1 /*-
2 * Copyright (c) 1998 Michael Smith <msmith@freebsd.org>
3 * Copyright (c) 1998 Peter Wemm <peter@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 #include <sys/param.h>
29 #include <sys/endian.h>
30 #include <sys/exec.h>
31 #include <sys/linker.h>
32 #include <sys/module.h>
33 #include <machine/elf.h>
34 #include <stand.h>
35
36 #include "bootstrap.h"
37 #include "modinfo.h"
38
39 #define COPYOUT(s,d,l) archsw.arch_copyout((vm_offset_t)(s), d, l)
40
41 #if defined(__i386__) && __ELF_WORD_SIZE == 64
42 #undef ELF_TARG_CLASS
43 #undef ELF_TARG_MACH
44 #define ELF_TARG_CLASS ELFCLASS64
45 #define ELF_TARG_MACH EM_X86_64
46 #endif
47
48 typedef struct elf_file {
49 Elf_Phdr *ph;
50 Elf_Ehdr *ehdr;
51 Elf_Sym *symtab;
52 Elf_Hashelt *hashtab;
53 Elf_Hashelt nbuckets;
54 Elf_Hashelt nchains;
55 Elf_Hashelt *buckets;
56 Elf_Hashelt *chains;
57 Elf_Rel *rel;
58 size_t relsz;
59 Elf_Rela *rela;
60 size_t relasz;
61 char *strtab;
62 size_t strsz;
63 int fd;
64 caddr_t firstpage;
65 size_t firstlen;
66 int kernel;
67 uint64_t off;
68 #ifdef LOADER_VERIEXEC_VECTX
69 struct vectx *vctx;
70 #endif
71 } *elf_file_t;
72
73 #ifdef LOADER_VERIEXEC_VECTX
74 #define VECTX_HANDLE(ef) (ef)->vctx
75 #else
76 #define VECTX_HANDLE(ef) (ef)->fd
77 #endif
78
79 static int __elfN(loadimage)(struct preloaded_file *mp, elf_file_t ef,
80 uint64_t loadaddr);
81 static int __elfN(lookup_symbol)(elf_file_t ef, const char* name,
82 Elf_Sym *sym, unsigned char type);
83 static int __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef,
84 Elf_Addr p, void *val, size_t len);
85 static int __elfN(parse_modmetadata)(struct preloaded_file *mp, elf_file_t ef,
86 Elf_Addr p_start, Elf_Addr p_end);
87 static symaddr_fn __elfN(symaddr);
88 static char *fake_modname(const char *name);
89
90 uint64_t __elfN(relocation_offset) = 0;
91
92 #ifdef __powerpc__
93 extern void elf_wrong_field_size(void);
94 #define CONVERT_FIELD(b, f, e) \
95 switch (sizeof((b)->f)) { \
96 case 2: \
97 (b)->f = e ## 16toh((b)->f); \
98 break; \
99 case 4: \
100 (b)->f = e ## 32toh((b)->f); \
101 break; \
102 case 8: \
103 (b)->f = e ## 64toh((b)->f); \
104 break; \
105 default: \
106 /* Force a link time error. */ \
107 elf_wrong_field_size(); \
108 break; \
109 }
110
111 #define CONVERT_SWITCH(h, d, f) \
112 switch ((h)->e_ident[EI_DATA]) { \
113 case ELFDATA2MSB: \
114 f(d, be); \
115 break; \
116 case ELFDATA2LSB: \
117 f(d, le); \
118 break; \
119 default: \
120 return (EINVAL); \
121 }
122
123
elf_header_convert(Elf_Ehdr * ehdr)124 static int elf_header_convert(Elf_Ehdr *ehdr)
125 {
126 /*
127 * Fixup ELF header endianness.
128 *
129 * The Xhdr structure was loaded using block read call to optimize file
130 * accesses. It might happen, that the endianness of the system memory
131 * is different that endianness of the ELF header. Swap fields here to
132 * guarantee that Xhdr always contain valid data regardless of
133 * architecture.
134 */
135 #define HEADER_FIELDS(b, e) \
136 CONVERT_FIELD(b, e_type, e); \
137 CONVERT_FIELD(b, e_machine, e); \
138 CONVERT_FIELD(b, e_version, e); \
139 CONVERT_FIELD(b, e_entry, e); \
140 CONVERT_FIELD(b, e_phoff, e); \
141 CONVERT_FIELD(b, e_shoff, e); \
142 CONVERT_FIELD(b, e_flags, e); \
143 CONVERT_FIELD(b, e_ehsize, e); \
144 CONVERT_FIELD(b, e_phentsize, e); \
145 CONVERT_FIELD(b, e_phnum, e); \
146 CONVERT_FIELD(b, e_shentsize, e); \
147 CONVERT_FIELD(b, e_shnum, e); \
148 CONVERT_FIELD(b, e_shstrndx, e)
149
150 CONVERT_SWITCH(ehdr, ehdr, HEADER_FIELDS);
151
152 #undef HEADER_FIELDS
153
154 return (0);
155 }
156
elf_program_header_convert(const Elf_Ehdr * ehdr,Elf_Phdr * phdr)157 static int elf_program_header_convert(const Elf_Ehdr *ehdr, Elf_Phdr *phdr)
158 {
159 #define PROGRAM_HEADER_FIELDS(b, e) \
160 CONVERT_FIELD(b, p_type, e); \
161 CONVERT_FIELD(b, p_flags, e); \
162 CONVERT_FIELD(b, p_offset, e); \
163 CONVERT_FIELD(b, p_vaddr, e); \
164 CONVERT_FIELD(b, p_paddr, e); \
165 CONVERT_FIELD(b, p_filesz, e); \
166 CONVERT_FIELD(b, p_memsz, e); \
167 CONVERT_FIELD(b, p_align, e)
168
169 CONVERT_SWITCH(ehdr, phdr, PROGRAM_HEADER_FIELDS);
170
171 #undef PROGRAM_HEADER_FIELDS
172
173 return (0);
174 }
175
elf_section_header_convert(const Elf_Ehdr * ehdr,Elf_Shdr * shdr)176 static int elf_section_header_convert(const Elf_Ehdr *ehdr, Elf_Shdr *shdr)
177 {
178 #define SECTION_HEADER_FIELDS(b, e) \
179 CONVERT_FIELD(b, sh_name, e); \
180 CONVERT_FIELD(b, sh_type, e); \
181 CONVERT_FIELD(b, sh_link, e); \
182 CONVERT_FIELD(b, sh_info, e); \
183 CONVERT_FIELD(b, sh_flags, e); \
184 CONVERT_FIELD(b, sh_addr, e); \
185 CONVERT_FIELD(b, sh_offset, e); \
186 CONVERT_FIELD(b, sh_size, e); \
187 CONVERT_FIELD(b, sh_addralign, e); \
188 CONVERT_FIELD(b, sh_entsize, e)
189
190 CONVERT_SWITCH(ehdr, shdr, SECTION_HEADER_FIELDS);
191
192 #undef SECTION_HEADER_FIELDS
193
194 return (0);
195 }
196 #undef CONVERT_SWITCH
197 #undef CONVERT_FIELD
198 #else
elf_header_convert(Elf_Ehdr * ehdr)199 static int elf_header_convert(Elf_Ehdr *ehdr)
200 {
201 return (0);
202 }
203
elf_program_header_convert(const Elf_Ehdr * ehdr,Elf_Phdr * phdr)204 static int elf_program_header_convert(const Elf_Ehdr *ehdr, Elf_Phdr *phdr)
205 {
206 return (0);
207 }
208
elf_section_header_convert(const Elf_Ehdr * ehdr,Elf_Shdr * shdr)209 static int elf_section_header_convert(const Elf_Ehdr *ehdr, Elf_Shdr *shdr)
210 {
211 return (0);
212 }
213 #endif
214
215 #if defined(__amd64__) || (defined(__i386__) && defined(EFI))
216 static bool
is_kernphys_relocatable(elf_file_t ef)217 is_kernphys_relocatable(elf_file_t ef)
218 {
219 Elf_Sym sym;
220
221 return (__elfN(lookup_symbol)(ef, "kernphys", &sym, STT_OBJECT) == 0);
222 }
223 #endif
224
225 #ifdef __i386__
226 static bool
is_tg_kernel_support(struct preloaded_file * fp,elf_file_t ef)227 is_tg_kernel_support(struct preloaded_file *fp, elf_file_t ef)
228 {
229 Elf_Sym sym;
230 Elf_Addr p_start, p_end, v, p;
231 char vd_name[16];
232 int error;
233
234 if (__elfN(lookup_symbol)(ef, "__start_set_vt_drv_set", &sym, STT_NOTYPE) != 0)
235 return (false);
236 p_start = sym.st_value + ef->off;
237 if (__elfN(lookup_symbol)(ef, "__stop_set_vt_drv_set", &sym, STT_NOTYPE) != 0)
238 return (false);
239 p_end = sym.st_value + ef->off;
240
241 /*
242 * Walk through vt_drv_set, each vt driver structure starts with
243 * static 16 chars for driver name. If we have "vbefb", return true.
244 */
245 for (p = p_start; p < p_end; p += sizeof(Elf_Addr)) {
246 COPYOUT(p, &v, sizeof(v));
247
248 error = __elfN(reloc_ptr)(fp, ef, p, &v, sizeof(v));
249 if (error == EOPNOTSUPP)
250 v += ef->off;
251 else if (error != 0)
252 return (false);
253 COPYOUT(v, &vd_name, sizeof(vd_name));
254 if (strncmp(vd_name, "vbefb", sizeof(vd_name)) == 0)
255 return (true);
256 }
257
258 return (false);
259 }
260 #endif
261
262 static int
__elfN(load_elf_header)263 __elfN(load_elf_header)(char *filename, elf_file_t ef)
264 {
265 ssize_t bytes_read;
266 Elf_Ehdr *ehdr;
267 int err;
268
269 /*
270 * Open the image, read and validate the ELF header
271 */
272 if (filename == NULL) /* can't handle nameless */
273 return (EFTYPE);
274 if ((ef->fd = open(filename, O_RDONLY)) == -1)
275 return (errno);
276 ef->firstpage = malloc(PAGE_SIZE);
277 if (ef->firstpage == NULL) {
278 close(ef->fd);
279 return (ENOMEM);
280 }
281 preload(ef->fd);
282 #ifdef LOADER_VERIEXEC_VECTX
283 {
284 int verror;
285
286 ef->vctx = vectx_open(ef->fd, filename, 0L, NULL, &verror, __func__);
287 if (verror) {
288 printf("Unverified %s: %s\n", filename, ve_error_get());
289 close(ef->fd);
290 free(ef->vctx);
291 return (EAUTH);
292 }
293 }
294 #endif
295 bytes_read = VECTX_READ(VECTX_HANDLE(ef), ef->firstpage, PAGE_SIZE);
296 ef->firstlen = (size_t)bytes_read;
297 if (bytes_read < 0 || ef->firstlen <= sizeof(Elf_Ehdr)) {
298 err = EFTYPE; /* could be EIO, but may be small file */
299 goto error;
300 }
301 ehdr = ef->ehdr = (Elf_Ehdr *)ef->firstpage;
302
303 /* Is it ELF? */
304 if (!IS_ELF(*ehdr)) {
305 err = EFTYPE;
306 goto error;
307 }
308
309 if (ehdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || /* Layout ? */
310 ehdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
311 ehdr->e_ident[EI_VERSION] != EV_CURRENT) /* Version ? */ {
312 err = EFTYPE;
313 goto error;
314 }
315
316 err = elf_header_convert(ehdr);
317 if (err)
318 goto error;
319
320 if (ehdr->e_version != EV_CURRENT || ehdr->e_machine != ELF_TARG_MACH) {
321 /* Machine ? */
322 err = EFTYPE;
323 goto error;
324 }
325
326 #if defined(LOADER_VERIEXEC) && !defined(LOADER_VERIEXEC_VECTX)
327 if (verify_file(ef->fd, filename, bytes_read, VE_MUST, __func__) < 0) {
328 err = EAUTH;
329 goto error;
330 }
331 #endif
332 return (0);
333
334 error:
335 if (ef->firstpage != NULL) {
336 free(ef->firstpage);
337 ef->firstpage = NULL;
338 }
339 if (ef->fd != -1) {
340 #ifdef LOADER_VERIEXEC_VECTX
341 free(ef->vctx);
342 #endif
343 close(ef->fd);
344 ef->fd = -1;
345 }
346 return (err);
347 }
348
349 /*
350 * Attempt to load the file (file) as an ELF module. It will be stored at
351 * (dest), and a pointer to a module structure describing the loaded object
352 * will be saved in (result).
353 */
354 int
__elfN(loadfile)355 __elfN(loadfile)(char *filename, uint64_t dest, struct preloaded_file **result)
356 {
357 return (__elfN(loadfile_raw)(filename, dest, result, 0));
358 }
359
360 int
__elfN(loadfile_raw)361 __elfN(loadfile_raw)(char *filename, uint64_t dest,
362 struct preloaded_file **result, int multiboot)
363 {
364 struct preloaded_file *fp, *kfp;
365 struct elf_file ef;
366 Elf_Ehdr *ehdr;
367 int err;
368
369 fp = NULL;
370 bzero(&ef, sizeof(struct elf_file));
371 ef.fd = -1;
372
373 err = __elfN(load_elf_header)(filename, &ef);
374 if (err != 0)
375 return (err);
376
377 ehdr = ef.ehdr;
378
379 /*
380 * Check to see what sort of module we are.
381 */
382 kfp = file_findfile(NULL, md_kerntype);
383 #ifdef __powerpc__
384 /*
385 * Kernels can be ET_DYN, so just assume the first loaded object is the
386 * kernel. This assumption will be checked later.
387 */
388 if (kfp == NULL)
389 ef.kernel = 1;
390 #endif
391 if (ef.kernel || ehdr->e_type == ET_EXEC) {
392 /* Looks like a kernel */
393 if (kfp != NULL) {
394 printf("elf" __XSTRING(__ELF_WORD_SIZE)
395 "_loadfile: kernel already loaded\n");
396 err = EPERM;
397 goto oerr;
398 }
399 /*
400 * Calculate destination address based on kernel entrypoint.
401 *
402 * For ARM, the destination address is independent of any values
403 * in the elf header (an ARM kernel can be loaded at any 2MB
404 * boundary), so we leave dest set to the value calculated by
405 * archsw.arch_loadaddr() and passed in to this function.
406 * XXX This comment is obsolete, but it still seems to work
407 */
408 #ifndef __arm__
409 if (ehdr->e_type == ET_EXEC)
410 dest = (ehdr->e_entry & ~PAGE_MASK);
411 #endif
412 if ((ehdr->e_entry & ~PAGE_MASK) == 0) {
413 printf("elf" __XSTRING(__ELF_WORD_SIZE)
414 "_loadfile: not a kernel (maybe static binary?)\n");
415 err = EPERM;
416 goto oerr;
417 }
418 ef.kernel = 1;
419
420 } else if (ehdr->e_type == ET_DYN) {
421 /* Looks like a kld module */
422 if (multiboot != 0) {
423 printf("elf" __XSTRING(__ELF_WORD_SIZE)
424 "_loadfile: can't load module as multiboot\n");
425 err = EPERM;
426 goto oerr;
427 }
428 if (kfp == NULL) {
429 printf("elf" __XSTRING(__ELF_WORD_SIZE)
430 "_loadfile: can't load module before kernel\n");
431 err = EPERM;
432 goto oerr;
433 }
434 if (strcmp(md_kerntype, kfp->f_type)) {
435 printf("elf" __XSTRING(__ELF_WORD_SIZE)
436 "_loadfile: can't load module with kernel type '%s'\n",
437 kfp->f_type);
438 err = EPERM;
439 goto oerr;
440 }
441 /* Looks OK, got ahead */
442 ef.kernel = 0;
443
444 } else {
445 err = EFTYPE;
446 goto oerr;
447 }
448
449 dest = md_align(dest);
450
451 /*
452 * Ok, we think we should handle this.
453 */
454 fp = file_alloc();
455 if (fp == NULL) {
456 printf("elf" __XSTRING(__ELF_WORD_SIZE)
457 "_loadfile: cannot allocate module info\n");
458 err = EPERM;
459 goto out;
460 }
461 if (ef.kernel == 1 && multiboot == 0)
462 setenv("kernelname", filename, 1);
463 fp->f_name = strdup(filename);
464 if (multiboot == 0)
465 fp->f_type = strdup(ef.kernel ?
466 md_kerntype : md_modtype);
467 else
468 fp->f_type = strdup(md_kerntype_mb);
469
470 if (module_verbose >= MODULE_VERBOSE_FULL) {
471 if (ef.kernel)
472 printf("%s entry at 0x%jx\n", filename,
473 (uintmax_t)ehdr->e_entry);
474 } else if (module_verbose > MODULE_VERBOSE_SILENT)
475 printf("%s ", filename);
476
477 fp->f_size = __elfN(loadimage)(fp, &ef, dest);
478 if (fp->f_size == 0 || fp->f_addr == 0)
479 goto ioerr;
480
481 /* save exec header as metadata */
482 file_addmetadata(fp, MODINFOMD_ELFHDR, sizeof(*ehdr), ehdr);
483
484 /* Load OK, return module pointer */
485 *result = (struct preloaded_file *)fp;
486 err = 0;
487 #if defined(__amd64__) || (defined(__i386__) && defined(EFI))
488 fp->f_kernphys_relocatable = multiboot || is_kernphys_relocatable(&ef);
489 #endif
490 #if defined(__i386__) && !defined(EFI)
491 fp->f_tg_kernel_support = is_tg_kernel_support(fp, &ef);
492 #endif
493 goto out;
494
495 ioerr:
496 err = EIO;
497 oerr:
498 file_discard(fp);
499 out:
500 if (ef.firstpage)
501 free(ef.firstpage);
502 if (ef.fd != -1) {
503 #ifdef LOADER_VERIEXEC_VECTX
504 if (!err && ef.vctx) {
505 int verror;
506
507 verror = vectx_close(ef.vctx, VE_MUST, __func__);
508 if (verror) {
509 err = EAUTH;
510 file_discard(fp);
511 }
512 }
513 #endif
514 close(ef.fd);
515 }
516 return (err);
517 }
518
519 /*
520 * With the file (fd) open on the image, and (ehdr) containing
521 * the Elf header, load the image at (off)
522 */
523 static int
__elfN(loadimage)524 __elfN(loadimage)(struct preloaded_file *fp, elf_file_t ef, uint64_t off)
525 {
526 int i;
527 u_int j;
528 Elf_Ehdr *ehdr;
529 Elf_Phdr *phdr, *php;
530 Elf_Shdr *shdr;
531 char *shstr;
532 int ret;
533 vm_offset_t firstaddr;
534 vm_offset_t lastaddr;
535 size_t chunk;
536 ssize_t result;
537 Elf_Addr ssym, esym;
538 Elf_Dyn *dp;
539 Elf_Addr adp;
540 Elf_Addr ctors;
541 int ndp;
542 int symstrindex;
543 int symtabindex;
544 Elf_Size size;
545 u_int fpcopy;
546 Elf_Sym sym;
547 Elf_Addr p_start, p_end;
548
549 dp = NULL;
550 shdr = NULL;
551 ret = 0;
552 firstaddr = lastaddr = 0;
553 ehdr = ef->ehdr;
554 #ifdef __powerpc__
555 if (ef->kernel) {
556 #else
557 if (ehdr->e_type == ET_EXEC) {
558 #endif
559 #if defined(__i386__) || defined(__amd64__)
560 #if __ELF_WORD_SIZE == 64
561 /* x86_64 relocates after locore */
562 off = - (off & 0xffffffffff000000ull);
563 #else
564 /* i386 relocates after locore */
565 off = - (off & 0xff000000u);
566 #endif
567 #elif defined(__powerpc__)
568 /*
569 * On the purely virtual memory machines like e500, the kernel
570 * is linked against its final VA range, which is most often
571 * not available at the loader stage, but only after kernel
572 * initializes and completes its VM settings. In such cases we
573 * cannot use p_vaddr field directly to load ELF segments, but
574 * put them at some 'load-time' locations.
575 */
576 if (off & 0xf0000000u) {
577 off = -(off & 0xf0000000u);
578 /*
579 * XXX the physical load address should not be
580 * hardcoded. Note that the Book-E kernel assumes that
581 * it's loaded at a 16MB boundary for now...
582 */
583 off += 0x01000000;
584 }
585 ehdr->e_entry += off;
586 if (module_verbose >= MODULE_VERBOSE_FULL)
587 printf("Converted entry 0x%jx\n",
588 (uintmax_t)ehdr->e_entry);
589
590 #elif defined(__arm__) && !defined(EFI)
591 /*
592 * The elf headers in arm kernels specify virtual addresses in
593 * all header fields, even the ones that should be physical
594 * addresses. We assume the entry point is in the first page,
595 * and masking the page offset will leave us with the virtual
596 * address the kernel was linked at. We subtract that from the
597 * load offset, making 'off' into the value which, when added
598 * to a virtual address in an elf header, translates it to a
599 * physical address. We do the va->pa conversion on the entry
600 * point address in the header now, so that later we can launch
601 * the kernel by just jumping to that address.
602 *
603 * When booting from UEFI the copyin and copyout functions
604 * handle adjusting the location relative to the first virtual
605 * address. Because of this there is no need to adjust the
606 * offset or entry point address as these will both be handled
607 * by the efi code.
608 */
609 off -= ehdr->e_entry & ~PAGE_MASK;
610 ehdr->e_entry += off;
611 if (module_verbose >= MODULE_VERBOSE_FULL)
612 printf("ehdr->e_entry 0x%jx, va<->pa off %llx\n",
613 (uintmax_t)ehdr->e_entry, off);
614 #else
615 off = 0; /* other archs use direct mapped kernels */
616 #endif
617 }
618 ef->off = off;
619
620 if (ef->kernel)
621 __elfN(relocation_offset) = off;
622
623 if ((ehdr->e_phoff + ehdr->e_phnum * sizeof(*phdr)) > ef->firstlen) {
624 printf("elf" __XSTRING(__ELF_WORD_SIZE)
625 "_loadimage: program header not within first page\n");
626 goto out;
627 }
628 phdr = (Elf_Phdr *)(ef->firstpage + ehdr->e_phoff);
629
630 for (i = 0; i < ehdr->e_phnum; i++) {
631 if (elf_program_header_convert(ehdr, phdr))
632 continue;
633
634 /* We want to load PT_LOAD segments only.. */
635 if (phdr[i].p_type != PT_LOAD)
636 continue;
637
638 if (module_verbose >= MODULE_VERBOSE_FULL) {
639 printf("Segment: 0x%lx@0x%lx -> 0x%lx-0x%lx",
640 (long)phdr[i].p_filesz, (long)phdr[i].p_offset,
641 (long)(phdr[i].p_vaddr + off),
642 (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz - 1));
643 } else if (module_verbose > MODULE_VERBOSE_SILENT) {
644 if ((phdr[i].p_flags & PF_W) == 0) {
645 printf("text=0x%lx ", (long)phdr[i].p_filesz);
646 } else {
647 printf("data=0x%lx", (long)phdr[i].p_filesz);
648 if (phdr[i].p_filesz < phdr[i].p_memsz)
649 printf("+0x%lx", (long)(phdr[i].p_memsz -
650 phdr[i].p_filesz));
651 printf(" ");
652 }
653 }
654 fpcopy = 0;
655 if (ef->firstlen > phdr[i].p_offset) {
656 fpcopy = ef->firstlen - phdr[i].p_offset;
657 archsw.arch_copyin(ef->firstpage + phdr[i].p_offset,
658 phdr[i].p_vaddr + off, fpcopy);
659 }
660 if (phdr[i].p_filesz > fpcopy) {
661 if (kern_pread(VECTX_HANDLE(ef),
662 phdr[i].p_vaddr + off + fpcopy,
663 phdr[i].p_filesz - fpcopy,
664 phdr[i].p_offset + fpcopy) != 0) {
665 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
666 "_loadimage: read failed\n");
667 goto out;
668 }
669 }
670 /* clear space from oversized segments; eg: bss */
671 if (phdr[i].p_filesz < phdr[i].p_memsz) {
672 if (module_verbose >= MODULE_VERBOSE_FULL) {
673 printf(" (bss: 0x%lx-0x%lx)",
674 (long)(phdr[i].p_vaddr + off + phdr[i].p_filesz),
675 (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz -1));
676 }
677 kern_bzero(phdr[i].p_vaddr + off + phdr[i].p_filesz,
678 phdr[i].p_memsz - phdr[i].p_filesz);
679 }
680 if (module_verbose >= MODULE_VERBOSE_FULL)
681 printf("\n");
682
683 if (archsw.arch_loadseg != NULL)
684 archsw.arch_loadseg(ehdr, phdr + i, off);
685
686 if (firstaddr == 0 || firstaddr > (phdr[i].p_vaddr + off))
687 firstaddr = phdr[i].p_vaddr + off;
688 if (lastaddr == 0 || lastaddr <
689 (phdr[i].p_vaddr + off + phdr[i].p_memsz))
690 lastaddr = phdr[i].p_vaddr + off + phdr[i].p_memsz;
691 }
692 lastaddr = roundup(lastaddr, sizeof(long));
693
694 /*
695 * Get the section headers. We need this for finding the .ctors
696 * section as well as for loading any symbols. Both may be hard
697 * to do if reading from a .gz file as it involves seeking. I
698 * think the rule is going to have to be that you must strip a
699 * file to remove symbols before gzipping it.
700 */
701 chunk = (size_t)ehdr->e_shnum * (size_t)ehdr->e_shentsize;
702 if (chunk == 0 || ehdr->e_shoff == 0)
703 goto nosyms;
704 shdr = alloc_pread(VECTX_HANDLE(ef), ehdr->e_shoff, chunk);
705 if (shdr == NULL) {
706 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
707 "_loadimage: failed to read section headers");
708 goto nosyms;
709 }
710
711 for (i = 0; i < ehdr->e_shnum; i++)
712 elf_section_header_convert(ehdr, &shdr[i]);
713
714 file_addmetadata(fp, MODINFOMD_SHDR, chunk, shdr);
715
716 /*
717 * Read the section string table and look for the .ctors section.
718 * We need to tell the kernel where it is so that it can call the
719 * ctors.
720 */
721 chunk = shdr[ehdr->e_shstrndx].sh_size;
722 if (chunk) {
723 shstr = alloc_pread(VECTX_HANDLE(ef),
724 shdr[ehdr->e_shstrndx].sh_offset, chunk);
725 if (shstr) {
726 for (i = 0; i < ehdr->e_shnum; i++) {
727 if (strcmp(shstr + shdr[i].sh_name,
728 ".ctors") != 0)
729 continue;
730 ctors = shdr[i].sh_addr;
731 file_addmetadata(fp, MODINFOMD_CTORS_ADDR,
732 sizeof(ctors), &ctors);
733 size = shdr[i].sh_size;
734 file_addmetadata(fp, MODINFOMD_CTORS_SIZE,
735 sizeof(size), &size);
736 break;
737 }
738 free(shstr);
739 }
740 }
741
742 /*
743 * Now load any symbols.
744 */
745 symtabindex = -1;
746 symstrindex = -1;
747 for (i = 0; i < ehdr->e_shnum; i++) {
748 if (shdr[i].sh_type != SHT_SYMTAB)
749 continue;
750 for (j = 0; j < ehdr->e_phnum; j++) {
751 if (phdr[j].p_type != PT_LOAD)
752 continue;
753 if (shdr[i].sh_offset >= phdr[j].p_offset &&
754 (shdr[i].sh_offset + shdr[i].sh_size <=
755 phdr[j].p_offset + phdr[j].p_filesz)) {
756 shdr[i].sh_offset = 0;
757 shdr[i].sh_size = 0;
758 break;
759 }
760 }
761 if (shdr[i].sh_offset == 0 || shdr[i].sh_size == 0)
762 continue; /* alread loaded in a PT_LOAD above */
763 /* Save it for loading below */
764 symtabindex = i;
765 symstrindex = shdr[i].sh_link;
766 }
767 if (symtabindex < 0 || symstrindex < 0)
768 goto nosyms;
769
770 /* Ok, committed to a load. */
771 if (module_verbose >= MODULE_VERBOSE_FULL)
772 printf("syms=[");
773 ssym = lastaddr;
774 for (i = symtabindex; i >= 0; i = symstrindex) {
775 char *secname;
776
777 switch(shdr[i].sh_type) {
778 case SHT_SYMTAB: /* Symbol table */
779 secname = "symtab";
780 break;
781 case SHT_STRTAB: /* String table */
782 secname = "strtab";
783 break;
784 default:
785 secname = "WHOA!!";
786 break;
787 }
788 size = shdr[i].sh_size;
789
790 archsw.arch_copyin(&size, lastaddr, sizeof(size));
791 lastaddr += sizeof(size);
792
793 if (module_verbose >= MODULE_VERBOSE_FULL) {
794 printf("\n%s: 0x%jx@0x%jx -> 0x%jx-0x%jx", secname,
795 (uintmax_t)shdr[i].sh_size, (uintmax_t)shdr[i].sh_offset,
796 (uintmax_t)lastaddr,
797 (uintmax_t)(lastaddr + shdr[i].sh_size));
798 } else if (module_verbose > MODULE_VERBOSE_SILENT) {
799 if (i == symstrindex)
800 printf("+");
801 printf("0x%lx+0x%lx", (long)sizeof(size), (long)size);
802 }
803 if (VECTX_LSEEK(VECTX_HANDLE(ef), (off_t)shdr[i].sh_offset, SEEK_SET) == -1) {
804 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
805 "_loadimage: could not seek for symbols - skipped!");
806 lastaddr = ssym;
807 ssym = 0;
808 goto nosyms;
809 }
810 result = archsw.arch_readin(VECTX_HANDLE(ef), lastaddr, shdr[i].sh_size);
811 if (result < 0 || (size_t)result != shdr[i].sh_size) {
812 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
813 "_loadimage: could not read symbols - skipped! "
814 "(%ju != %ju)", (uintmax_t)result,
815 (uintmax_t)shdr[i].sh_size);
816 lastaddr = ssym;
817 ssym = 0;
818 goto nosyms;
819 }
820 /* Reset offsets relative to ssym */
821 lastaddr += shdr[i].sh_size;
822 lastaddr = roundup(lastaddr, sizeof(size));
823 if (i == symtabindex)
824 symtabindex = -1;
825 else if (i == symstrindex)
826 symstrindex = -1;
827 }
828 esym = lastaddr;
829 if (module_verbose >= MODULE_VERBOSE_FULL)
830 printf("]");
831
832 file_addmetadata(fp, MODINFOMD_SSYM, sizeof(ssym), &ssym);
833 file_addmetadata(fp, MODINFOMD_ESYM, sizeof(esym), &esym);
834
835 nosyms:
836 if (module_verbose > MODULE_VERBOSE_SILENT)
837 printf("\n");
838
839 ret = lastaddr - firstaddr;
840 fp->f_addr = firstaddr;
841
842 php = NULL;
843 for (i = 0; i < ehdr->e_phnum; i++) {
844 if (phdr[i].p_type == PT_DYNAMIC) {
845 php = phdr + i;
846 adp = php->p_vaddr;
847 file_addmetadata(fp, MODINFOMD_DYNAMIC, sizeof(adp),
848 &adp);
849 break;
850 }
851 }
852
853 if (php == NULL) /* this is bad, we cannot get to symbols or _DYNAMIC */
854 goto out;
855
856 ndp = php->p_filesz / sizeof(Elf_Dyn);
857 if (ndp == 0)
858 goto out;
859 dp = malloc(php->p_filesz);
860 if (dp == NULL)
861 goto out;
862 archsw.arch_copyout(php->p_vaddr + off, dp, php->p_filesz);
863
864 ef->strsz = 0;
865 for (i = 0; i < ndp; i++) {
866 if (dp[i].d_tag == 0)
867 break;
868 switch (dp[i].d_tag) {
869 case DT_HASH:
870 ef->hashtab =
871 (Elf_Hashelt*)(uintptr_t)(dp[i].d_un.d_ptr + off);
872 break;
873 case DT_STRTAB:
874 ef->strtab =
875 (char *)(uintptr_t)(dp[i].d_un.d_ptr + off);
876 break;
877 case DT_STRSZ:
878 ef->strsz = dp[i].d_un.d_val;
879 break;
880 case DT_SYMTAB:
881 ef->symtab =
882 (Elf_Sym *)(uintptr_t)(dp[i].d_un.d_ptr + off);
883 break;
884 case DT_REL:
885 ef->rel =
886 (Elf_Rel *)(uintptr_t)(dp[i].d_un.d_ptr + off);
887 break;
888 case DT_RELSZ:
889 ef->relsz = dp[i].d_un.d_val;
890 break;
891 case DT_RELA:
892 ef->rela =
893 (Elf_Rela *)(uintptr_t)(dp[i].d_un.d_ptr + off);
894 break;
895 case DT_RELASZ:
896 ef->relasz = dp[i].d_un.d_val;
897 break;
898 default:
899 break;
900 }
901 }
902 if (ef->hashtab == NULL || ef->symtab == NULL ||
903 ef->strtab == NULL || ef->strsz == 0)
904 goto out;
905 COPYOUT(ef->hashtab, &ef->nbuckets, sizeof(ef->nbuckets));
906 COPYOUT(ef->hashtab + 1, &ef->nchains, sizeof(ef->nchains));
907 ef->buckets = ef->hashtab + 2;
908 ef->chains = ef->buckets + ef->nbuckets;
909
910 if (__elfN(lookup_symbol)(ef, "__start_set_modmetadata_set", &sym,
911 STT_NOTYPE) != 0)
912 return 0;
913 p_start = sym.st_value + ef->off;
914 if (__elfN(lookup_symbol)(ef, "__stop_set_modmetadata_set", &sym,
915 STT_NOTYPE) != 0)
916 return 0;
917 p_end = sym.st_value + ef->off;
918
919 if (__elfN(parse_modmetadata)(fp, ef, p_start, p_end) == 0)
920 goto out;
921
922 if (ef->kernel) /* kernel must not depend on anything */
923 goto out;
924
925 out:
926 if (dp)
927 free(dp);
928 if (shdr)
929 free(shdr);
930 return ret;
931 }
932
933 static char invalid_name[] = "bad";
934
935 char *
936 fake_modname(const char *name)
937 {
938 const char *sp, *ep;
939 char *fp;
940 size_t len;
941
942 sp = strrchr(name, '/');
943 if (sp)
944 sp++;
945 else
946 sp = name;
947
948 ep = strrchr(sp, '.');
949 if (ep == NULL) {
950 ep = sp + strlen(sp);
951 }
952 if (ep == sp) {
953 sp = invalid_name;
954 ep = invalid_name + sizeof(invalid_name) - 1;
955 }
956
957 len = ep - sp;
958 fp = malloc(len + 1);
959 if (fp == NULL)
960 return NULL;
961 memcpy(fp, sp, len);
962 fp[len] = '\0';
963 return fp;
964 }
965
966 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64
967 struct mod_metadata64 {
968 int md_version; /* structure version MDTV_* */
969 int md_type; /* type of entry MDT_* */
970 uint64_t md_data; /* specific data */
971 uint64_t md_cval; /* common string label */
972 };
973 #endif
974 #if defined(__amd64__) && __ELF_WORD_SIZE == 32
975 struct mod_metadata32 {
976 int md_version; /* structure version MDTV_* */
977 int md_type; /* type of entry MDT_* */
978 uint32_t md_data; /* specific data */
979 uint32_t md_cval; /* common string label */
980 };
981 #endif
982
983 int
984 __elfN(load_modmetadata)(struct preloaded_file *fp, uint64_t dest)
985 {
986 struct elf_file ef;
987 int err, i, j;
988 Elf_Shdr *sh_meta, *shdr = NULL;
989 Elf_Shdr *sh_data[2];
990 char *shstrtab = NULL;
991 size_t size;
992 Elf_Addr p_start, p_end;
993
994 bzero(&ef, sizeof(struct elf_file));
995 ef.fd = -1;
996
997 err = __elfN(load_elf_header)(fp->f_name, &ef);
998 if (err != 0)
999 goto out;
1000
1001 if (ef.kernel == 1 || ef.ehdr->e_type == ET_EXEC) {
1002 ef.kernel = 1;
1003 } else if (ef.ehdr->e_type != ET_DYN) {
1004 err = EFTYPE;
1005 goto out;
1006 }
1007
1008 size = (size_t)ef.ehdr->e_shnum * (size_t)ef.ehdr->e_shentsize;
1009 shdr = alloc_pread(VECTX_HANDLE(&ef), ef.ehdr->e_shoff, size);
1010 if (shdr == NULL) {
1011 err = ENOMEM;
1012 goto out;
1013 }
1014
1015 /* Load shstrtab. */
1016 shstrtab = alloc_pread(VECTX_HANDLE(&ef), shdr[ef.ehdr->e_shstrndx].sh_offset,
1017 shdr[ef.ehdr->e_shstrndx].sh_size);
1018 if (shstrtab == NULL) {
1019 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1020 "load_modmetadata: unable to load shstrtab\n");
1021 err = EFTYPE;
1022 goto out;
1023 }
1024
1025 /* Find set_modmetadata_set and data sections. */
1026 sh_data[0] = sh_data[1] = sh_meta = NULL;
1027 for (i = 0, j = 0; i < ef.ehdr->e_shnum; i++) {
1028 if (strcmp(&shstrtab[shdr[i].sh_name],
1029 "set_modmetadata_set") == 0) {
1030 sh_meta = &shdr[i];
1031 }
1032 if ((strcmp(&shstrtab[shdr[i].sh_name], ".data") == 0) ||
1033 (strcmp(&shstrtab[shdr[i].sh_name], ".rodata") == 0)) {
1034 sh_data[j++] = &shdr[i];
1035 }
1036 }
1037 if (sh_meta == NULL || sh_data[0] == NULL || sh_data[1] == NULL) {
1038 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1039 "load_modmetadata: unable to find set_modmetadata_set or data sections\n");
1040 err = EFTYPE;
1041 goto out;
1042 }
1043
1044 /* Load set_modmetadata_set into memory */
1045 err = kern_pread(VECTX_HANDLE(&ef), dest, sh_meta->sh_size, sh_meta->sh_offset);
1046 if (err != 0) {
1047 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1048 "load_modmetadata: unable to load set_modmetadata_set: %d\n", err);
1049 goto out;
1050 }
1051 p_start = dest;
1052 p_end = dest + sh_meta->sh_size;
1053 dest += sh_meta->sh_size;
1054
1055 /* Load data sections into memory. */
1056 err = kern_pread(VECTX_HANDLE(&ef), dest, sh_data[0]->sh_size,
1057 sh_data[0]->sh_offset);
1058 if (err != 0) {
1059 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1060 "load_modmetadata: unable to load data: %d\n", err);
1061 goto out;
1062 }
1063
1064 /*
1065 * We have to increment the dest, so that the offset is the same into
1066 * both the .rodata and .data sections.
1067 */
1068 ef.off = -(sh_data[0]->sh_addr - dest);
1069 dest += (sh_data[1]->sh_addr - sh_data[0]->sh_addr);
1070
1071 err = kern_pread(VECTX_HANDLE(&ef), dest, sh_data[1]->sh_size,
1072 sh_data[1]->sh_offset);
1073 if (err != 0) {
1074 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1075 "load_modmetadata: unable to load data: %d\n", err);
1076 goto out;
1077 }
1078
1079 err = __elfN(parse_modmetadata)(fp, &ef, p_start, p_end);
1080 if (err != 0) {
1081 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1082 "load_modmetadata: unable to parse metadata: %d\n", err);
1083 goto out;
1084 }
1085
1086 out:
1087 if (shstrtab != NULL)
1088 free(shstrtab);
1089 if (shdr != NULL)
1090 free(shdr);
1091 if (ef.firstpage != NULL)
1092 free(ef.firstpage);
1093 if (ef.fd != -1) {
1094 #ifdef LOADER_VERIEXEC_VECTX
1095 if (!err && ef.vctx) {
1096 int verror;
1097
1098 verror = vectx_close(ef.vctx, VE_MUST, __func__);
1099 if (verror) {
1100 err = EAUTH;
1101 file_discard(fp);
1102 }
1103 }
1104 #endif
1105 close(ef.fd);
1106 }
1107 return (err);
1108 }
1109
1110 int
1111 __elfN(parse_modmetadata)(struct preloaded_file *fp, elf_file_t ef,
1112 Elf_Addr p_start, Elf_Addr p_end)
1113 {
1114 struct mod_metadata md;
1115 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64
1116 struct mod_metadata64 md64;
1117 #elif defined(__amd64__) && __ELF_WORD_SIZE == 32
1118 struct mod_metadata32 md32;
1119 #endif
1120 struct mod_depend *mdepend;
1121 struct mod_version mver;
1122 char *s;
1123 int error, modcnt, minfolen;
1124 Elf_Addr v, p;
1125
1126 modcnt = 0;
1127 p = p_start;
1128 while (p < p_end) {
1129 COPYOUT(p, &v, sizeof(v));
1130 error = __elfN(reloc_ptr)(fp, ef, p, &v, sizeof(v));
1131 if (error == EOPNOTSUPP)
1132 v += ef->off;
1133 else if (error != 0)
1134 return (error);
1135 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64
1136 COPYOUT(v, &md64, sizeof(md64));
1137 error = __elfN(reloc_ptr)(fp, ef, v, &md64, sizeof(md64));
1138 if (error == EOPNOTSUPP) {
1139 md64.md_cval += ef->off;
1140 md64.md_data += ef->off;
1141 } else if (error != 0)
1142 return (error);
1143 md.md_version = md64.md_version;
1144 md.md_type = md64.md_type;
1145 md.md_cval = (const char *)(uintptr_t)md64.md_cval;
1146 md.md_data = (void *)(uintptr_t)md64.md_data;
1147 #elif defined(__amd64__) && __ELF_WORD_SIZE == 32
1148 COPYOUT(v, &md32, sizeof(md32));
1149 error = __elfN(reloc_ptr)(fp, ef, v, &md32, sizeof(md32));
1150 if (error == EOPNOTSUPP) {
1151 md32.md_cval += ef->off;
1152 md32.md_data += ef->off;
1153 } else if (error != 0)
1154 return (error);
1155 md.md_version = md32.md_version;
1156 md.md_type = md32.md_type;
1157 md.md_cval = (const char *)(uintptr_t)md32.md_cval;
1158 md.md_data = (void *)(uintptr_t)md32.md_data;
1159 #else
1160 COPYOUT(v, &md, sizeof(md));
1161 error = __elfN(reloc_ptr)(fp, ef, v, &md, sizeof(md));
1162 if (error == EOPNOTSUPP) {
1163 md.md_cval += ef->off;
1164 md.md_data = (void *)((uintptr_t)md.md_data +
1165 (uintptr_t)ef->off);
1166 } else if (error != 0)
1167 return (error);
1168 #endif
1169 p += sizeof(Elf_Addr);
1170 switch(md.md_type) {
1171 case MDT_DEPEND:
1172 if (ef->kernel) /* kernel must not depend on anything */
1173 break;
1174 s = strdupout((vm_offset_t)md.md_cval);
1175 minfolen = sizeof(*mdepend) + strlen(s) + 1;
1176 mdepend = malloc(minfolen);
1177 if (mdepend == NULL)
1178 return ENOMEM;
1179 COPYOUT((vm_offset_t)md.md_data, mdepend,
1180 sizeof(*mdepend));
1181 strcpy((char*)(mdepend + 1), s);
1182 free(s);
1183 file_addmetadata(fp, MODINFOMD_DEPLIST, minfolen,
1184 mdepend);
1185 free(mdepend);
1186 break;
1187 case MDT_VERSION:
1188 s = strdupout((vm_offset_t)md.md_cval);
1189 COPYOUT((vm_offset_t)md.md_data, &mver, sizeof(mver));
1190 file_addmodule(fp, s, mver.mv_version, NULL);
1191 free(s);
1192 modcnt++;
1193 break;
1194 }
1195 }
1196 if (modcnt == 0) {
1197 s = fake_modname(fp->f_name);
1198 file_addmodule(fp, s, 1, NULL);
1199 free(s);
1200 }
1201 return 0;
1202 }
1203
1204 static unsigned long
1205 elf_hash(const char *name)
1206 {
1207 const unsigned char *p = (const unsigned char *) name;
1208 unsigned long h = 0;
1209 unsigned long g;
1210
1211 while (*p != '\0') {
1212 h = (h << 4) + *p++;
1213 if ((g = h & 0xf0000000) != 0)
1214 h ^= g >> 24;
1215 h &= ~g;
1216 }
1217 return h;
1218 }
1219
1220 static const char __elfN(bad_symtable)[] = "elf" __XSTRING(__ELF_WORD_SIZE)
1221 "_lookup_symbol: corrupt symbol table\n";
1222 int
1223 __elfN(lookup_symbol)(elf_file_t ef, const char* name, Elf_Sym *symp,
1224 unsigned char type)
1225 {
1226 Elf_Hashelt symnum;
1227 Elf_Sym sym;
1228 char *strp;
1229 unsigned long hash;
1230
1231 if (ef->nbuckets == 0) {
1232 printf(__elfN(bad_symtable));
1233 return ENOENT;
1234 }
1235
1236 hash = elf_hash(name);
1237 COPYOUT(&ef->buckets[hash % ef->nbuckets], &symnum, sizeof(symnum));
1238
1239 while (symnum != STN_UNDEF) {
1240 if (symnum >= ef->nchains) {
1241 printf(__elfN(bad_symtable));
1242 return ENOENT;
1243 }
1244
1245 COPYOUT(ef->symtab + symnum, &sym, sizeof(sym));
1246 if (sym.st_name == 0) {
1247 printf(__elfN(bad_symtable));
1248 return ENOENT;
1249 }
1250
1251 strp = strdupout((vm_offset_t)(ef->strtab + sym.st_name));
1252 if (strcmp(name, strp) == 0) {
1253 free(strp);
1254 if (sym.st_shndx != SHN_UNDEF && sym.st_value != 0 &&
1255 ELF_ST_TYPE(sym.st_info) == type) {
1256 *symp = sym;
1257 return 0;
1258 }
1259 return ENOENT;
1260 }
1261 free(strp);
1262 COPYOUT(&ef->chains[symnum], &symnum, sizeof(symnum));
1263 }
1264 return ENOENT;
1265 }
1266
1267 /*
1268 * Apply any intra-module relocations to the value. p is the load address
1269 * of the value and val/len is the value to be modified. This does NOT modify
1270 * the image in-place, because this is done by kern_linker later on.
1271 *
1272 * Returns EOPNOTSUPP if no relocation method is supplied.
1273 */
1274 static int
1275 __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef,
1276 Elf_Addr p, void *val, size_t len)
1277 {
1278 size_t n;
1279 Elf_Rela a;
1280 Elf_Rel r;
1281 int error;
1282
1283 /*
1284 * The kernel is already relocated, but we still want to apply
1285 * offset adjustments.
1286 */
1287 if (ef->kernel)
1288 return (EOPNOTSUPP);
1289
1290 for (n = 0; n < ef->relsz / sizeof(r); n++) {
1291 COPYOUT(ef->rel + n, &r, sizeof(r));
1292
1293 error = __elfN(reloc)(ef, __elfN(symaddr), &r, ELF_RELOC_REL,
1294 ef->off, p, val, len);
1295 if (error != 0)
1296 return (error);
1297 }
1298 for (n = 0; n < ef->relasz / sizeof(a); n++) {
1299 COPYOUT(ef->rela + n, &a, sizeof(a));
1300
1301 error = __elfN(reloc)(ef, __elfN(symaddr), &a, ELF_RELOC_RELA,
1302 ef->off, p, val, len);
1303 if (error != 0)
1304 return (error);
1305 }
1306
1307 return (0);
1308 }
1309
1310 static Elf_Addr
1311 __elfN(symaddr)(struct elf_file *ef, Elf_Size symidx)
1312 {
1313
1314 /* Symbol lookup by index not required here. */
1315 return (0);
1316 }
1317