1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/backing-dev.h>
21 #include <linux/dax.h>
22 #include <linux/mm_types.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/oom.h>
35 #include <linux/numa.h>
36 #include <linux/page_owner.h>
37 #include <linux/sched/sysctl.h>
38 #include <linux/memory-tiers.h>
39 #include <linux/compat.h>
40 #include <linux/pgalloc.h>
41 #include <linux/pgalloc_tag.h>
42 #include <linux/pagewalk.h>
43
44 #include <asm/tlb.h>
45 #include "internal.h"
46 #include "swap.h"
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/thp.h>
50
51 /*
52 * By default, transparent hugepage support is disabled in order to avoid
53 * risking an increased memory footprint for applications that are not
54 * guaranteed to benefit from it. When transparent hugepage support is
55 * enabled, it is for all mappings, and khugepaged scans all mappings.
56 * Defrag is invoked by khugepaged hugepage allocations and by page faults
57 * for all hugepage allocations.
58 */
59 unsigned long transparent_hugepage_flags __read_mostly =
60 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
61 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
62 #endif
63 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
64 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
65 #endif
66 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
67 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
68 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
69
70 static struct shrinker *deferred_split_shrinker;
71 static unsigned long deferred_split_count(struct shrinker *shrink,
72 struct shrink_control *sc);
73 static unsigned long deferred_split_scan(struct shrinker *shrink,
74 struct shrink_control *sc);
75 static bool split_underused_thp = true;
76
77 static atomic_t huge_zero_refcount;
78 struct folio *huge_zero_folio __read_mostly;
79 unsigned long huge_zero_pfn __read_mostly = ~0UL;
80 unsigned long huge_anon_orders_always __read_mostly;
81 unsigned long huge_anon_orders_madvise __read_mostly;
82 unsigned long huge_anon_orders_inherit __read_mostly;
83 static bool anon_orders_configured __initdata;
84
file_thp_enabled(struct vm_area_struct * vma)85 static inline bool file_thp_enabled(struct vm_area_struct *vma)
86 {
87 struct inode *inode;
88
89 if (!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
90 return false;
91
92 if (!vma->vm_file)
93 return false;
94
95 inode = file_inode(vma->vm_file);
96
97 return !inode_is_open_for_write(inode) && S_ISREG(inode->i_mode);
98 }
99
__thp_vma_allowable_orders(struct vm_area_struct * vma,vm_flags_t vm_flags,enum tva_type type,unsigned long orders)100 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
101 vm_flags_t vm_flags,
102 enum tva_type type,
103 unsigned long orders)
104 {
105 const bool smaps = type == TVA_SMAPS;
106 const bool in_pf = type == TVA_PAGEFAULT;
107 const bool forced_collapse = type == TVA_FORCED_COLLAPSE;
108 unsigned long supported_orders;
109
110 /* Check the intersection of requested and supported orders. */
111 if (vma_is_anonymous(vma))
112 supported_orders = THP_ORDERS_ALL_ANON;
113 else if (vma_is_special_huge(vma))
114 supported_orders = THP_ORDERS_ALL_SPECIAL;
115 else
116 supported_orders = THP_ORDERS_ALL_FILE_DEFAULT;
117
118 orders &= supported_orders;
119 if (!orders)
120 return 0;
121
122 if (!vma->vm_mm) /* vdso */
123 return 0;
124
125 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags, forced_collapse))
126 return 0;
127
128 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
129 if (vma_is_dax(vma))
130 return in_pf ? orders : 0;
131
132 /*
133 * khugepaged special VMA and hugetlb VMA.
134 * Must be checked after dax since some dax mappings may have
135 * VM_MIXEDMAP set.
136 */
137 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
138 return 0;
139
140 /*
141 * Check alignment for file vma and size for both file and anon vma by
142 * filtering out the unsuitable orders.
143 *
144 * Skip the check for page fault. Huge fault does the check in fault
145 * handlers.
146 */
147 if (!in_pf) {
148 int order = highest_order(orders);
149 unsigned long addr;
150
151 while (orders) {
152 addr = vma->vm_end - (PAGE_SIZE << order);
153 if (thp_vma_suitable_order(vma, addr, order))
154 break;
155 order = next_order(&orders, order);
156 }
157
158 if (!orders)
159 return 0;
160 }
161
162 /*
163 * Enabled via shmem mount options or sysfs settings.
164 * Must be done before hugepage flags check since shmem has its
165 * own flags.
166 */
167 if (!in_pf && shmem_file(vma->vm_file))
168 return orders & shmem_allowable_huge_orders(file_inode(vma->vm_file),
169 vma, vma->vm_pgoff, 0,
170 forced_collapse);
171
172 if (!vma_is_anonymous(vma)) {
173 /*
174 * Enforce THP collapse requirements as necessary. Anonymous vmas
175 * were already handled in thp_vma_allowable_orders().
176 */
177 if (!forced_collapse &&
178 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
179 !hugepage_global_always())))
180 return 0;
181
182 /*
183 * Trust that ->huge_fault() handlers know what they are doing
184 * in fault path.
185 */
186 if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
187 return orders;
188 /* Only regular file is valid in collapse path */
189 if (((!in_pf || smaps)) && file_thp_enabled(vma))
190 return orders;
191 return 0;
192 }
193
194 if (vma_is_temporary_stack(vma))
195 return 0;
196
197 /*
198 * THPeligible bit of smaps should show 1 for proper VMAs even
199 * though anon_vma is not initialized yet.
200 *
201 * Allow page fault since anon_vma may be not initialized until
202 * the first page fault.
203 */
204 if (!vma->anon_vma)
205 return (smaps || in_pf) ? orders : 0;
206
207 return orders;
208 }
209
get_huge_zero_folio(void)210 static bool get_huge_zero_folio(void)
211 {
212 struct folio *zero_folio;
213 retry:
214 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
215 return true;
216
217 zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO | __GFP_ZEROTAGS) &
218 ~__GFP_MOVABLE,
219 HPAGE_PMD_ORDER);
220 if (!zero_folio) {
221 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
222 return false;
223 }
224 /* Ensure zero folio won't have large_rmappable flag set. */
225 folio_clear_large_rmappable(zero_folio);
226 preempt_disable();
227 if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) {
228 preempt_enable();
229 folio_put(zero_folio);
230 goto retry;
231 }
232 WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio));
233
234 /* We take additional reference here. It will be put back by shrinker */
235 atomic_set(&huge_zero_refcount, 2);
236 preempt_enable();
237 count_vm_event(THP_ZERO_PAGE_ALLOC);
238 return true;
239 }
240
put_huge_zero_folio(void)241 static void put_huge_zero_folio(void)
242 {
243 /*
244 * Counter should never go to zero here. Only shrinker can put
245 * last reference.
246 */
247 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
248 }
249
mm_get_huge_zero_folio(struct mm_struct * mm)250 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm)
251 {
252 if (IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO))
253 return huge_zero_folio;
254
255 if (mm_flags_test(MMF_HUGE_ZERO_FOLIO, mm))
256 return READ_ONCE(huge_zero_folio);
257
258 if (!get_huge_zero_folio())
259 return NULL;
260
261 if (mm_flags_test_and_set(MMF_HUGE_ZERO_FOLIO, mm))
262 put_huge_zero_folio();
263
264 return READ_ONCE(huge_zero_folio);
265 }
266
mm_put_huge_zero_folio(struct mm_struct * mm)267 void mm_put_huge_zero_folio(struct mm_struct *mm)
268 {
269 if (IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO))
270 return;
271
272 if (mm_flags_test(MMF_HUGE_ZERO_FOLIO, mm))
273 put_huge_zero_folio();
274 }
275
shrink_huge_zero_folio_count(struct shrinker * shrink,struct shrink_control * sc)276 static unsigned long shrink_huge_zero_folio_count(struct shrinker *shrink,
277 struct shrink_control *sc)
278 {
279 /* we can free zero page only if last reference remains */
280 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
281 }
282
shrink_huge_zero_folio_scan(struct shrinker * shrink,struct shrink_control * sc)283 static unsigned long shrink_huge_zero_folio_scan(struct shrinker *shrink,
284 struct shrink_control *sc)
285 {
286 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
287 struct folio *zero_folio = xchg(&huge_zero_folio, NULL);
288 BUG_ON(zero_folio == NULL);
289 WRITE_ONCE(huge_zero_pfn, ~0UL);
290 folio_put(zero_folio);
291 return HPAGE_PMD_NR;
292 }
293
294 return 0;
295 }
296
297 static struct shrinker *huge_zero_folio_shrinker;
298
299 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)300 static ssize_t enabled_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
302 {
303 const char *output;
304
305 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
306 output = "[always] madvise never";
307 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
308 &transparent_hugepage_flags))
309 output = "always [madvise] never";
310 else
311 output = "always madvise [never]";
312
313 return sysfs_emit(buf, "%s\n", output);
314 }
315
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)316 static ssize_t enabled_store(struct kobject *kobj,
317 struct kobj_attribute *attr,
318 const char *buf, size_t count)
319 {
320 ssize_t ret = count;
321
322 if (sysfs_streq(buf, "always")) {
323 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
324 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
325 } else if (sysfs_streq(buf, "madvise")) {
326 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
327 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
328 } else if (sysfs_streq(buf, "never")) {
329 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
330 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
331 } else
332 ret = -EINVAL;
333
334 if (ret > 0) {
335 int err = start_stop_khugepaged();
336 if (err)
337 ret = err;
338 }
339 return ret;
340 }
341
342 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
343
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)344 ssize_t single_hugepage_flag_show(struct kobject *kobj,
345 struct kobj_attribute *attr, char *buf,
346 enum transparent_hugepage_flag flag)
347 {
348 return sysfs_emit(buf, "%d\n",
349 !!test_bit(flag, &transparent_hugepage_flags));
350 }
351
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)352 ssize_t single_hugepage_flag_store(struct kobject *kobj,
353 struct kobj_attribute *attr,
354 const char *buf, size_t count,
355 enum transparent_hugepage_flag flag)
356 {
357 unsigned long value;
358 int ret;
359
360 ret = kstrtoul(buf, 10, &value);
361 if (ret < 0)
362 return ret;
363 if (value > 1)
364 return -EINVAL;
365
366 if (value)
367 set_bit(flag, &transparent_hugepage_flags);
368 else
369 clear_bit(flag, &transparent_hugepage_flags);
370
371 return count;
372 }
373
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)374 static ssize_t defrag_show(struct kobject *kobj,
375 struct kobj_attribute *attr, char *buf)
376 {
377 const char *output;
378
379 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
380 &transparent_hugepage_flags))
381 output = "[always] defer defer+madvise madvise never";
382 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
383 &transparent_hugepage_flags))
384 output = "always [defer] defer+madvise madvise never";
385 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
386 &transparent_hugepage_flags))
387 output = "always defer [defer+madvise] madvise never";
388 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
389 &transparent_hugepage_flags))
390 output = "always defer defer+madvise [madvise] never";
391 else
392 output = "always defer defer+madvise madvise [never]";
393
394 return sysfs_emit(buf, "%s\n", output);
395 }
396
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)397 static ssize_t defrag_store(struct kobject *kobj,
398 struct kobj_attribute *attr,
399 const char *buf, size_t count)
400 {
401 if (sysfs_streq(buf, "always")) {
402 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
403 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
404 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
405 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
406 } else if (sysfs_streq(buf, "defer+madvise")) {
407 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
408 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
409 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
410 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
411 } else if (sysfs_streq(buf, "defer")) {
412 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
413 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
414 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
415 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
416 } else if (sysfs_streq(buf, "madvise")) {
417 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
418 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
419 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
420 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
421 } else if (sysfs_streq(buf, "never")) {
422 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
423 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
424 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
425 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
426 } else
427 return -EINVAL;
428
429 return count;
430 }
431 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
432
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)433 static ssize_t use_zero_page_show(struct kobject *kobj,
434 struct kobj_attribute *attr, char *buf)
435 {
436 return single_hugepage_flag_show(kobj, attr, buf,
437 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
438 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)439 static ssize_t use_zero_page_store(struct kobject *kobj,
440 struct kobj_attribute *attr, const char *buf, size_t count)
441 {
442 return single_hugepage_flag_store(kobj, attr, buf, count,
443 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
444 }
445 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
446
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)447 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
448 struct kobj_attribute *attr, char *buf)
449 {
450 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
451 }
452 static struct kobj_attribute hpage_pmd_size_attr =
453 __ATTR_RO(hpage_pmd_size);
454
split_underused_thp_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)455 static ssize_t split_underused_thp_show(struct kobject *kobj,
456 struct kobj_attribute *attr, char *buf)
457 {
458 return sysfs_emit(buf, "%d\n", split_underused_thp);
459 }
460
split_underused_thp_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)461 static ssize_t split_underused_thp_store(struct kobject *kobj,
462 struct kobj_attribute *attr,
463 const char *buf, size_t count)
464 {
465 int err = kstrtobool(buf, &split_underused_thp);
466
467 if (err < 0)
468 return err;
469
470 return count;
471 }
472
473 static struct kobj_attribute split_underused_thp_attr = __ATTR(
474 shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store);
475
476 static struct attribute *hugepage_attr[] = {
477 &enabled_attr.attr,
478 &defrag_attr.attr,
479 &use_zero_page_attr.attr,
480 &hpage_pmd_size_attr.attr,
481 #ifdef CONFIG_SHMEM
482 &shmem_enabled_attr.attr,
483 #endif
484 &split_underused_thp_attr.attr,
485 NULL,
486 };
487
488 static const struct attribute_group hugepage_attr_group = {
489 .attrs = hugepage_attr,
490 };
491
492 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
493 static void thpsize_release(struct kobject *kobj);
494 static DEFINE_SPINLOCK(huge_anon_orders_lock);
495 static LIST_HEAD(thpsize_list);
496
anon_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)497 static ssize_t anon_enabled_show(struct kobject *kobj,
498 struct kobj_attribute *attr, char *buf)
499 {
500 int order = to_thpsize(kobj)->order;
501 const char *output;
502
503 if (test_bit(order, &huge_anon_orders_always))
504 output = "[always] inherit madvise never";
505 else if (test_bit(order, &huge_anon_orders_inherit))
506 output = "always [inherit] madvise never";
507 else if (test_bit(order, &huge_anon_orders_madvise))
508 output = "always inherit [madvise] never";
509 else
510 output = "always inherit madvise [never]";
511
512 return sysfs_emit(buf, "%s\n", output);
513 }
514
anon_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)515 static ssize_t anon_enabled_store(struct kobject *kobj,
516 struct kobj_attribute *attr,
517 const char *buf, size_t count)
518 {
519 int order = to_thpsize(kobj)->order;
520 ssize_t ret = count;
521
522 if (sysfs_streq(buf, "always")) {
523 spin_lock(&huge_anon_orders_lock);
524 clear_bit(order, &huge_anon_orders_inherit);
525 clear_bit(order, &huge_anon_orders_madvise);
526 set_bit(order, &huge_anon_orders_always);
527 spin_unlock(&huge_anon_orders_lock);
528 } else if (sysfs_streq(buf, "inherit")) {
529 spin_lock(&huge_anon_orders_lock);
530 clear_bit(order, &huge_anon_orders_always);
531 clear_bit(order, &huge_anon_orders_madvise);
532 set_bit(order, &huge_anon_orders_inherit);
533 spin_unlock(&huge_anon_orders_lock);
534 } else if (sysfs_streq(buf, "madvise")) {
535 spin_lock(&huge_anon_orders_lock);
536 clear_bit(order, &huge_anon_orders_always);
537 clear_bit(order, &huge_anon_orders_inherit);
538 set_bit(order, &huge_anon_orders_madvise);
539 spin_unlock(&huge_anon_orders_lock);
540 } else if (sysfs_streq(buf, "never")) {
541 spin_lock(&huge_anon_orders_lock);
542 clear_bit(order, &huge_anon_orders_always);
543 clear_bit(order, &huge_anon_orders_inherit);
544 clear_bit(order, &huge_anon_orders_madvise);
545 spin_unlock(&huge_anon_orders_lock);
546 } else
547 ret = -EINVAL;
548
549 if (ret > 0) {
550 int err;
551
552 err = start_stop_khugepaged();
553 if (err)
554 ret = err;
555 }
556 return ret;
557 }
558
559 static struct kobj_attribute anon_enabled_attr =
560 __ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store);
561
562 static struct attribute *anon_ctrl_attrs[] = {
563 &anon_enabled_attr.attr,
564 NULL,
565 };
566
567 static const struct attribute_group anon_ctrl_attr_grp = {
568 .attrs = anon_ctrl_attrs,
569 };
570
571 static struct attribute *file_ctrl_attrs[] = {
572 #ifdef CONFIG_SHMEM
573 &thpsize_shmem_enabled_attr.attr,
574 #endif
575 NULL,
576 };
577
578 static const struct attribute_group file_ctrl_attr_grp = {
579 .attrs = file_ctrl_attrs,
580 };
581
582 static struct attribute *any_ctrl_attrs[] = {
583 NULL,
584 };
585
586 static const struct attribute_group any_ctrl_attr_grp = {
587 .attrs = any_ctrl_attrs,
588 };
589
590 static const struct kobj_type thpsize_ktype = {
591 .release = &thpsize_release,
592 .sysfs_ops = &kobj_sysfs_ops,
593 };
594
595 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}};
596
sum_mthp_stat(int order,enum mthp_stat_item item)597 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item)
598 {
599 unsigned long sum = 0;
600 int cpu;
601
602 for_each_possible_cpu(cpu) {
603 struct mthp_stat *this = &per_cpu(mthp_stats, cpu);
604
605 sum += this->stats[order][item];
606 }
607
608 return sum;
609 }
610
611 #define DEFINE_MTHP_STAT_ATTR(_name, _index) \
612 static ssize_t _name##_show(struct kobject *kobj, \
613 struct kobj_attribute *attr, char *buf) \
614 { \
615 int order = to_thpsize(kobj)->order; \
616 \
617 return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index)); \
618 } \
619 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
620
621 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC);
622 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK);
623 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
624 DEFINE_MTHP_STAT_ATTR(zswpout, MTHP_STAT_ZSWPOUT);
625 DEFINE_MTHP_STAT_ATTR(swpin, MTHP_STAT_SWPIN);
626 DEFINE_MTHP_STAT_ATTR(swpin_fallback, MTHP_STAT_SWPIN_FALLBACK);
627 DEFINE_MTHP_STAT_ATTR(swpin_fallback_charge, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
628 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT);
629 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK);
630 #ifdef CONFIG_SHMEM
631 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC);
632 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK);
633 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE);
634 #endif
635 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT);
636 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED);
637 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED);
638 DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON);
639 DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED);
640
641 static struct attribute *anon_stats_attrs[] = {
642 &anon_fault_alloc_attr.attr,
643 &anon_fault_fallback_attr.attr,
644 &anon_fault_fallback_charge_attr.attr,
645 #ifndef CONFIG_SHMEM
646 &zswpout_attr.attr,
647 &swpin_attr.attr,
648 &swpin_fallback_attr.attr,
649 &swpin_fallback_charge_attr.attr,
650 &swpout_attr.attr,
651 &swpout_fallback_attr.attr,
652 #endif
653 &split_deferred_attr.attr,
654 &nr_anon_attr.attr,
655 &nr_anon_partially_mapped_attr.attr,
656 NULL,
657 };
658
659 static struct attribute_group anon_stats_attr_grp = {
660 .name = "stats",
661 .attrs = anon_stats_attrs,
662 };
663
664 static struct attribute *file_stats_attrs[] = {
665 #ifdef CONFIG_SHMEM
666 &shmem_alloc_attr.attr,
667 &shmem_fallback_attr.attr,
668 &shmem_fallback_charge_attr.attr,
669 #endif
670 NULL,
671 };
672
673 static struct attribute_group file_stats_attr_grp = {
674 .name = "stats",
675 .attrs = file_stats_attrs,
676 };
677
678 static struct attribute *any_stats_attrs[] = {
679 #ifdef CONFIG_SHMEM
680 &zswpout_attr.attr,
681 &swpin_attr.attr,
682 &swpin_fallback_attr.attr,
683 &swpin_fallback_charge_attr.attr,
684 &swpout_attr.attr,
685 &swpout_fallback_attr.attr,
686 #endif
687 &split_attr.attr,
688 &split_failed_attr.attr,
689 NULL,
690 };
691
692 static struct attribute_group any_stats_attr_grp = {
693 .name = "stats",
694 .attrs = any_stats_attrs,
695 };
696
sysfs_add_group(struct kobject * kobj,const struct attribute_group * grp)697 static int sysfs_add_group(struct kobject *kobj,
698 const struct attribute_group *grp)
699 {
700 int ret = -ENOENT;
701
702 /*
703 * If the group is named, try to merge first, assuming the subdirectory
704 * was already created. This avoids the warning emitted by
705 * sysfs_create_group() if the directory already exists.
706 */
707 if (grp->name)
708 ret = sysfs_merge_group(kobj, grp);
709 if (ret)
710 ret = sysfs_create_group(kobj, grp);
711
712 return ret;
713 }
714
thpsize_create(int order,struct kobject * parent)715 static struct thpsize *thpsize_create(int order, struct kobject *parent)
716 {
717 unsigned long size = (PAGE_SIZE << order) / SZ_1K;
718 struct thpsize *thpsize;
719 int ret = -ENOMEM;
720
721 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
722 if (!thpsize)
723 goto err;
724
725 thpsize->order = order;
726
727 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
728 "hugepages-%lukB", size);
729 if (ret) {
730 kfree(thpsize);
731 goto err;
732 }
733
734
735 ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp);
736 if (ret)
737 goto err_put;
738
739 ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp);
740 if (ret)
741 goto err_put;
742
743 if (BIT(order) & THP_ORDERS_ALL_ANON) {
744 ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp);
745 if (ret)
746 goto err_put;
747
748 ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp);
749 if (ret)
750 goto err_put;
751 }
752
753 if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) {
754 ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp);
755 if (ret)
756 goto err_put;
757
758 ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp);
759 if (ret)
760 goto err_put;
761 }
762
763 return thpsize;
764 err_put:
765 kobject_put(&thpsize->kobj);
766 err:
767 return ERR_PTR(ret);
768 }
769
thpsize_release(struct kobject * kobj)770 static void thpsize_release(struct kobject *kobj)
771 {
772 kfree(to_thpsize(kobj));
773 }
774
hugepage_init_sysfs(struct kobject ** hugepage_kobj)775 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
776 {
777 int err;
778 struct thpsize *thpsize;
779 unsigned long orders;
780 int order;
781
782 /*
783 * Default to setting PMD-sized THP to inherit the global setting and
784 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
785 * constant so we have to do this here.
786 */
787 if (!anon_orders_configured)
788 huge_anon_orders_inherit = BIT(PMD_ORDER);
789
790 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
791 if (unlikely(!*hugepage_kobj)) {
792 pr_err("failed to create transparent hugepage kobject\n");
793 return -ENOMEM;
794 }
795
796 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
797 if (err) {
798 pr_err("failed to register transparent hugepage group\n");
799 goto delete_obj;
800 }
801
802 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
803 if (err) {
804 pr_err("failed to register transparent hugepage group\n");
805 goto remove_hp_group;
806 }
807
808 orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT;
809 order = highest_order(orders);
810 while (orders) {
811 thpsize = thpsize_create(order, *hugepage_kobj);
812 if (IS_ERR(thpsize)) {
813 pr_err("failed to create thpsize for order %d\n", order);
814 err = PTR_ERR(thpsize);
815 goto remove_all;
816 }
817 list_add(&thpsize->node, &thpsize_list);
818 order = next_order(&orders, order);
819 }
820
821 return 0;
822
823 remove_all:
824 hugepage_exit_sysfs(*hugepage_kobj);
825 return err;
826 remove_hp_group:
827 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
828 delete_obj:
829 kobject_put(*hugepage_kobj);
830 return err;
831 }
832
hugepage_exit_sysfs(struct kobject * hugepage_kobj)833 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
834 {
835 struct thpsize *thpsize, *tmp;
836
837 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
838 list_del(&thpsize->node);
839 kobject_put(&thpsize->kobj);
840 }
841
842 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
843 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
844 kobject_put(hugepage_kobj);
845 }
846 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)847 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
848 {
849 return 0;
850 }
851
hugepage_exit_sysfs(struct kobject * hugepage_kobj)852 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
853 {
854 }
855 #endif /* CONFIG_SYSFS */
856
thp_shrinker_init(void)857 static int __init thp_shrinker_init(void)
858 {
859 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
860 SHRINKER_MEMCG_AWARE |
861 SHRINKER_NONSLAB,
862 "thp-deferred_split");
863 if (!deferred_split_shrinker)
864 return -ENOMEM;
865
866 deferred_split_shrinker->count_objects = deferred_split_count;
867 deferred_split_shrinker->scan_objects = deferred_split_scan;
868 shrinker_register(deferred_split_shrinker);
869
870 if (IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO)) {
871 /*
872 * Bump the reference of the huge_zero_folio and do not
873 * initialize the shrinker.
874 *
875 * huge_zero_folio will always be NULL on failure. We assume
876 * that get_huge_zero_folio() will most likely not fail as
877 * thp_shrinker_init() is invoked early on during boot.
878 */
879 if (!get_huge_zero_folio())
880 pr_warn("Allocating persistent huge zero folio failed\n");
881 return 0;
882 }
883
884 huge_zero_folio_shrinker = shrinker_alloc(0, "thp-zero");
885 if (!huge_zero_folio_shrinker) {
886 shrinker_free(deferred_split_shrinker);
887 return -ENOMEM;
888 }
889
890 huge_zero_folio_shrinker->count_objects = shrink_huge_zero_folio_count;
891 huge_zero_folio_shrinker->scan_objects = shrink_huge_zero_folio_scan;
892 shrinker_register(huge_zero_folio_shrinker);
893
894 return 0;
895 }
896
thp_shrinker_exit(void)897 static void __init thp_shrinker_exit(void)
898 {
899 shrinker_free(huge_zero_folio_shrinker);
900 shrinker_free(deferred_split_shrinker);
901 }
902
hugepage_init(void)903 static int __init hugepage_init(void)
904 {
905 int err;
906 struct kobject *hugepage_kobj;
907
908 if (!has_transparent_hugepage()) {
909 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
910 return -EINVAL;
911 }
912
913 /*
914 * hugepages can't be allocated by the buddy allocator
915 */
916 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
917
918 err = hugepage_init_sysfs(&hugepage_kobj);
919 if (err)
920 goto err_sysfs;
921
922 err = khugepaged_init();
923 if (err)
924 goto err_slab;
925
926 err = thp_shrinker_init();
927 if (err)
928 goto err_shrinker;
929
930 /*
931 * By default disable transparent hugepages on smaller systems,
932 * where the extra memory used could hurt more than TLB overhead
933 * is likely to save. The admin can still enable it through /sys.
934 */
935 if (totalram_pages() < MB_TO_PAGES(512)) {
936 transparent_hugepage_flags = 0;
937 return 0;
938 }
939
940 err = start_stop_khugepaged();
941 if (err)
942 goto err_khugepaged;
943
944 return 0;
945 err_khugepaged:
946 thp_shrinker_exit();
947 err_shrinker:
948 khugepaged_destroy();
949 err_slab:
950 hugepage_exit_sysfs(hugepage_kobj);
951 err_sysfs:
952 return err;
953 }
954 subsys_initcall(hugepage_init);
955
setup_transparent_hugepage(char * str)956 static int __init setup_transparent_hugepage(char *str)
957 {
958 int ret = 0;
959 if (!str)
960 goto out;
961 if (!strcmp(str, "always")) {
962 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
963 &transparent_hugepage_flags);
964 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
965 &transparent_hugepage_flags);
966 ret = 1;
967 } else if (!strcmp(str, "madvise")) {
968 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
969 &transparent_hugepage_flags);
970 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
971 &transparent_hugepage_flags);
972 ret = 1;
973 } else if (!strcmp(str, "never")) {
974 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
975 &transparent_hugepage_flags);
976 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
977 &transparent_hugepage_flags);
978 ret = 1;
979 }
980 out:
981 if (!ret)
982 pr_warn("transparent_hugepage= cannot parse, ignored\n");
983 return ret;
984 }
985 __setup("transparent_hugepage=", setup_transparent_hugepage);
986
987 static char str_dup[PAGE_SIZE] __initdata;
setup_thp_anon(char * str)988 static int __init setup_thp_anon(char *str)
989 {
990 char *token, *range, *policy, *subtoken;
991 unsigned long always, inherit, madvise;
992 char *start_size, *end_size;
993 int start, end, nr;
994 char *p;
995
996 if (!str || strlen(str) + 1 > PAGE_SIZE)
997 goto err;
998 strscpy(str_dup, str);
999
1000 always = huge_anon_orders_always;
1001 madvise = huge_anon_orders_madvise;
1002 inherit = huge_anon_orders_inherit;
1003 p = str_dup;
1004 while ((token = strsep(&p, ";")) != NULL) {
1005 range = strsep(&token, ":");
1006 policy = token;
1007
1008 if (!policy)
1009 goto err;
1010
1011 while ((subtoken = strsep(&range, ",")) != NULL) {
1012 if (strchr(subtoken, '-')) {
1013 start_size = strsep(&subtoken, "-");
1014 end_size = subtoken;
1015
1016 start = get_order_from_str(start_size, THP_ORDERS_ALL_ANON);
1017 end = get_order_from_str(end_size, THP_ORDERS_ALL_ANON);
1018 } else {
1019 start_size = end_size = subtoken;
1020 start = end = get_order_from_str(subtoken,
1021 THP_ORDERS_ALL_ANON);
1022 }
1023
1024 if (start == -EINVAL) {
1025 pr_err("invalid size %s in thp_anon boot parameter\n", start_size);
1026 goto err;
1027 }
1028
1029 if (end == -EINVAL) {
1030 pr_err("invalid size %s in thp_anon boot parameter\n", end_size);
1031 goto err;
1032 }
1033
1034 if (start < 0 || end < 0 || start > end)
1035 goto err;
1036
1037 nr = end - start + 1;
1038 if (!strcmp(policy, "always")) {
1039 bitmap_set(&always, start, nr);
1040 bitmap_clear(&inherit, start, nr);
1041 bitmap_clear(&madvise, start, nr);
1042 } else if (!strcmp(policy, "madvise")) {
1043 bitmap_set(&madvise, start, nr);
1044 bitmap_clear(&inherit, start, nr);
1045 bitmap_clear(&always, start, nr);
1046 } else if (!strcmp(policy, "inherit")) {
1047 bitmap_set(&inherit, start, nr);
1048 bitmap_clear(&madvise, start, nr);
1049 bitmap_clear(&always, start, nr);
1050 } else if (!strcmp(policy, "never")) {
1051 bitmap_clear(&inherit, start, nr);
1052 bitmap_clear(&madvise, start, nr);
1053 bitmap_clear(&always, start, nr);
1054 } else {
1055 pr_err("invalid policy %s in thp_anon boot parameter\n", policy);
1056 goto err;
1057 }
1058 }
1059 }
1060
1061 huge_anon_orders_always = always;
1062 huge_anon_orders_madvise = madvise;
1063 huge_anon_orders_inherit = inherit;
1064 anon_orders_configured = true;
1065 return 1;
1066
1067 err:
1068 pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str);
1069 return 0;
1070 }
1071 __setup("thp_anon=", setup_thp_anon);
1072
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)1073 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
1074 {
1075 if (likely(vma->vm_flags & VM_WRITE))
1076 pmd = pmd_mkwrite(pmd, vma);
1077 return pmd;
1078 }
1079
split_queue_node(int nid)1080 static struct deferred_split *split_queue_node(int nid)
1081 {
1082 struct pglist_data *pgdata = NODE_DATA(nid);
1083
1084 return &pgdata->deferred_split_queue;
1085 }
1086
1087 #ifdef CONFIG_MEMCG
1088 static inline
folio_split_queue_memcg(struct folio * folio,struct deferred_split * queue)1089 struct mem_cgroup *folio_split_queue_memcg(struct folio *folio,
1090 struct deferred_split *queue)
1091 {
1092 if (mem_cgroup_disabled())
1093 return NULL;
1094 if (split_queue_node(folio_nid(folio)) == queue)
1095 return NULL;
1096 return container_of(queue, struct mem_cgroup, deferred_split_queue);
1097 }
1098
memcg_split_queue(int nid,struct mem_cgroup * memcg)1099 static struct deferred_split *memcg_split_queue(int nid, struct mem_cgroup *memcg)
1100 {
1101 return memcg ? &memcg->deferred_split_queue : split_queue_node(nid);
1102 }
1103 #else
1104 static inline
folio_split_queue_memcg(struct folio * folio,struct deferred_split * queue)1105 struct mem_cgroup *folio_split_queue_memcg(struct folio *folio,
1106 struct deferred_split *queue)
1107 {
1108 return NULL;
1109 }
1110
memcg_split_queue(int nid,struct mem_cgroup * memcg)1111 static struct deferred_split *memcg_split_queue(int nid, struct mem_cgroup *memcg)
1112 {
1113 return split_queue_node(nid);
1114 }
1115 #endif
1116
split_queue_lock(int nid,struct mem_cgroup * memcg)1117 static struct deferred_split *split_queue_lock(int nid, struct mem_cgroup *memcg)
1118 {
1119 struct deferred_split *queue;
1120
1121 retry:
1122 queue = memcg_split_queue(nid, memcg);
1123 spin_lock(&queue->split_queue_lock);
1124 /*
1125 * There is a period between setting memcg to dying and reparenting
1126 * deferred split queue, and during this period the THPs in the deferred
1127 * split queue will be hidden from the shrinker side.
1128 */
1129 if (unlikely(memcg_is_dying(memcg))) {
1130 spin_unlock(&queue->split_queue_lock);
1131 memcg = parent_mem_cgroup(memcg);
1132 goto retry;
1133 }
1134
1135 return queue;
1136 }
1137
1138 static struct deferred_split *
split_queue_lock_irqsave(int nid,struct mem_cgroup * memcg,unsigned long * flags)1139 split_queue_lock_irqsave(int nid, struct mem_cgroup *memcg, unsigned long *flags)
1140 {
1141 struct deferred_split *queue;
1142
1143 retry:
1144 queue = memcg_split_queue(nid, memcg);
1145 spin_lock_irqsave(&queue->split_queue_lock, *flags);
1146 if (unlikely(memcg_is_dying(memcg))) {
1147 spin_unlock_irqrestore(&queue->split_queue_lock, *flags);
1148 memcg = parent_mem_cgroup(memcg);
1149 goto retry;
1150 }
1151
1152 return queue;
1153 }
1154
folio_split_queue_lock(struct folio * folio)1155 static struct deferred_split *folio_split_queue_lock(struct folio *folio)
1156 {
1157 return split_queue_lock(folio_nid(folio), folio_memcg(folio));
1158 }
1159
1160 static struct deferred_split *
folio_split_queue_lock_irqsave(struct folio * folio,unsigned long * flags)1161 folio_split_queue_lock_irqsave(struct folio *folio, unsigned long *flags)
1162 {
1163 return split_queue_lock_irqsave(folio_nid(folio), folio_memcg(folio), flags);
1164 }
1165
split_queue_unlock(struct deferred_split * queue)1166 static inline void split_queue_unlock(struct deferred_split *queue)
1167 {
1168 spin_unlock(&queue->split_queue_lock);
1169 }
1170
split_queue_unlock_irqrestore(struct deferred_split * queue,unsigned long flags)1171 static inline void split_queue_unlock_irqrestore(struct deferred_split *queue,
1172 unsigned long flags)
1173 {
1174 spin_unlock_irqrestore(&queue->split_queue_lock, flags);
1175 }
1176
is_transparent_hugepage(const struct folio * folio)1177 static inline bool is_transparent_hugepage(const struct folio *folio)
1178 {
1179 if (!folio_test_large(folio))
1180 return false;
1181
1182 return is_huge_zero_folio(folio) ||
1183 folio_test_large_rmappable(folio);
1184 }
1185
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size,vm_flags_t vm_flags)1186 static unsigned long __thp_get_unmapped_area(struct file *filp,
1187 unsigned long addr, unsigned long len,
1188 loff_t off, unsigned long flags, unsigned long size,
1189 vm_flags_t vm_flags)
1190 {
1191 loff_t off_end = off + len;
1192 loff_t off_align = round_up(off, size);
1193 unsigned long len_pad, ret, off_sub;
1194
1195 if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
1196 return 0;
1197
1198 if (off_end <= off_align || (off_end - off_align) < size)
1199 return 0;
1200
1201 len_pad = len + size;
1202 if (len_pad < len || (off + len_pad) < off)
1203 return 0;
1204
1205 ret = mm_get_unmapped_area_vmflags(filp, addr, len_pad,
1206 off >> PAGE_SHIFT, flags, vm_flags);
1207
1208 /*
1209 * The failure might be due to length padding. The caller will retry
1210 * without the padding.
1211 */
1212 if (IS_ERR_VALUE(ret))
1213 return 0;
1214
1215 /*
1216 * Do not try to align to THP boundary if allocation at the address
1217 * hint succeeds.
1218 */
1219 if (ret == addr)
1220 return addr;
1221
1222 off_sub = (off - ret) & (size - 1);
1223
1224 if (mm_flags_test(MMF_TOPDOWN, current->mm) && !off_sub)
1225 return ret + size;
1226
1227 ret += off_sub;
1228 return ret;
1229 }
1230
thp_get_unmapped_area_vmflags(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)1231 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
1232 unsigned long len, unsigned long pgoff, unsigned long flags,
1233 vm_flags_t vm_flags)
1234 {
1235 unsigned long ret;
1236 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
1237
1238 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags);
1239 if (ret)
1240 return ret;
1241
1242 return mm_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags,
1243 vm_flags);
1244 }
1245
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1246 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
1247 unsigned long len, unsigned long pgoff, unsigned long flags)
1248 {
1249 return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0);
1250 }
1251 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
1252
vma_alloc_anon_folio_pmd(struct vm_area_struct * vma,unsigned long addr)1253 static struct folio *vma_alloc_anon_folio_pmd(struct vm_area_struct *vma,
1254 unsigned long addr)
1255 {
1256 gfp_t gfp = vma_thp_gfp_mask(vma);
1257 const int order = HPAGE_PMD_ORDER;
1258 struct folio *folio;
1259
1260 folio = vma_alloc_folio(gfp, order, vma, addr & HPAGE_PMD_MASK);
1261
1262 if (unlikely(!folio)) {
1263 count_vm_event(THP_FAULT_FALLBACK);
1264 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1265 return NULL;
1266 }
1267
1268 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1269 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
1270 folio_put(folio);
1271 count_vm_event(THP_FAULT_FALLBACK);
1272 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
1273 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1274 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
1275 return NULL;
1276 }
1277 folio_throttle_swaprate(folio, gfp);
1278
1279 /*
1280 * When a folio is not zeroed during allocation (__GFP_ZERO not used)
1281 * or user folios require special handling, folio_zero_user() is used to
1282 * make sure that the page corresponding to the faulting address will be
1283 * hot in the cache after zeroing.
1284 */
1285 if (user_alloc_needs_zeroing())
1286 folio_zero_user(folio, addr);
1287 /*
1288 * The memory barrier inside __folio_mark_uptodate makes sure that
1289 * folio_zero_user writes become visible before the set_pmd_at()
1290 * write.
1291 */
1292 __folio_mark_uptodate(folio);
1293 return folio;
1294 }
1295
map_anon_folio_pmd_nopf(struct folio * folio,pmd_t * pmd,struct vm_area_struct * vma,unsigned long haddr)1296 void map_anon_folio_pmd_nopf(struct folio *folio, pmd_t *pmd,
1297 struct vm_area_struct *vma, unsigned long haddr)
1298 {
1299 pmd_t entry;
1300
1301 entry = folio_mk_pmd(folio, vma->vm_page_prot);
1302 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1303 folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE);
1304 folio_add_lru_vma(folio, vma);
1305 set_pmd_at(vma->vm_mm, haddr, pmd, entry);
1306 update_mmu_cache_pmd(vma, haddr, pmd);
1307 deferred_split_folio(folio, false);
1308 }
1309
map_anon_folio_pmd_pf(struct folio * folio,pmd_t * pmd,struct vm_area_struct * vma,unsigned long haddr)1310 static void map_anon_folio_pmd_pf(struct folio *folio, pmd_t *pmd,
1311 struct vm_area_struct *vma, unsigned long haddr)
1312 {
1313 map_anon_folio_pmd_nopf(folio, pmd, vma, haddr);
1314 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1315 count_vm_event(THP_FAULT_ALLOC);
1316 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
1317 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
1318 }
1319
__do_huge_pmd_anonymous_page(struct vm_fault * vmf)1320 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1321 {
1322 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1323 struct vm_area_struct *vma = vmf->vma;
1324 struct folio *folio;
1325 pgtable_t pgtable;
1326 vm_fault_t ret = 0;
1327
1328 folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1329 if (unlikely(!folio))
1330 return VM_FAULT_FALLBACK;
1331
1332 pgtable = pte_alloc_one(vma->vm_mm);
1333 if (unlikely(!pgtable)) {
1334 ret = VM_FAULT_OOM;
1335 goto release;
1336 }
1337
1338 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1339 if (unlikely(!pmd_none(*vmf->pmd))) {
1340 goto unlock_release;
1341 } else {
1342 ret = check_stable_address_space(vma->vm_mm);
1343 if (ret)
1344 goto unlock_release;
1345
1346 /* Deliver the page fault to userland */
1347 if (userfaultfd_missing(vma)) {
1348 spin_unlock(vmf->ptl);
1349 folio_put(folio);
1350 pte_free(vma->vm_mm, pgtable);
1351 ret = handle_userfault(vmf, VM_UFFD_MISSING);
1352 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1353 return ret;
1354 }
1355 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1356 map_anon_folio_pmd_pf(folio, vmf->pmd, vma, haddr);
1357 mm_inc_nr_ptes(vma->vm_mm);
1358 spin_unlock(vmf->ptl);
1359 }
1360
1361 return 0;
1362 unlock_release:
1363 spin_unlock(vmf->ptl);
1364 release:
1365 if (pgtable)
1366 pte_free(vma->vm_mm, pgtable);
1367 folio_put(folio);
1368 return ret;
1369
1370 }
1371
do_huge_pmd_device_private(struct vm_fault * vmf)1372 vm_fault_t do_huge_pmd_device_private(struct vm_fault *vmf)
1373 {
1374 struct vm_area_struct *vma = vmf->vma;
1375 vm_fault_t ret = 0;
1376 spinlock_t *ptl;
1377 softleaf_t entry;
1378 struct page *page;
1379 struct folio *folio;
1380
1381 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
1382 vma_end_read(vma);
1383 return VM_FAULT_RETRY;
1384 }
1385
1386 ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1387 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) {
1388 spin_unlock(ptl);
1389 return 0;
1390 }
1391
1392 entry = softleaf_from_pmd(vmf->orig_pmd);
1393 page = softleaf_to_page(entry);
1394 folio = page_folio(page);
1395 vmf->page = page;
1396 vmf->pte = NULL;
1397 if (folio_trylock(folio)) {
1398 folio_get(folio);
1399 spin_unlock(ptl);
1400 ret = page_pgmap(page)->ops->migrate_to_ram(vmf);
1401 folio_unlock(folio);
1402 folio_put(folio);
1403 } else {
1404 spin_unlock(ptl);
1405 }
1406
1407 return ret;
1408 }
1409
1410 /*
1411 * always: directly stall for all thp allocations
1412 * defer: wake kswapd and fail if not immediately available
1413 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
1414 * fail if not immediately available
1415 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
1416 * available
1417 * never: never stall for any thp allocation
1418 */
vma_thp_gfp_mask(struct vm_area_struct * vma)1419 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
1420 {
1421 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
1422
1423 /* Always do synchronous compaction */
1424 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
1425 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
1426
1427 /* Kick kcompactd and fail quickly */
1428 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
1429 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
1430
1431 /* Synchronous compaction if madvised, otherwise kick kcompactd */
1432 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
1433 return GFP_TRANSHUGE_LIGHT |
1434 (vma_madvised ? __GFP_DIRECT_RECLAIM :
1435 __GFP_KSWAPD_RECLAIM);
1436
1437 /* Only do synchronous compaction if madvised */
1438 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
1439 return GFP_TRANSHUGE_LIGHT |
1440 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
1441
1442 return GFP_TRANSHUGE_LIGHT;
1443 }
1444
1445 /* Caller must hold page table lock. */
set_huge_zero_folio(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct folio * zero_folio)1446 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm,
1447 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
1448 struct folio *zero_folio)
1449 {
1450 pmd_t entry;
1451 entry = folio_mk_pmd(zero_folio, vma->vm_page_prot);
1452 entry = pmd_mkspecial(entry);
1453 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1454 set_pmd_at(mm, haddr, pmd, entry);
1455 mm_inc_nr_ptes(mm);
1456 }
1457
do_huge_pmd_anonymous_page(struct vm_fault * vmf)1458 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1459 {
1460 struct vm_area_struct *vma = vmf->vma;
1461 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1462 vm_fault_t ret;
1463
1464 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1465 return VM_FAULT_FALLBACK;
1466 ret = vmf_anon_prepare(vmf);
1467 if (ret)
1468 return ret;
1469 khugepaged_enter_vma(vma, vma->vm_flags);
1470
1471 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1472 !mm_forbids_zeropage(vma->vm_mm) &&
1473 transparent_hugepage_use_zero_page()) {
1474 pgtable_t pgtable;
1475 struct folio *zero_folio;
1476 vm_fault_t ret;
1477
1478 pgtable = pte_alloc_one(vma->vm_mm);
1479 if (unlikely(!pgtable))
1480 return VM_FAULT_OOM;
1481 zero_folio = mm_get_huge_zero_folio(vma->vm_mm);
1482 if (unlikely(!zero_folio)) {
1483 pte_free(vma->vm_mm, pgtable);
1484 count_vm_event(THP_FAULT_FALLBACK);
1485 return VM_FAULT_FALLBACK;
1486 }
1487 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1488 ret = 0;
1489 if (pmd_none(*vmf->pmd)) {
1490 ret = check_stable_address_space(vma->vm_mm);
1491 if (ret) {
1492 spin_unlock(vmf->ptl);
1493 pte_free(vma->vm_mm, pgtable);
1494 } else if (userfaultfd_missing(vma)) {
1495 spin_unlock(vmf->ptl);
1496 pte_free(vma->vm_mm, pgtable);
1497 ret = handle_userfault(vmf, VM_UFFD_MISSING);
1498 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1499 } else {
1500 set_huge_zero_folio(pgtable, vma->vm_mm, vma,
1501 haddr, vmf->pmd, zero_folio);
1502 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1503 spin_unlock(vmf->ptl);
1504 }
1505 } else {
1506 spin_unlock(vmf->ptl);
1507 pte_free(vma->vm_mm, pgtable);
1508 }
1509 return ret;
1510 }
1511
1512 return __do_huge_pmd_anonymous_page(vmf);
1513 }
1514
1515 struct folio_or_pfn {
1516 union {
1517 struct folio *folio;
1518 unsigned long pfn;
1519 };
1520 bool is_folio;
1521 };
1522
insert_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,struct folio_or_pfn fop,pgprot_t prot,bool write)1523 static vm_fault_t insert_pmd(struct vm_area_struct *vma, unsigned long addr,
1524 pmd_t *pmd, struct folio_or_pfn fop, pgprot_t prot,
1525 bool write)
1526 {
1527 struct mm_struct *mm = vma->vm_mm;
1528 pgtable_t pgtable = NULL;
1529 spinlock_t *ptl;
1530 pmd_t entry;
1531
1532 if (addr < vma->vm_start || addr >= vma->vm_end)
1533 return VM_FAULT_SIGBUS;
1534
1535 if (arch_needs_pgtable_deposit()) {
1536 pgtable = pte_alloc_one(vma->vm_mm);
1537 if (!pgtable)
1538 return VM_FAULT_OOM;
1539 }
1540
1541 ptl = pmd_lock(mm, pmd);
1542 if (!pmd_none(*pmd)) {
1543 const unsigned long pfn = fop.is_folio ? folio_pfn(fop.folio) :
1544 fop.pfn;
1545
1546 if (write) {
1547 if (pmd_pfn(*pmd) != pfn) {
1548 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1549 goto out_unlock;
1550 }
1551 entry = pmd_mkyoung(*pmd);
1552 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1553 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1554 update_mmu_cache_pmd(vma, addr, pmd);
1555 }
1556 goto out_unlock;
1557 }
1558
1559 if (fop.is_folio) {
1560 entry = folio_mk_pmd(fop.folio, vma->vm_page_prot);
1561
1562 if (is_huge_zero_folio(fop.folio)) {
1563 entry = pmd_mkspecial(entry);
1564 } else {
1565 folio_get(fop.folio);
1566 folio_add_file_rmap_pmd(fop.folio, &fop.folio->page, vma);
1567 add_mm_counter(mm, mm_counter_file(fop.folio), HPAGE_PMD_NR);
1568 }
1569 } else {
1570 entry = pmd_mkhuge(pfn_pmd(fop.pfn, prot));
1571 entry = pmd_mkspecial(entry);
1572 }
1573 if (write) {
1574 entry = pmd_mkyoung(pmd_mkdirty(entry));
1575 entry = maybe_pmd_mkwrite(entry, vma);
1576 }
1577
1578 if (pgtable) {
1579 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1580 mm_inc_nr_ptes(mm);
1581 pgtable = NULL;
1582 }
1583
1584 set_pmd_at(mm, addr, pmd, entry);
1585 update_mmu_cache_pmd(vma, addr, pmd);
1586
1587 out_unlock:
1588 spin_unlock(ptl);
1589 if (pgtable)
1590 pte_free(mm, pgtable);
1591 return VM_FAULT_NOPAGE;
1592 }
1593
1594 /**
1595 * vmf_insert_pfn_pmd - insert a pmd size pfn
1596 * @vmf: Structure describing the fault
1597 * @pfn: pfn to insert
1598 * @write: whether it's a write fault
1599 *
1600 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1601 *
1602 * Return: vm_fault_t value.
1603 */
vmf_insert_pfn_pmd(struct vm_fault * vmf,unsigned long pfn,bool write)1604 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, unsigned long pfn,
1605 bool write)
1606 {
1607 unsigned long addr = vmf->address & PMD_MASK;
1608 struct vm_area_struct *vma = vmf->vma;
1609 pgprot_t pgprot = vma->vm_page_prot;
1610 struct folio_or_pfn fop = {
1611 .pfn = pfn,
1612 };
1613
1614 /*
1615 * If we had pmd_special, we could avoid all these restrictions,
1616 * but we need to be consistent with PTEs and architectures that
1617 * can't support a 'special' bit.
1618 */
1619 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1620 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1621 (VM_PFNMAP|VM_MIXEDMAP));
1622 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1623
1624 pfnmap_setup_cachemode_pfn(pfn, &pgprot);
1625
1626 return insert_pmd(vma, addr, vmf->pmd, fop, pgprot, write);
1627 }
1628 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1629
vmf_insert_folio_pmd(struct vm_fault * vmf,struct folio * folio,bool write)1630 vm_fault_t vmf_insert_folio_pmd(struct vm_fault *vmf, struct folio *folio,
1631 bool write)
1632 {
1633 struct vm_area_struct *vma = vmf->vma;
1634 unsigned long addr = vmf->address & PMD_MASK;
1635 struct folio_or_pfn fop = {
1636 .folio = folio,
1637 .is_folio = true,
1638 };
1639
1640 if (WARN_ON_ONCE(folio_order(folio) != PMD_ORDER))
1641 return VM_FAULT_SIGBUS;
1642
1643 return insert_pmd(vma, addr, vmf->pmd, fop, vma->vm_page_prot, write);
1644 }
1645 EXPORT_SYMBOL_GPL(vmf_insert_folio_pmd);
1646
1647 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)1648 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1649 {
1650 if (likely(vma->vm_flags & VM_WRITE))
1651 pud = pud_mkwrite(pud);
1652 return pud;
1653 }
1654
insert_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,struct folio_or_pfn fop,pgprot_t prot,bool write)1655 static vm_fault_t insert_pud(struct vm_area_struct *vma, unsigned long addr,
1656 pud_t *pud, struct folio_or_pfn fop, pgprot_t prot, bool write)
1657 {
1658 struct mm_struct *mm = vma->vm_mm;
1659 spinlock_t *ptl;
1660 pud_t entry;
1661
1662 if (addr < vma->vm_start || addr >= vma->vm_end)
1663 return VM_FAULT_SIGBUS;
1664
1665 ptl = pud_lock(mm, pud);
1666 if (!pud_none(*pud)) {
1667 const unsigned long pfn = fop.is_folio ? folio_pfn(fop.folio) :
1668 fop.pfn;
1669
1670 if (write) {
1671 if (WARN_ON_ONCE(pud_pfn(*pud) != pfn))
1672 goto out_unlock;
1673 entry = pud_mkyoung(*pud);
1674 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1675 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1676 update_mmu_cache_pud(vma, addr, pud);
1677 }
1678 goto out_unlock;
1679 }
1680
1681 if (fop.is_folio) {
1682 entry = folio_mk_pud(fop.folio, vma->vm_page_prot);
1683
1684 folio_get(fop.folio);
1685 folio_add_file_rmap_pud(fop.folio, &fop.folio->page, vma);
1686 add_mm_counter(mm, mm_counter_file(fop.folio), HPAGE_PUD_NR);
1687 } else {
1688 entry = pud_mkhuge(pfn_pud(fop.pfn, prot));
1689 entry = pud_mkspecial(entry);
1690 }
1691 if (write) {
1692 entry = pud_mkyoung(pud_mkdirty(entry));
1693 entry = maybe_pud_mkwrite(entry, vma);
1694 }
1695 set_pud_at(mm, addr, pud, entry);
1696 update_mmu_cache_pud(vma, addr, pud);
1697 out_unlock:
1698 spin_unlock(ptl);
1699 return VM_FAULT_NOPAGE;
1700 }
1701
1702 /**
1703 * vmf_insert_pfn_pud - insert a pud size pfn
1704 * @vmf: Structure describing the fault
1705 * @pfn: pfn to insert
1706 * @write: whether it's a write fault
1707 *
1708 * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1709 *
1710 * Return: vm_fault_t value.
1711 */
vmf_insert_pfn_pud(struct vm_fault * vmf,unsigned long pfn,bool write)1712 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, unsigned long pfn,
1713 bool write)
1714 {
1715 unsigned long addr = vmf->address & PUD_MASK;
1716 struct vm_area_struct *vma = vmf->vma;
1717 pgprot_t pgprot = vma->vm_page_prot;
1718 struct folio_or_pfn fop = {
1719 .pfn = pfn,
1720 };
1721
1722 /*
1723 * If we had pud_special, we could avoid all these restrictions,
1724 * but we need to be consistent with PTEs and architectures that
1725 * can't support a 'special' bit.
1726 */
1727 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1728 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1729 (VM_PFNMAP|VM_MIXEDMAP));
1730 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1731
1732 pfnmap_setup_cachemode_pfn(pfn, &pgprot);
1733
1734 return insert_pud(vma, addr, vmf->pud, fop, pgprot, write);
1735 }
1736 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1737
1738 /**
1739 * vmf_insert_folio_pud - insert a pud size folio mapped by a pud entry
1740 * @vmf: Structure describing the fault
1741 * @folio: folio to insert
1742 * @write: whether it's a write fault
1743 *
1744 * Return: vm_fault_t value.
1745 */
vmf_insert_folio_pud(struct vm_fault * vmf,struct folio * folio,bool write)1746 vm_fault_t vmf_insert_folio_pud(struct vm_fault *vmf, struct folio *folio,
1747 bool write)
1748 {
1749 struct vm_area_struct *vma = vmf->vma;
1750 unsigned long addr = vmf->address & PUD_MASK;
1751 struct folio_or_pfn fop = {
1752 .folio = folio,
1753 .is_folio = true,
1754 };
1755
1756 if (WARN_ON_ONCE(folio_order(folio) != PUD_ORDER))
1757 return VM_FAULT_SIGBUS;
1758
1759 return insert_pud(vma, addr, vmf->pud, fop, vma->vm_page_prot, write);
1760 }
1761 EXPORT_SYMBOL_GPL(vmf_insert_folio_pud);
1762 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1763
1764 /**
1765 * touch_pmd - Mark page table pmd entry as accessed and dirty (for write)
1766 * @vma: The VMA covering @addr
1767 * @addr: The virtual address
1768 * @pmd: pmd pointer into the page table mapping @addr
1769 * @write: Whether it's a write access
1770 *
1771 * Return: whether the pmd entry is changed
1772 */
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,bool write)1773 bool touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1774 pmd_t *pmd, bool write)
1775 {
1776 pmd_t entry;
1777
1778 entry = pmd_mkyoung(*pmd);
1779 if (write)
1780 entry = pmd_mkdirty(entry);
1781 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1782 pmd, entry, write)) {
1783 update_mmu_cache_pmd(vma, addr, pmd);
1784 return true;
1785 }
1786
1787 return false;
1788 }
1789
copy_huge_non_present_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t pmd,pgtable_t pgtable)1790 static void copy_huge_non_present_pmd(
1791 struct mm_struct *dst_mm, struct mm_struct *src_mm,
1792 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1793 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1794 pmd_t pmd, pgtable_t pgtable)
1795 {
1796 softleaf_t entry = softleaf_from_pmd(pmd);
1797 struct folio *src_folio;
1798
1799 VM_WARN_ON_ONCE(!pmd_is_valid_softleaf(pmd));
1800
1801 if (softleaf_is_migration_write(entry) ||
1802 softleaf_is_migration_read_exclusive(entry)) {
1803 entry = make_readable_migration_entry(swp_offset(entry));
1804 pmd = swp_entry_to_pmd(entry);
1805 if (pmd_swp_soft_dirty(*src_pmd))
1806 pmd = pmd_swp_mksoft_dirty(pmd);
1807 if (pmd_swp_uffd_wp(*src_pmd))
1808 pmd = pmd_swp_mkuffd_wp(pmd);
1809 set_pmd_at(src_mm, addr, src_pmd, pmd);
1810 } else if (softleaf_is_device_private(entry)) {
1811 /*
1812 * For device private entries, since there are no
1813 * read exclusive entries, writable = !readable
1814 */
1815 if (softleaf_is_device_private_write(entry)) {
1816 entry = make_readable_device_private_entry(swp_offset(entry));
1817 pmd = swp_entry_to_pmd(entry);
1818
1819 if (pmd_swp_soft_dirty(*src_pmd))
1820 pmd = pmd_swp_mksoft_dirty(pmd);
1821 if (pmd_swp_uffd_wp(*src_pmd))
1822 pmd = pmd_swp_mkuffd_wp(pmd);
1823 set_pmd_at(src_mm, addr, src_pmd, pmd);
1824 }
1825
1826 src_folio = softleaf_to_folio(entry);
1827 VM_WARN_ON(!folio_test_large(src_folio));
1828
1829 folio_get(src_folio);
1830 /*
1831 * folio_try_dup_anon_rmap_pmd does not fail for
1832 * device private entries.
1833 */
1834 folio_try_dup_anon_rmap_pmd(src_folio, &src_folio->page,
1835 dst_vma, src_vma);
1836 }
1837
1838 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1839 mm_inc_nr_ptes(dst_mm);
1840 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1841 if (!userfaultfd_wp(dst_vma))
1842 pmd = pmd_swp_clear_uffd_wp(pmd);
1843 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1844 }
1845
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1846 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1847 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1848 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1849 {
1850 spinlock_t *dst_ptl, *src_ptl;
1851 struct page *src_page;
1852 struct folio *src_folio;
1853 pmd_t pmd;
1854 pgtable_t pgtable = NULL;
1855 int ret = -ENOMEM;
1856
1857 pmd = pmdp_get_lockless(src_pmd);
1858 if (unlikely(pmd_present(pmd) && pmd_special(pmd) &&
1859 !is_huge_zero_pmd(pmd))) {
1860 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1861 src_ptl = pmd_lockptr(src_mm, src_pmd);
1862 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1863 /*
1864 * No need to recheck the pmd, it can't change with write
1865 * mmap lock held here.
1866 *
1867 * Meanwhile, making sure it's not a CoW VMA with writable
1868 * mapping, otherwise it means either the anon page wrongly
1869 * applied special bit, or we made the PRIVATE mapping be
1870 * able to wrongly write to the backend MMIO.
1871 */
1872 VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd));
1873 goto set_pmd;
1874 }
1875
1876 /* Skip if can be re-fill on fault */
1877 if (!vma_is_anonymous(dst_vma))
1878 return 0;
1879
1880 pgtable = pte_alloc_one(dst_mm);
1881 if (unlikely(!pgtable))
1882 goto out;
1883
1884 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1885 src_ptl = pmd_lockptr(src_mm, src_pmd);
1886 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1887
1888 ret = -EAGAIN;
1889 pmd = *src_pmd;
1890
1891 if (unlikely(thp_migration_supported() &&
1892 pmd_is_valid_softleaf(pmd))) {
1893 copy_huge_non_present_pmd(dst_mm, src_mm, dst_pmd, src_pmd, addr,
1894 dst_vma, src_vma, pmd, pgtable);
1895 ret = 0;
1896 goto out_unlock;
1897 }
1898
1899 if (unlikely(!pmd_trans_huge(pmd))) {
1900 pte_free(dst_mm, pgtable);
1901 goto out_unlock;
1902 }
1903 /*
1904 * When page table lock is held, the huge zero pmd should not be
1905 * under splitting since we don't split the page itself, only pmd to
1906 * a page table.
1907 */
1908 if (is_huge_zero_pmd(pmd)) {
1909 /*
1910 * mm_get_huge_zero_folio() will never allocate a new
1911 * folio here, since we already have a zero page to
1912 * copy. It just takes a reference.
1913 */
1914 mm_get_huge_zero_folio(dst_mm);
1915 goto out_zero_page;
1916 }
1917
1918 src_page = pmd_page(pmd);
1919 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1920 src_folio = page_folio(src_page);
1921
1922 folio_get(src_folio);
1923 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, dst_vma, src_vma))) {
1924 /* Page maybe pinned: split and retry the fault on PTEs. */
1925 folio_put(src_folio);
1926 pte_free(dst_mm, pgtable);
1927 spin_unlock(src_ptl);
1928 spin_unlock(dst_ptl);
1929 __split_huge_pmd(src_vma, src_pmd, addr, false);
1930 return -EAGAIN;
1931 }
1932 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1933 out_zero_page:
1934 mm_inc_nr_ptes(dst_mm);
1935 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1936 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1937 if (!userfaultfd_wp(dst_vma))
1938 pmd = pmd_clear_uffd_wp(pmd);
1939 pmd = pmd_wrprotect(pmd);
1940 set_pmd:
1941 pmd = pmd_mkold(pmd);
1942 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1943
1944 ret = 0;
1945 out_unlock:
1946 spin_unlock(src_ptl);
1947 spin_unlock(dst_ptl);
1948 out:
1949 return ret;
1950 }
1951
1952 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,bool write)1953 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1954 pud_t *pud, bool write)
1955 {
1956 pud_t _pud;
1957
1958 _pud = pud_mkyoung(*pud);
1959 if (write)
1960 _pud = pud_mkdirty(_pud);
1961 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1962 pud, _pud, write))
1963 update_mmu_cache_pud(vma, addr, pud);
1964 }
1965
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1966 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1967 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1968 struct vm_area_struct *vma)
1969 {
1970 spinlock_t *dst_ptl, *src_ptl;
1971 pud_t pud;
1972 int ret;
1973
1974 dst_ptl = pud_lock(dst_mm, dst_pud);
1975 src_ptl = pud_lockptr(src_mm, src_pud);
1976 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1977
1978 ret = -EAGAIN;
1979 pud = *src_pud;
1980 if (unlikely(!pud_trans_huge(pud)))
1981 goto out_unlock;
1982
1983 /*
1984 * TODO: once we support anonymous pages, use
1985 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1986 */
1987 if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) {
1988 pudp_set_wrprotect(src_mm, addr, src_pud);
1989 pud = pud_wrprotect(pud);
1990 }
1991 pud = pud_mkold(pud);
1992 set_pud_at(dst_mm, addr, dst_pud, pud);
1993
1994 ret = 0;
1995 out_unlock:
1996 spin_unlock(src_ptl);
1997 spin_unlock(dst_ptl);
1998 return ret;
1999 }
2000
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)2001 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
2002 {
2003 bool write = vmf->flags & FAULT_FLAG_WRITE;
2004
2005 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
2006 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
2007 goto unlock;
2008
2009 touch_pud(vmf->vma, vmf->address, vmf->pud, write);
2010 unlock:
2011 spin_unlock(vmf->ptl);
2012 }
2013 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2014
huge_pmd_set_accessed(struct vm_fault * vmf)2015 bool huge_pmd_set_accessed(struct vm_fault *vmf)
2016 {
2017 bool write = vmf->flags & FAULT_FLAG_WRITE;
2018
2019 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
2020 return false;
2021
2022 return touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
2023 }
2024
do_huge_zero_wp_pmd(struct vm_fault * vmf)2025 static vm_fault_t do_huge_zero_wp_pmd(struct vm_fault *vmf)
2026 {
2027 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2028 struct vm_area_struct *vma = vmf->vma;
2029 struct mmu_notifier_range range;
2030 struct folio *folio;
2031 vm_fault_t ret = 0;
2032
2033 folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
2034 if (unlikely(!folio))
2035 return VM_FAULT_FALLBACK;
2036
2037 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, haddr,
2038 haddr + HPAGE_PMD_SIZE);
2039 mmu_notifier_invalidate_range_start(&range);
2040 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2041 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd)))
2042 goto release;
2043 ret = check_stable_address_space(vma->vm_mm);
2044 if (ret)
2045 goto release;
2046 (void)pmdp_huge_clear_flush(vma, haddr, vmf->pmd);
2047 map_anon_folio_pmd_pf(folio, vmf->pmd, vma, haddr);
2048 goto unlock;
2049 release:
2050 folio_put(folio);
2051 unlock:
2052 spin_unlock(vmf->ptl);
2053 mmu_notifier_invalidate_range_end(&range);
2054 return ret;
2055 }
2056
do_huge_pmd_wp_page(struct vm_fault * vmf)2057 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
2058 {
2059 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
2060 struct vm_area_struct *vma = vmf->vma;
2061 struct folio *folio;
2062 struct page *page;
2063 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2064 pmd_t orig_pmd = vmf->orig_pmd;
2065
2066 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
2067 VM_BUG_ON_VMA(!vma->anon_vma, vma);
2068
2069 if (is_huge_zero_pmd(orig_pmd)) {
2070 vm_fault_t ret = do_huge_zero_wp_pmd(vmf);
2071
2072 if (!(ret & VM_FAULT_FALLBACK))
2073 return ret;
2074
2075 /* Fallback to splitting PMD if THP cannot be allocated */
2076 goto fallback;
2077 }
2078
2079 spin_lock(vmf->ptl);
2080
2081 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
2082 spin_unlock(vmf->ptl);
2083 return 0;
2084 }
2085
2086 page = pmd_page(orig_pmd);
2087 folio = page_folio(page);
2088 VM_BUG_ON_PAGE(!PageHead(page), page);
2089
2090 /* Early check when only holding the PT lock. */
2091 if (PageAnonExclusive(page))
2092 goto reuse;
2093
2094 if (!folio_trylock(folio)) {
2095 folio_get(folio);
2096 spin_unlock(vmf->ptl);
2097 folio_lock(folio);
2098 spin_lock(vmf->ptl);
2099 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
2100 spin_unlock(vmf->ptl);
2101 folio_unlock(folio);
2102 folio_put(folio);
2103 return 0;
2104 }
2105 folio_put(folio);
2106 }
2107
2108 /* Recheck after temporarily dropping the PT lock. */
2109 if (PageAnonExclusive(page)) {
2110 folio_unlock(folio);
2111 goto reuse;
2112 }
2113
2114 /*
2115 * See do_wp_page(): we can only reuse the folio exclusively if
2116 * there are no additional references. Note that we always drain
2117 * the LRU cache immediately after adding a THP.
2118 */
2119 if (folio_ref_count(folio) >
2120 1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
2121 goto unlock_fallback;
2122 if (folio_test_swapcache(folio))
2123 folio_free_swap(folio);
2124 if (folio_ref_count(folio) == 1) {
2125 pmd_t entry;
2126
2127 folio_move_anon_rmap(folio, vma);
2128 SetPageAnonExclusive(page);
2129 folio_unlock(folio);
2130 reuse:
2131 if (unlikely(unshare)) {
2132 spin_unlock(vmf->ptl);
2133 return 0;
2134 }
2135 entry = pmd_mkyoung(orig_pmd);
2136 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2137 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
2138 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
2139 spin_unlock(vmf->ptl);
2140 return 0;
2141 }
2142
2143 unlock_fallback:
2144 folio_unlock(folio);
2145 spin_unlock(vmf->ptl);
2146 fallback:
2147 __split_huge_pmd(vma, vmf->pmd, vmf->address, false);
2148 return VM_FAULT_FALLBACK;
2149 }
2150
can_change_pmd_writable(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)2151 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
2152 unsigned long addr, pmd_t pmd)
2153 {
2154 struct page *page;
2155
2156 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
2157 return false;
2158
2159 /* Don't touch entries that are not even readable (NUMA hinting). */
2160 if (pmd_protnone(pmd))
2161 return false;
2162
2163 /* Do we need write faults for softdirty tracking? */
2164 if (pmd_needs_soft_dirty_wp(vma, pmd))
2165 return false;
2166
2167 /* Do we need write faults for uffd-wp tracking? */
2168 if (userfaultfd_huge_pmd_wp(vma, pmd))
2169 return false;
2170
2171 if (!(vma->vm_flags & VM_SHARED)) {
2172 /* See can_change_pte_writable(). */
2173 page = vm_normal_page_pmd(vma, addr, pmd);
2174 return page && PageAnon(page) && PageAnonExclusive(page);
2175 }
2176
2177 /* See can_change_pte_writable(). */
2178 return pmd_dirty(pmd);
2179 }
2180
2181 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf)2182 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
2183 {
2184 struct vm_area_struct *vma = vmf->vma;
2185 struct folio *folio;
2186 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2187 int nid = NUMA_NO_NODE;
2188 int target_nid, last_cpupid;
2189 pmd_t pmd, old_pmd;
2190 bool writable = false;
2191 int flags = 0;
2192
2193 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2194 old_pmd = pmdp_get(vmf->pmd);
2195
2196 if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) {
2197 spin_unlock(vmf->ptl);
2198 return 0;
2199 }
2200
2201 pmd = pmd_modify(old_pmd, vma->vm_page_prot);
2202
2203 /*
2204 * Detect now whether the PMD could be writable; this information
2205 * is only valid while holding the PT lock.
2206 */
2207 writable = pmd_write(pmd);
2208 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
2209 can_change_pmd_writable(vma, vmf->address, pmd))
2210 writable = true;
2211
2212 folio = vm_normal_folio_pmd(vma, haddr, pmd);
2213 if (!folio)
2214 goto out_map;
2215
2216 nid = folio_nid(folio);
2217
2218 target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable,
2219 &last_cpupid);
2220 if (target_nid == NUMA_NO_NODE)
2221 goto out_map;
2222 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
2223 flags |= TNF_MIGRATE_FAIL;
2224 goto out_map;
2225 }
2226 /* The folio is isolated and isolation code holds a folio reference. */
2227 spin_unlock(vmf->ptl);
2228 writable = false;
2229
2230 if (!migrate_misplaced_folio(folio, target_nid)) {
2231 flags |= TNF_MIGRATED;
2232 nid = target_nid;
2233 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2234 return 0;
2235 }
2236
2237 flags |= TNF_MIGRATE_FAIL;
2238 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2239 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) {
2240 spin_unlock(vmf->ptl);
2241 return 0;
2242 }
2243 out_map:
2244 /* Restore the PMD */
2245 pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot);
2246 pmd = pmd_mkyoung(pmd);
2247 if (writable)
2248 pmd = pmd_mkwrite(pmd, vma);
2249 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
2250 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
2251 spin_unlock(vmf->ptl);
2252
2253 if (nid != NUMA_NO_NODE)
2254 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2255 return 0;
2256 }
2257
2258 /*
2259 * Return true if we do MADV_FREE successfully on entire pmd page.
2260 * Otherwise, return false.
2261 */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)2262 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2263 pmd_t *pmd, unsigned long addr, unsigned long next)
2264 {
2265 spinlock_t *ptl;
2266 pmd_t orig_pmd;
2267 struct folio *folio;
2268 struct mm_struct *mm = tlb->mm;
2269 bool ret = false;
2270
2271 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2272
2273 ptl = pmd_trans_huge_lock(pmd, vma);
2274 if (!ptl)
2275 goto out_unlocked;
2276
2277 orig_pmd = *pmd;
2278 if (is_huge_zero_pmd(orig_pmd))
2279 goto out;
2280
2281 if (unlikely(!pmd_present(orig_pmd))) {
2282 VM_BUG_ON(thp_migration_supported() &&
2283 !pmd_is_migration_entry(orig_pmd));
2284 goto out;
2285 }
2286
2287 folio = pmd_folio(orig_pmd);
2288 /*
2289 * If other processes are mapping this folio, we couldn't discard
2290 * the folio unless they all do MADV_FREE so let's skip the folio.
2291 */
2292 if (folio_maybe_mapped_shared(folio))
2293 goto out;
2294
2295 if (!folio_trylock(folio))
2296 goto out;
2297
2298 /*
2299 * If user want to discard part-pages of THP, split it so MADV_FREE
2300 * will deactivate only them.
2301 */
2302 if (next - addr != HPAGE_PMD_SIZE) {
2303 folio_get(folio);
2304 spin_unlock(ptl);
2305 split_folio(folio);
2306 folio_unlock(folio);
2307 folio_put(folio);
2308 goto out_unlocked;
2309 }
2310
2311 if (folio_test_dirty(folio))
2312 folio_clear_dirty(folio);
2313 folio_unlock(folio);
2314
2315 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
2316 pmdp_invalidate(vma, addr, pmd);
2317 orig_pmd = pmd_mkold(orig_pmd);
2318 orig_pmd = pmd_mkclean(orig_pmd);
2319
2320 set_pmd_at(mm, addr, pmd, orig_pmd);
2321 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2322 }
2323
2324 folio_mark_lazyfree(folio);
2325 ret = true;
2326 out:
2327 spin_unlock(ptl);
2328 out_unlocked:
2329 return ret;
2330 }
2331
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)2332 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
2333 {
2334 pgtable_t pgtable;
2335
2336 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2337 pte_free(mm, pgtable);
2338 mm_dec_nr_ptes(mm);
2339 }
2340
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)2341 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2342 pmd_t *pmd, unsigned long addr)
2343 {
2344 pmd_t orig_pmd;
2345 spinlock_t *ptl;
2346
2347 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2348
2349 ptl = __pmd_trans_huge_lock(pmd, vma);
2350 if (!ptl)
2351 return 0;
2352 /*
2353 * For architectures like ppc64 we look at deposited pgtable
2354 * when calling pmdp_huge_get_and_clear. So do the
2355 * pgtable_trans_huge_withdraw after finishing pmdp related
2356 * operations.
2357 */
2358 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
2359 tlb->fullmm);
2360 arch_check_zapped_pmd(vma, orig_pmd);
2361 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2362 if (!vma_is_dax(vma) && vma_is_special_huge(vma)) {
2363 if (arch_needs_pgtable_deposit())
2364 zap_deposited_table(tlb->mm, pmd);
2365 spin_unlock(ptl);
2366 } else if (is_huge_zero_pmd(orig_pmd)) {
2367 if (!vma_is_dax(vma) || arch_needs_pgtable_deposit())
2368 zap_deposited_table(tlb->mm, pmd);
2369 spin_unlock(ptl);
2370 } else {
2371 struct folio *folio = NULL;
2372 int flush_needed = 1;
2373
2374 if (pmd_present(orig_pmd)) {
2375 struct page *page = pmd_page(orig_pmd);
2376
2377 folio = page_folio(page);
2378 folio_remove_rmap_pmd(folio, page, vma);
2379 WARN_ON_ONCE(folio_mapcount(folio) < 0);
2380 VM_BUG_ON_PAGE(!PageHead(page), page);
2381 } else if (pmd_is_valid_softleaf(orig_pmd)) {
2382 const softleaf_t entry = softleaf_from_pmd(orig_pmd);
2383
2384 folio = softleaf_to_folio(entry);
2385 flush_needed = 0;
2386
2387 if (!thp_migration_supported())
2388 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
2389 }
2390
2391 if (folio_test_anon(folio)) {
2392 zap_deposited_table(tlb->mm, pmd);
2393 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
2394 } else {
2395 if (arch_needs_pgtable_deposit())
2396 zap_deposited_table(tlb->mm, pmd);
2397 add_mm_counter(tlb->mm, mm_counter_file(folio),
2398 -HPAGE_PMD_NR);
2399
2400 /*
2401 * Use flush_needed to indicate whether the PMD entry
2402 * is present, instead of checking pmd_present() again.
2403 */
2404 if (flush_needed && pmd_young(orig_pmd) &&
2405 likely(vma_has_recency(vma)))
2406 folio_mark_accessed(folio);
2407 }
2408
2409 if (folio_is_device_private(folio)) {
2410 folio_remove_rmap_pmd(folio, &folio->page, vma);
2411 WARN_ON_ONCE(folio_mapcount(folio) < 0);
2412 folio_put(folio);
2413 }
2414
2415 spin_unlock(ptl);
2416 if (flush_needed)
2417 tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
2418 }
2419 return 1;
2420 }
2421
2422 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)2423 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
2424 spinlock_t *old_pmd_ptl,
2425 struct vm_area_struct *vma)
2426 {
2427 /*
2428 * With split pmd lock we also need to move preallocated
2429 * PTE page table if new_pmd is on different PMD page table.
2430 *
2431 * We also don't deposit and withdraw tables for file pages.
2432 */
2433 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
2434 }
2435 #endif
2436
move_soft_dirty_pmd(pmd_t pmd)2437 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
2438 {
2439 if (pgtable_supports_soft_dirty()) {
2440 if (unlikely(pmd_is_migration_entry(pmd)))
2441 pmd = pmd_swp_mksoft_dirty(pmd);
2442 else if (pmd_present(pmd))
2443 pmd = pmd_mksoft_dirty(pmd);
2444 }
2445
2446 return pmd;
2447 }
2448
clear_uffd_wp_pmd(pmd_t pmd)2449 static pmd_t clear_uffd_wp_pmd(pmd_t pmd)
2450 {
2451 if (pmd_none(pmd))
2452 return pmd;
2453 if (pmd_present(pmd))
2454 pmd = pmd_clear_uffd_wp(pmd);
2455 else
2456 pmd = pmd_swp_clear_uffd_wp(pmd);
2457
2458 return pmd;
2459 }
2460
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pmd_t * old_pmd,pmd_t * new_pmd)2461 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
2462 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
2463 {
2464 spinlock_t *old_ptl, *new_ptl;
2465 pmd_t pmd;
2466 struct mm_struct *mm = vma->vm_mm;
2467 bool force_flush = false;
2468
2469 /*
2470 * The destination pmd shouldn't be established, free_pgtables()
2471 * should have released it; but move_page_tables() might have already
2472 * inserted a page table, if racing against shmem/file collapse.
2473 */
2474 if (!pmd_none(*new_pmd)) {
2475 VM_BUG_ON(pmd_trans_huge(*new_pmd));
2476 return false;
2477 }
2478
2479 /*
2480 * We don't have to worry about the ordering of src and dst
2481 * ptlocks because exclusive mmap_lock prevents deadlock.
2482 */
2483 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
2484 if (old_ptl) {
2485 new_ptl = pmd_lockptr(mm, new_pmd);
2486 if (new_ptl != old_ptl)
2487 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
2488 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
2489 if (pmd_present(pmd))
2490 force_flush = true;
2491 VM_BUG_ON(!pmd_none(*new_pmd));
2492
2493 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2494 pgtable_t pgtable;
2495 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2496 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2497 }
2498 pmd = move_soft_dirty_pmd(pmd);
2499 if (vma_has_uffd_without_event_remap(vma))
2500 pmd = clear_uffd_wp_pmd(pmd);
2501 set_pmd_at(mm, new_addr, new_pmd, pmd);
2502 if (force_flush)
2503 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2504 if (new_ptl != old_ptl)
2505 spin_unlock(new_ptl);
2506 spin_unlock(old_ptl);
2507 return true;
2508 }
2509 return false;
2510 }
2511
change_non_present_huge_pmd(struct mm_struct * mm,unsigned long addr,pmd_t * pmd,bool uffd_wp,bool uffd_wp_resolve)2512 static void change_non_present_huge_pmd(struct mm_struct *mm,
2513 unsigned long addr, pmd_t *pmd, bool uffd_wp,
2514 bool uffd_wp_resolve)
2515 {
2516 softleaf_t entry = softleaf_from_pmd(*pmd);
2517 const struct folio *folio = softleaf_to_folio(entry);
2518 pmd_t newpmd;
2519
2520 VM_WARN_ON(!pmd_is_valid_softleaf(*pmd));
2521 if (softleaf_is_migration_write(entry)) {
2522 /*
2523 * A protection check is difficult so
2524 * just be safe and disable write
2525 */
2526 if (folio_test_anon(folio))
2527 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2528 else
2529 entry = make_readable_migration_entry(swp_offset(entry));
2530 newpmd = swp_entry_to_pmd(entry);
2531 if (pmd_swp_soft_dirty(*pmd))
2532 newpmd = pmd_swp_mksoft_dirty(newpmd);
2533 } else if (softleaf_is_device_private_write(entry)) {
2534 entry = make_readable_device_private_entry(swp_offset(entry));
2535 newpmd = swp_entry_to_pmd(entry);
2536 } else {
2537 newpmd = *pmd;
2538 }
2539
2540 if (uffd_wp)
2541 newpmd = pmd_swp_mkuffd_wp(newpmd);
2542 else if (uffd_wp_resolve)
2543 newpmd = pmd_swp_clear_uffd_wp(newpmd);
2544 if (!pmd_same(*pmd, newpmd))
2545 set_pmd_at(mm, addr, pmd, newpmd);
2546 }
2547
2548 /*
2549 * Returns
2550 * - 0 if PMD could not be locked
2551 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2552 * or if prot_numa but THP migration is not supported
2553 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
2554 */
change_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)2555 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2556 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2557 unsigned long cp_flags)
2558 {
2559 struct mm_struct *mm = vma->vm_mm;
2560 spinlock_t *ptl;
2561 pmd_t oldpmd, entry;
2562 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2563 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2564 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2565 int ret = 1;
2566
2567 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2568
2569 if (prot_numa && !thp_migration_supported())
2570 return 1;
2571
2572 ptl = __pmd_trans_huge_lock(pmd, vma);
2573 if (!ptl)
2574 return 0;
2575
2576 if (thp_migration_supported() && pmd_is_valid_softleaf(*pmd)) {
2577 change_non_present_huge_pmd(mm, addr, pmd, uffd_wp,
2578 uffd_wp_resolve);
2579 goto unlock;
2580 }
2581
2582 if (prot_numa) {
2583
2584 /*
2585 * Avoid trapping faults against the zero page. The read-only
2586 * data is likely to be read-cached on the local CPU and
2587 * local/remote hits to the zero page are not interesting.
2588 */
2589 if (is_huge_zero_pmd(*pmd))
2590 goto unlock;
2591
2592 if (pmd_protnone(*pmd))
2593 goto unlock;
2594
2595 if (!folio_can_map_prot_numa(pmd_folio(*pmd), vma,
2596 vma_is_single_threaded_private(vma)))
2597 goto unlock;
2598 }
2599 /*
2600 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2601 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2602 * which is also under mmap_read_lock(mm):
2603 *
2604 * CPU0: CPU1:
2605 * change_huge_pmd(prot_numa=1)
2606 * pmdp_huge_get_and_clear_notify()
2607 * madvise_dontneed()
2608 * zap_pmd_range()
2609 * pmd_trans_huge(*pmd) == 0 (without ptl)
2610 * // skip the pmd
2611 * set_pmd_at();
2612 * // pmd is re-established
2613 *
2614 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2615 * which may break userspace.
2616 *
2617 * pmdp_invalidate_ad() is required to make sure we don't miss
2618 * dirty/young flags set by hardware.
2619 */
2620 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2621
2622 entry = pmd_modify(oldpmd, newprot);
2623 if (uffd_wp)
2624 entry = pmd_mkuffd_wp(entry);
2625 else if (uffd_wp_resolve)
2626 /*
2627 * Leave the write bit to be handled by PF interrupt
2628 * handler, then things like COW could be properly
2629 * handled.
2630 */
2631 entry = pmd_clear_uffd_wp(entry);
2632
2633 /* See change_pte_range(). */
2634 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2635 can_change_pmd_writable(vma, addr, entry))
2636 entry = pmd_mkwrite(entry, vma);
2637
2638 ret = HPAGE_PMD_NR;
2639 set_pmd_at(mm, addr, pmd, entry);
2640
2641 if (huge_pmd_needs_flush(oldpmd, entry))
2642 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2643 unlock:
2644 spin_unlock(ptl);
2645 return ret;
2646 }
2647
2648 /*
2649 * Returns:
2650 *
2651 * - 0: if pud leaf changed from under us
2652 * - 1: if pud can be skipped
2653 * - HPAGE_PUD_NR: if pud was successfully processed
2654 */
2655 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
change_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pudp,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)2656 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2657 pud_t *pudp, unsigned long addr, pgprot_t newprot,
2658 unsigned long cp_flags)
2659 {
2660 struct mm_struct *mm = vma->vm_mm;
2661 pud_t oldpud, entry;
2662 spinlock_t *ptl;
2663
2664 tlb_change_page_size(tlb, HPAGE_PUD_SIZE);
2665
2666 /* NUMA balancing doesn't apply to dax */
2667 if (cp_flags & MM_CP_PROT_NUMA)
2668 return 1;
2669
2670 /*
2671 * Huge entries on userfault-wp only works with anonymous, while we
2672 * don't have anonymous PUDs yet.
2673 */
2674 if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL))
2675 return 1;
2676
2677 ptl = __pud_trans_huge_lock(pudp, vma);
2678 if (!ptl)
2679 return 0;
2680
2681 /*
2682 * Can't clear PUD or it can race with concurrent zapping. See
2683 * change_huge_pmd().
2684 */
2685 oldpud = pudp_invalidate(vma, addr, pudp);
2686 entry = pud_modify(oldpud, newprot);
2687 set_pud_at(mm, addr, pudp, entry);
2688 tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE);
2689
2690 spin_unlock(ptl);
2691 return HPAGE_PUD_NR;
2692 }
2693 #endif
2694
2695 #ifdef CONFIG_USERFAULTFD
2696 /*
2697 * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
2698 * the caller, but it must return after releasing the page_table_lock.
2699 * Just move the page from src_pmd to dst_pmd if possible.
2700 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2701 * repeated by the caller, or other errors in case of failure.
2702 */
move_pages_huge_pmd(struct mm_struct * mm,pmd_t * dst_pmd,pmd_t * src_pmd,pmd_t dst_pmdval,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long dst_addr,unsigned long src_addr)2703 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2704 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2705 unsigned long dst_addr, unsigned long src_addr)
2706 {
2707 pmd_t _dst_pmd, src_pmdval;
2708 struct page *src_page;
2709 struct folio *src_folio;
2710 spinlock_t *src_ptl, *dst_ptl;
2711 pgtable_t src_pgtable;
2712 struct mmu_notifier_range range;
2713 int err = 0;
2714
2715 src_pmdval = *src_pmd;
2716 src_ptl = pmd_lockptr(mm, src_pmd);
2717
2718 lockdep_assert_held(src_ptl);
2719 vma_assert_locked(src_vma);
2720 vma_assert_locked(dst_vma);
2721
2722 /* Sanity checks before the operation */
2723 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2724 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2725 spin_unlock(src_ptl);
2726 return -EINVAL;
2727 }
2728
2729 if (!pmd_trans_huge(src_pmdval)) {
2730 spin_unlock(src_ptl);
2731 if (pmd_is_migration_entry(src_pmdval)) {
2732 pmd_migration_entry_wait(mm, &src_pmdval);
2733 return -EAGAIN;
2734 }
2735 return -ENOENT;
2736 }
2737
2738 src_page = pmd_page(src_pmdval);
2739
2740 if (!is_huge_zero_pmd(src_pmdval)) {
2741 if (unlikely(!PageAnonExclusive(src_page))) {
2742 spin_unlock(src_ptl);
2743 return -EBUSY;
2744 }
2745
2746 src_folio = page_folio(src_page);
2747 folio_get(src_folio);
2748 } else
2749 src_folio = NULL;
2750
2751 spin_unlock(src_ptl);
2752
2753 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2754 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2755 src_addr + HPAGE_PMD_SIZE);
2756 mmu_notifier_invalidate_range_start(&range);
2757
2758 if (src_folio)
2759 folio_lock(src_folio);
2760
2761 dst_ptl = pmd_lockptr(mm, dst_pmd);
2762 double_pt_lock(src_ptl, dst_ptl);
2763 if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2764 !pmd_same(*dst_pmd, dst_pmdval))) {
2765 err = -EAGAIN;
2766 goto unlock_ptls;
2767 }
2768 if (src_folio) {
2769 if (folio_maybe_dma_pinned(src_folio) ||
2770 !PageAnonExclusive(&src_folio->page)) {
2771 err = -EBUSY;
2772 goto unlock_ptls;
2773 }
2774
2775 if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2776 WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2777 err = -EBUSY;
2778 goto unlock_ptls;
2779 }
2780
2781 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2782 /* Folio got pinned from under us. Put it back and fail the move. */
2783 if (folio_maybe_dma_pinned(src_folio)) {
2784 set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2785 err = -EBUSY;
2786 goto unlock_ptls;
2787 }
2788
2789 folio_move_anon_rmap(src_folio, dst_vma);
2790 src_folio->index = linear_page_index(dst_vma, dst_addr);
2791
2792 _dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot);
2793 /* Follow mremap() behavior and treat the entry dirty after the move */
2794 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2795 } else {
2796 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2797 _dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot);
2798 }
2799 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2800
2801 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2802 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2803 unlock_ptls:
2804 double_pt_unlock(src_ptl, dst_ptl);
2805 /* unblock rmap walks */
2806 if (src_folio)
2807 folio_unlock(src_folio);
2808 mmu_notifier_invalidate_range_end(&range);
2809 if (src_folio)
2810 folio_put(src_folio);
2811 return err;
2812 }
2813 #endif /* CONFIG_USERFAULTFD */
2814
2815 /*
2816 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2817 *
2818 * Note that if it returns page table lock pointer, this routine returns without
2819 * unlocking page table lock. So callers must unlock it.
2820 */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)2821 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2822 {
2823 spinlock_t *ptl;
2824
2825 ptl = pmd_lock(vma->vm_mm, pmd);
2826 if (likely(pmd_is_huge(*pmd)))
2827 return ptl;
2828 spin_unlock(ptl);
2829 return NULL;
2830 }
2831
2832 /*
2833 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2834 *
2835 * Note that if it returns page table lock pointer, this routine returns without
2836 * unlocking page table lock. So callers must unlock it.
2837 */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)2838 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2839 {
2840 spinlock_t *ptl;
2841
2842 ptl = pud_lock(vma->vm_mm, pud);
2843 if (likely(pud_trans_huge(*pud)))
2844 return ptl;
2845 spin_unlock(ptl);
2846 return NULL;
2847 }
2848
2849 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)2850 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2851 pud_t *pud, unsigned long addr)
2852 {
2853 spinlock_t *ptl;
2854 pud_t orig_pud;
2855
2856 ptl = __pud_trans_huge_lock(pud, vma);
2857 if (!ptl)
2858 return 0;
2859
2860 orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2861 arch_check_zapped_pud(vma, orig_pud);
2862 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2863 if (!vma_is_dax(vma) && vma_is_special_huge(vma)) {
2864 spin_unlock(ptl);
2865 /* No zero page support yet */
2866 } else {
2867 struct page *page = NULL;
2868 struct folio *folio;
2869
2870 /* No support for anonymous PUD pages or migration yet */
2871 VM_WARN_ON_ONCE(vma_is_anonymous(vma) ||
2872 !pud_present(orig_pud));
2873
2874 page = pud_page(orig_pud);
2875 folio = page_folio(page);
2876 folio_remove_rmap_pud(folio, page, vma);
2877 add_mm_counter(tlb->mm, mm_counter_file(folio), -HPAGE_PUD_NR);
2878
2879 spin_unlock(ptl);
2880 tlb_remove_page_size(tlb, page, HPAGE_PUD_SIZE);
2881 }
2882 return 1;
2883 }
2884
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)2885 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2886 unsigned long haddr)
2887 {
2888 struct folio *folio;
2889 struct page *page;
2890 pud_t old_pud;
2891
2892 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2893 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2894 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2895 VM_BUG_ON(!pud_trans_huge(*pud));
2896
2897 count_vm_event(THP_SPLIT_PUD);
2898
2899 old_pud = pudp_huge_clear_flush(vma, haddr, pud);
2900
2901 if (!vma_is_dax(vma))
2902 return;
2903
2904 page = pud_page(old_pud);
2905 folio = page_folio(page);
2906
2907 if (!folio_test_dirty(folio) && pud_dirty(old_pud))
2908 folio_mark_dirty(folio);
2909 if (!folio_test_referenced(folio) && pud_young(old_pud))
2910 folio_set_referenced(folio);
2911 folio_remove_rmap_pud(folio, page, vma);
2912 folio_put(folio);
2913 add_mm_counter(vma->vm_mm, mm_counter_file(folio),
2914 -HPAGE_PUD_NR);
2915 }
2916
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)2917 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2918 unsigned long address)
2919 {
2920 spinlock_t *ptl;
2921 struct mmu_notifier_range range;
2922
2923 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2924 address & HPAGE_PUD_MASK,
2925 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2926 mmu_notifier_invalidate_range_start(&range);
2927 ptl = pud_lock(vma->vm_mm, pud);
2928 if (unlikely(!pud_trans_huge(*pud)))
2929 goto out;
2930 __split_huge_pud_locked(vma, pud, range.start);
2931
2932 out:
2933 spin_unlock(ptl);
2934 mmu_notifier_invalidate_range_end(&range);
2935 }
2936 #else
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)2937 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2938 unsigned long address)
2939 {
2940 }
2941 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2942
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)2943 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2944 unsigned long haddr, pmd_t *pmd)
2945 {
2946 struct mm_struct *mm = vma->vm_mm;
2947 pgtable_t pgtable;
2948 pmd_t _pmd, old_pmd;
2949 unsigned long addr;
2950 pte_t *pte;
2951 int i;
2952
2953 /*
2954 * Leave pmd empty until pte is filled note that it is fine to delay
2955 * notification until mmu_notifier_invalidate_range_end() as we are
2956 * replacing a zero pmd write protected page with a zero pte write
2957 * protected page.
2958 *
2959 * See Documentation/mm/mmu_notifier.rst
2960 */
2961 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2962
2963 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2964 pmd_populate(mm, &_pmd, pgtable);
2965
2966 pte = pte_offset_map(&_pmd, haddr);
2967 VM_BUG_ON(!pte);
2968 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2969 pte_t entry;
2970
2971 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2972 entry = pte_mkspecial(entry);
2973 if (pmd_uffd_wp(old_pmd))
2974 entry = pte_mkuffd_wp(entry);
2975 VM_BUG_ON(!pte_none(ptep_get(pte)));
2976 set_pte_at(mm, addr, pte, entry);
2977 pte++;
2978 }
2979 pte_unmap(pte - 1);
2980 smp_wmb(); /* make pte visible before pmd */
2981 pmd_populate(mm, pmd, pgtable);
2982 }
2983
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)2984 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2985 unsigned long haddr, bool freeze)
2986 {
2987 struct mm_struct *mm = vma->vm_mm;
2988 struct folio *folio;
2989 struct page *page;
2990 pgtable_t pgtable;
2991 pmd_t old_pmd, _pmd;
2992 bool soft_dirty, uffd_wp = false, young = false, write = false;
2993 bool anon_exclusive = false, dirty = false;
2994 unsigned long addr;
2995 pte_t *pte;
2996 int i;
2997
2998 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2999 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
3000 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
3001
3002 VM_WARN_ON_ONCE(!pmd_is_valid_softleaf(*pmd) && !pmd_trans_huge(*pmd));
3003
3004 count_vm_event(THP_SPLIT_PMD);
3005
3006 if (!vma_is_anonymous(vma)) {
3007 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
3008 /*
3009 * We are going to unmap this huge page. So
3010 * just go ahead and zap it
3011 */
3012 if (arch_needs_pgtable_deposit())
3013 zap_deposited_table(mm, pmd);
3014 if (!vma_is_dax(vma) && vma_is_special_huge(vma))
3015 return;
3016 if (unlikely(pmd_is_migration_entry(old_pmd))) {
3017 const softleaf_t old_entry = softleaf_from_pmd(old_pmd);
3018
3019 folio = softleaf_to_folio(old_entry);
3020 } else if (is_huge_zero_pmd(old_pmd)) {
3021 return;
3022 } else {
3023 page = pmd_page(old_pmd);
3024 folio = page_folio(page);
3025 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
3026 folio_mark_dirty(folio);
3027 if (!folio_test_referenced(folio) && pmd_young(old_pmd))
3028 folio_set_referenced(folio);
3029 folio_remove_rmap_pmd(folio, page, vma);
3030 folio_put(folio);
3031 }
3032 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
3033 return;
3034 }
3035
3036 if (is_huge_zero_pmd(*pmd)) {
3037 /*
3038 * FIXME: Do we want to invalidate secondary mmu by calling
3039 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
3040 * inside __split_huge_pmd() ?
3041 *
3042 * We are going from a zero huge page write protected to zero
3043 * small page also write protected so it does not seems useful
3044 * to invalidate secondary mmu at this time.
3045 */
3046 return __split_huge_zero_page_pmd(vma, haddr, pmd);
3047 }
3048
3049 if (pmd_is_migration_entry(*pmd)) {
3050 softleaf_t entry;
3051
3052 old_pmd = *pmd;
3053 entry = softleaf_from_pmd(old_pmd);
3054 page = softleaf_to_page(entry);
3055 folio = page_folio(page);
3056
3057 soft_dirty = pmd_swp_soft_dirty(old_pmd);
3058 uffd_wp = pmd_swp_uffd_wp(old_pmd);
3059
3060 write = softleaf_is_migration_write(entry);
3061 if (PageAnon(page))
3062 anon_exclusive = softleaf_is_migration_read_exclusive(entry);
3063 young = softleaf_is_migration_young(entry);
3064 dirty = softleaf_is_migration_dirty(entry);
3065 } else if (pmd_is_device_private_entry(*pmd)) {
3066 softleaf_t entry;
3067
3068 old_pmd = *pmd;
3069 entry = softleaf_from_pmd(old_pmd);
3070 page = softleaf_to_page(entry);
3071 folio = page_folio(page);
3072
3073 soft_dirty = pmd_swp_soft_dirty(old_pmd);
3074 uffd_wp = pmd_swp_uffd_wp(old_pmd);
3075
3076 write = softleaf_is_device_private_write(entry);
3077 anon_exclusive = PageAnonExclusive(page);
3078
3079 /*
3080 * Device private THP should be treated the same as regular
3081 * folios w.r.t anon exclusive handling. See the comments for
3082 * folio handling and anon_exclusive below.
3083 */
3084 if (freeze && anon_exclusive &&
3085 folio_try_share_anon_rmap_pmd(folio, page))
3086 freeze = false;
3087 if (!freeze) {
3088 rmap_t rmap_flags = RMAP_NONE;
3089
3090 folio_ref_add(folio, HPAGE_PMD_NR - 1);
3091 if (anon_exclusive)
3092 rmap_flags |= RMAP_EXCLUSIVE;
3093
3094 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
3095 vma, haddr, rmap_flags);
3096 }
3097 } else {
3098 /*
3099 * Up to this point the pmd is present and huge and userland has
3100 * the whole access to the hugepage during the split (which
3101 * happens in place). If we overwrite the pmd with the not-huge
3102 * version pointing to the pte here (which of course we could if
3103 * all CPUs were bug free), userland could trigger a small page
3104 * size TLB miss on the small sized TLB while the hugepage TLB
3105 * entry is still established in the huge TLB. Some CPU doesn't
3106 * like that. See
3107 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
3108 * 383 on page 105. Intel should be safe but is also warns that
3109 * it's only safe if the permission and cache attributes of the
3110 * two entries loaded in the two TLB is identical (which should
3111 * be the case here). But it is generally safer to never allow
3112 * small and huge TLB entries for the same virtual address to be
3113 * loaded simultaneously. So instead of doing "pmd_populate();
3114 * flush_pmd_tlb_range();" we first mark the current pmd
3115 * notpresent (atomically because here the pmd_trans_huge must
3116 * remain set at all times on the pmd until the split is
3117 * complete for this pmd), then we flush the SMP TLB and finally
3118 * we write the non-huge version of the pmd entry with
3119 * pmd_populate.
3120 */
3121 old_pmd = pmdp_invalidate(vma, haddr, pmd);
3122 page = pmd_page(old_pmd);
3123 folio = page_folio(page);
3124 if (pmd_dirty(old_pmd)) {
3125 dirty = true;
3126 folio_set_dirty(folio);
3127 }
3128 write = pmd_write(old_pmd);
3129 young = pmd_young(old_pmd);
3130 soft_dirty = pmd_soft_dirty(old_pmd);
3131 uffd_wp = pmd_uffd_wp(old_pmd);
3132
3133 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
3134 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
3135
3136 /*
3137 * Without "freeze", we'll simply split the PMD, propagating the
3138 * PageAnonExclusive() flag for each PTE by setting it for
3139 * each subpage -- no need to (temporarily) clear.
3140 *
3141 * With "freeze" we want to replace mapped pages by
3142 * migration entries right away. This is only possible if we
3143 * managed to clear PageAnonExclusive() -- see
3144 * set_pmd_migration_entry().
3145 *
3146 * In case we cannot clear PageAnonExclusive(), split the PMD
3147 * only and let try_to_migrate_one() fail later.
3148 *
3149 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
3150 */
3151 anon_exclusive = PageAnonExclusive(page);
3152 if (freeze && anon_exclusive &&
3153 folio_try_share_anon_rmap_pmd(folio, page))
3154 freeze = false;
3155 if (!freeze) {
3156 rmap_t rmap_flags = RMAP_NONE;
3157
3158 folio_ref_add(folio, HPAGE_PMD_NR - 1);
3159 if (anon_exclusive)
3160 rmap_flags |= RMAP_EXCLUSIVE;
3161 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
3162 vma, haddr, rmap_flags);
3163 }
3164 }
3165
3166 /*
3167 * Withdraw the table only after we mark the pmd entry invalid.
3168 * This's critical for some architectures (Power).
3169 */
3170 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
3171 pmd_populate(mm, &_pmd, pgtable);
3172
3173 pte = pte_offset_map(&_pmd, haddr);
3174 VM_BUG_ON(!pte);
3175
3176 /*
3177 * Note that NUMA hinting access restrictions are not transferred to
3178 * avoid any possibility of altering permissions across VMAs.
3179 */
3180 if (freeze || pmd_is_migration_entry(old_pmd)) {
3181 pte_t entry;
3182 swp_entry_t swp_entry;
3183
3184 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
3185 if (write)
3186 swp_entry = make_writable_migration_entry(
3187 page_to_pfn(page + i));
3188 else if (anon_exclusive)
3189 swp_entry = make_readable_exclusive_migration_entry(
3190 page_to_pfn(page + i));
3191 else
3192 swp_entry = make_readable_migration_entry(
3193 page_to_pfn(page + i));
3194 if (young)
3195 swp_entry = make_migration_entry_young(swp_entry);
3196 if (dirty)
3197 swp_entry = make_migration_entry_dirty(swp_entry);
3198 entry = swp_entry_to_pte(swp_entry);
3199 if (soft_dirty)
3200 entry = pte_swp_mksoft_dirty(entry);
3201 if (uffd_wp)
3202 entry = pte_swp_mkuffd_wp(entry);
3203 VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3204 set_pte_at(mm, addr, pte + i, entry);
3205 }
3206 } else if (pmd_is_device_private_entry(old_pmd)) {
3207 pte_t entry;
3208 swp_entry_t swp_entry;
3209
3210 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
3211 /*
3212 * anon_exclusive was already propagated to the relevant
3213 * pages corresponding to the pte entries when freeze
3214 * is false.
3215 */
3216 if (write)
3217 swp_entry = make_writable_device_private_entry(
3218 page_to_pfn(page + i));
3219 else
3220 swp_entry = make_readable_device_private_entry(
3221 page_to_pfn(page + i));
3222 /*
3223 * Young and dirty bits are not progated via swp_entry
3224 */
3225 entry = swp_entry_to_pte(swp_entry);
3226 if (soft_dirty)
3227 entry = pte_swp_mksoft_dirty(entry);
3228 if (uffd_wp)
3229 entry = pte_swp_mkuffd_wp(entry);
3230 VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3231 set_pte_at(mm, addr, pte + i, entry);
3232 }
3233 } else {
3234 pte_t entry;
3235
3236 entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
3237 if (write)
3238 entry = pte_mkwrite(entry, vma);
3239 if (!young)
3240 entry = pte_mkold(entry);
3241 /* NOTE: this may set soft-dirty too on some archs */
3242 if (dirty)
3243 entry = pte_mkdirty(entry);
3244 if (soft_dirty)
3245 entry = pte_mksoft_dirty(entry);
3246 if (uffd_wp)
3247 entry = pte_mkuffd_wp(entry);
3248
3249 for (i = 0; i < HPAGE_PMD_NR; i++)
3250 VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3251
3252 set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
3253 }
3254 pte_unmap(pte);
3255
3256 if (!pmd_is_migration_entry(*pmd))
3257 folio_remove_rmap_pmd(folio, page, vma);
3258 if (freeze)
3259 put_page(page);
3260
3261 smp_wmb(); /* make pte visible before pmd */
3262 pmd_populate(mm, pmd, pgtable);
3263 }
3264
split_huge_pmd_locked(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,bool freeze)3265 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
3266 pmd_t *pmd, bool freeze)
3267 {
3268 VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE));
3269 if (pmd_trans_huge(*pmd) || pmd_is_valid_softleaf(*pmd))
3270 __split_huge_pmd_locked(vma, pmd, address, freeze);
3271 }
3272
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze)3273 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
3274 unsigned long address, bool freeze)
3275 {
3276 spinlock_t *ptl;
3277 struct mmu_notifier_range range;
3278
3279 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
3280 address & HPAGE_PMD_MASK,
3281 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
3282 mmu_notifier_invalidate_range_start(&range);
3283 ptl = pmd_lock(vma->vm_mm, pmd);
3284 split_huge_pmd_locked(vma, range.start, pmd, freeze);
3285 spin_unlock(ptl);
3286 mmu_notifier_invalidate_range_end(&range);
3287 }
3288
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze)3289 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3290 bool freeze)
3291 {
3292 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
3293
3294 if (!pmd)
3295 return;
3296
3297 __split_huge_pmd(vma, pmd, address, freeze);
3298 }
3299
split_huge_pmd_if_needed(struct vm_area_struct * vma,unsigned long address)3300 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
3301 {
3302 /*
3303 * If the new address isn't hpage aligned and it could previously
3304 * contain an hugepage: check if we need to split an huge pmd.
3305 */
3306 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
3307 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
3308 ALIGN(address, HPAGE_PMD_SIZE)))
3309 split_huge_pmd_address(vma, address, false);
3310 }
3311
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct vm_area_struct * next)3312 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3313 unsigned long start,
3314 unsigned long end,
3315 struct vm_area_struct *next)
3316 {
3317 /* Check if we need to split start first. */
3318 split_huge_pmd_if_needed(vma, start);
3319
3320 /* Check if we need to split end next. */
3321 split_huge_pmd_if_needed(vma, end);
3322
3323 /* If we're incrementing next->vm_start, we might need to split it. */
3324 if (next)
3325 split_huge_pmd_if_needed(next, end);
3326 }
3327
unmap_folio(struct folio * folio)3328 static void unmap_folio(struct folio *folio)
3329 {
3330 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
3331 TTU_BATCH_FLUSH;
3332
3333 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3334
3335 if (folio_test_pmd_mappable(folio))
3336 ttu_flags |= TTU_SPLIT_HUGE_PMD;
3337
3338 /*
3339 * Anon pages need migration entries to preserve them, but file
3340 * pages can simply be left unmapped, then faulted back on demand.
3341 * If that is ever changed (perhaps for mlock), update remap_page().
3342 */
3343 if (folio_test_anon(folio))
3344 try_to_migrate(folio, ttu_flags);
3345 else
3346 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
3347
3348 try_to_unmap_flush();
3349 }
3350
__discard_anon_folio_pmd_locked(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct folio * folio)3351 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma,
3352 unsigned long addr, pmd_t *pmdp,
3353 struct folio *folio)
3354 {
3355 struct mm_struct *mm = vma->vm_mm;
3356 int ref_count, map_count;
3357 pmd_t orig_pmd = *pmdp;
3358
3359 if (pmd_dirty(orig_pmd))
3360 folio_set_dirty(folio);
3361 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
3362 folio_set_swapbacked(folio);
3363 return false;
3364 }
3365
3366 orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp);
3367
3368 /*
3369 * Syncing against concurrent GUP-fast:
3370 * - clear PMD; barrier; read refcount
3371 * - inc refcount; barrier; read PMD
3372 */
3373 smp_mb();
3374
3375 ref_count = folio_ref_count(folio);
3376 map_count = folio_mapcount(folio);
3377
3378 /*
3379 * Order reads for folio refcount and dirty flag
3380 * (see comments in __remove_mapping()).
3381 */
3382 smp_rmb();
3383
3384 /*
3385 * If the folio or its PMD is redirtied at this point, or if there
3386 * are unexpected references, we will give up to discard this folio
3387 * and remap it.
3388 *
3389 * The only folio refs must be one from isolation plus the rmap(s).
3390 */
3391 if (pmd_dirty(orig_pmd))
3392 folio_set_dirty(folio);
3393 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
3394 folio_set_swapbacked(folio);
3395 set_pmd_at(mm, addr, pmdp, orig_pmd);
3396 return false;
3397 }
3398
3399 if (ref_count != map_count + 1) {
3400 set_pmd_at(mm, addr, pmdp, orig_pmd);
3401 return false;
3402 }
3403
3404 folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma);
3405 zap_deposited_table(mm, pmdp);
3406 add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR);
3407 if (vma->vm_flags & VM_LOCKED)
3408 mlock_drain_local();
3409 folio_put(folio);
3410
3411 return true;
3412 }
3413
unmap_huge_pmd_locked(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct folio * folio)3414 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
3415 pmd_t *pmdp, struct folio *folio)
3416 {
3417 VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio);
3418 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
3419 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
3420 VM_WARN_ON_FOLIO(folio_test_swapbacked(folio), folio);
3421 VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE));
3422
3423 return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio);
3424 }
3425
remap_page(struct folio * folio,unsigned long nr,int flags)3426 static void remap_page(struct folio *folio, unsigned long nr, int flags)
3427 {
3428 int i = 0;
3429
3430 /* If unmap_folio() uses try_to_migrate() on file, remove this check */
3431 if (!folio_test_anon(folio))
3432 return;
3433 for (;;) {
3434 remove_migration_ptes(folio, folio, RMP_LOCKED | flags);
3435 i += folio_nr_pages(folio);
3436 if (i >= nr)
3437 break;
3438 folio = folio_next(folio);
3439 }
3440 }
3441
lru_add_split_folio(struct folio * folio,struct folio * new_folio,struct lruvec * lruvec,struct list_head * list)3442 static void lru_add_split_folio(struct folio *folio, struct folio *new_folio,
3443 struct lruvec *lruvec, struct list_head *list)
3444 {
3445 VM_BUG_ON_FOLIO(folio_test_lru(new_folio), folio);
3446 lockdep_assert_held(&lruvec->lru_lock);
3447
3448 if (folio_is_device_private(folio))
3449 return;
3450
3451 if (list) {
3452 /* page reclaim is reclaiming a huge page */
3453 VM_WARN_ON(folio_test_lru(folio));
3454 folio_get(new_folio);
3455 list_add_tail(&new_folio->lru, list);
3456 } else {
3457 /* head is still on lru (and we have it frozen) */
3458 VM_WARN_ON(!folio_test_lru(folio));
3459 if (folio_test_unevictable(folio))
3460 new_folio->mlock_count = 0;
3461 else
3462 list_add_tail(&new_folio->lru, &folio->lru);
3463 folio_set_lru(new_folio);
3464 }
3465 }
3466
3467 /* Racy check whether the huge page can be split */
can_split_folio(struct folio * folio,int caller_pins,int * pextra_pins)3468 bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
3469 {
3470 int extra_pins;
3471
3472 /* Additional pins from page cache */
3473 if (folio_test_anon(folio))
3474 extra_pins = folio_test_swapcache(folio) ?
3475 folio_nr_pages(folio) : 0;
3476 else
3477 extra_pins = folio_nr_pages(folio);
3478 if (pextra_pins)
3479 *pextra_pins = extra_pins;
3480 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins -
3481 caller_pins;
3482 }
3483
page_range_has_hwpoisoned(struct page * page,long nr_pages)3484 static bool page_range_has_hwpoisoned(struct page *page, long nr_pages)
3485 {
3486 for (; nr_pages; page++, nr_pages--)
3487 if (PageHWPoison(page))
3488 return true;
3489 return false;
3490 }
3491
3492 /*
3493 * It splits @folio into @new_order folios and copies the @folio metadata to
3494 * all the resulting folios.
3495 */
__split_folio_to_order(struct folio * folio,int old_order,int new_order)3496 static void __split_folio_to_order(struct folio *folio, int old_order,
3497 int new_order)
3498 {
3499 /* Scan poisoned pages when split a poisoned folio to large folios */
3500 const bool handle_hwpoison = folio_test_has_hwpoisoned(folio) && new_order;
3501 long new_nr_pages = 1 << new_order;
3502 long nr_pages = 1 << old_order;
3503 long i;
3504
3505 folio_clear_has_hwpoisoned(folio);
3506
3507 /* Check first new_nr_pages since the loop below skips them */
3508 if (handle_hwpoison &&
3509 page_range_has_hwpoisoned(folio_page(folio, 0), new_nr_pages))
3510 folio_set_has_hwpoisoned(folio);
3511 /*
3512 * Skip the first new_nr_pages, since the new folio from them have all
3513 * the flags from the original folio.
3514 */
3515 for (i = new_nr_pages; i < nr_pages; i += new_nr_pages) {
3516 struct page *new_head = &folio->page + i;
3517 /*
3518 * Careful: new_folio is not a "real" folio before we cleared PageTail.
3519 * Don't pass it around before clear_compound_head().
3520 */
3521 struct folio *new_folio = (struct folio *)new_head;
3522
3523 VM_BUG_ON_PAGE(atomic_read(&new_folio->_mapcount) != -1, new_head);
3524
3525 /*
3526 * Clone page flags before unfreezing refcount.
3527 *
3528 * After successful get_page_unless_zero() might follow flags change,
3529 * for example lock_page() which set PG_waiters.
3530 *
3531 * Note that for mapped sub-pages of an anonymous THP,
3532 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
3533 * the migration entry instead from where remap_page() will restore it.
3534 * We can still have PG_anon_exclusive set on effectively unmapped and
3535 * unreferenced sub-pages of an anonymous THP: we can simply drop
3536 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
3537 */
3538 new_folio->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP;
3539 new_folio->flags.f |= (folio->flags.f &
3540 ((1L << PG_referenced) |
3541 (1L << PG_swapbacked) |
3542 (1L << PG_swapcache) |
3543 (1L << PG_mlocked) |
3544 (1L << PG_uptodate) |
3545 (1L << PG_active) |
3546 (1L << PG_workingset) |
3547 (1L << PG_locked) |
3548 (1L << PG_unevictable) |
3549 #ifdef CONFIG_ARCH_USES_PG_ARCH_2
3550 (1L << PG_arch_2) |
3551 #endif
3552 #ifdef CONFIG_ARCH_USES_PG_ARCH_3
3553 (1L << PG_arch_3) |
3554 #endif
3555 (1L << PG_dirty) |
3556 LRU_GEN_MASK | LRU_REFS_MASK));
3557
3558 if (handle_hwpoison &&
3559 page_range_has_hwpoisoned(new_head, new_nr_pages))
3560 folio_set_has_hwpoisoned(new_folio);
3561
3562 new_folio->mapping = folio->mapping;
3563 new_folio->index = folio->index + i;
3564
3565 if (folio_test_swapcache(folio))
3566 new_folio->swap.val = folio->swap.val + i;
3567
3568 /* Page flags must be visible before we make the page non-compound. */
3569 smp_wmb();
3570
3571 /*
3572 * Clear PageTail before unfreezing page refcount.
3573 *
3574 * After successful get_page_unless_zero() might follow put_page()
3575 * which needs correct compound_head().
3576 */
3577 clear_compound_head(new_head);
3578 if (new_order) {
3579 prep_compound_page(new_head, new_order);
3580 folio_set_large_rmappable(new_folio);
3581 }
3582
3583 if (folio_test_young(folio))
3584 folio_set_young(new_folio);
3585 if (folio_test_idle(folio))
3586 folio_set_idle(new_folio);
3587 #ifdef CONFIG_MEMCG
3588 new_folio->memcg_data = folio->memcg_data;
3589 #endif
3590
3591 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
3592 }
3593
3594 if (new_order)
3595 folio_set_order(folio, new_order);
3596 else
3597 ClearPageCompound(&folio->page);
3598 }
3599
3600 /**
3601 * __split_unmapped_folio() - splits an unmapped @folio to lower order folios in
3602 * two ways: uniform split or non-uniform split.
3603 * @folio: the to-be-split folio
3604 * @new_order: the smallest order of the after split folios (since buddy
3605 * allocator like split generates folios with orders from @folio's
3606 * order - 1 to new_order).
3607 * @split_at: in buddy allocator like split, the folio containing @split_at
3608 * will be split until its order becomes @new_order.
3609 * @xas: xa_state pointing to folio->mapping->i_pages and locked by caller
3610 * @mapping: @folio->mapping
3611 * @split_type: if the split is uniform or not (buddy allocator like split)
3612 *
3613 *
3614 * 1. uniform split: the given @folio into multiple @new_order small folios,
3615 * where all small folios have the same order. This is done when
3616 * split_type is SPLIT_TYPE_UNIFORM.
3617 * 2. buddy allocator like (non-uniform) split: the given @folio is split into
3618 * half and one of the half (containing the given page) is split into half
3619 * until the given @folio's order becomes @new_order. This is done when
3620 * split_type is SPLIT_TYPE_NON_UNIFORM.
3621 *
3622 * The high level flow for these two methods are:
3623 *
3624 * 1. uniform split: @xas is split with no expectation of failure and a single
3625 * __split_folio_to_order() is called to split the @folio into @new_order
3626 * along with stats update.
3627 * 2. non-uniform split: folio_order - @new_order calls to
3628 * __split_folio_to_order() are expected to be made in a for loop to split
3629 * the @folio to one lower order at a time. The folio containing @split_at
3630 * is split in each iteration. @xas is split into half in each iteration and
3631 * can fail. A failed @xas split leaves split folios as is without merging
3632 * them back.
3633 *
3634 * After splitting, the caller's folio reference will be transferred to the
3635 * folio containing @split_at. The caller needs to unlock and/or free
3636 * after-split folios if necessary.
3637 *
3638 * Return: 0 - successful, <0 - failed (if -ENOMEM is returned, @folio might be
3639 * split but not to @new_order, the caller needs to check)
3640 */
__split_unmapped_folio(struct folio * folio,int new_order,struct page * split_at,struct xa_state * xas,struct address_space * mapping,enum split_type split_type)3641 static int __split_unmapped_folio(struct folio *folio, int new_order,
3642 struct page *split_at, struct xa_state *xas,
3643 struct address_space *mapping, enum split_type split_type)
3644 {
3645 const bool is_anon = folio_test_anon(folio);
3646 int old_order = folio_order(folio);
3647 int start_order = split_type == SPLIT_TYPE_UNIFORM ? new_order : old_order - 1;
3648 int split_order;
3649
3650 /*
3651 * split to new_order one order at a time. For uniform split,
3652 * folio is split to new_order directly.
3653 */
3654 for (split_order = start_order;
3655 split_order >= new_order;
3656 split_order--) {
3657 int nr_new_folios = 1UL << (old_order - split_order);
3658
3659 /* order-1 anonymous folio is not supported */
3660 if (is_anon && split_order == 1)
3661 continue;
3662
3663 if (mapping) {
3664 /*
3665 * uniform split has xas_split_alloc() called before
3666 * irq is disabled to allocate enough memory, whereas
3667 * non-uniform split can handle ENOMEM.
3668 */
3669 if (split_type == SPLIT_TYPE_UNIFORM)
3670 xas_split(xas, folio, old_order);
3671 else {
3672 xas_set_order(xas, folio->index, split_order);
3673 xas_try_split(xas, folio, old_order);
3674 if (xas_error(xas))
3675 return xas_error(xas);
3676 }
3677 }
3678
3679 folio_split_memcg_refs(folio, old_order, split_order);
3680 split_page_owner(&folio->page, old_order, split_order);
3681 pgalloc_tag_split(folio, old_order, split_order);
3682 __split_folio_to_order(folio, old_order, split_order);
3683
3684 if (is_anon) {
3685 mod_mthp_stat(old_order, MTHP_STAT_NR_ANON, -1);
3686 mod_mthp_stat(split_order, MTHP_STAT_NR_ANON, nr_new_folios);
3687 }
3688 /*
3689 * If uniform split, the process is complete.
3690 * If non-uniform, continue splitting the folio at @split_at
3691 * as long as the next @split_order is >= @new_order.
3692 */
3693 folio = page_folio(split_at);
3694 old_order = split_order;
3695 }
3696
3697 return 0;
3698 }
3699
folio_split_supported(struct folio * folio,unsigned int new_order,enum split_type split_type,bool warns)3700 bool folio_split_supported(struct folio *folio, unsigned int new_order,
3701 enum split_type split_type, bool warns)
3702 {
3703 if (folio_test_anon(folio)) {
3704 /* order-1 is not supported for anonymous THP. */
3705 VM_WARN_ONCE(warns && new_order == 1,
3706 "Cannot split to order-1 folio");
3707 if (new_order == 1)
3708 return false;
3709 } else if (split_type == SPLIT_TYPE_NON_UNIFORM || new_order) {
3710 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3711 !mapping_large_folio_support(folio->mapping)) {
3712 /*
3713 * We can always split a folio down to a single page
3714 * (new_order == 0) uniformly.
3715 *
3716 * For any other scenario
3717 * a) uniform split targeting a large folio
3718 * (new_order > 0)
3719 * b) any non-uniform split
3720 * we must confirm that the file system supports large
3721 * folios.
3722 *
3723 * Note that we might still have THPs in such
3724 * mappings, which is created from khugepaged when
3725 * CONFIG_READ_ONLY_THP_FOR_FS is enabled. But in that
3726 * case, the mapping does not actually support large
3727 * folios properly.
3728 */
3729 VM_WARN_ONCE(warns,
3730 "Cannot split file folio to non-0 order");
3731 return false;
3732 }
3733 }
3734
3735 /*
3736 * swapcache folio could only be split to order 0
3737 *
3738 * non-uniform split creates after-split folios with orders from
3739 * folio_order(folio) - 1 to new_order, making it not suitable for any
3740 * swapcache folio split. Only uniform split to order-0 can be used
3741 * here.
3742 */
3743 if ((split_type == SPLIT_TYPE_NON_UNIFORM || new_order) && folio_test_swapcache(folio)) {
3744 VM_WARN_ONCE(warns,
3745 "Cannot split swapcache folio to non-0 order");
3746 return false;
3747 }
3748
3749 return true;
3750 }
3751
__folio_freeze_and_split_unmapped(struct folio * folio,unsigned int new_order,struct page * split_at,struct xa_state * xas,struct address_space * mapping,bool do_lru,struct list_head * list,enum split_type split_type,pgoff_t end,int * nr_shmem_dropped,int extra_pins)3752 static int __folio_freeze_and_split_unmapped(struct folio *folio, unsigned int new_order,
3753 struct page *split_at, struct xa_state *xas,
3754 struct address_space *mapping, bool do_lru,
3755 struct list_head *list, enum split_type split_type,
3756 pgoff_t end, int *nr_shmem_dropped, int extra_pins)
3757 {
3758 struct folio *end_folio = folio_next(folio);
3759 struct folio *new_folio, *next;
3760 int old_order = folio_order(folio);
3761 int ret = 0;
3762 struct deferred_split *ds_queue;
3763
3764 VM_WARN_ON_ONCE(!mapping && end);
3765 /* Prevent deferred_split_scan() touching ->_refcount */
3766 ds_queue = folio_split_queue_lock(folio);
3767 if (folio_ref_freeze(folio, 1 + extra_pins)) {
3768 struct swap_cluster_info *ci = NULL;
3769 struct lruvec *lruvec;
3770 int expected_refs;
3771
3772 if (old_order > 1) {
3773 if (!list_empty(&folio->_deferred_list)) {
3774 ds_queue->split_queue_len--;
3775 /*
3776 * Reinitialize page_deferred_list after removing the
3777 * page from the split_queue, otherwise a subsequent
3778 * split will see list corruption when checking the
3779 * page_deferred_list.
3780 */
3781 list_del_init(&folio->_deferred_list);
3782 }
3783 if (folio_test_partially_mapped(folio)) {
3784 folio_clear_partially_mapped(folio);
3785 mod_mthp_stat(old_order,
3786 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3787 }
3788 }
3789 split_queue_unlock(ds_queue);
3790 if (mapping) {
3791 int nr = folio_nr_pages(folio);
3792
3793 if (folio_test_pmd_mappable(folio) &&
3794 new_order < HPAGE_PMD_ORDER) {
3795 if (folio_test_swapbacked(folio)) {
3796 lruvec_stat_mod_folio(folio,
3797 NR_SHMEM_THPS, -nr);
3798 } else {
3799 lruvec_stat_mod_folio(folio,
3800 NR_FILE_THPS, -nr);
3801 filemap_nr_thps_dec(mapping);
3802 }
3803 }
3804 }
3805
3806 if (folio_test_swapcache(folio)) {
3807 if (mapping) {
3808 VM_WARN_ON_ONCE_FOLIO(mapping, folio);
3809 return -EINVAL;
3810 }
3811
3812 ci = swap_cluster_get_and_lock(folio);
3813 }
3814
3815 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
3816 if (do_lru)
3817 lruvec = folio_lruvec_lock(folio);
3818
3819 ret = __split_unmapped_folio(folio, new_order, split_at, xas,
3820 mapping, split_type);
3821
3822 /*
3823 * Unfreeze after-split folios and put them back to the right
3824 * list. @folio should be kept frozon until page cache
3825 * entries are updated with all the other after-split folios
3826 * to prevent others seeing stale page cache entries.
3827 * As a result, new_folio starts from the next folio of
3828 * @folio.
3829 */
3830 for (new_folio = folio_next(folio); new_folio != end_folio;
3831 new_folio = next) {
3832 unsigned long nr_pages = folio_nr_pages(new_folio);
3833
3834 next = folio_next(new_folio);
3835
3836 zone_device_private_split_cb(folio, new_folio);
3837
3838 expected_refs = folio_expected_ref_count(new_folio) + 1;
3839 folio_ref_unfreeze(new_folio, expected_refs);
3840
3841 if (do_lru)
3842 lru_add_split_folio(folio, new_folio, lruvec, list);
3843
3844 /*
3845 * Anonymous folio with swap cache.
3846 * NOTE: shmem in swap cache is not supported yet.
3847 */
3848 if (ci) {
3849 __swap_cache_replace_folio(ci, folio, new_folio);
3850 continue;
3851 }
3852
3853 /* Anonymous folio without swap cache */
3854 if (!mapping)
3855 continue;
3856
3857 /* Add the new folio to the page cache. */
3858 if (new_folio->index < end) {
3859 __xa_store(&mapping->i_pages, new_folio->index,
3860 new_folio, 0);
3861 continue;
3862 }
3863
3864 VM_WARN_ON_ONCE(!nr_shmem_dropped);
3865 /* Drop folio beyond EOF: ->index >= end */
3866 if (shmem_mapping(mapping) && nr_shmem_dropped)
3867 *nr_shmem_dropped += nr_pages;
3868 else if (folio_test_clear_dirty(new_folio))
3869 folio_account_cleaned(
3870 new_folio, inode_to_wb(mapping->host));
3871 __filemap_remove_folio(new_folio, NULL);
3872 folio_put_refs(new_folio, nr_pages);
3873 }
3874
3875 zone_device_private_split_cb(folio, NULL);
3876 /*
3877 * Unfreeze @folio only after all page cache entries, which
3878 * used to point to it, have been updated with new folios.
3879 * Otherwise, a parallel folio_try_get() can grab @folio
3880 * and its caller can see stale page cache entries.
3881 */
3882 expected_refs = folio_expected_ref_count(folio) + 1;
3883 folio_ref_unfreeze(folio, expected_refs);
3884
3885 if (do_lru)
3886 unlock_page_lruvec(lruvec);
3887
3888 if (ci)
3889 swap_cluster_unlock(ci);
3890 } else {
3891 split_queue_unlock(ds_queue);
3892 return -EAGAIN;
3893 }
3894
3895 return ret;
3896 }
3897
3898 /**
3899 * __folio_split() - split a folio at @split_at to a @new_order folio
3900 * @folio: folio to split
3901 * @new_order: the order of the new folio
3902 * @split_at: a page within the new folio
3903 * @lock_at: a page within @folio to be left locked to caller
3904 * @list: after-split folios will be put on it if non NULL
3905 * @split_type: perform uniform split or not (non-uniform split)
3906 *
3907 * It calls __split_unmapped_folio() to perform uniform and non-uniform split.
3908 * It is in charge of checking whether the split is supported or not and
3909 * preparing @folio for __split_unmapped_folio().
3910 *
3911 * After splitting, the after-split folio containing @lock_at remains locked
3912 * and others are unlocked:
3913 * 1. for uniform split, @lock_at points to one of @folio's subpages;
3914 * 2. for buddy allocator like (non-uniform) split, @lock_at points to @folio.
3915 *
3916 * Return: 0 - successful, <0 - failed (if -ENOMEM is returned, @folio might be
3917 * split but not to @new_order, the caller needs to check)
3918 */
__folio_split(struct folio * folio,unsigned int new_order,struct page * split_at,struct page * lock_at,struct list_head * list,enum split_type split_type)3919 static int __folio_split(struct folio *folio, unsigned int new_order,
3920 struct page *split_at, struct page *lock_at,
3921 struct list_head *list, enum split_type split_type)
3922 {
3923 XA_STATE(xas, &folio->mapping->i_pages, folio->index);
3924 struct folio *end_folio = folio_next(folio);
3925 bool is_anon = folio_test_anon(folio);
3926 struct address_space *mapping = NULL;
3927 struct anon_vma *anon_vma = NULL;
3928 int old_order = folio_order(folio);
3929 struct folio *new_folio, *next;
3930 int nr_shmem_dropped = 0;
3931 int remap_flags = 0;
3932 int extra_pins, ret;
3933 pgoff_t end = 0;
3934 bool is_hzp;
3935
3936 VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio);
3937 VM_WARN_ON_ONCE_FOLIO(!folio_test_large(folio), folio);
3938
3939 if (folio != page_folio(split_at) || folio != page_folio(lock_at))
3940 return -EINVAL;
3941
3942 /*
3943 * Folios that just got truncated cannot get split. Signal to the
3944 * caller that there was a race.
3945 *
3946 * TODO: this will also currently refuse shmem folios that are in the
3947 * swapcache.
3948 */
3949 if (!is_anon && !folio->mapping)
3950 return -EBUSY;
3951
3952 if (new_order >= old_order)
3953 return -EINVAL;
3954
3955 if (!folio_split_supported(folio, new_order, split_type, /* warn = */ true))
3956 return -EINVAL;
3957
3958 is_hzp = is_huge_zero_folio(folio);
3959 if (is_hzp) {
3960 pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
3961 return -EBUSY;
3962 }
3963
3964 if (folio_test_writeback(folio))
3965 return -EBUSY;
3966
3967 if (is_anon) {
3968 /*
3969 * The caller does not necessarily hold an mmap_lock that would
3970 * prevent the anon_vma disappearing so we first we take a
3971 * reference to it and then lock the anon_vma for write. This
3972 * is similar to folio_lock_anon_vma_read except the write lock
3973 * is taken to serialise against parallel split or collapse
3974 * operations.
3975 */
3976 anon_vma = folio_get_anon_vma(folio);
3977 if (!anon_vma) {
3978 ret = -EBUSY;
3979 goto out;
3980 }
3981 anon_vma_lock_write(anon_vma);
3982 mapping = NULL;
3983 } else {
3984 unsigned int min_order;
3985 gfp_t gfp;
3986
3987 mapping = folio->mapping;
3988 min_order = mapping_min_folio_order(folio->mapping);
3989 if (new_order < min_order) {
3990 ret = -EINVAL;
3991 goto out;
3992 }
3993
3994 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3995 GFP_RECLAIM_MASK);
3996
3997 if (!filemap_release_folio(folio, gfp)) {
3998 ret = -EBUSY;
3999 goto out;
4000 }
4001
4002 if (split_type == SPLIT_TYPE_UNIFORM) {
4003 xas_set_order(&xas, folio->index, new_order);
4004 xas_split_alloc(&xas, folio, old_order, gfp);
4005 if (xas_error(&xas)) {
4006 ret = xas_error(&xas);
4007 goto out;
4008 }
4009 }
4010
4011 anon_vma = NULL;
4012 i_mmap_lock_read(mapping);
4013
4014 /*
4015 *__split_unmapped_folio() may need to trim off pages beyond
4016 * EOF: but on 32-bit, i_size_read() takes an irq-unsafe
4017 * seqlock, which cannot be nested inside the page tree lock.
4018 * So note end now: i_size itself may be changed at any moment,
4019 * but folio lock is good enough to serialize the trimming.
4020 */
4021 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
4022 if (shmem_mapping(mapping))
4023 end = shmem_fallocend(mapping->host, end);
4024 }
4025
4026 /*
4027 * Racy check if we can split the page, before unmap_folio() will
4028 * split PMDs
4029 */
4030 if (!can_split_folio(folio, 1, &extra_pins)) {
4031 ret = -EAGAIN;
4032 goto out_unlock;
4033 }
4034
4035 unmap_folio(folio);
4036
4037 /* block interrupt reentry in xa_lock and spinlock */
4038 local_irq_disable();
4039 if (mapping) {
4040 /*
4041 * Check if the folio is present in page cache.
4042 * We assume all tail are present too, if folio is there.
4043 */
4044 xas_lock(&xas);
4045 xas_reset(&xas);
4046 if (xas_load(&xas) != folio) {
4047 ret = -EAGAIN;
4048 goto fail;
4049 }
4050 }
4051
4052 ret = __folio_freeze_and_split_unmapped(folio, new_order, split_at, &xas, mapping,
4053 true, list, split_type, end, &nr_shmem_dropped,
4054 extra_pins);
4055 fail:
4056 if (mapping)
4057 xas_unlock(&xas);
4058
4059 local_irq_enable();
4060
4061 if (nr_shmem_dropped)
4062 shmem_uncharge(mapping->host, nr_shmem_dropped);
4063
4064 if (!ret && is_anon && !folio_is_device_private(folio))
4065 remap_flags = RMP_USE_SHARED_ZEROPAGE;
4066
4067 remap_page(folio, 1 << old_order, remap_flags);
4068
4069 /*
4070 * Unlock all after-split folios except the one containing
4071 * @lock_at page. If @folio is not split, it will be kept locked.
4072 */
4073 for (new_folio = folio; new_folio != end_folio; new_folio = next) {
4074 next = folio_next(new_folio);
4075 if (new_folio == page_folio(lock_at))
4076 continue;
4077
4078 folio_unlock(new_folio);
4079 /*
4080 * Subpages may be freed if there wasn't any mapping
4081 * like if add_to_swap() is running on a lru page that
4082 * had its mapping zapped. And freeing these pages
4083 * requires taking the lru_lock so we do the put_page
4084 * of the tail pages after the split is complete.
4085 */
4086 free_folio_and_swap_cache(new_folio);
4087 }
4088
4089 out_unlock:
4090 if (anon_vma) {
4091 anon_vma_unlock_write(anon_vma);
4092 put_anon_vma(anon_vma);
4093 }
4094 if (mapping)
4095 i_mmap_unlock_read(mapping);
4096 out:
4097 xas_destroy(&xas);
4098 if (old_order == HPAGE_PMD_ORDER)
4099 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
4100 count_mthp_stat(old_order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED);
4101 return ret;
4102 }
4103
4104 /**
4105 * folio_split_unmapped() - split a large anon folio that is already unmapped
4106 * @folio: folio to split
4107 * @new_order: the order of folios after split
4108 *
4109 * This function is a helper for splitting folios that have already been
4110 * unmapped. The use case is that the device or the CPU can refuse to migrate
4111 * THP pages in the middle of migration, due to allocation issues on either
4112 * side.
4113 *
4114 * anon_vma_lock is not required to be held, mmap_read_lock() or
4115 * mmap_write_lock() should be held. @folio is expected to be locked by the
4116 * caller. device-private and non device-private folios are supported along
4117 * with folios that are in the swapcache. @folio should also be unmapped and
4118 * isolated from LRU (if applicable)
4119 *
4120 * Upon return, the folio is not remapped, split folios are not added to LRU,
4121 * free_folio_and_swap_cache() is not called, and new folios remain locked.
4122 *
4123 * Return: 0 on success, -EAGAIN if the folio cannot be split (e.g., due to
4124 * insufficient reference count or extra pins).
4125 */
folio_split_unmapped(struct folio * folio,unsigned int new_order)4126 int folio_split_unmapped(struct folio *folio, unsigned int new_order)
4127 {
4128 int extra_pins, ret = 0;
4129
4130 VM_WARN_ON_ONCE_FOLIO(folio_mapped(folio), folio);
4131 VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio);
4132 VM_WARN_ON_ONCE_FOLIO(!folio_test_large(folio), folio);
4133 VM_WARN_ON_ONCE_FOLIO(!folio_test_anon(folio), folio);
4134
4135 if (!can_split_folio(folio, 1, &extra_pins))
4136 return -EAGAIN;
4137
4138 local_irq_disable();
4139 ret = __folio_freeze_and_split_unmapped(folio, new_order, &folio->page, NULL,
4140 NULL, false, NULL, SPLIT_TYPE_UNIFORM,
4141 0, NULL, extra_pins);
4142 local_irq_enable();
4143 return ret;
4144 }
4145
4146 /*
4147 * This function splits a large folio into smaller folios of order @new_order.
4148 * @page can point to any page of the large folio to split. The split operation
4149 * does not change the position of @page.
4150 *
4151 * Prerequisites:
4152 *
4153 * 1) The caller must hold a reference on the @page's owning folio, also known
4154 * as the large folio.
4155 *
4156 * 2) The large folio must be locked.
4157 *
4158 * 3) The folio must not be pinned. Any unexpected folio references, including
4159 * GUP pins, will result in the folio not getting split; instead, the caller
4160 * will receive an -EAGAIN.
4161 *
4162 * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
4163 * supported for non-file-backed folios, because folio->_deferred_list, which
4164 * is used by partially mapped folios, is stored in subpage 2, but an order-1
4165 * folio only has subpages 0 and 1. File-backed order-1 folios are supported,
4166 * since they do not use _deferred_list.
4167 *
4168 * After splitting, the caller's folio reference will be transferred to @page,
4169 * resulting in a raised refcount of @page after this call. The other pages may
4170 * be freed if they are not mapped.
4171 *
4172 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
4173 *
4174 * Pages in @new_order will inherit the mapping, flags, and so on from the
4175 * huge page.
4176 *
4177 * Returns 0 if the huge page was split successfully.
4178 *
4179 * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
4180 * the folio was concurrently removed from the page cache.
4181 *
4182 * Returns -EBUSY when trying to split the huge zeropage, if the folio is
4183 * under writeback, if fs-specific folio metadata cannot currently be
4184 * released, or if some unexpected race happened (e.g., anon VMA disappeared,
4185 * truncation).
4186 *
4187 * Callers should ensure that the order respects the address space mapping
4188 * min-order if one is set for non-anonymous folios.
4189 *
4190 * Returns -EINVAL when trying to split to an order that is incompatible
4191 * with the folio. Splitting to order 0 is compatible with all folios.
4192 */
__split_huge_page_to_list_to_order(struct page * page,struct list_head * list,unsigned int new_order)4193 int __split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
4194 unsigned int new_order)
4195 {
4196 struct folio *folio = page_folio(page);
4197
4198 return __folio_split(folio, new_order, &folio->page, page, list,
4199 SPLIT_TYPE_UNIFORM);
4200 }
4201
4202 /**
4203 * folio_split() - split a folio at @split_at to a @new_order folio
4204 * @folio: folio to split
4205 * @new_order: the order of the new folio
4206 * @split_at: a page within the new folio
4207 * @list: after-split folios are added to @list if not null, otherwise to LRU
4208 * list
4209 *
4210 * It has the same prerequisites and returns as
4211 * split_huge_page_to_list_to_order().
4212 *
4213 * Split a folio at @split_at to a new_order folio, leave the
4214 * remaining subpages of the original folio as large as possible. For example,
4215 * in the case of splitting an order-9 folio at its third order-3 subpages to
4216 * an order-3 folio, there are 2^(9-3)=64 order-3 subpages in the order-9 folio.
4217 * After the split, there will be a group of folios with different orders and
4218 * the new folio containing @split_at is marked in bracket:
4219 * [order-4, {order-3}, order-3, order-5, order-6, order-7, order-8].
4220 *
4221 * After split, folio is left locked for caller.
4222 *
4223 * Return: 0 - successful, <0 - failed (if -ENOMEM is returned, @folio might be
4224 * split but not to @new_order, the caller needs to check)
4225 */
folio_split(struct folio * folio,unsigned int new_order,struct page * split_at,struct list_head * list)4226 int folio_split(struct folio *folio, unsigned int new_order,
4227 struct page *split_at, struct list_head *list)
4228 {
4229 return __folio_split(folio, new_order, split_at, &folio->page, list,
4230 SPLIT_TYPE_NON_UNIFORM);
4231 }
4232
min_order_for_split(struct folio * folio)4233 int min_order_for_split(struct folio *folio)
4234 {
4235 if (folio_test_anon(folio))
4236 return 0;
4237
4238 if (!folio->mapping) {
4239 if (folio_test_pmd_mappable(folio))
4240 count_vm_event(THP_SPLIT_PAGE_FAILED);
4241 return -EBUSY;
4242 }
4243
4244 return mapping_min_folio_order(folio->mapping);
4245 }
4246
split_folio_to_list(struct folio * folio,struct list_head * list)4247 int split_folio_to_list(struct folio *folio, struct list_head *list)
4248 {
4249 return split_huge_page_to_list_to_order(&folio->page, list, 0);
4250 }
4251
4252 /*
4253 * __folio_unqueue_deferred_split() is not to be called directly:
4254 * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h
4255 * limits its calls to those folios which may have a _deferred_list for
4256 * queueing THP splits, and that list is (racily observed to be) non-empty.
4257 *
4258 * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is
4259 * zero: because even when split_queue_lock is held, a non-empty _deferred_list
4260 * might be in use on deferred_split_scan()'s unlocked on-stack list.
4261 *
4262 * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is
4263 * therefore important to unqueue deferred split before changing folio memcg.
4264 */
__folio_unqueue_deferred_split(struct folio * folio)4265 bool __folio_unqueue_deferred_split(struct folio *folio)
4266 {
4267 struct deferred_split *ds_queue;
4268 unsigned long flags;
4269 bool unqueued = false;
4270
4271 WARN_ON_ONCE(folio_ref_count(folio));
4272 WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg_charged(folio));
4273
4274 ds_queue = folio_split_queue_lock_irqsave(folio, &flags);
4275 if (!list_empty(&folio->_deferred_list)) {
4276 ds_queue->split_queue_len--;
4277 if (folio_test_partially_mapped(folio)) {
4278 folio_clear_partially_mapped(folio);
4279 mod_mthp_stat(folio_order(folio),
4280 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
4281 }
4282 list_del_init(&folio->_deferred_list);
4283 unqueued = true;
4284 }
4285 split_queue_unlock_irqrestore(ds_queue, flags);
4286
4287 return unqueued; /* useful for debug warnings */
4288 }
4289
4290 /* partially_mapped=false won't clear PG_partially_mapped folio flag */
deferred_split_folio(struct folio * folio,bool partially_mapped)4291 void deferred_split_folio(struct folio *folio, bool partially_mapped)
4292 {
4293 struct deferred_split *ds_queue;
4294 unsigned long flags;
4295
4296 /*
4297 * Order 1 folios have no space for a deferred list, but we also
4298 * won't waste much memory by not adding them to the deferred list.
4299 */
4300 if (folio_order(folio) <= 1)
4301 return;
4302
4303 if (!partially_mapped && !split_underused_thp)
4304 return;
4305
4306 /*
4307 * Exclude swapcache: originally to avoid a corrupt deferred split
4308 * queue. Nowadays that is fully prevented by memcg1_swapout();
4309 * but if page reclaim is already handling the same folio, it is
4310 * unnecessary to handle it again in the shrinker, so excluding
4311 * swapcache here may still be a useful optimization.
4312 */
4313 if (folio_test_swapcache(folio))
4314 return;
4315
4316 ds_queue = folio_split_queue_lock_irqsave(folio, &flags);
4317 if (partially_mapped) {
4318 if (!folio_test_partially_mapped(folio)) {
4319 folio_set_partially_mapped(folio);
4320 if (folio_test_pmd_mappable(folio))
4321 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
4322 count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED);
4323 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1);
4324
4325 }
4326 } else {
4327 /* partially mapped folios cannot become non-partially mapped */
4328 VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio);
4329 }
4330 if (list_empty(&folio->_deferred_list)) {
4331 struct mem_cgroup *memcg;
4332
4333 memcg = folio_split_queue_memcg(folio, ds_queue);
4334 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
4335 ds_queue->split_queue_len++;
4336 if (memcg)
4337 set_shrinker_bit(memcg, folio_nid(folio),
4338 shrinker_id(deferred_split_shrinker));
4339 }
4340 split_queue_unlock_irqrestore(ds_queue, flags);
4341 }
4342
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)4343 static unsigned long deferred_split_count(struct shrinker *shrink,
4344 struct shrink_control *sc)
4345 {
4346 struct pglist_data *pgdata = NODE_DATA(sc->nid);
4347 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
4348
4349 #ifdef CONFIG_MEMCG
4350 if (sc->memcg)
4351 ds_queue = &sc->memcg->deferred_split_queue;
4352 #endif
4353 return READ_ONCE(ds_queue->split_queue_len);
4354 }
4355
thp_underused(struct folio * folio)4356 static bool thp_underused(struct folio *folio)
4357 {
4358 int num_zero_pages = 0, num_filled_pages = 0;
4359 int i;
4360
4361 if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1)
4362 return false;
4363
4364 if (folio_contain_hwpoisoned_page(folio))
4365 return false;
4366
4367 for (i = 0; i < folio_nr_pages(folio); i++) {
4368 if (pages_identical(folio_page(folio, i), ZERO_PAGE(0))) {
4369 if (++num_zero_pages > khugepaged_max_ptes_none)
4370 return true;
4371 } else {
4372 /*
4373 * Another path for early exit once the number
4374 * of non-zero filled pages exceeds threshold.
4375 */
4376 if (++num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none)
4377 return false;
4378 }
4379 }
4380 return false;
4381 }
4382
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)4383 static unsigned long deferred_split_scan(struct shrinker *shrink,
4384 struct shrink_control *sc)
4385 {
4386 struct deferred_split *ds_queue;
4387 unsigned long flags;
4388 struct folio *folio, *next;
4389 int split = 0, i;
4390 struct folio_batch fbatch;
4391
4392 folio_batch_init(&fbatch);
4393
4394 retry:
4395 ds_queue = split_queue_lock_irqsave(sc->nid, sc->memcg, &flags);
4396 /* Take pin on all head pages to avoid freeing them under us */
4397 list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
4398 _deferred_list) {
4399 if (folio_try_get(folio)) {
4400 folio_batch_add(&fbatch, folio);
4401 } else if (folio_test_partially_mapped(folio)) {
4402 /* We lost race with folio_put() */
4403 folio_clear_partially_mapped(folio);
4404 mod_mthp_stat(folio_order(folio),
4405 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
4406 }
4407 list_del_init(&folio->_deferred_list);
4408 ds_queue->split_queue_len--;
4409 if (!--sc->nr_to_scan)
4410 break;
4411 if (!folio_batch_space(&fbatch))
4412 break;
4413 }
4414 split_queue_unlock_irqrestore(ds_queue, flags);
4415
4416 for (i = 0; i < folio_batch_count(&fbatch); i++) {
4417 bool did_split = false;
4418 bool underused = false;
4419 struct deferred_split *fqueue;
4420
4421 folio = fbatch.folios[i];
4422 if (!folio_test_partially_mapped(folio)) {
4423 /*
4424 * See try_to_map_unused_to_zeropage(): we cannot
4425 * optimize zero-filled pages after splitting an
4426 * mlocked folio.
4427 */
4428 if (folio_test_mlocked(folio))
4429 goto next;
4430 underused = thp_underused(folio);
4431 if (!underused)
4432 goto next;
4433 }
4434 if (!folio_trylock(folio))
4435 goto next;
4436 if (!split_folio(folio)) {
4437 did_split = true;
4438 if (underused)
4439 count_vm_event(THP_UNDERUSED_SPLIT_PAGE);
4440 split++;
4441 }
4442 folio_unlock(folio);
4443 next:
4444 if (did_split || !folio_test_partially_mapped(folio))
4445 continue;
4446 /*
4447 * Only add back to the queue if folio is partially mapped.
4448 * If thp_underused returns false, or if split_folio fails
4449 * in the case it was underused, then consider it used and
4450 * don't add it back to split_queue.
4451 */
4452 fqueue = folio_split_queue_lock_irqsave(folio, &flags);
4453 if (list_empty(&folio->_deferred_list)) {
4454 list_add_tail(&folio->_deferred_list, &fqueue->split_queue);
4455 fqueue->split_queue_len++;
4456 }
4457 split_queue_unlock_irqrestore(fqueue, flags);
4458 }
4459 folios_put(&fbatch);
4460
4461 if (sc->nr_to_scan && !list_empty(&ds_queue->split_queue)) {
4462 cond_resched();
4463 goto retry;
4464 }
4465
4466 /*
4467 * Stop shrinker if we didn't split any page, but the queue is empty.
4468 * This can happen if pages were freed under us.
4469 */
4470 if (!split && list_empty(&ds_queue->split_queue))
4471 return SHRINK_STOP;
4472 return split;
4473 }
4474
4475 #ifdef CONFIG_MEMCG
reparent_deferred_split_queue(struct mem_cgroup * memcg)4476 void reparent_deferred_split_queue(struct mem_cgroup *memcg)
4477 {
4478 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4479 struct deferred_split *ds_queue = &memcg->deferred_split_queue;
4480 struct deferred_split *parent_ds_queue = &parent->deferred_split_queue;
4481 int nid;
4482
4483 spin_lock_irq(&ds_queue->split_queue_lock);
4484 spin_lock_nested(&parent_ds_queue->split_queue_lock, SINGLE_DEPTH_NESTING);
4485
4486 if (!ds_queue->split_queue_len)
4487 goto unlock;
4488
4489 list_splice_tail_init(&ds_queue->split_queue, &parent_ds_queue->split_queue);
4490 parent_ds_queue->split_queue_len += ds_queue->split_queue_len;
4491 ds_queue->split_queue_len = 0;
4492
4493 for_each_node(nid)
4494 set_shrinker_bit(parent, nid, shrinker_id(deferred_split_shrinker));
4495
4496 unlock:
4497 spin_unlock(&parent_ds_queue->split_queue_lock);
4498 spin_unlock_irq(&ds_queue->split_queue_lock);
4499 }
4500 #endif
4501
4502 #ifdef CONFIG_DEBUG_FS
split_huge_pages_all(void)4503 static void split_huge_pages_all(void)
4504 {
4505 struct zone *zone;
4506 struct page *page;
4507 struct folio *folio;
4508 unsigned long pfn, max_zone_pfn;
4509 unsigned long total = 0, split = 0;
4510
4511 pr_debug("Split all THPs\n");
4512 for_each_zone(zone) {
4513 if (!managed_zone(zone))
4514 continue;
4515 max_zone_pfn = zone_end_pfn(zone);
4516 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
4517 int nr_pages;
4518
4519 page = pfn_to_online_page(pfn);
4520 if (!page || PageTail(page))
4521 continue;
4522 folio = page_folio(page);
4523 if (!folio_try_get(folio))
4524 continue;
4525
4526 if (unlikely(page_folio(page) != folio))
4527 goto next;
4528
4529 if (zone != folio_zone(folio))
4530 goto next;
4531
4532 if (!folio_test_large(folio)
4533 || folio_test_hugetlb(folio)
4534 || !folio_test_lru(folio))
4535 goto next;
4536
4537 total++;
4538 folio_lock(folio);
4539 nr_pages = folio_nr_pages(folio);
4540 if (!split_folio(folio))
4541 split++;
4542 pfn += nr_pages - 1;
4543 folio_unlock(folio);
4544 next:
4545 folio_put(folio);
4546 cond_resched();
4547 }
4548 }
4549
4550 pr_debug("%lu of %lu THP split\n", split, total);
4551 }
4552
vma_not_suitable_for_thp_split(struct vm_area_struct * vma)4553 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
4554 {
4555 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
4556 is_vm_hugetlb_page(vma);
4557 }
4558
split_huge_pages_pid(int pid,unsigned long vaddr_start,unsigned long vaddr_end,unsigned int new_order,long in_folio_offset)4559 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
4560 unsigned long vaddr_end, unsigned int new_order,
4561 long in_folio_offset)
4562 {
4563 int ret = 0;
4564 struct task_struct *task;
4565 struct mm_struct *mm;
4566 unsigned long total = 0, split = 0;
4567 unsigned long addr;
4568
4569 vaddr_start &= PAGE_MASK;
4570 vaddr_end &= PAGE_MASK;
4571
4572 task = find_get_task_by_vpid(pid);
4573 if (!task) {
4574 ret = -ESRCH;
4575 goto out;
4576 }
4577
4578 /* Find the mm_struct */
4579 mm = get_task_mm(task);
4580 put_task_struct(task);
4581
4582 if (!mm) {
4583 ret = -EINVAL;
4584 goto out;
4585 }
4586
4587 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx], new_order: %u, in_folio_offset: %ld\n",
4588 pid, vaddr_start, vaddr_end, new_order, in_folio_offset);
4589
4590 mmap_read_lock(mm);
4591 /*
4592 * always increase addr by PAGE_SIZE, since we could have a PTE page
4593 * table filled with PTE-mapped THPs, each of which is distinct.
4594 */
4595 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
4596 struct vm_area_struct *vma = vma_lookup(mm, addr);
4597 struct folio_walk fw;
4598 struct folio *folio;
4599 struct address_space *mapping;
4600 unsigned int target_order = new_order;
4601
4602 if (!vma)
4603 break;
4604
4605 /* skip special VMA and hugetlb VMA */
4606 if (vma_not_suitable_for_thp_split(vma)) {
4607 addr = vma->vm_end;
4608 continue;
4609 }
4610
4611 folio = folio_walk_start(&fw, vma, addr, 0);
4612 if (!folio)
4613 continue;
4614
4615 if (!is_transparent_hugepage(folio))
4616 goto next;
4617
4618 if (!folio_test_anon(folio)) {
4619 mapping = folio->mapping;
4620 target_order = max(new_order,
4621 mapping_min_folio_order(mapping));
4622 }
4623
4624 if (target_order >= folio_order(folio))
4625 goto next;
4626
4627 total++;
4628 /*
4629 * For folios with private, split_huge_page_to_list_to_order()
4630 * will try to drop it before split and then check if the folio
4631 * can be split or not. So skip the check here.
4632 */
4633 if (!folio_test_private(folio) &&
4634 !can_split_folio(folio, 0, NULL))
4635 goto next;
4636
4637 if (!folio_trylock(folio))
4638 goto next;
4639 folio_get(folio);
4640 folio_walk_end(&fw, vma);
4641
4642 if (!folio_test_anon(folio) && folio->mapping != mapping)
4643 goto unlock;
4644
4645 if (in_folio_offset < 0 ||
4646 in_folio_offset >= folio_nr_pages(folio)) {
4647 if (!split_folio_to_order(folio, target_order))
4648 split++;
4649 } else {
4650 struct page *split_at = folio_page(folio,
4651 in_folio_offset);
4652 if (!folio_split(folio, target_order, split_at, NULL))
4653 split++;
4654 }
4655
4656 unlock:
4657
4658 folio_unlock(folio);
4659 folio_put(folio);
4660
4661 cond_resched();
4662 continue;
4663 next:
4664 folio_walk_end(&fw, vma);
4665 cond_resched();
4666 }
4667 mmap_read_unlock(mm);
4668 mmput(mm);
4669
4670 pr_debug("%lu of %lu THP split\n", split, total);
4671
4672 out:
4673 return ret;
4674 }
4675
split_huge_pages_in_file(const char * file_path,pgoff_t off_start,pgoff_t off_end,unsigned int new_order,long in_folio_offset)4676 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
4677 pgoff_t off_end, unsigned int new_order,
4678 long in_folio_offset)
4679 {
4680 struct filename *file;
4681 struct file *candidate;
4682 struct address_space *mapping;
4683 int ret = -EINVAL;
4684 pgoff_t index;
4685 int nr_pages = 1;
4686 unsigned long total = 0, split = 0;
4687 unsigned int min_order;
4688 unsigned int target_order;
4689
4690 file = getname_kernel(file_path);
4691 if (IS_ERR(file))
4692 return ret;
4693
4694 candidate = file_open_name(file, O_RDONLY, 0);
4695 if (IS_ERR(candidate))
4696 goto out;
4697
4698 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx], new_order: %u, in_folio_offset: %ld\n",
4699 file_path, off_start, off_end, new_order, in_folio_offset);
4700
4701 mapping = candidate->f_mapping;
4702 min_order = mapping_min_folio_order(mapping);
4703 target_order = max(new_order, min_order);
4704
4705 for (index = off_start; index < off_end; index += nr_pages) {
4706 struct folio *folio = filemap_get_folio(mapping, index);
4707
4708 nr_pages = 1;
4709 if (IS_ERR(folio))
4710 continue;
4711
4712 if (!folio_test_large(folio))
4713 goto next;
4714
4715 total++;
4716 nr_pages = folio_nr_pages(folio);
4717
4718 if (target_order >= folio_order(folio))
4719 goto next;
4720
4721 if (!folio_trylock(folio))
4722 goto next;
4723
4724 if (folio->mapping != mapping)
4725 goto unlock;
4726
4727 if (in_folio_offset < 0 || in_folio_offset >= nr_pages) {
4728 if (!split_folio_to_order(folio, target_order))
4729 split++;
4730 } else {
4731 struct page *split_at = folio_page(folio,
4732 in_folio_offset);
4733 if (!folio_split(folio, target_order, split_at, NULL))
4734 split++;
4735 }
4736
4737 unlock:
4738 folio_unlock(folio);
4739 next:
4740 folio_put(folio);
4741 cond_resched();
4742 }
4743
4744 filp_close(candidate, NULL);
4745 ret = 0;
4746
4747 pr_debug("%lu of %lu file-backed THP split\n", split, total);
4748 out:
4749 putname(file);
4750 return ret;
4751 }
4752
4753 #define MAX_INPUT_BUF_SZ 255
4754
split_huge_pages_write(struct file * file,const char __user * buf,size_t count,loff_t * ppops)4755 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
4756 size_t count, loff_t *ppops)
4757 {
4758 static DEFINE_MUTEX(split_debug_mutex);
4759 ssize_t ret;
4760 /*
4761 * hold pid, start_vaddr, end_vaddr, new_order or
4762 * file_path, off_start, off_end, new_order
4763 */
4764 char input_buf[MAX_INPUT_BUF_SZ];
4765 int pid;
4766 unsigned long vaddr_start, vaddr_end;
4767 unsigned int new_order = 0;
4768 long in_folio_offset = -1;
4769
4770 ret = mutex_lock_interruptible(&split_debug_mutex);
4771 if (ret)
4772 return ret;
4773
4774 ret = -EFAULT;
4775
4776 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
4777 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
4778 goto out;
4779
4780 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
4781
4782 if (input_buf[0] == '/') {
4783 char *tok;
4784 char *tok_buf = input_buf;
4785 char file_path[MAX_INPUT_BUF_SZ];
4786 pgoff_t off_start = 0, off_end = 0;
4787 size_t input_len = strlen(input_buf);
4788
4789 tok = strsep(&tok_buf, ",");
4790 if (tok && tok_buf) {
4791 strscpy(file_path, tok);
4792 } else {
4793 ret = -EINVAL;
4794 goto out;
4795 }
4796
4797 ret = sscanf(tok_buf, "0x%lx,0x%lx,%d,%ld", &off_start, &off_end,
4798 &new_order, &in_folio_offset);
4799 if (ret != 2 && ret != 3 && ret != 4) {
4800 ret = -EINVAL;
4801 goto out;
4802 }
4803 ret = split_huge_pages_in_file(file_path, off_start, off_end,
4804 new_order, in_folio_offset);
4805 if (!ret)
4806 ret = input_len;
4807
4808 goto out;
4809 }
4810
4811 ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d,%ld", &pid, &vaddr_start,
4812 &vaddr_end, &new_order, &in_folio_offset);
4813 if (ret == 1 && pid == 1) {
4814 split_huge_pages_all();
4815 ret = strlen(input_buf);
4816 goto out;
4817 } else if (ret != 3 && ret != 4 && ret != 5) {
4818 ret = -EINVAL;
4819 goto out;
4820 }
4821
4822 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order,
4823 in_folio_offset);
4824 if (!ret)
4825 ret = strlen(input_buf);
4826 out:
4827 mutex_unlock(&split_debug_mutex);
4828 return ret;
4829
4830 }
4831
4832 static const struct file_operations split_huge_pages_fops = {
4833 .owner = THIS_MODULE,
4834 .write = split_huge_pages_write,
4835 };
4836
split_huge_pages_debugfs(void)4837 static int __init split_huge_pages_debugfs(void)
4838 {
4839 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
4840 &split_huge_pages_fops);
4841 return 0;
4842 }
4843 late_initcall(split_huge_pages_debugfs);
4844 #endif
4845
4846 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)4847 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
4848 struct page *page)
4849 {
4850 struct folio *folio = page_folio(page);
4851 struct vm_area_struct *vma = pvmw->vma;
4852 struct mm_struct *mm = vma->vm_mm;
4853 unsigned long address = pvmw->address;
4854 bool anon_exclusive;
4855 pmd_t pmdval;
4856 swp_entry_t entry;
4857 pmd_t pmdswp;
4858
4859 if (!(pvmw->pmd && !pvmw->pte))
4860 return 0;
4861
4862 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
4863 if (unlikely(!pmd_present(*pvmw->pmd)))
4864 pmdval = pmdp_huge_get_and_clear(vma->vm_mm, address, pvmw->pmd);
4865 else
4866 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
4867
4868 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
4869 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
4870 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
4871 set_pmd_at(mm, address, pvmw->pmd, pmdval);
4872 return -EBUSY;
4873 }
4874
4875 if (pmd_dirty(pmdval))
4876 folio_mark_dirty(folio);
4877 if (pmd_write(pmdval))
4878 entry = make_writable_migration_entry(page_to_pfn(page));
4879 else if (anon_exclusive)
4880 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
4881 else
4882 entry = make_readable_migration_entry(page_to_pfn(page));
4883 if (pmd_young(pmdval))
4884 entry = make_migration_entry_young(entry);
4885 if (pmd_dirty(pmdval))
4886 entry = make_migration_entry_dirty(entry);
4887 pmdswp = swp_entry_to_pmd(entry);
4888 if (pmd_soft_dirty(pmdval))
4889 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
4890 if (pmd_uffd_wp(pmdval))
4891 pmdswp = pmd_swp_mkuffd_wp(pmdswp);
4892 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
4893 folio_remove_rmap_pmd(folio, page, vma);
4894 folio_put(folio);
4895 trace_set_migration_pmd(address, pmd_val(pmdswp));
4896
4897 return 0;
4898 }
4899
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)4900 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
4901 {
4902 struct folio *folio = page_folio(new);
4903 struct vm_area_struct *vma = pvmw->vma;
4904 struct mm_struct *mm = vma->vm_mm;
4905 unsigned long address = pvmw->address;
4906 unsigned long haddr = address & HPAGE_PMD_MASK;
4907 pmd_t pmde;
4908 softleaf_t entry;
4909
4910 if (!(pvmw->pmd && !pvmw->pte))
4911 return;
4912
4913 entry = softleaf_from_pmd(*pvmw->pmd);
4914 folio_get(folio);
4915 pmde = folio_mk_pmd(folio, READ_ONCE(vma->vm_page_prot));
4916
4917 if (pmd_swp_soft_dirty(*pvmw->pmd))
4918 pmde = pmd_mksoft_dirty(pmde);
4919 if (softleaf_is_migration_write(entry))
4920 pmde = pmd_mkwrite(pmde, vma);
4921 if (pmd_swp_uffd_wp(*pvmw->pmd))
4922 pmde = pmd_mkuffd_wp(pmde);
4923 if (!softleaf_is_migration_young(entry))
4924 pmde = pmd_mkold(pmde);
4925 /* NOTE: this may contain setting soft-dirty on some archs */
4926 if (folio_test_dirty(folio) && softleaf_is_migration_dirty(entry))
4927 pmde = pmd_mkdirty(pmde);
4928
4929 if (folio_is_device_private(folio)) {
4930 swp_entry_t entry;
4931
4932 if (pmd_write(pmde))
4933 entry = make_writable_device_private_entry(
4934 page_to_pfn(new));
4935 else
4936 entry = make_readable_device_private_entry(
4937 page_to_pfn(new));
4938 pmde = swp_entry_to_pmd(entry);
4939
4940 if (pmd_swp_soft_dirty(*pvmw->pmd))
4941 pmde = pmd_swp_mksoft_dirty(pmde);
4942 if (pmd_swp_uffd_wp(*pvmw->pmd))
4943 pmde = pmd_swp_mkuffd_wp(pmde);
4944 }
4945
4946 if (folio_test_anon(folio)) {
4947 rmap_t rmap_flags = RMAP_NONE;
4948
4949 if (!softleaf_is_migration_read(entry))
4950 rmap_flags |= RMAP_EXCLUSIVE;
4951
4952 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
4953 } else {
4954 folio_add_file_rmap_pmd(folio, new, vma);
4955 }
4956 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
4957 set_pmd_at(mm, haddr, pvmw->pmd, pmde);
4958
4959 /* No need to invalidate - it was non-present before */
4960 update_mmu_cache_pmd(vma, address, pvmw->pmd);
4961 trace_remove_migration_pmd(address, pmd_val(pmde));
4962 }
4963 #endif
4964