xref: /freebsd/stand/common/load_elf.c (revision 86077f4fd11070518a6d04eee7fdb93cbbfb1b52)
1 /*-
2  * Copyright (c) 1998 Michael Smith <msmith@freebsd.org>
3  * Copyright (c) 1998 Peter Wemm <peter@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/param.h>
29 #include <sys/endian.h>
30 #include <sys/exec.h>
31 #include <sys/linker.h>
32 #include <sys/module.h>
33 #include <sys/stdint.h>
34 #include <string.h>
35 #include <machine/elf.h>
36 #include <stand.h>
37 #include <sys/link_elf.h>
38 
39 #include "bootstrap.h"
40 #include "modinfo.h"
41 
42 #define COPYOUT(s,d,l)	archsw.arch_copyout((vm_offset_t)(s), d, l)
43 
44 #if defined(__i386__) && __ELF_WORD_SIZE == 64
45 #undef ELF_TARG_CLASS
46 #undef ELF_TARG_MACH
47 #define ELF_TARG_CLASS  ELFCLASS64
48 #define ELF_TARG_MACH   EM_X86_64
49 #endif
50 
51 typedef struct elf_file {
52 	Elf_Phdr	*ph;
53 	Elf_Ehdr	*ehdr;
54 	Elf_Sym		*symtab;
55 	Elf_Hashelt	*hashtab;
56 	Elf_Hashelt	nbuckets;
57 	Elf_Hashelt	nchains;
58 	Elf_Hashelt	*buckets;
59 	Elf_Hashelt	*chains;
60 	Elf_Rel	*rel;
61 	size_t	relsz;
62 	Elf_Rela	*rela;
63 	size_t	relasz;
64 	char	*strtab;
65 	size_t	strsz;
66 	int		fd;
67 	caddr_t	firstpage;
68 	size_t	firstlen;
69 	int		kernel;
70 	uint64_t	off;
71 #ifdef LOADER_VERIEXEC_VECTX
72 	struct vectx	*vctx;
73 #endif
74 } *elf_file_t;
75 
76 #ifdef LOADER_VERIEXEC_VECTX
77 #define VECTX_HANDLE(ef) (ef)->vctx
78 #else
79 #define VECTX_HANDLE(ef) (ef)->fd
80 #endif
81 
82 static int __elfN(loadimage)(struct preloaded_file *mp, elf_file_t ef,
83     uint64_t loadaddr);
84 static int __elfN(lookup_symbol)(elf_file_t ef, const char* name,
85     Elf_Sym *sym, unsigned char type);
86 static int __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef,
87     Elf_Addr p, void *val, size_t len);
88 static int __elfN(parse_modmetadata)(struct preloaded_file *mp, elf_file_t ef,
89     Elf_Addr p_start, Elf_Addr p_end);
90 static symaddr_fn __elfN(symaddr);
91 static char	*fake_modname(const char *name);
92 
93 uint64_t	__elfN(relocation_offset) = 0;
94 
95 #ifdef __powerpc__
96 extern void elf_wrong_field_size(void);
97 #define CONVERT_FIELD(b, f, e)			\
98 	switch (sizeof((b)->f)) {		\
99 	case 2:					\
100 		(b)->f = e ## 16toh((b)->f);	\
101 		break;				\
102 	case 4:					\
103 		(b)->f = e ## 32toh((b)->f);	\
104 		break;				\
105 	case 8:					\
106 		(b)->f = e ## 64toh((b)->f);	\
107 		break;				\
108 	default:				\
109 		/* Force a link time error. */	\
110 		elf_wrong_field_size();		\
111 		break;				\
112 	}
113 
114 #define CONVERT_SWITCH(h, d, f)			\
115 	switch ((h)->e_ident[EI_DATA]) {	\
116 	case ELFDATA2MSB:			\
117 		f(d, be);			\
118 		break;				\
119 	case ELFDATA2LSB:			\
120 		f(d, le);			\
121 		break;				\
122 	default:				\
123 		return (EINVAL);		\
124 	}
125 
126 
elf_header_convert(Elf_Ehdr * ehdr)127 static int elf_header_convert(Elf_Ehdr *ehdr)
128 {
129 	/*
130 	 * Fixup ELF header endianness.
131 	 *
132 	 * The Xhdr structure was loaded using block read call to optimize file
133 	 * accesses. It might happen, that the endianness of the system memory
134 	 * is different that endianness of the ELF header.  Swap fields here to
135 	 * guarantee that Xhdr always contain valid data regardless of
136 	 * architecture.
137 	 */
138 #define HEADER_FIELDS(b, e)			\
139 	CONVERT_FIELD(b, e_type, e);		\
140 	CONVERT_FIELD(b, e_machine, e);		\
141 	CONVERT_FIELD(b, e_version, e);		\
142 	CONVERT_FIELD(b, e_entry, e);		\
143 	CONVERT_FIELD(b, e_phoff, e);		\
144 	CONVERT_FIELD(b, e_shoff, e);		\
145 	CONVERT_FIELD(b, e_flags, e);		\
146 	CONVERT_FIELD(b, e_ehsize, e);		\
147 	CONVERT_FIELD(b, e_phentsize, e);	\
148 	CONVERT_FIELD(b, e_phnum, e);		\
149 	CONVERT_FIELD(b, e_shentsize, e);	\
150 	CONVERT_FIELD(b, e_shnum, e);		\
151 	CONVERT_FIELD(b, e_shstrndx, e)
152 
153 	CONVERT_SWITCH(ehdr, ehdr, HEADER_FIELDS);
154 
155 #undef HEADER_FIELDS
156 
157 	return (0);
158 }
159 
elf_program_header_convert(const Elf_Ehdr * ehdr,Elf_Phdr * phdr)160 static int elf_program_header_convert(const Elf_Ehdr *ehdr, Elf_Phdr *phdr)
161 {
162 #define PROGRAM_HEADER_FIELDS(b, e)		\
163 	CONVERT_FIELD(b, p_type, e);		\
164 	CONVERT_FIELD(b, p_flags, e);		\
165 	CONVERT_FIELD(b, p_offset, e);		\
166 	CONVERT_FIELD(b, p_vaddr, e);		\
167 	CONVERT_FIELD(b, p_paddr, e);		\
168 	CONVERT_FIELD(b, p_filesz, e);		\
169 	CONVERT_FIELD(b, p_memsz, e);		\
170 	CONVERT_FIELD(b, p_align, e)
171 
172 	CONVERT_SWITCH(ehdr, phdr, PROGRAM_HEADER_FIELDS);
173 
174 #undef PROGRAM_HEADER_FIELDS
175 
176 	return (0);
177 }
178 
elf_section_header_convert(const Elf_Ehdr * ehdr,Elf_Shdr * shdr)179 static int elf_section_header_convert(const Elf_Ehdr *ehdr, Elf_Shdr *shdr)
180 {
181 #define SECTION_HEADER_FIELDS(b, e)		\
182 	CONVERT_FIELD(b, sh_name, e);		\
183 	CONVERT_FIELD(b, sh_type, e);		\
184 	CONVERT_FIELD(b, sh_link, e);		\
185 	CONVERT_FIELD(b, sh_info, e);		\
186 	CONVERT_FIELD(b, sh_flags, e);		\
187 	CONVERT_FIELD(b, sh_addr, e);		\
188 	CONVERT_FIELD(b, sh_offset, e);		\
189 	CONVERT_FIELD(b, sh_size, e);		\
190 	CONVERT_FIELD(b, sh_addralign, e);	\
191 	CONVERT_FIELD(b, sh_entsize, e)
192 
193 	CONVERT_SWITCH(ehdr, shdr, SECTION_HEADER_FIELDS);
194 
195 #undef SECTION_HEADER_FIELDS
196 
197 	return (0);
198 }
199 #undef CONVERT_SWITCH
200 #undef CONVERT_FIELD
201 #else
elf_header_convert(Elf_Ehdr * ehdr)202 static int elf_header_convert(Elf_Ehdr *ehdr)
203 {
204 	return (0);
205 }
206 
elf_program_header_convert(const Elf_Ehdr * ehdr,Elf_Phdr * phdr)207 static int elf_program_header_convert(const Elf_Ehdr *ehdr, Elf_Phdr *phdr)
208 {
209 	return (0);
210 }
211 
elf_section_header_convert(const Elf_Ehdr * ehdr,Elf_Shdr * shdr)212 static int elf_section_header_convert(const Elf_Ehdr *ehdr, Elf_Shdr *shdr)
213 {
214 	return (0);
215 }
216 #endif
217 
218 #if defined(__amd64__) || (defined(__i386__) && defined(EFI))
219 static bool
is_kernphys_relocatable(elf_file_t ef)220 is_kernphys_relocatable(elf_file_t ef)
221 {
222 	Elf_Sym sym;
223 
224 	return (__elfN(lookup_symbol)(ef, "kernphys", &sym, STT_OBJECT) == 0);
225 }
226 #endif
227 
228 #ifdef __i386__
229 static bool
is_tg_kernel_support(struct preloaded_file * fp,elf_file_t ef)230 is_tg_kernel_support(struct preloaded_file *fp, elf_file_t ef)
231 {
232 	Elf_Sym		sym;
233 	Elf_Addr	p_start, p_end, v, p;
234 	char		vd_name[16];
235 	int		error;
236 
237 	if (__elfN(lookup_symbol)(ef, "__start_set_vt_drv_set", &sym, STT_NOTYPE) != 0)
238 		return (false);
239 	p_start = sym.st_value + ef->off;
240 	if (__elfN(lookup_symbol)(ef, "__stop_set_vt_drv_set", &sym, STT_NOTYPE) != 0)
241 		return (false);
242 	p_end = sym.st_value + ef->off;
243 
244 	/*
245 	 * Walk through vt_drv_set, each vt driver structure starts with
246 	 * static 16 chars for driver name. If we have "vbefb", return true.
247 	 */
248 	for (p = p_start; p < p_end; p += sizeof(Elf_Addr)) {
249 		COPYOUT(p, &v, sizeof(v));
250 
251 		error = __elfN(reloc_ptr)(fp, ef, p, &v, sizeof(v));
252 		if (error == EOPNOTSUPP)
253 			v += ef->off;
254 		else if (error != 0)
255 			return (false);
256 		COPYOUT(v, &vd_name, sizeof(vd_name));
257 		if (strncmp(vd_name, "vbefb", sizeof(vd_name)) == 0)
258 			return (true);
259 	}
260 
261 	return (false);
262 }
263 #endif
264 
265 static int
__elfN(load_elf_header)266 __elfN(load_elf_header)(char *filename, elf_file_t ef)
267 {
268 	ssize_t			 bytes_read;
269 	Elf_Ehdr		*ehdr;
270 	int			 err;
271 
272 	/*
273 	 * Open the image, read and validate the ELF header
274 	 */
275 	if (filename == NULL)	/* can't handle nameless */
276 		return (EFTYPE);
277 	if ((ef->fd = open(filename, O_RDONLY)) == -1)
278 		return (errno);
279 	ef->firstpage = malloc(PAGE_SIZE);
280 	if (ef->firstpage == NULL) {
281 		close(ef->fd);
282 		return (ENOMEM);
283 	}
284 	preload(ef->fd);
285 #ifdef LOADER_VERIEXEC_VECTX
286 	{
287 		int verror;
288 
289 		ef->vctx = vectx_open(ef->fd, filename, 0L, NULL, &verror, __func__);
290 		if (verror) {
291 			printf("Unverified %s: %s\n", filename, ve_error_get());
292 			close(ef->fd);
293 			free(ef->vctx);
294 			return (EAUTH);
295 		}
296 	}
297 #endif
298 	bytes_read = VECTX_READ(VECTX_HANDLE(ef), ef->firstpage, PAGE_SIZE);
299 	ef->firstlen = (size_t)bytes_read;
300 	if (bytes_read < 0 || ef->firstlen <= sizeof(Elf_Ehdr)) {
301 		err = EFTYPE; /* could be EIO, but may be small file */
302 		goto error;
303 	}
304 	ehdr = ef->ehdr = (Elf_Ehdr *)ef->firstpage;
305 
306 	/* Is it ELF? */
307 	if (!IS_ELF(*ehdr)) {
308 		err = EFTYPE;
309 		goto error;
310 	}
311 
312 	if (ehdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || /* Layout ? */
313 	    ehdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
314 	    ehdr->e_ident[EI_VERSION] != EV_CURRENT) /* Version ? */ {
315 		err = EFTYPE;
316 		goto error;
317 	}
318 
319 	err = elf_header_convert(ehdr);
320 	if (err)
321 		goto error;
322 
323 	if (ehdr->e_version != EV_CURRENT || ehdr->e_machine != ELF_TARG_MACH) {
324 		/* Machine ? */
325 		err = EFTYPE;
326 		goto error;
327 	}
328 
329 #if defined(LOADER_VERIEXEC) && !defined(LOADER_VERIEXEC_VECTX)
330 	if (verify_file(ef->fd, filename, bytes_read, VE_MUST, __func__) < 0) {
331 		err = EAUTH;
332 		goto error;
333 	}
334 #endif
335 	return (0);
336 
337 error:
338 	if (ef->firstpage != NULL) {
339 		free(ef->firstpage);
340 		ef->firstpage = NULL;
341 	}
342 	if (ef->fd != -1) {
343 #ifdef LOADER_VERIEXEC_VECTX
344 		free(ef->vctx);
345 #endif
346 		close(ef->fd);
347 		ef->fd = -1;
348 	}
349 	return (err);
350 }
351 
352 /*
353  * Attempt to load the file (file) as an ELF module.  It will be stored at
354  * (dest), and a pointer to a module structure describing the loaded object
355  * will be saved in (result).
356  */
357 int
__elfN(loadfile)358 __elfN(loadfile)(char *filename, uint64_t dest, struct preloaded_file **result)
359 {
360 	return (__elfN(loadfile_raw)(filename, dest, result, 0));
361 }
362 
363 int
__elfN(loadfile_raw)364 __elfN(loadfile_raw)(char *filename, uint64_t dest,
365     struct preloaded_file **result, int multiboot)
366 {
367 	struct preloaded_file	*fp, *kfp;
368 	struct elf_file		ef;
369 	Elf_Ehdr		*ehdr;
370 	int			err;
371 
372 	fp = NULL;
373 	bzero(&ef, sizeof(struct elf_file));
374 	ef.fd = -1;
375 
376 	err = __elfN(load_elf_header)(filename, &ef);
377 	if (err != 0)
378 		return (err);
379 
380 	ehdr = ef.ehdr;
381 
382 	/*
383 	 * Check to see what sort of module we are.
384 	 */
385 	kfp = file_findfile(NULL, md_kerntype);
386 #ifdef __powerpc__
387 	/*
388 	 * Kernels can be ET_DYN, so just assume the first loaded object is the
389 	 * kernel. This assumption will be checked later.
390 	 */
391 	if (kfp == NULL)
392 		ef.kernel = 1;
393 #endif
394 	if (ef.kernel || ehdr->e_type == ET_EXEC) {
395 		/* Looks like a kernel */
396 		if (kfp != NULL) {
397 			printf("elf" __XSTRING(__ELF_WORD_SIZE)
398 			    "_loadfile: kernel already loaded\n");
399 			err = EPERM;
400 			goto oerr;
401 		}
402 		/*
403 		 * Calculate destination address based on kernel entrypoint.
404 		 *
405 		 * For ARM, the destination address is independent of any values
406 		 * in the elf header (an ARM kernel can be loaded at any 2MB
407 		 * boundary), so we leave dest set to the value calculated by
408 		 * archsw.arch_loadaddr() and passed in to this function.
409 		 */
410 #ifndef __arm__
411 		if (ehdr->e_type == ET_EXEC)
412 			dest = (ehdr->e_entry & ~PAGE_MASK);
413 #endif
414 		if ((ehdr->e_entry & ~PAGE_MASK) == 0) {
415 			printf("elf" __XSTRING(__ELF_WORD_SIZE)
416 			    "_loadfile: not a kernel (maybe static binary?)\n");
417 			err = EPERM;
418 			goto oerr;
419 		}
420 		ef.kernel = 1;
421 
422 	} else if (ehdr->e_type == ET_DYN) {
423 		/* Looks like a kld module */
424 		if (multiboot != 0) {
425 			printf("elf" __XSTRING(__ELF_WORD_SIZE)
426 			    "_loadfile: can't load module as multiboot\n");
427 			err = EPERM;
428 			goto oerr;
429 		}
430 		if (kfp == NULL) {
431 			printf("elf" __XSTRING(__ELF_WORD_SIZE)
432 			    "_loadfile: can't load module before kernel\n");
433 			err = EPERM;
434 			goto oerr;
435 		}
436 		if (strcmp(md_kerntype, kfp->f_type)) {
437 			printf("elf" __XSTRING(__ELF_WORD_SIZE)
438 			 "_loadfile: can't load module with kernel type '%s'\n",
439 			    kfp->f_type);
440 			err = EPERM;
441 			goto oerr;
442 		}
443 		/* Looks OK, got ahead */
444 		ef.kernel = 0;
445 
446 	} else {
447 		err = EFTYPE;
448 		goto oerr;
449 	}
450 
451 	if (archsw.arch_loadaddr != NULL)
452 		dest = archsw.arch_loadaddr(LOAD_ELF, ehdr, dest);
453 	else
454 		dest = roundup(dest, PAGE_SIZE);
455 
456 	/*
457 	 * Ok, we think we should handle this.
458 	 */
459 	fp = file_alloc();
460 	if (fp == NULL) {
461 		printf("elf" __XSTRING(__ELF_WORD_SIZE)
462 		    "_loadfile: cannot allocate module info\n");
463 		err = EPERM;
464 		goto out;
465 	}
466 	if (ef.kernel == 1 && multiboot == 0)
467 		setenv("kernelname", filename, 1);
468 	fp->f_name = strdup(filename);
469 	if (multiboot == 0)
470 		fp->f_type = strdup(ef.kernel ?
471 		    md_kerntype : md_modtype);
472 	else
473 		fp->f_type = strdup(md_kerntype_mb);
474 
475 	if (module_verbose >= MODULE_VERBOSE_FULL) {
476 		if (ef.kernel)
477 			printf("%s entry at 0x%jx\n", filename,
478 			    (uintmax_t)ehdr->e_entry);
479 	} else if (module_verbose > MODULE_VERBOSE_SILENT)
480 		printf("%s ", filename);
481 
482 	fp->f_size = __elfN(loadimage)(fp, &ef, dest);
483 	if (fp->f_size == 0 || fp->f_addr == 0)
484 		goto ioerr;
485 
486 	/* save exec header as metadata */
487 	file_addmetadata(fp, MODINFOMD_ELFHDR, sizeof(*ehdr), ehdr);
488 
489 	/* Load OK, return module pointer */
490 	*result = (struct preloaded_file *)fp;
491 	err = 0;
492 #if defined(__amd64__) || (defined(__i386__) && defined(EFI))
493 	fp->f_kernphys_relocatable = multiboot || is_kernphys_relocatable(&ef);
494 #endif
495 #if defined(__i386__) && !defined(EFI)
496 	fp->f_tg_kernel_support = is_tg_kernel_support(fp, &ef);
497 #endif
498 	goto out;
499 
500 ioerr:
501 	err = EIO;
502 oerr:
503 	file_discard(fp);
504 out:
505 	if (ef.firstpage)
506 		free(ef.firstpage);
507 	if (ef.fd != -1) {
508 #ifdef LOADER_VERIEXEC_VECTX
509 		if (!err && ef.vctx) {
510 			int verror;
511 
512 			verror = vectx_close(ef.vctx, VE_MUST, __func__);
513 			if (verror) {
514 				err = EAUTH;
515 				file_discard(fp);
516 			}
517 		}
518 #endif
519 		close(ef.fd);
520 	}
521 	return (err);
522 }
523 
524 /*
525  * With the file (fd) open on the image, and (ehdr) containing
526  * the Elf header, load the image at (off)
527  */
528 static int
__elfN(loadimage)529 __elfN(loadimage)(struct preloaded_file *fp, elf_file_t ef, uint64_t off)
530 {
531 	int		i;
532 	u_int		j;
533 	Elf_Ehdr	*ehdr;
534 	Elf_Phdr	*phdr, *php;
535 	Elf_Shdr	*shdr;
536 	char		*shstr;
537 	int		ret;
538 	vm_offset_t	firstaddr;
539 	vm_offset_t	lastaddr;
540 	size_t		chunk;
541 	ssize_t		result;
542 	Elf_Addr	ssym, esym;
543 	Elf_Dyn		*dp;
544 	Elf_Addr	adp;
545 	Elf_Addr	ctors;
546 	int		ndp;
547 	int		symstrindex;
548 	int		symtabindex;
549 	Elf_Size	size;
550 	u_int		fpcopy;
551 	Elf_Sym		sym;
552 	Elf_Addr	p_start, p_end;
553 
554 	dp = NULL;
555 	shdr = NULL;
556 	ret = 0;
557 	firstaddr = lastaddr = 0;
558 	ehdr = ef->ehdr;
559 #ifdef __powerpc__
560 	if (ef->kernel) {
561 #else
562 	if (ehdr->e_type == ET_EXEC) {
563 #endif
564 #if defined(__i386__) || defined(__amd64__)
565 #if __ELF_WORD_SIZE == 64
566 		/* x86_64 relocates after locore */
567 		off = - (off & 0xffffffffff000000ull);
568 #else
569 		/* i386 relocates after locore */
570 		off = - (off & 0xff000000u);
571 #endif
572 #elif defined(__powerpc__)
573 		/*
574 		 * On the purely virtual memory machines like e500, the kernel
575 		 * is linked against its final VA range, which is most often
576 		 * not available at the loader stage, but only after kernel
577 		 * initializes and completes its VM settings. In such cases we
578 		 * cannot use p_vaddr field directly to load ELF segments, but
579 		 * put them at some 'load-time' locations.
580 		 */
581 		if (off & 0xf0000000u) {
582 			off = -(off & 0xf0000000u);
583 			/*
584 			 * XXX the physical load address should not be
585 			 * hardcoded. Note that the Book-E kernel assumes that
586 			 * it's loaded at a 16MB boundary for now...
587 			 */
588 			off += 0x01000000;
589 		}
590 		ehdr->e_entry += off;
591 		if (module_verbose >= MODULE_VERBOSE_FULL)
592 			printf("Converted entry 0x%jx\n",
593 			    (uintmax_t)ehdr->e_entry);
594 
595 #elif defined(__arm__) && !defined(EFI)
596 		/*
597 		 * The elf headers in arm kernels specify virtual addresses in
598 		 * all header fields, even the ones that should be physical
599 		 * addresses.  We assume the entry point is in the first page,
600 		 * and masking the page offset will leave us with the virtual
601 		 * address the kernel was linked at.  We subtract that from the
602 		 * load offset, making 'off' into the value which, when added
603 		 * to a virtual address in an elf header, translates it to a
604 		 * physical address.  We do the va->pa conversion on the entry
605 		 * point address in the header now, so that later we can launch
606 		 * the kernel by just jumping to that address.
607 		 *
608 		 * When booting from UEFI the copyin and copyout functions
609 		 * handle adjusting the location relative to the first virtual
610 		 * address.  Because of this there is no need to adjust the
611 		 * offset or entry point address as these will both be handled
612 		 * by the efi code.
613 		 */
614 		off -= ehdr->e_entry & ~PAGE_MASK;
615 		ehdr->e_entry += off;
616 		if (module_verbose >= MODULE_VERBOSE_FULL)
617 			printf("ehdr->e_entry 0x%jx, va<->pa off %llx\n",
618 			    (uintmax_t)ehdr->e_entry, off);
619 #else
620 		off = 0;	/* other archs use direct mapped kernels */
621 #endif
622 	}
623 	ef->off = off;
624 
625 	if (ef->kernel)
626 		__elfN(relocation_offset) = off;
627 
628 	if ((ehdr->e_phoff + ehdr->e_phnum * sizeof(*phdr)) > ef->firstlen) {
629 		printf("elf" __XSTRING(__ELF_WORD_SIZE)
630 		    "_loadimage: program header not within first page\n");
631 		goto out;
632 	}
633 	phdr = (Elf_Phdr *)(ef->firstpage + ehdr->e_phoff);
634 
635 	for (i = 0; i < ehdr->e_phnum; i++) {
636 		if (elf_program_header_convert(ehdr, phdr))
637 			continue;
638 
639 		/* We want to load PT_LOAD segments only.. */
640 		if (phdr[i].p_type != PT_LOAD)
641 			continue;
642 
643 		if (module_verbose >= MODULE_VERBOSE_FULL) {
644 			printf("Segment: 0x%lx@0x%lx -> 0x%lx-0x%lx",
645 			    (long)phdr[i].p_filesz, (long)phdr[i].p_offset,
646 			    (long)(phdr[i].p_vaddr + off),
647 			    (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz - 1));
648 		} else if (module_verbose > MODULE_VERBOSE_SILENT) {
649 			if ((phdr[i].p_flags & PF_W) == 0) {
650 				printf("text=0x%lx ", (long)phdr[i].p_filesz);
651 			} else {
652 				printf("data=0x%lx", (long)phdr[i].p_filesz);
653 				if (phdr[i].p_filesz < phdr[i].p_memsz)
654 					printf("+0x%lx", (long)(phdr[i].p_memsz -
655 						phdr[i].p_filesz));
656 				printf(" ");
657 			}
658 		}
659 		fpcopy = 0;
660 		if (ef->firstlen > phdr[i].p_offset) {
661 			fpcopy = ef->firstlen - phdr[i].p_offset;
662 			archsw.arch_copyin(ef->firstpage + phdr[i].p_offset,
663 			    phdr[i].p_vaddr + off, fpcopy);
664 		}
665 		if (phdr[i].p_filesz > fpcopy) {
666 			if (kern_pread(VECTX_HANDLE(ef),
667 			    phdr[i].p_vaddr + off + fpcopy,
668 			    phdr[i].p_filesz - fpcopy,
669 			    phdr[i].p_offset + fpcopy) != 0) {
670 				printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
671 				    "_loadimage: read failed\n");
672 				goto out;
673 			}
674 		}
675 		/* clear space from oversized segments; eg: bss */
676 		if (phdr[i].p_filesz < phdr[i].p_memsz) {
677 			if (module_verbose >= MODULE_VERBOSE_FULL) {
678 				printf(" (bss: 0x%lx-0x%lx)",
679 				    (long)(phdr[i].p_vaddr + off + phdr[i].p_filesz),
680 				    (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz -1));
681 			}
682 			kern_bzero(phdr[i].p_vaddr + off + phdr[i].p_filesz,
683 			    phdr[i].p_memsz - phdr[i].p_filesz);
684 		}
685 		if (module_verbose >= MODULE_VERBOSE_FULL)
686 			printf("\n");
687 
688 		if (archsw.arch_loadseg != NULL)
689 			archsw.arch_loadseg(ehdr, phdr + i, off);
690 
691 		if (firstaddr == 0 || firstaddr > (phdr[i].p_vaddr + off))
692 			firstaddr = phdr[i].p_vaddr + off;
693 		if (lastaddr == 0 || lastaddr <
694 		    (phdr[i].p_vaddr + off + phdr[i].p_memsz))
695 			lastaddr = phdr[i].p_vaddr + off + phdr[i].p_memsz;
696 	}
697 	lastaddr = roundup(lastaddr, sizeof(long));
698 
699 	/*
700 	 * Get the section headers.  We need this for finding the .ctors
701 	 * section as well as for loading any symbols.  Both may be hard
702 	 * to do if reading from a .gz file as it involves seeking.  I
703 	 * think the rule is going to have to be that you must strip a
704 	 * file to remove symbols before gzipping it.
705 	 */
706 	chunk = (size_t)ehdr->e_shnum * (size_t)ehdr->e_shentsize;
707 	if (chunk == 0 || ehdr->e_shoff == 0)
708 		goto nosyms;
709 	shdr = alloc_pread(VECTX_HANDLE(ef), ehdr->e_shoff, chunk);
710 	if (shdr == NULL) {
711 		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
712 		    "_loadimage: failed to read section headers");
713 		goto nosyms;
714 	}
715 
716 	for (i = 0; i < ehdr->e_shnum; i++)
717 		elf_section_header_convert(ehdr, &shdr[i]);
718 
719 	file_addmetadata(fp, MODINFOMD_SHDR, chunk, shdr);
720 
721 	/*
722 	 * Read the section string table and look for the .ctors section.
723 	 * We need to tell the kernel where it is so that it can call the
724 	 * ctors.
725 	 */
726 	chunk = shdr[ehdr->e_shstrndx].sh_size;
727 	if (chunk) {
728 		shstr = alloc_pread(VECTX_HANDLE(ef),
729 		    shdr[ehdr->e_shstrndx].sh_offset, chunk);
730 		if (shstr) {
731 			for (i = 0; i < ehdr->e_shnum; i++) {
732 				if (strcmp(shstr + shdr[i].sh_name,
733 				    ".ctors") != 0)
734 					continue;
735 				ctors = shdr[i].sh_addr;
736 				file_addmetadata(fp, MODINFOMD_CTORS_ADDR,
737 				    sizeof(ctors), &ctors);
738 				size = shdr[i].sh_size;
739 				file_addmetadata(fp, MODINFOMD_CTORS_SIZE,
740 				    sizeof(size), &size);
741 				break;
742 			}
743 			free(shstr);
744 		}
745 	}
746 
747 	/*
748 	 * Now load any symbols.
749 	 */
750 	symtabindex = -1;
751 	symstrindex = -1;
752 	for (i = 0; i < ehdr->e_shnum; i++) {
753 		if (shdr[i].sh_type != SHT_SYMTAB)
754 			continue;
755 		for (j = 0; j < ehdr->e_phnum; j++) {
756 			if (phdr[j].p_type != PT_LOAD)
757 				continue;
758 			if (shdr[i].sh_offset >= phdr[j].p_offset &&
759 			    (shdr[i].sh_offset + shdr[i].sh_size <=
760 			    phdr[j].p_offset + phdr[j].p_filesz)) {
761 				shdr[i].sh_offset = 0;
762 				shdr[i].sh_size = 0;
763 				break;
764 			}
765 		}
766 		if (shdr[i].sh_offset == 0 || shdr[i].sh_size == 0)
767 			continue;	/* alread loaded in a PT_LOAD above */
768 		/* Save it for loading below */
769 		symtabindex = i;
770 		symstrindex = shdr[i].sh_link;
771 	}
772 	if (symtabindex < 0 || symstrindex < 0)
773 		goto nosyms;
774 
775 	/* Ok, committed to a load. */
776 	if (module_verbose >= MODULE_VERBOSE_FULL)
777 		printf("syms=[");
778 	ssym = lastaddr;
779 	for (i = symtabindex; i >= 0; i = symstrindex) {
780 		char	*secname;
781 
782 		switch(shdr[i].sh_type) {
783 		case SHT_SYMTAB:		/* Symbol table */
784 			secname = "symtab";
785 			break;
786 		case SHT_STRTAB:		/* String table */
787 			secname = "strtab";
788 			break;
789 		default:
790 			secname = "WHOA!!";
791 			break;
792 		}
793 		size = shdr[i].sh_size;
794 
795 		archsw.arch_copyin(&size, lastaddr, sizeof(size));
796 		lastaddr += sizeof(size);
797 
798 		if (module_verbose >= MODULE_VERBOSE_FULL) {
799 			printf("\n%s: 0x%jx@0x%jx -> 0x%jx-0x%jx", secname,
800 			    (uintmax_t)shdr[i].sh_size, (uintmax_t)shdr[i].sh_offset,
801 			    (uintmax_t)lastaddr,
802 			    (uintmax_t)(lastaddr + shdr[i].sh_size));
803 		} else if (module_verbose > MODULE_VERBOSE_SILENT) {
804 			if (i == symstrindex)
805 				printf("+");
806 			printf("0x%lx+0x%lx", (long)sizeof(size), (long)size);
807 		}
808 		if (VECTX_LSEEK(VECTX_HANDLE(ef), (off_t)shdr[i].sh_offset, SEEK_SET) == -1) {
809 			printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
810 			   "_loadimage: could not seek for symbols - skipped!");
811 			lastaddr = ssym;
812 			ssym = 0;
813 			goto nosyms;
814 		}
815 		result = archsw.arch_readin(VECTX_HANDLE(ef), lastaddr, shdr[i].sh_size);
816 		if (result < 0 || (size_t)result != shdr[i].sh_size) {
817 			printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
818 			    "_loadimage: could not read symbols - skipped! "
819 			    "(%ju != %ju)", (uintmax_t)result,
820 			    (uintmax_t)shdr[i].sh_size);
821 			lastaddr = ssym;
822 			ssym = 0;
823 			goto nosyms;
824 		}
825 		/* Reset offsets relative to ssym */
826 		lastaddr += shdr[i].sh_size;
827 		lastaddr = roundup(lastaddr, sizeof(size));
828 		if (i == symtabindex)
829 			symtabindex = -1;
830 		else if (i == symstrindex)
831 			symstrindex = -1;
832 	}
833 	esym = lastaddr;
834 	if (module_verbose >= MODULE_VERBOSE_FULL)
835 		printf("]");
836 
837 	file_addmetadata(fp, MODINFOMD_SSYM, sizeof(ssym), &ssym);
838 	file_addmetadata(fp, MODINFOMD_ESYM, sizeof(esym), &esym);
839 
840 nosyms:
841 	if (module_verbose > MODULE_VERBOSE_SILENT)
842 		printf("\n");
843 
844 	ret = lastaddr - firstaddr;
845 	fp->f_addr = firstaddr;
846 
847 	php = NULL;
848 	for (i = 0; i < ehdr->e_phnum; i++) {
849 		if (phdr[i].p_type == PT_DYNAMIC) {
850 			php = phdr + i;
851 			adp = php->p_vaddr;
852 			file_addmetadata(fp, MODINFOMD_DYNAMIC, sizeof(adp),
853 			    &adp);
854 			break;
855 		}
856 	}
857 
858 	if (php == NULL) /* this is bad, we cannot get to symbols or _DYNAMIC */
859 		goto out;
860 
861 	ndp = php->p_filesz / sizeof(Elf_Dyn);
862 	if (ndp == 0)
863 		goto out;
864 	dp = malloc(php->p_filesz);
865 	if (dp == NULL)
866 		goto out;
867 	archsw.arch_copyout(php->p_vaddr + off, dp, php->p_filesz);
868 
869 	ef->strsz = 0;
870 	for (i = 0; i < ndp; i++) {
871 		if (dp[i].d_tag == 0)
872 			break;
873 		switch (dp[i].d_tag) {
874 		case DT_HASH:
875 			ef->hashtab =
876 			    (Elf_Hashelt*)(uintptr_t)(dp[i].d_un.d_ptr + off);
877 			break;
878 		case DT_STRTAB:
879 			ef->strtab =
880 			    (char *)(uintptr_t)(dp[i].d_un.d_ptr + off);
881 			break;
882 		case DT_STRSZ:
883 			ef->strsz = dp[i].d_un.d_val;
884 			break;
885 		case DT_SYMTAB:
886 			ef->symtab =
887 			    (Elf_Sym *)(uintptr_t)(dp[i].d_un.d_ptr + off);
888 			break;
889 		case DT_REL:
890 			ef->rel =
891 			    (Elf_Rel *)(uintptr_t)(dp[i].d_un.d_ptr + off);
892 			break;
893 		case DT_RELSZ:
894 			ef->relsz = dp[i].d_un.d_val;
895 			break;
896 		case DT_RELA:
897 			ef->rela =
898 			    (Elf_Rela *)(uintptr_t)(dp[i].d_un.d_ptr + off);
899 			break;
900 		case DT_RELASZ:
901 			ef->relasz = dp[i].d_un.d_val;
902 			break;
903 		default:
904 			break;
905 		}
906 	}
907 	if (ef->hashtab == NULL || ef->symtab == NULL ||
908 	    ef->strtab == NULL || ef->strsz == 0)
909 		goto out;
910 	COPYOUT(ef->hashtab, &ef->nbuckets, sizeof(ef->nbuckets));
911 	COPYOUT(ef->hashtab + 1, &ef->nchains, sizeof(ef->nchains));
912 	ef->buckets = ef->hashtab + 2;
913 	ef->chains = ef->buckets + ef->nbuckets;
914 
915 	if (__elfN(lookup_symbol)(ef, "__start_set_modmetadata_set", &sym,
916 	    STT_NOTYPE) != 0)
917 		return 0;
918 	p_start = sym.st_value + ef->off;
919 	if (__elfN(lookup_symbol)(ef, "__stop_set_modmetadata_set", &sym,
920 	    STT_NOTYPE) != 0)
921 		return 0;
922 	p_end = sym.st_value + ef->off;
923 
924 	if (__elfN(parse_modmetadata)(fp, ef, p_start, p_end) == 0)
925 		goto out;
926 
927 	if (ef->kernel)		/* kernel must not depend on anything */
928 		goto out;
929 
930 out:
931 	if (dp)
932 		free(dp);
933 	if (shdr)
934 		free(shdr);
935 	return ret;
936 }
937 
938 static char invalid_name[] = "bad";
939 
940 char *
941 fake_modname(const char *name)
942 {
943 	const char *sp, *ep;
944 	char *fp;
945 	size_t len;
946 
947 	sp = strrchr(name, '/');
948 	if (sp)
949 		sp++;
950 	else
951 		sp = name;
952 
953 	ep = strrchr(sp, '.');
954 	if (ep == NULL) {
955 		ep = sp + strlen(sp);
956 	}
957 	if (ep == sp) {
958 		sp = invalid_name;
959 		ep = invalid_name + sizeof(invalid_name) - 1;
960 	}
961 
962 	len = ep - sp;
963 	fp = malloc(len + 1);
964 	if (fp == NULL)
965 		return NULL;
966 	memcpy(fp, sp, len);
967 	fp[len] = '\0';
968 	return fp;
969 }
970 
971 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64
972 struct mod_metadata64 {
973 	int		md_version;	/* structure version MDTV_* */
974 	int		md_type;	/* type of entry MDT_* */
975 	uint64_t	md_data;	/* specific data */
976 	uint64_t	md_cval;	/* common string label */
977 };
978 #endif
979 #if defined(__amd64__) && __ELF_WORD_SIZE == 32
980 struct mod_metadata32 {
981 	int		md_version;	/* structure version MDTV_* */
982 	int		md_type;	/* type of entry MDT_* */
983 	uint32_t	md_data;	/* specific data */
984 	uint32_t	md_cval;	/* common string label */
985 };
986 #endif
987 
988 int
989 __elfN(load_modmetadata)(struct preloaded_file *fp, uint64_t dest)
990 {
991 	struct elf_file		 ef;
992 	int			 err, i, j;
993 	Elf_Shdr		*sh_meta, *shdr = NULL;
994 	Elf_Shdr		*sh_data[2];
995 	char			*shstrtab = NULL;
996 	size_t			 size;
997 	Elf_Addr		 p_start, p_end;
998 
999 	bzero(&ef, sizeof(struct elf_file));
1000 	ef.fd = -1;
1001 
1002 	err = __elfN(load_elf_header)(fp->f_name, &ef);
1003 	if (err != 0)
1004 		goto out;
1005 
1006 	if (ef.kernel == 1 || ef.ehdr->e_type == ET_EXEC) {
1007 		ef.kernel = 1;
1008 	} else if (ef.ehdr->e_type != ET_DYN) {
1009 		err = EFTYPE;
1010 		goto out;
1011 	}
1012 
1013 	size = (size_t)ef.ehdr->e_shnum * (size_t)ef.ehdr->e_shentsize;
1014 	shdr = alloc_pread(VECTX_HANDLE(&ef), ef.ehdr->e_shoff, size);
1015 	if (shdr == NULL) {
1016 		err = ENOMEM;
1017 		goto out;
1018 	}
1019 
1020 	/* Load shstrtab. */
1021 	shstrtab = alloc_pread(VECTX_HANDLE(&ef), shdr[ef.ehdr->e_shstrndx].sh_offset,
1022 	    shdr[ef.ehdr->e_shstrndx].sh_size);
1023 	if (shstrtab == NULL) {
1024 		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1025 		    "load_modmetadata: unable to load shstrtab\n");
1026 		err = EFTYPE;
1027 		goto out;
1028 	}
1029 
1030 	/* Find set_modmetadata_set and data sections. */
1031 	sh_data[0] = sh_data[1] = sh_meta = NULL;
1032 	for (i = 0, j = 0; i < ef.ehdr->e_shnum; i++) {
1033 		if (strcmp(&shstrtab[shdr[i].sh_name],
1034 		    "set_modmetadata_set") == 0) {
1035 			sh_meta = &shdr[i];
1036 		}
1037 		if ((strcmp(&shstrtab[shdr[i].sh_name], ".data") == 0) ||
1038 		    (strcmp(&shstrtab[shdr[i].sh_name], ".rodata") == 0)) {
1039 			sh_data[j++] = &shdr[i];
1040 		}
1041 	}
1042 	if (sh_meta == NULL || sh_data[0] == NULL || sh_data[1] == NULL) {
1043 		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1044     "load_modmetadata: unable to find set_modmetadata_set or data sections\n");
1045 		err = EFTYPE;
1046 		goto out;
1047 	}
1048 
1049 	/* Load set_modmetadata_set into memory */
1050 	err = kern_pread(VECTX_HANDLE(&ef), dest, sh_meta->sh_size, sh_meta->sh_offset);
1051 	if (err != 0) {
1052 		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1053     "load_modmetadata: unable to load set_modmetadata_set: %d\n", err);
1054 		goto out;
1055 	}
1056 	p_start = dest;
1057 	p_end = dest + sh_meta->sh_size;
1058 	dest += sh_meta->sh_size;
1059 
1060 	/* Load data sections into memory. */
1061 	err = kern_pread(VECTX_HANDLE(&ef), dest, sh_data[0]->sh_size,
1062 	    sh_data[0]->sh_offset);
1063 	if (err != 0) {
1064 		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1065 		    "load_modmetadata: unable to load data: %d\n", err);
1066 		goto out;
1067 	}
1068 
1069 	/*
1070 	 * We have to increment the dest, so that the offset is the same into
1071 	 * both the .rodata and .data sections.
1072 	 */
1073 	ef.off = -(sh_data[0]->sh_addr - dest);
1074 	dest +=	(sh_data[1]->sh_addr - sh_data[0]->sh_addr);
1075 
1076 	err = kern_pread(VECTX_HANDLE(&ef), dest, sh_data[1]->sh_size,
1077 	    sh_data[1]->sh_offset);
1078 	if (err != 0) {
1079 		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1080 		    "load_modmetadata: unable to load data: %d\n", err);
1081 		goto out;
1082 	}
1083 
1084 	err = __elfN(parse_modmetadata)(fp, &ef, p_start, p_end);
1085 	if (err != 0) {
1086 		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1087 		    "load_modmetadata: unable to parse metadata: %d\n", err);
1088 		goto out;
1089 	}
1090 
1091 out:
1092 	if (shstrtab != NULL)
1093 		free(shstrtab);
1094 	if (shdr != NULL)
1095 		free(shdr);
1096 	if (ef.firstpage != NULL)
1097 		free(ef.firstpage);
1098 	if (ef.fd != -1) {
1099 #ifdef LOADER_VERIEXEC_VECTX
1100 		if (!err && ef.vctx) {
1101 			int verror;
1102 
1103 			verror = vectx_close(ef.vctx, VE_MUST, __func__);
1104 			if (verror) {
1105 				err = EAUTH;
1106 				file_discard(fp);
1107 			}
1108 		}
1109 #endif
1110 		close(ef.fd);
1111 	}
1112 	return (err);
1113 }
1114 
1115 int
1116 __elfN(parse_modmetadata)(struct preloaded_file *fp, elf_file_t ef,
1117     Elf_Addr p_start, Elf_Addr p_end)
1118 {
1119 	struct mod_metadata md;
1120 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64
1121 	struct mod_metadata64 md64;
1122 #elif defined(__amd64__) && __ELF_WORD_SIZE == 32
1123 	struct mod_metadata32 md32;
1124 #endif
1125 	struct mod_depend *mdepend;
1126 	struct mod_version mver;
1127 	char *s;
1128 	int error, modcnt, minfolen;
1129 	Elf_Addr v, p;
1130 
1131 	modcnt = 0;
1132 	p = p_start;
1133 	while (p < p_end) {
1134 		COPYOUT(p, &v, sizeof(v));
1135 		error = __elfN(reloc_ptr)(fp, ef, p, &v, sizeof(v));
1136 		if (error == EOPNOTSUPP)
1137 			v += ef->off;
1138 		else if (error != 0)
1139 			return (error);
1140 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64
1141 		COPYOUT(v, &md64, sizeof(md64));
1142 		error = __elfN(reloc_ptr)(fp, ef, v, &md64, sizeof(md64));
1143 		if (error == EOPNOTSUPP) {
1144 			md64.md_cval += ef->off;
1145 			md64.md_data += ef->off;
1146 		} else if (error != 0)
1147 			return (error);
1148 		md.md_version = md64.md_version;
1149 		md.md_type = md64.md_type;
1150 		md.md_cval = (const char *)(uintptr_t)md64.md_cval;
1151 		md.md_data = (void *)(uintptr_t)md64.md_data;
1152 #elif defined(__amd64__) && __ELF_WORD_SIZE == 32
1153 		COPYOUT(v, &md32, sizeof(md32));
1154 		error = __elfN(reloc_ptr)(fp, ef, v, &md32, sizeof(md32));
1155 		if (error == EOPNOTSUPP) {
1156 			md32.md_cval += ef->off;
1157 			md32.md_data += ef->off;
1158 		} else if (error != 0)
1159 			return (error);
1160 		md.md_version = md32.md_version;
1161 		md.md_type = md32.md_type;
1162 		md.md_cval = (const char *)(uintptr_t)md32.md_cval;
1163 		md.md_data = (void *)(uintptr_t)md32.md_data;
1164 #else
1165 		COPYOUT(v, &md, sizeof(md));
1166 		error = __elfN(reloc_ptr)(fp, ef, v, &md, sizeof(md));
1167 		if (error == EOPNOTSUPP) {
1168 			md.md_cval += ef->off;
1169 			md.md_data = (void *)((uintptr_t)md.md_data +
1170 			    (uintptr_t)ef->off);
1171 		} else if (error != 0)
1172 			return (error);
1173 #endif
1174 		p += sizeof(Elf_Addr);
1175 		switch(md.md_type) {
1176 		case MDT_DEPEND:
1177 			if (ef->kernel) /* kernel must not depend on anything */
1178 				break;
1179 			s = strdupout((vm_offset_t)md.md_cval);
1180 			minfolen = sizeof(*mdepend) + strlen(s) + 1;
1181 			mdepend = malloc(minfolen);
1182 			if (mdepend == NULL)
1183 				return ENOMEM;
1184 			COPYOUT((vm_offset_t)md.md_data, mdepend,
1185 			    sizeof(*mdepend));
1186 			strcpy((char*)(mdepend + 1), s);
1187 			free(s);
1188 			file_addmetadata(fp, MODINFOMD_DEPLIST, minfolen,
1189 			    mdepend);
1190 			free(mdepend);
1191 			break;
1192 		case MDT_VERSION:
1193 			s = strdupout((vm_offset_t)md.md_cval);
1194 			COPYOUT((vm_offset_t)md.md_data, &mver, sizeof(mver));
1195 			file_addmodule(fp, s, mver.mv_version, NULL);
1196 			free(s);
1197 			modcnt++;
1198 			break;
1199 		}
1200 	}
1201 	if (modcnt == 0) {
1202 		s = fake_modname(fp->f_name);
1203 		file_addmodule(fp, s, 1, NULL);
1204 		free(s);
1205 	}
1206 	return 0;
1207 }
1208 
1209 static unsigned long
1210 elf_hash(const char *name)
1211 {
1212 	const unsigned char *p = (const unsigned char *) name;
1213 	unsigned long h = 0;
1214 	unsigned long g;
1215 
1216 	while (*p != '\0') {
1217 		h = (h << 4) + *p++;
1218 		if ((g = h & 0xf0000000) != 0)
1219 			h ^= g >> 24;
1220 		h &= ~g;
1221 	}
1222 	return h;
1223 }
1224 
1225 static const char __elfN(bad_symtable)[] = "elf" __XSTRING(__ELF_WORD_SIZE)
1226     "_lookup_symbol: corrupt symbol table\n";
1227 int
1228 __elfN(lookup_symbol)(elf_file_t ef, const char* name, Elf_Sym *symp,
1229     unsigned char type)
1230 {
1231 	Elf_Hashelt symnum;
1232 	Elf_Sym sym;
1233 	char *strp;
1234 	unsigned long hash;
1235 
1236 	if (ef->nbuckets == 0) {
1237 		printf(__elfN(bad_symtable));
1238 		return ENOENT;
1239 	}
1240 
1241 	hash = elf_hash(name);
1242 	COPYOUT(&ef->buckets[hash % ef->nbuckets], &symnum, sizeof(symnum));
1243 
1244 	while (symnum != STN_UNDEF) {
1245 		if (symnum >= ef->nchains) {
1246 			printf(__elfN(bad_symtable));
1247 			return ENOENT;
1248 		}
1249 
1250 		COPYOUT(ef->symtab + symnum, &sym, sizeof(sym));
1251 		if (sym.st_name == 0) {
1252 			printf(__elfN(bad_symtable));
1253 			return ENOENT;
1254 		}
1255 
1256 		strp = strdupout((vm_offset_t)(ef->strtab + sym.st_name));
1257 		if (strcmp(name, strp) == 0) {
1258 			free(strp);
1259 			if (sym.st_shndx != SHN_UNDEF && sym.st_value != 0 &&
1260 			    ELF_ST_TYPE(sym.st_info) == type) {
1261 				*symp = sym;
1262 				return 0;
1263 			}
1264 			return ENOENT;
1265 		}
1266 		free(strp);
1267 		COPYOUT(&ef->chains[symnum], &symnum, sizeof(symnum));
1268 	}
1269 	return ENOENT;
1270 }
1271 
1272 /*
1273  * Apply any intra-module relocations to the value. p is the load address
1274  * of the value and val/len is the value to be modified. This does NOT modify
1275  * the image in-place, because this is done by kern_linker later on.
1276  *
1277  * Returns EOPNOTSUPP if no relocation method is supplied.
1278  */
1279 static int
1280 __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef,
1281     Elf_Addr p, void *val, size_t len)
1282 {
1283 	size_t n;
1284 	Elf_Rela a;
1285 	Elf_Rel r;
1286 	int error;
1287 
1288 	/*
1289 	 * The kernel is already relocated, but we still want to apply
1290 	 * offset adjustments.
1291 	 */
1292 	if (ef->kernel)
1293 		return (EOPNOTSUPP);
1294 
1295 	for (n = 0; n < ef->relsz / sizeof(r); n++) {
1296 		COPYOUT(ef->rel + n, &r, sizeof(r));
1297 
1298 		error = __elfN(reloc)(ef, __elfN(symaddr), &r, ELF_RELOC_REL,
1299 		    ef->off, p, val, len);
1300 		if (error != 0)
1301 			return (error);
1302 	}
1303 	for (n = 0; n < ef->relasz / sizeof(a); n++) {
1304 		COPYOUT(ef->rela + n, &a, sizeof(a));
1305 
1306 		error = __elfN(reloc)(ef, __elfN(symaddr), &a, ELF_RELOC_RELA,
1307 		    ef->off, p, val, len);
1308 		if (error != 0)
1309 			return (error);
1310 	}
1311 
1312 	return (0);
1313 }
1314 
1315 static Elf_Addr
1316 __elfN(symaddr)(struct elf_file *ef, Elf_Size symidx)
1317 {
1318 
1319 	/* Symbol lookup by index not required here. */
1320 	return (0);
1321 }
1322