return ret; 9817 } 9818 9819 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9820 const struct btrfs_ioctl_encoded_io_args *encoded) 9821 { 9822 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9823 struct btrfs_root *root = inode->root; 9824 struct btrfs_fs_info *fs_info = root->fs_info; 9825 struct extent_io_tree *io_tree = &inode->io_tree; 9826 struct extent_changeset *data_reserved = NULL; 9827 struct extent_state *cached_state = NULL; 9828 struct btrfs_ordered_extent *ordered; 9829 struct btrfs_file_extent file_extent; 9830 struct compressed_bio *cb = NULL; 9831 int compression; 9832 size_t orig_count; 9833 const u32 min_folio_size = btrfs_min_folio_size(fs_info); 9834 u64 start, end; 9835 u64 num_bytes, ram_bytes, disk_num_bytes; 9836 struct btrfs_key ins; 9837 bool extent_reserved = false; 9838 struct extent_map *em; 9839 ssize_t ret; 9840 9841 switch (encoded->compression) { 9842 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9843 compression = BTRFS_COMPRESS_ZLIB; 9844 break; 9845 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9846 compression = BTRFS_COMPRESS_ZSTD; 9847 break; 9848 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9849 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9850 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9851 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9852 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9853 /* The sector size must match for LZO. */ 9854 if (encoded->compression - 9855 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9856 fs_info->sectorsize_bits) 9857 return -EINVAL; 9858 compression = BTRFS_COMPRESS_LZO; 9859 break; 9860 default: 9861 return -EINVAL; 9862 } 9863 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9864 return -EINVAL; 9865 9866 /* 9867 * Compressed extents should always have checksums, so error out if we 9868 * have a NOCOW file or inode was created while mounted with NODATASUM. 9869 */ 9870 if (inode->flags & BTRFS_INODE_NODATASUM) 9871 return -EINVAL; 9872 9873 orig_count = iov_iter_count(from); 9874 9875 /* The extent size must be sane. */ 9876 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9877 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9878 return -EINVAL; 9879 9880 /* 9881 * The compressed data must be smaller than the decompressed data. 9882 * 9883 * It's of course possible for data to compress to larger or the same 9884 * size, but the buffered I/O path falls back to no compression for such 9885 * data, and we don't want to break any assumptions by creating these 9886 * extents. 9887 * 9888 * Note that this is less strict than the current check we have that the 9889 * compressed data must be at least one sector smaller than the 9890 * decompressed data. We only want to enforce the weaker requirement 9891 * from old kernels that it is at least one byte smaller. 9892 */ 9893 if (orig_count >= encoded->unencoded_len) 9894 return -EINVAL; 9895 9896 /* The extent must start on a sector boundary. */ 9897 start = iocb->ki_pos; 9898 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9899 return -EINVAL; 9900 9901 /* 9902 * The extent must end on a sector boundary. However, we allow a write 9903 * which ends at or extends i_size to have an unaligned length; we round 9904 * up the extent size and set i_size to the unaligned end. 9905 */ 9906 if (start + encoded->len < inode->vfs_inode.i_size && 9907 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9908 return -EINVAL; 9909 9910 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9911 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9912 return -EINVAL; 9913 9914 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9915 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9916 end = start + num_bytes - 1; 9917 9918 /* 9919 * If the extent cannot be inline, the compressed data on disk must be 9920 * sector-aligned. For convenience, we extend it with zeroes if it 9921 * isn't. 9922 */ 9923 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9924 9925 cb = btrfs_alloc_compressed_write(inode, start, num_bytes); 9926 for (int i = 0; i * min_folio_size < disk_num_bytes; i++) { 9927 struct folio *folio; 9928 size_t bytes = min(min_folio_size, iov_iter_count(from)); 9929 char *kaddr; 9930 9931 folio = btrfs_alloc_compr_folio(fs_info); 9932 if (!folio) { 9933 ret = -ENOMEM; 9934 goto out_cb; 9935 } 9936 kaddr = kmap_local_folio(folio, 0); 9937 ret = copy_from_iter(kaddr, bytes, from); 9938 kunmap_local(kaddr); 9939 if (ret != bytes) { 9940 folio_put(folio); 9941 ret = -EFAULT; 9942 goto out_cb; 9943 } 9944 if (bytes < min_folio_size) 9945 folio_zero_range(folio, bytes, min_folio_size - bytes); 9946 ret = bio_add_folio(&cb->bbio.bio, folio, folio_size(folio), 0); 9947 if (unlikely(!ret)) { 9948 folio_put(folio); 9949 ret = -EINVAL; 9950 goto out_cb; 9951 } 9952 } 9953 ASSERT(cb->bbio.bio.bi_iter.bi_size == disk_num_bytes); 9954 9955 for (;;) { 9956 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9957 if (ret) 9958 goto out_cb; 9959 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9960 start >> PAGE_SHIFT, 9961 end >> PAGE_SHIFT); 9962 if (ret) 9963 goto out_cb; 9964 btrfs_lock_extent(io_tree, start, end, &cached_state); 9965 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9966 if (!ordered && 9967 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9968 break; 9969 if (ordered) 9970 btrfs_put_ordered_extent(ordered); 9971 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9972 cond_resched(); 9973 } 9974 9975 /* 9976 * We don't use the higher-level delalloc space functions because our 9977 * num_bytes and disk_num_bytes are different. 9978 */ 9979 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9980 if (ret) 9981 goto out_unlock; 9982 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9983 if (ret) 9984 goto out_free_data_space; 9985 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9986 false); 9987 if (ret) 9988 goto out_qgroup_free_data; 9989 9990 /* Try an inline extent first. */ 9991 if (encoded->unencoded_len == encoded->len && 9992 encoded->unencoded_offset == 0 && 9993 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 9994 ret = __cow_file_range_inline(inode, encoded->len, 9995 orig_count, compression, 9996 bio_first_folio_all(&cb->bbio.bio), 9997 true); 9998 if (ret <= 0) { 9999 if (ret == 0) 10000 ret = orig_count; 10001 goto out_delalloc_release; 10002 } 10003 } 10004 10005 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 10006 disk_num_bytes, 0, 0, &ins, true, true); 10007 if (ret) 10008 goto out_delalloc_release; 10009 extent_reserved = true; 10010 10011 file_extent.disk_bytenr = ins.objectid; 10012 file_extent.disk_num_bytes = ins.offset; 10013 file_extent.num_bytes = num_bytes; 10014 file_extent.ram_bytes = ram_bytes; 10015 file_extent.offset = encoded->unencoded_offset; 10016 file_extent.compression = compression; 10017 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 10018 if (IS_ERR(em)) { 10019 ret = PTR_ERR(em); 10020 goto out_free_reserved; 10021 } 10022 btrfs_free_extent_map(em); 10023 10024 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 10025 (1U << BTRFS_ORDERED_ENCODED) | 10026 (1U << BTRFS_ORDERED_COMPRESSED)); 10027 if (IS_ERR(ordered)) { 10028 btrfs_drop_extent_map_range(inode, start, end, false); 10029 ret = PTR_ERR(ordered); 10030 goto out_free_reserved; 10031 } 10032 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10033 10034 if (start + encoded->len > inode->vfs_inode.i_size) 10035 i_size_write(&inode->vfs_inode, start + encoded->len); 10036 10037 btrfs_unlock_extent(io_tree, start, end, &cached_state); 10038 10039 btrfs_delalloc_release_extents(inode, num_bytes); 10040 10041 btrfs_submit_compressed_write(ordered, cb); 10042 ret = orig_count; 10043 goto out; 10044 10045 out_free_reserved: 10046 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10047 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 10048 out_delalloc_release: 10049 btrfs_delalloc_release_extents(inode, num_bytes); 10050 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 10051 out_qgroup_free_data: 10052 if (ret < 0) 10053 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 10054 out_free_data_space: 10055 /* 10056 * If btrfs_reserve_extent() succeeded, then we already decremented 10057 * bytes_may_use. 10058 */ 10059 if (!extent_reserved) 10060 btrfs_free_reserved_data_space_noquota(inode, disk_num_bytes); 10061 out_unlock: 10062 btrfs_unlock_extent(io_tree, start, end, &cached_state); 10063 out_cb: 10064 if (cb) 10065 cleanup_compressed_bio(cb); 10066 out: 10067 if (ret >= 0) 10068 iocb->ki_pos += encoded->len; 10069 return ret; 10070 } 10071 10072 #ifdef CONFIG_SWAP 10073 /* 10074 * Add an entry indicating a block group or device which is pinned by a 10075 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10076 * negative errno on failure. 10077 */ 10078 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10079 bool is_block_group) 10080 { 10081 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10082 struct btrfs_swapfile_pin *sp, *entry; 10083 struct rb_node **p; 10084 struct rb_node *parent = NULL; 10085 10086 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10087 if (!sp) 10088 return -ENOMEM; 10089 sp->ptr = ptr; 10090 sp->inode = inode; 10091 sp->is_block_group = is_block_group; 10092 sp->bg_extent_count = 1; 10093 10094 spin_lock(&fs_info->swapfile_pins_lock); 10095 p = &fs_info->swapfile_pins.rb_node; 10096 while (*p) { 10097 parent = *p; 10098 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10099 if (sp->ptr < entry->ptr || 10100 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10101 p = &(*p)->rb_left; 10102 } else if (sp->ptr > entry->ptr || 10103 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10104 p = &(*p)->rb_right; 10105 } else { 10106 if (is_block_group) 10107 entry->bg_extent_count++; 10108 spin_unlock(&fs_info->swapfile_pins_lock); 10109 kfree(sp); 10110 return 1; 10111 } 10112 } 10113 rb_link_node(&sp->node, parent, p); 10114 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10115 spin_unlock(&fs_info->swapfile_pins_lock); 10116 return 0; 10117 } 10118 10119 /* Free all of the entries pinned by this swapfile. */ 10120 static void btrfs_free_swapfile_pins(struct inode *inode) 10121 { 10122 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10123 struct btrfs_swapfile_pin *sp; 10124 struct rb_node *node, *next; 10125 10126 spin_lock(&fs_info->swapfile_pins_lock); 10127 node = rb_first(&fs_info->swapfile_pins); 10128 while (node) { 10129 next = rb_next(node); 10130 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10131 if (sp->inode == inode) { 10132 rb_erase(&sp->node, &fs_info->swapfile_pins); 10133 if (sp->is_block_group) { 10134 btrfs_dec_block_group_swap_extents(sp->ptr, 10135 sp->bg_extent_count); 10136 btrfs_put_block_group(sp->ptr); 10137 } 10138 kfree(sp); 10139 } 10140 node = next; 10141 } 10142 spin_unlock(&fs_info->swapfile_pins_lock); 10143 } 10144 10145 struct btrfs_swap_info { 10146 u64 start; 10147 u64 block_start; 10148 u64 block_len; 10149 u64 lowest_ppage; 10150 u64 highest_ppage; 10151 unsigned long nr_pages; 10152 int nr_extents; 10153 }; 10154 10155 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10156 struct btrfs_swap_info *bsi) 10157 { 10158 unsigned long nr_pages; 10159 unsigned long max_pages; 10160 u64 first_ppage, first_ppage_reported, next_ppage; 10161 int ret; 10162 10163 /* 10164 * Our swapfile may have had its size extended after the swap header was 10165 * written. In that case activating the swapfile should not go beyond 10166 * the max size set in the swap header. 10167 */ 10168 if (bsi->nr_pages >= sis->max) 10169 return 0; 10170 10171 max_pages = sis->max - bsi->nr_pages; 10172 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10173 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10174 10175 if (first_ppage >= next_ppage) 10176 return 0; 10177 nr_pages = next_ppage - first_ppage; 10178 nr_pages = min(nr_pages, max_pages); 10179 10180 first_ppage_reported = first_ppage; 10181 if (bsi->start == 0) 10182 first_ppage_reported++; 10183 if (bsi->lowest_ppage > first_ppage_reported) 10184 bsi->lowest_ppage = first_ppage_reported; 10185 if (bsi->highest_ppage < (next_ppage - 1)) 10186 bsi->highest_ppage = next_ppage - 1; 10187 10188 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10189 if (ret < 0) 10190 return ret; 10191 bsi->nr_extents += ret; 10192 bsi->nr_pages += nr_pages; 10193 return 0; 10194 } 10195 10196 static void btrfs_swap_deactivate(struct file *file) 10197 { 10198 struct inode *inode = file_inode(file); 10199 10200 btrfs_free_swapfile_pins(inode); 10201 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10202 } 10203 10204 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10205 sector_t *span) 10206 { 10207 struct inode *inode = file_inode(file); 10208 struct btrfs_root *root = BTRFS_I(inode)->root; 10209 struct btrfs_fs_info *fs_info = root->fs_info; 10210 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10211 struct extent_state *cached_state = NULL; 10212 struct btrfs_chunk_map *map = NULL; 10213 struct btrfs_device *device = NULL; 10214 struct btrfs_swap_info bsi = { 10215 .lowest_ppage = (sector_t)-1ULL, 10216 }; 10217 struct btrfs_backref_share_check_ctx *backref_ctx = NULL; 10218 struct btrfs_path *path = NULL; 10219 int ret = 0; 10220 u64 isize; 10221 u64 prev_extent_end = 0; 10222 10223 /* 10224 * Acquire the inode's mmap lock to prevent races with memory mapped 10225 * writes, as they could happen after we flush delalloc below and before 10226 * we lock the extent range further below. The inode was already locked 10227 * up in the call chain. 10228 */ 10229 btrfs_assert_inode_locked(BTRFS_I(inode)); 10230 down_write(&BTRFS_I(inode)->i_mmap_lock); 10231 10232 /* 10233 * If the swap file was just created, make sure delalloc is done. If the 10234 * file changes again after this, the user is doing something stupid and 10235 * we don't really care. 10236 */ 10237 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 10238 if (ret) 10239 goto out_unlock_mmap; 10240 10241 /* 10242 * The inode is locked, so these flags won't change after we check them. 10243 */ 10244 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10245 btrfs_warn(fs_info, "swapfile must not be compressed"); 10246 ret = -EINVAL; 10247 goto out_unlock_mmap; 10248 } 10249 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10250 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10251 ret = -EINVAL; 10252 goto out_unlock_mmap; 10253 } 10254 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10255 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10256 ret = -EINVAL; 10257 goto out_unlock_mmap; 10258 } 10259 10260 path = btrfs_alloc_path(); 10261 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 10262 if (!path || !backref_ctx) { 10263 ret = -ENOMEM; 10264 goto out_unlock_mmap; 10265 } 10266 10267 /* 10268 * Balance or device remove/replace/resize can move stuff around from 10269 * under us. The exclop protection makes sure they aren't running/won't 10270 * run concurrently while we are mapping the swap extents, and 10271 * fs_info->swapfile_pins prevents them from running while the swap 10272 * file is active and moving the extents. Note that this also prevents 10273 * a concurrent device add which isn't actually necessary, but it's not 10274 * really worth the trouble to allow it. 10275 */ 10276 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10277 btrfs_warn(fs_info, 10278 "cannot activate swapfile while exclusive operation is running"); 10279 ret = -EBUSY; 10280 goto out_unlock_mmap; 10281 } 10282 10283 /* 10284 * Prevent snapshot creation while we are activating the swap file. 10285 * We do not want to race with snapshot creation. If snapshot creation 10286 * already started before we bumped nr_swapfiles from 0 to 1 and 10287 * completes before the first write into the swap file after it is 10288 * activated, than that write would fallback to COW. 10289 */ 10290 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10291 btrfs_exclop_finish(fs_info); 10292 btrfs_warn(fs_info, 10293 "cannot activate swapfile because snapshot creation is in progress"); 10294 ret = -EINVAL; 10295 goto out_unlock_mmap; 10296 } 10297 /* 10298 * Snapshots can create extents which require COW even if NODATACOW is 10299 * set. We use this counter to prevent snapshots. We must increment it 10300 * before walking the extents because we don't want a concurrent 10301 * snapshot to run after we've already checked the extents. 10302 * 10303 * It is possible that subvolume is marked for deletion but still not 10304 * removed yet. To prevent this race, we check the root status before 10305 * activating the swapfile. 10306 */ 10307 spin_lock(&root->root_item_lock); 10308 if (btrfs_root_dead(root)) { 10309 spin_unlock(&root->root_item_lock); 10310 10311 btrfs_drew_write_unlock(&root->snapshot_lock); 10312 btrfs_exclop_finish(fs_info); 10313 btrfs_warn(fs_info, 10314 "cannot activate swapfile because subvolume %llu is being deleted", 10315 btrfs_root_id(root)); 10316 ret = -EPERM; 10317 goto out_unlock_mmap; 10318 } 10319 atomic_inc(&root->nr_swapfiles); 10320 spin_unlock(&root->root_item_lock); 10321 10322 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10323 10324 btrfs_lock_extent(io_tree, 0, isize - 1, &cached_state); 10325 while (prev_extent_end < isize) { 10326 struct btrfs_key key; 10327 struct extent_buffer *leaf; 10328 struct btrfs_file_extent_item *ei; 10329 struct btrfs_block_group *bg; 10330 u64 logical_block_start; 10331 u64 physical_block_start; 10332 u64 extent_gen; 10333 u64 disk_bytenr; 10334 u64 len; 10335 10336 key.objectid = btrfs_ino(BTRFS_I(inode)); 10337 key.type = BTRFS_EXTENT_DATA_KEY; 10338 key.offset = prev_extent_end; 10339 10340 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 10341 if (ret < 0) 10342 goto out; 10343 10344 /* 10345 * If key not found it means we have an implicit hole (NO_HOLES 10346 * is enabled). 10347 */ 10348 if (ret > 0) { 10349 btrfs_warn(fs_info, "swapfile must not have holes"); 10350 ret = -EINVAL; 10351 goto out; 10352 } 10353 10354 leaf = path->nodes[0]; 10355 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10356 10357 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 10358 /* 10359 * It's unlikely we'll ever actually find ourselves 10360 * here, as a file small enough to fit inline won't be 10361 * big enough to store more than the swap header, but in 10362 * case something changes in the future, let's catch it 10363 * here rather than later. 10364 */ 10365 btrfs_warn(fs_info, "swapfile must not be inline"); 10366 ret = -EINVAL; 10367 goto out; 10368 } 10369 10370 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 10371 btrfs_warn(fs_info, "swapfile must not be compressed"); 10372 ret = -EINVAL; 10373 goto out; 10374 } 10375 10376 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 10377 if (disk_bytenr == 0) { 10378 btrfs_warn(fs_info, "swapfile must not have holes"); 10379 ret = -EINVAL; 10380 goto out; 10381 } 10382 10383 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei); 10384 extent_gen = btrfs_file_extent_generation(leaf, ei); 10385 prev_extent_end = btrfs_file_extent_end(path); 10386 10387 if (prev_extent_end > isize) 10388 len = isize - key.offset; 10389 else 10390 len = btrfs_file_extent_num_bytes(leaf, ei); 10391 10392 backref_ctx->curr_leaf_bytenr = leaf->start; 10393 10394 /* 10395 * Don't need the path anymore, release to avoid deadlocks when 10396 * calling btrfs_is_data_extent_shared() because when joining a 10397 * transaction it can block waiting for the current one's commit 10398 * which in turn may be trying to lock the same leaf to flush 10399 * delayed items for example. 10400 */ 10401 btrfs_release_path(path); 10402 10403 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr, 10404 extent_gen, backref_ctx); 10405 if (ret < 0) { 10406 goto out; 10407 } else if (ret > 0) { 10408 btrfs_warn(fs_info, 10409 "swapfile must not be copy-on-write"); 10410 ret = -EINVAL; 10411 goto out; 10412 } 10413 10414 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10415 if (IS_ERR(map)) { 10416 ret = PTR_ERR(map); 10417 goto out; 10418 } 10419 10420 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10421 btrfs_warn(fs_info, 10422 "swapfile must have single data profile"); 10423 ret = -EINVAL; 10424 goto out; 10425 } 10426 10427 if (device == NULL) { 10428 device = map->stripes[0].dev; 10429 ret = btrfs_add_swapfile_pin(inode, device, false); 10430 if (ret == 1) 10431 ret = 0; 10432 else if (ret) 10433 goto out; 10434 } else if (device != map->stripes[0].dev) { 10435 btrfs_warn(fs_info, "swapfile must be on one device"); 10436 ret = -EINVAL; 10437 goto out; 10438 } 10439 10440 physical_block_start = (map->stripes[0].physical + 10441 (logical_block_start - map->start)); 10442 btrfs_free_chunk_map(map); 10443 map = NULL; 10444 10445 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10446 if (!bg) { 10447 btrfs_warn(fs_info, 10448 "could not find block group containing swapfile"); 10449 ret = -EINVAL; 10450 goto out; 10451 } 10452 10453 if (!btrfs_inc_block_group_swap_extents(bg)) { 10454 btrfs_warn(fs_info, 10455 "block group for swapfile at %llu is read-only%s", 10456 bg->start, 10457 atomic_read(&fs_info->scrubs_running) ? 10458 " (scrub running)" : ""); 10459 btrfs_put_block_group(bg); 10460 ret = -EINVAL; 10461 goto out; 10462 } 10463 10464 ret = btrfs_add_swapfile_pin(inode, bg, true); 10465 if (ret) { 10466 btrfs_put_block_group(bg); 10467 if (ret == 1) 10468 ret = 0; 10469 else 10470 goto out; 10471 } 10472 10473 if (bsi.block_len && 10474 bsi.block_start + bsi.block_len == physical_block_start) { 10475 bsi.block_len += len; 10476 } else { 10477 if (bsi.block_len) { 10478 ret = btrfs_add_swap_extent(sis, &bsi); 10479 if (ret) 10480 goto out; 10481 } 10482 bsi.start = key.offset; 10483 bsi.block_start = physical_block_start; 10484 bsi.block_len = len; 10485 } 10486 10487 if (fatal_signal_pending(current)) { 10488 ret = -EINTR; 10489 goto out; 10490 } 10491 10492 cond_resched(); 10493 } 10494 10495 if (bsi.block_len) 10496 ret = btrfs_add_swap_extent(sis, &bsi); 10497 10498 out: 10499 if (!IS_ERR_OR_NULL(map)) 10500 btrfs_free_chunk_map(map); 10501 10502 btrfs_unlock_extent(io_tree, 0, isize - 1, &cached_state); 10503 10504 if (ret) 10505 btrfs_swap_deactivate(file); 10506 10507 btrfs_drew_write_unlock(&root->snapshot_lock); 10508 10509 btrfs_exclop_finish(fs_info); 10510 10511 out_unlock_mmap: 10512 up_write(&BTRFS_I(inode)->i_mmap_lock); 10513 btrfs_free_backref_share_ctx(backref_ctx); 10514 btrfs_free_path(path); 10515 if (ret) 10516 return ret; 10517 10518 if (device) 10519 sis->bdev = device->bdev; 10520 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10521 sis->max = bsi.nr_pages; 10522 sis->pages = bsi.nr_pages - 1; 10523 return bsi.nr_extents; 10524 } 10525 #else 10526 static void btrfs_swap_deactivate(struct file *file) 10527 { 10528 } 10529 10530 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10531 sector_t *span) 10532 { 10533 return -EOPNOTSUPP; 10534 } 10535 #endif 10536 10537 /* 10538 * Update the number of bytes used in the VFS' inode. When we replace extents in 10539 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10540 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10541 * always get a correct value. 10542 */ 10543 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10544 const u64 add_bytes, 10545 const u64 del_bytes) 10546 { 10547 if (add_bytes == del_bytes) 10548 return; 10549 10550 spin_lock(&inode->lock); 10551 if (del_bytes > 0) 10552 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10553 if (add_bytes > 0) 10554 inode_add_bytes(&inode->vfs_inode, add_bytes); 10555 spin_unlock(&inode->lock); 10556 } 10557 10558 /* 10559 * Verify that there are no ordered extents for a given file range. 10560 * 10561 * @inode: The target inode. 10562 * @start: Start offset of the file range, should be sector size aligned. 10563 * @end: End offset (inclusive) of the file range, its value +1 should be 10564 * sector size aligned. 10565 * 10566 * This should typically be used for cases where we locked an inode's VFS lock in 10567 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10568 * we have flushed all delalloc in the range, we have waited for all ordered 10569 * extents in the range to complete and finally we have locked the file range in 10570 * the inode's io_tree. 10571 */ 10572 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10573 { 10574 struct btrfs_root *root = inode->root; 10575 struct btrfs_ordered_extent *ordered; 10576 10577 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10578 return; 10579 10580 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10581 if (ordered) { 10582 btrfs_err(root->fs_info, 10583 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10584 start, end, btrfs_ino(inode), btrfs_root_id(root), 10585 ordered->file_offset, 10586 ordered->file_offset + ordered->num_bytes - 1); 10587 btrfs_put_ordered_extent(ordered); 10588 } 10589 10590 ASSERT(ordered == NULL); 10591 } 10592 10593 /* 10594 * Find the first inode with a minimum number. 10595 * 10596 * @root: The root to search for. 10597 * @min_ino: The minimum inode number. 10598 * 10599 * Find the first inode in the @root with a number >= @min_ino and return it. 10600 * Returns NULL if no such inode found. 10601 */ 10602 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10603 { 10604 struct btrfs_inode *inode; 10605 unsigned long from = min_ino; 10606 10607 xa_lock(&root->inodes); 10608 while (true) { 10609 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10610 if (!inode) 10611 break; 10612 if (igrab(&inode->vfs_inode)) 10613 break; 10614 10615 from = btrfs_ino(inode) + 1; 10616 cond_resched_lock(&root->inodes.xa_lock); 10617 } 10618 xa_unlock(&root->inodes); 10619 10620 return inode; 10621 } 10622 10623 static const struct inode_operations btrfs_dir_inode_operations = { 10624 .getattr = btrfs_getattr, 10625 .lookup = btrfs_lookup, 10626 .create = btrfs_create, 10627 .unlink = btrfs_unlink, 10628 .link = btrfs_link, 10629 .mkdir = btrfs_mkdir, 10630 .rmdir = btrfs_rmdir, 10631 .rename = btrfs_rename2, 10632 .symlink = btrfs_symlink, 10633 .setattr = btrfs_setattr, 10634 .mknod = btrfs_mknod, 10635 .listxattr = btrfs_listxattr, 10636 .permission = btrfs_permission, 10637 .get_inode_acl = btrfs_get_acl, 10638 .set_acl = btrfs_set_acl, 10639 .update_time = btrfs_update_time, 10640 .tmpfile = btrfs_tmpfile, 10641 .fileattr_get = btrfs_fileattr_get, 10642 .fileattr_set = btrfs_fileattr_set, 10643 }; 10644 10645 static const struct file_operations btrfs_dir_file_operations = { 10646 .llseek = btrfs_dir_llseek, 10647 .read = generic_read_dir, 10648 .iterate_shared = btrfs_real_readdir, 10649 .open = btrfs_opendir, 10650 .unlocked_ioctl = btrfs_ioctl, 10651 #ifdef CONFIG_COMPAT 10652 .compat_ioctl = btrfs_compat_ioctl, 10653 #endif 10654 .release = btrfs_release_file, 10655 .fsync = btrfs_sync_file, 10656 .setlease = generic_setlease, 10657 }; 10658 10659 /* 10660 * btrfs doesn't support the bmap operation because swapfiles 10661 * use bmap to make a mapping of extents in the file. They assume 10662 * these extents won't change over the life of the file and they 10663 * use the bmap result to do IO directly to the drive. 10664 * 10665 * the btrfs bmap call would return logical addresses that aren't 10666 * suitable for IO and they also will change frequently as COW 10667 * operations happen. So, swapfile + btrfs == corruption. 10668 * 10669 * For now we're avoiding this by dropping bmap. 10670 */ 10671 static const struct address_space_operations btrfs_aops = { 10672 .read_folio = btrfs_read_folio, 10673 .writepages = btrfs_writepages, 10674 .readahead = btrfs_readahead, 10675 .invalidate_folio = btrfs_invalidate_folio, 10676 .launder_folio = btrfs_launder_folio, 10677 .release_folio = btrfs_release_folio, 10678 .migrate_folio = btrfs_migrate_folio, 10679 .dirty_folio = filemap_dirty_folio, 10680 .error_remove_folio = generic_error_remove_folio, 10681 .swap_activate = btrfs_swap_activate, 10682 .swap_deactivate = btrfs_swap_deactivate, 10683 }; 10684 10685 static const struct inode_operations btrfs_file_inode_operations = { 10686 .getattr = btrfs_getattr, 10687 .setattr = btrfs_setattr, 10688 .listxattr = btrfs_listxattr, 10689 .permission = btrfs_permission, 10690 .fiemap = btrfs_fiemap, 10691 .get_inode_acl = btrfs_get_acl, 10692 .set_acl = btrfs_set_acl, 10693 .update_time = btrfs_update_time, 10694 .fileattr_get = btrfs_fileattr_get, 10695 .fileattr_set = btrfs_fileattr_set, 10696 }; 10697 static const struct inode_operations btrfs_special_inode_operations = { 10698 .getattr = btrfs_getattr, 10699 .setattr = btrfs_setattr, 10700 .permission = btrfs_permission, 10701 .listxattr = btrfs_listxattr, 10702 .get_inode_acl = btrfs_get_acl, 10703 .set_acl = btrfs_set_acl, 10704 .update_time = btrfs_update_time, 10705 }; 10706 static const struct inode_operations btrfs_symlink_inode_operations = { 10707 .get_link = page_get_link, 10708 .getattr = btrfs_getattr, 10709 .setattr = btrfs_setattr, 10710 .permission = btrfs_permission, 10711 .listxattr = btrfs_listxattr, 10712 .update_time = btrfs_update_time, 10713 }; 10714 10715 const struct dentry_operations btrfs_dentry_operations = { 10716 .d_delete = btrfs_dentry_delete, 10717 }; 10718