xref: /linux/mm/huge_memory.c (revision 7203ca412fc8e8a0588e9adc0f777d3163f8dff3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/backing-dev.h>
21 #include <linux/dax.h>
22 #include <linux/mm_types.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/oom.h>
35 #include <linux/numa.h>
36 #include <linux/page_owner.h>
37 #include <linux/sched/sysctl.h>
38 #include <linux/memory-tiers.h>
39 #include <linux/compat.h>
40 #include <linux/pgalloc.h>
41 #include <linux/pgalloc_tag.h>
42 #include <linux/pagewalk.h>
43 
44 #include <asm/tlb.h>
45 #include "internal.h"
46 #include "swap.h"
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/thp.h>
50 
51 /*
52  * By default, transparent hugepage support is disabled in order to avoid
53  * risking an increased memory footprint for applications that are not
54  * guaranteed to benefit from it. When transparent hugepage support is
55  * enabled, it is for all mappings, and khugepaged scans all mappings.
56  * Defrag is invoked by khugepaged hugepage allocations and by page faults
57  * for all hugepage allocations.
58  */
59 unsigned long transparent_hugepage_flags __read_mostly =
60 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
61 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
62 #endif
63 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
64 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
65 #endif
66 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
67 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
68 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
69 
70 static struct shrinker *deferred_split_shrinker;
71 static unsigned long deferred_split_count(struct shrinker *shrink,
72 					  struct shrink_control *sc);
73 static unsigned long deferred_split_scan(struct shrinker *shrink,
74 					 struct shrink_control *sc);
75 static bool split_underused_thp = true;
76 
77 static atomic_t huge_zero_refcount;
78 struct folio *huge_zero_folio __read_mostly;
79 unsigned long huge_zero_pfn __read_mostly = ~0UL;
80 unsigned long huge_anon_orders_always __read_mostly;
81 unsigned long huge_anon_orders_madvise __read_mostly;
82 unsigned long huge_anon_orders_inherit __read_mostly;
83 static bool anon_orders_configured __initdata;
84 
file_thp_enabled(struct vm_area_struct * vma)85 static inline bool file_thp_enabled(struct vm_area_struct *vma)
86 {
87 	struct inode *inode;
88 
89 	if (!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
90 		return false;
91 
92 	if (!vma->vm_file)
93 		return false;
94 
95 	inode = file_inode(vma->vm_file);
96 
97 	return !inode_is_open_for_write(inode) && S_ISREG(inode->i_mode);
98 }
99 
__thp_vma_allowable_orders(struct vm_area_struct * vma,vm_flags_t vm_flags,enum tva_type type,unsigned long orders)100 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
101 					 vm_flags_t vm_flags,
102 					 enum tva_type type,
103 					 unsigned long orders)
104 {
105 	const bool smaps = type == TVA_SMAPS;
106 	const bool in_pf = type == TVA_PAGEFAULT;
107 	const bool forced_collapse = type == TVA_FORCED_COLLAPSE;
108 	unsigned long supported_orders;
109 
110 	/* Check the intersection of requested and supported orders. */
111 	if (vma_is_anonymous(vma))
112 		supported_orders = THP_ORDERS_ALL_ANON;
113 	else if (vma_is_special_huge(vma))
114 		supported_orders = THP_ORDERS_ALL_SPECIAL;
115 	else
116 		supported_orders = THP_ORDERS_ALL_FILE_DEFAULT;
117 
118 	orders &= supported_orders;
119 	if (!orders)
120 		return 0;
121 
122 	if (!vma->vm_mm)		/* vdso */
123 		return 0;
124 
125 	if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags, forced_collapse))
126 		return 0;
127 
128 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
129 	if (vma_is_dax(vma))
130 		return in_pf ? orders : 0;
131 
132 	/*
133 	 * khugepaged special VMA and hugetlb VMA.
134 	 * Must be checked after dax since some dax mappings may have
135 	 * VM_MIXEDMAP set.
136 	 */
137 	if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
138 		return 0;
139 
140 	/*
141 	 * Check alignment for file vma and size for both file and anon vma by
142 	 * filtering out the unsuitable orders.
143 	 *
144 	 * Skip the check for page fault. Huge fault does the check in fault
145 	 * handlers.
146 	 */
147 	if (!in_pf) {
148 		int order = highest_order(orders);
149 		unsigned long addr;
150 
151 		while (orders) {
152 			addr = vma->vm_end - (PAGE_SIZE << order);
153 			if (thp_vma_suitable_order(vma, addr, order))
154 				break;
155 			order = next_order(&orders, order);
156 		}
157 
158 		if (!orders)
159 			return 0;
160 	}
161 
162 	/*
163 	 * Enabled via shmem mount options or sysfs settings.
164 	 * Must be done before hugepage flags check since shmem has its
165 	 * own flags.
166 	 */
167 	if (!in_pf && shmem_file(vma->vm_file))
168 		return orders & shmem_allowable_huge_orders(file_inode(vma->vm_file),
169 						   vma, vma->vm_pgoff, 0,
170 						   forced_collapse);
171 
172 	if (!vma_is_anonymous(vma)) {
173 		/*
174 		 * Enforce THP collapse requirements as necessary. Anonymous vmas
175 		 * were already handled in thp_vma_allowable_orders().
176 		 */
177 		if (!forced_collapse &&
178 		    (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
179 						    !hugepage_global_always())))
180 			return 0;
181 
182 		/*
183 		 * Trust that ->huge_fault() handlers know what they are doing
184 		 * in fault path.
185 		 */
186 		if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
187 			return orders;
188 		/* Only regular file is valid in collapse path */
189 		if (((!in_pf || smaps)) && file_thp_enabled(vma))
190 			return orders;
191 		return 0;
192 	}
193 
194 	if (vma_is_temporary_stack(vma))
195 		return 0;
196 
197 	/*
198 	 * THPeligible bit of smaps should show 1 for proper VMAs even
199 	 * though anon_vma is not initialized yet.
200 	 *
201 	 * Allow page fault since anon_vma may be not initialized until
202 	 * the first page fault.
203 	 */
204 	if (!vma->anon_vma)
205 		return (smaps || in_pf) ? orders : 0;
206 
207 	return orders;
208 }
209 
get_huge_zero_folio(void)210 static bool get_huge_zero_folio(void)
211 {
212 	struct folio *zero_folio;
213 retry:
214 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
215 		return true;
216 
217 	zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO | __GFP_ZEROTAGS) &
218 				 ~__GFP_MOVABLE,
219 			HPAGE_PMD_ORDER);
220 	if (!zero_folio) {
221 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
222 		return false;
223 	}
224 	/* Ensure zero folio won't have large_rmappable flag set. */
225 	folio_clear_large_rmappable(zero_folio);
226 	preempt_disable();
227 	if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) {
228 		preempt_enable();
229 		folio_put(zero_folio);
230 		goto retry;
231 	}
232 	WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio));
233 
234 	/* We take additional reference here. It will be put back by shrinker */
235 	atomic_set(&huge_zero_refcount, 2);
236 	preempt_enable();
237 	count_vm_event(THP_ZERO_PAGE_ALLOC);
238 	return true;
239 }
240 
put_huge_zero_folio(void)241 static void put_huge_zero_folio(void)
242 {
243 	/*
244 	 * Counter should never go to zero here. Only shrinker can put
245 	 * last reference.
246 	 */
247 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
248 }
249 
mm_get_huge_zero_folio(struct mm_struct * mm)250 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm)
251 {
252 	if (IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO))
253 		return huge_zero_folio;
254 
255 	if (mm_flags_test(MMF_HUGE_ZERO_FOLIO, mm))
256 		return READ_ONCE(huge_zero_folio);
257 
258 	if (!get_huge_zero_folio())
259 		return NULL;
260 
261 	if (mm_flags_test_and_set(MMF_HUGE_ZERO_FOLIO, mm))
262 		put_huge_zero_folio();
263 
264 	return READ_ONCE(huge_zero_folio);
265 }
266 
mm_put_huge_zero_folio(struct mm_struct * mm)267 void mm_put_huge_zero_folio(struct mm_struct *mm)
268 {
269 	if (IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO))
270 		return;
271 
272 	if (mm_flags_test(MMF_HUGE_ZERO_FOLIO, mm))
273 		put_huge_zero_folio();
274 }
275 
shrink_huge_zero_folio_count(struct shrinker * shrink,struct shrink_control * sc)276 static unsigned long shrink_huge_zero_folio_count(struct shrinker *shrink,
277 						  struct shrink_control *sc)
278 {
279 	/* we can free zero page only if last reference remains */
280 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
281 }
282 
shrink_huge_zero_folio_scan(struct shrinker * shrink,struct shrink_control * sc)283 static unsigned long shrink_huge_zero_folio_scan(struct shrinker *shrink,
284 						 struct shrink_control *sc)
285 {
286 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
287 		struct folio *zero_folio = xchg(&huge_zero_folio, NULL);
288 		BUG_ON(zero_folio == NULL);
289 		WRITE_ONCE(huge_zero_pfn, ~0UL);
290 		folio_put(zero_folio);
291 		return HPAGE_PMD_NR;
292 	}
293 
294 	return 0;
295 }
296 
297 static struct shrinker *huge_zero_folio_shrinker;
298 
299 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)300 static ssize_t enabled_show(struct kobject *kobj,
301 			    struct kobj_attribute *attr, char *buf)
302 {
303 	const char *output;
304 
305 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
306 		output = "[always] madvise never";
307 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
308 			  &transparent_hugepage_flags))
309 		output = "always [madvise] never";
310 	else
311 		output = "always madvise [never]";
312 
313 	return sysfs_emit(buf, "%s\n", output);
314 }
315 
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)316 static ssize_t enabled_store(struct kobject *kobj,
317 			     struct kobj_attribute *attr,
318 			     const char *buf, size_t count)
319 {
320 	ssize_t ret = count;
321 
322 	if (sysfs_streq(buf, "always")) {
323 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
324 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
325 	} else if (sysfs_streq(buf, "madvise")) {
326 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
327 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
328 	} else if (sysfs_streq(buf, "never")) {
329 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
330 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
331 	} else
332 		ret = -EINVAL;
333 
334 	if (ret > 0) {
335 		int err = start_stop_khugepaged();
336 		if (err)
337 			ret = err;
338 	}
339 	return ret;
340 }
341 
342 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
343 
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)344 ssize_t single_hugepage_flag_show(struct kobject *kobj,
345 				  struct kobj_attribute *attr, char *buf,
346 				  enum transparent_hugepage_flag flag)
347 {
348 	return sysfs_emit(buf, "%d\n",
349 			  !!test_bit(flag, &transparent_hugepage_flags));
350 }
351 
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)352 ssize_t single_hugepage_flag_store(struct kobject *kobj,
353 				 struct kobj_attribute *attr,
354 				 const char *buf, size_t count,
355 				 enum transparent_hugepage_flag flag)
356 {
357 	unsigned long value;
358 	int ret;
359 
360 	ret = kstrtoul(buf, 10, &value);
361 	if (ret < 0)
362 		return ret;
363 	if (value > 1)
364 		return -EINVAL;
365 
366 	if (value)
367 		set_bit(flag, &transparent_hugepage_flags);
368 	else
369 		clear_bit(flag, &transparent_hugepage_flags);
370 
371 	return count;
372 }
373 
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)374 static ssize_t defrag_show(struct kobject *kobj,
375 			   struct kobj_attribute *attr, char *buf)
376 {
377 	const char *output;
378 
379 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
380 		     &transparent_hugepage_flags))
381 		output = "[always] defer defer+madvise madvise never";
382 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
383 			  &transparent_hugepage_flags))
384 		output = "always [defer] defer+madvise madvise never";
385 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
386 			  &transparent_hugepage_flags))
387 		output = "always defer [defer+madvise] madvise never";
388 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
389 			  &transparent_hugepage_flags))
390 		output = "always defer defer+madvise [madvise] never";
391 	else
392 		output = "always defer defer+madvise madvise [never]";
393 
394 	return sysfs_emit(buf, "%s\n", output);
395 }
396 
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)397 static ssize_t defrag_store(struct kobject *kobj,
398 			    struct kobj_attribute *attr,
399 			    const char *buf, size_t count)
400 {
401 	if (sysfs_streq(buf, "always")) {
402 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
403 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
404 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
405 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
406 	} else if (sysfs_streq(buf, "defer+madvise")) {
407 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
408 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
409 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
410 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
411 	} else if (sysfs_streq(buf, "defer")) {
412 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
413 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
414 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
415 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
416 	} else if (sysfs_streq(buf, "madvise")) {
417 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
418 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
419 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
420 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
421 	} else if (sysfs_streq(buf, "never")) {
422 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
423 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
424 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
425 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
426 	} else
427 		return -EINVAL;
428 
429 	return count;
430 }
431 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
432 
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)433 static ssize_t use_zero_page_show(struct kobject *kobj,
434 				  struct kobj_attribute *attr, char *buf)
435 {
436 	return single_hugepage_flag_show(kobj, attr, buf,
437 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
438 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)439 static ssize_t use_zero_page_store(struct kobject *kobj,
440 		struct kobj_attribute *attr, const char *buf, size_t count)
441 {
442 	return single_hugepage_flag_store(kobj, attr, buf, count,
443 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
444 }
445 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
446 
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)447 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
448 				   struct kobj_attribute *attr, char *buf)
449 {
450 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
451 }
452 static struct kobj_attribute hpage_pmd_size_attr =
453 	__ATTR_RO(hpage_pmd_size);
454 
split_underused_thp_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)455 static ssize_t split_underused_thp_show(struct kobject *kobj,
456 			    struct kobj_attribute *attr, char *buf)
457 {
458 	return sysfs_emit(buf, "%d\n", split_underused_thp);
459 }
460 
split_underused_thp_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)461 static ssize_t split_underused_thp_store(struct kobject *kobj,
462 			     struct kobj_attribute *attr,
463 			     const char *buf, size_t count)
464 {
465 	int err = kstrtobool(buf, &split_underused_thp);
466 
467 	if (err < 0)
468 		return err;
469 
470 	return count;
471 }
472 
473 static struct kobj_attribute split_underused_thp_attr = __ATTR(
474 	shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store);
475 
476 static struct attribute *hugepage_attr[] = {
477 	&enabled_attr.attr,
478 	&defrag_attr.attr,
479 	&use_zero_page_attr.attr,
480 	&hpage_pmd_size_attr.attr,
481 #ifdef CONFIG_SHMEM
482 	&shmem_enabled_attr.attr,
483 #endif
484 	&split_underused_thp_attr.attr,
485 	NULL,
486 };
487 
488 static const struct attribute_group hugepage_attr_group = {
489 	.attrs = hugepage_attr,
490 };
491 
492 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
493 static void thpsize_release(struct kobject *kobj);
494 static DEFINE_SPINLOCK(huge_anon_orders_lock);
495 static LIST_HEAD(thpsize_list);
496 
anon_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)497 static ssize_t anon_enabled_show(struct kobject *kobj,
498 				 struct kobj_attribute *attr, char *buf)
499 {
500 	int order = to_thpsize(kobj)->order;
501 	const char *output;
502 
503 	if (test_bit(order, &huge_anon_orders_always))
504 		output = "[always] inherit madvise never";
505 	else if (test_bit(order, &huge_anon_orders_inherit))
506 		output = "always [inherit] madvise never";
507 	else if (test_bit(order, &huge_anon_orders_madvise))
508 		output = "always inherit [madvise] never";
509 	else
510 		output = "always inherit madvise [never]";
511 
512 	return sysfs_emit(buf, "%s\n", output);
513 }
514 
anon_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)515 static ssize_t anon_enabled_store(struct kobject *kobj,
516 				  struct kobj_attribute *attr,
517 				  const char *buf, size_t count)
518 {
519 	int order = to_thpsize(kobj)->order;
520 	ssize_t ret = count;
521 
522 	if (sysfs_streq(buf, "always")) {
523 		spin_lock(&huge_anon_orders_lock);
524 		clear_bit(order, &huge_anon_orders_inherit);
525 		clear_bit(order, &huge_anon_orders_madvise);
526 		set_bit(order, &huge_anon_orders_always);
527 		spin_unlock(&huge_anon_orders_lock);
528 	} else if (sysfs_streq(buf, "inherit")) {
529 		spin_lock(&huge_anon_orders_lock);
530 		clear_bit(order, &huge_anon_orders_always);
531 		clear_bit(order, &huge_anon_orders_madvise);
532 		set_bit(order, &huge_anon_orders_inherit);
533 		spin_unlock(&huge_anon_orders_lock);
534 	} else if (sysfs_streq(buf, "madvise")) {
535 		spin_lock(&huge_anon_orders_lock);
536 		clear_bit(order, &huge_anon_orders_always);
537 		clear_bit(order, &huge_anon_orders_inherit);
538 		set_bit(order, &huge_anon_orders_madvise);
539 		spin_unlock(&huge_anon_orders_lock);
540 	} else if (sysfs_streq(buf, "never")) {
541 		spin_lock(&huge_anon_orders_lock);
542 		clear_bit(order, &huge_anon_orders_always);
543 		clear_bit(order, &huge_anon_orders_inherit);
544 		clear_bit(order, &huge_anon_orders_madvise);
545 		spin_unlock(&huge_anon_orders_lock);
546 	} else
547 		ret = -EINVAL;
548 
549 	if (ret > 0) {
550 		int err;
551 
552 		err = start_stop_khugepaged();
553 		if (err)
554 			ret = err;
555 	}
556 	return ret;
557 }
558 
559 static struct kobj_attribute anon_enabled_attr =
560 	__ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store);
561 
562 static struct attribute *anon_ctrl_attrs[] = {
563 	&anon_enabled_attr.attr,
564 	NULL,
565 };
566 
567 static const struct attribute_group anon_ctrl_attr_grp = {
568 	.attrs = anon_ctrl_attrs,
569 };
570 
571 static struct attribute *file_ctrl_attrs[] = {
572 #ifdef CONFIG_SHMEM
573 	&thpsize_shmem_enabled_attr.attr,
574 #endif
575 	NULL,
576 };
577 
578 static const struct attribute_group file_ctrl_attr_grp = {
579 	.attrs = file_ctrl_attrs,
580 };
581 
582 static struct attribute *any_ctrl_attrs[] = {
583 	NULL,
584 };
585 
586 static const struct attribute_group any_ctrl_attr_grp = {
587 	.attrs = any_ctrl_attrs,
588 };
589 
590 static const struct kobj_type thpsize_ktype = {
591 	.release = &thpsize_release,
592 	.sysfs_ops = &kobj_sysfs_ops,
593 };
594 
595 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}};
596 
sum_mthp_stat(int order,enum mthp_stat_item item)597 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item)
598 {
599 	unsigned long sum = 0;
600 	int cpu;
601 
602 	for_each_possible_cpu(cpu) {
603 		struct mthp_stat *this = &per_cpu(mthp_stats, cpu);
604 
605 		sum += this->stats[order][item];
606 	}
607 
608 	return sum;
609 }
610 
611 #define DEFINE_MTHP_STAT_ATTR(_name, _index)				\
612 static ssize_t _name##_show(struct kobject *kobj,			\
613 			struct kobj_attribute *attr, char *buf)		\
614 {									\
615 	int order = to_thpsize(kobj)->order;				\
616 									\
617 	return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index));	\
618 }									\
619 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
620 
621 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC);
622 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK);
623 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
624 DEFINE_MTHP_STAT_ATTR(zswpout, MTHP_STAT_ZSWPOUT);
625 DEFINE_MTHP_STAT_ATTR(swpin, MTHP_STAT_SWPIN);
626 DEFINE_MTHP_STAT_ATTR(swpin_fallback, MTHP_STAT_SWPIN_FALLBACK);
627 DEFINE_MTHP_STAT_ATTR(swpin_fallback_charge, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
628 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT);
629 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK);
630 #ifdef CONFIG_SHMEM
631 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC);
632 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK);
633 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE);
634 #endif
635 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT);
636 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED);
637 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED);
638 DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON);
639 DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED);
640 
641 static struct attribute *anon_stats_attrs[] = {
642 	&anon_fault_alloc_attr.attr,
643 	&anon_fault_fallback_attr.attr,
644 	&anon_fault_fallback_charge_attr.attr,
645 #ifndef CONFIG_SHMEM
646 	&zswpout_attr.attr,
647 	&swpin_attr.attr,
648 	&swpin_fallback_attr.attr,
649 	&swpin_fallback_charge_attr.attr,
650 	&swpout_attr.attr,
651 	&swpout_fallback_attr.attr,
652 #endif
653 	&split_deferred_attr.attr,
654 	&nr_anon_attr.attr,
655 	&nr_anon_partially_mapped_attr.attr,
656 	NULL,
657 };
658 
659 static struct attribute_group anon_stats_attr_grp = {
660 	.name = "stats",
661 	.attrs = anon_stats_attrs,
662 };
663 
664 static struct attribute *file_stats_attrs[] = {
665 #ifdef CONFIG_SHMEM
666 	&shmem_alloc_attr.attr,
667 	&shmem_fallback_attr.attr,
668 	&shmem_fallback_charge_attr.attr,
669 #endif
670 	NULL,
671 };
672 
673 static struct attribute_group file_stats_attr_grp = {
674 	.name = "stats",
675 	.attrs = file_stats_attrs,
676 };
677 
678 static struct attribute *any_stats_attrs[] = {
679 #ifdef CONFIG_SHMEM
680 	&zswpout_attr.attr,
681 	&swpin_attr.attr,
682 	&swpin_fallback_attr.attr,
683 	&swpin_fallback_charge_attr.attr,
684 	&swpout_attr.attr,
685 	&swpout_fallback_attr.attr,
686 #endif
687 	&split_attr.attr,
688 	&split_failed_attr.attr,
689 	NULL,
690 };
691 
692 static struct attribute_group any_stats_attr_grp = {
693 	.name = "stats",
694 	.attrs = any_stats_attrs,
695 };
696 
sysfs_add_group(struct kobject * kobj,const struct attribute_group * grp)697 static int sysfs_add_group(struct kobject *kobj,
698 			   const struct attribute_group *grp)
699 {
700 	int ret = -ENOENT;
701 
702 	/*
703 	 * If the group is named, try to merge first, assuming the subdirectory
704 	 * was already created. This avoids the warning emitted by
705 	 * sysfs_create_group() if the directory already exists.
706 	 */
707 	if (grp->name)
708 		ret = sysfs_merge_group(kobj, grp);
709 	if (ret)
710 		ret = sysfs_create_group(kobj, grp);
711 
712 	return ret;
713 }
714 
thpsize_create(int order,struct kobject * parent)715 static struct thpsize *thpsize_create(int order, struct kobject *parent)
716 {
717 	unsigned long size = (PAGE_SIZE << order) / SZ_1K;
718 	struct thpsize *thpsize;
719 	int ret = -ENOMEM;
720 
721 	thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
722 	if (!thpsize)
723 		goto err;
724 
725 	thpsize->order = order;
726 
727 	ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
728 				   "hugepages-%lukB", size);
729 	if (ret) {
730 		kfree(thpsize);
731 		goto err;
732 	}
733 
734 
735 	ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp);
736 	if (ret)
737 		goto err_put;
738 
739 	ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp);
740 	if (ret)
741 		goto err_put;
742 
743 	if (BIT(order) & THP_ORDERS_ALL_ANON) {
744 		ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp);
745 		if (ret)
746 			goto err_put;
747 
748 		ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp);
749 		if (ret)
750 			goto err_put;
751 	}
752 
753 	if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) {
754 		ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp);
755 		if (ret)
756 			goto err_put;
757 
758 		ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp);
759 		if (ret)
760 			goto err_put;
761 	}
762 
763 	return thpsize;
764 err_put:
765 	kobject_put(&thpsize->kobj);
766 err:
767 	return ERR_PTR(ret);
768 }
769 
thpsize_release(struct kobject * kobj)770 static void thpsize_release(struct kobject *kobj)
771 {
772 	kfree(to_thpsize(kobj));
773 }
774 
hugepage_init_sysfs(struct kobject ** hugepage_kobj)775 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
776 {
777 	int err;
778 	struct thpsize *thpsize;
779 	unsigned long orders;
780 	int order;
781 
782 	/*
783 	 * Default to setting PMD-sized THP to inherit the global setting and
784 	 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
785 	 * constant so we have to do this here.
786 	 */
787 	if (!anon_orders_configured)
788 		huge_anon_orders_inherit = BIT(PMD_ORDER);
789 
790 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
791 	if (unlikely(!*hugepage_kobj)) {
792 		pr_err("failed to create transparent hugepage kobject\n");
793 		return -ENOMEM;
794 	}
795 
796 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
797 	if (err) {
798 		pr_err("failed to register transparent hugepage group\n");
799 		goto delete_obj;
800 	}
801 
802 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
803 	if (err) {
804 		pr_err("failed to register transparent hugepage group\n");
805 		goto remove_hp_group;
806 	}
807 
808 	orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT;
809 	order = highest_order(orders);
810 	while (orders) {
811 		thpsize = thpsize_create(order, *hugepage_kobj);
812 		if (IS_ERR(thpsize)) {
813 			pr_err("failed to create thpsize for order %d\n", order);
814 			err = PTR_ERR(thpsize);
815 			goto remove_all;
816 		}
817 		list_add(&thpsize->node, &thpsize_list);
818 		order = next_order(&orders, order);
819 	}
820 
821 	return 0;
822 
823 remove_all:
824 	hugepage_exit_sysfs(*hugepage_kobj);
825 	return err;
826 remove_hp_group:
827 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
828 delete_obj:
829 	kobject_put(*hugepage_kobj);
830 	return err;
831 }
832 
hugepage_exit_sysfs(struct kobject * hugepage_kobj)833 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
834 {
835 	struct thpsize *thpsize, *tmp;
836 
837 	list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
838 		list_del(&thpsize->node);
839 		kobject_put(&thpsize->kobj);
840 	}
841 
842 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
843 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
844 	kobject_put(hugepage_kobj);
845 }
846 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)847 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
848 {
849 	return 0;
850 }
851 
hugepage_exit_sysfs(struct kobject * hugepage_kobj)852 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
853 {
854 }
855 #endif /* CONFIG_SYSFS */
856 
thp_shrinker_init(void)857 static int __init thp_shrinker_init(void)
858 {
859 	deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
860 						 SHRINKER_MEMCG_AWARE |
861 						 SHRINKER_NONSLAB,
862 						 "thp-deferred_split");
863 	if (!deferred_split_shrinker)
864 		return -ENOMEM;
865 
866 	deferred_split_shrinker->count_objects = deferred_split_count;
867 	deferred_split_shrinker->scan_objects = deferred_split_scan;
868 	shrinker_register(deferred_split_shrinker);
869 
870 	if (IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO)) {
871 		/*
872 		 * Bump the reference of the huge_zero_folio and do not
873 		 * initialize the shrinker.
874 		 *
875 		 * huge_zero_folio will always be NULL on failure. We assume
876 		 * that get_huge_zero_folio() will most likely not fail as
877 		 * thp_shrinker_init() is invoked early on during boot.
878 		 */
879 		if (!get_huge_zero_folio())
880 			pr_warn("Allocating persistent huge zero folio failed\n");
881 		return 0;
882 	}
883 
884 	huge_zero_folio_shrinker = shrinker_alloc(0, "thp-zero");
885 	if (!huge_zero_folio_shrinker) {
886 		shrinker_free(deferred_split_shrinker);
887 		return -ENOMEM;
888 	}
889 
890 	huge_zero_folio_shrinker->count_objects = shrink_huge_zero_folio_count;
891 	huge_zero_folio_shrinker->scan_objects = shrink_huge_zero_folio_scan;
892 	shrinker_register(huge_zero_folio_shrinker);
893 
894 	return 0;
895 }
896 
thp_shrinker_exit(void)897 static void __init thp_shrinker_exit(void)
898 {
899 	shrinker_free(huge_zero_folio_shrinker);
900 	shrinker_free(deferred_split_shrinker);
901 }
902 
hugepage_init(void)903 static int __init hugepage_init(void)
904 {
905 	int err;
906 	struct kobject *hugepage_kobj;
907 
908 	if (!has_transparent_hugepage()) {
909 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
910 		return -EINVAL;
911 	}
912 
913 	/*
914 	 * hugepages can't be allocated by the buddy allocator
915 	 */
916 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
917 
918 	err = hugepage_init_sysfs(&hugepage_kobj);
919 	if (err)
920 		goto err_sysfs;
921 
922 	err = khugepaged_init();
923 	if (err)
924 		goto err_slab;
925 
926 	err = thp_shrinker_init();
927 	if (err)
928 		goto err_shrinker;
929 
930 	/*
931 	 * By default disable transparent hugepages on smaller systems,
932 	 * where the extra memory used could hurt more than TLB overhead
933 	 * is likely to save.  The admin can still enable it through /sys.
934 	 */
935 	if (totalram_pages() < MB_TO_PAGES(512)) {
936 		transparent_hugepage_flags = 0;
937 		return 0;
938 	}
939 
940 	err = start_stop_khugepaged();
941 	if (err)
942 		goto err_khugepaged;
943 
944 	return 0;
945 err_khugepaged:
946 	thp_shrinker_exit();
947 err_shrinker:
948 	khugepaged_destroy();
949 err_slab:
950 	hugepage_exit_sysfs(hugepage_kobj);
951 err_sysfs:
952 	return err;
953 }
954 subsys_initcall(hugepage_init);
955 
setup_transparent_hugepage(char * str)956 static int __init setup_transparent_hugepage(char *str)
957 {
958 	int ret = 0;
959 	if (!str)
960 		goto out;
961 	if (!strcmp(str, "always")) {
962 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
963 			&transparent_hugepage_flags);
964 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
965 			  &transparent_hugepage_flags);
966 		ret = 1;
967 	} else if (!strcmp(str, "madvise")) {
968 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
969 			  &transparent_hugepage_flags);
970 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
971 			&transparent_hugepage_flags);
972 		ret = 1;
973 	} else if (!strcmp(str, "never")) {
974 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
975 			  &transparent_hugepage_flags);
976 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
977 			  &transparent_hugepage_flags);
978 		ret = 1;
979 	}
980 out:
981 	if (!ret)
982 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
983 	return ret;
984 }
985 __setup("transparent_hugepage=", setup_transparent_hugepage);
986 
987 static char str_dup[PAGE_SIZE] __initdata;
setup_thp_anon(char * str)988 static int __init setup_thp_anon(char *str)
989 {
990 	char *token, *range, *policy, *subtoken;
991 	unsigned long always, inherit, madvise;
992 	char *start_size, *end_size;
993 	int start, end, nr;
994 	char *p;
995 
996 	if (!str || strlen(str) + 1 > PAGE_SIZE)
997 		goto err;
998 	strscpy(str_dup, str);
999 
1000 	always = huge_anon_orders_always;
1001 	madvise = huge_anon_orders_madvise;
1002 	inherit = huge_anon_orders_inherit;
1003 	p = str_dup;
1004 	while ((token = strsep(&p, ";")) != NULL) {
1005 		range = strsep(&token, ":");
1006 		policy = token;
1007 
1008 		if (!policy)
1009 			goto err;
1010 
1011 		while ((subtoken = strsep(&range, ",")) != NULL) {
1012 			if (strchr(subtoken, '-')) {
1013 				start_size = strsep(&subtoken, "-");
1014 				end_size = subtoken;
1015 
1016 				start = get_order_from_str(start_size, THP_ORDERS_ALL_ANON);
1017 				end = get_order_from_str(end_size, THP_ORDERS_ALL_ANON);
1018 			} else {
1019 				start_size = end_size = subtoken;
1020 				start = end = get_order_from_str(subtoken,
1021 								 THP_ORDERS_ALL_ANON);
1022 			}
1023 
1024 			if (start == -EINVAL) {
1025 				pr_err("invalid size %s in thp_anon boot parameter\n", start_size);
1026 				goto err;
1027 			}
1028 
1029 			if (end == -EINVAL) {
1030 				pr_err("invalid size %s in thp_anon boot parameter\n", end_size);
1031 				goto err;
1032 			}
1033 
1034 			if (start < 0 || end < 0 || start > end)
1035 				goto err;
1036 
1037 			nr = end - start + 1;
1038 			if (!strcmp(policy, "always")) {
1039 				bitmap_set(&always, start, nr);
1040 				bitmap_clear(&inherit, start, nr);
1041 				bitmap_clear(&madvise, start, nr);
1042 			} else if (!strcmp(policy, "madvise")) {
1043 				bitmap_set(&madvise, start, nr);
1044 				bitmap_clear(&inherit, start, nr);
1045 				bitmap_clear(&always, start, nr);
1046 			} else if (!strcmp(policy, "inherit")) {
1047 				bitmap_set(&inherit, start, nr);
1048 				bitmap_clear(&madvise, start, nr);
1049 				bitmap_clear(&always, start, nr);
1050 			} else if (!strcmp(policy, "never")) {
1051 				bitmap_clear(&inherit, start, nr);
1052 				bitmap_clear(&madvise, start, nr);
1053 				bitmap_clear(&always, start, nr);
1054 			} else {
1055 				pr_err("invalid policy %s in thp_anon boot parameter\n", policy);
1056 				goto err;
1057 			}
1058 		}
1059 	}
1060 
1061 	huge_anon_orders_always = always;
1062 	huge_anon_orders_madvise = madvise;
1063 	huge_anon_orders_inherit = inherit;
1064 	anon_orders_configured = true;
1065 	return 1;
1066 
1067 err:
1068 	pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str);
1069 	return 0;
1070 }
1071 __setup("thp_anon=", setup_thp_anon);
1072 
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)1073 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
1074 {
1075 	if (likely(vma->vm_flags & VM_WRITE))
1076 		pmd = pmd_mkwrite(pmd, vma);
1077 	return pmd;
1078 }
1079 
split_queue_node(int nid)1080 static struct deferred_split *split_queue_node(int nid)
1081 {
1082 	struct pglist_data *pgdata = NODE_DATA(nid);
1083 
1084 	return &pgdata->deferred_split_queue;
1085 }
1086 
1087 #ifdef CONFIG_MEMCG
1088 static inline
folio_split_queue_memcg(struct folio * folio,struct deferred_split * queue)1089 struct mem_cgroup *folio_split_queue_memcg(struct folio *folio,
1090 					   struct deferred_split *queue)
1091 {
1092 	if (mem_cgroup_disabled())
1093 		return NULL;
1094 	if (split_queue_node(folio_nid(folio)) == queue)
1095 		return NULL;
1096 	return container_of(queue, struct mem_cgroup, deferred_split_queue);
1097 }
1098 
memcg_split_queue(int nid,struct mem_cgroup * memcg)1099 static struct deferred_split *memcg_split_queue(int nid, struct mem_cgroup *memcg)
1100 {
1101 	return memcg ? &memcg->deferred_split_queue : split_queue_node(nid);
1102 }
1103 #else
1104 static inline
folio_split_queue_memcg(struct folio * folio,struct deferred_split * queue)1105 struct mem_cgroup *folio_split_queue_memcg(struct folio *folio,
1106 					   struct deferred_split *queue)
1107 {
1108 	return NULL;
1109 }
1110 
memcg_split_queue(int nid,struct mem_cgroup * memcg)1111 static struct deferred_split *memcg_split_queue(int nid, struct mem_cgroup *memcg)
1112 {
1113 	return split_queue_node(nid);
1114 }
1115 #endif
1116 
split_queue_lock(int nid,struct mem_cgroup * memcg)1117 static struct deferred_split *split_queue_lock(int nid, struct mem_cgroup *memcg)
1118 {
1119 	struct deferred_split *queue;
1120 
1121 retry:
1122 	queue = memcg_split_queue(nid, memcg);
1123 	spin_lock(&queue->split_queue_lock);
1124 	/*
1125 	 * There is a period between setting memcg to dying and reparenting
1126 	 * deferred split queue, and during this period the THPs in the deferred
1127 	 * split queue will be hidden from the shrinker side.
1128 	 */
1129 	if (unlikely(memcg_is_dying(memcg))) {
1130 		spin_unlock(&queue->split_queue_lock);
1131 		memcg = parent_mem_cgroup(memcg);
1132 		goto retry;
1133 	}
1134 
1135 	return queue;
1136 }
1137 
1138 static struct deferred_split *
split_queue_lock_irqsave(int nid,struct mem_cgroup * memcg,unsigned long * flags)1139 split_queue_lock_irqsave(int nid, struct mem_cgroup *memcg, unsigned long *flags)
1140 {
1141 	struct deferred_split *queue;
1142 
1143 retry:
1144 	queue = memcg_split_queue(nid, memcg);
1145 	spin_lock_irqsave(&queue->split_queue_lock, *flags);
1146 	if (unlikely(memcg_is_dying(memcg))) {
1147 		spin_unlock_irqrestore(&queue->split_queue_lock, *flags);
1148 		memcg = parent_mem_cgroup(memcg);
1149 		goto retry;
1150 	}
1151 
1152 	return queue;
1153 }
1154 
folio_split_queue_lock(struct folio * folio)1155 static struct deferred_split *folio_split_queue_lock(struct folio *folio)
1156 {
1157 	return split_queue_lock(folio_nid(folio), folio_memcg(folio));
1158 }
1159 
1160 static struct deferred_split *
folio_split_queue_lock_irqsave(struct folio * folio,unsigned long * flags)1161 folio_split_queue_lock_irqsave(struct folio *folio, unsigned long *flags)
1162 {
1163 	return split_queue_lock_irqsave(folio_nid(folio), folio_memcg(folio), flags);
1164 }
1165 
split_queue_unlock(struct deferred_split * queue)1166 static inline void split_queue_unlock(struct deferred_split *queue)
1167 {
1168 	spin_unlock(&queue->split_queue_lock);
1169 }
1170 
split_queue_unlock_irqrestore(struct deferred_split * queue,unsigned long flags)1171 static inline void split_queue_unlock_irqrestore(struct deferred_split *queue,
1172 						 unsigned long flags)
1173 {
1174 	spin_unlock_irqrestore(&queue->split_queue_lock, flags);
1175 }
1176 
is_transparent_hugepage(const struct folio * folio)1177 static inline bool is_transparent_hugepage(const struct folio *folio)
1178 {
1179 	if (!folio_test_large(folio))
1180 		return false;
1181 
1182 	return is_huge_zero_folio(folio) ||
1183 		folio_test_large_rmappable(folio);
1184 }
1185 
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size,vm_flags_t vm_flags)1186 static unsigned long __thp_get_unmapped_area(struct file *filp,
1187 		unsigned long addr, unsigned long len,
1188 		loff_t off, unsigned long flags, unsigned long size,
1189 		vm_flags_t vm_flags)
1190 {
1191 	loff_t off_end = off + len;
1192 	loff_t off_align = round_up(off, size);
1193 	unsigned long len_pad, ret, off_sub;
1194 
1195 	if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
1196 		return 0;
1197 
1198 	if (off_end <= off_align || (off_end - off_align) < size)
1199 		return 0;
1200 
1201 	len_pad = len + size;
1202 	if (len_pad < len || (off + len_pad) < off)
1203 		return 0;
1204 
1205 	ret = mm_get_unmapped_area_vmflags(filp, addr, len_pad,
1206 					   off >> PAGE_SHIFT, flags, vm_flags);
1207 
1208 	/*
1209 	 * The failure might be due to length padding. The caller will retry
1210 	 * without the padding.
1211 	 */
1212 	if (IS_ERR_VALUE(ret))
1213 		return 0;
1214 
1215 	/*
1216 	 * Do not try to align to THP boundary if allocation at the address
1217 	 * hint succeeds.
1218 	 */
1219 	if (ret == addr)
1220 		return addr;
1221 
1222 	off_sub = (off - ret) & (size - 1);
1223 
1224 	if (mm_flags_test(MMF_TOPDOWN, current->mm) && !off_sub)
1225 		return ret + size;
1226 
1227 	ret += off_sub;
1228 	return ret;
1229 }
1230 
thp_get_unmapped_area_vmflags(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)1231 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
1232 		unsigned long len, unsigned long pgoff, unsigned long flags,
1233 		vm_flags_t vm_flags)
1234 {
1235 	unsigned long ret;
1236 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
1237 
1238 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags);
1239 	if (ret)
1240 		return ret;
1241 
1242 	return mm_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags,
1243 					    vm_flags);
1244 }
1245 
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1246 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
1247 		unsigned long len, unsigned long pgoff, unsigned long flags)
1248 {
1249 	return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0);
1250 }
1251 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
1252 
vma_alloc_anon_folio_pmd(struct vm_area_struct * vma,unsigned long addr)1253 static struct folio *vma_alloc_anon_folio_pmd(struct vm_area_struct *vma,
1254 		unsigned long addr)
1255 {
1256 	gfp_t gfp = vma_thp_gfp_mask(vma);
1257 	const int order = HPAGE_PMD_ORDER;
1258 	struct folio *folio;
1259 
1260 	folio = vma_alloc_folio(gfp, order, vma, addr & HPAGE_PMD_MASK);
1261 
1262 	if (unlikely(!folio)) {
1263 		count_vm_event(THP_FAULT_FALLBACK);
1264 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1265 		return NULL;
1266 	}
1267 
1268 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1269 	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
1270 		folio_put(folio);
1271 		count_vm_event(THP_FAULT_FALLBACK);
1272 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
1273 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1274 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
1275 		return NULL;
1276 	}
1277 	folio_throttle_swaprate(folio, gfp);
1278 
1279        /*
1280 	* When a folio is not zeroed during allocation (__GFP_ZERO not used)
1281 	* or user folios require special handling, folio_zero_user() is used to
1282 	* make sure that the page corresponding to the faulting address will be
1283 	* hot in the cache after zeroing.
1284 	*/
1285 	if (user_alloc_needs_zeroing())
1286 		folio_zero_user(folio, addr);
1287 	/*
1288 	 * The memory barrier inside __folio_mark_uptodate makes sure that
1289 	 * folio_zero_user writes become visible before the set_pmd_at()
1290 	 * write.
1291 	 */
1292 	__folio_mark_uptodate(folio);
1293 	return folio;
1294 }
1295 
map_anon_folio_pmd_nopf(struct folio * folio,pmd_t * pmd,struct vm_area_struct * vma,unsigned long haddr)1296 void map_anon_folio_pmd_nopf(struct folio *folio, pmd_t *pmd,
1297 		struct vm_area_struct *vma, unsigned long haddr)
1298 {
1299 	pmd_t entry;
1300 
1301 	entry = folio_mk_pmd(folio, vma->vm_page_prot);
1302 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1303 	folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE);
1304 	folio_add_lru_vma(folio, vma);
1305 	set_pmd_at(vma->vm_mm, haddr, pmd, entry);
1306 	update_mmu_cache_pmd(vma, haddr, pmd);
1307 	deferred_split_folio(folio, false);
1308 }
1309 
map_anon_folio_pmd_pf(struct folio * folio,pmd_t * pmd,struct vm_area_struct * vma,unsigned long haddr)1310 static void map_anon_folio_pmd_pf(struct folio *folio, pmd_t *pmd,
1311 		struct vm_area_struct *vma, unsigned long haddr)
1312 {
1313 	map_anon_folio_pmd_nopf(folio, pmd, vma, haddr);
1314 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1315 	count_vm_event(THP_FAULT_ALLOC);
1316 	count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
1317 	count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
1318 }
1319 
__do_huge_pmd_anonymous_page(struct vm_fault * vmf)1320 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1321 {
1322 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1323 	struct vm_area_struct *vma = vmf->vma;
1324 	struct folio *folio;
1325 	pgtable_t pgtable;
1326 	vm_fault_t ret = 0;
1327 
1328 	folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1329 	if (unlikely(!folio))
1330 		return VM_FAULT_FALLBACK;
1331 
1332 	pgtable = pte_alloc_one(vma->vm_mm);
1333 	if (unlikely(!pgtable)) {
1334 		ret = VM_FAULT_OOM;
1335 		goto release;
1336 	}
1337 
1338 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1339 	if (unlikely(!pmd_none(*vmf->pmd))) {
1340 		goto unlock_release;
1341 	} else {
1342 		ret = check_stable_address_space(vma->vm_mm);
1343 		if (ret)
1344 			goto unlock_release;
1345 
1346 		/* Deliver the page fault to userland */
1347 		if (userfaultfd_missing(vma)) {
1348 			spin_unlock(vmf->ptl);
1349 			folio_put(folio);
1350 			pte_free(vma->vm_mm, pgtable);
1351 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
1352 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1353 			return ret;
1354 		}
1355 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1356 		map_anon_folio_pmd_pf(folio, vmf->pmd, vma, haddr);
1357 		mm_inc_nr_ptes(vma->vm_mm);
1358 		spin_unlock(vmf->ptl);
1359 	}
1360 
1361 	return 0;
1362 unlock_release:
1363 	spin_unlock(vmf->ptl);
1364 release:
1365 	if (pgtable)
1366 		pte_free(vma->vm_mm, pgtable);
1367 	folio_put(folio);
1368 	return ret;
1369 
1370 }
1371 
do_huge_pmd_device_private(struct vm_fault * vmf)1372 vm_fault_t do_huge_pmd_device_private(struct vm_fault *vmf)
1373 {
1374 	struct vm_area_struct *vma = vmf->vma;
1375 	vm_fault_t ret = 0;
1376 	spinlock_t *ptl;
1377 	softleaf_t entry;
1378 	struct page *page;
1379 	struct folio *folio;
1380 
1381 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
1382 		vma_end_read(vma);
1383 		return VM_FAULT_RETRY;
1384 	}
1385 
1386 	ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1387 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) {
1388 		spin_unlock(ptl);
1389 		return 0;
1390 	}
1391 
1392 	entry = softleaf_from_pmd(vmf->orig_pmd);
1393 	page = softleaf_to_page(entry);
1394 	folio = page_folio(page);
1395 	vmf->page = page;
1396 	vmf->pte = NULL;
1397 	if (folio_trylock(folio)) {
1398 		folio_get(folio);
1399 		spin_unlock(ptl);
1400 		ret = page_pgmap(page)->ops->migrate_to_ram(vmf);
1401 		folio_unlock(folio);
1402 		folio_put(folio);
1403 	} else {
1404 		spin_unlock(ptl);
1405 	}
1406 
1407 	return ret;
1408 }
1409 
1410 /*
1411  * always: directly stall for all thp allocations
1412  * defer: wake kswapd and fail if not immediately available
1413  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
1414  *		  fail if not immediately available
1415  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
1416  *	    available
1417  * never: never stall for any thp allocation
1418  */
vma_thp_gfp_mask(struct vm_area_struct * vma)1419 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
1420 {
1421 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
1422 
1423 	/* Always do synchronous compaction */
1424 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
1425 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
1426 
1427 	/* Kick kcompactd and fail quickly */
1428 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
1429 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
1430 
1431 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
1432 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
1433 		return GFP_TRANSHUGE_LIGHT |
1434 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
1435 					__GFP_KSWAPD_RECLAIM);
1436 
1437 	/* Only do synchronous compaction if madvised */
1438 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
1439 		return GFP_TRANSHUGE_LIGHT |
1440 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
1441 
1442 	return GFP_TRANSHUGE_LIGHT;
1443 }
1444 
1445 /* Caller must hold page table lock. */
set_huge_zero_folio(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct folio * zero_folio)1446 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm,
1447 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
1448 		struct folio *zero_folio)
1449 {
1450 	pmd_t entry;
1451 	entry = folio_mk_pmd(zero_folio, vma->vm_page_prot);
1452 	entry = pmd_mkspecial(entry);
1453 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1454 	set_pmd_at(mm, haddr, pmd, entry);
1455 	mm_inc_nr_ptes(mm);
1456 }
1457 
do_huge_pmd_anonymous_page(struct vm_fault * vmf)1458 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1459 {
1460 	struct vm_area_struct *vma = vmf->vma;
1461 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1462 	vm_fault_t ret;
1463 
1464 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1465 		return VM_FAULT_FALLBACK;
1466 	ret = vmf_anon_prepare(vmf);
1467 	if (ret)
1468 		return ret;
1469 	khugepaged_enter_vma(vma, vma->vm_flags);
1470 
1471 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1472 			!mm_forbids_zeropage(vma->vm_mm) &&
1473 			transparent_hugepage_use_zero_page()) {
1474 		pgtable_t pgtable;
1475 		struct folio *zero_folio;
1476 		vm_fault_t ret;
1477 
1478 		pgtable = pte_alloc_one(vma->vm_mm);
1479 		if (unlikely(!pgtable))
1480 			return VM_FAULT_OOM;
1481 		zero_folio = mm_get_huge_zero_folio(vma->vm_mm);
1482 		if (unlikely(!zero_folio)) {
1483 			pte_free(vma->vm_mm, pgtable);
1484 			count_vm_event(THP_FAULT_FALLBACK);
1485 			return VM_FAULT_FALLBACK;
1486 		}
1487 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1488 		ret = 0;
1489 		if (pmd_none(*vmf->pmd)) {
1490 			ret = check_stable_address_space(vma->vm_mm);
1491 			if (ret) {
1492 				spin_unlock(vmf->ptl);
1493 				pte_free(vma->vm_mm, pgtable);
1494 			} else if (userfaultfd_missing(vma)) {
1495 				spin_unlock(vmf->ptl);
1496 				pte_free(vma->vm_mm, pgtable);
1497 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
1498 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1499 			} else {
1500 				set_huge_zero_folio(pgtable, vma->vm_mm, vma,
1501 						   haddr, vmf->pmd, zero_folio);
1502 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1503 				spin_unlock(vmf->ptl);
1504 			}
1505 		} else {
1506 			spin_unlock(vmf->ptl);
1507 			pte_free(vma->vm_mm, pgtable);
1508 		}
1509 		return ret;
1510 	}
1511 
1512 	return __do_huge_pmd_anonymous_page(vmf);
1513 }
1514 
1515 struct folio_or_pfn {
1516 	union {
1517 		struct folio *folio;
1518 		unsigned long pfn;
1519 	};
1520 	bool is_folio;
1521 };
1522 
insert_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,struct folio_or_pfn fop,pgprot_t prot,bool write)1523 static vm_fault_t insert_pmd(struct vm_area_struct *vma, unsigned long addr,
1524 		pmd_t *pmd, struct folio_or_pfn fop, pgprot_t prot,
1525 		bool write)
1526 {
1527 	struct mm_struct *mm = vma->vm_mm;
1528 	pgtable_t pgtable = NULL;
1529 	spinlock_t *ptl;
1530 	pmd_t entry;
1531 
1532 	if (addr < vma->vm_start || addr >= vma->vm_end)
1533 		return VM_FAULT_SIGBUS;
1534 
1535 	if (arch_needs_pgtable_deposit()) {
1536 		pgtable = pte_alloc_one(vma->vm_mm);
1537 		if (!pgtable)
1538 			return VM_FAULT_OOM;
1539 	}
1540 
1541 	ptl = pmd_lock(mm, pmd);
1542 	if (!pmd_none(*pmd)) {
1543 		const unsigned long pfn = fop.is_folio ? folio_pfn(fop.folio) :
1544 					  fop.pfn;
1545 
1546 		if (write) {
1547 			if (pmd_pfn(*pmd) != pfn) {
1548 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1549 				goto out_unlock;
1550 			}
1551 			entry = pmd_mkyoung(*pmd);
1552 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1553 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1554 				update_mmu_cache_pmd(vma, addr, pmd);
1555 		}
1556 		goto out_unlock;
1557 	}
1558 
1559 	if (fop.is_folio) {
1560 		entry = folio_mk_pmd(fop.folio, vma->vm_page_prot);
1561 
1562 		if (is_huge_zero_folio(fop.folio)) {
1563 			entry = pmd_mkspecial(entry);
1564 		} else {
1565 			folio_get(fop.folio);
1566 			folio_add_file_rmap_pmd(fop.folio, &fop.folio->page, vma);
1567 			add_mm_counter(mm, mm_counter_file(fop.folio), HPAGE_PMD_NR);
1568 		}
1569 	} else {
1570 		entry = pmd_mkhuge(pfn_pmd(fop.pfn, prot));
1571 		entry = pmd_mkspecial(entry);
1572 	}
1573 	if (write) {
1574 		entry = pmd_mkyoung(pmd_mkdirty(entry));
1575 		entry = maybe_pmd_mkwrite(entry, vma);
1576 	}
1577 
1578 	if (pgtable) {
1579 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
1580 		mm_inc_nr_ptes(mm);
1581 		pgtable = NULL;
1582 	}
1583 
1584 	set_pmd_at(mm, addr, pmd, entry);
1585 	update_mmu_cache_pmd(vma, addr, pmd);
1586 
1587 out_unlock:
1588 	spin_unlock(ptl);
1589 	if (pgtable)
1590 		pte_free(mm, pgtable);
1591 	return VM_FAULT_NOPAGE;
1592 }
1593 
1594 /**
1595  * vmf_insert_pfn_pmd - insert a pmd size pfn
1596  * @vmf: Structure describing the fault
1597  * @pfn: pfn to insert
1598  * @write: whether it's a write fault
1599  *
1600  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1601  *
1602  * Return: vm_fault_t value.
1603  */
vmf_insert_pfn_pmd(struct vm_fault * vmf,unsigned long pfn,bool write)1604 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, unsigned long pfn,
1605 			      bool write)
1606 {
1607 	unsigned long addr = vmf->address & PMD_MASK;
1608 	struct vm_area_struct *vma = vmf->vma;
1609 	pgprot_t pgprot = vma->vm_page_prot;
1610 	struct folio_or_pfn fop = {
1611 		.pfn = pfn,
1612 	};
1613 
1614 	/*
1615 	 * If we had pmd_special, we could avoid all these restrictions,
1616 	 * but we need to be consistent with PTEs and architectures that
1617 	 * can't support a 'special' bit.
1618 	 */
1619 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1620 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1621 						(VM_PFNMAP|VM_MIXEDMAP));
1622 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1623 
1624 	pfnmap_setup_cachemode_pfn(pfn, &pgprot);
1625 
1626 	return insert_pmd(vma, addr, vmf->pmd, fop, pgprot, write);
1627 }
1628 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1629 
vmf_insert_folio_pmd(struct vm_fault * vmf,struct folio * folio,bool write)1630 vm_fault_t vmf_insert_folio_pmd(struct vm_fault *vmf, struct folio *folio,
1631 				bool write)
1632 {
1633 	struct vm_area_struct *vma = vmf->vma;
1634 	unsigned long addr = vmf->address & PMD_MASK;
1635 	struct folio_or_pfn fop = {
1636 		.folio = folio,
1637 		.is_folio = true,
1638 	};
1639 
1640 	if (WARN_ON_ONCE(folio_order(folio) != PMD_ORDER))
1641 		return VM_FAULT_SIGBUS;
1642 
1643 	return insert_pmd(vma, addr, vmf->pmd, fop, vma->vm_page_prot, write);
1644 }
1645 EXPORT_SYMBOL_GPL(vmf_insert_folio_pmd);
1646 
1647 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)1648 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1649 {
1650 	if (likely(vma->vm_flags & VM_WRITE))
1651 		pud = pud_mkwrite(pud);
1652 	return pud;
1653 }
1654 
insert_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,struct folio_or_pfn fop,pgprot_t prot,bool write)1655 static vm_fault_t insert_pud(struct vm_area_struct *vma, unsigned long addr,
1656 		pud_t *pud, struct folio_or_pfn fop, pgprot_t prot, bool write)
1657 {
1658 	struct mm_struct *mm = vma->vm_mm;
1659 	spinlock_t *ptl;
1660 	pud_t entry;
1661 
1662 	if (addr < vma->vm_start || addr >= vma->vm_end)
1663 		return VM_FAULT_SIGBUS;
1664 
1665 	ptl = pud_lock(mm, pud);
1666 	if (!pud_none(*pud)) {
1667 		const unsigned long pfn = fop.is_folio ? folio_pfn(fop.folio) :
1668 					  fop.pfn;
1669 
1670 		if (write) {
1671 			if (WARN_ON_ONCE(pud_pfn(*pud) != pfn))
1672 				goto out_unlock;
1673 			entry = pud_mkyoung(*pud);
1674 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1675 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1676 				update_mmu_cache_pud(vma, addr, pud);
1677 		}
1678 		goto out_unlock;
1679 	}
1680 
1681 	if (fop.is_folio) {
1682 		entry = folio_mk_pud(fop.folio, vma->vm_page_prot);
1683 
1684 		folio_get(fop.folio);
1685 		folio_add_file_rmap_pud(fop.folio, &fop.folio->page, vma);
1686 		add_mm_counter(mm, mm_counter_file(fop.folio), HPAGE_PUD_NR);
1687 	} else {
1688 		entry = pud_mkhuge(pfn_pud(fop.pfn, prot));
1689 		entry = pud_mkspecial(entry);
1690 	}
1691 	if (write) {
1692 		entry = pud_mkyoung(pud_mkdirty(entry));
1693 		entry = maybe_pud_mkwrite(entry, vma);
1694 	}
1695 	set_pud_at(mm, addr, pud, entry);
1696 	update_mmu_cache_pud(vma, addr, pud);
1697 out_unlock:
1698 	spin_unlock(ptl);
1699 	return VM_FAULT_NOPAGE;
1700 }
1701 
1702 /**
1703  * vmf_insert_pfn_pud - insert a pud size pfn
1704  * @vmf: Structure describing the fault
1705  * @pfn: pfn to insert
1706  * @write: whether it's a write fault
1707  *
1708  * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1709  *
1710  * Return: vm_fault_t value.
1711  */
vmf_insert_pfn_pud(struct vm_fault * vmf,unsigned long pfn,bool write)1712 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, unsigned long pfn,
1713 			      bool write)
1714 {
1715 	unsigned long addr = vmf->address & PUD_MASK;
1716 	struct vm_area_struct *vma = vmf->vma;
1717 	pgprot_t pgprot = vma->vm_page_prot;
1718 	struct folio_or_pfn fop = {
1719 		.pfn = pfn,
1720 	};
1721 
1722 	/*
1723 	 * If we had pud_special, we could avoid all these restrictions,
1724 	 * but we need to be consistent with PTEs and architectures that
1725 	 * can't support a 'special' bit.
1726 	 */
1727 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1728 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1729 						(VM_PFNMAP|VM_MIXEDMAP));
1730 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1731 
1732 	pfnmap_setup_cachemode_pfn(pfn, &pgprot);
1733 
1734 	return insert_pud(vma, addr, vmf->pud, fop, pgprot, write);
1735 }
1736 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1737 
1738 /**
1739  * vmf_insert_folio_pud - insert a pud size folio mapped by a pud entry
1740  * @vmf: Structure describing the fault
1741  * @folio: folio to insert
1742  * @write: whether it's a write fault
1743  *
1744  * Return: vm_fault_t value.
1745  */
vmf_insert_folio_pud(struct vm_fault * vmf,struct folio * folio,bool write)1746 vm_fault_t vmf_insert_folio_pud(struct vm_fault *vmf, struct folio *folio,
1747 				bool write)
1748 {
1749 	struct vm_area_struct *vma = vmf->vma;
1750 	unsigned long addr = vmf->address & PUD_MASK;
1751 	struct folio_or_pfn fop = {
1752 		.folio = folio,
1753 		.is_folio = true,
1754 	};
1755 
1756 	if (WARN_ON_ONCE(folio_order(folio) != PUD_ORDER))
1757 		return VM_FAULT_SIGBUS;
1758 
1759 	return insert_pud(vma, addr, vmf->pud, fop, vma->vm_page_prot, write);
1760 }
1761 EXPORT_SYMBOL_GPL(vmf_insert_folio_pud);
1762 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1763 
1764 /**
1765  * touch_pmd - Mark page table pmd entry as accessed and dirty (for write)
1766  * @vma: The VMA covering @addr
1767  * @addr: The virtual address
1768  * @pmd: pmd pointer into the page table mapping @addr
1769  * @write: Whether it's a write access
1770  *
1771  * Return: whether the pmd entry is changed
1772  */
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,bool write)1773 bool touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1774 	       pmd_t *pmd, bool write)
1775 {
1776 	pmd_t entry;
1777 
1778 	entry = pmd_mkyoung(*pmd);
1779 	if (write)
1780 		entry = pmd_mkdirty(entry);
1781 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1782 				  pmd, entry, write)) {
1783 		update_mmu_cache_pmd(vma, addr, pmd);
1784 		return true;
1785 	}
1786 
1787 	return false;
1788 }
1789 
copy_huge_non_present_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t pmd,pgtable_t pgtable)1790 static void copy_huge_non_present_pmd(
1791 		struct mm_struct *dst_mm, struct mm_struct *src_mm,
1792 		pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1793 		struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1794 		pmd_t pmd, pgtable_t pgtable)
1795 {
1796 	softleaf_t entry = softleaf_from_pmd(pmd);
1797 	struct folio *src_folio;
1798 
1799 	VM_WARN_ON_ONCE(!pmd_is_valid_softleaf(pmd));
1800 
1801 	if (softleaf_is_migration_write(entry) ||
1802 	    softleaf_is_migration_read_exclusive(entry)) {
1803 		entry = make_readable_migration_entry(swp_offset(entry));
1804 		pmd = swp_entry_to_pmd(entry);
1805 		if (pmd_swp_soft_dirty(*src_pmd))
1806 			pmd = pmd_swp_mksoft_dirty(pmd);
1807 		if (pmd_swp_uffd_wp(*src_pmd))
1808 			pmd = pmd_swp_mkuffd_wp(pmd);
1809 		set_pmd_at(src_mm, addr, src_pmd, pmd);
1810 	} else if (softleaf_is_device_private(entry)) {
1811 		/*
1812 		 * For device private entries, since there are no
1813 		 * read exclusive entries, writable = !readable
1814 		 */
1815 		if (softleaf_is_device_private_write(entry)) {
1816 			entry = make_readable_device_private_entry(swp_offset(entry));
1817 			pmd = swp_entry_to_pmd(entry);
1818 
1819 			if (pmd_swp_soft_dirty(*src_pmd))
1820 				pmd = pmd_swp_mksoft_dirty(pmd);
1821 			if (pmd_swp_uffd_wp(*src_pmd))
1822 				pmd = pmd_swp_mkuffd_wp(pmd);
1823 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1824 		}
1825 
1826 		src_folio = softleaf_to_folio(entry);
1827 		VM_WARN_ON(!folio_test_large(src_folio));
1828 
1829 		folio_get(src_folio);
1830 		/*
1831 		 * folio_try_dup_anon_rmap_pmd does not fail for
1832 		 * device private entries.
1833 		 */
1834 		folio_try_dup_anon_rmap_pmd(src_folio, &src_folio->page,
1835 					    dst_vma, src_vma);
1836 	}
1837 
1838 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1839 	mm_inc_nr_ptes(dst_mm);
1840 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1841 	if (!userfaultfd_wp(dst_vma))
1842 		pmd = pmd_swp_clear_uffd_wp(pmd);
1843 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1844 }
1845 
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1846 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1847 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1848 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1849 {
1850 	spinlock_t *dst_ptl, *src_ptl;
1851 	struct page *src_page;
1852 	struct folio *src_folio;
1853 	pmd_t pmd;
1854 	pgtable_t pgtable = NULL;
1855 	int ret = -ENOMEM;
1856 
1857 	pmd = pmdp_get_lockless(src_pmd);
1858 	if (unlikely(pmd_present(pmd) && pmd_special(pmd) &&
1859 		     !is_huge_zero_pmd(pmd))) {
1860 		dst_ptl = pmd_lock(dst_mm, dst_pmd);
1861 		src_ptl = pmd_lockptr(src_mm, src_pmd);
1862 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1863 		/*
1864 		 * No need to recheck the pmd, it can't change with write
1865 		 * mmap lock held here.
1866 		 *
1867 		 * Meanwhile, making sure it's not a CoW VMA with writable
1868 		 * mapping, otherwise it means either the anon page wrongly
1869 		 * applied special bit, or we made the PRIVATE mapping be
1870 		 * able to wrongly write to the backend MMIO.
1871 		 */
1872 		VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd));
1873 		goto set_pmd;
1874 	}
1875 
1876 	/* Skip if can be re-fill on fault */
1877 	if (!vma_is_anonymous(dst_vma))
1878 		return 0;
1879 
1880 	pgtable = pte_alloc_one(dst_mm);
1881 	if (unlikely(!pgtable))
1882 		goto out;
1883 
1884 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1885 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1886 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1887 
1888 	ret = -EAGAIN;
1889 	pmd = *src_pmd;
1890 
1891 	if (unlikely(thp_migration_supported() &&
1892 		     pmd_is_valid_softleaf(pmd))) {
1893 		copy_huge_non_present_pmd(dst_mm, src_mm, dst_pmd, src_pmd, addr,
1894 					  dst_vma, src_vma, pmd, pgtable);
1895 		ret = 0;
1896 		goto out_unlock;
1897 	}
1898 
1899 	if (unlikely(!pmd_trans_huge(pmd))) {
1900 		pte_free(dst_mm, pgtable);
1901 		goto out_unlock;
1902 	}
1903 	/*
1904 	 * When page table lock is held, the huge zero pmd should not be
1905 	 * under splitting since we don't split the page itself, only pmd to
1906 	 * a page table.
1907 	 */
1908 	if (is_huge_zero_pmd(pmd)) {
1909 		/*
1910 		 * mm_get_huge_zero_folio() will never allocate a new
1911 		 * folio here, since we already have a zero page to
1912 		 * copy. It just takes a reference.
1913 		 */
1914 		mm_get_huge_zero_folio(dst_mm);
1915 		goto out_zero_page;
1916 	}
1917 
1918 	src_page = pmd_page(pmd);
1919 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1920 	src_folio = page_folio(src_page);
1921 
1922 	folio_get(src_folio);
1923 	if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, dst_vma, src_vma))) {
1924 		/* Page maybe pinned: split and retry the fault on PTEs. */
1925 		folio_put(src_folio);
1926 		pte_free(dst_mm, pgtable);
1927 		spin_unlock(src_ptl);
1928 		spin_unlock(dst_ptl);
1929 		__split_huge_pmd(src_vma, src_pmd, addr, false);
1930 		return -EAGAIN;
1931 	}
1932 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1933 out_zero_page:
1934 	mm_inc_nr_ptes(dst_mm);
1935 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1936 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1937 	if (!userfaultfd_wp(dst_vma))
1938 		pmd = pmd_clear_uffd_wp(pmd);
1939 	pmd = pmd_wrprotect(pmd);
1940 set_pmd:
1941 	pmd = pmd_mkold(pmd);
1942 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1943 
1944 	ret = 0;
1945 out_unlock:
1946 	spin_unlock(src_ptl);
1947 	spin_unlock(dst_ptl);
1948 out:
1949 	return ret;
1950 }
1951 
1952 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,bool write)1953 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1954 	       pud_t *pud, bool write)
1955 {
1956 	pud_t _pud;
1957 
1958 	_pud = pud_mkyoung(*pud);
1959 	if (write)
1960 		_pud = pud_mkdirty(_pud);
1961 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1962 				  pud, _pud, write))
1963 		update_mmu_cache_pud(vma, addr, pud);
1964 }
1965 
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1966 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1967 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1968 		  struct vm_area_struct *vma)
1969 {
1970 	spinlock_t *dst_ptl, *src_ptl;
1971 	pud_t pud;
1972 	int ret;
1973 
1974 	dst_ptl = pud_lock(dst_mm, dst_pud);
1975 	src_ptl = pud_lockptr(src_mm, src_pud);
1976 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1977 
1978 	ret = -EAGAIN;
1979 	pud = *src_pud;
1980 	if (unlikely(!pud_trans_huge(pud)))
1981 		goto out_unlock;
1982 
1983 	/*
1984 	 * TODO: once we support anonymous pages, use
1985 	 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1986 	 */
1987 	if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) {
1988 		pudp_set_wrprotect(src_mm, addr, src_pud);
1989 		pud = pud_wrprotect(pud);
1990 	}
1991 	pud = pud_mkold(pud);
1992 	set_pud_at(dst_mm, addr, dst_pud, pud);
1993 
1994 	ret = 0;
1995 out_unlock:
1996 	spin_unlock(src_ptl);
1997 	spin_unlock(dst_ptl);
1998 	return ret;
1999 }
2000 
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)2001 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
2002 {
2003 	bool write = vmf->flags & FAULT_FLAG_WRITE;
2004 
2005 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
2006 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
2007 		goto unlock;
2008 
2009 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
2010 unlock:
2011 	spin_unlock(vmf->ptl);
2012 }
2013 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2014 
huge_pmd_set_accessed(struct vm_fault * vmf)2015 bool huge_pmd_set_accessed(struct vm_fault *vmf)
2016 {
2017 	bool write = vmf->flags & FAULT_FLAG_WRITE;
2018 
2019 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
2020 		return false;
2021 
2022 	return touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
2023 }
2024 
do_huge_zero_wp_pmd(struct vm_fault * vmf)2025 static vm_fault_t do_huge_zero_wp_pmd(struct vm_fault *vmf)
2026 {
2027 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2028 	struct vm_area_struct *vma = vmf->vma;
2029 	struct mmu_notifier_range range;
2030 	struct folio *folio;
2031 	vm_fault_t ret = 0;
2032 
2033 	folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
2034 	if (unlikely(!folio))
2035 		return VM_FAULT_FALLBACK;
2036 
2037 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, haddr,
2038 				haddr + HPAGE_PMD_SIZE);
2039 	mmu_notifier_invalidate_range_start(&range);
2040 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2041 	if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd)))
2042 		goto release;
2043 	ret = check_stable_address_space(vma->vm_mm);
2044 	if (ret)
2045 		goto release;
2046 	(void)pmdp_huge_clear_flush(vma, haddr, vmf->pmd);
2047 	map_anon_folio_pmd_pf(folio, vmf->pmd, vma, haddr);
2048 	goto unlock;
2049 release:
2050 	folio_put(folio);
2051 unlock:
2052 	spin_unlock(vmf->ptl);
2053 	mmu_notifier_invalidate_range_end(&range);
2054 	return ret;
2055 }
2056 
do_huge_pmd_wp_page(struct vm_fault * vmf)2057 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
2058 {
2059 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
2060 	struct vm_area_struct *vma = vmf->vma;
2061 	struct folio *folio;
2062 	struct page *page;
2063 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2064 	pmd_t orig_pmd = vmf->orig_pmd;
2065 
2066 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
2067 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
2068 
2069 	if (is_huge_zero_pmd(orig_pmd)) {
2070 		vm_fault_t ret = do_huge_zero_wp_pmd(vmf);
2071 
2072 		if (!(ret & VM_FAULT_FALLBACK))
2073 			return ret;
2074 
2075 		/* Fallback to splitting PMD if THP cannot be allocated */
2076 		goto fallback;
2077 	}
2078 
2079 	spin_lock(vmf->ptl);
2080 
2081 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
2082 		spin_unlock(vmf->ptl);
2083 		return 0;
2084 	}
2085 
2086 	page = pmd_page(orig_pmd);
2087 	folio = page_folio(page);
2088 	VM_BUG_ON_PAGE(!PageHead(page), page);
2089 
2090 	/* Early check when only holding the PT lock. */
2091 	if (PageAnonExclusive(page))
2092 		goto reuse;
2093 
2094 	if (!folio_trylock(folio)) {
2095 		folio_get(folio);
2096 		spin_unlock(vmf->ptl);
2097 		folio_lock(folio);
2098 		spin_lock(vmf->ptl);
2099 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
2100 			spin_unlock(vmf->ptl);
2101 			folio_unlock(folio);
2102 			folio_put(folio);
2103 			return 0;
2104 		}
2105 		folio_put(folio);
2106 	}
2107 
2108 	/* Recheck after temporarily dropping the PT lock. */
2109 	if (PageAnonExclusive(page)) {
2110 		folio_unlock(folio);
2111 		goto reuse;
2112 	}
2113 
2114 	/*
2115 	 * See do_wp_page(): we can only reuse the folio exclusively if
2116 	 * there are no additional references. Note that we always drain
2117 	 * the LRU cache immediately after adding a THP.
2118 	 */
2119 	if (folio_ref_count(folio) >
2120 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
2121 		goto unlock_fallback;
2122 	if (folio_test_swapcache(folio))
2123 		folio_free_swap(folio);
2124 	if (folio_ref_count(folio) == 1) {
2125 		pmd_t entry;
2126 
2127 		folio_move_anon_rmap(folio, vma);
2128 		SetPageAnonExclusive(page);
2129 		folio_unlock(folio);
2130 reuse:
2131 		if (unlikely(unshare)) {
2132 			spin_unlock(vmf->ptl);
2133 			return 0;
2134 		}
2135 		entry = pmd_mkyoung(orig_pmd);
2136 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2137 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
2138 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
2139 		spin_unlock(vmf->ptl);
2140 		return 0;
2141 	}
2142 
2143 unlock_fallback:
2144 	folio_unlock(folio);
2145 	spin_unlock(vmf->ptl);
2146 fallback:
2147 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false);
2148 	return VM_FAULT_FALLBACK;
2149 }
2150 
can_change_pmd_writable(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)2151 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
2152 					   unsigned long addr, pmd_t pmd)
2153 {
2154 	struct page *page;
2155 
2156 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
2157 		return false;
2158 
2159 	/* Don't touch entries that are not even readable (NUMA hinting). */
2160 	if (pmd_protnone(pmd))
2161 		return false;
2162 
2163 	/* Do we need write faults for softdirty tracking? */
2164 	if (pmd_needs_soft_dirty_wp(vma, pmd))
2165 		return false;
2166 
2167 	/* Do we need write faults for uffd-wp tracking? */
2168 	if (userfaultfd_huge_pmd_wp(vma, pmd))
2169 		return false;
2170 
2171 	if (!(vma->vm_flags & VM_SHARED)) {
2172 		/* See can_change_pte_writable(). */
2173 		page = vm_normal_page_pmd(vma, addr, pmd);
2174 		return page && PageAnon(page) && PageAnonExclusive(page);
2175 	}
2176 
2177 	/* See can_change_pte_writable(). */
2178 	return pmd_dirty(pmd);
2179 }
2180 
2181 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf)2182 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
2183 {
2184 	struct vm_area_struct *vma = vmf->vma;
2185 	struct folio *folio;
2186 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2187 	int nid = NUMA_NO_NODE;
2188 	int target_nid, last_cpupid;
2189 	pmd_t pmd, old_pmd;
2190 	bool writable = false;
2191 	int flags = 0;
2192 
2193 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2194 	old_pmd = pmdp_get(vmf->pmd);
2195 
2196 	if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) {
2197 		spin_unlock(vmf->ptl);
2198 		return 0;
2199 	}
2200 
2201 	pmd = pmd_modify(old_pmd, vma->vm_page_prot);
2202 
2203 	/*
2204 	 * Detect now whether the PMD could be writable; this information
2205 	 * is only valid while holding the PT lock.
2206 	 */
2207 	writable = pmd_write(pmd);
2208 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
2209 	    can_change_pmd_writable(vma, vmf->address, pmd))
2210 		writable = true;
2211 
2212 	folio = vm_normal_folio_pmd(vma, haddr, pmd);
2213 	if (!folio)
2214 		goto out_map;
2215 
2216 	nid = folio_nid(folio);
2217 
2218 	target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable,
2219 					&last_cpupid);
2220 	if (target_nid == NUMA_NO_NODE)
2221 		goto out_map;
2222 	if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
2223 		flags |= TNF_MIGRATE_FAIL;
2224 		goto out_map;
2225 	}
2226 	/* The folio is isolated and isolation code holds a folio reference. */
2227 	spin_unlock(vmf->ptl);
2228 	writable = false;
2229 
2230 	if (!migrate_misplaced_folio(folio, target_nid)) {
2231 		flags |= TNF_MIGRATED;
2232 		nid = target_nid;
2233 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2234 		return 0;
2235 	}
2236 
2237 	flags |= TNF_MIGRATE_FAIL;
2238 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2239 	if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) {
2240 		spin_unlock(vmf->ptl);
2241 		return 0;
2242 	}
2243 out_map:
2244 	/* Restore the PMD */
2245 	pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot);
2246 	pmd = pmd_mkyoung(pmd);
2247 	if (writable)
2248 		pmd = pmd_mkwrite(pmd, vma);
2249 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
2250 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
2251 	spin_unlock(vmf->ptl);
2252 
2253 	if (nid != NUMA_NO_NODE)
2254 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2255 	return 0;
2256 }
2257 
2258 /*
2259  * Return true if we do MADV_FREE successfully on entire pmd page.
2260  * Otherwise, return false.
2261  */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)2262 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2263 		pmd_t *pmd, unsigned long addr, unsigned long next)
2264 {
2265 	spinlock_t *ptl;
2266 	pmd_t orig_pmd;
2267 	struct folio *folio;
2268 	struct mm_struct *mm = tlb->mm;
2269 	bool ret = false;
2270 
2271 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2272 
2273 	ptl = pmd_trans_huge_lock(pmd, vma);
2274 	if (!ptl)
2275 		goto out_unlocked;
2276 
2277 	orig_pmd = *pmd;
2278 	if (is_huge_zero_pmd(orig_pmd))
2279 		goto out;
2280 
2281 	if (unlikely(!pmd_present(orig_pmd))) {
2282 		VM_BUG_ON(thp_migration_supported() &&
2283 				  !pmd_is_migration_entry(orig_pmd));
2284 		goto out;
2285 	}
2286 
2287 	folio = pmd_folio(orig_pmd);
2288 	/*
2289 	 * If other processes are mapping this folio, we couldn't discard
2290 	 * the folio unless they all do MADV_FREE so let's skip the folio.
2291 	 */
2292 	if (folio_maybe_mapped_shared(folio))
2293 		goto out;
2294 
2295 	if (!folio_trylock(folio))
2296 		goto out;
2297 
2298 	/*
2299 	 * If user want to discard part-pages of THP, split it so MADV_FREE
2300 	 * will deactivate only them.
2301 	 */
2302 	if (next - addr != HPAGE_PMD_SIZE) {
2303 		folio_get(folio);
2304 		spin_unlock(ptl);
2305 		split_folio(folio);
2306 		folio_unlock(folio);
2307 		folio_put(folio);
2308 		goto out_unlocked;
2309 	}
2310 
2311 	if (folio_test_dirty(folio))
2312 		folio_clear_dirty(folio);
2313 	folio_unlock(folio);
2314 
2315 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
2316 		pmdp_invalidate(vma, addr, pmd);
2317 		orig_pmd = pmd_mkold(orig_pmd);
2318 		orig_pmd = pmd_mkclean(orig_pmd);
2319 
2320 		set_pmd_at(mm, addr, pmd, orig_pmd);
2321 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2322 	}
2323 
2324 	folio_mark_lazyfree(folio);
2325 	ret = true;
2326 out:
2327 	spin_unlock(ptl);
2328 out_unlocked:
2329 	return ret;
2330 }
2331 
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)2332 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
2333 {
2334 	pgtable_t pgtable;
2335 
2336 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2337 	pte_free(mm, pgtable);
2338 	mm_dec_nr_ptes(mm);
2339 }
2340 
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)2341 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2342 		 pmd_t *pmd, unsigned long addr)
2343 {
2344 	pmd_t orig_pmd;
2345 	spinlock_t *ptl;
2346 
2347 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2348 
2349 	ptl = __pmd_trans_huge_lock(pmd, vma);
2350 	if (!ptl)
2351 		return 0;
2352 	/*
2353 	 * For architectures like ppc64 we look at deposited pgtable
2354 	 * when calling pmdp_huge_get_and_clear. So do the
2355 	 * pgtable_trans_huge_withdraw after finishing pmdp related
2356 	 * operations.
2357 	 */
2358 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
2359 						tlb->fullmm);
2360 	arch_check_zapped_pmd(vma, orig_pmd);
2361 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2362 	if (!vma_is_dax(vma) && vma_is_special_huge(vma)) {
2363 		if (arch_needs_pgtable_deposit())
2364 			zap_deposited_table(tlb->mm, pmd);
2365 		spin_unlock(ptl);
2366 	} else if (is_huge_zero_pmd(orig_pmd)) {
2367 		if (!vma_is_dax(vma) || arch_needs_pgtable_deposit())
2368 			zap_deposited_table(tlb->mm, pmd);
2369 		spin_unlock(ptl);
2370 	} else {
2371 		struct folio *folio = NULL;
2372 		int flush_needed = 1;
2373 
2374 		if (pmd_present(orig_pmd)) {
2375 			struct page *page = pmd_page(orig_pmd);
2376 
2377 			folio = page_folio(page);
2378 			folio_remove_rmap_pmd(folio, page, vma);
2379 			WARN_ON_ONCE(folio_mapcount(folio) < 0);
2380 			VM_BUG_ON_PAGE(!PageHead(page), page);
2381 		} else if (pmd_is_valid_softleaf(orig_pmd)) {
2382 			const softleaf_t entry = softleaf_from_pmd(orig_pmd);
2383 
2384 			folio = softleaf_to_folio(entry);
2385 			flush_needed = 0;
2386 
2387 			if (!thp_migration_supported())
2388 				WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
2389 		}
2390 
2391 		if (folio_test_anon(folio)) {
2392 			zap_deposited_table(tlb->mm, pmd);
2393 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
2394 		} else {
2395 			if (arch_needs_pgtable_deposit())
2396 				zap_deposited_table(tlb->mm, pmd);
2397 			add_mm_counter(tlb->mm, mm_counter_file(folio),
2398 				       -HPAGE_PMD_NR);
2399 
2400 			/*
2401 			 * Use flush_needed to indicate whether the PMD entry
2402 			 * is present, instead of checking pmd_present() again.
2403 			 */
2404 			if (flush_needed && pmd_young(orig_pmd) &&
2405 			    likely(vma_has_recency(vma)))
2406 				folio_mark_accessed(folio);
2407 		}
2408 
2409 		if (folio_is_device_private(folio)) {
2410 			folio_remove_rmap_pmd(folio, &folio->page, vma);
2411 			WARN_ON_ONCE(folio_mapcount(folio) < 0);
2412 			folio_put(folio);
2413 		}
2414 
2415 		spin_unlock(ptl);
2416 		if (flush_needed)
2417 			tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
2418 	}
2419 	return 1;
2420 }
2421 
2422 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)2423 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
2424 					 spinlock_t *old_pmd_ptl,
2425 					 struct vm_area_struct *vma)
2426 {
2427 	/*
2428 	 * With split pmd lock we also need to move preallocated
2429 	 * PTE page table if new_pmd is on different PMD page table.
2430 	 *
2431 	 * We also don't deposit and withdraw tables for file pages.
2432 	 */
2433 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
2434 }
2435 #endif
2436 
move_soft_dirty_pmd(pmd_t pmd)2437 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
2438 {
2439 	if (pgtable_supports_soft_dirty()) {
2440 		if (unlikely(pmd_is_migration_entry(pmd)))
2441 			pmd = pmd_swp_mksoft_dirty(pmd);
2442 		else if (pmd_present(pmd))
2443 			pmd = pmd_mksoft_dirty(pmd);
2444 	}
2445 
2446 	return pmd;
2447 }
2448 
clear_uffd_wp_pmd(pmd_t pmd)2449 static pmd_t clear_uffd_wp_pmd(pmd_t pmd)
2450 {
2451 	if (pmd_none(pmd))
2452 		return pmd;
2453 	if (pmd_present(pmd))
2454 		pmd = pmd_clear_uffd_wp(pmd);
2455 	else
2456 		pmd = pmd_swp_clear_uffd_wp(pmd);
2457 
2458 	return pmd;
2459 }
2460 
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pmd_t * old_pmd,pmd_t * new_pmd)2461 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
2462 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
2463 {
2464 	spinlock_t *old_ptl, *new_ptl;
2465 	pmd_t pmd;
2466 	struct mm_struct *mm = vma->vm_mm;
2467 	bool force_flush = false;
2468 
2469 	/*
2470 	 * The destination pmd shouldn't be established, free_pgtables()
2471 	 * should have released it; but move_page_tables() might have already
2472 	 * inserted a page table, if racing against shmem/file collapse.
2473 	 */
2474 	if (!pmd_none(*new_pmd)) {
2475 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
2476 		return false;
2477 	}
2478 
2479 	/*
2480 	 * We don't have to worry about the ordering of src and dst
2481 	 * ptlocks because exclusive mmap_lock prevents deadlock.
2482 	 */
2483 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
2484 	if (old_ptl) {
2485 		new_ptl = pmd_lockptr(mm, new_pmd);
2486 		if (new_ptl != old_ptl)
2487 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
2488 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
2489 		if (pmd_present(pmd))
2490 			force_flush = true;
2491 		VM_BUG_ON(!pmd_none(*new_pmd));
2492 
2493 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2494 			pgtable_t pgtable;
2495 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2496 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2497 		}
2498 		pmd = move_soft_dirty_pmd(pmd);
2499 		if (vma_has_uffd_without_event_remap(vma))
2500 			pmd = clear_uffd_wp_pmd(pmd);
2501 		set_pmd_at(mm, new_addr, new_pmd, pmd);
2502 		if (force_flush)
2503 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2504 		if (new_ptl != old_ptl)
2505 			spin_unlock(new_ptl);
2506 		spin_unlock(old_ptl);
2507 		return true;
2508 	}
2509 	return false;
2510 }
2511 
change_non_present_huge_pmd(struct mm_struct * mm,unsigned long addr,pmd_t * pmd,bool uffd_wp,bool uffd_wp_resolve)2512 static void change_non_present_huge_pmd(struct mm_struct *mm,
2513 		unsigned long addr, pmd_t *pmd, bool uffd_wp,
2514 		bool uffd_wp_resolve)
2515 {
2516 	softleaf_t entry = softleaf_from_pmd(*pmd);
2517 	const struct folio *folio = softleaf_to_folio(entry);
2518 	pmd_t newpmd;
2519 
2520 	VM_WARN_ON(!pmd_is_valid_softleaf(*pmd));
2521 	if (softleaf_is_migration_write(entry)) {
2522 		/*
2523 		 * A protection check is difficult so
2524 		 * just be safe and disable write
2525 		 */
2526 		if (folio_test_anon(folio))
2527 			entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2528 		else
2529 			entry = make_readable_migration_entry(swp_offset(entry));
2530 		newpmd = swp_entry_to_pmd(entry);
2531 		if (pmd_swp_soft_dirty(*pmd))
2532 			newpmd = pmd_swp_mksoft_dirty(newpmd);
2533 	} else if (softleaf_is_device_private_write(entry)) {
2534 		entry = make_readable_device_private_entry(swp_offset(entry));
2535 		newpmd = swp_entry_to_pmd(entry);
2536 	} else {
2537 		newpmd = *pmd;
2538 	}
2539 
2540 	if (uffd_wp)
2541 		newpmd = pmd_swp_mkuffd_wp(newpmd);
2542 	else if (uffd_wp_resolve)
2543 		newpmd = pmd_swp_clear_uffd_wp(newpmd);
2544 	if (!pmd_same(*pmd, newpmd))
2545 		set_pmd_at(mm, addr, pmd, newpmd);
2546 }
2547 
2548 /*
2549  * Returns
2550  *  - 0 if PMD could not be locked
2551  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2552  *      or if prot_numa but THP migration is not supported
2553  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
2554  */
change_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)2555 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2556 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2557 		    unsigned long cp_flags)
2558 {
2559 	struct mm_struct *mm = vma->vm_mm;
2560 	spinlock_t *ptl;
2561 	pmd_t oldpmd, entry;
2562 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2563 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2564 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2565 	int ret = 1;
2566 
2567 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2568 
2569 	if (prot_numa && !thp_migration_supported())
2570 		return 1;
2571 
2572 	ptl = __pmd_trans_huge_lock(pmd, vma);
2573 	if (!ptl)
2574 		return 0;
2575 
2576 	if (thp_migration_supported() && pmd_is_valid_softleaf(*pmd)) {
2577 		change_non_present_huge_pmd(mm, addr, pmd, uffd_wp,
2578 					    uffd_wp_resolve);
2579 		goto unlock;
2580 	}
2581 
2582 	if (prot_numa) {
2583 
2584 		/*
2585 		 * Avoid trapping faults against the zero page. The read-only
2586 		 * data is likely to be read-cached on the local CPU and
2587 		 * local/remote hits to the zero page are not interesting.
2588 		 */
2589 		if (is_huge_zero_pmd(*pmd))
2590 			goto unlock;
2591 
2592 		if (pmd_protnone(*pmd))
2593 			goto unlock;
2594 
2595 		if (!folio_can_map_prot_numa(pmd_folio(*pmd), vma,
2596 					     vma_is_single_threaded_private(vma)))
2597 			goto unlock;
2598 	}
2599 	/*
2600 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2601 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2602 	 * which is also under mmap_read_lock(mm):
2603 	 *
2604 	 *	CPU0:				CPU1:
2605 	 *				change_huge_pmd(prot_numa=1)
2606 	 *				 pmdp_huge_get_and_clear_notify()
2607 	 * madvise_dontneed()
2608 	 *  zap_pmd_range()
2609 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
2610 	 *   // skip the pmd
2611 	 *				 set_pmd_at();
2612 	 *				 // pmd is re-established
2613 	 *
2614 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2615 	 * which may break userspace.
2616 	 *
2617 	 * pmdp_invalidate_ad() is required to make sure we don't miss
2618 	 * dirty/young flags set by hardware.
2619 	 */
2620 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2621 
2622 	entry = pmd_modify(oldpmd, newprot);
2623 	if (uffd_wp)
2624 		entry = pmd_mkuffd_wp(entry);
2625 	else if (uffd_wp_resolve)
2626 		/*
2627 		 * Leave the write bit to be handled by PF interrupt
2628 		 * handler, then things like COW could be properly
2629 		 * handled.
2630 		 */
2631 		entry = pmd_clear_uffd_wp(entry);
2632 
2633 	/* See change_pte_range(). */
2634 	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2635 	    can_change_pmd_writable(vma, addr, entry))
2636 		entry = pmd_mkwrite(entry, vma);
2637 
2638 	ret = HPAGE_PMD_NR;
2639 	set_pmd_at(mm, addr, pmd, entry);
2640 
2641 	if (huge_pmd_needs_flush(oldpmd, entry))
2642 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2643 unlock:
2644 	spin_unlock(ptl);
2645 	return ret;
2646 }
2647 
2648 /*
2649  * Returns:
2650  *
2651  * - 0: if pud leaf changed from under us
2652  * - 1: if pud can be skipped
2653  * - HPAGE_PUD_NR: if pud was successfully processed
2654  */
2655 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
change_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pudp,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)2656 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2657 		    pud_t *pudp, unsigned long addr, pgprot_t newprot,
2658 		    unsigned long cp_flags)
2659 {
2660 	struct mm_struct *mm = vma->vm_mm;
2661 	pud_t oldpud, entry;
2662 	spinlock_t *ptl;
2663 
2664 	tlb_change_page_size(tlb, HPAGE_PUD_SIZE);
2665 
2666 	/* NUMA balancing doesn't apply to dax */
2667 	if (cp_flags & MM_CP_PROT_NUMA)
2668 		return 1;
2669 
2670 	/*
2671 	 * Huge entries on userfault-wp only works with anonymous, while we
2672 	 * don't have anonymous PUDs yet.
2673 	 */
2674 	if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL))
2675 		return 1;
2676 
2677 	ptl = __pud_trans_huge_lock(pudp, vma);
2678 	if (!ptl)
2679 		return 0;
2680 
2681 	/*
2682 	 * Can't clear PUD or it can race with concurrent zapping.  See
2683 	 * change_huge_pmd().
2684 	 */
2685 	oldpud = pudp_invalidate(vma, addr, pudp);
2686 	entry = pud_modify(oldpud, newprot);
2687 	set_pud_at(mm, addr, pudp, entry);
2688 	tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE);
2689 
2690 	spin_unlock(ptl);
2691 	return HPAGE_PUD_NR;
2692 }
2693 #endif
2694 
2695 #ifdef CONFIG_USERFAULTFD
2696 /*
2697  * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
2698  * the caller, but it must return after releasing the page_table_lock.
2699  * Just move the page from src_pmd to dst_pmd if possible.
2700  * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2701  * repeated by the caller, or other errors in case of failure.
2702  */
move_pages_huge_pmd(struct mm_struct * mm,pmd_t * dst_pmd,pmd_t * src_pmd,pmd_t dst_pmdval,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long dst_addr,unsigned long src_addr)2703 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2704 			struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2705 			unsigned long dst_addr, unsigned long src_addr)
2706 {
2707 	pmd_t _dst_pmd, src_pmdval;
2708 	struct page *src_page;
2709 	struct folio *src_folio;
2710 	spinlock_t *src_ptl, *dst_ptl;
2711 	pgtable_t src_pgtable;
2712 	struct mmu_notifier_range range;
2713 	int err = 0;
2714 
2715 	src_pmdval = *src_pmd;
2716 	src_ptl = pmd_lockptr(mm, src_pmd);
2717 
2718 	lockdep_assert_held(src_ptl);
2719 	vma_assert_locked(src_vma);
2720 	vma_assert_locked(dst_vma);
2721 
2722 	/* Sanity checks before the operation */
2723 	if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2724 	    WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2725 		spin_unlock(src_ptl);
2726 		return -EINVAL;
2727 	}
2728 
2729 	if (!pmd_trans_huge(src_pmdval)) {
2730 		spin_unlock(src_ptl);
2731 		if (pmd_is_migration_entry(src_pmdval)) {
2732 			pmd_migration_entry_wait(mm, &src_pmdval);
2733 			return -EAGAIN;
2734 		}
2735 		return -ENOENT;
2736 	}
2737 
2738 	src_page = pmd_page(src_pmdval);
2739 
2740 	if (!is_huge_zero_pmd(src_pmdval)) {
2741 		if (unlikely(!PageAnonExclusive(src_page))) {
2742 			spin_unlock(src_ptl);
2743 			return -EBUSY;
2744 		}
2745 
2746 		src_folio = page_folio(src_page);
2747 		folio_get(src_folio);
2748 	} else
2749 		src_folio = NULL;
2750 
2751 	spin_unlock(src_ptl);
2752 
2753 	flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2754 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2755 				src_addr + HPAGE_PMD_SIZE);
2756 	mmu_notifier_invalidate_range_start(&range);
2757 
2758 	if (src_folio)
2759 		folio_lock(src_folio);
2760 
2761 	dst_ptl = pmd_lockptr(mm, dst_pmd);
2762 	double_pt_lock(src_ptl, dst_ptl);
2763 	if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2764 		     !pmd_same(*dst_pmd, dst_pmdval))) {
2765 		err = -EAGAIN;
2766 		goto unlock_ptls;
2767 	}
2768 	if (src_folio) {
2769 		if (folio_maybe_dma_pinned(src_folio) ||
2770 		    !PageAnonExclusive(&src_folio->page)) {
2771 			err = -EBUSY;
2772 			goto unlock_ptls;
2773 		}
2774 
2775 		if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2776 		    WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2777 			err = -EBUSY;
2778 			goto unlock_ptls;
2779 		}
2780 
2781 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2782 		/* Folio got pinned from under us. Put it back and fail the move. */
2783 		if (folio_maybe_dma_pinned(src_folio)) {
2784 			set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2785 			err = -EBUSY;
2786 			goto unlock_ptls;
2787 		}
2788 
2789 		folio_move_anon_rmap(src_folio, dst_vma);
2790 		src_folio->index = linear_page_index(dst_vma, dst_addr);
2791 
2792 		_dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot);
2793 		/* Follow mremap() behavior and treat the entry dirty after the move */
2794 		_dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2795 	} else {
2796 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2797 		_dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot);
2798 	}
2799 	set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2800 
2801 	src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2802 	pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2803 unlock_ptls:
2804 	double_pt_unlock(src_ptl, dst_ptl);
2805 	/* unblock rmap walks */
2806 	if (src_folio)
2807 		folio_unlock(src_folio);
2808 	mmu_notifier_invalidate_range_end(&range);
2809 	if (src_folio)
2810 		folio_put(src_folio);
2811 	return err;
2812 }
2813 #endif /* CONFIG_USERFAULTFD */
2814 
2815 /*
2816  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2817  *
2818  * Note that if it returns page table lock pointer, this routine returns without
2819  * unlocking page table lock. So callers must unlock it.
2820  */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)2821 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2822 {
2823 	spinlock_t *ptl;
2824 
2825 	ptl = pmd_lock(vma->vm_mm, pmd);
2826 	if (likely(pmd_is_huge(*pmd)))
2827 		return ptl;
2828 	spin_unlock(ptl);
2829 	return NULL;
2830 }
2831 
2832 /*
2833  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2834  *
2835  * Note that if it returns page table lock pointer, this routine returns without
2836  * unlocking page table lock. So callers must unlock it.
2837  */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)2838 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2839 {
2840 	spinlock_t *ptl;
2841 
2842 	ptl = pud_lock(vma->vm_mm, pud);
2843 	if (likely(pud_trans_huge(*pud)))
2844 		return ptl;
2845 	spin_unlock(ptl);
2846 	return NULL;
2847 }
2848 
2849 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)2850 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2851 		 pud_t *pud, unsigned long addr)
2852 {
2853 	spinlock_t *ptl;
2854 	pud_t orig_pud;
2855 
2856 	ptl = __pud_trans_huge_lock(pud, vma);
2857 	if (!ptl)
2858 		return 0;
2859 
2860 	orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2861 	arch_check_zapped_pud(vma, orig_pud);
2862 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2863 	if (!vma_is_dax(vma) && vma_is_special_huge(vma)) {
2864 		spin_unlock(ptl);
2865 		/* No zero page support yet */
2866 	} else {
2867 		struct page *page = NULL;
2868 		struct folio *folio;
2869 
2870 		/* No support for anonymous PUD pages or migration yet */
2871 		VM_WARN_ON_ONCE(vma_is_anonymous(vma) ||
2872 				!pud_present(orig_pud));
2873 
2874 		page = pud_page(orig_pud);
2875 		folio = page_folio(page);
2876 		folio_remove_rmap_pud(folio, page, vma);
2877 		add_mm_counter(tlb->mm, mm_counter_file(folio), -HPAGE_PUD_NR);
2878 
2879 		spin_unlock(ptl);
2880 		tlb_remove_page_size(tlb, page, HPAGE_PUD_SIZE);
2881 	}
2882 	return 1;
2883 }
2884 
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)2885 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2886 		unsigned long haddr)
2887 {
2888 	struct folio *folio;
2889 	struct page *page;
2890 	pud_t old_pud;
2891 
2892 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2893 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2894 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2895 	VM_BUG_ON(!pud_trans_huge(*pud));
2896 
2897 	count_vm_event(THP_SPLIT_PUD);
2898 
2899 	old_pud = pudp_huge_clear_flush(vma, haddr, pud);
2900 
2901 	if (!vma_is_dax(vma))
2902 		return;
2903 
2904 	page = pud_page(old_pud);
2905 	folio = page_folio(page);
2906 
2907 	if (!folio_test_dirty(folio) && pud_dirty(old_pud))
2908 		folio_mark_dirty(folio);
2909 	if (!folio_test_referenced(folio) && pud_young(old_pud))
2910 		folio_set_referenced(folio);
2911 	folio_remove_rmap_pud(folio, page, vma);
2912 	folio_put(folio);
2913 	add_mm_counter(vma->vm_mm, mm_counter_file(folio),
2914 		-HPAGE_PUD_NR);
2915 }
2916 
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)2917 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2918 		unsigned long address)
2919 {
2920 	spinlock_t *ptl;
2921 	struct mmu_notifier_range range;
2922 
2923 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2924 				address & HPAGE_PUD_MASK,
2925 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2926 	mmu_notifier_invalidate_range_start(&range);
2927 	ptl = pud_lock(vma->vm_mm, pud);
2928 	if (unlikely(!pud_trans_huge(*pud)))
2929 		goto out;
2930 	__split_huge_pud_locked(vma, pud, range.start);
2931 
2932 out:
2933 	spin_unlock(ptl);
2934 	mmu_notifier_invalidate_range_end(&range);
2935 }
2936 #else
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)2937 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2938 		unsigned long address)
2939 {
2940 }
2941 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2942 
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)2943 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2944 		unsigned long haddr, pmd_t *pmd)
2945 {
2946 	struct mm_struct *mm = vma->vm_mm;
2947 	pgtable_t pgtable;
2948 	pmd_t _pmd, old_pmd;
2949 	unsigned long addr;
2950 	pte_t *pte;
2951 	int i;
2952 
2953 	/*
2954 	 * Leave pmd empty until pte is filled note that it is fine to delay
2955 	 * notification until mmu_notifier_invalidate_range_end() as we are
2956 	 * replacing a zero pmd write protected page with a zero pte write
2957 	 * protected page.
2958 	 *
2959 	 * See Documentation/mm/mmu_notifier.rst
2960 	 */
2961 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2962 
2963 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2964 	pmd_populate(mm, &_pmd, pgtable);
2965 
2966 	pte = pte_offset_map(&_pmd, haddr);
2967 	VM_BUG_ON(!pte);
2968 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2969 		pte_t entry;
2970 
2971 		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2972 		entry = pte_mkspecial(entry);
2973 		if (pmd_uffd_wp(old_pmd))
2974 			entry = pte_mkuffd_wp(entry);
2975 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2976 		set_pte_at(mm, addr, pte, entry);
2977 		pte++;
2978 	}
2979 	pte_unmap(pte - 1);
2980 	smp_wmb(); /* make pte visible before pmd */
2981 	pmd_populate(mm, pmd, pgtable);
2982 }
2983 
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)2984 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2985 		unsigned long haddr, bool freeze)
2986 {
2987 	struct mm_struct *mm = vma->vm_mm;
2988 	struct folio *folio;
2989 	struct page *page;
2990 	pgtable_t pgtable;
2991 	pmd_t old_pmd, _pmd;
2992 	bool soft_dirty, uffd_wp = false, young = false, write = false;
2993 	bool anon_exclusive = false, dirty = false;
2994 	unsigned long addr;
2995 	pte_t *pte;
2996 	int i;
2997 
2998 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2999 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
3000 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
3001 
3002 	VM_WARN_ON_ONCE(!pmd_is_valid_softleaf(*pmd) && !pmd_trans_huge(*pmd));
3003 
3004 	count_vm_event(THP_SPLIT_PMD);
3005 
3006 	if (!vma_is_anonymous(vma)) {
3007 		old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
3008 		/*
3009 		 * We are going to unmap this huge page. So
3010 		 * just go ahead and zap it
3011 		 */
3012 		if (arch_needs_pgtable_deposit())
3013 			zap_deposited_table(mm, pmd);
3014 		if (!vma_is_dax(vma) && vma_is_special_huge(vma))
3015 			return;
3016 		if (unlikely(pmd_is_migration_entry(old_pmd))) {
3017 			const softleaf_t old_entry = softleaf_from_pmd(old_pmd);
3018 
3019 			folio = softleaf_to_folio(old_entry);
3020 		} else if (is_huge_zero_pmd(old_pmd)) {
3021 			return;
3022 		} else {
3023 			page = pmd_page(old_pmd);
3024 			folio = page_folio(page);
3025 			if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
3026 				folio_mark_dirty(folio);
3027 			if (!folio_test_referenced(folio) && pmd_young(old_pmd))
3028 				folio_set_referenced(folio);
3029 			folio_remove_rmap_pmd(folio, page, vma);
3030 			folio_put(folio);
3031 		}
3032 		add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
3033 		return;
3034 	}
3035 
3036 	if (is_huge_zero_pmd(*pmd)) {
3037 		/*
3038 		 * FIXME: Do we want to invalidate secondary mmu by calling
3039 		 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
3040 		 * inside __split_huge_pmd() ?
3041 		 *
3042 		 * We are going from a zero huge page write protected to zero
3043 		 * small page also write protected so it does not seems useful
3044 		 * to invalidate secondary mmu at this time.
3045 		 */
3046 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
3047 	}
3048 
3049 	if (pmd_is_migration_entry(*pmd)) {
3050 		softleaf_t entry;
3051 
3052 		old_pmd = *pmd;
3053 		entry = softleaf_from_pmd(old_pmd);
3054 		page = softleaf_to_page(entry);
3055 		folio = page_folio(page);
3056 
3057 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
3058 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
3059 
3060 		write = softleaf_is_migration_write(entry);
3061 		if (PageAnon(page))
3062 			anon_exclusive = softleaf_is_migration_read_exclusive(entry);
3063 		young = softleaf_is_migration_young(entry);
3064 		dirty = softleaf_is_migration_dirty(entry);
3065 	} else if (pmd_is_device_private_entry(*pmd)) {
3066 		softleaf_t entry;
3067 
3068 		old_pmd = *pmd;
3069 		entry = softleaf_from_pmd(old_pmd);
3070 		page = softleaf_to_page(entry);
3071 		folio = page_folio(page);
3072 
3073 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
3074 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
3075 
3076 		write = softleaf_is_device_private_write(entry);
3077 		anon_exclusive = PageAnonExclusive(page);
3078 
3079 		/*
3080 		 * Device private THP should be treated the same as regular
3081 		 * folios w.r.t anon exclusive handling. See the comments for
3082 		 * folio handling and anon_exclusive below.
3083 		 */
3084 		if (freeze && anon_exclusive &&
3085 		    folio_try_share_anon_rmap_pmd(folio, page))
3086 			freeze = false;
3087 		if (!freeze) {
3088 			rmap_t rmap_flags = RMAP_NONE;
3089 
3090 			folio_ref_add(folio, HPAGE_PMD_NR - 1);
3091 			if (anon_exclusive)
3092 				rmap_flags |= RMAP_EXCLUSIVE;
3093 
3094 			folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
3095 						 vma, haddr, rmap_flags);
3096 		}
3097 	} else {
3098 		/*
3099 		 * Up to this point the pmd is present and huge and userland has
3100 		 * the whole access to the hugepage during the split (which
3101 		 * happens in place). If we overwrite the pmd with the not-huge
3102 		 * version pointing to the pte here (which of course we could if
3103 		 * all CPUs were bug free), userland could trigger a small page
3104 		 * size TLB miss on the small sized TLB while the hugepage TLB
3105 		 * entry is still established in the huge TLB. Some CPU doesn't
3106 		 * like that. See
3107 		 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
3108 		 * 383 on page 105. Intel should be safe but is also warns that
3109 		 * it's only safe if the permission and cache attributes of the
3110 		 * two entries loaded in the two TLB is identical (which should
3111 		 * be the case here). But it is generally safer to never allow
3112 		 * small and huge TLB entries for the same virtual address to be
3113 		 * loaded simultaneously. So instead of doing "pmd_populate();
3114 		 * flush_pmd_tlb_range();" we first mark the current pmd
3115 		 * notpresent (atomically because here the pmd_trans_huge must
3116 		 * remain set at all times on the pmd until the split is
3117 		 * complete for this pmd), then we flush the SMP TLB and finally
3118 		 * we write the non-huge version of the pmd entry with
3119 		 * pmd_populate.
3120 		 */
3121 		old_pmd = pmdp_invalidate(vma, haddr, pmd);
3122 		page = pmd_page(old_pmd);
3123 		folio = page_folio(page);
3124 		if (pmd_dirty(old_pmd)) {
3125 			dirty = true;
3126 			folio_set_dirty(folio);
3127 		}
3128 		write = pmd_write(old_pmd);
3129 		young = pmd_young(old_pmd);
3130 		soft_dirty = pmd_soft_dirty(old_pmd);
3131 		uffd_wp = pmd_uffd_wp(old_pmd);
3132 
3133 		VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
3134 		VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
3135 
3136 		/*
3137 		 * Without "freeze", we'll simply split the PMD, propagating the
3138 		 * PageAnonExclusive() flag for each PTE by setting it for
3139 		 * each subpage -- no need to (temporarily) clear.
3140 		 *
3141 		 * With "freeze" we want to replace mapped pages by
3142 		 * migration entries right away. This is only possible if we
3143 		 * managed to clear PageAnonExclusive() -- see
3144 		 * set_pmd_migration_entry().
3145 		 *
3146 		 * In case we cannot clear PageAnonExclusive(), split the PMD
3147 		 * only and let try_to_migrate_one() fail later.
3148 		 *
3149 		 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
3150 		 */
3151 		anon_exclusive = PageAnonExclusive(page);
3152 		if (freeze && anon_exclusive &&
3153 		    folio_try_share_anon_rmap_pmd(folio, page))
3154 			freeze = false;
3155 		if (!freeze) {
3156 			rmap_t rmap_flags = RMAP_NONE;
3157 
3158 			folio_ref_add(folio, HPAGE_PMD_NR - 1);
3159 			if (anon_exclusive)
3160 				rmap_flags |= RMAP_EXCLUSIVE;
3161 			folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
3162 						 vma, haddr, rmap_flags);
3163 		}
3164 	}
3165 
3166 	/*
3167 	 * Withdraw the table only after we mark the pmd entry invalid.
3168 	 * This's critical for some architectures (Power).
3169 	 */
3170 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
3171 	pmd_populate(mm, &_pmd, pgtable);
3172 
3173 	pte = pte_offset_map(&_pmd, haddr);
3174 	VM_BUG_ON(!pte);
3175 
3176 	/*
3177 	 * Note that NUMA hinting access restrictions are not transferred to
3178 	 * avoid any possibility of altering permissions across VMAs.
3179 	 */
3180 	if (freeze || pmd_is_migration_entry(old_pmd)) {
3181 		pte_t entry;
3182 		swp_entry_t swp_entry;
3183 
3184 		for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
3185 			if (write)
3186 				swp_entry = make_writable_migration_entry(
3187 							page_to_pfn(page + i));
3188 			else if (anon_exclusive)
3189 				swp_entry = make_readable_exclusive_migration_entry(
3190 							page_to_pfn(page + i));
3191 			else
3192 				swp_entry = make_readable_migration_entry(
3193 							page_to_pfn(page + i));
3194 			if (young)
3195 				swp_entry = make_migration_entry_young(swp_entry);
3196 			if (dirty)
3197 				swp_entry = make_migration_entry_dirty(swp_entry);
3198 			entry = swp_entry_to_pte(swp_entry);
3199 			if (soft_dirty)
3200 				entry = pte_swp_mksoft_dirty(entry);
3201 			if (uffd_wp)
3202 				entry = pte_swp_mkuffd_wp(entry);
3203 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3204 			set_pte_at(mm, addr, pte + i, entry);
3205 		}
3206 	} else if (pmd_is_device_private_entry(old_pmd)) {
3207 		pte_t entry;
3208 		swp_entry_t swp_entry;
3209 
3210 		for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
3211 			/*
3212 			 * anon_exclusive was already propagated to the relevant
3213 			 * pages corresponding to the pte entries when freeze
3214 			 * is false.
3215 			 */
3216 			if (write)
3217 				swp_entry = make_writable_device_private_entry(
3218 							page_to_pfn(page + i));
3219 			else
3220 				swp_entry = make_readable_device_private_entry(
3221 							page_to_pfn(page + i));
3222 			/*
3223 			 * Young and dirty bits are not progated via swp_entry
3224 			 */
3225 			entry = swp_entry_to_pte(swp_entry);
3226 			if (soft_dirty)
3227 				entry = pte_swp_mksoft_dirty(entry);
3228 			if (uffd_wp)
3229 				entry = pte_swp_mkuffd_wp(entry);
3230 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3231 			set_pte_at(mm, addr, pte + i, entry);
3232 		}
3233 	} else {
3234 		pte_t entry;
3235 
3236 		entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
3237 		if (write)
3238 			entry = pte_mkwrite(entry, vma);
3239 		if (!young)
3240 			entry = pte_mkold(entry);
3241 		/* NOTE: this may set soft-dirty too on some archs */
3242 		if (dirty)
3243 			entry = pte_mkdirty(entry);
3244 		if (soft_dirty)
3245 			entry = pte_mksoft_dirty(entry);
3246 		if (uffd_wp)
3247 			entry = pte_mkuffd_wp(entry);
3248 
3249 		for (i = 0; i < HPAGE_PMD_NR; i++)
3250 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3251 
3252 		set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
3253 	}
3254 	pte_unmap(pte);
3255 
3256 	if (!pmd_is_migration_entry(*pmd))
3257 		folio_remove_rmap_pmd(folio, page, vma);
3258 	if (freeze)
3259 		put_page(page);
3260 
3261 	smp_wmb(); /* make pte visible before pmd */
3262 	pmd_populate(mm, pmd, pgtable);
3263 }
3264 
split_huge_pmd_locked(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,bool freeze)3265 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
3266 			   pmd_t *pmd, bool freeze)
3267 {
3268 	VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE));
3269 	if (pmd_trans_huge(*pmd) || pmd_is_valid_softleaf(*pmd))
3270 		__split_huge_pmd_locked(vma, pmd, address, freeze);
3271 }
3272 
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze)3273 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
3274 		unsigned long address, bool freeze)
3275 {
3276 	spinlock_t *ptl;
3277 	struct mmu_notifier_range range;
3278 
3279 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
3280 				address & HPAGE_PMD_MASK,
3281 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
3282 	mmu_notifier_invalidate_range_start(&range);
3283 	ptl = pmd_lock(vma->vm_mm, pmd);
3284 	split_huge_pmd_locked(vma, range.start, pmd, freeze);
3285 	spin_unlock(ptl);
3286 	mmu_notifier_invalidate_range_end(&range);
3287 }
3288 
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze)3289 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3290 		bool freeze)
3291 {
3292 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
3293 
3294 	if (!pmd)
3295 		return;
3296 
3297 	__split_huge_pmd(vma, pmd, address, freeze);
3298 }
3299 
split_huge_pmd_if_needed(struct vm_area_struct * vma,unsigned long address)3300 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
3301 {
3302 	/*
3303 	 * If the new address isn't hpage aligned and it could previously
3304 	 * contain an hugepage: check if we need to split an huge pmd.
3305 	 */
3306 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
3307 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
3308 			 ALIGN(address, HPAGE_PMD_SIZE)))
3309 		split_huge_pmd_address(vma, address, false);
3310 }
3311 
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct vm_area_struct * next)3312 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3313 			   unsigned long start,
3314 			   unsigned long end,
3315 			   struct vm_area_struct *next)
3316 {
3317 	/* Check if we need to split start first. */
3318 	split_huge_pmd_if_needed(vma, start);
3319 
3320 	/* Check if we need to split end next. */
3321 	split_huge_pmd_if_needed(vma, end);
3322 
3323 	/* If we're incrementing next->vm_start, we might need to split it. */
3324 	if (next)
3325 		split_huge_pmd_if_needed(next, end);
3326 }
3327 
unmap_folio(struct folio * folio)3328 static void unmap_folio(struct folio *folio)
3329 {
3330 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
3331 		TTU_BATCH_FLUSH;
3332 
3333 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3334 
3335 	if (folio_test_pmd_mappable(folio))
3336 		ttu_flags |= TTU_SPLIT_HUGE_PMD;
3337 
3338 	/*
3339 	 * Anon pages need migration entries to preserve them, but file
3340 	 * pages can simply be left unmapped, then faulted back on demand.
3341 	 * If that is ever changed (perhaps for mlock), update remap_page().
3342 	 */
3343 	if (folio_test_anon(folio))
3344 		try_to_migrate(folio, ttu_flags);
3345 	else
3346 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
3347 
3348 	try_to_unmap_flush();
3349 }
3350 
__discard_anon_folio_pmd_locked(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct folio * folio)3351 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma,
3352 					    unsigned long addr, pmd_t *pmdp,
3353 					    struct folio *folio)
3354 {
3355 	struct mm_struct *mm = vma->vm_mm;
3356 	int ref_count, map_count;
3357 	pmd_t orig_pmd = *pmdp;
3358 
3359 	if (pmd_dirty(orig_pmd))
3360 		folio_set_dirty(folio);
3361 	if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
3362 		folio_set_swapbacked(folio);
3363 		return false;
3364 	}
3365 
3366 	orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp);
3367 
3368 	/*
3369 	 * Syncing against concurrent GUP-fast:
3370 	 * - clear PMD; barrier; read refcount
3371 	 * - inc refcount; barrier; read PMD
3372 	 */
3373 	smp_mb();
3374 
3375 	ref_count = folio_ref_count(folio);
3376 	map_count = folio_mapcount(folio);
3377 
3378 	/*
3379 	 * Order reads for folio refcount and dirty flag
3380 	 * (see comments in __remove_mapping()).
3381 	 */
3382 	smp_rmb();
3383 
3384 	/*
3385 	 * If the folio or its PMD is redirtied at this point, or if there
3386 	 * are unexpected references, we will give up to discard this folio
3387 	 * and remap it.
3388 	 *
3389 	 * The only folio refs must be one from isolation plus the rmap(s).
3390 	 */
3391 	if (pmd_dirty(orig_pmd))
3392 		folio_set_dirty(folio);
3393 	if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
3394 		folio_set_swapbacked(folio);
3395 		set_pmd_at(mm, addr, pmdp, orig_pmd);
3396 		return false;
3397 	}
3398 
3399 	if (ref_count != map_count + 1) {
3400 		set_pmd_at(mm, addr, pmdp, orig_pmd);
3401 		return false;
3402 	}
3403 
3404 	folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma);
3405 	zap_deposited_table(mm, pmdp);
3406 	add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR);
3407 	if (vma->vm_flags & VM_LOCKED)
3408 		mlock_drain_local();
3409 	folio_put(folio);
3410 
3411 	return true;
3412 }
3413 
unmap_huge_pmd_locked(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct folio * folio)3414 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
3415 			   pmd_t *pmdp, struct folio *folio)
3416 {
3417 	VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio);
3418 	VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
3419 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
3420 	VM_WARN_ON_FOLIO(folio_test_swapbacked(folio), folio);
3421 	VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE));
3422 
3423 	return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio);
3424 }
3425 
remap_page(struct folio * folio,unsigned long nr,int flags)3426 static void remap_page(struct folio *folio, unsigned long nr, int flags)
3427 {
3428 	int i = 0;
3429 
3430 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
3431 	if (!folio_test_anon(folio))
3432 		return;
3433 	for (;;) {
3434 		remove_migration_ptes(folio, folio, RMP_LOCKED | flags);
3435 		i += folio_nr_pages(folio);
3436 		if (i >= nr)
3437 			break;
3438 		folio = folio_next(folio);
3439 	}
3440 }
3441 
lru_add_split_folio(struct folio * folio,struct folio * new_folio,struct lruvec * lruvec,struct list_head * list)3442 static void lru_add_split_folio(struct folio *folio, struct folio *new_folio,
3443 		struct lruvec *lruvec, struct list_head *list)
3444 {
3445 	VM_BUG_ON_FOLIO(folio_test_lru(new_folio), folio);
3446 	lockdep_assert_held(&lruvec->lru_lock);
3447 
3448 	if (folio_is_device_private(folio))
3449 		return;
3450 
3451 	if (list) {
3452 		/* page reclaim is reclaiming a huge page */
3453 		VM_WARN_ON(folio_test_lru(folio));
3454 		folio_get(new_folio);
3455 		list_add_tail(&new_folio->lru, list);
3456 	} else {
3457 		/* head is still on lru (and we have it frozen) */
3458 		VM_WARN_ON(!folio_test_lru(folio));
3459 		if (folio_test_unevictable(folio))
3460 			new_folio->mlock_count = 0;
3461 		else
3462 			list_add_tail(&new_folio->lru, &folio->lru);
3463 		folio_set_lru(new_folio);
3464 	}
3465 }
3466 
3467 /* Racy check whether the huge page can be split */
can_split_folio(struct folio * folio,int caller_pins,int * pextra_pins)3468 bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
3469 {
3470 	int extra_pins;
3471 
3472 	/* Additional pins from page cache */
3473 	if (folio_test_anon(folio))
3474 		extra_pins = folio_test_swapcache(folio) ?
3475 				folio_nr_pages(folio) : 0;
3476 	else
3477 		extra_pins = folio_nr_pages(folio);
3478 	if (pextra_pins)
3479 		*pextra_pins = extra_pins;
3480 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins -
3481 					caller_pins;
3482 }
3483 
page_range_has_hwpoisoned(struct page * page,long nr_pages)3484 static bool page_range_has_hwpoisoned(struct page *page, long nr_pages)
3485 {
3486 	for (; nr_pages; page++, nr_pages--)
3487 		if (PageHWPoison(page))
3488 			return true;
3489 	return false;
3490 }
3491 
3492 /*
3493  * It splits @folio into @new_order folios and copies the @folio metadata to
3494  * all the resulting folios.
3495  */
__split_folio_to_order(struct folio * folio,int old_order,int new_order)3496 static void __split_folio_to_order(struct folio *folio, int old_order,
3497 		int new_order)
3498 {
3499 	/* Scan poisoned pages when split a poisoned folio to large folios */
3500 	const bool handle_hwpoison = folio_test_has_hwpoisoned(folio) && new_order;
3501 	long new_nr_pages = 1 << new_order;
3502 	long nr_pages = 1 << old_order;
3503 	long i;
3504 
3505 	folio_clear_has_hwpoisoned(folio);
3506 
3507 	/* Check first new_nr_pages since the loop below skips them */
3508 	if (handle_hwpoison &&
3509 	    page_range_has_hwpoisoned(folio_page(folio, 0), new_nr_pages))
3510 		folio_set_has_hwpoisoned(folio);
3511 	/*
3512 	 * Skip the first new_nr_pages, since the new folio from them have all
3513 	 * the flags from the original folio.
3514 	 */
3515 	for (i = new_nr_pages; i < nr_pages; i += new_nr_pages) {
3516 		struct page *new_head = &folio->page + i;
3517 		/*
3518 		 * Careful: new_folio is not a "real" folio before we cleared PageTail.
3519 		 * Don't pass it around before clear_compound_head().
3520 		 */
3521 		struct folio *new_folio = (struct folio *)new_head;
3522 
3523 		VM_BUG_ON_PAGE(atomic_read(&new_folio->_mapcount) != -1, new_head);
3524 
3525 		/*
3526 		 * Clone page flags before unfreezing refcount.
3527 		 *
3528 		 * After successful get_page_unless_zero() might follow flags change,
3529 		 * for example lock_page() which set PG_waiters.
3530 		 *
3531 		 * Note that for mapped sub-pages of an anonymous THP,
3532 		 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
3533 		 * the migration entry instead from where remap_page() will restore it.
3534 		 * We can still have PG_anon_exclusive set on effectively unmapped and
3535 		 * unreferenced sub-pages of an anonymous THP: we can simply drop
3536 		 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
3537 		 */
3538 		new_folio->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP;
3539 		new_folio->flags.f |= (folio->flags.f &
3540 				((1L << PG_referenced) |
3541 				 (1L << PG_swapbacked) |
3542 				 (1L << PG_swapcache) |
3543 				 (1L << PG_mlocked) |
3544 				 (1L << PG_uptodate) |
3545 				 (1L << PG_active) |
3546 				 (1L << PG_workingset) |
3547 				 (1L << PG_locked) |
3548 				 (1L << PG_unevictable) |
3549 #ifdef CONFIG_ARCH_USES_PG_ARCH_2
3550 				 (1L << PG_arch_2) |
3551 #endif
3552 #ifdef CONFIG_ARCH_USES_PG_ARCH_3
3553 				 (1L << PG_arch_3) |
3554 #endif
3555 				 (1L << PG_dirty) |
3556 				 LRU_GEN_MASK | LRU_REFS_MASK));
3557 
3558 		if (handle_hwpoison &&
3559 		    page_range_has_hwpoisoned(new_head, new_nr_pages))
3560 			folio_set_has_hwpoisoned(new_folio);
3561 
3562 		new_folio->mapping = folio->mapping;
3563 		new_folio->index = folio->index + i;
3564 
3565 		if (folio_test_swapcache(folio))
3566 			new_folio->swap.val = folio->swap.val + i;
3567 
3568 		/* Page flags must be visible before we make the page non-compound. */
3569 		smp_wmb();
3570 
3571 		/*
3572 		 * Clear PageTail before unfreezing page refcount.
3573 		 *
3574 		 * After successful get_page_unless_zero() might follow put_page()
3575 		 * which needs correct compound_head().
3576 		 */
3577 		clear_compound_head(new_head);
3578 		if (new_order) {
3579 			prep_compound_page(new_head, new_order);
3580 			folio_set_large_rmappable(new_folio);
3581 		}
3582 
3583 		if (folio_test_young(folio))
3584 			folio_set_young(new_folio);
3585 		if (folio_test_idle(folio))
3586 			folio_set_idle(new_folio);
3587 #ifdef CONFIG_MEMCG
3588 		new_folio->memcg_data = folio->memcg_data;
3589 #endif
3590 
3591 		folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
3592 	}
3593 
3594 	if (new_order)
3595 		folio_set_order(folio, new_order);
3596 	else
3597 		ClearPageCompound(&folio->page);
3598 }
3599 
3600 /**
3601  * __split_unmapped_folio() - splits an unmapped @folio to lower order folios in
3602  * two ways: uniform split or non-uniform split.
3603  * @folio: the to-be-split folio
3604  * @new_order: the smallest order of the after split folios (since buddy
3605  *             allocator like split generates folios with orders from @folio's
3606  *             order - 1 to new_order).
3607  * @split_at: in buddy allocator like split, the folio containing @split_at
3608  *            will be split until its order becomes @new_order.
3609  * @xas: xa_state pointing to folio->mapping->i_pages and locked by caller
3610  * @mapping: @folio->mapping
3611  * @split_type: if the split is uniform or not (buddy allocator like split)
3612  *
3613  *
3614  * 1. uniform split: the given @folio into multiple @new_order small folios,
3615  *    where all small folios have the same order. This is done when
3616  *    split_type is SPLIT_TYPE_UNIFORM.
3617  * 2. buddy allocator like (non-uniform) split: the given @folio is split into
3618  *    half and one of the half (containing the given page) is split into half
3619  *    until the given @folio's order becomes @new_order. This is done when
3620  *    split_type is SPLIT_TYPE_NON_UNIFORM.
3621  *
3622  * The high level flow for these two methods are:
3623  *
3624  * 1. uniform split: @xas is split with no expectation of failure and a single
3625  *    __split_folio_to_order() is called to split the @folio into @new_order
3626  *    along with stats update.
3627  * 2. non-uniform split: folio_order - @new_order calls to
3628  *    __split_folio_to_order() are expected to be made in a for loop to split
3629  *    the @folio to one lower order at a time. The folio containing @split_at
3630  *    is split in each iteration. @xas is split into half in each iteration and
3631  *    can fail. A failed @xas split leaves split folios as is without merging
3632  *    them back.
3633  *
3634  * After splitting, the caller's folio reference will be transferred to the
3635  * folio containing @split_at. The caller needs to unlock and/or free
3636  * after-split folios if necessary.
3637  *
3638  * Return: 0 - successful, <0 - failed (if -ENOMEM is returned, @folio might be
3639  * split but not to @new_order, the caller needs to check)
3640  */
__split_unmapped_folio(struct folio * folio,int new_order,struct page * split_at,struct xa_state * xas,struct address_space * mapping,enum split_type split_type)3641 static int __split_unmapped_folio(struct folio *folio, int new_order,
3642 		struct page *split_at, struct xa_state *xas,
3643 		struct address_space *mapping, enum split_type split_type)
3644 {
3645 	const bool is_anon = folio_test_anon(folio);
3646 	int old_order = folio_order(folio);
3647 	int start_order = split_type == SPLIT_TYPE_UNIFORM ? new_order : old_order - 1;
3648 	int split_order;
3649 
3650 	/*
3651 	 * split to new_order one order at a time. For uniform split,
3652 	 * folio is split to new_order directly.
3653 	 */
3654 	for (split_order = start_order;
3655 	     split_order >= new_order;
3656 	     split_order--) {
3657 		int nr_new_folios = 1UL << (old_order - split_order);
3658 
3659 		/* order-1 anonymous folio is not supported */
3660 		if (is_anon && split_order == 1)
3661 			continue;
3662 
3663 		if (mapping) {
3664 			/*
3665 			 * uniform split has xas_split_alloc() called before
3666 			 * irq is disabled to allocate enough memory, whereas
3667 			 * non-uniform split can handle ENOMEM.
3668 			 */
3669 			if (split_type == SPLIT_TYPE_UNIFORM)
3670 				xas_split(xas, folio, old_order);
3671 			else {
3672 				xas_set_order(xas, folio->index, split_order);
3673 				xas_try_split(xas, folio, old_order);
3674 				if (xas_error(xas))
3675 					return xas_error(xas);
3676 			}
3677 		}
3678 
3679 		folio_split_memcg_refs(folio, old_order, split_order);
3680 		split_page_owner(&folio->page, old_order, split_order);
3681 		pgalloc_tag_split(folio, old_order, split_order);
3682 		__split_folio_to_order(folio, old_order, split_order);
3683 
3684 		if (is_anon) {
3685 			mod_mthp_stat(old_order, MTHP_STAT_NR_ANON, -1);
3686 			mod_mthp_stat(split_order, MTHP_STAT_NR_ANON, nr_new_folios);
3687 		}
3688 		/*
3689 		 * If uniform split, the process is complete.
3690 		 * If non-uniform, continue splitting the folio at @split_at
3691 		 * as long as the next @split_order is >= @new_order.
3692 		 */
3693 		folio = page_folio(split_at);
3694 		old_order = split_order;
3695 	}
3696 
3697 	return 0;
3698 }
3699 
folio_split_supported(struct folio * folio,unsigned int new_order,enum split_type split_type,bool warns)3700 bool folio_split_supported(struct folio *folio, unsigned int new_order,
3701 		enum split_type split_type, bool warns)
3702 {
3703 	if (folio_test_anon(folio)) {
3704 		/* order-1 is not supported for anonymous THP. */
3705 		VM_WARN_ONCE(warns && new_order == 1,
3706 				"Cannot split to order-1 folio");
3707 		if (new_order == 1)
3708 			return false;
3709 	} else if (split_type == SPLIT_TYPE_NON_UNIFORM || new_order) {
3710 		if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3711 		    !mapping_large_folio_support(folio->mapping)) {
3712 			/*
3713 			 * We can always split a folio down to a single page
3714 			 * (new_order == 0) uniformly.
3715 			 *
3716 			 * For any other scenario
3717 			 *   a) uniform split targeting a large folio
3718 			 *      (new_order > 0)
3719 			 *   b) any non-uniform split
3720 			 * we must confirm that the file system supports large
3721 			 * folios.
3722 			 *
3723 			 * Note that we might still have THPs in such
3724 			 * mappings, which is created from khugepaged when
3725 			 * CONFIG_READ_ONLY_THP_FOR_FS is enabled. But in that
3726 			 * case, the mapping does not actually support large
3727 			 * folios properly.
3728 			 */
3729 			VM_WARN_ONCE(warns,
3730 				"Cannot split file folio to non-0 order");
3731 			return false;
3732 		}
3733 	}
3734 
3735 	/*
3736 	 * swapcache folio could only be split to order 0
3737 	 *
3738 	 * non-uniform split creates after-split folios with orders from
3739 	 * folio_order(folio) - 1 to new_order, making it not suitable for any
3740 	 * swapcache folio split. Only uniform split to order-0 can be used
3741 	 * here.
3742 	 */
3743 	if ((split_type == SPLIT_TYPE_NON_UNIFORM || new_order) && folio_test_swapcache(folio)) {
3744 		VM_WARN_ONCE(warns,
3745 			"Cannot split swapcache folio to non-0 order");
3746 		return false;
3747 	}
3748 
3749 	return true;
3750 }
3751 
__folio_freeze_and_split_unmapped(struct folio * folio,unsigned int new_order,struct page * split_at,struct xa_state * xas,struct address_space * mapping,bool do_lru,struct list_head * list,enum split_type split_type,pgoff_t end,int * nr_shmem_dropped,int extra_pins)3752 static int __folio_freeze_and_split_unmapped(struct folio *folio, unsigned int new_order,
3753 					     struct page *split_at, struct xa_state *xas,
3754 					     struct address_space *mapping, bool do_lru,
3755 					     struct list_head *list, enum split_type split_type,
3756 					     pgoff_t end, int *nr_shmem_dropped, int extra_pins)
3757 {
3758 	struct folio *end_folio = folio_next(folio);
3759 	struct folio *new_folio, *next;
3760 	int old_order = folio_order(folio);
3761 	int ret = 0;
3762 	struct deferred_split *ds_queue;
3763 
3764 	VM_WARN_ON_ONCE(!mapping && end);
3765 	/* Prevent deferred_split_scan() touching ->_refcount */
3766 	ds_queue = folio_split_queue_lock(folio);
3767 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
3768 		struct swap_cluster_info *ci = NULL;
3769 		struct lruvec *lruvec;
3770 		int expected_refs;
3771 
3772 		if (old_order > 1) {
3773 			if (!list_empty(&folio->_deferred_list)) {
3774 				ds_queue->split_queue_len--;
3775 				/*
3776 				 * Reinitialize page_deferred_list after removing the
3777 				 * page from the split_queue, otherwise a subsequent
3778 				 * split will see list corruption when checking the
3779 				 * page_deferred_list.
3780 				 */
3781 				list_del_init(&folio->_deferred_list);
3782 			}
3783 			if (folio_test_partially_mapped(folio)) {
3784 				folio_clear_partially_mapped(folio);
3785 				mod_mthp_stat(old_order,
3786 					MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3787 			}
3788 		}
3789 		split_queue_unlock(ds_queue);
3790 		if (mapping) {
3791 			int nr = folio_nr_pages(folio);
3792 
3793 			if (folio_test_pmd_mappable(folio) &&
3794 			    new_order < HPAGE_PMD_ORDER) {
3795 				if (folio_test_swapbacked(folio)) {
3796 					lruvec_stat_mod_folio(folio,
3797 							NR_SHMEM_THPS, -nr);
3798 				} else {
3799 					lruvec_stat_mod_folio(folio,
3800 							NR_FILE_THPS, -nr);
3801 					filemap_nr_thps_dec(mapping);
3802 				}
3803 			}
3804 		}
3805 
3806 		if (folio_test_swapcache(folio)) {
3807 			if (mapping) {
3808 				VM_WARN_ON_ONCE_FOLIO(mapping, folio);
3809 				return -EINVAL;
3810 			}
3811 
3812 			ci = swap_cluster_get_and_lock(folio);
3813 		}
3814 
3815 		/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
3816 		if (do_lru)
3817 			lruvec = folio_lruvec_lock(folio);
3818 
3819 		ret = __split_unmapped_folio(folio, new_order, split_at, xas,
3820 					     mapping, split_type);
3821 
3822 		/*
3823 		 * Unfreeze after-split folios and put them back to the right
3824 		 * list. @folio should be kept frozon until page cache
3825 		 * entries are updated with all the other after-split folios
3826 		 * to prevent others seeing stale page cache entries.
3827 		 * As a result, new_folio starts from the next folio of
3828 		 * @folio.
3829 		 */
3830 		for (new_folio = folio_next(folio); new_folio != end_folio;
3831 		     new_folio = next) {
3832 			unsigned long nr_pages = folio_nr_pages(new_folio);
3833 
3834 			next = folio_next(new_folio);
3835 
3836 			zone_device_private_split_cb(folio, new_folio);
3837 
3838 			expected_refs = folio_expected_ref_count(new_folio) + 1;
3839 			folio_ref_unfreeze(new_folio, expected_refs);
3840 
3841 			if (do_lru)
3842 				lru_add_split_folio(folio, new_folio, lruvec, list);
3843 
3844 			/*
3845 			 * Anonymous folio with swap cache.
3846 			 * NOTE: shmem in swap cache is not supported yet.
3847 			 */
3848 			if (ci) {
3849 				__swap_cache_replace_folio(ci, folio, new_folio);
3850 				continue;
3851 			}
3852 
3853 			/* Anonymous folio without swap cache */
3854 			if (!mapping)
3855 				continue;
3856 
3857 			/* Add the new folio to the page cache. */
3858 			if (new_folio->index < end) {
3859 				__xa_store(&mapping->i_pages, new_folio->index,
3860 					   new_folio, 0);
3861 				continue;
3862 			}
3863 
3864 			VM_WARN_ON_ONCE(!nr_shmem_dropped);
3865 			/* Drop folio beyond EOF: ->index >= end */
3866 			if (shmem_mapping(mapping) && nr_shmem_dropped)
3867 				*nr_shmem_dropped += nr_pages;
3868 			else if (folio_test_clear_dirty(new_folio))
3869 				folio_account_cleaned(
3870 					new_folio, inode_to_wb(mapping->host));
3871 			__filemap_remove_folio(new_folio, NULL);
3872 			folio_put_refs(new_folio, nr_pages);
3873 		}
3874 
3875 		zone_device_private_split_cb(folio, NULL);
3876 		/*
3877 		 * Unfreeze @folio only after all page cache entries, which
3878 		 * used to point to it, have been updated with new folios.
3879 		 * Otherwise, a parallel folio_try_get() can grab @folio
3880 		 * and its caller can see stale page cache entries.
3881 		 */
3882 		expected_refs = folio_expected_ref_count(folio) + 1;
3883 		folio_ref_unfreeze(folio, expected_refs);
3884 
3885 		if (do_lru)
3886 			unlock_page_lruvec(lruvec);
3887 
3888 		if (ci)
3889 			swap_cluster_unlock(ci);
3890 	} else {
3891 		split_queue_unlock(ds_queue);
3892 		return -EAGAIN;
3893 	}
3894 
3895 	return ret;
3896 }
3897 
3898 /**
3899  * __folio_split() - split a folio at @split_at to a @new_order folio
3900  * @folio: folio to split
3901  * @new_order: the order of the new folio
3902  * @split_at: a page within the new folio
3903  * @lock_at: a page within @folio to be left locked to caller
3904  * @list: after-split folios will be put on it if non NULL
3905  * @split_type: perform uniform split or not (non-uniform split)
3906  *
3907  * It calls __split_unmapped_folio() to perform uniform and non-uniform split.
3908  * It is in charge of checking whether the split is supported or not and
3909  * preparing @folio for __split_unmapped_folio().
3910  *
3911  * After splitting, the after-split folio containing @lock_at remains locked
3912  * and others are unlocked:
3913  * 1. for uniform split, @lock_at points to one of @folio's subpages;
3914  * 2. for buddy allocator like (non-uniform) split, @lock_at points to @folio.
3915  *
3916  * Return: 0 - successful, <0 - failed (if -ENOMEM is returned, @folio might be
3917  * split but not to @new_order, the caller needs to check)
3918  */
__folio_split(struct folio * folio,unsigned int new_order,struct page * split_at,struct page * lock_at,struct list_head * list,enum split_type split_type)3919 static int __folio_split(struct folio *folio, unsigned int new_order,
3920 		struct page *split_at, struct page *lock_at,
3921 		struct list_head *list, enum split_type split_type)
3922 {
3923 	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
3924 	struct folio *end_folio = folio_next(folio);
3925 	bool is_anon = folio_test_anon(folio);
3926 	struct address_space *mapping = NULL;
3927 	struct anon_vma *anon_vma = NULL;
3928 	int old_order = folio_order(folio);
3929 	struct folio *new_folio, *next;
3930 	int nr_shmem_dropped = 0;
3931 	int remap_flags = 0;
3932 	int extra_pins, ret;
3933 	pgoff_t end = 0;
3934 	bool is_hzp;
3935 
3936 	VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio);
3937 	VM_WARN_ON_ONCE_FOLIO(!folio_test_large(folio), folio);
3938 
3939 	if (folio != page_folio(split_at) || folio != page_folio(lock_at))
3940 		return -EINVAL;
3941 
3942 	/*
3943 	 * Folios that just got truncated cannot get split. Signal to the
3944 	 * caller that there was a race.
3945 	 *
3946 	 * TODO: this will also currently refuse shmem folios that are in the
3947 	 * swapcache.
3948 	 */
3949 	if (!is_anon && !folio->mapping)
3950 		return -EBUSY;
3951 
3952 	if (new_order >= old_order)
3953 		return -EINVAL;
3954 
3955 	if (!folio_split_supported(folio, new_order, split_type, /* warn = */ true))
3956 		return -EINVAL;
3957 
3958 	is_hzp = is_huge_zero_folio(folio);
3959 	if (is_hzp) {
3960 		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
3961 		return -EBUSY;
3962 	}
3963 
3964 	if (folio_test_writeback(folio))
3965 		return -EBUSY;
3966 
3967 	if (is_anon) {
3968 		/*
3969 		 * The caller does not necessarily hold an mmap_lock that would
3970 		 * prevent the anon_vma disappearing so we first we take a
3971 		 * reference to it and then lock the anon_vma for write. This
3972 		 * is similar to folio_lock_anon_vma_read except the write lock
3973 		 * is taken to serialise against parallel split or collapse
3974 		 * operations.
3975 		 */
3976 		anon_vma = folio_get_anon_vma(folio);
3977 		if (!anon_vma) {
3978 			ret = -EBUSY;
3979 			goto out;
3980 		}
3981 		anon_vma_lock_write(anon_vma);
3982 		mapping = NULL;
3983 	} else {
3984 		unsigned int min_order;
3985 		gfp_t gfp;
3986 
3987 		mapping = folio->mapping;
3988 		min_order = mapping_min_folio_order(folio->mapping);
3989 		if (new_order < min_order) {
3990 			ret = -EINVAL;
3991 			goto out;
3992 		}
3993 
3994 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3995 							GFP_RECLAIM_MASK);
3996 
3997 		if (!filemap_release_folio(folio, gfp)) {
3998 			ret = -EBUSY;
3999 			goto out;
4000 		}
4001 
4002 		if (split_type == SPLIT_TYPE_UNIFORM) {
4003 			xas_set_order(&xas, folio->index, new_order);
4004 			xas_split_alloc(&xas, folio, old_order, gfp);
4005 			if (xas_error(&xas)) {
4006 				ret = xas_error(&xas);
4007 				goto out;
4008 			}
4009 		}
4010 
4011 		anon_vma = NULL;
4012 		i_mmap_lock_read(mapping);
4013 
4014 		/*
4015 		 *__split_unmapped_folio() may need to trim off pages beyond
4016 		 * EOF: but on 32-bit, i_size_read() takes an irq-unsafe
4017 		 * seqlock, which cannot be nested inside the page tree lock.
4018 		 * So note end now: i_size itself may be changed at any moment,
4019 		 * but folio lock is good enough to serialize the trimming.
4020 		 */
4021 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
4022 		if (shmem_mapping(mapping))
4023 			end = shmem_fallocend(mapping->host, end);
4024 	}
4025 
4026 	/*
4027 	 * Racy check if we can split the page, before unmap_folio() will
4028 	 * split PMDs
4029 	 */
4030 	if (!can_split_folio(folio, 1, &extra_pins)) {
4031 		ret = -EAGAIN;
4032 		goto out_unlock;
4033 	}
4034 
4035 	unmap_folio(folio);
4036 
4037 	/* block interrupt reentry in xa_lock and spinlock */
4038 	local_irq_disable();
4039 	if (mapping) {
4040 		/*
4041 		 * Check if the folio is present in page cache.
4042 		 * We assume all tail are present too, if folio is there.
4043 		 */
4044 		xas_lock(&xas);
4045 		xas_reset(&xas);
4046 		if (xas_load(&xas) != folio) {
4047 			ret = -EAGAIN;
4048 			goto fail;
4049 		}
4050 	}
4051 
4052 	ret = __folio_freeze_and_split_unmapped(folio, new_order, split_at, &xas, mapping,
4053 						true, list, split_type, end, &nr_shmem_dropped,
4054 						extra_pins);
4055 fail:
4056 	if (mapping)
4057 		xas_unlock(&xas);
4058 
4059 	local_irq_enable();
4060 
4061 	if (nr_shmem_dropped)
4062 		shmem_uncharge(mapping->host, nr_shmem_dropped);
4063 
4064 	if (!ret && is_anon && !folio_is_device_private(folio))
4065 		remap_flags = RMP_USE_SHARED_ZEROPAGE;
4066 
4067 	remap_page(folio, 1 << old_order, remap_flags);
4068 
4069 	/*
4070 	 * Unlock all after-split folios except the one containing
4071 	 * @lock_at page. If @folio is not split, it will be kept locked.
4072 	 */
4073 	for (new_folio = folio; new_folio != end_folio; new_folio = next) {
4074 		next = folio_next(new_folio);
4075 		if (new_folio == page_folio(lock_at))
4076 			continue;
4077 
4078 		folio_unlock(new_folio);
4079 		/*
4080 		 * Subpages may be freed if there wasn't any mapping
4081 		 * like if add_to_swap() is running on a lru page that
4082 		 * had its mapping zapped. And freeing these pages
4083 		 * requires taking the lru_lock so we do the put_page
4084 		 * of the tail pages after the split is complete.
4085 		 */
4086 		free_folio_and_swap_cache(new_folio);
4087 	}
4088 
4089 out_unlock:
4090 	if (anon_vma) {
4091 		anon_vma_unlock_write(anon_vma);
4092 		put_anon_vma(anon_vma);
4093 	}
4094 	if (mapping)
4095 		i_mmap_unlock_read(mapping);
4096 out:
4097 	xas_destroy(&xas);
4098 	if (old_order == HPAGE_PMD_ORDER)
4099 		count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
4100 	count_mthp_stat(old_order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED);
4101 	return ret;
4102 }
4103 
4104 /**
4105  * folio_split_unmapped() - split a large anon folio that is already unmapped
4106  * @folio: folio to split
4107  * @new_order: the order of folios after split
4108  *
4109  * This function is a helper for splitting folios that have already been
4110  * unmapped. The use case is that the device or the CPU can refuse to migrate
4111  * THP pages in the middle of migration, due to allocation issues on either
4112  * side.
4113  *
4114  * anon_vma_lock is not required to be held, mmap_read_lock() or
4115  * mmap_write_lock() should be held. @folio is expected to be locked by the
4116  * caller. device-private and non device-private folios are supported along
4117  * with folios that are in the swapcache. @folio should also be unmapped and
4118  * isolated from LRU (if applicable)
4119  *
4120  * Upon return, the folio is not remapped, split folios are not added to LRU,
4121  * free_folio_and_swap_cache() is not called, and new folios remain locked.
4122  *
4123  * Return: 0 on success, -EAGAIN if the folio cannot be split (e.g., due to
4124  *         insufficient reference count or extra pins).
4125  */
folio_split_unmapped(struct folio * folio,unsigned int new_order)4126 int folio_split_unmapped(struct folio *folio, unsigned int new_order)
4127 {
4128 	int extra_pins, ret = 0;
4129 
4130 	VM_WARN_ON_ONCE_FOLIO(folio_mapped(folio), folio);
4131 	VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio);
4132 	VM_WARN_ON_ONCE_FOLIO(!folio_test_large(folio), folio);
4133 	VM_WARN_ON_ONCE_FOLIO(!folio_test_anon(folio), folio);
4134 
4135 	if (!can_split_folio(folio, 1, &extra_pins))
4136 		return -EAGAIN;
4137 
4138 	local_irq_disable();
4139 	ret = __folio_freeze_and_split_unmapped(folio, new_order, &folio->page, NULL,
4140 						NULL, false, NULL, SPLIT_TYPE_UNIFORM,
4141 						0, NULL, extra_pins);
4142 	local_irq_enable();
4143 	return ret;
4144 }
4145 
4146 /*
4147  * This function splits a large folio into smaller folios of order @new_order.
4148  * @page can point to any page of the large folio to split. The split operation
4149  * does not change the position of @page.
4150  *
4151  * Prerequisites:
4152  *
4153  * 1) The caller must hold a reference on the @page's owning folio, also known
4154  *    as the large folio.
4155  *
4156  * 2) The large folio must be locked.
4157  *
4158  * 3) The folio must not be pinned. Any unexpected folio references, including
4159  *    GUP pins, will result in the folio not getting split; instead, the caller
4160  *    will receive an -EAGAIN.
4161  *
4162  * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
4163  *    supported for non-file-backed folios, because folio->_deferred_list, which
4164  *    is used by partially mapped folios, is stored in subpage 2, but an order-1
4165  *    folio only has subpages 0 and 1. File-backed order-1 folios are supported,
4166  *    since they do not use _deferred_list.
4167  *
4168  * After splitting, the caller's folio reference will be transferred to @page,
4169  * resulting in a raised refcount of @page after this call. The other pages may
4170  * be freed if they are not mapped.
4171  *
4172  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
4173  *
4174  * Pages in @new_order will inherit the mapping, flags, and so on from the
4175  * huge page.
4176  *
4177  * Returns 0 if the huge page was split successfully.
4178  *
4179  * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
4180  * the folio was concurrently removed from the page cache.
4181  *
4182  * Returns -EBUSY when trying to split the huge zeropage, if the folio is
4183  * under writeback, if fs-specific folio metadata cannot currently be
4184  * released, or if some unexpected race happened (e.g., anon VMA disappeared,
4185  * truncation).
4186  *
4187  * Callers should ensure that the order respects the address space mapping
4188  * min-order if one is set for non-anonymous folios.
4189  *
4190  * Returns -EINVAL when trying to split to an order that is incompatible
4191  * with the folio. Splitting to order 0 is compatible with all folios.
4192  */
__split_huge_page_to_list_to_order(struct page * page,struct list_head * list,unsigned int new_order)4193 int __split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
4194 				     unsigned int new_order)
4195 {
4196 	struct folio *folio = page_folio(page);
4197 
4198 	return __folio_split(folio, new_order, &folio->page, page, list,
4199 			     SPLIT_TYPE_UNIFORM);
4200 }
4201 
4202 /**
4203  * folio_split() - split a folio at @split_at to a @new_order folio
4204  * @folio: folio to split
4205  * @new_order: the order of the new folio
4206  * @split_at: a page within the new folio
4207  * @list: after-split folios are added to @list if not null, otherwise to LRU
4208  *        list
4209  *
4210  * It has the same prerequisites and returns as
4211  * split_huge_page_to_list_to_order().
4212  *
4213  * Split a folio at @split_at to a new_order folio, leave the
4214  * remaining subpages of the original folio as large as possible. For example,
4215  * in the case of splitting an order-9 folio at its third order-3 subpages to
4216  * an order-3 folio, there are 2^(9-3)=64 order-3 subpages in the order-9 folio.
4217  * After the split, there will be a group of folios with different orders and
4218  * the new folio containing @split_at is marked in bracket:
4219  * [order-4, {order-3}, order-3, order-5, order-6, order-7, order-8].
4220  *
4221  * After split, folio is left locked for caller.
4222  *
4223  * Return: 0 - successful, <0 - failed (if -ENOMEM is returned, @folio might be
4224  * split but not to @new_order, the caller needs to check)
4225  */
folio_split(struct folio * folio,unsigned int new_order,struct page * split_at,struct list_head * list)4226 int folio_split(struct folio *folio, unsigned int new_order,
4227 		struct page *split_at, struct list_head *list)
4228 {
4229 	return __folio_split(folio, new_order, split_at, &folio->page, list,
4230 			     SPLIT_TYPE_NON_UNIFORM);
4231 }
4232 
min_order_for_split(struct folio * folio)4233 int min_order_for_split(struct folio *folio)
4234 {
4235 	if (folio_test_anon(folio))
4236 		return 0;
4237 
4238 	if (!folio->mapping) {
4239 		if (folio_test_pmd_mappable(folio))
4240 			count_vm_event(THP_SPLIT_PAGE_FAILED);
4241 		return -EBUSY;
4242 	}
4243 
4244 	return mapping_min_folio_order(folio->mapping);
4245 }
4246 
split_folio_to_list(struct folio * folio,struct list_head * list)4247 int split_folio_to_list(struct folio *folio, struct list_head *list)
4248 {
4249 	return split_huge_page_to_list_to_order(&folio->page, list, 0);
4250 }
4251 
4252 /*
4253  * __folio_unqueue_deferred_split() is not to be called directly:
4254  * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h
4255  * limits its calls to those folios which may have a _deferred_list for
4256  * queueing THP splits, and that list is (racily observed to be) non-empty.
4257  *
4258  * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is
4259  * zero: because even when split_queue_lock is held, a non-empty _deferred_list
4260  * might be in use on deferred_split_scan()'s unlocked on-stack list.
4261  *
4262  * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is
4263  * therefore important to unqueue deferred split before changing folio memcg.
4264  */
__folio_unqueue_deferred_split(struct folio * folio)4265 bool __folio_unqueue_deferred_split(struct folio *folio)
4266 {
4267 	struct deferred_split *ds_queue;
4268 	unsigned long flags;
4269 	bool unqueued = false;
4270 
4271 	WARN_ON_ONCE(folio_ref_count(folio));
4272 	WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg_charged(folio));
4273 
4274 	ds_queue = folio_split_queue_lock_irqsave(folio, &flags);
4275 	if (!list_empty(&folio->_deferred_list)) {
4276 		ds_queue->split_queue_len--;
4277 		if (folio_test_partially_mapped(folio)) {
4278 			folio_clear_partially_mapped(folio);
4279 			mod_mthp_stat(folio_order(folio),
4280 				      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
4281 		}
4282 		list_del_init(&folio->_deferred_list);
4283 		unqueued = true;
4284 	}
4285 	split_queue_unlock_irqrestore(ds_queue, flags);
4286 
4287 	return unqueued;	/* useful for debug warnings */
4288 }
4289 
4290 /* partially_mapped=false won't clear PG_partially_mapped folio flag */
deferred_split_folio(struct folio * folio,bool partially_mapped)4291 void deferred_split_folio(struct folio *folio, bool partially_mapped)
4292 {
4293 	struct deferred_split *ds_queue;
4294 	unsigned long flags;
4295 
4296 	/*
4297 	 * Order 1 folios have no space for a deferred list, but we also
4298 	 * won't waste much memory by not adding them to the deferred list.
4299 	 */
4300 	if (folio_order(folio) <= 1)
4301 		return;
4302 
4303 	if (!partially_mapped && !split_underused_thp)
4304 		return;
4305 
4306 	/*
4307 	 * Exclude swapcache: originally to avoid a corrupt deferred split
4308 	 * queue. Nowadays that is fully prevented by memcg1_swapout();
4309 	 * but if page reclaim is already handling the same folio, it is
4310 	 * unnecessary to handle it again in the shrinker, so excluding
4311 	 * swapcache here may still be a useful optimization.
4312 	 */
4313 	if (folio_test_swapcache(folio))
4314 		return;
4315 
4316 	ds_queue = folio_split_queue_lock_irqsave(folio, &flags);
4317 	if (partially_mapped) {
4318 		if (!folio_test_partially_mapped(folio)) {
4319 			folio_set_partially_mapped(folio);
4320 			if (folio_test_pmd_mappable(folio))
4321 				count_vm_event(THP_DEFERRED_SPLIT_PAGE);
4322 			count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED);
4323 			mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1);
4324 
4325 		}
4326 	} else {
4327 		/* partially mapped folios cannot become non-partially mapped */
4328 		VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio);
4329 	}
4330 	if (list_empty(&folio->_deferred_list)) {
4331 		struct mem_cgroup *memcg;
4332 
4333 		memcg = folio_split_queue_memcg(folio, ds_queue);
4334 		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
4335 		ds_queue->split_queue_len++;
4336 		if (memcg)
4337 			set_shrinker_bit(memcg, folio_nid(folio),
4338 					 shrinker_id(deferred_split_shrinker));
4339 	}
4340 	split_queue_unlock_irqrestore(ds_queue, flags);
4341 }
4342 
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)4343 static unsigned long deferred_split_count(struct shrinker *shrink,
4344 		struct shrink_control *sc)
4345 {
4346 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
4347 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
4348 
4349 #ifdef CONFIG_MEMCG
4350 	if (sc->memcg)
4351 		ds_queue = &sc->memcg->deferred_split_queue;
4352 #endif
4353 	return READ_ONCE(ds_queue->split_queue_len);
4354 }
4355 
thp_underused(struct folio * folio)4356 static bool thp_underused(struct folio *folio)
4357 {
4358 	int num_zero_pages = 0, num_filled_pages = 0;
4359 	int i;
4360 
4361 	if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1)
4362 		return false;
4363 
4364 	if (folio_contain_hwpoisoned_page(folio))
4365 		return false;
4366 
4367 	for (i = 0; i < folio_nr_pages(folio); i++) {
4368 		if (pages_identical(folio_page(folio, i), ZERO_PAGE(0))) {
4369 			if (++num_zero_pages > khugepaged_max_ptes_none)
4370 				return true;
4371 		} else {
4372 			/*
4373 			 * Another path for early exit once the number
4374 			 * of non-zero filled pages exceeds threshold.
4375 			 */
4376 			if (++num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none)
4377 				return false;
4378 		}
4379 	}
4380 	return false;
4381 }
4382 
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)4383 static unsigned long deferred_split_scan(struct shrinker *shrink,
4384 		struct shrink_control *sc)
4385 {
4386 	struct deferred_split *ds_queue;
4387 	unsigned long flags;
4388 	struct folio *folio, *next;
4389 	int split = 0, i;
4390 	struct folio_batch fbatch;
4391 
4392 	folio_batch_init(&fbatch);
4393 
4394 retry:
4395 	ds_queue = split_queue_lock_irqsave(sc->nid, sc->memcg, &flags);
4396 	/* Take pin on all head pages to avoid freeing them under us */
4397 	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
4398 							_deferred_list) {
4399 		if (folio_try_get(folio)) {
4400 			folio_batch_add(&fbatch, folio);
4401 		} else if (folio_test_partially_mapped(folio)) {
4402 			/* We lost race with folio_put() */
4403 			folio_clear_partially_mapped(folio);
4404 			mod_mthp_stat(folio_order(folio),
4405 				      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
4406 		}
4407 		list_del_init(&folio->_deferred_list);
4408 		ds_queue->split_queue_len--;
4409 		if (!--sc->nr_to_scan)
4410 			break;
4411 		if (!folio_batch_space(&fbatch))
4412 			break;
4413 	}
4414 	split_queue_unlock_irqrestore(ds_queue, flags);
4415 
4416 	for (i = 0; i < folio_batch_count(&fbatch); i++) {
4417 		bool did_split = false;
4418 		bool underused = false;
4419 		struct deferred_split *fqueue;
4420 
4421 		folio = fbatch.folios[i];
4422 		if (!folio_test_partially_mapped(folio)) {
4423 			/*
4424 			 * See try_to_map_unused_to_zeropage(): we cannot
4425 			 * optimize zero-filled pages after splitting an
4426 			 * mlocked folio.
4427 			 */
4428 			if (folio_test_mlocked(folio))
4429 				goto next;
4430 			underused = thp_underused(folio);
4431 			if (!underused)
4432 				goto next;
4433 		}
4434 		if (!folio_trylock(folio))
4435 			goto next;
4436 		if (!split_folio(folio)) {
4437 			did_split = true;
4438 			if (underused)
4439 				count_vm_event(THP_UNDERUSED_SPLIT_PAGE);
4440 			split++;
4441 		}
4442 		folio_unlock(folio);
4443 next:
4444 		if (did_split || !folio_test_partially_mapped(folio))
4445 			continue;
4446 		/*
4447 		 * Only add back to the queue if folio is partially mapped.
4448 		 * If thp_underused returns false, or if split_folio fails
4449 		 * in the case it was underused, then consider it used and
4450 		 * don't add it back to split_queue.
4451 		 */
4452 		fqueue = folio_split_queue_lock_irqsave(folio, &flags);
4453 		if (list_empty(&folio->_deferred_list)) {
4454 			list_add_tail(&folio->_deferred_list, &fqueue->split_queue);
4455 			fqueue->split_queue_len++;
4456 		}
4457 		split_queue_unlock_irqrestore(fqueue, flags);
4458 	}
4459 	folios_put(&fbatch);
4460 
4461 	if (sc->nr_to_scan && !list_empty(&ds_queue->split_queue)) {
4462 		cond_resched();
4463 		goto retry;
4464 	}
4465 
4466 	/*
4467 	 * Stop shrinker if we didn't split any page, but the queue is empty.
4468 	 * This can happen if pages were freed under us.
4469 	 */
4470 	if (!split && list_empty(&ds_queue->split_queue))
4471 		return SHRINK_STOP;
4472 	return split;
4473 }
4474 
4475 #ifdef CONFIG_MEMCG
reparent_deferred_split_queue(struct mem_cgroup * memcg)4476 void reparent_deferred_split_queue(struct mem_cgroup *memcg)
4477 {
4478 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4479 	struct deferred_split *ds_queue = &memcg->deferred_split_queue;
4480 	struct deferred_split *parent_ds_queue = &parent->deferred_split_queue;
4481 	int nid;
4482 
4483 	spin_lock_irq(&ds_queue->split_queue_lock);
4484 	spin_lock_nested(&parent_ds_queue->split_queue_lock, SINGLE_DEPTH_NESTING);
4485 
4486 	if (!ds_queue->split_queue_len)
4487 		goto unlock;
4488 
4489 	list_splice_tail_init(&ds_queue->split_queue, &parent_ds_queue->split_queue);
4490 	parent_ds_queue->split_queue_len += ds_queue->split_queue_len;
4491 	ds_queue->split_queue_len = 0;
4492 
4493 	for_each_node(nid)
4494 		set_shrinker_bit(parent, nid, shrinker_id(deferred_split_shrinker));
4495 
4496 unlock:
4497 	spin_unlock(&parent_ds_queue->split_queue_lock);
4498 	spin_unlock_irq(&ds_queue->split_queue_lock);
4499 }
4500 #endif
4501 
4502 #ifdef CONFIG_DEBUG_FS
split_huge_pages_all(void)4503 static void split_huge_pages_all(void)
4504 {
4505 	struct zone *zone;
4506 	struct page *page;
4507 	struct folio *folio;
4508 	unsigned long pfn, max_zone_pfn;
4509 	unsigned long total = 0, split = 0;
4510 
4511 	pr_debug("Split all THPs\n");
4512 	for_each_zone(zone) {
4513 		if (!managed_zone(zone))
4514 			continue;
4515 		max_zone_pfn = zone_end_pfn(zone);
4516 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
4517 			int nr_pages;
4518 
4519 			page = pfn_to_online_page(pfn);
4520 			if (!page || PageTail(page))
4521 				continue;
4522 			folio = page_folio(page);
4523 			if (!folio_try_get(folio))
4524 				continue;
4525 
4526 			if (unlikely(page_folio(page) != folio))
4527 				goto next;
4528 
4529 			if (zone != folio_zone(folio))
4530 				goto next;
4531 
4532 			if (!folio_test_large(folio)
4533 				|| folio_test_hugetlb(folio)
4534 				|| !folio_test_lru(folio))
4535 				goto next;
4536 
4537 			total++;
4538 			folio_lock(folio);
4539 			nr_pages = folio_nr_pages(folio);
4540 			if (!split_folio(folio))
4541 				split++;
4542 			pfn += nr_pages - 1;
4543 			folio_unlock(folio);
4544 next:
4545 			folio_put(folio);
4546 			cond_resched();
4547 		}
4548 	}
4549 
4550 	pr_debug("%lu of %lu THP split\n", split, total);
4551 }
4552 
vma_not_suitable_for_thp_split(struct vm_area_struct * vma)4553 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
4554 {
4555 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
4556 		    is_vm_hugetlb_page(vma);
4557 }
4558 
split_huge_pages_pid(int pid,unsigned long vaddr_start,unsigned long vaddr_end,unsigned int new_order,long in_folio_offset)4559 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
4560 				unsigned long vaddr_end, unsigned int new_order,
4561 				long in_folio_offset)
4562 {
4563 	int ret = 0;
4564 	struct task_struct *task;
4565 	struct mm_struct *mm;
4566 	unsigned long total = 0, split = 0;
4567 	unsigned long addr;
4568 
4569 	vaddr_start &= PAGE_MASK;
4570 	vaddr_end &= PAGE_MASK;
4571 
4572 	task = find_get_task_by_vpid(pid);
4573 	if (!task) {
4574 		ret = -ESRCH;
4575 		goto out;
4576 	}
4577 
4578 	/* Find the mm_struct */
4579 	mm = get_task_mm(task);
4580 	put_task_struct(task);
4581 
4582 	if (!mm) {
4583 		ret = -EINVAL;
4584 		goto out;
4585 	}
4586 
4587 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx], new_order: %u, in_folio_offset: %ld\n",
4588 		 pid, vaddr_start, vaddr_end, new_order, in_folio_offset);
4589 
4590 	mmap_read_lock(mm);
4591 	/*
4592 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
4593 	 * table filled with PTE-mapped THPs, each of which is distinct.
4594 	 */
4595 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
4596 		struct vm_area_struct *vma = vma_lookup(mm, addr);
4597 		struct folio_walk fw;
4598 		struct folio *folio;
4599 		struct address_space *mapping;
4600 		unsigned int target_order = new_order;
4601 
4602 		if (!vma)
4603 			break;
4604 
4605 		/* skip special VMA and hugetlb VMA */
4606 		if (vma_not_suitable_for_thp_split(vma)) {
4607 			addr = vma->vm_end;
4608 			continue;
4609 		}
4610 
4611 		folio = folio_walk_start(&fw, vma, addr, 0);
4612 		if (!folio)
4613 			continue;
4614 
4615 		if (!is_transparent_hugepage(folio))
4616 			goto next;
4617 
4618 		if (!folio_test_anon(folio)) {
4619 			mapping = folio->mapping;
4620 			target_order = max(new_order,
4621 					   mapping_min_folio_order(mapping));
4622 		}
4623 
4624 		if (target_order >= folio_order(folio))
4625 			goto next;
4626 
4627 		total++;
4628 		/*
4629 		 * For folios with private, split_huge_page_to_list_to_order()
4630 		 * will try to drop it before split and then check if the folio
4631 		 * can be split or not. So skip the check here.
4632 		 */
4633 		if (!folio_test_private(folio) &&
4634 		    !can_split_folio(folio, 0, NULL))
4635 			goto next;
4636 
4637 		if (!folio_trylock(folio))
4638 			goto next;
4639 		folio_get(folio);
4640 		folio_walk_end(&fw, vma);
4641 
4642 		if (!folio_test_anon(folio) && folio->mapping != mapping)
4643 			goto unlock;
4644 
4645 		if (in_folio_offset < 0 ||
4646 		    in_folio_offset >= folio_nr_pages(folio)) {
4647 			if (!split_folio_to_order(folio, target_order))
4648 				split++;
4649 		} else {
4650 			struct page *split_at = folio_page(folio,
4651 							   in_folio_offset);
4652 			if (!folio_split(folio, target_order, split_at, NULL))
4653 				split++;
4654 		}
4655 
4656 unlock:
4657 
4658 		folio_unlock(folio);
4659 		folio_put(folio);
4660 
4661 		cond_resched();
4662 		continue;
4663 next:
4664 		folio_walk_end(&fw, vma);
4665 		cond_resched();
4666 	}
4667 	mmap_read_unlock(mm);
4668 	mmput(mm);
4669 
4670 	pr_debug("%lu of %lu THP split\n", split, total);
4671 
4672 out:
4673 	return ret;
4674 }
4675 
split_huge_pages_in_file(const char * file_path,pgoff_t off_start,pgoff_t off_end,unsigned int new_order,long in_folio_offset)4676 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
4677 				pgoff_t off_end, unsigned int new_order,
4678 				long in_folio_offset)
4679 {
4680 	struct filename *file;
4681 	struct file *candidate;
4682 	struct address_space *mapping;
4683 	int ret = -EINVAL;
4684 	pgoff_t index;
4685 	int nr_pages = 1;
4686 	unsigned long total = 0, split = 0;
4687 	unsigned int min_order;
4688 	unsigned int target_order;
4689 
4690 	file = getname_kernel(file_path);
4691 	if (IS_ERR(file))
4692 		return ret;
4693 
4694 	candidate = file_open_name(file, O_RDONLY, 0);
4695 	if (IS_ERR(candidate))
4696 		goto out;
4697 
4698 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx], new_order: %u, in_folio_offset: %ld\n",
4699 		 file_path, off_start, off_end, new_order, in_folio_offset);
4700 
4701 	mapping = candidate->f_mapping;
4702 	min_order = mapping_min_folio_order(mapping);
4703 	target_order = max(new_order, min_order);
4704 
4705 	for (index = off_start; index < off_end; index += nr_pages) {
4706 		struct folio *folio = filemap_get_folio(mapping, index);
4707 
4708 		nr_pages = 1;
4709 		if (IS_ERR(folio))
4710 			continue;
4711 
4712 		if (!folio_test_large(folio))
4713 			goto next;
4714 
4715 		total++;
4716 		nr_pages = folio_nr_pages(folio);
4717 
4718 		if (target_order >= folio_order(folio))
4719 			goto next;
4720 
4721 		if (!folio_trylock(folio))
4722 			goto next;
4723 
4724 		if (folio->mapping != mapping)
4725 			goto unlock;
4726 
4727 		if (in_folio_offset < 0 || in_folio_offset >= nr_pages) {
4728 			if (!split_folio_to_order(folio, target_order))
4729 				split++;
4730 		} else {
4731 			struct page *split_at = folio_page(folio,
4732 							   in_folio_offset);
4733 			if (!folio_split(folio, target_order, split_at, NULL))
4734 				split++;
4735 		}
4736 
4737 unlock:
4738 		folio_unlock(folio);
4739 next:
4740 		folio_put(folio);
4741 		cond_resched();
4742 	}
4743 
4744 	filp_close(candidate, NULL);
4745 	ret = 0;
4746 
4747 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
4748 out:
4749 	putname(file);
4750 	return ret;
4751 }
4752 
4753 #define MAX_INPUT_BUF_SZ 255
4754 
split_huge_pages_write(struct file * file,const char __user * buf,size_t count,loff_t * ppops)4755 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
4756 				size_t count, loff_t *ppops)
4757 {
4758 	static DEFINE_MUTEX(split_debug_mutex);
4759 	ssize_t ret;
4760 	/*
4761 	 * hold pid, start_vaddr, end_vaddr, new_order or
4762 	 * file_path, off_start, off_end, new_order
4763 	 */
4764 	char input_buf[MAX_INPUT_BUF_SZ];
4765 	int pid;
4766 	unsigned long vaddr_start, vaddr_end;
4767 	unsigned int new_order = 0;
4768 	long in_folio_offset = -1;
4769 
4770 	ret = mutex_lock_interruptible(&split_debug_mutex);
4771 	if (ret)
4772 		return ret;
4773 
4774 	ret = -EFAULT;
4775 
4776 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
4777 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
4778 		goto out;
4779 
4780 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
4781 
4782 	if (input_buf[0] == '/') {
4783 		char *tok;
4784 		char *tok_buf = input_buf;
4785 		char file_path[MAX_INPUT_BUF_SZ];
4786 		pgoff_t off_start = 0, off_end = 0;
4787 		size_t input_len = strlen(input_buf);
4788 
4789 		tok = strsep(&tok_buf, ",");
4790 		if (tok && tok_buf) {
4791 			strscpy(file_path, tok);
4792 		} else {
4793 			ret = -EINVAL;
4794 			goto out;
4795 		}
4796 
4797 		ret = sscanf(tok_buf, "0x%lx,0x%lx,%d,%ld", &off_start, &off_end,
4798 				&new_order, &in_folio_offset);
4799 		if (ret != 2 && ret != 3 && ret != 4) {
4800 			ret = -EINVAL;
4801 			goto out;
4802 		}
4803 		ret = split_huge_pages_in_file(file_path, off_start, off_end,
4804 				new_order, in_folio_offset);
4805 		if (!ret)
4806 			ret = input_len;
4807 
4808 		goto out;
4809 	}
4810 
4811 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d,%ld", &pid, &vaddr_start,
4812 			&vaddr_end, &new_order, &in_folio_offset);
4813 	if (ret == 1 && pid == 1) {
4814 		split_huge_pages_all();
4815 		ret = strlen(input_buf);
4816 		goto out;
4817 	} else if (ret != 3 && ret != 4 && ret != 5) {
4818 		ret = -EINVAL;
4819 		goto out;
4820 	}
4821 
4822 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order,
4823 			in_folio_offset);
4824 	if (!ret)
4825 		ret = strlen(input_buf);
4826 out:
4827 	mutex_unlock(&split_debug_mutex);
4828 	return ret;
4829 
4830 }
4831 
4832 static const struct file_operations split_huge_pages_fops = {
4833 	.owner	 = THIS_MODULE,
4834 	.write	 = split_huge_pages_write,
4835 };
4836 
split_huge_pages_debugfs(void)4837 static int __init split_huge_pages_debugfs(void)
4838 {
4839 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
4840 			    &split_huge_pages_fops);
4841 	return 0;
4842 }
4843 late_initcall(split_huge_pages_debugfs);
4844 #endif
4845 
4846 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)4847 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
4848 		struct page *page)
4849 {
4850 	struct folio *folio = page_folio(page);
4851 	struct vm_area_struct *vma = pvmw->vma;
4852 	struct mm_struct *mm = vma->vm_mm;
4853 	unsigned long address = pvmw->address;
4854 	bool anon_exclusive;
4855 	pmd_t pmdval;
4856 	swp_entry_t entry;
4857 	pmd_t pmdswp;
4858 
4859 	if (!(pvmw->pmd && !pvmw->pte))
4860 		return 0;
4861 
4862 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
4863 	if (unlikely(!pmd_present(*pvmw->pmd)))
4864 		pmdval = pmdp_huge_get_and_clear(vma->vm_mm, address, pvmw->pmd);
4865 	else
4866 		pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
4867 
4868 	/* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
4869 	anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
4870 	if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
4871 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
4872 		return -EBUSY;
4873 	}
4874 
4875 	if (pmd_dirty(pmdval))
4876 		folio_mark_dirty(folio);
4877 	if (pmd_write(pmdval))
4878 		entry = make_writable_migration_entry(page_to_pfn(page));
4879 	else if (anon_exclusive)
4880 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
4881 	else
4882 		entry = make_readable_migration_entry(page_to_pfn(page));
4883 	if (pmd_young(pmdval))
4884 		entry = make_migration_entry_young(entry);
4885 	if (pmd_dirty(pmdval))
4886 		entry = make_migration_entry_dirty(entry);
4887 	pmdswp = swp_entry_to_pmd(entry);
4888 	if (pmd_soft_dirty(pmdval))
4889 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
4890 	if (pmd_uffd_wp(pmdval))
4891 		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
4892 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
4893 	folio_remove_rmap_pmd(folio, page, vma);
4894 	folio_put(folio);
4895 	trace_set_migration_pmd(address, pmd_val(pmdswp));
4896 
4897 	return 0;
4898 }
4899 
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)4900 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
4901 {
4902 	struct folio *folio = page_folio(new);
4903 	struct vm_area_struct *vma = pvmw->vma;
4904 	struct mm_struct *mm = vma->vm_mm;
4905 	unsigned long address = pvmw->address;
4906 	unsigned long haddr = address & HPAGE_PMD_MASK;
4907 	pmd_t pmde;
4908 	softleaf_t entry;
4909 
4910 	if (!(pvmw->pmd && !pvmw->pte))
4911 		return;
4912 
4913 	entry = softleaf_from_pmd(*pvmw->pmd);
4914 	folio_get(folio);
4915 	pmde = folio_mk_pmd(folio, READ_ONCE(vma->vm_page_prot));
4916 
4917 	if (pmd_swp_soft_dirty(*pvmw->pmd))
4918 		pmde = pmd_mksoft_dirty(pmde);
4919 	if (softleaf_is_migration_write(entry))
4920 		pmde = pmd_mkwrite(pmde, vma);
4921 	if (pmd_swp_uffd_wp(*pvmw->pmd))
4922 		pmde = pmd_mkuffd_wp(pmde);
4923 	if (!softleaf_is_migration_young(entry))
4924 		pmde = pmd_mkold(pmde);
4925 	/* NOTE: this may contain setting soft-dirty on some archs */
4926 	if (folio_test_dirty(folio) && softleaf_is_migration_dirty(entry))
4927 		pmde = pmd_mkdirty(pmde);
4928 
4929 	if (folio_is_device_private(folio)) {
4930 		swp_entry_t entry;
4931 
4932 		if (pmd_write(pmde))
4933 			entry = make_writable_device_private_entry(
4934 							page_to_pfn(new));
4935 		else
4936 			entry = make_readable_device_private_entry(
4937 							page_to_pfn(new));
4938 		pmde = swp_entry_to_pmd(entry);
4939 
4940 		if (pmd_swp_soft_dirty(*pvmw->pmd))
4941 			pmde = pmd_swp_mksoft_dirty(pmde);
4942 		if (pmd_swp_uffd_wp(*pvmw->pmd))
4943 			pmde = pmd_swp_mkuffd_wp(pmde);
4944 	}
4945 
4946 	if (folio_test_anon(folio)) {
4947 		rmap_t rmap_flags = RMAP_NONE;
4948 
4949 		if (!softleaf_is_migration_read(entry))
4950 			rmap_flags |= RMAP_EXCLUSIVE;
4951 
4952 		folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
4953 	} else {
4954 		folio_add_file_rmap_pmd(folio, new, vma);
4955 	}
4956 	VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
4957 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
4958 
4959 	/* No need to invalidate - it was non-present before */
4960 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
4961 	trace_remove_migration_pmd(address, pmd_val(pmde));
4962 }
4963 #endif
4964