xref: /linux/fs/super.c (revision ebaeabfa5ab711a9b69b686d58329e258fdae75f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/fscrypt.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41 
42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who,
43 			     const void *freeze_owner);
44 
45 static LIST_HEAD(super_blocks);
46 static DEFINE_SPINLOCK(sb_lock);
47 
48 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 	"sb_writers",
50 	"sb_pagefaults",
51 	"sb_internal",
52 };
53 
__super_lock(struct super_block * sb,bool excl)54 static inline void __super_lock(struct super_block *sb, bool excl)
55 {
56 	if (excl)
57 		down_write(&sb->s_umount);
58 	else
59 		down_read(&sb->s_umount);
60 }
61 
super_unlock(struct super_block * sb,bool excl)62 static inline void super_unlock(struct super_block *sb, bool excl)
63 {
64 	if (excl)
65 		up_write(&sb->s_umount);
66 	else
67 		up_read(&sb->s_umount);
68 }
69 
__super_lock_excl(struct super_block * sb)70 static inline void __super_lock_excl(struct super_block *sb)
71 {
72 	__super_lock(sb, true);
73 }
74 
super_unlock_excl(struct super_block * sb)75 static inline void super_unlock_excl(struct super_block *sb)
76 {
77 	super_unlock(sb, true);
78 }
79 
super_unlock_shared(struct super_block * sb)80 static inline void super_unlock_shared(struct super_block *sb)
81 {
82 	super_unlock(sb, false);
83 }
84 
super_flags(const struct super_block * sb,unsigned int flags)85 static bool super_flags(const struct super_block *sb, unsigned int flags)
86 {
87 	/*
88 	 * Pairs with smp_store_release() in super_wake() and ensures
89 	 * that we see @flags after we're woken.
90 	 */
91 	return smp_load_acquire(&sb->s_flags) & flags;
92 }
93 
94 /**
95  * super_lock - wait for superblock to become ready and lock it
96  * @sb: superblock to wait for
97  * @excl: whether exclusive access is required
98  *
99  * If the superblock has neither passed through vfs_get_tree() or
100  * generic_shutdown_super() yet wait for it to happen. Either superblock
101  * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
102  * woken and we'll see SB_DYING.
103  *
104  * The caller must have acquired a temporary reference on @sb->s_count.
105  *
106  * Return: The function returns true if SB_BORN was set and with
107  *         s_umount held. The function returns false if SB_DYING was
108  *         set and without s_umount held.
109  */
super_lock(struct super_block * sb,bool excl)110 static __must_check bool super_lock(struct super_block *sb, bool excl)
111 {
112 	lockdep_assert_not_held(&sb->s_umount);
113 
114 	/* wait until the superblock is ready or dying */
115 	wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING));
116 
117 	/* Don't pointlessly acquire s_umount. */
118 	if (super_flags(sb, SB_DYING))
119 		return false;
120 
121 	__super_lock(sb, excl);
122 
123 	/*
124 	 * Has gone through generic_shutdown_super() in the meantime.
125 	 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
126 	 * grab a reference to this. Tell them so.
127 	 */
128 	if (sb->s_flags & SB_DYING) {
129 		super_unlock(sb, excl);
130 		return false;
131 	}
132 
133 	WARN_ON_ONCE(!(sb->s_flags & SB_BORN));
134 	return true;
135 }
136 
137 /* wait and try to acquire read-side of @sb->s_umount */
super_lock_shared(struct super_block * sb)138 static inline bool super_lock_shared(struct super_block *sb)
139 {
140 	return super_lock(sb, false);
141 }
142 
143 /* wait and try to acquire write-side of @sb->s_umount */
super_lock_excl(struct super_block * sb)144 static inline bool super_lock_excl(struct super_block *sb)
145 {
146 	return super_lock(sb, true);
147 }
148 
149 /* wake waiters */
150 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
super_wake(struct super_block * sb,unsigned int flag)151 static void super_wake(struct super_block *sb, unsigned int flag)
152 {
153 	WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
154 	WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
155 
156 	/*
157 	 * Pairs with smp_load_acquire() in super_lock() to make sure
158 	 * all initializations in the superblock are seen by the user
159 	 * seeing SB_BORN sent.
160 	 */
161 	smp_store_release(&sb->s_flags, sb->s_flags | flag);
162 	/*
163 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
164 	 * ___wait_var_event() either sees SB_BORN set or
165 	 * waitqueue_active() check in wake_up_var() sees the waiter.
166 	 */
167 	smp_mb();
168 	wake_up_var(&sb->s_flags);
169 }
170 
171 /*
172  * One thing we have to be careful of with a per-sb shrinker is that we don't
173  * drop the last active reference to the superblock from within the shrinker.
174  * If that happens we could trigger unregistering the shrinker from within the
175  * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we
176  * take a passive reference to the superblock to avoid this from occurring.
177  */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)178 static unsigned long super_cache_scan(struct shrinker *shrink,
179 				      struct shrink_control *sc)
180 {
181 	struct super_block *sb;
182 	long	fs_objects = 0;
183 	long	total_objects;
184 	long	freed = 0;
185 	long	dentries;
186 	long	inodes;
187 
188 	sb = shrink->private_data;
189 
190 	/*
191 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
192 	 * to recurse into the FS that called us in clear_inode() and friends..
193 	 */
194 	if (!(sc->gfp_mask & __GFP_FS))
195 		return SHRINK_STOP;
196 
197 	if (!super_trylock_shared(sb))
198 		return SHRINK_STOP;
199 
200 	if (sb->s_op->nr_cached_objects)
201 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
202 
203 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
204 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
205 	total_objects = dentries + inodes + fs_objects;
206 	if (!total_objects)
207 		total_objects = 1;
208 
209 	/* proportion the scan between the caches */
210 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
211 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
212 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
213 
214 	/*
215 	 * prune the dcache first as the icache is pinned by it, then
216 	 * prune the icache, followed by the filesystem specific caches
217 	 *
218 	 * Ensure that we always scan at least one object - memcg kmem
219 	 * accounting uses this to fully empty the caches.
220 	 */
221 	sc->nr_to_scan = dentries + 1;
222 	freed = prune_dcache_sb(sb, sc);
223 	sc->nr_to_scan = inodes + 1;
224 	freed += prune_icache_sb(sb, sc);
225 
226 	if (fs_objects) {
227 		sc->nr_to_scan = fs_objects + 1;
228 		freed += sb->s_op->free_cached_objects(sb, sc);
229 	}
230 
231 	super_unlock_shared(sb);
232 	return freed;
233 }
234 
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)235 static unsigned long super_cache_count(struct shrinker *shrink,
236 				       struct shrink_control *sc)
237 {
238 	struct super_block *sb;
239 	long	total_objects = 0;
240 
241 	sb = shrink->private_data;
242 
243 	/*
244 	 * We don't call super_trylock_shared() here as it is a scalability
245 	 * bottleneck, so we're exposed to partial setup state. The shrinker
246 	 * rwsem does not protect filesystem operations backing
247 	 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
248 	 * change between super_cache_count and super_cache_scan, so we really
249 	 * don't need locks here.
250 	 *
251 	 * However, if we are currently mounting the superblock, the underlying
252 	 * filesystem might be in a state of partial construction and hence it
253 	 * is dangerous to access it.  super_trylock_shared() uses a SB_BORN check
254 	 * to avoid this situation, so do the same here. The memory barrier is
255 	 * matched with the one in mount_fs() as we don't hold locks here.
256 	 */
257 	if (!(sb->s_flags & SB_BORN))
258 		return 0;
259 	smp_rmb();
260 
261 	if (sb->s_op && sb->s_op->nr_cached_objects)
262 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
263 
264 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
265 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
266 
267 	if (!total_objects)
268 		return SHRINK_EMPTY;
269 
270 	total_objects = vfs_pressure_ratio(total_objects);
271 	return total_objects;
272 }
273 
destroy_super_work(struct work_struct * work)274 static void destroy_super_work(struct work_struct *work)
275 {
276 	struct super_block *s = container_of(work, struct super_block,
277 							destroy_work);
278 	fsnotify_sb_free(s);
279 	security_sb_free(s);
280 	put_user_ns(s->s_user_ns);
281 	kfree(s->s_subtype);
282 	for (int i = 0; i < SB_FREEZE_LEVELS; i++)
283 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
284 	kfree(s);
285 }
286 
destroy_super_rcu(struct rcu_head * head)287 static void destroy_super_rcu(struct rcu_head *head)
288 {
289 	struct super_block *s = container_of(head, struct super_block, rcu);
290 	INIT_WORK(&s->destroy_work, destroy_super_work);
291 	schedule_work(&s->destroy_work);
292 }
293 
294 /* Free a superblock that has never been seen by anyone */
destroy_unused_super(struct super_block * s)295 static void destroy_unused_super(struct super_block *s)
296 {
297 	if (!s)
298 		return;
299 	super_unlock_excl(s);
300 	list_lru_destroy(&s->s_dentry_lru);
301 	list_lru_destroy(&s->s_inode_lru);
302 	shrinker_free(s->s_shrink);
303 	/* no delays needed */
304 	destroy_super_work(&s->destroy_work);
305 }
306 
307 /**
308  *	alloc_super	-	create new superblock
309  *	@type:	filesystem type superblock should belong to
310  *	@flags: the mount flags
311  *	@user_ns: User namespace for the super_block
312  *
313  *	Allocates and initializes a new &struct super_block.  alloc_super()
314  *	returns a pointer new superblock or %NULL if allocation had failed.
315  */
alloc_super(struct file_system_type * type,int flags,struct user_namespace * user_ns)316 static struct super_block *alloc_super(struct file_system_type *type, int flags,
317 				       struct user_namespace *user_ns)
318 {
319 	struct super_block *s = kzalloc(sizeof(struct super_block), GFP_KERNEL);
320 	static const struct super_operations default_op;
321 	int i;
322 
323 	if (!s)
324 		return NULL;
325 
326 	s->s_user_ns = get_user_ns(user_ns);
327 	init_rwsem(&s->s_umount);
328 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
329 	/*
330 	 * sget() can have s_umount recursion.
331 	 *
332 	 * When it cannot find a suitable sb, it allocates a new
333 	 * one (this one), and tries again to find a suitable old
334 	 * one.
335 	 *
336 	 * In case that succeeds, it will acquire the s_umount
337 	 * lock of the old one. Since these are clearly distrinct
338 	 * locks, and this object isn't exposed yet, there's no
339 	 * risk of deadlocks.
340 	 *
341 	 * Annotate this by putting this lock in a different
342 	 * subclass.
343 	 */
344 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
345 
346 	if (security_sb_alloc(s))
347 		goto fail;
348 
349 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
350 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
351 					sb_writers_name[i],
352 					&type->s_writers_key[i]))
353 			goto fail;
354 	}
355 	s->s_bdi = &noop_backing_dev_info;
356 	s->s_flags = flags;
357 	if (s->s_user_ns != &init_user_ns)
358 		s->s_iflags |= SB_I_NODEV;
359 	INIT_HLIST_NODE(&s->s_instances);
360 	INIT_HLIST_BL_HEAD(&s->s_roots);
361 	mutex_init(&s->s_sync_lock);
362 	INIT_LIST_HEAD(&s->s_inodes);
363 	spin_lock_init(&s->s_inode_list_lock);
364 	INIT_LIST_HEAD(&s->s_inodes_wb);
365 	spin_lock_init(&s->s_inode_wblist_lock);
366 
367 	s->s_count = 1;
368 	atomic_set(&s->s_active, 1);
369 	mutex_init(&s->s_vfs_rename_mutex);
370 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
371 	init_rwsem(&s->s_dquot.dqio_sem);
372 	s->s_maxbytes = MAX_NON_LFS;
373 	s->s_op = &default_op;
374 	s->s_time_gran = 1000000000;
375 	s->s_time_min = TIME64_MIN;
376 	s->s_time_max = TIME64_MAX;
377 
378 	s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
379 				     "sb-%s", type->name);
380 	if (!s->s_shrink)
381 		goto fail;
382 
383 	s->s_shrink->scan_objects = super_cache_scan;
384 	s->s_shrink->count_objects = super_cache_count;
385 	s->s_shrink->batch = 1024;
386 	s->s_shrink->private_data = s;
387 
388 	if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink))
389 		goto fail;
390 	if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink))
391 		goto fail;
392 	s->s_min_writeback_pages = MIN_WRITEBACK_PAGES;
393 	return s;
394 
395 fail:
396 	destroy_unused_super(s);
397 	return NULL;
398 }
399 
400 /* Superblock refcounting  */
401 
402 /*
403  * Drop a superblock's refcount.  The caller must hold sb_lock.
404  */
__put_super(struct super_block * s)405 static void __put_super(struct super_block *s)
406 {
407 	if (!--s->s_count) {
408 		list_del_init(&s->s_list);
409 		WARN_ON(s->s_dentry_lru.node);
410 		WARN_ON(s->s_inode_lru.node);
411 		WARN_ON(s->s_mounts);
412 		call_rcu(&s->rcu, destroy_super_rcu);
413 	}
414 }
415 
416 /**
417  *	put_super	-	drop a temporary reference to superblock
418  *	@sb: superblock in question
419  *
420  *	Drops a temporary reference, frees superblock if there's no
421  *	references left.
422  */
put_super(struct super_block * sb)423 void put_super(struct super_block *sb)
424 {
425 	spin_lock(&sb_lock);
426 	__put_super(sb);
427 	spin_unlock(&sb_lock);
428 }
429 
kill_super_notify(struct super_block * sb)430 static void kill_super_notify(struct super_block *sb)
431 {
432 	lockdep_assert_not_held(&sb->s_umount);
433 
434 	/* already notified earlier */
435 	if (sb->s_flags & SB_DEAD)
436 		return;
437 
438 	/*
439 	 * Remove it from @fs_supers so it isn't found by new
440 	 * sget{_fc}() walkers anymore. Any concurrent mounter still
441 	 * managing to grab a temporary reference is guaranteed to
442 	 * already see SB_DYING and will wait until we notify them about
443 	 * SB_DEAD.
444 	 */
445 	spin_lock(&sb_lock);
446 	hlist_del_init(&sb->s_instances);
447 	spin_unlock(&sb_lock);
448 
449 	/*
450 	 * Let concurrent mounts know that this thing is really dead.
451 	 * We don't need @sb->s_umount here as every concurrent caller
452 	 * will see SB_DYING and either discard the superblock or wait
453 	 * for SB_DEAD.
454 	 */
455 	super_wake(sb, SB_DEAD);
456 }
457 
458 /**
459  *	deactivate_locked_super	-	drop an active reference to superblock
460  *	@s: superblock to deactivate
461  *
462  *	Drops an active reference to superblock, converting it into a temporary
463  *	one if there is no other active references left.  In that case we
464  *	tell fs driver to shut it down and drop the temporary reference we
465  *	had just acquired.
466  *
467  *	Caller holds exclusive lock on superblock; that lock is released.
468  */
deactivate_locked_super(struct super_block * s)469 void deactivate_locked_super(struct super_block *s)
470 {
471 	struct file_system_type *fs = s->s_type;
472 	if (atomic_dec_and_test(&s->s_active)) {
473 		shrinker_free(s->s_shrink);
474 		fs->kill_sb(s);
475 
476 		kill_super_notify(s);
477 
478 		/*
479 		 * Since list_lru_destroy() may sleep, we cannot call it from
480 		 * put_super(), where we hold the sb_lock. Therefore we destroy
481 		 * the lru lists right now.
482 		 */
483 		list_lru_destroy(&s->s_dentry_lru);
484 		list_lru_destroy(&s->s_inode_lru);
485 
486 		put_filesystem(fs);
487 		put_super(s);
488 	} else {
489 		super_unlock_excl(s);
490 	}
491 }
492 
493 EXPORT_SYMBOL(deactivate_locked_super);
494 
495 /**
496  *	deactivate_super	-	drop an active reference to superblock
497  *	@s: superblock to deactivate
498  *
499  *	Variant of deactivate_locked_super(), except that superblock is *not*
500  *	locked by caller.  If we are going to drop the final active reference,
501  *	lock will be acquired prior to that.
502  */
deactivate_super(struct super_block * s)503 void deactivate_super(struct super_block *s)
504 {
505 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
506 		__super_lock_excl(s);
507 		deactivate_locked_super(s);
508 	}
509 }
510 
511 EXPORT_SYMBOL(deactivate_super);
512 
513 /**
514  * grab_super - acquire an active reference to a superblock
515  * @sb: superblock to acquire
516  *
517  * Acquire a temporary reference on a superblock and try to trade it for
518  * an active reference. This is used in sget{_fc}() to wait for a
519  * superblock to either become SB_BORN or for it to pass through
520  * sb->kill() and be marked as SB_DEAD.
521  *
522  * Return: This returns true if an active reference could be acquired,
523  *         false if not.
524  */
grab_super(struct super_block * sb)525 static bool grab_super(struct super_block *sb)
526 {
527 	bool locked;
528 
529 	sb->s_count++;
530 	spin_unlock(&sb_lock);
531 	locked = super_lock_excl(sb);
532 	if (locked) {
533 		if (atomic_inc_not_zero(&sb->s_active)) {
534 			put_super(sb);
535 			return true;
536 		}
537 		super_unlock_excl(sb);
538 	}
539 	wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD));
540 	put_super(sb);
541 	return false;
542 }
543 
544 /*
545  *	super_trylock_shared - try to grab ->s_umount shared
546  *	@sb: reference we are trying to grab
547  *
548  *	Try to prevent fs shutdown.  This is used in places where we
549  *	cannot take an active reference but we need to ensure that the
550  *	filesystem is not shut down while we are working on it. It returns
551  *	false if we cannot acquire s_umount or if we lose the race and
552  *	filesystem already got into shutdown, and returns true with the s_umount
553  *	lock held in read mode in case of success. On successful return,
554  *	the caller must drop the s_umount lock when done.
555  *
556  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
557  *	The reason why it's safe is that we are OK with doing trylock instead
558  *	of down_read().  There's a couple of places that are OK with that, but
559  *	it's very much not a general-purpose interface.
560  */
super_trylock_shared(struct super_block * sb)561 bool super_trylock_shared(struct super_block *sb)
562 {
563 	if (down_read_trylock(&sb->s_umount)) {
564 		if (!(sb->s_flags & SB_DYING) && sb->s_root &&
565 		    (sb->s_flags & SB_BORN))
566 			return true;
567 		super_unlock_shared(sb);
568 	}
569 
570 	return false;
571 }
572 
573 /**
574  *	retire_super	-	prevents superblock from being reused
575  *	@sb: superblock to retire
576  *
577  *	The function marks superblock to be ignored in superblock test, which
578  *	prevents it from being reused for any new mounts.  If the superblock has
579  *	a private bdi, it also unregisters it, but doesn't reduce the refcount
580  *	of the superblock to prevent potential races.  The refcount is reduced
581  *	by generic_shutdown_super().  The function can not be called
582  *	concurrently with generic_shutdown_super().  It is safe to call the
583  *	function multiple times, subsequent calls have no effect.
584  *
585  *	The marker will affect the re-use only for block-device-based
586  *	superblocks.  Other superblocks will still get marked if this function
587  *	is used, but that will not affect their reusability.
588  */
retire_super(struct super_block * sb)589 void retire_super(struct super_block *sb)
590 {
591 	WARN_ON(!sb->s_bdev);
592 	__super_lock_excl(sb);
593 	if (sb->s_iflags & SB_I_PERSB_BDI) {
594 		bdi_unregister(sb->s_bdi);
595 		sb->s_iflags &= ~SB_I_PERSB_BDI;
596 	}
597 	sb->s_iflags |= SB_I_RETIRED;
598 	super_unlock_excl(sb);
599 }
600 EXPORT_SYMBOL(retire_super);
601 
602 /**
603  *	generic_shutdown_super	-	common helper for ->kill_sb()
604  *	@sb: superblock to kill
605  *
606  *	generic_shutdown_super() does all fs-independent work on superblock
607  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
608  *	that need destruction out of superblock, call generic_shutdown_super()
609  *	and release aforementioned objects.  Note: dentries and inodes _are_
610  *	taken care of and do not need specific handling.
611  *
612  *	Upon calling this function, the filesystem may no longer alter or
613  *	rearrange the set of dentries belonging to this super_block, nor may it
614  *	change the attachments of dentries to inodes.
615  */
generic_shutdown_super(struct super_block * sb)616 void generic_shutdown_super(struct super_block *sb)
617 {
618 	const struct super_operations *sop = sb->s_op;
619 
620 	if (sb->s_root) {
621 		shrink_dcache_for_umount(sb);
622 		sync_filesystem(sb);
623 		sb->s_flags &= ~SB_ACTIVE;
624 
625 		cgroup_writeback_umount(sb);
626 
627 		/* Evict all inodes with zero refcount. */
628 		evict_inodes(sb);
629 
630 		/*
631 		 * Clean up and evict any inodes that still have references due
632 		 * to fsnotify or the security policy.
633 		 */
634 		fsnotify_sb_delete(sb);
635 		security_sb_delete(sb);
636 
637 		if (sb->s_dio_done_wq) {
638 			destroy_workqueue(sb->s_dio_done_wq);
639 			sb->s_dio_done_wq = NULL;
640 		}
641 
642 		if (sop->put_super)
643 			sop->put_super(sb);
644 
645 		/*
646 		 * Now that all potentially-encrypted inodes have been evicted,
647 		 * the fscrypt keyring can be destroyed.
648 		 */
649 		fscrypt_destroy_keyring(sb);
650 
651 		if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes), NULL,
652 				"VFS: Busy inodes after unmount of %s (%s)",
653 				sb->s_id, sb->s_type->name)) {
654 			/*
655 			 * Adding a proper bailout path here would be hard, but
656 			 * we can at least make it more likely that a later
657 			 * iput_final() or such crashes cleanly.
658 			 */
659 			struct inode *inode;
660 
661 			spin_lock(&sb->s_inode_list_lock);
662 			list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
663 				inode->i_op = VFS_PTR_POISON;
664 				inode->i_sb = VFS_PTR_POISON;
665 				inode->i_mapping = VFS_PTR_POISON;
666 			}
667 			spin_unlock(&sb->s_inode_list_lock);
668 		}
669 	}
670 	/*
671 	 * Broadcast to everyone that grabbed a temporary reference to this
672 	 * superblock before we removed it from @fs_supers that the superblock
673 	 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
674 	 * discard this superblock and treat it as dead.
675 	 *
676 	 * We leave the superblock on @fs_supers so it can be found by
677 	 * sget{_fc}() until we passed sb->kill_sb().
678 	 */
679 	super_wake(sb, SB_DYING);
680 	super_unlock_excl(sb);
681 	if (sb->s_bdi != &noop_backing_dev_info) {
682 		if (sb->s_iflags & SB_I_PERSB_BDI)
683 			bdi_unregister(sb->s_bdi);
684 		bdi_put(sb->s_bdi);
685 		sb->s_bdi = &noop_backing_dev_info;
686 	}
687 }
688 
689 EXPORT_SYMBOL(generic_shutdown_super);
690 
mount_capable(struct fs_context * fc)691 bool mount_capable(struct fs_context *fc)
692 {
693 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
694 		return capable(CAP_SYS_ADMIN);
695 	else
696 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
697 }
698 
699 /**
700  * sget_fc - Find or create a superblock
701  * @fc:	Filesystem context.
702  * @test: Comparison callback
703  * @set: Setup callback
704  *
705  * Create a new superblock or find an existing one.
706  *
707  * The @test callback is used to find a matching existing superblock.
708  * Whether or not the requested parameters in @fc are taken into account
709  * is specific to the @test callback that is used. They may even be
710  * completely ignored.
711  *
712  * If an extant superblock is matched, it will be returned unless:
713  *
714  * (1) the namespace the filesystem context @fc and the extant
715  *     superblock's namespace differ
716  *
717  * (2) the filesystem context @fc has requested that reusing an extant
718  *     superblock is not allowed
719  *
720  * In both cases EBUSY will be returned.
721  *
722  * If no match is made, a new superblock will be allocated and basic
723  * initialisation will be performed (s_type, s_fs_info and s_id will be
724  * set and the @set callback will be invoked), the superblock will be
725  * published and it will be returned in a partially constructed state
726  * with SB_BORN and SB_ACTIVE as yet unset.
727  *
728  * Return: On success, an extant or newly created superblock is
729  *         returned. On failure an error pointer is returned.
730  */
sget_fc(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* set)(struct super_block *,struct fs_context *))731 struct super_block *sget_fc(struct fs_context *fc,
732 			    int (*test)(struct super_block *, struct fs_context *),
733 			    int (*set)(struct super_block *, struct fs_context *))
734 {
735 	struct super_block *s = NULL;
736 	struct super_block *old;
737 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
738 	int err;
739 
740 	/*
741 	 * Never allow s_user_ns != &init_user_ns when FS_USERNS_MOUNT is
742 	 * not set, as the filesystem is likely unprepared to handle it.
743 	 * This can happen when fsconfig() is called from init_user_ns with
744 	 * an fs_fd opened in another user namespace.
745 	 */
746 	if (user_ns != &init_user_ns && !(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) {
747 		errorfc(fc, "VFS: Mounting from non-initial user namespace is not allowed");
748 		return ERR_PTR(-EPERM);
749 	}
750 
751 retry:
752 	spin_lock(&sb_lock);
753 	if (test) {
754 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
755 			if (test(old, fc))
756 				goto share_extant_sb;
757 		}
758 	}
759 	if (!s) {
760 		spin_unlock(&sb_lock);
761 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
762 		if (!s)
763 			return ERR_PTR(-ENOMEM);
764 		goto retry;
765 	}
766 
767 	s->s_fs_info = fc->s_fs_info;
768 	err = set(s, fc);
769 	if (err) {
770 		s->s_fs_info = NULL;
771 		spin_unlock(&sb_lock);
772 		destroy_unused_super(s);
773 		return ERR_PTR(err);
774 	}
775 	fc->s_fs_info = NULL;
776 	s->s_type = fc->fs_type;
777 	s->s_iflags |= fc->s_iflags;
778 	strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
779 	/*
780 	 * Make the superblock visible on @super_blocks and @fs_supers.
781 	 * It's in a nascent state and users should wait on SB_BORN or
782 	 * SB_DYING to be set.
783 	 */
784 	list_add_tail(&s->s_list, &super_blocks);
785 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
786 	spin_unlock(&sb_lock);
787 	get_filesystem(s->s_type);
788 	shrinker_register(s->s_shrink);
789 	return s;
790 
791 share_extant_sb:
792 	if (user_ns != old->s_user_ns || fc->exclusive) {
793 		spin_unlock(&sb_lock);
794 		destroy_unused_super(s);
795 		if (fc->exclusive)
796 			warnfc(fc, "reusing existing filesystem not allowed");
797 		else
798 			warnfc(fc, "reusing existing filesystem in another namespace not allowed");
799 		return ERR_PTR(-EBUSY);
800 	}
801 	if (!grab_super(old))
802 		goto retry;
803 	destroy_unused_super(s);
804 	return old;
805 }
806 EXPORT_SYMBOL(sget_fc);
807 
808 /**
809  *	sget	-	find or create a superblock
810  *	@type:	  filesystem type superblock should belong to
811  *	@test:	  comparison callback
812  *	@set:	  setup callback
813  *	@flags:	  mount flags
814  *	@data:	  argument to each of them
815  */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)816 struct super_block *sget(struct file_system_type *type,
817 			int (*test)(struct super_block *,void *),
818 			int (*set)(struct super_block *,void *),
819 			int flags,
820 			void *data)
821 {
822 	struct user_namespace *user_ns = current_user_ns();
823 	struct super_block *s = NULL;
824 	struct super_block *old;
825 	int err;
826 
827 retry:
828 	spin_lock(&sb_lock);
829 	if (test) {
830 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
831 			if (!test(old, data))
832 				continue;
833 			if (user_ns != old->s_user_ns) {
834 				spin_unlock(&sb_lock);
835 				destroy_unused_super(s);
836 				return ERR_PTR(-EBUSY);
837 			}
838 			if (!grab_super(old))
839 				goto retry;
840 			destroy_unused_super(s);
841 			return old;
842 		}
843 	}
844 	if (!s) {
845 		spin_unlock(&sb_lock);
846 		s = alloc_super(type, flags, user_ns);
847 		if (!s)
848 			return ERR_PTR(-ENOMEM);
849 		goto retry;
850 	}
851 
852 	err = set(s, data);
853 	if (err) {
854 		spin_unlock(&sb_lock);
855 		destroy_unused_super(s);
856 		return ERR_PTR(err);
857 	}
858 	s->s_type = type;
859 	strscpy(s->s_id, type->name, sizeof(s->s_id));
860 	list_add_tail(&s->s_list, &super_blocks);
861 	hlist_add_head(&s->s_instances, &type->fs_supers);
862 	spin_unlock(&sb_lock);
863 	get_filesystem(type);
864 	shrinker_register(s->s_shrink);
865 	return s;
866 }
867 EXPORT_SYMBOL(sget);
868 
drop_super(struct super_block * sb)869 void drop_super(struct super_block *sb)
870 {
871 	super_unlock_shared(sb);
872 	put_super(sb);
873 }
874 
875 EXPORT_SYMBOL(drop_super);
876 
drop_super_exclusive(struct super_block * sb)877 void drop_super_exclusive(struct super_block *sb)
878 {
879 	super_unlock_excl(sb);
880 	put_super(sb);
881 }
882 EXPORT_SYMBOL(drop_super_exclusive);
883 
884 enum super_iter_flags_t {
885 	SUPER_ITER_EXCL		= (1U << 0),
886 	SUPER_ITER_UNLOCKED	= (1U << 1),
887 	SUPER_ITER_REVERSE	= (1U << 2),
888 };
889 
first_super(enum super_iter_flags_t flags)890 static inline struct super_block *first_super(enum super_iter_flags_t flags)
891 {
892 	if (flags & SUPER_ITER_REVERSE)
893 		return list_last_entry(&super_blocks, struct super_block, s_list);
894 	return list_first_entry(&super_blocks, struct super_block, s_list);
895 }
896 
next_super(struct super_block * sb,enum super_iter_flags_t flags)897 static inline struct super_block *next_super(struct super_block *sb,
898 					     enum super_iter_flags_t flags)
899 {
900 	if (flags & SUPER_ITER_REVERSE)
901 		return list_prev_entry(sb, s_list);
902 	return list_next_entry(sb, s_list);
903 }
904 
__iterate_supers(void (* f)(struct super_block *,void *),void * arg,enum super_iter_flags_t flags)905 static void __iterate_supers(void (*f)(struct super_block *, void *), void *arg,
906 			     enum super_iter_flags_t flags)
907 {
908 	struct super_block *sb, *p = NULL;
909 	bool excl = flags & SUPER_ITER_EXCL;
910 
911 	guard(spinlock)(&sb_lock);
912 
913 	for (sb = first_super(flags);
914 	     !list_entry_is_head(sb, &super_blocks, s_list);
915 	     sb = next_super(sb, flags)) {
916 		if (super_flags(sb, SB_DYING))
917 			continue;
918 		sb->s_count++;
919 		spin_unlock(&sb_lock);
920 
921 		if (flags & SUPER_ITER_UNLOCKED) {
922 			f(sb, arg);
923 		} else if (super_lock(sb, excl)) {
924 			f(sb, arg);
925 			super_unlock(sb, excl);
926 		}
927 
928 		spin_lock(&sb_lock);
929 		if (p)
930 			__put_super(p);
931 		p = sb;
932 	}
933 	if (p)
934 		__put_super(p);
935 }
936 
iterate_supers(void (* f)(struct super_block *,void *),void * arg)937 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
938 {
939 	__iterate_supers(f, arg, 0);
940 }
941 
942 /**
943  *	iterate_supers_type - call function for superblocks of given type
944  *	@type: fs type
945  *	@f: function to call
946  *	@arg: argument to pass to it
947  *
948  *	Scans the superblock list and calls given function, passing it
949  *	locked superblock and given argument.
950  */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)951 void iterate_supers_type(struct file_system_type *type,
952 	void (*f)(struct super_block *, void *), void *arg)
953 {
954 	struct super_block *sb, *p = NULL;
955 
956 	spin_lock(&sb_lock);
957 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
958 		bool locked;
959 
960 		if (super_flags(sb, SB_DYING))
961 			continue;
962 
963 		sb->s_count++;
964 		spin_unlock(&sb_lock);
965 
966 		locked = super_lock_shared(sb);
967 		if (locked) {
968 			f(sb, arg);
969 			super_unlock_shared(sb);
970 		}
971 
972 		spin_lock(&sb_lock);
973 		if (p)
974 			__put_super(p);
975 		p = sb;
976 	}
977 	if (p)
978 		__put_super(p);
979 	spin_unlock(&sb_lock);
980 }
981 
982 EXPORT_SYMBOL(iterate_supers_type);
983 
user_get_super(dev_t dev,bool excl)984 struct super_block *user_get_super(dev_t dev, bool excl)
985 {
986 	struct super_block *sb;
987 
988 	spin_lock(&sb_lock);
989 	list_for_each_entry(sb, &super_blocks, s_list) {
990 		bool locked;
991 
992 		if (sb->s_dev != dev)
993 			continue;
994 
995 		sb->s_count++;
996 		spin_unlock(&sb_lock);
997 
998 		locked = super_lock(sb, excl);
999 		if (locked)
1000 			return sb;
1001 
1002 		spin_lock(&sb_lock);
1003 		__put_super(sb);
1004 		break;
1005 	}
1006 	spin_unlock(&sb_lock);
1007 	return NULL;
1008 }
1009 
1010 /**
1011  * reconfigure_super - asks filesystem to change superblock parameters
1012  * @fc: The superblock and configuration
1013  *
1014  * Alters the configuration parameters of a live superblock.
1015  */
reconfigure_super(struct fs_context * fc)1016 int reconfigure_super(struct fs_context *fc)
1017 {
1018 	struct super_block *sb = fc->root->d_sb;
1019 	int retval;
1020 	bool remount_ro = false;
1021 	bool remount_rw = false;
1022 	bool force = fc->sb_flags & SB_FORCE;
1023 
1024 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
1025 		return -EINVAL;
1026 	if (sb->s_writers.frozen != SB_UNFROZEN)
1027 		return -EBUSY;
1028 
1029 	retval = security_sb_remount(sb, fc->security);
1030 	if (retval)
1031 		return retval;
1032 
1033 	if (fc->sb_flags_mask & SB_RDONLY) {
1034 #ifdef CONFIG_BLOCK
1035 		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
1036 		    bdev_read_only(sb->s_bdev))
1037 			return -EACCES;
1038 #endif
1039 		remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
1040 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
1041 	}
1042 
1043 	if (remount_ro) {
1044 		if (!hlist_empty(&sb->s_pins)) {
1045 			super_unlock_excl(sb);
1046 			group_pin_kill(&sb->s_pins);
1047 			__super_lock_excl(sb);
1048 			if (!sb->s_root)
1049 				return 0;
1050 			if (sb->s_writers.frozen != SB_UNFROZEN)
1051 				return -EBUSY;
1052 			remount_ro = !sb_rdonly(sb);
1053 		}
1054 	}
1055 	shrink_dcache_sb(sb);
1056 
1057 	/* If we are reconfiguring to RDONLY and current sb is read/write,
1058 	 * make sure there are no files open for writing.
1059 	 */
1060 	if (remount_ro) {
1061 		if (force) {
1062 			sb_start_ro_state_change(sb);
1063 		} else {
1064 			retval = sb_prepare_remount_readonly(sb);
1065 			if (retval)
1066 				return retval;
1067 		}
1068 	} else if (remount_rw) {
1069 		/*
1070 		 * Protect filesystem's reconfigure code from writes from
1071 		 * userspace until reconfigure finishes.
1072 		 */
1073 		sb_start_ro_state_change(sb);
1074 	}
1075 
1076 	if (fc->ops->reconfigure) {
1077 		retval = fc->ops->reconfigure(fc);
1078 		if (retval) {
1079 			if (!force)
1080 				goto cancel_readonly;
1081 			/* If forced remount, go ahead despite any errors */
1082 			WARN(1, "forced remount of a %s fs returned %i\n",
1083 			     sb->s_type->name, retval);
1084 		}
1085 	}
1086 
1087 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
1088 				 (fc->sb_flags & fc->sb_flags_mask)));
1089 	sb_end_ro_state_change(sb);
1090 
1091 	/*
1092 	 * Some filesystems modify their metadata via some other path than the
1093 	 * bdev buffer cache (eg. use a private mapping, or directories in
1094 	 * pagecache, etc). Also file data modifications go via their own
1095 	 * mappings. So If we try to mount readonly then copy the filesystem
1096 	 * from bdev, we could get stale data, so invalidate it to give a best
1097 	 * effort at coherency.
1098 	 */
1099 	if (remount_ro && sb->s_bdev)
1100 		invalidate_bdev(sb->s_bdev);
1101 	return 0;
1102 
1103 cancel_readonly:
1104 	sb_end_ro_state_change(sb);
1105 	return retval;
1106 }
1107 
do_emergency_remount_callback(struct super_block * sb,void * unused)1108 static void do_emergency_remount_callback(struct super_block *sb, void *unused)
1109 {
1110 	if (sb->s_bdev && !sb_rdonly(sb)) {
1111 		struct fs_context *fc;
1112 
1113 		fc = fs_context_for_reconfigure(sb->s_root,
1114 					SB_RDONLY | SB_FORCE, SB_RDONLY);
1115 		if (!IS_ERR(fc)) {
1116 			if (parse_monolithic_mount_data(fc, NULL) == 0)
1117 				(void)reconfigure_super(fc);
1118 			put_fs_context(fc);
1119 		}
1120 	}
1121 }
1122 
do_emergency_remount(struct work_struct * work)1123 static void do_emergency_remount(struct work_struct *work)
1124 {
1125 	__iterate_supers(do_emergency_remount_callback, NULL,
1126 			 SUPER_ITER_EXCL | SUPER_ITER_REVERSE);
1127 	kfree(work);
1128 	printk("Emergency Remount complete\n");
1129 }
1130 
emergency_remount(void)1131 void emergency_remount(void)
1132 {
1133 	struct work_struct *work;
1134 
1135 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1136 	if (work) {
1137 		INIT_WORK(work, do_emergency_remount);
1138 		schedule_work(work);
1139 	}
1140 }
1141 
do_thaw_all_callback(struct super_block * sb,void * unused)1142 static void do_thaw_all_callback(struct super_block *sb, void *unused)
1143 {
1144 	if (IS_ENABLED(CONFIG_BLOCK))
1145 		while (sb->s_bdev && !bdev_thaw(sb->s_bdev))
1146 			pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
1147 	thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE, NULL);
1148 	return;
1149 }
1150 
do_thaw_all(struct work_struct * work)1151 static void do_thaw_all(struct work_struct *work)
1152 {
1153 	__iterate_supers(do_thaw_all_callback, NULL, SUPER_ITER_EXCL);
1154 	kfree(work);
1155 	printk(KERN_WARNING "Emergency Thaw complete\n");
1156 }
1157 
1158 /**
1159  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1160  *
1161  * Used for emergency unfreeze of all filesystems via SysRq
1162  */
emergency_thaw_all(void)1163 void emergency_thaw_all(void)
1164 {
1165 	struct work_struct *work;
1166 
1167 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1168 	if (work) {
1169 		INIT_WORK(work, do_thaw_all);
1170 		schedule_work(work);
1171 	}
1172 }
1173 
get_active_super(struct super_block * sb)1174 static inline bool get_active_super(struct super_block *sb)
1175 {
1176 	bool active = false;
1177 
1178 	if (super_lock_excl(sb)) {
1179 		active = atomic_inc_not_zero(&sb->s_active);
1180 		super_unlock_excl(sb);
1181 	}
1182 	return active;
1183 }
1184 
1185 static const char *filesystems_freeze_ptr = "filesystems_freeze";
1186 
filesystems_freeze_callback(struct super_block * sb,void * freeze_all_ptr)1187 static void filesystems_freeze_callback(struct super_block *sb, void *freeze_all_ptr)
1188 {
1189 	if (!sb->s_op->freeze_fs && !sb->s_op->freeze_super)
1190 		return;
1191 
1192 	if (freeze_all_ptr && !(sb->s_type->fs_flags & FS_POWER_FREEZE))
1193 		return;
1194 
1195 	if (!get_active_super(sb))
1196 		return;
1197 
1198 	if (sb->s_op->freeze_super)
1199 		sb->s_op->freeze_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL,
1200 				       filesystems_freeze_ptr);
1201 	else
1202 		freeze_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL,
1203 			     filesystems_freeze_ptr);
1204 
1205 	deactivate_super(sb);
1206 }
1207 
filesystems_freeze(bool freeze_all)1208 void filesystems_freeze(bool freeze_all)
1209 {
1210 	void *freeze_all_ptr = NULL;
1211 
1212 	if (freeze_all)
1213 		freeze_all_ptr = &freeze_all;
1214 	__iterate_supers(filesystems_freeze_callback, freeze_all_ptr,
1215 			 SUPER_ITER_UNLOCKED | SUPER_ITER_REVERSE);
1216 }
1217 
filesystems_thaw_callback(struct super_block * sb,void * unused)1218 static void filesystems_thaw_callback(struct super_block *sb, void *unused)
1219 {
1220 	if (!sb->s_op->freeze_fs && !sb->s_op->freeze_super)
1221 		return;
1222 
1223 	if (!get_active_super(sb))
1224 		return;
1225 
1226 	if (sb->s_op->thaw_super)
1227 		sb->s_op->thaw_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL,
1228 				     filesystems_freeze_ptr);
1229 	else
1230 		thaw_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL,
1231 			   filesystems_freeze_ptr);
1232 
1233 	deactivate_super(sb);
1234 }
1235 
filesystems_thaw(void)1236 void filesystems_thaw(void)
1237 {
1238 	__iterate_supers(filesystems_thaw_callback, NULL, SUPER_ITER_UNLOCKED);
1239 }
1240 
1241 static DEFINE_IDA(unnamed_dev_ida);
1242 
1243 /**
1244  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1245  * @p: Pointer to a dev_t.
1246  *
1247  * Filesystems which don't use real block devices can call this function
1248  * to allocate a virtual block device.
1249  *
1250  * Context: Any context.  Frequently called while holding sb_lock.
1251  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1252  * or -ENOMEM if memory allocation failed.
1253  */
get_anon_bdev(dev_t * p)1254 int get_anon_bdev(dev_t *p)
1255 {
1256 	int dev;
1257 
1258 	/*
1259 	 * Many userspace utilities consider an FSID of 0 invalid.
1260 	 * Always return at least 1 from get_anon_bdev.
1261 	 */
1262 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1263 			GFP_ATOMIC);
1264 	if (dev == -ENOSPC)
1265 		dev = -EMFILE;
1266 	if (dev < 0)
1267 		return dev;
1268 
1269 	*p = MKDEV(0, dev);
1270 	return 0;
1271 }
1272 EXPORT_SYMBOL(get_anon_bdev);
1273 
free_anon_bdev(dev_t dev)1274 void free_anon_bdev(dev_t dev)
1275 {
1276 	ida_free(&unnamed_dev_ida, MINOR(dev));
1277 }
1278 EXPORT_SYMBOL(free_anon_bdev);
1279 
set_anon_super(struct super_block * s,void * data)1280 int set_anon_super(struct super_block *s, void *data)
1281 {
1282 	return get_anon_bdev(&s->s_dev);
1283 }
1284 EXPORT_SYMBOL(set_anon_super);
1285 
kill_anon_super(struct super_block * sb)1286 void kill_anon_super(struct super_block *sb)
1287 {
1288 	dev_t dev = sb->s_dev;
1289 	generic_shutdown_super(sb);
1290 	kill_super_notify(sb);
1291 	free_anon_bdev(dev);
1292 }
1293 EXPORT_SYMBOL(kill_anon_super);
1294 
kill_litter_super(struct super_block * sb)1295 void kill_litter_super(struct super_block *sb)
1296 {
1297 	if (sb->s_root)
1298 		d_genocide(sb->s_root);
1299 	kill_anon_super(sb);
1300 }
1301 EXPORT_SYMBOL(kill_litter_super);
1302 
set_anon_super_fc(struct super_block * sb,struct fs_context * fc)1303 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1304 {
1305 	return set_anon_super(sb, NULL);
1306 }
1307 EXPORT_SYMBOL(set_anon_super_fc);
1308 
test_keyed_super(struct super_block * sb,struct fs_context * fc)1309 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1310 {
1311 	return sb->s_fs_info == fc->s_fs_info;
1312 }
1313 
test_single_super(struct super_block * s,struct fs_context * fc)1314 static int test_single_super(struct super_block *s, struct fs_context *fc)
1315 {
1316 	return 1;
1317 }
1318 
vfs_get_super(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* fill_super)(struct super_block * sb,struct fs_context * fc))1319 static int vfs_get_super(struct fs_context *fc,
1320 		int (*test)(struct super_block *, struct fs_context *),
1321 		int (*fill_super)(struct super_block *sb,
1322 				  struct fs_context *fc))
1323 {
1324 	struct super_block *sb;
1325 	int err;
1326 
1327 	sb = sget_fc(fc, test, set_anon_super_fc);
1328 	if (IS_ERR(sb))
1329 		return PTR_ERR(sb);
1330 
1331 	if (!sb->s_root) {
1332 		err = fill_super(sb, fc);
1333 		if (err)
1334 			goto error;
1335 
1336 		sb->s_flags |= SB_ACTIVE;
1337 	}
1338 
1339 	fc->root = dget(sb->s_root);
1340 	return 0;
1341 
1342 error:
1343 	deactivate_locked_super(sb);
1344 	return err;
1345 }
1346 
get_tree_nodev(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1347 int get_tree_nodev(struct fs_context *fc,
1348 		  int (*fill_super)(struct super_block *sb,
1349 				    struct fs_context *fc))
1350 {
1351 	return vfs_get_super(fc, NULL, fill_super);
1352 }
1353 EXPORT_SYMBOL(get_tree_nodev);
1354 
get_tree_single(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1355 int get_tree_single(struct fs_context *fc,
1356 		  int (*fill_super)(struct super_block *sb,
1357 				    struct fs_context *fc))
1358 {
1359 	return vfs_get_super(fc, test_single_super, fill_super);
1360 }
1361 EXPORT_SYMBOL(get_tree_single);
1362 
get_tree_keyed(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc),void * key)1363 int get_tree_keyed(struct fs_context *fc,
1364 		  int (*fill_super)(struct super_block *sb,
1365 				    struct fs_context *fc),
1366 		void *key)
1367 {
1368 	fc->s_fs_info = key;
1369 	return vfs_get_super(fc, test_keyed_super, fill_super);
1370 }
1371 EXPORT_SYMBOL(get_tree_keyed);
1372 
set_bdev_super(struct super_block * s,void * data)1373 static int set_bdev_super(struct super_block *s, void *data)
1374 {
1375 	s->s_dev = *(dev_t *)data;
1376 	return 0;
1377 }
1378 
super_s_dev_set(struct super_block * s,struct fs_context * fc)1379 static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
1380 {
1381 	return set_bdev_super(s, fc->sget_key);
1382 }
1383 
super_s_dev_test(struct super_block * s,struct fs_context * fc)1384 static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
1385 {
1386 	return !(s->s_iflags & SB_I_RETIRED) &&
1387 		s->s_dev == *(dev_t *)fc->sget_key;
1388 }
1389 
1390 /**
1391  * sget_dev - Find or create a superblock by device number
1392  * @fc: Filesystem context.
1393  * @dev: device number
1394  *
1395  * Find or create a superblock using the provided device number that
1396  * will be stored in fc->sget_key.
1397  *
1398  * If an extant superblock is matched, then that will be returned with
1399  * an elevated reference count that the caller must transfer or discard.
1400  *
1401  * If no match is made, a new superblock will be allocated and basic
1402  * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
1403  * be set). The superblock will be published and it will be returned in
1404  * a partially constructed state with SB_BORN and SB_ACTIVE as yet
1405  * unset.
1406  *
1407  * Return: an existing or newly created superblock on success, an error
1408  *         pointer on failure.
1409  */
sget_dev(struct fs_context * fc,dev_t dev)1410 struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
1411 {
1412 	fc->sget_key = &dev;
1413 	return sget_fc(fc, super_s_dev_test, super_s_dev_set);
1414 }
1415 EXPORT_SYMBOL(sget_dev);
1416 
1417 #ifdef CONFIG_BLOCK
1418 /*
1419  * Lock the superblock that is holder of the bdev. Returns the superblock
1420  * pointer if we successfully locked the superblock and it is alive. Otherwise
1421  * we return NULL and just unlock bdev->bd_holder_lock.
1422  *
1423  * The function must be called with bdev->bd_holder_lock and releases it.
1424  */
bdev_super_lock(struct block_device * bdev,bool excl)1425 static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl)
1426 	__releases(&bdev->bd_holder_lock)
1427 {
1428 	struct super_block *sb = bdev->bd_holder;
1429 	bool locked;
1430 
1431 	lockdep_assert_held(&bdev->bd_holder_lock);
1432 	lockdep_assert_not_held(&sb->s_umount);
1433 	lockdep_assert_not_held(&bdev->bd_disk->open_mutex);
1434 
1435 	/* Make sure sb doesn't go away from under us */
1436 	spin_lock(&sb_lock);
1437 	sb->s_count++;
1438 	spin_unlock(&sb_lock);
1439 
1440 	mutex_unlock(&bdev->bd_holder_lock);
1441 
1442 	locked = super_lock(sb, excl);
1443 
1444 	/*
1445 	 * If the superblock wasn't already SB_DYING then we hold
1446 	 * s_umount and can safely drop our temporary reference.
1447          */
1448 	put_super(sb);
1449 
1450 	if (!locked)
1451 		return NULL;
1452 
1453 	if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
1454 		super_unlock(sb, excl);
1455 		return NULL;
1456 	}
1457 
1458 	return sb;
1459 }
1460 
fs_bdev_mark_dead(struct block_device * bdev,bool surprise)1461 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
1462 {
1463 	struct super_block *sb;
1464 
1465 	sb = bdev_super_lock(bdev, false);
1466 	if (!sb)
1467 		return;
1468 
1469 	if (sb->s_op->remove_bdev) {
1470 		int ret;
1471 
1472 		ret = sb->s_op->remove_bdev(sb, bdev);
1473 		if (!ret) {
1474 			super_unlock_shared(sb);
1475 			return;
1476 		}
1477 		/* Fallback to shutdown. */
1478 	}
1479 
1480 	if (!surprise)
1481 		sync_filesystem(sb);
1482 	shrink_dcache_sb(sb);
1483 	evict_inodes(sb);
1484 	if (sb->s_op->shutdown)
1485 		sb->s_op->shutdown(sb);
1486 
1487 	super_unlock_shared(sb);
1488 }
1489 
fs_bdev_sync(struct block_device * bdev)1490 static void fs_bdev_sync(struct block_device *bdev)
1491 {
1492 	struct super_block *sb;
1493 
1494 	sb = bdev_super_lock(bdev, false);
1495 	if (!sb)
1496 		return;
1497 
1498 	sync_filesystem(sb);
1499 	super_unlock_shared(sb);
1500 }
1501 
get_bdev_super(struct block_device * bdev)1502 static struct super_block *get_bdev_super(struct block_device *bdev)
1503 {
1504 	bool active = false;
1505 	struct super_block *sb;
1506 
1507 	sb = bdev_super_lock(bdev, true);
1508 	if (sb) {
1509 		active = atomic_inc_not_zero(&sb->s_active);
1510 		super_unlock_excl(sb);
1511 	}
1512 	if (!active)
1513 		return NULL;
1514 	return sb;
1515 }
1516 
1517 /**
1518  * fs_bdev_freeze - freeze owning filesystem of block device
1519  * @bdev: block device
1520  *
1521  * Freeze the filesystem that owns this block device if it is still
1522  * active.
1523  *
1524  * A filesystem that owns multiple block devices may be frozen from each
1525  * block device and won't be unfrozen until all block devices are
1526  * unfrozen. Each block device can only freeze the filesystem once as we
1527  * nest freezes for block devices in the block layer.
1528  *
1529  * Return: If the freeze was successful zero is returned. If the freeze
1530  *         failed a negative error code is returned.
1531  */
fs_bdev_freeze(struct block_device * bdev)1532 static int fs_bdev_freeze(struct block_device *bdev)
1533 {
1534 	struct super_block *sb;
1535 	int error = 0;
1536 
1537 	lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
1538 
1539 	sb = get_bdev_super(bdev);
1540 	if (!sb)
1541 		return -EINVAL;
1542 
1543 	if (sb->s_op->freeze_super)
1544 		error = sb->s_op->freeze_super(sb,
1545 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL);
1546 	else
1547 		error = freeze_super(sb,
1548 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL);
1549 	if (!error)
1550 		error = sync_blockdev(bdev);
1551 	deactivate_super(sb);
1552 	return error;
1553 }
1554 
1555 /**
1556  * fs_bdev_thaw - thaw owning filesystem of block device
1557  * @bdev: block device
1558  *
1559  * Thaw the filesystem that owns this block device.
1560  *
1561  * A filesystem that owns multiple block devices may be frozen from each
1562  * block device and won't be unfrozen until all block devices are
1563  * unfrozen. Each block device can only freeze the filesystem once as we
1564  * nest freezes for block devices in the block layer.
1565  *
1566  * Return: If the thaw was successful zero is returned. If the thaw
1567  *         failed a negative error code is returned. If this function
1568  *         returns zero it doesn't mean that the filesystem is unfrozen
1569  *         as it may have been frozen multiple times (kernel may hold a
1570  *         freeze or might be frozen from other block devices).
1571  */
fs_bdev_thaw(struct block_device * bdev)1572 static int fs_bdev_thaw(struct block_device *bdev)
1573 {
1574 	struct super_block *sb;
1575 	int error;
1576 
1577 	lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
1578 
1579 	/*
1580 	 * The block device may have been frozen before it was claimed by a
1581 	 * filesystem. Concurrently another process might try to mount that
1582 	 * frozen block device and has temporarily claimed the block device for
1583 	 * that purpose causing a concurrent fs_bdev_thaw() to end up here. The
1584 	 * mounter is already about to abort mounting because they still saw an
1585 	 * elevanted bdev->bd_fsfreeze_count so get_bdev_super() will return
1586 	 * NULL in that case.
1587 	 */
1588 	sb = get_bdev_super(bdev);
1589 	if (!sb)
1590 		return -EINVAL;
1591 
1592 	if (sb->s_op->thaw_super)
1593 		error = sb->s_op->thaw_super(sb,
1594 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL);
1595 	else
1596 		error = thaw_super(sb,
1597 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL);
1598 	deactivate_super(sb);
1599 	return error;
1600 }
1601 
1602 const struct blk_holder_ops fs_holder_ops = {
1603 	.mark_dead		= fs_bdev_mark_dead,
1604 	.sync			= fs_bdev_sync,
1605 	.freeze			= fs_bdev_freeze,
1606 	.thaw			= fs_bdev_thaw,
1607 };
1608 EXPORT_SYMBOL_GPL(fs_holder_ops);
1609 
setup_bdev_super(struct super_block * sb,int sb_flags,struct fs_context * fc)1610 int setup_bdev_super(struct super_block *sb, int sb_flags,
1611 		struct fs_context *fc)
1612 {
1613 	blk_mode_t mode = sb_open_mode(sb_flags);
1614 	struct file *bdev_file;
1615 	struct block_device *bdev;
1616 
1617 	bdev_file = bdev_file_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
1618 	if (IS_ERR(bdev_file)) {
1619 		if (fc)
1620 			errorf(fc, "%s: Can't open blockdev", fc->source);
1621 		return PTR_ERR(bdev_file);
1622 	}
1623 	bdev = file_bdev(bdev_file);
1624 
1625 	/*
1626 	 * This really should be in blkdev_get_by_dev, but right now can't due
1627 	 * to legacy issues that require us to allow opening a block device node
1628 	 * writable from userspace even for a read-only block device.
1629 	 */
1630 	if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
1631 		bdev_fput(bdev_file);
1632 		return -EACCES;
1633 	}
1634 
1635 	/*
1636 	 * It is enough to check bdev was not frozen before we set
1637 	 * s_bdev as freezing will wait until SB_BORN is set.
1638 	 */
1639 	if (atomic_read(&bdev->bd_fsfreeze_count) > 0) {
1640 		if (fc)
1641 			warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1642 		bdev_fput(bdev_file);
1643 		return -EBUSY;
1644 	}
1645 	spin_lock(&sb_lock);
1646 	sb->s_bdev_file = bdev_file;
1647 	sb->s_bdev = bdev;
1648 	sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
1649 	if (bdev_stable_writes(bdev))
1650 		sb->s_iflags |= SB_I_STABLE_WRITES;
1651 	spin_unlock(&sb_lock);
1652 
1653 	snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1654 	shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name,
1655 				sb->s_id);
1656 	sb_set_blocksize(sb, block_size(bdev));
1657 	return 0;
1658 }
1659 EXPORT_SYMBOL_GPL(setup_bdev_super);
1660 
1661 /**
1662  * get_tree_bdev_flags - Get a superblock based on a single block device
1663  * @fc: The filesystem context holding the parameters
1664  * @fill_super: Helper to initialise a new superblock
1665  * @flags: GET_TREE_BDEV_* flags
1666  */
get_tree_bdev_flags(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc),unsigned int flags)1667 int get_tree_bdev_flags(struct fs_context *fc,
1668 		int (*fill_super)(struct super_block *sb,
1669 				  struct fs_context *fc), unsigned int flags)
1670 {
1671 	struct super_block *s;
1672 	int error = 0;
1673 	dev_t dev;
1674 
1675 	if (!fc->source)
1676 		return invalf(fc, "No source specified");
1677 
1678 	error = lookup_bdev(fc->source, &dev);
1679 	if (error) {
1680 		if (!(flags & GET_TREE_BDEV_QUIET_LOOKUP))
1681 			errorf(fc, "%s: Can't lookup blockdev", fc->source);
1682 		return error;
1683 	}
1684 	fc->sb_flags |= SB_NOSEC;
1685 	s = sget_dev(fc, dev);
1686 	if (IS_ERR(s))
1687 		return PTR_ERR(s);
1688 
1689 	if (s->s_root) {
1690 		/* Don't summarily change the RO/RW state. */
1691 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1692 			warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
1693 			deactivate_locked_super(s);
1694 			return -EBUSY;
1695 		}
1696 	} else {
1697 		error = setup_bdev_super(s, fc->sb_flags, fc);
1698 		if (!error)
1699 			error = fill_super(s, fc);
1700 		if (error) {
1701 			deactivate_locked_super(s);
1702 			return error;
1703 		}
1704 		s->s_flags |= SB_ACTIVE;
1705 	}
1706 
1707 	BUG_ON(fc->root);
1708 	fc->root = dget(s->s_root);
1709 	return 0;
1710 }
1711 EXPORT_SYMBOL_GPL(get_tree_bdev_flags);
1712 
1713 /**
1714  * get_tree_bdev - Get a superblock based on a single block device
1715  * @fc: The filesystem context holding the parameters
1716  * @fill_super: Helper to initialise a new superblock
1717  */
get_tree_bdev(struct fs_context * fc,int (* fill_super)(struct super_block *,struct fs_context *))1718 int get_tree_bdev(struct fs_context *fc,
1719 		int (*fill_super)(struct super_block *,
1720 				  struct fs_context *))
1721 {
1722 	return get_tree_bdev_flags(fc, fill_super, 0);
1723 }
1724 EXPORT_SYMBOL(get_tree_bdev);
1725 
kill_block_super(struct super_block * sb)1726 void kill_block_super(struct super_block *sb)
1727 {
1728 	struct block_device *bdev = sb->s_bdev;
1729 
1730 	generic_shutdown_super(sb);
1731 	if (bdev) {
1732 		sync_blockdev(bdev);
1733 		bdev_fput(sb->s_bdev_file);
1734 	}
1735 }
1736 
1737 EXPORT_SYMBOL(kill_block_super);
1738 #endif
1739 
1740 /**
1741  * vfs_get_tree - Get the mountable root
1742  * @fc: The superblock configuration context.
1743  *
1744  * The filesystem is invoked to get or create a superblock which can then later
1745  * be used for mounting.  The filesystem places a pointer to the root to be
1746  * used for mounting in @fc->root.
1747  */
vfs_get_tree(struct fs_context * fc)1748 int vfs_get_tree(struct fs_context *fc)
1749 {
1750 	struct super_block *sb;
1751 	int error;
1752 
1753 	if (fc->root)
1754 		return -EBUSY;
1755 
1756 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1757 	 * on the superblock.
1758 	 */
1759 	error = fc->ops->get_tree(fc);
1760 	if (error < 0)
1761 		return error;
1762 
1763 	if (!fc->root) {
1764 		pr_err("Filesystem %s get_tree() didn't set fc->root, returned %i\n",
1765 		       fc->fs_type->name, error);
1766 		/* We don't know what the locking state of the superblock is -
1767 		 * if there is a superblock.
1768 		 */
1769 		BUG();
1770 	}
1771 
1772 	sb = fc->root->d_sb;
1773 	WARN_ON(!sb->s_bdi);
1774 
1775 	/*
1776 	 * super_wake() contains a memory barrier which also care of
1777 	 * ordering for super_cache_count(). We place it before setting
1778 	 * SB_BORN as the data dependency between the two functions is
1779 	 * the superblock structure contents that we just set up, not
1780 	 * the SB_BORN flag.
1781 	 */
1782 	super_wake(sb, SB_BORN);
1783 
1784 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1785 	if (unlikely(error)) {
1786 		fc_drop_locked(fc);
1787 		return error;
1788 	}
1789 
1790 	/*
1791 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1792 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1793 	 * this warning for a little while to try and catch filesystems that
1794 	 * violate this rule.
1795 	 */
1796 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1797 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1798 
1799 	return 0;
1800 }
1801 EXPORT_SYMBOL(vfs_get_tree);
1802 
1803 /*
1804  * Setup private BDI for given superblock. It gets automatically cleaned up
1805  * in generic_shutdown_super().
1806  */
super_setup_bdi_name(struct super_block * sb,char * fmt,...)1807 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1808 {
1809 	struct backing_dev_info *bdi;
1810 	int err;
1811 	va_list args;
1812 
1813 	bdi = bdi_alloc(NUMA_NO_NODE);
1814 	if (!bdi)
1815 		return -ENOMEM;
1816 
1817 	va_start(args, fmt);
1818 	err = bdi_register_va(bdi, fmt, args);
1819 	va_end(args);
1820 	if (err) {
1821 		bdi_put(bdi);
1822 		return err;
1823 	}
1824 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1825 	sb->s_bdi = bdi;
1826 	sb->s_iflags |= SB_I_PERSB_BDI;
1827 
1828 	return 0;
1829 }
1830 EXPORT_SYMBOL(super_setup_bdi_name);
1831 
1832 /*
1833  * Setup private BDI for given superblock. I gets automatically cleaned up
1834  * in generic_shutdown_super().
1835  */
super_setup_bdi(struct super_block * sb)1836 int super_setup_bdi(struct super_block *sb)
1837 {
1838 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1839 
1840 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1841 				    atomic_long_inc_return(&bdi_seq));
1842 }
1843 EXPORT_SYMBOL(super_setup_bdi);
1844 
1845 /**
1846  * sb_wait_write - wait until all writers to given file system finish
1847  * @sb: the super for which we wait
1848  * @level: type of writers we wait for (normal vs page fault)
1849  *
1850  * This function waits until there are no writers of given type to given file
1851  * system.
1852  */
sb_wait_write(struct super_block * sb,int level)1853 static void sb_wait_write(struct super_block *sb, int level)
1854 {
1855 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1856 }
1857 
1858 /*
1859  * We are going to return to userspace and forget about these locks, the
1860  * ownership goes to the caller of thaw_super() which does unlock().
1861  */
lockdep_sb_freeze_release(struct super_block * sb)1862 static void lockdep_sb_freeze_release(struct super_block *sb)
1863 {
1864 	int level;
1865 
1866 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1867 		percpu_rwsem_release(sb->s_writers.rw_sem + level, _THIS_IP_);
1868 }
1869 
1870 /*
1871  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1872  */
lockdep_sb_freeze_acquire(struct super_block * sb)1873 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1874 {
1875 	int level;
1876 
1877 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1878 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1879 }
1880 
sb_freeze_unlock(struct super_block * sb,int level)1881 static void sb_freeze_unlock(struct super_block *sb, int level)
1882 {
1883 	for (level--; level >= 0; level--)
1884 		percpu_up_write(sb->s_writers.rw_sem + level);
1885 }
1886 
wait_for_partially_frozen(struct super_block * sb)1887 static int wait_for_partially_frozen(struct super_block *sb)
1888 {
1889 	int ret = 0;
1890 
1891 	do {
1892 		unsigned short old = sb->s_writers.frozen;
1893 
1894 		up_write(&sb->s_umount);
1895 		ret = wait_var_event_killable(&sb->s_writers.frozen,
1896 					       sb->s_writers.frozen != old);
1897 		down_write(&sb->s_umount);
1898 	} while (ret == 0 &&
1899 		 sb->s_writers.frozen != SB_UNFROZEN &&
1900 		 sb->s_writers.frozen != SB_FREEZE_COMPLETE);
1901 
1902 	return ret;
1903 }
1904 
1905 #define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE)
1906 #define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST | FREEZE_EXCL)
1907 
freeze_inc(struct super_block * sb,enum freeze_holder who)1908 static inline int freeze_inc(struct super_block *sb, enum freeze_holder who)
1909 {
1910 	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1911 	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1912 
1913 	if (who & FREEZE_HOLDER_KERNEL)
1914 		++sb->s_writers.freeze_kcount;
1915 	if (who & FREEZE_HOLDER_USERSPACE)
1916 		++sb->s_writers.freeze_ucount;
1917 	return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
1918 }
1919 
freeze_dec(struct super_block * sb,enum freeze_holder who)1920 static inline int freeze_dec(struct super_block *sb, enum freeze_holder who)
1921 {
1922 	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1923 	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1924 
1925 	if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount)
1926 		--sb->s_writers.freeze_kcount;
1927 	if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount)
1928 		--sb->s_writers.freeze_ucount;
1929 	return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
1930 }
1931 
may_freeze(struct super_block * sb,enum freeze_holder who,const void * freeze_owner)1932 static inline bool may_freeze(struct super_block *sb, enum freeze_holder who,
1933 			      const void *freeze_owner)
1934 {
1935 	lockdep_assert_held(&sb->s_umount);
1936 
1937 	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1938 	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1939 
1940 	if (who & FREEZE_EXCL) {
1941 		if (WARN_ON_ONCE(!(who & FREEZE_HOLDER_KERNEL)))
1942 			return false;
1943 		if (WARN_ON_ONCE(who & ~(FREEZE_EXCL | FREEZE_HOLDER_KERNEL)))
1944 			return false;
1945 		if (WARN_ON_ONCE(!freeze_owner))
1946 			return false;
1947 		/* This freeze already has a specific owner. */
1948 		if (sb->s_writers.freeze_owner)
1949 			return false;
1950 		/*
1951 		 * This is already frozen multiple times so we're just
1952 		 * going to take a reference count and mark the freeze as
1953 		 * being owned by the caller.
1954 		 */
1955 		if (sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount)
1956 			sb->s_writers.freeze_owner = freeze_owner;
1957 		return true;
1958 	}
1959 
1960 	if (who & FREEZE_HOLDER_KERNEL)
1961 		return (who & FREEZE_MAY_NEST) ||
1962 		       sb->s_writers.freeze_kcount == 0;
1963 	if (who & FREEZE_HOLDER_USERSPACE)
1964 		return (who & FREEZE_MAY_NEST) ||
1965 		       sb->s_writers.freeze_ucount == 0;
1966 	return false;
1967 }
1968 
may_unfreeze(struct super_block * sb,enum freeze_holder who,const void * freeze_owner)1969 static inline bool may_unfreeze(struct super_block *sb, enum freeze_holder who,
1970 				const void *freeze_owner)
1971 {
1972 	lockdep_assert_held(&sb->s_umount);
1973 
1974 	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1975 	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1976 
1977 	if (who & FREEZE_EXCL) {
1978 		if (WARN_ON_ONCE(!(who & FREEZE_HOLDER_KERNEL)))
1979 			return false;
1980 		if (WARN_ON_ONCE(who & ~(FREEZE_EXCL | FREEZE_HOLDER_KERNEL)))
1981 			return false;
1982 		if (WARN_ON_ONCE(!freeze_owner))
1983 			return false;
1984 		if (WARN_ON_ONCE(sb->s_writers.freeze_kcount == 0))
1985 			return false;
1986 		/* This isn't exclusively frozen. */
1987 		if (!sb->s_writers.freeze_owner)
1988 			return false;
1989 		/* This isn't exclusively frozen by us. */
1990 		if (sb->s_writers.freeze_owner != freeze_owner)
1991 			return false;
1992 		/*
1993 		 * This is still frozen multiple times so we're just
1994 		 * going to drop our reference count and undo our
1995 		 * exclusive freeze.
1996 		 */
1997 		if ((sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount) > 1)
1998 			sb->s_writers.freeze_owner = NULL;
1999 		return true;
2000 	}
2001 
2002 	if (who & FREEZE_HOLDER_KERNEL) {
2003 		/*
2004 		 * Someone's trying to steal the reference belonging to
2005 		 * @sb->s_writers.freeze_owner.
2006 		 */
2007 		if (sb->s_writers.freeze_kcount == 1 &&
2008 		    sb->s_writers.freeze_owner)
2009 			return false;
2010 		return sb->s_writers.freeze_kcount > 0;
2011 	}
2012 
2013 	if (who & FREEZE_HOLDER_USERSPACE)
2014 		return sb->s_writers.freeze_ucount > 0;
2015 
2016 	return false;
2017 }
2018 
2019 /**
2020  * freeze_super - lock the filesystem and force it into a consistent state
2021  * @sb: the super to lock
2022  * @who: context that wants to freeze
2023  * @freeze_owner: owner of the freeze
2024  *
2025  * Syncs the super to make sure the filesystem is consistent and calls the fs's
2026  * freeze_fs.  Subsequent calls to this without first thawing the fs may return
2027  * -EBUSY.
2028  *
2029  * @who should be:
2030  * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
2031  * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
2032  * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed.
2033  *
2034  * The @who argument distinguishes between the kernel and userspace trying to
2035  * freeze the filesystem.  Although there cannot be multiple kernel freezes or
2036  * multiple userspace freezes in effect at any given time, the kernel and
2037  * userspace can both hold a filesystem frozen.  The filesystem remains frozen
2038  * until there are no kernel or userspace freezes in effect.
2039  *
2040  * A filesystem may hold multiple devices and thus a filesystems may be
2041  * frozen through the block layer via multiple block devices. In this
2042  * case the request is marked as being allowed to nest by passing
2043  * FREEZE_MAY_NEST. The filesystem remains frozen until all block
2044  * devices are unfrozen. If multiple freezes are attempted without
2045  * FREEZE_MAY_NEST -EBUSY will be returned.
2046  *
2047  * During this function, sb->s_writers.frozen goes through these values:
2048  *
2049  * SB_UNFROZEN: File system is normal, all writes progress as usual.
2050  *
2051  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
2052  * writes should be blocked, though page faults are still allowed. We wait for
2053  * all writes to complete and then proceed to the next stage.
2054  *
2055  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
2056  * but internal fs threads can still modify the filesystem (although they
2057  * should not dirty new pages or inodes), writeback can run etc. After waiting
2058  * for all running page faults we sync the filesystem which will clean all
2059  * dirty pages and inodes (no new dirty pages or inodes can be created when
2060  * sync is running).
2061  *
2062  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
2063  * modification are blocked (e.g. XFS preallocation truncation on inode
2064  * reclaim). This is usually implemented by blocking new transactions for
2065  * filesystems that have them and need this additional guard. After all
2066  * internal writers are finished we call ->freeze_fs() to finish filesystem
2067  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
2068  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
2069  *
2070  * sb->s_writers.frozen is protected by sb->s_umount.
2071  *
2072  * Return: If the freeze was successful zero is returned. If the freeze
2073  *         failed a negative error code is returned.
2074  */
freeze_super(struct super_block * sb,enum freeze_holder who,const void * freeze_owner)2075 int freeze_super(struct super_block *sb, enum freeze_holder who, const void *freeze_owner)
2076 {
2077 	int ret;
2078 
2079 	if (!super_lock_excl(sb)) {
2080 		WARN_ON_ONCE("Dying superblock while freezing!");
2081 		return -EINVAL;
2082 	}
2083 	atomic_inc(&sb->s_active);
2084 
2085 retry:
2086 	if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
2087 		if (may_freeze(sb, who, freeze_owner))
2088 			ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1);
2089 		else
2090 			ret = -EBUSY;
2091 		/* All freezers share a single active reference. */
2092 		deactivate_locked_super(sb);
2093 		return ret;
2094 	}
2095 
2096 	if (sb->s_writers.frozen != SB_UNFROZEN) {
2097 		ret = wait_for_partially_frozen(sb);
2098 		if (ret) {
2099 			deactivate_locked_super(sb);
2100 			return ret;
2101 		}
2102 
2103 		goto retry;
2104 	}
2105 
2106 	if (sb_rdonly(sb)) {
2107 		/* Nothing to do really... */
2108 		WARN_ON_ONCE(freeze_inc(sb, who) > 1);
2109 		sb->s_writers.freeze_owner = freeze_owner;
2110 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2111 		wake_up_var(&sb->s_writers.frozen);
2112 		super_unlock_excl(sb);
2113 		return 0;
2114 	}
2115 
2116 	sb->s_writers.frozen = SB_FREEZE_WRITE;
2117 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
2118 	super_unlock_excl(sb);
2119 	sb_wait_write(sb, SB_FREEZE_WRITE);
2120 	__super_lock_excl(sb);
2121 
2122 	/* Now we go and block page faults... */
2123 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
2124 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
2125 
2126 	/* All writers are done so after syncing there won't be dirty data */
2127 	ret = sync_filesystem(sb);
2128 	if (ret) {
2129 		sb->s_writers.frozen = SB_UNFROZEN;
2130 		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
2131 		wake_up_var(&sb->s_writers.frozen);
2132 		deactivate_locked_super(sb);
2133 		return ret;
2134 	}
2135 
2136 	/* Now wait for internal filesystem counter */
2137 	sb->s_writers.frozen = SB_FREEZE_FS;
2138 	sb_wait_write(sb, SB_FREEZE_FS);
2139 
2140 	if (sb->s_op->freeze_fs) {
2141 		ret = sb->s_op->freeze_fs(sb);
2142 		if (ret) {
2143 			printk(KERN_ERR
2144 				"VFS:Filesystem freeze failed\n");
2145 			sb->s_writers.frozen = SB_UNFROZEN;
2146 			sb_freeze_unlock(sb, SB_FREEZE_FS);
2147 			wake_up_var(&sb->s_writers.frozen);
2148 			deactivate_locked_super(sb);
2149 			return ret;
2150 		}
2151 	}
2152 	/*
2153 	 * For debugging purposes so that fs can warn if it sees write activity
2154 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
2155 	 */
2156 	WARN_ON_ONCE(freeze_inc(sb, who) > 1);
2157 	sb->s_writers.freeze_owner = freeze_owner;
2158 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2159 	wake_up_var(&sb->s_writers.frozen);
2160 	lockdep_sb_freeze_release(sb);
2161 	super_unlock_excl(sb);
2162 	return 0;
2163 }
2164 EXPORT_SYMBOL(freeze_super);
2165 
2166 /*
2167  * Undoes the effect of a freeze_super_locked call.  If the filesystem is
2168  * frozen both by userspace and the kernel, a thaw call from either source
2169  * removes that state without releasing the other state or unlocking the
2170  * filesystem.
2171  */
thaw_super_locked(struct super_block * sb,enum freeze_holder who,const void * freeze_owner)2172 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who,
2173 			     const void *freeze_owner)
2174 {
2175 	int error = -EINVAL;
2176 
2177 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE)
2178 		goto out_unlock;
2179 
2180 	if (!may_unfreeze(sb, who, freeze_owner))
2181 		goto out_unlock;
2182 
2183 	/*
2184 	 * All freezers share a single active reference.
2185 	 * So just unlock in case there are any left.
2186 	 */
2187 	if (freeze_dec(sb, who))
2188 		goto out_unlock;
2189 
2190 	if (sb_rdonly(sb)) {
2191 		sb->s_writers.frozen = SB_UNFROZEN;
2192 		sb->s_writers.freeze_owner = NULL;
2193 		wake_up_var(&sb->s_writers.frozen);
2194 		goto out_deactivate;
2195 	}
2196 
2197 	lockdep_sb_freeze_acquire(sb);
2198 
2199 	if (sb->s_op->unfreeze_fs) {
2200 		error = sb->s_op->unfreeze_fs(sb);
2201 		if (error) {
2202 			pr_err("VFS: Filesystem thaw failed\n");
2203 			freeze_inc(sb, who);
2204 			lockdep_sb_freeze_release(sb);
2205 			goto out_unlock;
2206 		}
2207 	}
2208 
2209 	sb->s_writers.frozen = SB_UNFROZEN;
2210 	sb->s_writers.freeze_owner = NULL;
2211 	wake_up_var(&sb->s_writers.frozen);
2212 	sb_freeze_unlock(sb, SB_FREEZE_FS);
2213 out_deactivate:
2214 	deactivate_locked_super(sb);
2215 	return 0;
2216 
2217 out_unlock:
2218 	super_unlock_excl(sb);
2219 	return error;
2220 }
2221 
2222 /**
2223  * thaw_super -- unlock filesystem
2224  * @sb: the super to thaw
2225  * @who: context that wants to freeze
2226  * @freeze_owner: owner of the freeze
2227  *
2228  * Unlocks the filesystem and marks it writeable again after freeze_super()
2229  * if there are no remaining freezes on the filesystem.
2230  *
2231  * @who should be:
2232  * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
2233  * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
2234  * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed
2235  *
2236  * A filesystem may hold multiple devices and thus a filesystems may
2237  * have been frozen through the block layer via multiple block devices.
2238  * The filesystem remains frozen until all block devices are unfrozen.
2239  */
thaw_super(struct super_block * sb,enum freeze_holder who,const void * freeze_owner)2240 int thaw_super(struct super_block *sb, enum freeze_holder who,
2241 	       const void *freeze_owner)
2242 {
2243 	if (!super_lock_excl(sb)) {
2244 		WARN_ON_ONCE("Dying superblock while thawing!");
2245 		return -EINVAL;
2246 	}
2247 	return thaw_super_locked(sb, who, freeze_owner);
2248 }
2249 EXPORT_SYMBOL(thaw_super);
2250 
2251 /*
2252  * Create workqueue for deferred direct IO completions. We allocate the
2253  * workqueue when it's first needed. This avoids creating workqueue for
2254  * filesystems that don't need it and also allows us to create the workqueue
2255  * late enough so the we can include s_id in the name of the workqueue.
2256  */
sb_init_dio_done_wq(struct super_block * sb)2257 int sb_init_dio_done_wq(struct super_block *sb)
2258 {
2259 	struct workqueue_struct *old;
2260 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
2261 						      WQ_MEM_RECLAIM | WQ_PERCPU,
2262 						      0,
2263 						      sb->s_id);
2264 	if (!wq)
2265 		return -ENOMEM;
2266 
2267 	old = NULL;
2268 	/*
2269 	 * This has to be atomic as more DIOs can race to create the workqueue
2270 	 */
2271 	if (!try_cmpxchg(&sb->s_dio_done_wq, &old, wq)) {
2272 		/* Someone created workqueue before us? Free ours... */
2273 		destroy_workqueue(wq);
2274 	}
2275 	return 0;
2276 }
2277 EXPORT_SYMBOL_GPL(sb_init_dio_done_wq);
2278