1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
40 #include <linux/parser.h>
41
42 #include <trace/events/power.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/cpuhp.h>
45
46 #include "smpboot.h"
47
48 /**
49 * struct cpuhp_cpu_state - Per cpu hotplug state storage
50 * @state: The current cpu state
51 * @target: The target state
52 * @fail: Current CPU hotplug callback state
53 * @thread: Pointer to the hotplug thread
54 * @should_run: Thread should execute
55 * @rollback: Perform a rollback
56 * @single: Single callback invocation
57 * @bringup: Single callback bringup or teardown selector
58 * @node: Remote CPU node; for multi-instance, do a
59 * single entry callback for install/remove
60 * @last: For multi-instance rollback, remember how far we got
61 * @cb_state: The state for a single callback (install/uninstall)
62 * @result: Result of the operation
63 * @ap_sync_state: State for AP synchronization
64 * @done_up: Signal completion to the issuer of the task for cpu-up
65 * @done_down: Signal completion to the issuer of the task for cpu-down
66 */
67 struct cpuhp_cpu_state {
68 enum cpuhp_state state;
69 enum cpuhp_state target;
70 enum cpuhp_state fail;
71 #ifdef CONFIG_SMP
72 struct task_struct *thread;
73 bool should_run;
74 bool rollback;
75 bool single;
76 bool bringup;
77 struct hlist_node *node;
78 struct hlist_node *last;
79 enum cpuhp_state cb_state;
80 int result;
81 atomic_t ap_sync_state;
82 struct completion done_up;
83 struct completion done_down;
84 #endif
85 };
86
87 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
88 .fail = CPUHP_INVALID,
89 };
90
91 #ifdef CONFIG_SMP
92 cpumask_t cpus_booted_once_mask;
93 #endif
94
95 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
96 static struct lockdep_map cpuhp_state_up_map =
97 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
98 static struct lockdep_map cpuhp_state_down_map =
99 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
100
101
cpuhp_lock_acquire(bool bringup)102 static inline void cpuhp_lock_acquire(bool bringup)
103 {
104 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
105 }
106
cpuhp_lock_release(bool bringup)107 static inline void cpuhp_lock_release(bool bringup)
108 {
109 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
110 }
111 #else
112
cpuhp_lock_acquire(bool bringup)113 static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)114 static inline void cpuhp_lock_release(bool bringup) { }
115
116 #endif
117
118 /**
119 * struct cpuhp_step - Hotplug state machine step
120 * @name: Name of the step
121 * @startup: Startup function of the step
122 * @teardown: Teardown function of the step
123 * @cant_stop: Bringup/teardown can't be stopped at this step
124 * @multi_instance: State has multiple instances which get added afterwards
125 */
126 struct cpuhp_step {
127 const char *name;
128 union {
129 int (*single)(unsigned int cpu);
130 int (*multi)(unsigned int cpu,
131 struct hlist_node *node);
132 } startup;
133 union {
134 int (*single)(unsigned int cpu);
135 int (*multi)(unsigned int cpu,
136 struct hlist_node *node);
137 } teardown;
138 /* private: */
139 struct hlist_head list;
140 /* public: */
141 bool cant_stop;
142 bool multi_instance;
143 };
144
145 static DEFINE_MUTEX(cpuhp_state_mutex);
146 static struct cpuhp_step cpuhp_hp_states[];
147
cpuhp_get_step(enum cpuhp_state state)148 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
149 {
150 return cpuhp_hp_states + state;
151 }
152
cpuhp_step_empty(bool bringup,struct cpuhp_step * step)153 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
154 {
155 return bringup ? !step->startup.single : !step->teardown.single;
156 }
157
158 /**
159 * cpuhp_invoke_callback - Invoke the callbacks for a given state
160 * @cpu: The cpu for which the callback should be invoked
161 * @state: The state to do callbacks for
162 * @bringup: True if the bringup callback should be invoked
163 * @node: For multi-instance, do a single entry callback for install/remove
164 * @lastp: For multi-instance rollback, remember how far we got
165 *
166 * Called from cpu hotplug and from the state register machinery.
167 *
168 * Return: %0 on success or a negative errno code
169 */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)170 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
171 bool bringup, struct hlist_node *node,
172 struct hlist_node **lastp)
173 {
174 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
175 struct cpuhp_step *step = cpuhp_get_step(state);
176 int (*cbm)(unsigned int cpu, struct hlist_node *node);
177 int (*cb)(unsigned int cpu);
178 int ret, cnt;
179
180 if (st->fail == state) {
181 st->fail = CPUHP_INVALID;
182 return -EAGAIN;
183 }
184
185 if (cpuhp_step_empty(bringup, step)) {
186 WARN_ON_ONCE(1);
187 return 0;
188 }
189
190 if (!step->multi_instance) {
191 WARN_ON_ONCE(lastp && *lastp);
192 cb = bringup ? step->startup.single : step->teardown.single;
193
194 trace_cpuhp_enter(cpu, st->target, state, cb);
195 ret = cb(cpu);
196 trace_cpuhp_exit(cpu, st->state, state, ret);
197 return ret;
198 }
199 cbm = bringup ? step->startup.multi : step->teardown.multi;
200
201 /* Single invocation for instance add/remove */
202 if (node) {
203 WARN_ON_ONCE(lastp && *lastp);
204 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
205 ret = cbm(cpu, node);
206 trace_cpuhp_exit(cpu, st->state, state, ret);
207 return ret;
208 }
209
210 /* State transition. Invoke on all instances */
211 cnt = 0;
212 hlist_for_each(node, &step->list) {
213 if (lastp && node == *lastp)
214 break;
215
216 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217 ret = cbm(cpu, node);
218 trace_cpuhp_exit(cpu, st->state, state, ret);
219 if (ret) {
220 if (!lastp)
221 goto err;
222
223 *lastp = node;
224 return ret;
225 }
226 cnt++;
227 }
228 if (lastp)
229 *lastp = NULL;
230 return 0;
231 err:
232 /* Rollback the instances if one failed */
233 cbm = !bringup ? step->startup.multi : step->teardown.multi;
234 if (!cbm)
235 return ret;
236
237 hlist_for_each(node, &step->list) {
238 if (!cnt--)
239 break;
240
241 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
242 ret = cbm(cpu, node);
243 trace_cpuhp_exit(cpu, st->state, state, ret);
244 /*
245 * Rollback must not fail,
246 */
247 WARN_ON_ONCE(ret);
248 }
249 return ret;
250 }
251
252 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)253 static bool cpuhp_is_ap_state(enum cpuhp_state state)
254 {
255 /*
256 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
257 * purposes as that state is handled explicitly in cpu_down.
258 */
259 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
260 }
261
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)262 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
263 {
264 struct completion *done = bringup ? &st->done_up : &st->done_down;
265 wait_for_completion(done);
266 }
267
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)268 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
269 {
270 struct completion *done = bringup ? &st->done_up : &st->done_down;
271 complete(done);
272 }
273
274 /*
275 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
276 */
cpuhp_is_atomic_state(enum cpuhp_state state)277 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
278 {
279 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
280 }
281
282 /* Synchronization state management */
283 enum cpuhp_sync_state {
284 SYNC_STATE_DEAD,
285 SYNC_STATE_KICKED,
286 SYNC_STATE_SHOULD_DIE,
287 SYNC_STATE_ALIVE,
288 SYNC_STATE_SHOULD_ONLINE,
289 SYNC_STATE_ONLINE,
290 };
291
292 #ifdef CONFIG_HOTPLUG_CORE_SYNC
293 /**
294 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
295 * @state: The synchronization state to set
296 *
297 * No synchronization point. Just update of the synchronization state, but implies
298 * a full barrier so that the AP changes are visible before the control CPU proceeds.
299 */
cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)300 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
301 {
302 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
303
304 (void)atomic_xchg(st, state);
305 }
306
arch_cpuhp_sync_state_poll(void)307 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
308
cpuhp_wait_for_sync_state(unsigned int cpu,enum cpuhp_sync_state state,enum cpuhp_sync_state next_state)309 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
310 enum cpuhp_sync_state next_state)
311 {
312 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
313 ktime_t now, end, start = ktime_get();
314 int sync;
315
316 end = start + 10ULL * NSEC_PER_SEC;
317
318 sync = atomic_read(st);
319 while (1) {
320 if (sync == state) {
321 if (!atomic_try_cmpxchg(st, &sync, next_state))
322 continue;
323 return true;
324 }
325
326 now = ktime_get();
327 if (now > end) {
328 /* Timeout. Leave the state unchanged */
329 return false;
330 } else if (now - start < NSEC_PER_MSEC) {
331 /* Poll for one millisecond */
332 arch_cpuhp_sync_state_poll();
333 } else {
334 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
335 }
336 sync = atomic_read(st);
337 }
338 return true;
339 }
340 #else /* CONFIG_HOTPLUG_CORE_SYNC */
cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)341 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
342 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
343
344 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
345 /**
346 * cpuhp_ap_report_dead - Update synchronization state to DEAD
347 *
348 * No synchronization point. Just update of the synchronization state.
349 */
cpuhp_ap_report_dead(void)350 void cpuhp_ap_report_dead(void)
351 {
352 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
353 }
354
arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)355 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
356
357 /*
358 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
359 * because the AP cannot issue complete() at this stage.
360 */
cpuhp_bp_sync_dead(unsigned int cpu)361 static void cpuhp_bp_sync_dead(unsigned int cpu)
362 {
363 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
364 int sync = atomic_read(st);
365
366 do {
367 /* CPU can have reported dead already. Don't overwrite that! */
368 if (sync == SYNC_STATE_DEAD)
369 break;
370 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
371
372 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
373 /* CPU reached dead state. Invoke the cleanup function */
374 arch_cpuhp_cleanup_dead_cpu(cpu);
375 return;
376 }
377
378 /* No further action possible. Emit message and give up. */
379 pr_err("CPU%u failed to report dead state\n", cpu);
380 }
381 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
cpuhp_bp_sync_dead(unsigned int cpu)382 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
383 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
384
385 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
386 /**
387 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
388 *
389 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
390 * for the BP to release it.
391 */
cpuhp_ap_sync_alive(void)392 void cpuhp_ap_sync_alive(void)
393 {
394 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
395
396 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
397
398 /* Wait for the control CPU to release it. */
399 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
400 cpu_relax();
401 }
402
cpuhp_can_boot_ap(unsigned int cpu)403 static bool cpuhp_can_boot_ap(unsigned int cpu)
404 {
405 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
406 int sync = atomic_read(st);
407
408 again:
409 switch (sync) {
410 case SYNC_STATE_DEAD:
411 /* CPU is properly dead */
412 break;
413 case SYNC_STATE_KICKED:
414 /* CPU did not come up in previous attempt */
415 break;
416 case SYNC_STATE_ALIVE:
417 /* CPU is stuck cpuhp_ap_sync_alive(). */
418 break;
419 default:
420 /* CPU failed to report online or dead and is in limbo state. */
421 return false;
422 }
423
424 /* Prepare for booting */
425 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
426 goto again;
427
428 return true;
429 }
430
arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)431 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
432
433 /*
434 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
435 * because the AP cannot issue complete() so early in the bringup.
436 */
cpuhp_bp_sync_alive(unsigned int cpu)437 static int cpuhp_bp_sync_alive(unsigned int cpu)
438 {
439 int ret = 0;
440
441 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
442 return 0;
443
444 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
445 pr_err("CPU%u failed to report alive state\n", cpu);
446 ret = -EIO;
447 }
448
449 /* Let the architecture cleanup the kick alive mechanics. */
450 arch_cpuhp_cleanup_kick_cpu(cpu);
451 return ret;
452 }
453 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
cpuhp_bp_sync_alive(unsigned int cpu)454 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
cpuhp_can_boot_ap(unsigned int cpu)455 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
456 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
457
458 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
459 static DEFINE_MUTEX(cpu_add_remove_lock);
460 bool cpuhp_tasks_frozen;
461 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
462
463 /*
464 * The following two APIs (cpu_maps_update_begin/done) must be used when
465 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
466 */
cpu_maps_update_begin(void)467 void cpu_maps_update_begin(void)
468 {
469 mutex_lock(&cpu_add_remove_lock);
470 }
471
cpu_maps_update_done(void)472 void cpu_maps_update_done(void)
473 {
474 mutex_unlock(&cpu_add_remove_lock);
475 }
476
477 /*
478 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
479 * Should always be manipulated under cpu_add_remove_lock
480 */
481 static int cpu_hotplug_disabled;
482
483 #ifdef CONFIG_HOTPLUG_CPU
484
485 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
486
487 static bool cpu_hotplug_offline_disabled __ro_after_init;
488
cpus_read_lock(void)489 void cpus_read_lock(void)
490 {
491 percpu_down_read(&cpu_hotplug_lock);
492 }
493 EXPORT_SYMBOL_GPL(cpus_read_lock);
494
cpus_read_trylock(void)495 int cpus_read_trylock(void)
496 {
497 return percpu_down_read_trylock(&cpu_hotplug_lock);
498 }
499 EXPORT_SYMBOL_GPL(cpus_read_trylock);
500
cpus_read_unlock(void)501 void cpus_read_unlock(void)
502 {
503 percpu_up_read(&cpu_hotplug_lock);
504 }
505 EXPORT_SYMBOL_GPL(cpus_read_unlock);
506
cpus_write_lock(void)507 void cpus_write_lock(void)
508 {
509 percpu_down_write(&cpu_hotplug_lock);
510 }
511
cpus_write_unlock(void)512 void cpus_write_unlock(void)
513 {
514 percpu_up_write(&cpu_hotplug_lock);
515 }
516
lockdep_assert_cpus_held(void)517 void lockdep_assert_cpus_held(void)
518 {
519 /*
520 * We can't have hotplug operations before userspace starts running,
521 * and some init codepaths will knowingly not take the hotplug lock.
522 * This is all valid, so mute lockdep until it makes sense to report
523 * unheld locks.
524 */
525 if (system_state < SYSTEM_RUNNING)
526 return;
527
528 percpu_rwsem_assert_held(&cpu_hotplug_lock);
529 }
530 EXPORT_SYMBOL_GPL(lockdep_assert_cpus_held);
531
532 #ifdef CONFIG_LOCKDEP
lockdep_is_cpus_held(void)533 int lockdep_is_cpus_held(void)
534 {
535 return percpu_rwsem_is_held(&cpu_hotplug_lock);
536 }
537 #endif
538
lockdep_acquire_cpus_lock(void)539 static void lockdep_acquire_cpus_lock(void)
540 {
541 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
542 }
543
lockdep_release_cpus_lock(void)544 static void lockdep_release_cpus_lock(void)
545 {
546 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
547 }
548
549 /* Declare CPU offlining not supported */
cpu_hotplug_disable_offlining(void)550 void cpu_hotplug_disable_offlining(void)
551 {
552 cpu_maps_update_begin();
553 cpu_hotplug_offline_disabled = true;
554 cpu_maps_update_done();
555 }
556
557 /*
558 * Wait for currently running CPU hotplug operations to complete (if any) and
559 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
560 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
561 * hotplug path before performing hotplug operations. So acquiring that lock
562 * guarantees mutual exclusion from any currently running hotplug operations.
563 */
cpu_hotplug_disable(void)564 void cpu_hotplug_disable(void)
565 {
566 cpu_maps_update_begin();
567 cpu_hotplug_disabled++;
568 cpu_maps_update_done();
569 }
570 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
571
__cpu_hotplug_enable(void)572 static void __cpu_hotplug_enable(void)
573 {
574 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
575 return;
576 cpu_hotplug_disabled--;
577 }
578
cpu_hotplug_enable(void)579 void cpu_hotplug_enable(void)
580 {
581 cpu_maps_update_begin();
582 __cpu_hotplug_enable();
583 cpu_maps_update_done();
584 }
585 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
586
587 #else
588
lockdep_acquire_cpus_lock(void)589 static void lockdep_acquire_cpus_lock(void)
590 {
591 }
592
lockdep_release_cpus_lock(void)593 static void lockdep_release_cpus_lock(void)
594 {
595 }
596
597 #endif /* CONFIG_HOTPLUG_CPU */
598
599 /*
600 * Architectures that need SMT-specific errata handling during SMT hotplug
601 * should override this.
602 */
arch_smt_update(void)603 void __weak arch_smt_update(void) { }
604
605 #ifdef CONFIG_HOTPLUG_SMT
606
607 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
608 static unsigned int cpu_smt_max_threads __ro_after_init;
609 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
610
cpu_smt_disable(bool force)611 void __init cpu_smt_disable(bool force)
612 {
613 if (!cpu_smt_possible())
614 return;
615
616 if (force) {
617 pr_info("SMT: Force disabled\n");
618 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
619 } else {
620 pr_info("SMT: disabled\n");
621 cpu_smt_control = CPU_SMT_DISABLED;
622 }
623 cpu_smt_num_threads = 1;
624 }
625
626 /*
627 * The decision whether SMT is supported can only be done after the full
628 * CPU identification. Called from architecture code.
629 */
cpu_smt_set_num_threads(unsigned int num_threads,unsigned int max_threads)630 void __init cpu_smt_set_num_threads(unsigned int num_threads,
631 unsigned int max_threads)
632 {
633 WARN_ON(!num_threads || (num_threads > max_threads));
634
635 if (max_threads == 1)
636 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
637
638 cpu_smt_max_threads = max_threads;
639
640 /*
641 * If SMT has been disabled via the kernel command line or SMT is
642 * not supported, set cpu_smt_num_threads to 1 for consistency.
643 * If enabled, take the architecture requested number of threads
644 * to bring up into account.
645 */
646 if (cpu_smt_control != CPU_SMT_ENABLED)
647 cpu_smt_num_threads = 1;
648 else if (num_threads < cpu_smt_num_threads)
649 cpu_smt_num_threads = num_threads;
650 }
651
smt_cmdline_disable(char * str)652 static int __init smt_cmdline_disable(char *str)
653 {
654 cpu_smt_disable(str && !strcmp(str, "force"));
655 return 0;
656 }
657 early_param("nosmt", smt_cmdline_disable);
658
659 /*
660 * For Archicture supporting partial SMT states check if the thread is allowed.
661 * Otherwise this has already been checked through cpu_smt_max_threads when
662 * setting the SMT level.
663 */
cpu_smt_thread_allowed(unsigned int cpu)664 static inline bool cpu_smt_thread_allowed(unsigned int cpu)
665 {
666 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
667 return topology_smt_thread_allowed(cpu);
668 #else
669 return true;
670 #endif
671 }
672
cpu_bootable(unsigned int cpu)673 static inline bool cpu_bootable(unsigned int cpu)
674 {
675 if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
676 return true;
677
678 /* All CPUs are bootable if controls are not configured */
679 if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
680 return true;
681
682 /* All CPUs are bootable if CPU is not SMT capable */
683 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
684 return true;
685
686 if (topology_is_primary_thread(cpu))
687 return true;
688
689 /*
690 * On x86 it's required to boot all logical CPUs at least once so
691 * that the init code can get a chance to set CR4.MCE on each
692 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
693 * core will shutdown the machine.
694 */
695 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
696 }
697
698 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
cpu_smt_possible(void)699 bool cpu_smt_possible(void)
700 {
701 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
702 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
703 }
704 EXPORT_SYMBOL_GPL(cpu_smt_possible);
705
706 #else
cpu_bootable(unsigned int cpu)707 static inline bool cpu_bootable(unsigned int cpu) { return true; }
708 #endif
709
710 static inline enum cpuhp_state
cpuhp_set_state(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)711 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
712 {
713 enum cpuhp_state prev_state = st->state;
714 bool bringup = st->state < target;
715
716 st->rollback = false;
717 st->last = NULL;
718
719 st->target = target;
720 st->single = false;
721 st->bringup = bringup;
722 if (cpu_dying(cpu) != !bringup)
723 set_cpu_dying(cpu, !bringup);
724
725 return prev_state;
726 }
727
728 static inline void
cpuhp_reset_state(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)729 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
730 enum cpuhp_state prev_state)
731 {
732 bool bringup = !st->bringup;
733
734 st->target = prev_state;
735
736 /*
737 * Already rolling back. No need invert the bringup value or to change
738 * the current state.
739 */
740 if (st->rollback)
741 return;
742
743 st->rollback = true;
744
745 /*
746 * If we have st->last we need to undo partial multi_instance of this
747 * state first. Otherwise start undo at the previous state.
748 */
749 if (!st->last) {
750 if (st->bringup)
751 st->state--;
752 else
753 st->state++;
754 }
755
756 st->bringup = bringup;
757 if (cpu_dying(cpu) != !bringup)
758 set_cpu_dying(cpu, !bringup);
759 }
760
761 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)762 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
763 {
764 if (!st->single && st->state == st->target)
765 return;
766
767 st->result = 0;
768 /*
769 * Make sure the above stores are visible before should_run becomes
770 * true. Paired with the mb() above in cpuhp_thread_fun()
771 */
772 smp_mb();
773 st->should_run = true;
774 wake_up_process(st->thread);
775 wait_for_ap_thread(st, st->bringup);
776 }
777
cpuhp_kick_ap(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)778 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
779 enum cpuhp_state target)
780 {
781 enum cpuhp_state prev_state;
782 int ret;
783
784 prev_state = cpuhp_set_state(cpu, st, target);
785 __cpuhp_kick_ap(st);
786 if ((ret = st->result)) {
787 cpuhp_reset_state(cpu, st, prev_state);
788 __cpuhp_kick_ap(st);
789 }
790
791 return ret;
792 }
793
bringup_wait_for_ap_online(unsigned int cpu)794 static int bringup_wait_for_ap_online(unsigned int cpu)
795 {
796 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
797
798 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
799 wait_for_ap_thread(st, true);
800 if (WARN_ON_ONCE((!cpu_online(cpu))))
801 return -ECANCELED;
802
803 /* Unpark the hotplug thread of the target cpu */
804 kthread_unpark(st->thread);
805
806 /*
807 * SMT soft disabling on X86 requires to bring the CPU out of the
808 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
809 * CPU marked itself as booted_once in notify_cpu_starting() so the
810 * cpu_bootable() check will now return false if this is not the
811 * primary sibling.
812 */
813 if (!cpu_bootable(cpu))
814 return -ECANCELED;
815 return 0;
816 }
817
818 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
cpuhp_kick_ap_alive(unsigned int cpu)819 static int cpuhp_kick_ap_alive(unsigned int cpu)
820 {
821 if (!cpuhp_can_boot_ap(cpu))
822 return -EAGAIN;
823
824 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
825 }
826
cpuhp_bringup_ap(unsigned int cpu)827 static int cpuhp_bringup_ap(unsigned int cpu)
828 {
829 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
830 int ret;
831
832 /*
833 * Some architectures have to walk the irq descriptors to
834 * setup the vector space for the cpu which comes online.
835 * Prevent irq alloc/free across the bringup.
836 */
837 irq_lock_sparse();
838
839 ret = cpuhp_bp_sync_alive(cpu);
840 if (ret)
841 goto out_unlock;
842
843 ret = bringup_wait_for_ap_online(cpu);
844 if (ret)
845 goto out_unlock;
846
847 irq_unlock_sparse();
848
849 if (st->target <= CPUHP_AP_ONLINE_IDLE)
850 return 0;
851
852 return cpuhp_kick_ap(cpu, st, st->target);
853
854 out_unlock:
855 irq_unlock_sparse();
856 return ret;
857 }
858 #else
bringup_cpu(unsigned int cpu)859 static int bringup_cpu(unsigned int cpu)
860 {
861 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
862 struct task_struct *idle = idle_thread_get(cpu);
863 int ret;
864
865 if (!cpuhp_can_boot_ap(cpu))
866 return -EAGAIN;
867
868 /*
869 * Some architectures have to walk the irq descriptors to
870 * setup the vector space for the cpu which comes online.
871 *
872 * Prevent irq alloc/free across the bringup by acquiring the
873 * sparse irq lock. Hold it until the upcoming CPU completes the
874 * startup in cpuhp_online_idle() which allows to avoid
875 * intermediate synchronization points in the architecture code.
876 */
877 irq_lock_sparse();
878
879 ret = __cpu_up(cpu, idle);
880 if (ret)
881 goto out_unlock;
882
883 ret = cpuhp_bp_sync_alive(cpu);
884 if (ret)
885 goto out_unlock;
886
887 ret = bringup_wait_for_ap_online(cpu);
888 if (ret)
889 goto out_unlock;
890
891 irq_unlock_sparse();
892
893 if (st->target <= CPUHP_AP_ONLINE_IDLE)
894 return 0;
895
896 return cpuhp_kick_ap(cpu, st, st->target);
897
898 out_unlock:
899 irq_unlock_sparse();
900 return ret;
901 }
902 #endif
903
finish_cpu(unsigned int cpu)904 static int finish_cpu(unsigned int cpu)
905 {
906 struct task_struct *idle = idle_thread_get(cpu);
907 struct mm_struct *mm = idle->active_mm;
908
909 /*
910 * sched_force_init_mm() ensured the use of &init_mm,
911 * drop that refcount now that the CPU has stopped.
912 */
913 WARN_ON(mm != &init_mm);
914 idle->active_mm = NULL;
915 mmdrop_lazy_tlb(mm);
916
917 return 0;
918 }
919
920 /*
921 * Hotplug state machine related functions
922 */
923
924 /*
925 * Get the next state to run. Empty ones will be skipped. Returns true if a
926 * state must be run.
927 *
928 * st->state will be modified ahead of time, to match state_to_run, as if it
929 * has already ran.
930 */
cpuhp_next_state(bool bringup,enum cpuhp_state * state_to_run,struct cpuhp_cpu_state * st,enum cpuhp_state target)931 static bool cpuhp_next_state(bool bringup,
932 enum cpuhp_state *state_to_run,
933 struct cpuhp_cpu_state *st,
934 enum cpuhp_state target)
935 {
936 do {
937 if (bringup) {
938 if (st->state >= target)
939 return false;
940
941 *state_to_run = ++st->state;
942 } else {
943 if (st->state <= target)
944 return false;
945
946 *state_to_run = st->state--;
947 }
948
949 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
950 break;
951 } while (true);
952
953 return true;
954 }
955
__cpuhp_invoke_callback_range(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target,bool nofail)956 static int __cpuhp_invoke_callback_range(bool bringup,
957 unsigned int cpu,
958 struct cpuhp_cpu_state *st,
959 enum cpuhp_state target,
960 bool nofail)
961 {
962 enum cpuhp_state state;
963 int ret = 0;
964
965 while (cpuhp_next_state(bringup, &state, st, target)) {
966 int err;
967
968 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
969 if (!err)
970 continue;
971
972 if (nofail) {
973 pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
974 cpu, bringup ? "UP" : "DOWN",
975 cpuhp_get_step(st->state)->name,
976 st->state, err);
977 ret = -1;
978 } else {
979 ret = err;
980 break;
981 }
982 }
983
984 return ret;
985 }
986
cpuhp_invoke_callback_range(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)987 static inline int cpuhp_invoke_callback_range(bool bringup,
988 unsigned int cpu,
989 struct cpuhp_cpu_state *st,
990 enum cpuhp_state target)
991 {
992 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
993 }
994
cpuhp_invoke_callback_range_nofail(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)995 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
996 unsigned int cpu,
997 struct cpuhp_cpu_state *st,
998 enum cpuhp_state target)
999 {
1000 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
1001 }
1002
can_rollback_cpu(struct cpuhp_cpu_state * st)1003 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
1004 {
1005 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
1006 return true;
1007 /*
1008 * When CPU hotplug is disabled, then taking the CPU down is not
1009 * possible because takedown_cpu() and the architecture and
1010 * subsystem specific mechanisms are not available. So the CPU
1011 * which would be completely unplugged again needs to stay around
1012 * in the current state.
1013 */
1014 return st->state <= CPUHP_BRINGUP_CPU;
1015 }
1016
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1017 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1018 enum cpuhp_state target)
1019 {
1020 enum cpuhp_state prev_state = st->state;
1021 int ret = 0;
1022
1023 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1024 if (ret) {
1025 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1026 ret, cpu, cpuhp_get_step(st->state)->name,
1027 st->state);
1028
1029 cpuhp_reset_state(cpu, st, prev_state);
1030 if (can_rollback_cpu(st))
1031 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1032 prev_state));
1033 }
1034 return ret;
1035 }
1036
1037 /*
1038 * The cpu hotplug threads manage the bringup and teardown of the cpus
1039 */
cpuhp_should_run(unsigned int cpu)1040 static int cpuhp_should_run(unsigned int cpu)
1041 {
1042 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1043
1044 return st->should_run;
1045 }
1046
1047 /*
1048 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1049 * callbacks when a state gets [un]installed at runtime.
1050 *
1051 * Each invocation of this function by the smpboot thread does a single AP
1052 * state callback.
1053 *
1054 * It has 3 modes of operation:
1055 * - single: runs st->cb_state
1056 * - up: runs ++st->state, while st->state < st->target
1057 * - down: runs st->state--, while st->state > st->target
1058 *
1059 * When complete or on error, should_run is cleared and the completion is fired.
1060 */
cpuhp_thread_fun(unsigned int cpu)1061 static void cpuhp_thread_fun(unsigned int cpu)
1062 {
1063 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1064 bool bringup = st->bringup;
1065 enum cpuhp_state state;
1066
1067 if (WARN_ON_ONCE(!st->should_run))
1068 return;
1069
1070 /*
1071 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1072 * that if we see ->should_run we also see the rest of the state.
1073 */
1074 smp_mb();
1075
1076 /*
1077 * The BP holds the hotplug lock, but we're now running on the AP,
1078 * ensure that anybody asserting the lock is held, will actually find
1079 * it so.
1080 */
1081 lockdep_acquire_cpus_lock();
1082 cpuhp_lock_acquire(bringup);
1083
1084 if (st->single) {
1085 state = st->cb_state;
1086 st->should_run = false;
1087 } else {
1088 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1089 if (!st->should_run)
1090 goto end;
1091 }
1092
1093 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1094
1095 if (cpuhp_is_atomic_state(state)) {
1096 local_irq_disable();
1097 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1098 local_irq_enable();
1099
1100 /*
1101 * STARTING/DYING must not fail!
1102 */
1103 WARN_ON_ONCE(st->result);
1104 } else {
1105 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1106 }
1107
1108 if (st->result) {
1109 /*
1110 * If we fail on a rollback, we're up a creek without no
1111 * paddle, no way forward, no way back. We loose, thanks for
1112 * playing.
1113 */
1114 WARN_ON_ONCE(st->rollback);
1115 st->should_run = false;
1116 }
1117
1118 end:
1119 cpuhp_lock_release(bringup);
1120 lockdep_release_cpus_lock();
1121
1122 if (!st->should_run)
1123 complete_ap_thread(st, bringup);
1124 }
1125
1126 /* Invoke a single callback on a remote cpu */
1127 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1128 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1129 struct hlist_node *node)
1130 {
1131 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1132 int ret;
1133
1134 if (!cpu_online(cpu))
1135 return 0;
1136
1137 cpuhp_lock_acquire(false);
1138 cpuhp_lock_release(false);
1139
1140 cpuhp_lock_acquire(true);
1141 cpuhp_lock_release(true);
1142
1143 /*
1144 * If we are up and running, use the hotplug thread. For early calls
1145 * we invoke the thread function directly.
1146 */
1147 if (!st->thread)
1148 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1149
1150 st->rollback = false;
1151 st->last = NULL;
1152
1153 st->node = node;
1154 st->bringup = bringup;
1155 st->cb_state = state;
1156 st->single = true;
1157
1158 __cpuhp_kick_ap(st);
1159
1160 /*
1161 * If we failed and did a partial, do a rollback.
1162 */
1163 if ((ret = st->result) && st->last) {
1164 st->rollback = true;
1165 st->bringup = !bringup;
1166
1167 __cpuhp_kick_ap(st);
1168 }
1169
1170 /*
1171 * Clean up the leftovers so the next hotplug operation wont use stale
1172 * data.
1173 */
1174 st->node = st->last = NULL;
1175 return ret;
1176 }
1177
cpuhp_kick_ap_work(unsigned int cpu)1178 static int cpuhp_kick_ap_work(unsigned int cpu)
1179 {
1180 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1181 enum cpuhp_state prev_state = st->state;
1182 int ret;
1183
1184 cpuhp_lock_acquire(false);
1185 cpuhp_lock_release(false);
1186
1187 cpuhp_lock_acquire(true);
1188 cpuhp_lock_release(true);
1189
1190 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1191 ret = cpuhp_kick_ap(cpu, st, st->target);
1192 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1193
1194 return ret;
1195 }
1196
1197 static struct smp_hotplug_thread cpuhp_threads = {
1198 .store = &cpuhp_state.thread,
1199 .thread_should_run = cpuhp_should_run,
1200 .thread_fn = cpuhp_thread_fun,
1201 .thread_comm = "cpuhp/%u",
1202 .selfparking = true,
1203 };
1204
cpuhp_init_state(void)1205 static __init void cpuhp_init_state(void)
1206 {
1207 struct cpuhp_cpu_state *st;
1208 int cpu;
1209
1210 for_each_possible_cpu(cpu) {
1211 st = per_cpu_ptr(&cpuhp_state, cpu);
1212 init_completion(&st->done_up);
1213 init_completion(&st->done_down);
1214 }
1215 }
1216
cpuhp_threads_init(void)1217 void __init cpuhp_threads_init(void)
1218 {
1219 cpuhp_init_state();
1220 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1221 kthread_unpark(this_cpu_read(cpuhp_state.thread));
1222 }
1223
1224 #ifdef CONFIG_HOTPLUG_CPU
1225 #ifndef arch_clear_mm_cpumask_cpu
1226 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1227 #endif
1228
1229 /**
1230 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1231 * @cpu: a CPU id
1232 *
1233 * This function walks all processes, finds a valid mm struct for each one and
1234 * then clears a corresponding bit in mm's cpumask. While this all sounds
1235 * trivial, there are various non-obvious corner cases, which this function
1236 * tries to solve in a safe manner.
1237 *
1238 * Also note that the function uses a somewhat relaxed locking scheme, so it may
1239 * be called only for an already offlined CPU.
1240 */
clear_tasks_mm_cpumask(int cpu)1241 void clear_tasks_mm_cpumask(int cpu)
1242 {
1243 struct task_struct *p;
1244
1245 /*
1246 * This function is called after the cpu is taken down and marked
1247 * offline, so its not like new tasks will ever get this cpu set in
1248 * their mm mask. -- Peter Zijlstra
1249 * Thus, we may use rcu_read_lock() here, instead of grabbing
1250 * full-fledged tasklist_lock.
1251 */
1252 WARN_ON(cpu_online(cpu));
1253 rcu_read_lock();
1254 for_each_process(p) {
1255 struct task_struct *t;
1256
1257 /*
1258 * Main thread might exit, but other threads may still have
1259 * a valid mm. Find one.
1260 */
1261 t = find_lock_task_mm(p);
1262 if (!t)
1263 continue;
1264 arch_clear_mm_cpumask_cpu(cpu, t->mm);
1265 task_unlock(t);
1266 }
1267 rcu_read_unlock();
1268 }
1269
1270 /* Take this CPU down. */
take_cpu_down(void * _param)1271 static int take_cpu_down(void *_param)
1272 {
1273 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1274 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1275 int err, cpu = smp_processor_id();
1276
1277 /* Ensure this CPU doesn't handle any more interrupts. */
1278 err = __cpu_disable();
1279 if (err < 0)
1280 return err;
1281
1282 /*
1283 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1284 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1285 */
1286 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1287
1288 /*
1289 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1290 */
1291 cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1292
1293 /* Park the stopper thread */
1294 stop_machine_park(cpu);
1295 return 0;
1296 }
1297
takedown_cpu(unsigned int cpu)1298 static int takedown_cpu(unsigned int cpu)
1299 {
1300 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1301 int err;
1302
1303 /* Park the smpboot threads */
1304 kthread_park(st->thread);
1305
1306 /*
1307 * Prevent irq alloc/free while the dying cpu reorganizes the
1308 * interrupt affinities.
1309 */
1310 irq_lock_sparse();
1311
1312 /*
1313 * So now all preempt/rcu users must observe !cpu_active().
1314 */
1315 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1316 if (err) {
1317 /* CPU refused to die */
1318 irq_unlock_sparse();
1319 /* Unpark the hotplug thread so we can rollback there */
1320 kthread_unpark(st->thread);
1321 return err;
1322 }
1323 BUG_ON(cpu_online(cpu));
1324
1325 /*
1326 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1327 * all runnable tasks from the CPU, there's only the idle task left now
1328 * that the migration thread is done doing the stop_machine thing.
1329 *
1330 * Wait for the stop thread to go away.
1331 */
1332 wait_for_ap_thread(st, false);
1333 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1334
1335 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1336 irq_unlock_sparse();
1337
1338 hotplug_cpu__broadcast_tick_pull(cpu);
1339 /* This actually kills the CPU. */
1340 __cpu_die(cpu);
1341
1342 cpuhp_bp_sync_dead(cpu);
1343
1344 lockdep_cleanup_dead_cpu(cpu, idle_thread_get(cpu));
1345
1346 /*
1347 * Callbacks must be re-integrated right away to the RCU state machine.
1348 * Otherwise an RCU callback could block a further teardown function
1349 * waiting for its completion.
1350 */
1351 rcutree_migrate_callbacks(cpu);
1352
1353 return 0;
1354 }
1355
cpuhp_complete_idle_dead(void * arg)1356 static void cpuhp_complete_idle_dead(void *arg)
1357 {
1358 struct cpuhp_cpu_state *st = arg;
1359
1360 complete_ap_thread(st, false);
1361 }
1362
cpuhp_report_idle_dead(void)1363 void cpuhp_report_idle_dead(void)
1364 {
1365 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1366
1367 BUG_ON(st->state != CPUHP_AP_OFFLINE);
1368 tick_assert_timekeeping_handover();
1369 rcutree_report_cpu_dead();
1370 st->state = CPUHP_AP_IDLE_DEAD;
1371 /*
1372 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it
1373 * to an online cpu.
1374 */
1375 smp_call_function_single(cpumask_first(cpu_online_mask),
1376 cpuhp_complete_idle_dead, st, 0);
1377 }
1378
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1379 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1380 enum cpuhp_state target)
1381 {
1382 enum cpuhp_state prev_state = st->state;
1383 int ret = 0;
1384
1385 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1386 if (ret) {
1387 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1388 ret, cpu, cpuhp_get_step(st->state)->name,
1389 st->state);
1390
1391 cpuhp_reset_state(cpu, st, prev_state);
1392
1393 if (st->state < prev_state)
1394 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1395 prev_state));
1396 }
1397
1398 return ret;
1399 }
1400
1401 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1402 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1403 enum cpuhp_state target)
1404 {
1405 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1406 int prev_state, ret = 0;
1407
1408 if (num_online_cpus() == 1)
1409 return -EBUSY;
1410
1411 if (!cpu_present(cpu))
1412 return -EINVAL;
1413
1414 cpus_write_lock();
1415
1416 cpuhp_tasks_frozen = tasks_frozen;
1417
1418 prev_state = cpuhp_set_state(cpu, st, target);
1419 /*
1420 * If the current CPU state is in the range of the AP hotplug thread,
1421 * then we need to kick the thread.
1422 */
1423 if (st->state > CPUHP_TEARDOWN_CPU) {
1424 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1425 ret = cpuhp_kick_ap_work(cpu);
1426 /*
1427 * The AP side has done the error rollback already. Just
1428 * return the error code..
1429 */
1430 if (ret)
1431 goto out;
1432
1433 /*
1434 * We might have stopped still in the range of the AP hotplug
1435 * thread. Nothing to do anymore.
1436 */
1437 if (st->state > CPUHP_TEARDOWN_CPU)
1438 goto out;
1439
1440 st->target = target;
1441 }
1442 /*
1443 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1444 * to do the further cleanups.
1445 */
1446 ret = cpuhp_down_callbacks(cpu, st, target);
1447 if (ret && st->state < prev_state) {
1448 if (st->state == CPUHP_TEARDOWN_CPU) {
1449 cpuhp_reset_state(cpu, st, prev_state);
1450 __cpuhp_kick_ap(st);
1451 } else {
1452 WARN(1, "DEAD callback error for CPU%d", cpu);
1453 }
1454 }
1455
1456 out:
1457 cpus_write_unlock();
1458 arch_smt_update();
1459 return ret;
1460 }
1461
1462 struct cpu_down_work {
1463 unsigned int cpu;
1464 enum cpuhp_state target;
1465 };
1466
__cpu_down_maps_locked(void * arg)1467 static long __cpu_down_maps_locked(void *arg)
1468 {
1469 struct cpu_down_work *work = arg;
1470
1471 return _cpu_down(work->cpu, 0, work->target);
1472 }
1473
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1474 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1475 {
1476 struct cpu_down_work work = { .cpu = cpu, .target = target, };
1477
1478 /*
1479 * If the platform does not support hotplug, report it explicitly to
1480 * differentiate it from a transient offlining failure.
1481 */
1482 if (cpu_hotplug_offline_disabled)
1483 return -EOPNOTSUPP;
1484 if (cpu_hotplug_disabled)
1485 return -EBUSY;
1486
1487 /*
1488 * Ensure that the control task does not run on the to be offlined
1489 * CPU to prevent a deadlock against cfs_b->period_timer.
1490 * Also keep at least one housekeeping cpu onlined to avoid generating
1491 * an empty sched_domain span.
1492 */
1493 for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) {
1494 if (cpu != work.cpu)
1495 return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1496 }
1497 return -EBUSY;
1498 }
1499
cpu_down(unsigned int cpu,enum cpuhp_state target)1500 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1501 {
1502 int err;
1503
1504 cpu_maps_update_begin();
1505 err = cpu_down_maps_locked(cpu, target);
1506 cpu_maps_update_done();
1507 return err;
1508 }
1509
1510 /**
1511 * cpu_device_down - Bring down a cpu device
1512 * @dev: Pointer to the cpu device to offline
1513 *
1514 * This function is meant to be used by device core cpu subsystem only.
1515 *
1516 * Other subsystems should use remove_cpu() instead.
1517 *
1518 * Return: %0 on success or a negative errno code
1519 */
cpu_device_down(struct device * dev)1520 int cpu_device_down(struct device *dev)
1521 {
1522 return cpu_down(dev->id, CPUHP_OFFLINE);
1523 }
1524
remove_cpu(unsigned int cpu)1525 int remove_cpu(unsigned int cpu)
1526 {
1527 int ret;
1528
1529 lock_device_hotplug();
1530 ret = device_offline(get_cpu_device(cpu));
1531 unlock_device_hotplug();
1532
1533 return ret;
1534 }
1535 EXPORT_SYMBOL_GPL(remove_cpu);
1536
smp_shutdown_nonboot_cpus(unsigned int primary_cpu)1537 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1538 {
1539 unsigned int cpu;
1540 int error;
1541
1542 cpu_maps_update_begin();
1543
1544 /*
1545 * Make certain the cpu I'm about to reboot on is online.
1546 *
1547 * This is inline to what migrate_to_reboot_cpu() already do.
1548 */
1549 if (!cpu_online(primary_cpu))
1550 primary_cpu = cpumask_first(cpu_online_mask);
1551
1552 for_each_online_cpu(cpu) {
1553 if (cpu == primary_cpu)
1554 continue;
1555
1556 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1557 if (error) {
1558 pr_err("Failed to offline CPU%d - error=%d",
1559 cpu, error);
1560 break;
1561 }
1562 }
1563
1564 /*
1565 * Ensure all but the reboot CPU are offline.
1566 */
1567 BUG_ON(num_online_cpus() > 1);
1568
1569 /*
1570 * Make sure the CPUs won't be enabled by someone else after this
1571 * point. Kexec will reboot to a new kernel shortly resetting
1572 * everything along the way.
1573 */
1574 cpu_hotplug_disabled++;
1575
1576 cpu_maps_update_done();
1577 }
1578
1579 #else
1580 #define takedown_cpu NULL
1581 #endif /*CONFIG_HOTPLUG_CPU*/
1582
1583 /**
1584 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1585 * @cpu: cpu that just started
1586 *
1587 * It must be called by the arch code on the new cpu, before the new cpu
1588 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1589 */
notify_cpu_starting(unsigned int cpu)1590 void notify_cpu_starting(unsigned int cpu)
1591 {
1592 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1593 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1594
1595 rcutree_report_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1596 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1597
1598 /*
1599 * STARTING must not fail!
1600 */
1601 cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1602 }
1603
1604 /*
1605 * Called from the idle task. Wake up the controlling task which brings the
1606 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1607 * online bringup to the hotplug thread.
1608 */
cpuhp_online_idle(enum cpuhp_state state)1609 void cpuhp_online_idle(enum cpuhp_state state)
1610 {
1611 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1612
1613 /* Happens for the boot cpu */
1614 if (state != CPUHP_AP_ONLINE_IDLE)
1615 return;
1616
1617 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1618
1619 /*
1620 * Unpark the stopper thread before we start the idle loop (and start
1621 * scheduling); this ensures the stopper task is always available.
1622 */
1623 stop_machine_unpark(smp_processor_id());
1624
1625 st->state = CPUHP_AP_ONLINE_IDLE;
1626 complete_ap_thread(st, true);
1627 }
1628
1629 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1630 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1631 {
1632 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1633 struct task_struct *idle;
1634 int ret = 0;
1635
1636 cpus_write_lock();
1637
1638 if (!cpu_present(cpu)) {
1639 ret = -EINVAL;
1640 goto out;
1641 }
1642
1643 /*
1644 * The caller of cpu_up() might have raced with another
1645 * caller. Nothing to do.
1646 */
1647 if (st->state >= target)
1648 goto out;
1649
1650 if (st->state == CPUHP_OFFLINE) {
1651 /* Let it fail before we try to bring the cpu up */
1652 idle = idle_thread_get(cpu);
1653 if (IS_ERR(idle)) {
1654 ret = PTR_ERR(idle);
1655 goto out;
1656 }
1657
1658 /*
1659 * Reset stale stack state from the last time this CPU was online.
1660 */
1661 scs_task_reset(idle);
1662 kasan_unpoison_task_stack(idle);
1663 }
1664
1665 cpuhp_tasks_frozen = tasks_frozen;
1666
1667 cpuhp_set_state(cpu, st, target);
1668 /*
1669 * If the current CPU state is in the range of the AP hotplug thread,
1670 * then we need to kick the thread once more.
1671 */
1672 if (st->state > CPUHP_BRINGUP_CPU) {
1673 ret = cpuhp_kick_ap_work(cpu);
1674 /*
1675 * The AP side has done the error rollback already. Just
1676 * return the error code..
1677 */
1678 if (ret)
1679 goto out;
1680 }
1681
1682 /*
1683 * Try to reach the target state. We max out on the BP at
1684 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1685 * responsible for bringing it up to the target state.
1686 */
1687 target = min((int)target, CPUHP_BRINGUP_CPU);
1688 ret = cpuhp_up_callbacks(cpu, st, target);
1689 out:
1690 cpus_write_unlock();
1691 arch_smt_update();
1692 return ret;
1693 }
1694
cpu_up(unsigned int cpu,enum cpuhp_state target)1695 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1696 {
1697 int err = 0;
1698
1699 if (!cpu_possible(cpu)) {
1700 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1701 cpu);
1702 return -EINVAL;
1703 }
1704
1705 err = try_online_node(cpu_to_node(cpu));
1706 if (err)
1707 return err;
1708
1709 cpu_maps_update_begin();
1710
1711 if (cpu_hotplug_disabled) {
1712 err = -EBUSY;
1713 goto out;
1714 }
1715 if (!cpu_bootable(cpu)) {
1716 err = -EPERM;
1717 goto out;
1718 }
1719
1720 err = _cpu_up(cpu, 0, target);
1721 out:
1722 cpu_maps_update_done();
1723 return err;
1724 }
1725
1726 /**
1727 * cpu_device_up - Bring up a cpu device
1728 * @dev: Pointer to the cpu device to online
1729 *
1730 * This function is meant to be used by device core cpu subsystem only.
1731 *
1732 * Other subsystems should use add_cpu() instead.
1733 *
1734 * Return: %0 on success or a negative errno code
1735 */
cpu_device_up(struct device * dev)1736 int cpu_device_up(struct device *dev)
1737 {
1738 return cpu_up(dev->id, CPUHP_ONLINE);
1739 }
1740
add_cpu(unsigned int cpu)1741 int add_cpu(unsigned int cpu)
1742 {
1743 int ret;
1744
1745 lock_device_hotplug();
1746 ret = device_online(get_cpu_device(cpu));
1747 unlock_device_hotplug();
1748
1749 return ret;
1750 }
1751 EXPORT_SYMBOL_GPL(add_cpu);
1752
1753 /**
1754 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1755 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1756 *
1757 * On some architectures like arm64, we can hibernate on any CPU, but on
1758 * wake up the CPU we hibernated on might be offline as a side effect of
1759 * using maxcpus= for example.
1760 *
1761 * Return: %0 on success or a negative errno code
1762 */
bringup_hibernate_cpu(unsigned int sleep_cpu)1763 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1764 {
1765 int ret;
1766
1767 if (!cpu_online(sleep_cpu)) {
1768 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1769 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1770 if (ret) {
1771 pr_err("Failed to bring hibernate-CPU up!\n");
1772 return ret;
1773 }
1774 }
1775 return 0;
1776 }
1777
cpuhp_bringup_mask(const struct cpumask * mask,unsigned int ncpus,enum cpuhp_state target)1778 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1779 enum cpuhp_state target)
1780 {
1781 unsigned int cpu;
1782
1783 for_each_cpu(cpu, mask) {
1784 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1785
1786 if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1787 /*
1788 * If this failed then cpu_up() might have only
1789 * rolled back to CPUHP_BP_KICK_AP for the final
1790 * online. Clean it up. NOOP if already rolled back.
1791 */
1792 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1793 }
1794
1795 if (!--ncpus)
1796 break;
1797 }
1798 }
1799
1800 #ifdef CONFIG_HOTPLUG_PARALLEL
1801 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1802
parallel_bringup_parse_param(char * arg)1803 static int __init parallel_bringup_parse_param(char *arg)
1804 {
1805 return kstrtobool(arg, &__cpuhp_parallel_bringup);
1806 }
1807 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1808
1809 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_smt_aware(void)1810 static inline bool cpuhp_smt_aware(void)
1811 {
1812 return cpu_smt_max_threads > 1;
1813 }
1814
cpuhp_get_primary_thread_mask(void)1815 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1816 {
1817 return cpu_primary_thread_mask;
1818 }
1819 #else
cpuhp_smt_aware(void)1820 static inline bool cpuhp_smt_aware(void)
1821 {
1822 return false;
1823 }
cpuhp_get_primary_thread_mask(void)1824 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1825 {
1826 return cpu_none_mask;
1827 }
1828 #endif
1829
arch_cpuhp_init_parallel_bringup(void)1830 bool __weak arch_cpuhp_init_parallel_bringup(void)
1831 {
1832 return true;
1833 }
1834
1835 /*
1836 * On architectures which have enabled parallel bringup this invokes all BP
1837 * prepare states for each of the to be onlined APs first. The last state
1838 * sends the startup IPI to the APs. The APs proceed through the low level
1839 * bringup code in parallel and then wait for the control CPU to release
1840 * them one by one for the final onlining procedure.
1841 *
1842 * This avoids waiting for each AP to respond to the startup IPI in
1843 * CPUHP_BRINGUP_CPU.
1844 */
cpuhp_bringup_cpus_parallel(unsigned int ncpus)1845 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1846 {
1847 const struct cpumask *mask = cpu_present_mask;
1848
1849 if (__cpuhp_parallel_bringup)
1850 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1851 if (!__cpuhp_parallel_bringup)
1852 return false;
1853
1854 if (cpuhp_smt_aware()) {
1855 const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1856 static struct cpumask tmp_mask __initdata;
1857
1858 /*
1859 * X86 requires to prevent that SMT siblings stopped while
1860 * the primary thread does a microcode update for various
1861 * reasons. Bring the primary threads up first.
1862 */
1863 cpumask_and(&tmp_mask, mask, pmask);
1864 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1865 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1866 /* Account for the online CPUs */
1867 ncpus -= num_online_cpus();
1868 if (!ncpus)
1869 return true;
1870 /* Create the mask for secondary CPUs */
1871 cpumask_andnot(&tmp_mask, mask, pmask);
1872 mask = &tmp_mask;
1873 }
1874
1875 /* Bring the not-yet started CPUs up */
1876 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1877 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1878 return true;
1879 }
1880 #else
cpuhp_bringup_cpus_parallel(unsigned int ncpus)1881 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1882 #endif /* CONFIG_HOTPLUG_PARALLEL */
1883
bringup_nonboot_cpus(unsigned int max_cpus)1884 void __init bringup_nonboot_cpus(unsigned int max_cpus)
1885 {
1886 if (!max_cpus)
1887 return;
1888
1889 /* Try parallel bringup optimization if enabled */
1890 if (cpuhp_bringup_cpus_parallel(max_cpus))
1891 return;
1892
1893 /* Full per CPU serialized bringup */
1894 cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE);
1895 }
1896
1897 #ifdef CONFIG_PM_SLEEP_SMP
1898 static cpumask_var_t frozen_cpus;
1899
freeze_secondary_cpus(int primary)1900 int freeze_secondary_cpus(int primary)
1901 {
1902 int cpu, error = 0;
1903
1904 cpu_maps_update_begin();
1905 if (primary == -1) {
1906 primary = cpumask_first(cpu_online_mask);
1907 if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1908 primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1909 } else {
1910 if (!cpu_online(primary))
1911 primary = cpumask_first(cpu_online_mask);
1912 }
1913
1914 /*
1915 * We take down all of the non-boot CPUs in one shot to avoid races
1916 * with the userspace trying to use the CPU hotplug at the same time
1917 */
1918 cpumask_clear(frozen_cpus);
1919
1920 pr_info("Disabling non-boot CPUs ...\n");
1921 for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) {
1922 if (!cpu_online(cpu) || cpu == primary)
1923 continue;
1924
1925 if (pm_wakeup_pending()) {
1926 pr_info("Wakeup pending. Abort CPU freeze\n");
1927 error = -EBUSY;
1928 break;
1929 }
1930
1931 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1932 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1933 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1934 if (!error)
1935 cpumask_set_cpu(cpu, frozen_cpus);
1936 else {
1937 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1938 break;
1939 }
1940 }
1941
1942 if (!error)
1943 BUG_ON(num_online_cpus() > 1);
1944 else
1945 pr_err("Non-boot CPUs are not disabled\n");
1946
1947 /*
1948 * Make sure the CPUs won't be enabled by someone else. We need to do
1949 * this even in case of failure as all freeze_secondary_cpus() users are
1950 * supposed to do thaw_secondary_cpus() on the failure path.
1951 */
1952 cpu_hotplug_disabled++;
1953
1954 cpu_maps_update_done();
1955 return error;
1956 }
1957
arch_thaw_secondary_cpus_begin(void)1958 void __weak arch_thaw_secondary_cpus_begin(void)
1959 {
1960 }
1961
arch_thaw_secondary_cpus_end(void)1962 void __weak arch_thaw_secondary_cpus_end(void)
1963 {
1964 }
1965
thaw_secondary_cpus(void)1966 void thaw_secondary_cpus(void)
1967 {
1968 int cpu, error;
1969
1970 /* Allow everyone to use the CPU hotplug again */
1971 cpu_maps_update_begin();
1972 __cpu_hotplug_enable();
1973 if (cpumask_empty(frozen_cpus))
1974 goto out;
1975
1976 pr_info("Enabling non-boot CPUs ...\n");
1977
1978 arch_thaw_secondary_cpus_begin();
1979
1980 for_each_cpu(cpu, frozen_cpus) {
1981 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1982 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1983 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1984 if (!error) {
1985 pr_info("CPU%d is up\n", cpu);
1986 continue;
1987 }
1988 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1989 }
1990
1991 arch_thaw_secondary_cpus_end();
1992
1993 cpumask_clear(frozen_cpus);
1994 out:
1995 cpu_maps_update_done();
1996 }
1997
alloc_frozen_cpus(void)1998 static int __init alloc_frozen_cpus(void)
1999 {
2000 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
2001 return -ENOMEM;
2002 return 0;
2003 }
2004 core_initcall(alloc_frozen_cpus);
2005
2006 /*
2007 * When callbacks for CPU hotplug notifications are being executed, we must
2008 * ensure that the state of the system with respect to the tasks being frozen
2009 * or not, as reported by the notification, remains unchanged *throughout the
2010 * duration* of the execution of the callbacks.
2011 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2012 *
2013 * This synchronization is implemented by mutually excluding regular CPU
2014 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2015 * Hibernate notifications.
2016 */
2017 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)2018 cpu_hotplug_pm_callback(struct notifier_block *nb,
2019 unsigned long action, void *ptr)
2020 {
2021 switch (action) {
2022
2023 case PM_SUSPEND_PREPARE:
2024 case PM_HIBERNATION_PREPARE:
2025 cpu_hotplug_disable();
2026 break;
2027
2028 case PM_POST_SUSPEND:
2029 case PM_POST_HIBERNATION:
2030 cpu_hotplug_enable();
2031 break;
2032
2033 default:
2034 return NOTIFY_DONE;
2035 }
2036
2037 return NOTIFY_OK;
2038 }
2039
2040
cpu_hotplug_pm_sync_init(void)2041 static int __init cpu_hotplug_pm_sync_init(void)
2042 {
2043 /*
2044 * cpu_hotplug_pm_callback has higher priority than x86
2045 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2046 * to disable cpu hotplug to avoid cpu hotplug race.
2047 */
2048 pm_notifier(cpu_hotplug_pm_callback, 0);
2049 return 0;
2050 }
2051 core_initcall(cpu_hotplug_pm_sync_init);
2052
2053 #endif /* CONFIG_PM_SLEEP_SMP */
2054
2055 int __boot_cpu_id;
2056
2057 #endif /* CONFIG_SMP */
2058
2059 /* Boot processor state steps */
2060 static struct cpuhp_step cpuhp_hp_states[] = {
2061 [CPUHP_OFFLINE] = {
2062 .name = "offline",
2063 .startup.single = NULL,
2064 .teardown.single = NULL,
2065 },
2066 #ifdef CONFIG_SMP
2067 [CPUHP_CREATE_THREADS]= {
2068 .name = "threads:prepare",
2069 .startup.single = smpboot_create_threads,
2070 .teardown.single = NULL,
2071 .cant_stop = true,
2072 },
2073 [CPUHP_RANDOM_PREPARE] = {
2074 .name = "random:prepare",
2075 .startup.single = random_prepare_cpu,
2076 .teardown.single = NULL,
2077 },
2078 [CPUHP_WORKQUEUE_PREP] = {
2079 .name = "workqueue:prepare",
2080 .startup.single = workqueue_prepare_cpu,
2081 .teardown.single = NULL,
2082 },
2083 [CPUHP_HRTIMERS_PREPARE] = {
2084 .name = "hrtimers:prepare",
2085 .startup.single = hrtimers_prepare_cpu,
2086 .teardown.single = NULL,
2087 },
2088 [CPUHP_SMPCFD_PREPARE] = {
2089 .name = "smpcfd:prepare",
2090 .startup.single = smpcfd_prepare_cpu,
2091 .teardown.single = smpcfd_dead_cpu,
2092 },
2093 [CPUHP_RELAY_PREPARE] = {
2094 .name = "relay:prepare",
2095 .startup.single = relay_prepare_cpu,
2096 .teardown.single = NULL,
2097 },
2098 [CPUHP_RCUTREE_PREP] = {
2099 .name = "RCU/tree:prepare",
2100 .startup.single = rcutree_prepare_cpu,
2101 .teardown.single = rcutree_dead_cpu,
2102 },
2103 /*
2104 * On the tear-down path, timers_dead_cpu() must be invoked
2105 * before blk_mq_queue_reinit_notify() from notify_dead(),
2106 * otherwise a RCU stall occurs.
2107 */
2108 [CPUHP_TIMERS_PREPARE] = {
2109 .name = "timers:prepare",
2110 .startup.single = timers_prepare_cpu,
2111 .teardown.single = timers_dead_cpu,
2112 },
2113
2114 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2115 /*
2116 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2117 * the next step will release it.
2118 */
2119 [CPUHP_BP_KICK_AP] = {
2120 .name = "cpu:kick_ap",
2121 .startup.single = cpuhp_kick_ap_alive,
2122 },
2123
2124 /*
2125 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2126 * releases it for the complete bringup.
2127 */
2128 [CPUHP_BRINGUP_CPU] = {
2129 .name = "cpu:bringup",
2130 .startup.single = cpuhp_bringup_ap,
2131 .teardown.single = finish_cpu,
2132 .cant_stop = true,
2133 },
2134 #else
2135 /*
2136 * All-in-one CPU bringup state which includes the kick alive.
2137 */
2138 [CPUHP_BRINGUP_CPU] = {
2139 .name = "cpu:bringup",
2140 .startup.single = bringup_cpu,
2141 .teardown.single = finish_cpu,
2142 .cant_stop = true,
2143 },
2144 #endif
2145 /* Final state before CPU kills itself */
2146 [CPUHP_AP_IDLE_DEAD] = {
2147 .name = "idle:dead",
2148 },
2149 /*
2150 * Last state before CPU enters the idle loop to die. Transient state
2151 * for synchronization.
2152 */
2153 [CPUHP_AP_OFFLINE] = {
2154 .name = "ap:offline",
2155 .cant_stop = true,
2156 },
2157 /* First state is scheduler control. Interrupts are disabled */
2158 [CPUHP_AP_SCHED_STARTING] = {
2159 .name = "sched:starting",
2160 .startup.single = sched_cpu_starting,
2161 .teardown.single = sched_cpu_dying,
2162 },
2163 [CPUHP_AP_RCUTREE_DYING] = {
2164 .name = "RCU/tree:dying",
2165 .startup.single = NULL,
2166 .teardown.single = rcutree_dying_cpu,
2167 },
2168 [CPUHP_AP_SMPCFD_DYING] = {
2169 .name = "smpcfd:dying",
2170 .startup.single = NULL,
2171 .teardown.single = smpcfd_dying_cpu,
2172 },
2173 [CPUHP_AP_HRTIMERS_DYING] = {
2174 .name = "hrtimers:dying",
2175 .startup.single = hrtimers_cpu_starting,
2176 .teardown.single = hrtimers_cpu_dying,
2177 },
2178 [CPUHP_AP_TICK_DYING] = {
2179 .name = "tick:dying",
2180 .startup.single = NULL,
2181 .teardown.single = tick_cpu_dying,
2182 },
2183 /* Entry state on starting. Interrupts enabled from here on. Transient
2184 * state for synchronsization */
2185 [CPUHP_AP_ONLINE] = {
2186 .name = "ap:online",
2187 },
2188 /*
2189 * Handled on control processor until the plugged processor manages
2190 * this itself.
2191 */
2192 [CPUHP_TEARDOWN_CPU] = {
2193 .name = "cpu:teardown",
2194 .startup.single = NULL,
2195 .teardown.single = takedown_cpu,
2196 .cant_stop = true,
2197 },
2198
2199 [CPUHP_AP_SCHED_WAIT_EMPTY] = {
2200 .name = "sched:waitempty",
2201 .startup.single = NULL,
2202 .teardown.single = sched_cpu_wait_empty,
2203 },
2204
2205 /* Handle smpboot threads park/unpark */
2206 [CPUHP_AP_SMPBOOT_THREADS] = {
2207 .name = "smpboot/threads:online",
2208 .startup.single = smpboot_unpark_threads,
2209 .teardown.single = smpboot_park_threads,
2210 },
2211 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2212 .name = "irq/affinity:online",
2213 .startup.single = irq_affinity_online_cpu,
2214 .teardown.single = NULL,
2215 },
2216 [CPUHP_AP_PERF_ONLINE] = {
2217 .name = "perf:online",
2218 .startup.single = perf_event_init_cpu,
2219 .teardown.single = perf_event_exit_cpu,
2220 },
2221 [CPUHP_AP_WATCHDOG_ONLINE] = {
2222 .name = "lockup_detector:online",
2223 .startup.single = lockup_detector_online_cpu,
2224 .teardown.single = lockup_detector_offline_cpu,
2225 },
2226 [CPUHP_AP_WORKQUEUE_ONLINE] = {
2227 .name = "workqueue:online",
2228 .startup.single = workqueue_online_cpu,
2229 .teardown.single = workqueue_offline_cpu,
2230 },
2231 [CPUHP_AP_RANDOM_ONLINE] = {
2232 .name = "random:online",
2233 .startup.single = random_online_cpu,
2234 .teardown.single = NULL,
2235 },
2236 [CPUHP_AP_RCUTREE_ONLINE] = {
2237 .name = "RCU/tree:online",
2238 .startup.single = rcutree_online_cpu,
2239 .teardown.single = rcutree_offline_cpu,
2240 },
2241 #endif
2242 /*
2243 * The dynamically registered state space is here
2244 */
2245
2246 #ifdef CONFIG_SMP
2247 /* Last state is scheduler control setting the cpu active */
2248 [CPUHP_AP_ACTIVE] = {
2249 .name = "sched:active",
2250 .startup.single = sched_cpu_activate,
2251 .teardown.single = sched_cpu_deactivate,
2252 },
2253 #endif
2254
2255 /* CPU is fully up and running. */
2256 [CPUHP_ONLINE] = {
2257 .name = "online",
2258 .startup.single = NULL,
2259 .teardown.single = NULL,
2260 },
2261 };
2262
2263 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)2264 static int cpuhp_cb_check(enum cpuhp_state state)
2265 {
2266 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2267 return -EINVAL;
2268 return 0;
2269 }
2270
2271 /*
2272 * Returns a free for dynamic slot assignment of the Online state. The states
2273 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2274 * by having no name assigned.
2275 */
cpuhp_reserve_state(enum cpuhp_state state)2276 static int cpuhp_reserve_state(enum cpuhp_state state)
2277 {
2278 enum cpuhp_state i, end;
2279 struct cpuhp_step *step;
2280
2281 switch (state) {
2282 case CPUHP_AP_ONLINE_DYN:
2283 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2284 end = CPUHP_AP_ONLINE_DYN_END;
2285 break;
2286 case CPUHP_BP_PREPARE_DYN:
2287 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2288 end = CPUHP_BP_PREPARE_DYN_END;
2289 break;
2290 default:
2291 return -EINVAL;
2292 }
2293
2294 for (i = state; i <= end; i++, step++) {
2295 if (!step->name)
2296 return i;
2297 }
2298 WARN(1, "No more dynamic states available for CPU hotplug\n");
2299 return -ENOSPC;
2300 }
2301
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2302 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2303 int (*startup)(unsigned int cpu),
2304 int (*teardown)(unsigned int cpu),
2305 bool multi_instance)
2306 {
2307 /* (Un)Install the callbacks for further cpu hotplug operations */
2308 struct cpuhp_step *sp;
2309 int ret = 0;
2310
2311 /*
2312 * If name is NULL, then the state gets removed.
2313 *
2314 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2315 * the first allocation from these dynamic ranges, so the removal
2316 * would trigger a new allocation and clear the wrong (already
2317 * empty) state, leaving the callbacks of the to be cleared state
2318 * dangling, which causes wreckage on the next hotplug operation.
2319 */
2320 if (name && (state == CPUHP_AP_ONLINE_DYN ||
2321 state == CPUHP_BP_PREPARE_DYN)) {
2322 ret = cpuhp_reserve_state(state);
2323 if (ret < 0)
2324 return ret;
2325 state = ret;
2326 }
2327 sp = cpuhp_get_step(state);
2328 if (name && sp->name)
2329 return -EBUSY;
2330
2331 sp->startup.single = startup;
2332 sp->teardown.single = teardown;
2333 sp->name = name;
2334 sp->multi_instance = multi_instance;
2335 INIT_HLIST_HEAD(&sp->list);
2336 return ret;
2337 }
2338
cpuhp_get_teardown_cb(enum cpuhp_state state)2339 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2340 {
2341 return cpuhp_get_step(state)->teardown.single;
2342 }
2343
2344 /*
2345 * Call the startup/teardown function for a step either on the AP or
2346 * on the current CPU.
2347 */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)2348 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2349 struct hlist_node *node)
2350 {
2351 struct cpuhp_step *sp = cpuhp_get_step(state);
2352 int ret;
2353
2354 /*
2355 * If there's nothing to do, we done.
2356 * Relies on the union for multi_instance.
2357 */
2358 if (cpuhp_step_empty(bringup, sp))
2359 return 0;
2360 /*
2361 * The non AP bound callbacks can fail on bringup. On teardown
2362 * e.g. module removal we crash for now.
2363 */
2364 #ifdef CONFIG_SMP
2365 if (cpuhp_is_ap_state(state))
2366 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2367 else
2368 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2369 #else
2370 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2371 #endif
2372 BUG_ON(ret && !bringup);
2373 return ret;
2374 }
2375
2376 /*
2377 * Called from __cpuhp_setup_state on a recoverable failure.
2378 *
2379 * Note: The teardown callbacks for rollback are not allowed to fail!
2380 */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)2381 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2382 struct hlist_node *node)
2383 {
2384 int cpu;
2385
2386 /* Roll back the already executed steps on the other cpus */
2387 for_each_present_cpu(cpu) {
2388 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2389 int cpustate = st->state;
2390
2391 if (cpu >= failedcpu)
2392 break;
2393
2394 /* Did we invoke the startup call on that cpu ? */
2395 if (cpustate >= state)
2396 cpuhp_issue_call(cpu, state, false, node);
2397 }
2398 }
2399
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)2400 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2401 struct hlist_node *node,
2402 bool invoke)
2403 {
2404 struct cpuhp_step *sp;
2405 int cpu;
2406 int ret;
2407
2408 lockdep_assert_cpus_held();
2409
2410 sp = cpuhp_get_step(state);
2411 if (sp->multi_instance == false)
2412 return -EINVAL;
2413
2414 mutex_lock(&cpuhp_state_mutex);
2415
2416 if (!invoke || !sp->startup.multi)
2417 goto add_node;
2418
2419 /*
2420 * Try to call the startup callback for each present cpu
2421 * depending on the hotplug state of the cpu.
2422 */
2423 for_each_present_cpu(cpu) {
2424 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2425 int cpustate = st->state;
2426
2427 if (cpustate < state)
2428 continue;
2429
2430 ret = cpuhp_issue_call(cpu, state, true, node);
2431 if (ret) {
2432 if (sp->teardown.multi)
2433 cpuhp_rollback_install(cpu, state, node);
2434 goto unlock;
2435 }
2436 }
2437 add_node:
2438 ret = 0;
2439 hlist_add_head(node, &sp->list);
2440 unlock:
2441 mutex_unlock(&cpuhp_state_mutex);
2442 return ret;
2443 }
2444
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2445 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2446 bool invoke)
2447 {
2448 int ret;
2449
2450 cpus_read_lock();
2451 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2452 cpus_read_unlock();
2453 return ret;
2454 }
2455 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2456
2457 /**
2458 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2459 * @state: The state to setup
2460 * @name: Name of the step
2461 * @invoke: If true, the startup function is invoked for cpus where
2462 * cpu state >= @state
2463 * @startup: startup callback function
2464 * @teardown: teardown callback function
2465 * @multi_instance: State is set up for multiple instances which get
2466 * added afterwards.
2467 *
2468 * The caller needs to hold cpus read locked while calling this function.
2469 * Return:
2470 * On success:
2471 * Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN;
2472 * 0 for all other states
2473 * On failure: proper (negative) error code
2474 */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2475 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2476 const char *name, bool invoke,
2477 int (*startup)(unsigned int cpu),
2478 int (*teardown)(unsigned int cpu),
2479 bool multi_instance)
2480 {
2481 int cpu, ret = 0;
2482 bool dynstate;
2483
2484 lockdep_assert_cpus_held();
2485
2486 if (cpuhp_cb_check(state) || !name)
2487 return -EINVAL;
2488
2489 mutex_lock(&cpuhp_state_mutex);
2490
2491 ret = cpuhp_store_callbacks(state, name, startup, teardown,
2492 multi_instance);
2493
2494 dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN;
2495 if (ret > 0 && dynstate) {
2496 state = ret;
2497 ret = 0;
2498 }
2499
2500 if (ret || !invoke || !startup)
2501 goto out;
2502
2503 /*
2504 * Try to call the startup callback for each present cpu
2505 * depending on the hotplug state of the cpu.
2506 */
2507 for_each_present_cpu(cpu) {
2508 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2509 int cpustate = st->state;
2510
2511 if (cpustate < state)
2512 continue;
2513
2514 ret = cpuhp_issue_call(cpu, state, true, NULL);
2515 if (ret) {
2516 if (teardown)
2517 cpuhp_rollback_install(cpu, state, NULL);
2518 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2519 goto out;
2520 }
2521 }
2522 out:
2523 mutex_unlock(&cpuhp_state_mutex);
2524 /*
2525 * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN,
2526 * return the dynamically allocated state in case of success.
2527 */
2528 if (!ret && dynstate)
2529 return state;
2530 return ret;
2531 }
2532 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2533
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2534 int __cpuhp_setup_state(enum cpuhp_state state,
2535 const char *name, bool invoke,
2536 int (*startup)(unsigned int cpu),
2537 int (*teardown)(unsigned int cpu),
2538 bool multi_instance)
2539 {
2540 int ret;
2541
2542 cpus_read_lock();
2543 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2544 teardown, multi_instance);
2545 cpus_read_unlock();
2546 return ret;
2547 }
2548 EXPORT_SYMBOL(__cpuhp_setup_state);
2549
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2550 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2551 struct hlist_node *node, bool invoke)
2552 {
2553 struct cpuhp_step *sp = cpuhp_get_step(state);
2554 int cpu;
2555
2556 BUG_ON(cpuhp_cb_check(state));
2557
2558 if (!sp->multi_instance)
2559 return -EINVAL;
2560
2561 cpus_read_lock();
2562 mutex_lock(&cpuhp_state_mutex);
2563
2564 if (!invoke || !cpuhp_get_teardown_cb(state))
2565 goto remove;
2566 /*
2567 * Call the teardown callback for each present cpu depending
2568 * on the hotplug state of the cpu. This function is not
2569 * allowed to fail currently!
2570 */
2571 for_each_present_cpu(cpu) {
2572 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2573 int cpustate = st->state;
2574
2575 if (cpustate >= state)
2576 cpuhp_issue_call(cpu, state, false, node);
2577 }
2578
2579 remove:
2580 hlist_del(node);
2581 mutex_unlock(&cpuhp_state_mutex);
2582 cpus_read_unlock();
2583
2584 return 0;
2585 }
2586 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2587
2588 /**
2589 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2590 * @state: The state to remove
2591 * @invoke: If true, the teardown function is invoked for cpus where
2592 * cpu state >= @state
2593 *
2594 * The caller needs to hold cpus read locked while calling this function.
2595 * The teardown callback is currently not allowed to fail. Think
2596 * about module removal!
2597 */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)2598 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2599 {
2600 struct cpuhp_step *sp = cpuhp_get_step(state);
2601 int cpu;
2602
2603 BUG_ON(cpuhp_cb_check(state));
2604
2605 lockdep_assert_cpus_held();
2606
2607 mutex_lock(&cpuhp_state_mutex);
2608 if (sp->multi_instance) {
2609 WARN(!hlist_empty(&sp->list),
2610 "Error: Removing state %d which has instances left.\n",
2611 state);
2612 goto remove;
2613 }
2614
2615 if (!invoke || !cpuhp_get_teardown_cb(state))
2616 goto remove;
2617
2618 /*
2619 * Call the teardown callback for each present cpu depending
2620 * on the hotplug state of the cpu. This function is not
2621 * allowed to fail currently!
2622 */
2623 for_each_present_cpu(cpu) {
2624 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2625 int cpustate = st->state;
2626
2627 if (cpustate >= state)
2628 cpuhp_issue_call(cpu, state, false, NULL);
2629 }
2630 remove:
2631 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2632 mutex_unlock(&cpuhp_state_mutex);
2633 }
2634 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2635
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)2636 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2637 {
2638 cpus_read_lock();
2639 __cpuhp_remove_state_cpuslocked(state, invoke);
2640 cpus_read_unlock();
2641 }
2642 EXPORT_SYMBOL(__cpuhp_remove_state);
2643
2644 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_offline_cpu_device(unsigned int cpu)2645 static void cpuhp_offline_cpu_device(unsigned int cpu)
2646 {
2647 struct device *dev = get_cpu_device(cpu);
2648
2649 dev->offline = true;
2650 /* Tell user space about the state change */
2651 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2652 }
2653
cpuhp_online_cpu_device(unsigned int cpu)2654 static void cpuhp_online_cpu_device(unsigned int cpu)
2655 {
2656 struct device *dev = get_cpu_device(cpu);
2657
2658 dev->offline = false;
2659 /* Tell user space about the state change */
2660 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2661 }
2662
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2663 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2664 {
2665 int cpu, ret = 0;
2666
2667 cpu_maps_update_begin();
2668 for_each_online_cpu(cpu) {
2669 if (topology_is_primary_thread(cpu))
2670 continue;
2671 /*
2672 * Disable can be called with CPU_SMT_ENABLED when changing
2673 * from a higher to lower number of SMT threads per core.
2674 */
2675 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2676 continue;
2677 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2678 if (ret)
2679 break;
2680 /*
2681 * As this needs to hold the cpu maps lock it's impossible
2682 * to call device_offline() because that ends up calling
2683 * cpu_down() which takes cpu maps lock. cpu maps lock
2684 * needs to be held as this might race against in kernel
2685 * abusers of the hotplug machinery (thermal management).
2686 *
2687 * So nothing would update device:offline state. That would
2688 * leave the sysfs entry stale and prevent onlining after
2689 * smt control has been changed to 'off' again. This is
2690 * called under the sysfs hotplug lock, so it is properly
2691 * serialized against the regular offline usage.
2692 */
2693 cpuhp_offline_cpu_device(cpu);
2694 }
2695 if (!ret)
2696 cpu_smt_control = ctrlval;
2697 cpu_maps_update_done();
2698 return ret;
2699 }
2700
2701 /* Check if the core a CPU belongs to is online */
2702 #if !defined(topology_is_core_online)
topology_is_core_online(unsigned int cpu)2703 static inline bool topology_is_core_online(unsigned int cpu)
2704 {
2705 return true;
2706 }
2707 #endif
2708
cpuhp_smt_enable(void)2709 int cpuhp_smt_enable(void)
2710 {
2711 int cpu, ret = 0;
2712
2713 cpu_maps_update_begin();
2714 cpu_smt_control = CPU_SMT_ENABLED;
2715 for_each_present_cpu(cpu) {
2716 /* Skip online CPUs and CPUs on offline nodes */
2717 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2718 continue;
2719 if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu))
2720 continue;
2721 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2722 if (ret)
2723 break;
2724 /* See comment in cpuhp_smt_disable() */
2725 cpuhp_online_cpu_device(cpu);
2726 }
2727 cpu_maps_update_done();
2728 return ret;
2729 }
2730 #endif
2731
2732 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
state_show(struct device * dev,struct device_attribute * attr,char * buf)2733 static ssize_t state_show(struct device *dev,
2734 struct device_attribute *attr, char *buf)
2735 {
2736 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2737
2738 return sprintf(buf, "%d\n", st->state);
2739 }
2740 static DEVICE_ATTR_RO(state);
2741
target_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2742 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2743 const char *buf, size_t count)
2744 {
2745 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2746 struct cpuhp_step *sp;
2747 int target, ret;
2748
2749 ret = kstrtoint(buf, 10, &target);
2750 if (ret)
2751 return ret;
2752
2753 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2754 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2755 return -EINVAL;
2756 #else
2757 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2758 return -EINVAL;
2759 #endif
2760
2761 ret = lock_device_hotplug_sysfs();
2762 if (ret)
2763 return ret;
2764
2765 mutex_lock(&cpuhp_state_mutex);
2766 sp = cpuhp_get_step(target);
2767 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2768 mutex_unlock(&cpuhp_state_mutex);
2769 if (ret)
2770 goto out;
2771
2772 if (st->state < target)
2773 ret = cpu_up(dev->id, target);
2774 else if (st->state > target)
2775 ret = cpu_down(dev->id, target);
2776 else if (WARN_ON(st->target != target))
2777 st->target = target;
2778 out:
2779 unlock_device_hotplug();
2780 return ret ? ret : count;
2781 }
2782
target_show(struct device * dev,struct device_attribute * attr,char * buf)2783 static ssize_t target_show(struct device *dev,
2784 struct device_attribute *attr, char *buf)
2785 {
2786 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2787
2788 return sprintf(buf, "%d\n", st->target);
2789 }
2790 static DEVICE_ATTR_RW(target);
2791
fail_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2792 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2793 const char *buf, size_t count)
2794 {
2795 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2796 struct cpuhp_step *sp;
2797 int fail, ret;
2798
2799 ret = kstrtoint(buf, 10, &fail);
2800 if (ret)
2801 return ret;
2802
2803 if (fail == CPUHP_INVALID) {
2804 st->fail = fail;
2805 return count;
2806 }
2807
2808 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2809 return -EINVAL;
2810
2811 /*
2812 * Cannot fail STARTING/DYING callbacks.
2813 */
2814 if (cpuhp_is_atomic_state(fail))
2815 return -EINVAL;
2816
2817 /*
2818 * DEAD callbacks cannot fail...
2819 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2820 * triggering STARTING callbacks, a failure in this state would
2821 * hinder rollback.
2822 */
2823 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2824 return -EINVAL;
2825
2826 /*
2827 * Cannot fail anything that doesn't have callbacks.
2828 */
2829 mutex_lock(&cpuhp_state_mutex);
2830 sp = cpuhp_get_step(fail);
2831 if (!sp->startup.single && !sp->teardown.single)
2832 ret = -EINVAL;
2833 mutex_unlock(&cpuhp_state_mutex);
2834 if (ret)
2835 return ret;
2836
2837 st->fail = fail;
2838
2839 return count;
2840 }
2841
fail_show(struct device * dev,struct device_attribute * attr,char * buf)2842 static ssize_t fail_show(struct device *dev,
2843 struct device_attribute *attr, char *buf)
2844 {
2845 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2846
2847 return sprintf(buf, "%d\n", st->fail);
2848 }
2849
2850 static DEVICE_ATTR_RW(fail);
2851
2852 static struct attribute *cpuhp_cpu_attrs[] = {
2853 &dev_attr_state.attr,
2854 &dev_attr_target.attr,
2855 &dev_attr_fail.attr,
2856 NULL
2857 };
2858
2859 static const struct attribute_group cpuhp_cpu_attr_group = {
2860 .attrs = cpuhp_cpu_attrs,
2861 .name = "hotplug",
2862 };
2863
states_show(struct device * dev,struct device_attribute * attr,char * buf)2864 static ssize_t states_show(struct device *dev,
2865 struct device_attribute *attr, char *buf)
2866 {
2867 ssize_t cur, res = 0;
2868 int i;
2869
2870 mutex_lock(&cpuhp_state_mutex);
2871 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2872 struct cpuhp_step *sp = cpuhp_get_step(i);
2873
2874 if (sp->name) {
2875 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2876 buf += cur;
2877 res += cur;
2878 }
2879 }
2880 mutex_unlock(&cpuhp_state_mutex);
2881 return res;
2882 }
2883 static DEVICE_ATTR_RO(states);
2884
2885 static struct attribute *cpuhp_cpu_root_attrs[] = {
2886 &dev_attr_states.attr,
2887 NULL
2888 };
2889
2890 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2891 .attrs = cpuhp_cpu_root_attrs,
2892 .name = "hotplug",
2893 };
2894
2895 #ifdef CONFIG_HOTPLUG_SMT
2896
cpu_smt_num_threads_valid(unsigned int threads)2897 static bool cpu_smt_num_threads_valid(unsigned int threads)
2898 {
2899 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2900 return threads >= 1 && threads <= cpu_smt_max_threads;
2901 return threads == 1 || threads == cpu_smt_max_threads;
2902 }
2903
2904 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2905 __store_smt_control(struct device *dev, struct device_attribute *attr,
2906 const char *buf, size_t count)
2907 {
2908 int ctrlval, ret, num_threads, orig_threads;
2909 bool force_off;
2910
2911 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2912 return -EPERM;
2913
2914 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2915 return -ENODEV;
2916
2917 if (sysfs_streq(buf, "on")) {
2918 ctrlval = CPU_SMT_ENABLED;
2919 num_threads = cpu_smt_max_threads;
2920 } else if (sysfs_streq(buf, "off")) {
2921 ctrlval = CPU_SMT_DISABLED;
2922 num_threads = 1;
2923 } else if (sysfs_streq(buf, "forceoff")) {
2924 ctrlval = CPU_SMT_FORCE_DISABLED;
2925 num_threads = 1;
2926 } else if (kstrtoint(buf, 10, &num_threads) == 0) {
2927 if (num_threads == 1)
2928 ctrlval = CPU_SMT_DISABLED;
2929 else if (cpu_smt_num_threads_valid(num_threads))
2930 ctrlval = CPU_SMT_ENABLED;
2931 else
2932 return -EINVAL;
2933 } else {
2934 return -EINVAL;
2935 }
2936
2937 ret = lock_device_hotplug_sysfs();
2938 if (ret)
2939 return ret;
2940
2941 orig_threads = cpu_smt_num_threads;
2942 cpu_smt_num_threads = num_threads;
2943
2944 force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2945
2946 if (num_threads > orig_threads)
2947 ret = cpuhp_smt_enable();
2948 else if (num_threads < orig_threads || force_off)
2949 ret = cpuhp_smt_disable(ctrlval);
2950
2951 unlock_device_hotplug();
2952 return ret ? ret : count;
2953 }
2954
2955 #else /* !CONFIG_HOTPLUG_SMT */
2956 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2957 __store_smt_control(struct device *dev, struct device_attribute *attr,
2958 const char *buf, size_t count)
2959 {
2960 return -ENODEV;
2961 }
2962 #endif /* CONFIG_HOTPLUG_SMT */
2963
2964 static const char *smt_states[] = {
2965 [CPU_SMT_ENABLED] = "on",
2966 [CPU_SMT_DISABLED] = "off",
2967 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2968 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2969 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2970 };
2971
control_show(struct device * dev,struct device_attribute * attr,char * buf)2972 static ssize_t control_show(struct device *dev,
2973 struct device_attribute *attr, char *buf)
2974 {
2975 const char *state = smt_states[cpu_smt_control];
2976
2977 #ifdef CONFIG_HOTPLUG_SMT
2978 /*
2979 * If SMT is enabled but not all threads are enabled then show the
2980 * number of threads. If all threads are enabled show "on". Otherwise
2981 * show the state name.
2982 */
2983 if (cpu_smt_control == CPU_SMT_ENABLED &&
2984 cpu_smt_num_threads != cpu_smt_max_threads)
2985 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
2986 #endif
2987
2988 return sysfs_emit(buf, "%s\n", state);
2989 }
2990
control_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2991 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2992 const char *buf, size_t count)
2993 {
2994 return __store_smt_control(dev, attr, buf, count);
2995 }
2996 static DEVICE_ATTR_RW(control);
2997
active_show(struct device * dev,struct device_attribute * attr,char * buf)2998 static ssize_t active_show(struct device *dev,
2999 struct device_attribute *attr, char *buf)
3000 {
3001 return sysfs_emit(buf, "%d\n", sched_smt_active());
3002 }
3003 static DEVICE_ATTR_RO(active);
3004
3005 static struct attribute *cpuhp_smt_attrs[] = {
3006 &dev_attr_control.attr,
3007 &dev_attr_active.attr,
3008 NULL
3009 };
3010
3011 static const struct attribute_group cpuhp_smt_attr_group = {
3012 .attrs = cpuhp_smt_attrs,
3013 .name = "smt",
3014 };
3015
cpu_smt_sysfs_init(void)3016 static int __init cpu_smt_sysfs_init(void)
3017 {
3018 struct device *dev_root;
3019 int ret = -ENODEV;
3020
3021 dev_root = bus_get_dev_root(&cpu_subsys);
3022 if (dev_root) {
3023 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3024 put_device(dev_root);
3025 }
3026 return ret;
3027 }
3028
cpuhp_sysfs_init(void)3029 static int __init cpuhp_sysfs_init(void)
3030 {
3031 struct device *dev_root;
3032 int cpu, ret;
3033
3034 ret = cpu_smt_sysfs_init();
3035 if (ret)
3036 return ret;
3037
3038 dev_root = bus_get_dev_root(&cpu_subsys);
3039 if (dev_root) {
3040 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3041 put_device(dev_root);
3042 if (ret)
3043 return ret;
3044 }
3045
3046 for_each_possible_cpu(cpu) {
3047 struct device *dev = get_cpu_device(cpu);
3048
3049 if (!dev)
3050 continue;
3051 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3052 if (ret)
3053 return ret;
3054 }
3055 return 0;
3056 }
3057 device_initcall(cpuhp_sysfs_init);
3058 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3059
3060 /*
3061 * cpu_bit_bitmap[] is a special, "compressed" data structure that
3062 * represents all NR_CPUS bits binary values of 1<<nr.
3063 *
3064 * It is used by cpumask_of() to get a constant address to a CPU
3065 * mask value that has a single bit set only.
3066 */
3067
3068 /* cpu_bit_bitmap[0] is empty - so we can back into it */
3069 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
3070 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3071 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3072 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3073
3074 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3075
3076 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
3077 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
3078 #if BITS_PER_LONG > 32
3079 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
3080 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
3081 #endif
3082 };
3083 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3084
3085 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3086 EXPORT_SYMBOL(cpu_all_bits);
3087
3088 #ifdef CONFIG_INIT_ALL_POSSIBLE
3089 struct cpumask __cpu_possible_mask __ro_after_init
3090 = {CPU_BITS_ALL};
3091 #else
3092 struct cpumask __cpu_possible_mask __ro_after_init;
3093 #endif
3094 EXPORT_SYMBOL(__cpu_possible_mask);
3095
3096 struct cpumask __cpu_online_mask __read_mostly;
3097 EXPORT_SYMBOL(__cpu_online_mask);
3098
3099 struct cpumask __cpu_enabled_mask __read_mostly;
3100 EXPORT_SYMBOL(__cpu_enabled_mask);
3101
3102 struct cpumask __cpu_present_mask __read_mostly;
3103 EXPORT_SYMBOL(__cpu_present_mask);
3104
3105 struct cpumask __cpu_active_mask __read_mostly;
3106 EXPORT_SYMBOL(__cpu_active_mask);
3107
3108 struct cpumask __cpu_dying_mask __read_mostly;
3109 EXPORT_SYMBOL(__cpu_dying_mask);
3110
3111 atomic_t __num_online_cpus __read_mostly;
3112 EXPORT_SYMBOL(__num_online_cpus);
3113
init_cpu_present(const struct cpumask * src)3114 void init_cpu_present(const struct cpumask *src)
3115 {
3116 cpumask_copy(&__cpu_present_mask, src);
3117 }
3118
init_cpu_possible(const struct cpumask * src)3119 void init_cpu_possible(const struct cpumask *src)
3120 {
3121 cpumask_copy(&__cpu_possible_mask, src);
3122 }
3123
set_cpu_online(unsigned int cpu,bool online)3124 void set_cpu_online(unsigned int cpu, bool online)
3125 {
3126 /*
3127 * atomic_inc/dec() is required to handle the horrid abuse of this
3128 * function by the reboot and kexec code which invoke it from
3129 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3130 * regular CPU hotplug is properly serialized.
3131 *
3132 * Note, that the fact that __num_online_cpus is of type atomic_t
3133 * does not protect readers which are not serialized against
3134 * concurrent hotplug operations.
3135 */
3136 if (online) {
3137 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3138 atomic_inc(&__num_online_cpus);
3139 } else {
3140 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3141 atomic_dec(&__num_online_cpus);
3142 }
3143 }
3144
3145 /*
3146 * Activate the first processor.
3147 */
boot_cpu_init(void)3148 void __init boot_cpu_init(void)
3149 {
3150 int cpu = smp_processor_id();
3151
3152 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
3153 set_cpu_online(cpu, true);
3154 set_cpu_active(cpu, true);
3155 set_cpu_present(cpu, true);
3156 set_cpu_possible(cpu, true);
3157
3158 #ifdef CONFIG_SMP
3159 __boot_cpu_id = cpu;
3160 #endif
3161 }
3162
3163 /*
3164 * Must be called _AFTER_ setting up the per_cpu areas
3165 */
boot_cpu_hotplug_init(void)3166 void __init boot_cpu_hotplug_init(void)
3167 {
3168 #ifdef CONFIG_SMP
3169 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3170 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3171 #endif
3172 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3173 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3174 }
3175
3176 #ifdef CONFIG_CPU_MITIGATIONS
3177 /*
3178 * All except the cross-thread attack vector are mitigated by default.
3179 * Cross-thread mitigation often requires disabling SMT which is expensive
3180 * so cross-thread mitigations are only partially enabled by default.
3181 *
3182 * Guest-to-Host and Guest-to-Guest vectors are only needed if KVM support is
3183 * present.
3184 */
3185 static bool attack_vectors[NR_CPU_ATTACK_VECTORS] __ro_after_init = {
3186 [CPU_MITIGATE_USER_KERNEL] = true,
3187 [CPU_MITIGATE_USER_USER] = true,
3188 [CPU_MITIGATE_GUEST_HOST] = IS_ENABLED(CONFIG_KVM),
3189 [CPU_MITIGATE_GUEST_GUEST] = IS_ENABLED(CONFIG_KVM),
3190 };
3191
cpu_attack_vector_mitigated(enum cpu_attack_vectors v)3192 bool cpu_attack_vector_mitigated(enum cpu_attack_vectors v)
3193 {
3194 if (v < NR_CPU_ATTACK_VECTORS)
3195 return attack_vectors[v];
3196
3197 WARN_ONCE(1, "Invalid attack vector %d\n", v);
3198 return false;
3199 }
3200
3201 /*
3202 * There are 3 global options, 'off', 'auto', 'auto,nosmt'. These may optionally
3203 * be combined with attack-vector disables which follow them.
3204 *
3205 * Examples:
3206 * mitigations=auto,no_user_kernel,no_user_user,no_cross_thread
3207 * mitigations=auto,nosmt,no_guest_host,no_guest_guest
3208 *
3209 * mitigations=off is equivalent to disabling all attack vectors.
3210 */
3211 enum cpu_mitigations {
3212 CPU_MITIGATIONS_OFF,
3213 CPU_MITIGATIONS_AUTO,
3214 CPU_MITIGATIONS_AUTO_NOSMT,
3215 };
3216
3217 enum {
3218 NO_USER_KERNEL,
3219 NO_USER_USER,
3220 NO_GUEST_HOST,
3221 NO_GUEST_GUEST,
3222 NO_CROSS_THREAD,
3223 NR_VECTOR_PARAMS,
3224 };
3225
3226 enum smt_mitigations smt_mitigations __ro_after_init = SMT_MITIGATIONS_AUTO;
3227 static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
3228
3229 static const match_table_t global_mitigations = {
3230 { CPU_MITIGATIONS_AUTO_NOSMT, "auto,nosmt"},
3231 { CPU_MITIGATIONS_AUTO, "auto"},
3232 { CPU_MITIGATIONS_OFF, "off"},
3233 };
3234
3235 static const match_table_t vector_mitigations = {
3236 { NO_USER_KERNEL, "no_user_kernel"},
3237 { NO_USER_USER, "no_user_user"},
3238 { NO_GUEST_HOST, "no_guest_host"},
3239 { NO_GUEST_GUEST, "no_guest_guest"},
3240 { NO_CROSS_THREAD, "no_cross_thread"},
3241 { NR_VECTOR_PARAMS, NULL},
3242 };
3243
mitigations_parse_global_opt(char * arg)3244 static int __init mitigations_parse_global_opt(char *arg)
3245 {
3246 int i;
3247
3248 for (i = 0; i < ARRAY_SIZE(global_mitigations); i++) {
3249 const char *pattern = global_mitigations[i].pattern;
3250
3251 if (!strncmp(arg, pattern, strlen(pattern))) {
3252 cpu_mitigations = global_mitigations[i].token;
3253 return strlen(pattern);
3254 }
3255 }
3256
3257 return 0;
3258 }
3259
mitigations_parse_cmdline(char * arg)3260 static int __init mitigations_parse_cmdline(char *arg)
3261 {
3262 char *s, *p;
3263 int len;
3264
3265 len = mitigations_parse_global_opt(arg);
3266
3267 if (cpu_mitigations_off()) {
3268 memset(attack_vectors, 0, sizeof(attack_vectors));
3269 smt_mitigations = SMT_MITIGATIONS_OFF;
3270 } else if (cpu_mitigations_auto_nosmt()) {
3271 smt_mitigations = SMT_MITIGATIONS_ON;
3272 }
3273
3274 p = arg + len;
3275
3276 if (!*p)
3277 return 0;
3278
3279 /* Attack vector controls may come after the ',' */
3280 if (*p++ != ',' || !IS_ENABLED(CONFIG_ARCH_HAS_CPU_ATTACK_VECTORS)) {
3281 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", arg);
3282 return 0;
3283 }
3284
3285 while ((s = strsep(&p, ",")) != NULL) {
3286 switch (match_token(s, vector_mitigations, NULL)) {
3287 case NO_USER_KERNEL:
3288 attack_vectors[CPU_MITIGATE_USER_KERNEL] = false;
3289 break;
3290 case NO_USER_USER:
3291 attack_vectors[CPU_MITIGATE_USER_USER] = false;
3292 break;
3293 case NO_GUEST_HOST:
3294 attack_vectors[CPU_MITIGATE_GUEST_HOST] = false;
3295 break;
3296 case NO_GUEST_GUEST:
3297 attack_vectors[CPU_MITIGATE_GUEST_GUEST] = false;
3298 break;
3299 case NO_CROSS_THREAD:
3300 smt_mitigations = SMT_MITIGATIONS_OFF;
3301 break;
3302 default:
3303 pr_crit("Unsupported mitigations options %s\n", s);
3304 return 0;
3305 }
3306 }
3307
3308 return 0;
3309 }
3310
3311 /* mitigations=off */
cpu_mitigations_off(void)3312 bool cpu_mitigations_off(void)
3313 {
3314 return cpu_mitigations == CPU_MITIGATIONS_OFF;
3315 }
3316 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3317
3318 /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)3319 bool cpu_mitigations_auto_nosmt(void)
3320 {
3321 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3322 }
3323 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
3324 #else
mitigations_parse_cmdline(char * arg)3325 static int __init mitigations_parse_cmdline(char *arg)
3326 {
3327 pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n");
3328 return 0;
3329 }
3330 #endif
3331 early_param("mitigations", mitigations_parse_cmdline);
3332