1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51 #include <linux/uaccess.h>
52
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/generic-radix-tree.h>
62 #include <linux/string.h>
63 #include <linux/seq_file.h>
64 #include <linux/namei.h>
65 #include <linux/mnt_namespace.h>
66 #include <linux/mm.h>
67 #include <linux/swap.h>
68 #include <linux/rcupdate.h>
69 #include <linux/kallsyms.h>
70 #include <linux/stacktrace.h>
71 #include <linux/resource.h>
72 #include <linux/module.h>
73 #include <linux/mount.h>
74 #include <linux/security.h>
75 #include <linux/ptrace.h>
76 #include <linux/printk.h>
77 #include <linux/cache.h>
78 #include <linux/cgroup.h>
79 #include <linux/cpuset.h>
80 #include <linux/audit.h>
81 #include <linux/poll.h>
82 #include <linux/nsproxy.h>
83 #include <linux/oom.h>
84 #include <linux/elf.h>
85 #include <linux/pid_namespace.h>
86 #include <linux/user_namespace.h>
87 #include <linux/fs_parser.h>
88 #include <linux/fs_struct.h>
89 #include <linux/slab.h>
90 #include <linux/sched/autogroup.h>
91 #include <linux/sched/mm.h>
92 #include <linux/sched/coredump.h>
93 #include <linux/sched/debug.h>
94 #include <linux/sched/stat.h>
95 #include <linux/posix-timers.h>
96 #include <linux/time_namespace.h>
97 #include <linux/resctrl.h>
98 #include <linux/cn_proc.h>
99 #include <linux/ksm.h>
100 #include <uapi/linux/lsm.h>
101 #include <trace/events/oom.h>
102 #include "internal.h"
103 #include "fd.h"
104
105 #include "../../lib/kstrtox.h"
106
107 /* NOTE:
108 * Implementing inode permission operations in /proc is almost
109 * certainly an error. Permission checks need to happen during
110 * each system call not at open time. The reason is that most of
111 * what we wish to check for permissions in /proc varies at runtime.
112 *
113 * The classic example of a problem is opening file descriptors
114 * in /proc for a task before it execs a suid executable.
115 */
116
117 static u8 nlink_tid __ro_after_init;
118 static u8 nlink_tgid __ro_after_init;
119
120 enum proc_mem_force {
121 PROC_MEM_FORCE_ALWAYS,
122 PROC_MEM_FORCE_PTRACE,
123 PROC_MEM_FORCE_NEVER
124 };
125
126 static enum proc_mem_force proc_mem_force_override __ro_after_init =
127 IS_ENABLED(CONFIG_PROC_MEM_NO_FORCE) ? PROC_MEM_FORCE_NEVER :
128 IS_ENABLED(CONFIG_PROC_MEM_FORCE_PTRACE) ? PROC_MEM_FORCE_PTRACE :
129 PROC_MEM_FORCE_ALWAYS;
130
131 static const struct constant_table proc_mem_force_table[] __initconst = {
132 { "always", PROC_MEM_FORCE_ALWAYS },
133 { "ptrace", PROC_MEM_FORCE_PTRACE },
134 { "never", PROC_MEM_FORCE_NEVER },
135 { }
136 };
137
early_proc_mem_force_override(char * buf)138 static int __init early_proc_mem_force_override(char *buf)
139 {
140 if (!buf)
141 return -EINVAL;
142
143 /*
144 * lookup_constant() defaults to proc_mem_force_override to preseve
145 * the initial Kconfig choice in case an invalid param gets passed.
146 */
147 proc_mem_force_override = lookup_constant(proc_mem_force_table,
148 buf, proc_mem_force_override);
149
150 return 0;
151 }
152 early_param("proc_mem.force_override", early_proc_mem_force_override);
153
154 struct pid_entry {
155 const char *name;
156 unsigned int len;
157 umode_t mode;
158 const struct inode_operations *iop;
159 const struct file_operations *fop;
160 union proc_op op;
161 };
162
163 #define NOD(NAME, MODE, IOP, FOP, OP) { \
164 .name = (NAME), \
165 .len = sizeof(NAME) - 1, \
166 .mode = MODE, \
167 .iop = IOP, \
168 .fop = FOP, \
169 .op = OP, \
170 }
171
172 #define DIR(NAME, MODE, iops, fops) \
173 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
174 #define LNK(NAME, get_link) \
175 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
176 &proc_pid_link_inode_operations, NULL, \
177 { .proc_get_link = get_link } )
178 #define REG(NAME, MODE, fops) \
179 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
180 #define ONE(NAME, MODE, show) \
181 NOD(NAME, (S_IFREG|(MODE)), \
182 NULL, &proc_single_file_operations, \
183 { .proc_show = show } )
184 #define ATTR(LSMID, NAME, MODE) \
185 NOD(NAME, (S_IFREG|(MODE)), \
186 NULL, &proc_pid_attr_operations, \
187 { .lsmid = LSMID })
188
189 /*
190 * Count the number of hardlinks for the pid_entry table, excluding the .
191 * and .. links.
192 */
pid_entry_nlink(const struct pid_entry * entries,unsigned int n)193 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
194 unsigned int n)
195 {
196 unsigned int i;
197 unsigned int count;
198
199 count = 2;
200 for (i = 0; i < n; ++i) {
201 if (S_ISDIR(entries[i].mode))
202 ++count;
203 }
204
205 return count;
206 }
207
get_task_root(struct task_struct * task,struct path * root)208 static int get_task_root(struct task_struct *task, struct path *root)
209 {
210 int result = -ENOENT;
211
212 task_lock(task);
213 if (task->fs) {
214 get_fs_root(task->fs, root);
215 result = 0;
216 }
217 task_unlock(task);
218 return result;
219 }
220
proc_cwd_link(struct dentry * dentry,struct path * path)221 static int proc_cwd_link(struct dentry *dentry, struct path *path)
222 {
223 struct task_struct *task = get_proc_task(d_inode(dentry));
224 int result = -ENOENT;
225
226 if (task) {
227 task_lock(task);
228 if (task->fs) {
229 get_fs_pwd(task->fs, path);
230 result = 0;
231 }
232 task_unlock(task);
233 put_task_struct(task);
234 }
235 return result;
236 }
237
proc_root_link(struct dentry * dentry,struct path * path)238 static int proc_root_link(struct dentry *dentry, struct path *path)
239 {
240 struct task_struct *task = get_proc_task(d_inode(dentry));
241 int result = -ENOENT;
242
243 if (task) {
244 result = get_task_root(task, path);
245 put_task_struct(task);
246 }
247 return result;
248 }
249
250 /*
251 * If the user used setproctitle(), we just get the string from
252 * user space at arg_start, and limit it to a maximum of one page.
253 */
get_mm_proctitle(struct mm_struct * mm,char __user * buf,size_t count,unsigned long pos,unsigned long arg_start)254 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
255 size_t count, unsigned long pos,
256 unsigned long arg_start)
257 {
258 char *page;
259 int ret, got;
260
261 if (pos >= PAGE_SIZE)
262 return 0;
263
264 page = (char *)__get_free_page(GFP_KERNEL);
265 if (!page)
266 return -ENOMEM;
267
268 ret = 0;
269 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
270 if (got > 0) {
271 int len = strnlen(page, got);
272
273 /* Include the NUL character if it was found */
274 if (len < got)
275 len++;
276
277 if (len > pos) {
278 len -= pos;
279 if (len > count)
280 len = count;
281 len -= copy_to_user(buf, page+pos, len);
282 if (!len)
283 len = -EFAULT;
284 ret = len;
285 }
286 }
287 free_page((unsigned long)page);
288 return ret;
289 }
290
get_mm_cmdline(struct mm_struct * mm,char __user * buf,size_t count,loff_t * ppos)291 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
292 size_t count, loff_t *ppos)
293 {
294 unsigned long arg_start, arg_end, env_start, env_end;
295 unsigned long pos, len;
296 char *page, c;
297
298 /* Check if process spawned far enough to have cmdline. */
299 if (!mm->env_end)
300 return 0;
301
302 spin_lock(&mm->arg_lock);
303 arg_start = mm->arg_start;
304 arg_end = mm->arg_end;
305 env_start = mm->env_start;
306 env_end = mm->env_end;
307 spin_unlock(&mm->arg_lock);
308
309 if (arg_start >= arg_end)
310 return 0;
311
312 /*
313 * We allow setproctitle() to overwrite the argument
314 * strings, and overflow past the original end. But
315 * only when it overflows into the environment area.
316 */
317 if (env_start != arg_end || env_end < env_start)
318 env_start = env_end = arg_end;
319 len = env_end - arg_start;
320
321 /* We're not going to care if "*ppos" has high bits set */
322 pos = *ppos;
323 if (pos >= len)
324 return 0;
325 if (count > len - pos)
326 count = len - pos;
327 if (!count)
328 return 0;
329
330 /*
331 * Magical special case: if the argv[] end byte is not
332 * zero, the user has overwritten it with setproctitle(3).
333 *
334 * Possible future enhancement: do this only once when
335 * pos is 0, and set a flag in the 'struct file'.
336 */
337 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
338 return get_mm_proctitle(mm, buf, count, pos, arg_start);
339
340 /*
341 * For the non-setproctitle() case we limit things strictly
342 * to the [arg_start, arg_end[ range.
343 */
344 pos += arg_start;
345 if (pos < arg_start || pos >= arg_end)
346 return 0;
347 if (count > arg_end - pos)
348 count = arg_end - pos;
349
350 page = (char *)__get_free_page(GFP_KERNEL);
351 if (!page)
352 return -ENOMEM;
353
354 len = 0;
355 while (count) {
356 int got;
357 size_t size = min_t(size_t, PAGE_SIZE, count);
358
359 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
360 if (got <= 0)
361 break;
362 got -= copy_to_user(buf, page, got);
363 if (unlikely(!got)) {
364 if (!len)
365 len = -EFAULT;
366 break;
367 }
368 pos += got;
369 buf += got;
370 len += got;
371 count -= got;
372 }
373
374 free_page((unsigned long)page);
375 return len;
376 }
377
get_task_cmdline(struct task_struct * tsk,char __user * buf,size_t count,loff_t * pos)378 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
379 size_t count, loff_t *pos)
380 {
381 struct mm_struct *mm;
382 ssize_t ret;
383
384 mm = get_task_mm(tsk);
385 if (!mm)
386 return 0;
387
388 ret = get_mm_cmdline(mm, buf, count, pos);
389 mmput(mm);
390 return ret;
391 }
392
proc_pid_cmdline_read(struct file * file,char __user * buf,size_t count,loff_t * pos)393 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
394 size_t count, loff_t *pos)
395 {
396 struct task_struct *tsk;
397 ssize_t ret;
398
399 BUG_ON(*pos < 0);
400
401 tsk = get_proc_task(file_inode(file));
402 if (!tsk)
403 return -ESRCH;
404 ret = get_task_cmdline(tsk, buf, count, pos);
405 put_task_struct(tsk);
406 if (ret > 0)
407 *pos += ret;
408 return ret;
409 }
410
411 static const struct file_operations proc_pid_cmdline_ops = {
412 .read = proc_pid_cmdline_read,
413 .llseek = generic_file_llseek,
414 };
415
416 #ifdef CONFIG_KALLSYMS
417 /*
418 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
419 * Returns the resolved symbol. If that fails, simply return the address.
420 */
proc_pid_wchan(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)421 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
422 struct pid *pid, struct task_struct *task)
423 {
424 unsigned long wchan;
425 char symname[KSYM_NAME_LEN];
426
427 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
428 goto print0;
429
430 wchan = get_wchan(task);
431 if (wchan && !lookup_symbol_name(wchan, symname)) {
432 seq_puts(m, symname);
433 return 0;
434 }
435
436 print0:
437 seq_putc(m, '0');
438 return 0;
439 }
440 #endif /* CONFIG_KALLSYMS */
441
lock_trace(struct task_struct * task)442 static int lock_trace(struct task_struct *task)
443 {
444 int err = down_read_killable(&task->signal->exec_update_lock);
445 if (err)
446 return err;
447 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
448 up_read(&task->signal->exec_update_lock);
449 return -EPERM;
450 }
451 return 0;
452 }
453
unlock_trace(struct task_struct * task)454 static void unlock_trace(struct task_struct *task)
455 {
456 up_read(&task->signal->exec_update_lock);
457 }
458
459 #ifdef CONFIG_STACKTRACE
460
461 #define MAX_STACK_TRACE_DEPTH 64
462
proc_pid_stack(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)463 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
464 struct pid *pid, struct task_struct *task)
465 {
466 unsigned long *entries;
467 int err;
468
469 /*
470 * The ability to racily run the kernel stack unwinder on a running task
471 * and then observe the unwinder output is scary; while it is useful for
472 * debugging kernel issues, it can also allow an attacker to leak kernel
473 * stack contents.
474 * Doing this in a manner that is at least safe from races would require
475 * some work to ensure that the remote task can not be scheduled; and
476 * even then, this would still expose the unwinder as local attack
477 * surface.
478 * Therefore, this interface is restricted to root.
479 */
480 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
481 return -EACCES;
482
483 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
484 GFP_KERNEL);
485 if (!entries)
486 return -ENOMEM;
487
488 err = lock_trace(task);
489 if (!err) {
490 unsigned int i, nr_entries;
491
492 nr_entries = stack_trace_save_tsk(task, entries,
493 MAX_STACK_TRACE_DEPTH, 0);
494
495 for (i = 0; i < nr_entries; i++) {
496 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
497 }
498
499 unlock_trace(task);
500 }
501 kfree(entries);
502
503 return err;
504 }
505 #endif
506
507 #ifdef CONFIG_SCHED_INFO
508 /*
509 * Provides /proc/PID/schedstat
510 */
proc_pid_schedstat(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)511 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
512 struct pid *pid, struct task_struct *task)
513 {
514 if (unlikely(!sched_info_on()))
515 seq_puts(m, "0 0 0\n");
516 else
517 seq_printf(m, "%llu %llu %lu\n",
518 (unsigned long long)task->se.sum_exec_runtime,
519 (unsigned long long)task->sched_info.run_delay,
520 task->sched_info.pcount);
521
522 return 0;
523 }
524 #endif
525
526 #ifdef CONFIG_LATENCYTOP
lstats_show_proc(struct seq_file * m,void * v)527 static int lstats_show_proc(struct seq_file *m, void *v)
528 {
529 int i;
530 struct inode *inode = m->private;
531 struct task_struct *task = get_proc_task(inode);
532
533 if (!task)
534 return -ESRCH;
535 seq_puts(m, "Latency Top version : v0.1\n");
536 for (i = 0; i < LT_SAVECOUNT; i++) {
537 struct latency_record *lr = &task->latency_record[i];
538 if (lr->backtrace[0]) {
539 int q;
540 seq_printf(m, "%i %li %li",
541 lr->count, lr->time, lr->max);
542 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
543 unsigned long bt = lr->backtrace[q];
544
545 if (!bt)
546 break;
547 seq_printf(m, " %ps", (void *)bt);
548 }
549 seq_putc(m, '\n');
550 }
551
552 }
553 put_task_struct(task);
554 return 0;
555 }
556
lstats_open(struct inode * inode,struct file * file)557 static int lstats_open(struct inode *inode, struct file *file)
558 {
559 return single_open(file, lstats_show_proc, inode);
560 }
561
lstats_write(struct file * file,const char __user * buf,size_t count,loff_t * offs)562 static ssize_t lstats_write(struct file *file, const char __user *buf,
563 size_t count, loff_t *offs)
564 {
565 struct task_struct *task = get_proc_task(file_inode(file));
566
567 if (!task)
568 return -ESRCH;
569 clear_tsk_latency_tracing(task);
570 put_task_struct(task);
571
572 return count;
573 }
574
575 static const struct file_operations proc_lstats_operations = {
576 .open = lstats_open,
577 .read = seq_read,
578 .write = lstats_write,
579 .llseek = seq_lseek,
580 .release = single_release,
581 };
582
583 #endif
584
proc_oom_score(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)585 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
586 struct pid *pid, struct task_struct *task)
587 {
588 unsigned long totalpages = totalram_pages() + total_swap_pages;
589 unsigned long points = 0;
590 long badness;
591
592 badness = oom_badness(task, totalpages);
593 /*
594 * Special case OOM_SCORE_ADJ_MIN for all others scale the
595 * badness value into [0, 2000] range which we have been
596 * exporting for a long time so userspace might depend on it.
597 */
598 if (badness != LONG_MIN)
599 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
600
601 seq_printf(m, "%lu\n", points);
602
603 return 0;
604 }
605
606 struct limit_names {
607 const char *name;
608 const char *unit;
609 };
610
611 static const struct limit_names lnames[RLIM_NLIMITS] = {
612 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
613 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
614 [RLIMIT_DATA] = {"Max data size", "bytes"},
615 [RLIMIT_STACK] = {"Max stack size", "bytes"},
616 [RLIMIT_CORE] = {"Max core file size", "bytes"},
617 [RLIMIT_RSS] = {"Max resident set", "bytes"},
618 [RLIMIT_NPROC] = {"Max processes", "processes"},
619 [RLIMIT_NOFILE] = {"Max open files", "files"},
620 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
621 [RLIMIT_AS] = {"Max address space", "bytes"},
622 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
623 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
624 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
625 [RLIMIT_NICE] = {"Max nice priority", NULL},
626 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
627 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
628 };
629
630 /* Display limits for a process */
proc_pid_limits(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)631 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
632 struct pid *pid, struct task_struct *task)
633 {
634 unsigned int i;
635 unsigned long flags;
636
637 struct rlimit rlim[RLIM_NLIMITS];
638
639 if (!lock_task_sighand(task, &flags))
640 return 0;
641 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
642 unlock_task_sighand(task, &flags);
643
644 /*
645 * print the file header
646 */
647 seq_puts(m, "Limit "
648 "Soft Limit "
649 "Hard Limit "
650 "Units \n");
651
652 for (i = 0; i < RLIM_NLIMITS; i++) {
653 if (rlim[i].rlim_cur == RLIM_INFINITY)
654 seq_printf(m, "%-25s %-20s ",
655 lnames[i].name, "unlimited");
656 else
657 seq_printf(m, "%-25s %-20lu ",
658 lnames[i].name, rlim[i].rlim_cur);
659
660 if (rlim[i].rlim_max == RLIM_INFINITY)
661 seq_printf(m, "%-20s ", "unlimited");
662 else
663 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
664
665 if (lnames[i].unit)
666 seq_printf(m, "%-10s\n", lnames[i].unit);
667 else
668 seq_putc(m, '\n');
669 }
670
671 return 0;
672 }
673
674 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
proc_pid_syscall(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)675 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
676 struct pid *pid, struct task_struct *task)
677 {
678 struct syscall_info info;
679 u64 *args = &info.data.args[0];
680 int res;
681
682 res = lock_trace(task);
683 if (res)
684 return res;
685
686 if (task_current_syscall(task, &info))
687 seq_puts(m, "running\n");
688 else if (info.data.nr < 0)
689 seq_printf(m, "%d 0x%llx 0x%llx\n",
690 info.data.nr, info.sp, info.data.instruction_pointer);
691 else
692 seq_printf(m,
693 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
694 info.data.nr,
695 args[0], args[1], args[2], args[3], args[4], args[5],
696 info.sp, info.data.instruction_pointer);
697 unlock_trace(task);
698
699 return 0;
700 }
701 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
702
703 /************************************************************************/
704 /* Here the fs part begins */
705 /************************************************************************/
706
707 /* permission checks */
proc_fd_access_allowed(struct inode * inode)708 static bool proc_fd_access_allowed(struct inode *inode)
709 {
710 struct task_struct *task;
711 bool allowed = false;
712 /* Allow access to a task's file descriptors if it is us or we
713 * may use ptrace attach to the process and find out that
714 * information.
715 */
716 task = get_proc_task(inode);
717 if (task) {
718 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
719 put_task_struct(task);
720 }
721 return allowed;
722 }
723
proc_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)724 int proc_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
725 struct iattr *attr)
726 {
727 int error;
728 struct inode *inode = d_inode(dentry);
729
730 if (attr->ia_valid & ATTR_MODE)
731 return -EPERM;
732
733 error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
734 if (error)
735 return error;
736
737 setattr_copy(&nop_mnt_idmap, inode, attr);
738 return 0;
739 }
740
741 /*
742 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
743 * or euid/egid (for hide_pid_min=2)?
744 */
has_pid_permissions(struct proc_fs_info * fs_info,struct task_struct * task,enum proc_hidepid hide_pid_min)745 static bool has_pid_permissions(struct proc_fs_info *fs_info,
746 struct task_struct *task,
747 enum proc_hidepid hide_pid_min)
748 {
749 /*
750 * If 'hidpid' mount option is set force a ptrace check,
751 * we indicate that we are using a filesystem syscall
752 * by passing PTRACE_MODE_READ_FSCREDS
753 */
754 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
755 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
756
757 if (fs_info->hide_pid < hide_pid_min)
758 return true;
759 if (in_group_p(fs_info->pid_gid))
760 return true;
761 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
762 }
763
764
proc_pid_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)765 static int proc_pid_permission(struct mnt_idmap *idmap,
766 struct inode *inode, int mask)
767 {
768 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
769 struct task_struct *task;
770 bool has_perms;
771
772 task = get_proc_task(inode);
773 if (!task)
774 return -ESRCH;
775 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
776 put_task_struct(task);
777
778 if (!has_perms) {
779 if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
780 /*
781 * Let's make getdents(), stat(), and open()
782 * consistent with each other. If a process
783 * may not stat() a file, it shouldn't be seen
784 * in procfs at all.
785 */
786 return -ENOENT;
787 }
788
789 return -EPERM;
790 }
791 return generic_permission(&nop_mnt_idmap, inode, mask);
792 }
793
794
795
796 static const struct inode_operations proc_def_inode_operations = {
797 .setattr = proc_setattr,
798 };
799
proc_single_show(struct seq_file * m,void * v)800 static int proc_single_show(struct seq_file *m, void *v)
801 {
802 struct inode *inode = m->private;
803 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
804 struct pid *pid = proc_pid(inode);
805 struct task_struct *task;
806 int ret;
807
808 task = get_pid_task(pid, PIDTYPE_PID);
809 if (!task)
810 return -ESRCH;
811
812 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
813
814 put_task_struct(task);
815 return ret;
816 }
817
proc_single_open(struct inode * inode,struct file * filp)818 static int proc_single_open(struct inode *inode, struct file *filp)
819 {
820 return single_open(filp, proc_single_show, inode);
821 }
822
823 static const struct file_operations proc_single_file_operations = {
824 .open = proc_single_open,
825 .read = seq_read,
826 .llseek = seq_lseek,
827 .release = single_release,
828 };
829
830
proc_mem_open(struct inode * inode,unsigned int mode)831 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
832 {
833 struct task_struct *task = get_proc_task(inode);
834 struct mm_struct *mm;
835
836 if (!task)
837 return ERR_PTR(-ESRCH);
838
839 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
840 put_task_struct(task);
841
842 if (IS_ERR(mm))
843 return mm == ERR_PTR(-ESRCH) ? NULL : mm;
844
845 /* ensure this mm_struct can't be freed */
846 mmgrab(mm);
847 /* but do not pin its memory */
848 mmput(mm);
849
850 return mm;
851 }
852
__mem_open(struct inode * inode,struct file * file,unsigned int mode)853 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
854 {
855 struct mm_struct *mm = proc_mem_open(inode, mode);
856
857 if (IS_ERR(mm))
858 return PTR_ERR(mm);
859
860 file->private_data = mm;
861 return 0;
862 }
863
mem_open(struct inode * inode,struct file * file)864 static int mem_open(struct inode *inode, struct file *file)
865 {
866 if (WARN_ON_ONCE(!(file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)))
867 return -EINVAL;
868 return __mem_open(inode, file, PTRACE_MODE_ATTACH);
869 }
870
proc_mem_foll_force(struct file * file,struct mm_struct * mm)871 static bool proc_mem_foll_force(struct file *file, struct mm_struct *mm)
872 {
873 struct task_struct *task;
874 bool ptrace_active = false;
875
876 switch (proc_mem_force_override) {
877 case PROC_MEM_FORCE_NEVER:
878 return false;
879 case PROC_MEM_FORCE_PTRACE:
880 task = get_proc_task(file_inode(file));
881 if (task) {
882 ptrace_active = READ_ONCE(task->ptrace) &&
883 READ_ONCE(task->mm) == mm &&
884 READ_ONCE(task->parent) == current;
885 put_task_struct(task);
886 }
887 return ptrace_active;
888 default:
889 return true;
890 }
891 }
892
mem_rw(struct file * file,char __user * buf,size_t count,loff_t * ppos,int write)893 static ssize_t mem_rw(struct file *file, char __user *buf,
894 size_t count, loff_t *ppos, int write)
895 {
896 struct mm_struct *mm = file->private_data;
897 unsigned long addr = *ppos;
898 ssize_t copied;
899 char *page;
900 unsigned int flags;
901
902 if (!mm)
903 return 0;
904
905 page = (char *)__get_free_page(GFP_KERNEL);
906 if (!page)
907 return -ENOMEM;
908
909 copied = 0;
910 if (!mmget_not_zero(mm))
911 goto free;
912
913 flags = write ? FOLL_WRITE : 0;
914 if (proc_mem_foll_force(file, mm))
915 flags |= FOLL_FORCE;
916
917 while (count > 0) {
918 size_t this_len = min_t(size_t, count, PAGE_SIZE);
919
920 if (write && copy_from_user(page, buf, this_len)) {
921 copied = -EFAULT;
922 break;
923 }
924
925 this_len = access_remote_vm(mm, addr, page, this_len, flags);
926 if (!this_len) {
927 if (!copied)
928 copied = -EIO;
929 break;
930 }
931
932 if (!write && copy_to_user(buf, page, this_len)) {
933 copied = -EFAULT;
934 break;
935 }
936
937 buf += this_len;
938 addr += this_len;
939 copied += this_len;
940 count -= this_len;
941 }
942 *ppos = addr;
943
944 mmput(mm);
945 free:
946 free_page((unsigned long) page);
947 return copied;
948 }
949
mem_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)950 static ssize_t mem_read(struct file *file, char __user *buf,
951 size_t count, loff_t *ppos)
952 {
953 return mem_rw(file, buf, count, ppos, 0);
954 }
955
mem_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)956 static ssize_t mem_write(struct file *file, const char __user *buf,
957 size_t count, loff_t *ppos)
958 {
959 return mem_rw(file, (char __user*)buf, count, ppos, 1);
960 }
961
mem_lseek(struct file * file,loff_t offset,int orig)962 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
963 {
964 switch (orig) {
965 case 0:
966 file->f_pos = offset;
967 break;
968 case 1:
969 file->f_pos += offset;
970 break;
971 default:
972 return -EINVAL;
973 }
974 force_successful_syscall_return();
975 return file->f_pos;
976 }
977
mem_release(struct inode * inode,struct file * file)978 static int mem_release(struct inode *inode, struct file *file)
979 {
980 struct mm_struct *mm = file->private_data;
981 if (mm)
982 mmdrop(mm);
983 return 0;
984 }
985
986 static const struct file_operations proc_mem_operations = {
987 .llseek = mem_lseek,
988 .read = mem_read,
989 .write = mem_write,
990 .open = mem_open,
991 .release = mem_release,
992 .fop_flags = FOP_UNSIGNED_OFFSET,
993 };
994
environ_open(struct inode * inode,struct file * file)995 static int environ_open(struct inode *inode, struct file *file)
996 {
997 return __mem_open(inode, file, PTRACE_MODE_READ);
998 }
999
environ_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1000 static ssize_t environ_read(struct file *file, char __user *buf,
1001 size_t count, loff_t *ppos)
1002 {
1003 char *page;
1004 unsigned long src = *ppos;
1005 int ret = 0;
1006 struct mm_struct *mm = file->private_data;
1007 unsigned long env_start, env_end;
1008
1009 /* Ensure the process spawned far enough to have an environment. */
1010 if (!mm || !mm->env_end)
1011 return 0;
1012
1013 page = (char *)__get_free_page(GFP_KERNEL);
1014 if (!page)
1015 return -ENOMEM;
1016
1017 ret = 0;
1018 if (!mmget_not_zero(mm))
1019 goto free;
1020
1021 spin_lock(&mm->arg_lock);
1022 env_start = mm->env_start;
1023 env_end = mm->env_end;
1024 spin_unlock(&mm->arg_lock);
1025
1026 while (count > 0) {
1027 size_t this_len, max_len;
1028 int retval;
1029
1030 if (src >= (env_end - env_start))
1031 break;
1032
1033 this_len = env_end - (env_start + src);
1034
1035 max_len = min_t(size_t, PAGE_SIZE, count);
1036 this_len = min(max_len, this_len);
1037
1038 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
1039
1040 if (retval <= 0) {
1041 ret = retval;
1042 break;
1043 }
1044
1045 if (copy_to_user(buf, page, retval)) {
1046 ret = -EFAULT;
1047 break;
1048 }
1049
1050 ret += retval;
1051 src += retval;
1052 buf += retval;
1053 count -= retval;
1054 }
1055 *ppos = src;
1056 mmput(mm);
1057
1058 free:
1059 free_page((unsigned long) page);
1060 return ret;
1061 }
1062
1063 static const struct file_operations proc_environ_operations = {
1064 .open = environ_open,
1065 .read = environ_read,
1066 .llseek = generic_file_llseek,
1067 .release = mem_release,
1068 };
1069
auxv_open(struct inode * inode,struct file * file)1070 static int auxv_open(struct inode *inode, struct file *file)
1071 {
1072 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1073 }
1074
auxv_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1075 static ssize_t auxv_read(struct file *file, char __user *buf,
1076 size_t count, loff_t *ppos)
1077 {
1078 struct mm_struct *mm = file->private_data;
1079 unsigned int nwords = 0;
1080
1081 if (!mm)
1082 return 0;
1083 do {
1084 nwords += 2;
1085 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1086 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1087 nwords * sizeof(mm->saved_auxv[0]));
1088 }
1089
1090 static const struct file_operations proc_auxv_operations = {
1091 .open = auxv_open,
1092 .read = auxv_read,
1093 .llseek = generic_file_llseek,
1094 .release = mem_release,
1095 };
1096
oom_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1097 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1098 loff_t *ppos)
1099 {
1100 struct task_struct *task = get_proc_task(file_inode(file));
1101 char buffer[PROC_NUMBUF];
1102 int oom_adj = OOM_ADJUST_MIN;
1103 size_t len;
1104
1105 if (!task)
1106 return -ESRCH;
1107 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1108 oom_adj = OOM_ADJUST_MAX;
1109 else
1110 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1111 OOM_SCORE_ADJ_MAX;
1112 put_task_struct(task);
1113 if (oom_adj > OOM_ADJUST_MAX)
1114 oom_adj = OOM_ADJUST_MAX;
1115 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1116 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1117 }
1118
__set_oom_adj(struct file * file,int oom_adj,bool legacy)1119 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1120 {
1121 struct mm_struct *mm = NULL;
1122 struct task_struct *task;
1123 int err = 0;
1124
1125 task = get_proc_task(file_inode(file));
1126 if (!task)
1127 return -ESRCH;
1128
1129 mutex_lock(&oom_adj_mutex);
1130 if (legacy) {
1131 if (oom_adj < task->signal->oom_score_adj &&
1132 !capable(CAP_SYS_RESOURCE)) {
1133 err = -EACCES;
1134 goto err_unlock;
1135 }
1136 /*
1137 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1138 * /proc/pid/oom_score_adj instead.
1139 */
1140 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1141 current->comm, task_pid_nr(current), task_pid_nr(task),
1142 task_pid_nr(task));
1143 } else {
1144 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1145 !capable(CAP_SYS_RESOURCE)) {
1146 err = -EACCES;
1147 goto err_unlock;
1148 }
1149 }
1150
1151 /*
1152 * Make sure we will check other processes sharing the mm if this is
1153 * not vfrok which wants its own oom_score_adj.
1154 * pin the mm so it doesn't go away and get reused after task_unlock
1155 */
1156 if (!task->vfork_done) {
1157 struct task_struct *p = find_lock_task_mm(task);
1158
1159 if (p) {
1160 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1161 mm = p->mm;
1162 mmgrab(mm);
1163 }
1164 task_unlock(p);
1165 }
1166 }
1167
1168 task->signal->oom_score_adj = oom_adj;
1169 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1170 task->signal->oom_score_adj_min = (short)oom_adj;
1171 trace_oom_score_adj_update(task);
1172
1173 if (mm) {
1174 struct task_struct *p;
1175
1176 rcu_read_lock();
1177 for_each_process(p) {
1178 if (same_thread_group(task, p))
1179 continue;
1180
1181 /* do not touch kernel threads or the global init */
1182 if (p->flags & PF_KTHREAD || is_global_init(p))
1183 continue;
1184
1185 task_lock(p);
1186 if (!p->vfork_done && process_shares_mm(p, mm)) {
1187 p->signal->oom_score_adj = oom_adj;
1188 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1189 p->signal->oom_score_adj_min = (short)oom_adj;
1190 }
1191 task_unlock(p);
1192 }
1193 rcu_read_unlock();
1194 mmdrop(mm);
1195 }
1196 err_unlock:
1197 mutex_unlock(&oom_adj_mutex);
1198 put_task_struct(task);
1199 return err;
1200 }
1201
1202 /*
1203 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1204 * kernels. The effective policy is defined by oom_score_adj, which has a
1205 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1206 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1207 * Processes that become oom disabled via oom_adj will still be oom disabled
1208 * with this implementation.
1209 *
1210 * oom_adj cannot be removed since existing userspace binaries use it.
1211 */
oom_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1212 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1213 size_t count, loff_t *ppos)
1214 {
1215 char buffer[PROC_NUMBUF] = {};
1216 int oom_adj;
1217 int err;
1218
1219 if (count > sizeof(buffer) - 1)
1220 count = sizeof(buffer) - 1;
1221 if (copy_from_user(buffer, buf, count)) {
1222 err = -EFAULT;
1223 goto out;
1224 }
1225
1226 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1227 if (err)
1228 goto out;
1229 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1230 oom_adj != OOM_DISABLE) {
1231 err = -EINVAL;
1232 goto out;
1233 }
1234
1235 /*
1236 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1237 * value is always attainable.
1238 */
1239 if (oom_adj == OOM_ADJUST_MAX)
1240 oom_adj = OOM_SCORE_ADJ_MAX;
1241 else
1242 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1243
1244 err = __set_oom_adj(file, oom_adj, true);
1245 out:
1246 return err < 0 ? err : count;
1247 }
1248
1249 static const struct file_operations proc_oom_adj_operations = {
1250 .read = oom_adj_read,
1251 .write = oom_adj_write,
1252 .llseek = generic_file_llseek,
1253 };
1254
oom_score_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1255 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1256 size_t count, loff_t *ppos)
1257 {
1258 struct task_struct *task = get_proc_task(file_inode(file));
1259 char buffer[PROC_NUMBUF];
1260 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1261 size_t len;
1262
1263 if (!task)
1264 return -ESRCH;
1265 oom_score_adj = task->signal->oom_score_adj;
1266 put_task_struct(task);
1267 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1268 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1269 }
1270
oom_score_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1271 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1272 size_t count, loff_t *ppos)
1273 {
1274 char buffer[PROC_NUMBUF] = {};
1275 int oom_score_adj;
1276 int err;
1277
1278 if (count > sizeof(buffer) - 1)
1279 count = sizeof(buffer) - 1;
1280 if (copy_from_user(buffer, buf, count)) {
1281 err = -EFAULT;
1282 goto out;
1283 }
1284
1285 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1286 if (err)
1287 goto out;
1288 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1289 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1290 err = -EINVAL;
1291 goto out;
1292 }
1293
1294 err = __set_oom_adj(file, oom_score_adj, false);
1295 out:
1296 return err < 0 ? err : count;
1297 }
1298
1299 static const struct file_operations proc_oom_score_adj_operations = {
1300 .read = oom_score_adj_read,
1301 .write = oom_score_adj_write,
1302 .llseek = default_llseek,
1303 };
1304
1305 #ifdef CONFIG_AUDIT
1306 #define TMPBUFLEN 11
proc_loginuid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1307 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1308 size_t count, loff_t *ppos)
1309 {
1310 struct inode * inode = file_inode(file);
1311 struct task_struct *task = get_proc_task(inode);
1312 ssize_t length;
1313 char tmpbuf[TMPBUFLEN];
1314
1315 if (!task)
1316 return -ESRCH;
1317 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1318 from_kuid(file->f_cred->user_ns,
1319 audit_get_loginuid(task)));
1320 put_task_struct(task);
1321 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1322 }
1323
proc_loginuid_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1324 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1325 size_t count, loff_t *ppos)
1326 {
1327 struct inode * inode = file_inode(file);
1328 uid_t loginuid;
1329 kuid_t kloginuid;
1330 int rv;
1331
1332 /* Don't let kthreads write their own loginuid */
1333 if (current->flags & PF_KTHREAD)
1334 return -EPERM;
1335
1336 rcu_read_lock();
1337 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1338 rcu_read_unlock();
1339 return -EPERM;
1340 }
1341 rcu_read_unlock();
1342
1343 if (*ppos != 0) {
1344 /* No partial writes. */
1345 return -EINVAL;
1346 }
1347
1348 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1349 if (rv < 0)
1350 return rv;
1351
1352 /* is userspace tring to explicitly UNSET the loginuid? */
1353 if (loginuid == AUDIT_UID_UNSET) {
1354 kloginuid = INVALID_UID;
1355 } else {
1356 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1357 if (!uid_valid(kloginuid))
1358 return -EINVAL;
1359 }
1360
1361 rv = audit_set_loginuid(kloginuid);
1362 if (rv < 0)
1363 return rv;
1364 return count;
1365 }
1366
1367 static const struct file_operations proc_loginuid_operations = {
1368 .read = proc_loginuid_read,
1369 .write = proc_loginuid_write,
1370 .llseek = generic_file_llseek,
1371 };
1372
proc_sessionid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1373 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1374 size_t count, loff_t *ppos)
1375 {
1376 struct inode * inode = file_inode(file);
1377 struct task_struct *task = get_proc_task(inode);
1378 ssize_t length;
1379 char tmpbuf[TMPBUFLEN];
1380
1381 if (!task)
1382 return -ESRCH;
1383 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1384 audit_get_sessionid(task));
1385 put_task_struct(task);
1386 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1387 }
1388
1389 static const struct file_operations proc_sessionid_operations = {
1390 .read = proc_sessionid_read,
1391 .llseek = generic_file_llseek,
1392 };
1393 #endif
1394
1395 #ifdef CONFIG_FAULT_INJECTION
proc_fault_inject_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1396 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1397 size_t count, loff_t *ppos)
1398 {
1399 struct task_struct *task = get_proc_task(file_inode(file));
1400 char buffer[PROC_NUMBUF];
1401 size_t len;
1402 int make_it_fail;
1403
1404 if (!task)
1405 return -ESRCH;
1406 make_it_fail = task->make_it_fail;
1407 put_task_struct(task);
1408
1409 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1410
1411 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1412 }
1413
proc_fault_inject_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1414 static ssize_t proc_fault_inject_write(struct file * file,
1415 const char __user * buf, size_t count, loff_t *ppos)
1416 {
1417 struct task_struct *task;
1418 char buffer[PROC_NUMBUF] = {};
1419 int make_it_fail;
1420 int rv;
1421
1422 if (!capable(CAP_SYS_RESOURCE))
1423 return -EPERM;
1424
1425 if (count > sizeof(buffer) - 1)
1426 count = sizeof(buffer) - 1;
1427 if (copy_from_user(buffer, buf, count))
1428 return -EFAULT;
1429 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1430 if (rv < 0)
1431 return rv;
1432 if (make_it_fail < 0 || make_it_fail > 1)
1433 return -EINVAL;
1434
1435 task = get_proc_task(file_inode(file));
1436 if (!task)
1437 return -ESRCH;
1438 task->make_it_fail = make_it_fail;
1439 put_task_struct(task);
1440
1441 return count;
1442 }
1443
1444 static const struct file_operations proc_fault_inject_operations = {
1445 .read = proc_fault_inject_read,
1446 .write = proc_fault_inject_write,
1447 .llseek = generic_file_llseek,
1448 };
1449
proc_fail_nth_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1450 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1451 size_t count, loff_t *ppos)
1452 {
1453 struct task_struct *task;
1454 int err;
1455 unsigned int n;
1456
1457 err = kstrtouint_from_user(buf, count, 0, &n);
1458 if (err)
1459 return err;
1460
1461 task = get_proc_task(file_inode(file));
1462 if (!task)
1463 return -ESRCH;
1464 task->fail_nth = n;
1465 put_task_struct(task);
1466
1467 return count;
1468 }
1469
proc_fail_nth_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1470 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1471 size_t count, loff_t *ppos)
1472 {
1473 struct task_struct *task;
1474 char numbuf[PROC_NUMBUF];
1475 ssize_t len;
1476
1477 task = get_proc_task(file_inode(file));
1478 if (!task)
1479 return -ESRCH;
1480 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1481 put_task_struct(task);
1482 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1483 }
1484
1485 static const struct file_operations proc_fail_nth_operations = {
1486 .read = proc_fail_nth_read,
1487 .write = proc_fail_nth_write,
1488 };
1489 #endif
1490
1491
1492 #ifdef CONFIG_SCHED_DEBUG
1493 /*
1494 * Print out various scheduling related per-task fields:
1495 */
sched_show(struct seq_file * m,void * v)1496 static int sched_show(struct seq_file *m, void *v)
1497 {
1498 struct inode *inode = m->private;
1499 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1500 struct task_struct *p;
1501
1502 p = get_proc_task(inode);
1503 if (!p)
1504 return -ESRCH;
1505 proc_sched_show_task(p, ns, m);
1506
1507 put_task_struct(p);
1508
1509 return 0;
1510 }
1511
1512 static ssize_t
sched_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1513 sched_write(struct file *file, const char __user *buf,
1514 size_t count, loff_t *offset)
1515 {
1516 struct inode *inode = file_inode(file);
1517 struct task_struct *p;
1518
1519 p = get_proc_task(inode);
1520 if (!p)
1521 return -ESRCH;
1522 proc_sched_set_task(p);
1523
1524 put_task_struct(p);
1525
1526 return count;
1527 }
1528
sched_open(struct inode * inode,struct file * filp)1529 static int sched_open(struct inode *inode, struct file *filp)
1530 {
1531 return single_open(filp, sched_show, inode);
1532 }
1533
1534 static const struct file_operations proc_pid_sched_operations = {
1535 .open = sched_open,
1536 .read = seq_read,
1537 .write = sched_write,
1538 .llseek = seq_lseek,
1539 .release = single_release,
1540 };
1541
1542 #endif
1543
1544 #ifdef CONFIG_SCHED_AUTOGROUP
1545 /*
1546 * Print out autogroup related information:
1547 */
sched_autogroup_show(struct seq_file * m,void * v)1548 static int sched_autogroup_show(struct seq_file *m, void *v)
1549 {
1550 struct inode *inode = m->private;
1551 struct task_struct *p;
1552
1553 p = get_proc_task(inode);
1554 if (!p)
1555 return -ESRCH;
1556 proc_sched_autogroup_show_task(p, m);
1557
1558 put_task_struct(p);
1559
1560 return 0;
1561 }
1562
1563 static ssize_t
sched_autogroup_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1564 sched_autogroup_write(struct file *file, const char __user *buf,
1565 size_t count, loff_t *offset)
1566 {
1567 struct inode *inode = file_inode(file);
1568 struct task_struct *p;
1569 char buffer[PROC_NUMBUF] = {};
1570 int nice;
1571 int err;
1572
1573 if (count > sizeof(buffer) - 1)
1574 count = sizeof(buffer) - 1;
1575 if (copy_from_user(buffer, buf, count))
1576 return -EFAULT;
1577
1578 err = kstrtoint(strstrip(buffer), 0, &nice);
1579 if (err < 0)
1580 return err;
1581
1582 p = get_proc_task(inode);
1583 if (!p)
1584 return -ESRCH;
1585
1586 err = proc_sched_autogroup_set_nice(p, nice);
1587 if (err)
1588 count = err;
1589
1590 put_task_struct(p);
1591
1592 return count;
1593 }
1594
sched_autogroup_open(struct inode * inode,struct file * filp)1595 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1596 {
1597 int ret;
1598
1599 ret = single_open(filp, sched_autogroup_show, NULL);
1600 if (!ret) {
1601 struct seq_file *m = filp->private_data;
1602
1603 m->private = inode;
1604 }
1605 return ret;
1606 }
1607
1608 static const struct file_operations proc_pid_sched_autogroup_operations = {
1609 .open = sched_autogroup_open,
1610 .read = seq_read,
1611 .write = sched_autogroup_write,
1612 .llseek = seq_lseek,
1613 .release = single_release,
1614 };
1615
1616 #endif /* CONFIG_SCHED_AUTOGROUP */
1617
1618 #ifdef CONFIG_TIME_NS
timens_offsets_show(struct seq_file * m,void * v)1619 static int timens_offsets_show(struct seq_file *m, void *v)
1620 {
1621 struct task_struct *p;
1622
1623 p = get_proc_task(file_inode(m->file));
1624 if (!p)
1625 return -ESRCH;
1626 proc_timens_show_offsets(p, m);
1627
1628 put_task_struct(p);
1629
1630 return 0;
1631 }
1632
timens_offsets_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1633 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1634 size_t count, loff_t *ppos)
1635 {
1636 struct inode *inode = file_inode(file);
1637 struct proc_timens_offset offsets[2];
1638 char *kbuf = NULL, *pos, *next_line;
1639 struct task_struct *p;
1640 int ret, noffsets;
1641
1642 /* Only allow < page size writes at the beginning of the file */
1643 if ((*ppos != 0) || (count >= PAGE_SIZE))
1644 return -EINVAL;
1645
1646 /* Slurp in the user data */
1647 kbuf = memdup_user_nul(buf, count);
1648 if (IS_ERR(kbuf))
1649 return PTR_ERR(kbuf);
1650
1651 /* Parse the user data */
1652 ret = -EINVAL;
1653 noffsets = 0;
1654 for (pos = kbuf; pos; pos = next_line) {
1655 struct proc_timens_offset *off = &offsets[noffsets];
1656 char clock[10];
1657 int err;
1658
1659 /* Find the end of line and ensure we don't look past it */
1660 next_line = strchr(pos, '\n');
1661 if (next_line) {
1662 *next_line = '\0';
1663 next_line++;
1664 if (*next_line == '\0')
1665 next_line = NULL;
1666 }
1667
1668 err = sscanf(pos, "%9s %lld %lu", clock,
1669 &off->val.tv_sec, &off->val.tv_nsec);
1670 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1671 goto out;
1672
1673 clock[sizeof(clock) - 1] = 0;
1674 if (strcmp(clock, "monotonic") == 0 ||
1675 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1676 off->clockid = CLOCK_MONOTONIC;
1677 else if (strcmp(clock, "boottime") == 0 ||
1678 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1679 off->clockid = CLOCK_BOOTTIME;
1680 else
1681 goto out;
1682
1683 noffsets++;
1684 if (noffsets == ARRAY_SIZE(offsets)) {
1685 if (next_line)
1686 count = next_line - kbuf;
1687 break;
1688 }
1689 }
1690
1691 ret = -ESRCH;
1692 p = get_proc_task(inode);
1693 if (!p)
1694 goto out;
1695 ret = proc_timens_set_offset(file, p, offsets, noffsets);
1696 put_task_struct(p);
1697 if (ret)
1698 goto out;
1699
1700 ret = count;
1701 out:
1702 kfree(kbuf);
1703 return ret;
1704 }
1705
timens_offsets_open(struct inode * inode,struct file * filp)1706 static int timens_offsets_open(struct inode *inode, struct file *filp)
1707 {
1708 return single_open(filp, timens_offsets_show, inode);
1709 }
1710
1711 static const struct file_operations proc_timens_offsets_operations = {
1712 .open = timens_offsets_open,
1713 .read = seq_read,
1714 .write = timens_offsets_write,
1715 .llseek = seq_lseek,
1716 .release = single_release,
1717 };
1718 #endif /* CONFIG_TIME_NS */
1719
comm_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1720 static ssize_t comm_write(struct file *file, const char __user *buf,
1721 size_t count, loff_t *offset)
1722 {
1723 struct inode *inode = file_inode(file);
1724 struct task_struct *p;
1725 char buffer[TASK_COMM_LEN] = {};
1726 const size_t maxlen = sizeof(buffer) - 1;
1727
1728 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1729 return -EFAULT;
1730
1731 p = get_proc_task(inode);
1732 if (!p)
1733 return -ESRCH;
1734
1735 if (same_thread_group(current, p)) {
1736 set_task_comm(p, buffer);
1737 proc_comm_connector(p);
1738 }
1739 else
1740 count = -EINVAL;
1741
1742 put_task_struct(p);
1743
1744 return count;
1745 }
1746
comm_show(struct seq_file * m,void * v)1747 static int comm_show(struct seq_file *m, void *v)
1748 {
1749 struct inode *inode = m->private;
1750 struct task_struct *p;
1751
1752 p = get_proc_task(inode);
1753 if (!p)
1754 return -ESRCH;
1755
1756 proc_task_name(m, p, false);
1757 seq_putc(m, '\n');
1758
1759 put_task_struct(p);
1760
1761 return 0;
1762 }
1763
comm_open(struct inode * inode,struct file * filp)1764 static int comm_open(struct inode *inode, struct file *filp)
1765 {
1766 return single_open(filp, comm_show, inode);
1767 }
1768
1769 static const struct file_operations proc_pid_set_comm_operations = {
1770 .open = comm_open,
1771 .read = seq_read,
1772 .write = comm_write,
1773 .llseek = seq_lseek,
1774 .release = single_release,
1775 };
1776
proc_exe_link(struct dentry * dentry,struct path * exe_path)1777 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1778 {
1779 struct task_struct *task;
1780 struct file *exe_file;
1781
1782 task = get_proc_task(d_inode(dentry));
1783 if (!task)
1784 return -ENOENT;
1785 exe_file = get_task_exe_file(task);
1786 put_task_struct(task);
1787 if (exe_file) {
1788 *exe_path = exe_file->f_path;
1789 path_get(&exe_file->f_path);
1790 fput(exe_file);
1791 return 0;
1792 } else
1793 return -ENOENT;
1794 }
1795
proc_pid_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1796 static const char *proc_pid_get_link(struct dentry *dentry,
1797 struct inode *inode,
1798 struct delayed_call *done)
1799 {
1800 struct path path;
1801 int error = -EACCES;
1802
1803 if (!dentry)
1804 return ERR_PTR(-ECHILD);
1805
1806 /* Are we allowed to snoop on the tasks file descriptors? */
1807 if (!proc_fd_access_allowed(inode))
1808 goto out;
1809
1810 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1811 if (error)
1812 goto out;
1813
1814 error = nd_jump_link(&path);
1815 out:
1816 return ERR_PTR(error);
1817 }
1818
do_proc_readlink(const struct path * path,char __user * buffer,int buflen)1819 static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen)
1820 {
1821 char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
1822 char *pathname;
1823 int len;
1824
1825 if (!tmp)
1826 return -ENOMEM;
1827
1828 pathname = d_path(path, tmp, PATH_MAX);
1829 len = PTR_ERR(pathname);
1830 if (IS_ERR(pathname))
1831 goto out;
1832 len = tmp + PATH_MAX - 1 - pathname;
1833
1834 if (len > buflen)
1835 len = buflen;
1836 if (copy_to_user(buffer, pathname, len))
1837 len = -EFAULT;
1838 out:
1839 kfree(tmp);
1840 return len;
1841 }
1842
proc_pid_readlink(struct dentry * dentry,char __user * buffer,int buflen)1843 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1844 {
1845 int error = -EACCES;
1846 struct inode *inode = d_inode(dentry);
1847 struct path path;
1848
1849 /* Are we allowed to snoop on the tasks file descriptors? */
1850 if (!proc_fd_access_allowed(inode))
1851 goto out;
1852
1853 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1854 if (error)
1855 goto out;
1856
1857 error = do_proc_readlink(&path, buffer, buflen);
1858 path_put(&path);
1859 out:
1860 return error;
1861 }
1862
1863 const struct inode_operations proc_pid_link_inode_operations = {
1864 .readlink = proc_pid_readlink,
1865 .get_link = proc_pid_get_link,
1866 .setattr = proc_setattr,
1867 };
1868
1869
1870 /* building an inode */
1871
task_dump_owner(struct task_struct * task,umode_t mode,kuid_t * ruid,kgid_t * rgid)1872 void task_dump_owner(struct task_struct *task, umode_t mode,
1873 kuid_t *ruid, kgid_t *rgid)
1874 {
1875 /* Depending on the state of dumpable compute who should own a
1876 * proc file for a task.
1877 */
1878 const struct cred *cred;
1879 kuid_t uid;
1880 kgid_t gid;
1881
1882 if (unlikely(task->flags & PF_KTHREAD)) {
1883 *ruid = GLOBAL_ROOT_UID;
1884 *rgid = GLOBAL_ROOT_GID;
1885 return;
1886 }
1887
1888 /* Default to the tasks effective ownership */
1889 rcu_read_lock();
1890 cred = __task_cred(task);
1891 uid = cred->euid;
1892 gid = cred->egid;
1893 rcu_read_unlock();
1894
1895 /*
1896 * Before the /proc/pid/status file was created the only way to read
1897 * the effective uid of a /process was to stat /proc/pid. Reading
1898 * /proc/pid/status is slow enough that procps and other packages
1899 * kept stating /proc/pid. To keep the rules in /proc simple I have
1900 * made this apply to all per process world readable and executable
1901 * directories.
1902 */
1903 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1904 struct mm_struct *mm;
1905 task_lock(task);
1906 mm = task->mm;
1907 /* Make non-dumpable tasks owned by some root */
1908 if (mm) {
1909 if (get_dumpable(mm) != SUID_DUMP_USER) {
1910 struct user_namespace *user_ns = mm->user_ns;
1911
1912 uid = make_kuid(user_ns, 0);
1913 if (!uid_valid(uid))
1914 uid = GLOBAL_ROOT_UID;
1915
1916 gid = make_kgid(user_ns, 0);
1917 if (!gid_valid(gid))
1918 gid = GLOBAL_ROOT_GID;
1919 }
1920 } else {
1921 uid = GLOBAL_ROOT_UID;
1922 gid = GLOBAL_ROOT_GID;
1923 }
1924 task_unlock(task);
1925 }
1926 *ruid = uid;
1927 *rgid = gid;
1928 }
1929
proc_pid_evict_inode(struct proc_inode * ei)1930 void proc_pid_evict_inode(struct proc_inode *ei)
1931 {
1932 struct pid *pid = ei->pid;
1933
1934 if (S_ISDIR(ei->vfs_inode.i_mode)) {
1935 spin_lock(&pid->lock);
1936 hlist_del_init_rcu(&ei->sibling_inodes);
1937 spin_unlock(&pid->lock);
1938 }
1939 }
1940
proc_pid_make_inode(struct super_block * sb,struct task_struct * task,umode_t mode)1941 struct inode *proc_pid_make_inode(struct super_block *sb,
1942 struct task_struct *task, umode_t mode)
1943 {
1944 struct inode * inode;
1945 struct proc_inode *ei;
1946 struct pid *pid;
1947
1948 /* We need a new inode */
1949
1950 inode = new_inode(sb);
1951 if (!inode)
1952 goto out;
1953
1954 /* Common stuff */
1955 ei = PROC_I(inode);
1956 inode->i_mode = mode;
1957 inode->i_ino = get_next_ino();
1958 simple_inode_init_ts(inode);
1959 inode->i_op = &proc_def_inode_operations;
1960
1961 /*
1962 * grab the reference to task.
1963 */
1964 pid = get_task_pid(task, PIDTYPE_PID);
1965 if (!pid)
1966 goto out_unlock;
1967
1968 /* Let the pid remember us for quick removal */
1969 ei->pid = pid;
1970
1971 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1972 security_task_to_inode(task, inode);
1973
1974 out:
1975 return inode;
1976
1977 out_unlock:
1978 iput(inode);
1979 return NULL;
1980 }
1981
1982 /*
1983 * Generating an inode and adding it into @pid->inodes, so that task will
1984 * invalidate inode's dentry before being released.
1985 *
1986 * This helper is used for creating dir-type entries under '/proc' and
1987 * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>'
1988 * can be released by invalidating '/proc/<tgid>' dentry.
1989 * In theory, dentries under '/proc/<tgid>/task' can also be released by
1990 * invalidating '/proc/<tgid>' dentry, we reserve it to handle single
1991 * thread exiting situation: Any one of threads should invalidate its
1992 * '/proc/<tgid>/task/<pid>' dentry before released.
1993 */
proc_pid_make_base_inode(struct super_block * sb,struct task_struct * task,umode_t mode)1994 static struct inode *proc_pid_make_base_inode(struct super_block *sb,
1995 struct task_struct *task, umode_t mode)
1996 {
1997 struct inode *inode;
1998 struct proc_inode *ei;
1999 struct pid *pid;
2000
2001 inode = proc_pid_make_inode(sb, task, mode);
2002 if (!inode)
2003 return NULL;
2004
2005 /* Let proc_flush_pid find this directory inode */
2006 ei = PROC_I(inode);
2007 pid = ei->pid;
2008 spin_lock(&pid->lock);
2009 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
2010 spin_unlock(&pid->lock);
2011
2012 return inode;
2013 }
2014
pid_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)2015 int pid_getattr(struct mnt_idmap *idmap, const struct path *path,
2016 struct kstat *stat, u32 request_mask, unsigned int query_flags)
2017 {
2018 struct inode *inode = d_inode(path->dentry);
2019 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
2020 struct task_struct *task;
2021
2022 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
2023
2024 stat->uid = GLOBAL_ROOT_UID;
2025 stat->gid = GLOBAL_ROOT_GID;
2026 rcu_read_lock();
2027 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2028 if (task) {
2029 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
2030 rcu_read_unlock();
2031 /*
2032 * This doesn't prevent learning whether PID exists,
2033 * it only makes getattr() consistent with readdir().
2034 */
2035 return -ENOENT;
2036 }
2037 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
2038 }
2039 rcu_read_unlock();
2040 return 0;
2041 }
2042
2043 /* dentry stuff */
2044
2045 /*
2046 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
2047 */
pid_update_inode(struct task_struct * task,struct inode * inode)2048 void pid_update_inode(struct task_struct *task, struct inode *inode)
2049 {
2050 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
2051
2052 inode->i_mode &= ~(S_ISUID | S_ISGID);
2053 security_task_to_inode(task, inode);
2054 }
2055
2056 /*
2057 * Rewrite the inode's ownerships here because the owning task may have
2058 * performed a setuid(), etc.
2059 *
2060 */
pid_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)2061 static int pid_revalidate(struct inode *dir, const struct qstr *name,
2062 struct dentry *dentry, unsigned int flags)
2063 {
2064 struct inode *inode;
2065 struct task_struct *task;
2066 int ret = 0;
2067
2068 rcu_read_lock();
2069 inode = d_inode_rcu(dentry);
2070 if (!inode)
2071 goto out;
2072 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2073
2074 if (task) {
2075 pid_update_inode(task, inode);
2076 ret = 1;
2077 }
2078 out:
2079 rcu_read_unlock();
2080 return ret;
2081 }
2082
proc_inode_is_dead(struct inode * inode)2083 static inline bool proc_inode_is_dead(struct inode *inode)
2084 {
2085 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2086 }
2087
pid_delete_dentry(const struct dentry * dentry)2088 int pid_delete_dentry(const struct dentry *dentry)
2089 {
2090 /* Is the task we represent dead?
2091 * If so, then don't put the dentry on the lru list,
2092 * kill it immediately.
2093 */
2094 return proc_inode_is_dead(d_inode(dentry));
2095 }
2096
2097 const struct dentry_operations pid_dentry_operations =
2098 {
2099 .d_revalidate = pid_revalidate,
2100 .d_delete = pid_delete_dentry,
2101 };
2102
2103 /* Lookups */
2104
2105 /*
2106 * Fill a directory entry.
2107 *
2108 * If possible create the dcache entry and derive our inode number and
2109 * file type from dcache entry.
2110 *
2111 * Since all of the proc inode numbers are dynamically generated, the inode
2112 * numbers do not exist until the inode is cache. This means creating
2113 * the dcache entry in readdir is necessary to keep the inode numbers
2114 * reported by readdir in sync with the inode numbers reported
2115 * by stat.
2116 */
proc_fill_cache(struct file * file,struct dir_context * ctx,const char * name,unsigned int len,instantiate_t instantiate,struct task_struct * task,const void * ptr)2117 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2118 const char *name, unsigned int len,
2119 instantiate_t instantiate, struct task_struct *task, const void *ptr)
2120 {
2121 struct dentry *child, *dir = file->f_path.dentry;
2122 struct qstr qname = QSTR_INIT(name, len);
2123 struct inode *inode;
2124 unsigned type = DT_UNKNOWN;
2125 ino_t ino = 1;
2126
2127 child = d_hash_and_lookup(dir, &qname);
2128 if (!child) {
2129 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2130 child = d_alloc_parallel(dir, &qname, &wq);
2131 if (IS_ERR(child))
2132 goto end_instantiate;
2133 if (d_in_lookup(child)) {
2134 struct dentry *res;
2135 res = instantiate(child, task, ptr);
2136 d_lookup_done(child);
2137 if (unlikely(res)) {
2138 dput(child);
2139 child = res;
2140 if (IS_ERR(child))
2141 goto end_instantiate;
2142 }
2143 }
2144 }
2145 inode = d_inode(child);
2146 ino = inode->i_ino;
2147 type = inode->i_mode >> 12;
2148 dput(child);
2149 end_instantiate:
2150 return dir_emit(ctx, name, len, ino, type);
2151 }
2152
2153 /*
2154 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2155 * which represent vma start and end addresses.
2156 */
dname_to_vma_addr(struct dentry * dentry,unsigned long * start,unsigned long * end)2157 static int dname_to_vma_addr(struct dentry *dentry,
2158 unsigned long *start, unsigned long *end)
2159 {
2160 const char *str = dentry->d_name.name;
2161 unsigned long long sval, eval;
2162 unsigned int len;
2163
2164 if (str[0] == '0' && str[1] != '-')
2165 return -EINVAL;
2166 len = _parse_integer(str, 16, &sval);
2167 if (len & KSTRTOX_OVERFLOW)
2168 return -EINVAL;
2169 if (sval != (unsigned long)sval)
2170 return -EINVAL;
2171 str += len;
2172
2173 if (*str != '-')
2174 return -EINVAL;
2175 str++;
2176
2177 if (str[0] == '0' && str[1])
2178 return -EINVAL;
2179 len = _parse_integer(str, 16, &eval);
2180 if (len & KSTRTOX_OVERFLOW)
2181 return -EINVAL;
2182 if (eval != (unsigned long)eval)
2183 return -EINVAL;
2184 str += len;
2185
2186 if (*str != '\0')
2187 return -EINVAL;
2188
2189 *start = sval;
2190 *end = eval;
2191
2192 return 0;
2193 }
2194
map_files_d_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)2195 static int map_files_d_revalidate(struct inode *dir, const struct qstr *name,
2196 struct dentry *dentry, unsigned int flags)
2197 {
2198 unsigned long vm_start, vm_end;
2199 bool exact_vma_exists = false;
2200 struct mm_struct *mm = NULL;
2201 struct task_struct *task;
2202 struct inode *inode;
2203 int status = 0;
2204
2205 if (flags & LOOKUP_RCU)
2206 return -ECHILD;
2207
2208 inode = d_inode(dentry);
2209 task = get_proc_task(inode);
2210 if (!task)
2211 goto out_notask;
2212
2213 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2214 if (IS_ERR(mm))
2215 goto out;
2216
2217 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2218 status = mmap_read_lock_killable(mm);
2219 if (!status) {
2220 exact_vma_exists = !!find_exact_vma(mm, vm_start,
2221 vm_end);
2222 mmap_read_unlock(mm);
2223 }
2224 }
2225
2226 mmput(mm);
2227
2228 if (exact_vma_exists) {
2229 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2230
2231 security_task_to_inode(task, inode);
2232 status = 1;
2233 }
2234
2235 out:
2236 put_task_struct(task);
2237
2238 out_notask:
2239 return status;
2240 }
2241
2242 static const struct dentry_operations tid_map_files_dentry_operations = {
2243 .d_revalidate = map_files_d_revalidate,
2244 .d_delete = pid_delete_dentry,
2245 };
2246
map_files_get_link(struct dentry * dentry,struct path * path)2247 static int map_files_get_link(struct dentry *dentry, struct path *path)
2248 {
2249 unsigned long vm_start, vm_end;
2250 struct vm_area_struct *vma;
2251 struct task_struct *task;
2252 struct mm_struct *mm;
2253 int rc;
2254
2255 rc = -ENOENT;
2256 task = get_proc_task(d_inode(dentry));
2257 if (!task)
2258 goto out;
2259
2260 mm = get_task_mm(task);
2261 put_task_struct(task);
2262 if (!mm)
2263 goto out;
2264
2265 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2266 if (rc)
2267 goto out_mmput;
2268
2269 rc = mmap_read_lock_killable(mm);
2270 if (rc)
2271 goto out_mmput;
2272
2273 rc = -ENOENT;
2274 vma = find_exact_vma(mm, vm_start, vm_end);
2275 if (vma && vma->vm_file) {
2276 *path = *file_user_path(vma->vm_file);
2277 path_get(path);
2278 rc = 0;
2279 }
2280 mmap_read_unlock(mm);
2281
2282 out_mmput:
2283 mmput(mm);
2284 out:
2285 return rc;
2286 }
2287
2288 struct map_files_info {
2289 unsigned long start;
2290 unsigned long end;
2291 fmode_t mode;
2292 };
2293
2294 /*
2295 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2296 * to concerns about how the symlinks may be used to bypass permissions on
2297 * ancestor directories in the path to the file in question.
2298 */
2299 static const char *
proc_map_files_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)2300 proc_map_files_get_link(struct dentry *dentry,
2301 struct inode *inode,
2302 struct delayed_call *done)
2303 {
2304 if (!checkpoint_restore_ns_capable(&init_user_ns))
2305 return ERR_PTR(-EPERM);
2306
2307 return proc_pid_get_link(dentry, inode, done);
2308 }
2309
2310 /*
2311 * Identical to proc_pid_link_inode_operations except for get_link()
2312 */
2313 static const struct inode_operations proc_map_files_link_inode_operations = {
2314 .readlink = proc_pid_readlink,
2315 .get_link = proc_map_files_get_link,
2316 .setattr = proc_setattr,
2317 };
2318
2319 static struct dentry *
proc_map_files_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2320 proc_map_files_instantiate(struct dentry *dentry,
2321 struct task_struct *task, const void *ptr)
2322 {
2323 fmode_t mode = (fmode_t)(unsigned long)ptr;
2324 struct proc_inode *ei;
2325 struct inode *inode;
2326
2327 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2328 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2329 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2330 if (!inode)
2331 return ERR_PTR(-ENOENT);
2332
2333 ei = PROC_I(inode);
2334 ei->op.proc_get_link = map_files_get_link;
2335
2336 inode->i_op = &proc_map_files_link_inode_operations;
2337 inode->i_size = 64;
2338
2339 return proc_splice_unmountable(inode, dentry,
2340 &tid_map_files_dentry_operations);
2341 }
2342
proc_map_files_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2343 static struct dentry *proc_map_files_lookup(struct inode *dir,
2344 struct dentry *dentry, unsigned int flags)
2345 {
2346 unsigned long vm_start, vm_end;
2347 struct vm_area_struct *vma;
2348 struct task_struct *task;
2349 struct dentry *result;
2350 struct mm_struct *mm;
2351
2352 result = ERR_PTR(-ENOENT);
2353 task = get_proc_task(dir);
2354 if (!task)
2355 goto out;
2356
2357 result = ERR_PTR(-EACCES);
2358 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2359 goto out_put_task;
2360
2361 result = ERR_PTR(-ENOENT);
2362 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2363 goto out_put_task;
2364
2365 mm = get_task_mm(task);
2366 if (!mm)
2367 goto out_put_task;
2368
2369 result = ERR_PTR(-EINTR);
2370 if (mmap_read_lock_killable(mm))
2371 goto out_put_mm;
2372
2373 result = ERR_PTR(-ENOENT);
2374 vma = find_exact_vma(mm, vm_start, vm_end);
2375 if (!vma)
2376 goto out_no_vma;
2377
2378 if (vma->vm_file)
2379 result = proc_map_files_instantiate(dentry, task,
2380 (void *)(unsigned long)vma->vm_file->f_mode);
2381
2382 out_no_vma:
2383 mmap_read_unlock(mm);
2384 out_put_mm:
2385 mmput(mm);
2386 out_put_task:
2387 put_task_struct(task);
2388 out:
2389 return result;
2390 }
2391
2392 static const struct inode_operations proc_map_files_inode_operations = {
2393 .lookup = proc_map_files_lookup,
2394 .permission = proc_fd_permission,
2395 .setattr = proc_setattr,
2396 };
2397
2398 static int
proc_map_files_readdir(struct file * file,struct dir_context * ctx)2399 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2400 {
2401 struct vm_area_struct *vma;
2402 struct task_struct *task;
2403 struct mm_struct *mm;
2404 unsigned long nr_files, pos, i;
2405 GENRADIX(struct map_files_info) fa;
2406 struct map_files_info *p;
2407 int ret;
2408 struct vma_iterator vmi;
2409
2410 genradix_init(&fa);
2411
2412 ret = -ENOENT;
2413 task = get_proc_task(file_inode(file));
2414 if (!task)
2415 goto out;
2416
2417 ret = -EACCES;
2418 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2419 goto out_put_task;
2420
2421 ret = 0;
2422 if (!dir_emit_dots(file, ctx))
2423 goto out_put_task;
2424
2425 mm = get_task_mm(task);
2426 if (!mm)
2427 goto out_put_task;
2428
2429 ret = mmap_read_lock_killable(mm);
2430 if (ret) {
2431 mmput(mm);
2432 goto out_put_task;
2433 }
2434
2435 nr_files = 0;
2436
2437 /*
2438 * We need two passes here:
2439 *
2440 * 1) Collect vmas of mapped files with mmap_lock taken
2441 * 2) Release mmap_lock and instantiate entries
2442 *
2443 * otherwise we get lockdep complained, since filldir()
2444 * routine might require mmap_lock taken in might_fault().
2445 */
2446
2447 pos = 2;
2448 vma_iter_init(&vmi, mm, 0);
2449 for_each_vma(vmi, vma) {
2450 if (!vma->vm_file)
2451 continue;
2452 if (++pos <= ctx->pos)
2453 continue;
2454
2455 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2456 if (!p) {
2457 ret = -ENOMEM;
2458 mmap_read_unlock(mm);
2459 mmput(mm);
2460 goto out_put_task;
2461 }
2462
2463 p->start = vma->vm_start;
2464 p->end = vma->vm_end;
2465 p->mode = vma->vm_file->f_mode;
2466 }
2467 mmap_read_unlock(mm);
2468 mmput(mm);
2469
2470 for (i = 0; i < nr_files; i++) {
2471 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2472 unsigned int len;
2473
2474 p = genradix_ptr(&fa, i);
2475 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2476 if (!proc_fill_cache(file, ctx,
2477 buf, len,
2478 proc_map_files_instantiate,
2479 task,
2480 (void *)(unsigned long)p->mode))
2481 break;
2482 ctx->pos++;
2483 }
2484
2485 out_put_task:
2486 put_task_struct(task);
2487 out:
2488 genradix_free(&fa);
2489 return ret;
2490 }
2491
2492 static const struct file_operations proc_map_files_operations = {
2493 .read = generic_read_dir,
2494 .iterate_shared = proc_map_files_readdir,
2495 .llseek = generic_file_llseek,
2496 };
2497
2498 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2499 struct timers_private {
2500 struct pid *pid;
2501 struct task_struct *task;
2502 struct sighand_struct *sighand;
2503 struct pid_namespace *ns;
2504 unsigned long flags;
2505 };
2506
timers_start(struct seq_file * m,loff_t * pos)2507 static void *timers_start(struct seq_file *m, loff_t *pos)
2508 {
2509 struct timers_private *tp = m->private;
2510
2511 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2512 if (!tp->task)
2513 return ERR_PTR(-ESRCH);
2514
2515 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2516 if (!tp->sighand)
2517 return ERR_PTR(-ESRCH);
2518
2519 return seq_hlist_start(&tp->task->signal->posix_timers, *pos);
2520 }
2521
timers_next(struct seq_file * m,void * v,loff_t * pos)2522 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2523 {
2524 struct timers_private *tp = m->private;
2525 return seq_hlist_next(v, &tp->task->signal->posix_timers, pos);
2526 }
2527
timers_stop(struct seq_file * m,void * v)2528 static void timers_stop(struct seq_file *m, void *v)
2529 {
2530 struct timers_private *tp = m->private;
2531
2532 if (tp->sighand) {
2533 unlock_task_sighand(tp->task, &tp->flags);
2534 tp->sighand = NULL;
2535 }
2536
2537 if (tp->task) {
2538 put_task_struct(tp->task);
2539 tp->task = NULL;
2540 }
2541 }
2542
show_timer(struct seq_file * m,void * v)2543 static int show_timer(struct seq_file *m, void *v)
2544 {
2545 struct k_itimer *timer;
2546 struct timers_private *tp = m->private;
2547 int notify;
2548 static const char * const nstr[] = {
2549 [SIGEV_SIGNAL] = "signal",
2550 [SIGEV_NONE] = "none",
2551 [SIGEV_THREAD] = "thread",
2552 };
2553
2554 timer = hlist_entry((struct hlist_node *)v, struct k_itimer, list);
2555 notify = timer->it_sigev_notify;
2556
2557 seq_printf(m, "ID: %d\n", timer->it_id);
2558 seq_printf(m, "signal: %d/%px\n",
2559 timer->sigq.info.si_signo,
2560 timer->sigq.info.si_value.sival_ptr);
2561 seq_printf(m, "notify: %s/%s.%d\n",
2562 nstr[notify & ~SIGEV_THREAD_ID],
2563 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2564 pid_nr_ns(timer->it_pid, tp->ns));
2565 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2566
2567 return 0;
2568 }
2569
2570 static const struct seq_operations proc_timers_seq_ops = {
2571 .start = timers_start,
2572 .next = timers_next,
2573 .stop = timers_stop,
2574 .show = show_timer,
2575 };
2576
proc_timers_open(struct inode * inode,struct file * file)2577 static int proc_timers_open(struct inode *inode, struct file *file)
2578 {
2579 struct timers_private *tp;
2580
2581 tp = __seq_open_private(file, &proc_timers_seq_ops,
2582 sizeof(struct timers_private));
2583 if (!tp)
2584 return -ENOMEM;
2585
2586 tp->pid = proc_pid(inode);
2587 tp->ns = proc_pid_ns(inode->i_sb);
2588 return 0;
2589 }
2590
2591 static const struct file_operations proc_timers_operations = {
2592 .open = proc_timers_open,
2593 .read = seq_read,
2594 .llseek = seq_lseek,
2595 .release = seq_release_private,
2596 };
2597 #endif
2598
timerslack_ns_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)2599 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2600 size_t count, loff_t *offset)
2601 {
2602 struct inode *inode = file_inode(file);
2603 struct task_struct *p;
2604 u64 slack_ns;
2605 int err;
2606
2607 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2608 if (err < 0)
2609 return err;
2610
2611 p = get_proc_task(inode);
2612 if (!p)
2613 return -ESRCH;
2614
2615 if (p != current) {
2616 rcu_read_lock();
2617 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2618 rcu_read_unlock();
2619 count = -EPERM;
2620 goto out;
2621 }
2622 rcu_read_unlock();
2623
2624 err = security_task_setscheduler(p);
2625 if (err) {
2626 count = err;
2627 goto out;
2628 }
2629 }
2630
2631 task_lock(p);
2632 if (rt_or_dl_task_policy(p))
2633 slack_ns = 0;
2634 else if (slack_ns == 0)
2635 slack_ns = p->default_timer_slack_ns;
2636 p->timer_slack_ns = slack_ns;
2637 task_unlock(p);
2638
2639 out:
2640 put_task_struct(p);
2641
2642 return count;
2643 }
2644
timerslack_ns_show(struct seq_file * m,void * v)2645 static int timerslack_ns_show(struct seq_file *m, void *v)
2646 {
2647 struct inode *inode = m->private;
2648 struct task_struct *p;
2649 int err = 0;
2650
2651 p = get_proc_task(inode);
2652 if (!p)
2653 return -ESRCH;
2654
2655 if (p != current) {
2656 rcu_read_lock();
2657 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2658 rcu_read_unlock();
2659 err = -EPERM;
2660 goto out;
2661 }
2662 rcu_read_unlock();
2663
2664 err = security_task_getscheduler(p);
2665 if (err)
2666 goto out;
2667 }
2668
2669 task_lock(p);
2670 seq_printf(m, "%llu\n", p->timer_slack_ns);
2671 task_unlock(p);
2672
2673 out:
2674 put_task_struct(p);
2675
2676 return err;
2677 }
2678
timerslack_ns_open(struct inode * inode,struct file * filp)2679 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2680 {
2681 return single_open(filp, timerslack_ns_show, inode);
2682 }
2683
2684 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2685 .open = timerslack_ns_open,
2686 .read = seq_read,
2687 .write = timerslack_ns_write,
2688 .llseek = seq_lseek,
2689 .release = single_release,
2690 };
2691
proc_pident_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2692 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2693 struct task_struct *task, const void *ptr)
2694 {
2695 const struct pid_entry *p = ptr;
2696 struct inode *inode;
2697 struct proc_inode *ei;
2698
2699 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2700 if (!inode)
2701 return ERR_PTR(-ENOENT);
2702
2703 ei = PROC_I(inode);
2704 if (S_ISDIR(inode->i_mode))
2705 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2706 if (p->iop)
2707 inode->i_op = p->iop;
2708 if (p->fop)
2709 inode->i_fop = p->fop;
2710 ei->op = p->op;
2711 pid_update_inode(task, inode);
2712 d_set_d_op(dentry, &pid_dentry_operations);
2713 return d_splice_alias(inode, dentry);
2714 }
2715
proc_pident_lookup(struct inode * dir,struct dentry * dentry,const struct pid_entry * p,const struct pid_entry * end)2716 static struct dentry *proc_pident_lookup(struct inode *dir,
2717 struct dentry *dentry,
2718 const struct pid_entry *p,
2719 const struct pid_entry *end)
2720 {
2721 struct task_struct *task = get_proc_task(dir);
2722 struct dentry *res = ERR_PTR(-ENOENT);
2723
2724 if (!task)
2725 goto out_no_task;
2726
2727 /*
2728 * Yes, it does not scale. And it should not. Don't add
2729 * new entries into /proc/<tgid>/ without very good reasons.
2730 */
2731 for (; p < end; p++) {
2732 if (p->len != dentry->d_name.len)
2733 continue;
2734 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2735 res = proc_pident_instantiate(dentry, task, p);
2736 break;
2737 }
2738 }
2739 put_task_struct(task);
2740 out_no_task:
2741 return res;
2742 }
2743
proc_pident_readdir(struct file * file,struct dir_context * ctx,const struct pid_entry * ents,unsigned int nents)2744 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2745 const struct pid_entry *ents, unsigned int nents)
2746 {
2747 struct task_struct *task = get_proc_task(file_inode(file));
2748 const struct pid_entry *p;
2749
2750 if (!task)
2751 return -ENOENT;
2752
2753 if (!dir_emit_dots(file, ctx))
2754 goto out;
2755
2756 if (ctx->pos >= nents + 2)
2757 goto out;
2758
2759 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2760 if (!proc_fill_cache(file, ctx, p->name, p->len,
2761 proc_pident_instantiate, task, p))
2762 break;
2763 ctx->pos++;
2764 }
2765 out:
2766 put_task_struct(task);
2767 return 0;
2768 }
2769
2770 #ifdef CONFIG_SECURITY
proc_pid_attr_open(struct inode * inode,struct file * file)2771 static int proc_pid_attr_open(struct inode *inode, struct file *file)
2772 {
2773 file->private_data = NULL;
2774 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2775 return 0;
2776 }
2777
proc_pid_attr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2778 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2779 size_t count, loff_t *ppos)
2780 {
2781 struct inode * inode = file_inode(file);
2782 char *p = NULL;
2783 ssize_t length;
2784 struct task_struct *task = get_proc_task(inode);
2785
2786 if (!task)
2787 return -ESRCH;
2788
2789 length = security_getprocattr(task, PROC_I(inode)->op.lsmid,
2790 file->f_path.dentry->d_name.name,
2791 &p);
2792 put_task_struct(task);
2793 if (length > 0)
2794 length = simple_read_from_buffer(buf, count, ppos, p, length);
2795 kfree(p);
2796 return length;
2797 }
2798
proc_pid_attr_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2799 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2800 size_t count, loff_t *ppos)
2801 {
2802 struct inode * inode = file_inode(file);
2803 struct task_struct *task;
2804 void *page;
2805 int rv;
2806
2807 /* A task may only write when it was the opener. */
2808 if (file->private_data != current->mm)
2809 return -EPERM;
2810
2811 rcu_read_lock();
2812 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2813 if (!task) {
2814 rcu_read_unlock();
2815 return -ESRCH;
2816 }
2817 /* A task may only write its own attributes. */
2818 if (current != task) {
2819 rcu_read_unlock();
2820 return -EACCES;
2821 }
2822 /* Prevent changes to overridden credentials. */
2823 if (current_cred() != current_real_cred()) {
2824 rcu_read_unlock();
2825 return -EBUSY;
2826 }
2827 rcu_read_unlock();
2828
2829 if (count > PAGE_SIZE)
2830 count = PAGE_SIZE;
2831
2832 /* No partial writes. */
2833 if (*ppos != 0)
2834 return -EINVAL;
2835
2836 page = memdup_user(buf, count);
2837 if (IS_ERR(page)) {
2838 rv = PTR_ERR(page);
2839 goto out;
2840 }
2841
2842 /* Guard against adverse ptrace interaction */
2843 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex);
2844 if (rv < 0)
2845 goto out_free;
2846
2847 rv = security_setprocattr(PROC_I(inode)->op.lsmid,
2848 file->f_path.dentry->d_name.name, page,
2849 count);
2850 mutex_unlock(¤t->signal->cred_guard_mutex);
2851 out_free:
2852 kfree(page);
2853 out:
2854 return rv;
2855 }
2856
2857 static const struct file_operations proc_pid_attr_operations = {
2858 .open = proc_pid_attr_open,
2859 .read = proc_pid_attr_read,
2860 .write = proc_pid_attr_write,
2861 .llseek = generic_file_llseek,
2862 .release = mem_release,
2863 };
2864
2865 #define LSM_DIR_OPS(LSM) \
2866 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2867 struct dir_context *ctx) \
2868 { \
2869 return proc_pident_readdir(filp, ctx, \
2870 LSM##_attr_dir_stuff, \
2871 ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2872 } \
2873 \
2874 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2875 .read = generic_read_dir, \
2876 .iterate_shared = proc_##LSM##_attr_dir_iterate, \
2877 .llseek = default_llseek, \
2878 }; \
2879 \
2880 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2881 struct dentry *dentry, unsigned int flags) \
2882 { \
2883 return proc_pident_lookup(dir, dentry, \
2884 LSM##_attr_dir_stuff, \
2885 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2886 } \
2887 \
2888 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2889 .lookup = proc_##LSM##_attr_dir_lookup, \
2890 .getattr = pid_getattr, \
2891 .setattr = proc_setattr, \
2892 }
2893
2894 #ifdef CONFIG_SECURITY_SMACK
2895 static const struct pid_entry smack_attr_dir_stuff[] = {
2896 ATTR(LSM_ID_SMACK, "current", 0666),
2897 };
2898 LSM_DIR_OPS(smack);
2899 #endif
2900
2901 #ifdef CONFIG_SECURITY_APPARMOR
2902 static const struct pid_entry apparmor_attr_dir_stuff[] = {
2903 ATTR(LSM_ID_APPARMOR, "current", 0666),
2904 ATTR(LSM_ID_APPARMOR, "prev", 0444),
2905 ATTR(LSM_ID_APPARMOR, "exec", 0666),
2906 };
2907 LSM_DIR_OPS(apparmor);
2908 #endif
2909
2910 static const struct pid_entry attr_dir_stuff[] = {
2911 ATTR(LSM_ID_UNDEF, "current", 0666),
2912 ATTR(LSM_ID_UNDEF, "prev", 0444),
2913 ATTR(LSM_ID_UNDEF, "exec", 0666),
2914 ATTR(LSM_ID_UNDEF, "fscreate", 0666),
2915 ATTR(LSM_ID_UNDEF, "keycreate", 0666),
2916 ATTR(LSM_ID_UNDEF, "sockcreate", 0666),
2917 #ifdef CONFIG_SECURITY_SMACK
2918 DIR("smack", 0555,
2919 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2920 #endif
2921 #ifdef CONFIG_SECURITY_APPARMOR
2922 DIR("apparmor", 0555,
2923 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2924 #endif
2925 };
2926
proc_attr_dir_readdir(struct file * file,struct dir_context * ctx)2927 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2928 {
2929 return proc_pident_readdir(file, ctx,
2930 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2931 }
2932
2933 static const struct file_operations proc_attr_dir_operations = {
2934 .read = generic_read_dir,
2935 .iterate_shared = proc_attr_dir_readdir,
2936 .llseek = generic_file_llseek,
2937 };
2938
proc_attr_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2939 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2940 struct dentry *dentry, unsigned int flags)
2941 {
2942 return proc_pident_lookup(dir, dentry,
2943 attr_dir_stuff,
2944 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2945 }
2946
2947 static const struct inode_operations proc_attr_dir_inode_operations = {
2948 .lookup = proc_attr_dir_lookup,
2949 .getattr = pid_getattr,
2950 .setattr = proc_setattr,
2951 };
2952
2953 #endif
2954
2955 #ifdef CONFIG_ELF_CORE
proc_coredump_filter_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2956 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2957 size_t count, loff_t *ppos)
2958 {
2959 struct task_struct *task = get_proc_task(file_inode(file));
2960 struct mm_struct *mm;
2961 char buffer[PROC_NUMBUF];
2962 size_t len;
2963 int ret;
2964
2965 if (!task)
2966 return -ESRCH;
2967
2968 ret = 0;
2969 mm = get_task_mm(task);
2970 if (mm) {
2971 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2972 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2973 MMF_DUMP_FILTER_SHIFT));
2974 mmput(mm);
2975 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2976 }
2977
2978 put_task_struct(task);
2979
2980 return ret;
2981 }
2982
proc_coredump_filter_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2983 static ssize_t proc_coredump_filter_write(struct file *file,
2984 const char __user *buf,
2985 size_t count,
2986 loff_t *ppos)
2987 {
2988 struct task_struct *task;
2989 struct mm_struct *mm;
2990 unsigned int val;
2991 int ret;
2992 int i;
2993 unsigned long mask;
2994
2995 ret = kstrtouint_from_user(buf, count, 0, &val);
2996 if (ret < 0)
2997 return ret;
2998
2999 ret = -ESRCH;
3000 task = get_proc_task(file_inode(file));
3001 if (!task)
3002 goto out_no_task;
3003
3004 mm = get_task_mm(task);
3005 if (!mm)
3006 goto out_no_mm;
3007 ret = 0;
3008
3009 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
3010 if (val & mask)
3011 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3012 else
3013 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3014 }
3015
3016 mmput(mm);
3017 out_no_mm:
3018 put_task_struct(task);
3019 out_no_task:
3020 if (ret < 0)
3021 return ret;
3022 return count;
3023 }
3024
3025 static const struct file_operations proc_coredump_filter_operations = {
3026 .read = proc_coredump_filter_read,
3027 .write = proc_coredump_filter_write,
3028 .llseek = generic_file_llseek,
3029 };
3030 #endif
3031
3032 #ifdef CONFIG_TASK_IO_ACCOUNTING
do_io_accounting(struct task_struct * task,struct seq_file * m,int whole)3033 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
3034 {
3035 struct task_io_accounting acct;
3036 int result;
3037
3038 result = down_read_killable(&task->signal->exec_update_lock);
3039 if (result)
3040 return result;
3041
3042 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
3043 result = -EACCES;
3044 goto out_unlock;
3045 }
3046
3047 if (whole) {
3048 struct signal_struct *sig = task->signal;
3049 struct task_struct *t;
3050 unsigned int seq = 1;
3051 unsigned long flags;
3052
3053 rcu_read_lock();
3054 do {
3055 seq++; /* 2 on the 1st/lockless path, otherwise odd */
3056 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
3057
3058 acct = sig->ioac;
3059 __for_each_thread(sig, t)
3060 task_io_accounting_add(&acct, &t->ioac);
3061
3062 } while (need_seqretry(&sig->stats_lock, seq));
3063 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
3064 rcu_read_unlock();
3065 } else {
3066 acct = task->ioac;
3067 }
3068
3069 seq_printf(m,
3070 "rchar: %llu\n"
3071 "wchar: %llu\n"
3072 "syscr: %llu\n"
3073 "syscw: %llu\n"
3074 "read_bytes: %llu\n"
3075 "write_bytes: %llu\n"
3076 "cancelled_write_bytes: %llu\n",
3077 (unsigned long long)acct.rchar,
3078 (unsigned long long)acct.wchar,
3079 (unsigned long long)acct.syscr,
3080 (unsigned long long)acct.syscw,
3081 (unsigned long long)acct.read_bytes,
3082 (unsigned long long)acct.write_bytes,
3083 (unsigned long long)acct.cancelled_write_bytes);
3084 result = 0;
3085
3086 out_unlock:
3087 up_read(&task->signal->exec_update_lock);
3088 return result;
3089 }
3090
proc_tid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3091 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3092 struct pid *pid, struct task_struct *task)
3093 {
3094 return do_io_accounting(task, m, 0);
3095 }
3096
proc_tgid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3097 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3098 struct pid *pid, struct task_struct *task)
3099 {
3100 return do_io_accounting(task, m, 1);
3101 }
3102 #endif /* CONFIG_TASK_IO_ACCOUNTING */
3103
3104 #ifdef CONFIG_USER_NS
proc_id_map_open(struct inode * inode,struct file * file,const struct seq_operations * seq_ops)3105 static int proc_id_map_open(struct inode *inode, struct file *file,
3106 const struct seq_operations *seq_ops)
3107 {
3108 struct user_namespace *ns = NULL;
3109 struct task_struct *task;
3110 struct seq_file *seq;
3111 int ret = -EINVAL;
3112
3113 task = get_proc_task(inode);
3114 if (task) {
3115 rcu_read_lock();
3116 ns = get_user_ns(task_cred_xxx(task, user_ns));
3117 rcu_read_unlock();
3118 put_task_struct(task);
3119 }
3120 if (!ns)
3121 goto err;
3122
3123 ret = seq_open(file, seq_ops);
3124 if (ret)
3125 goto err_put_ns;
3126
3127 seq = file->private_data;
3128 seq->private = ns;
3129
3130 return 0;
3131 err_put_ns:
3132 put_user_ns(ns);
3133 err:
3134 return ret;
3135 }
3136
proc_id_map_release(struct inode * inode,struct file * file)3137 static int proc_id_map_release(struct inode *inode, struct file *file)
3138 {
3139 struct seq_file *seq = file->private_data;
3140 struct user_namespace *ns = seq->private;
3141 put_user_ns(ns);
3142 return seq_release(inode, file);
3143 }
3144
proc_uid_map_open(struct inode * inode,struct file * file)3145 static int proc_uid_map_open(struct inode *inode, struct file *file)
3146 {
3147 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3148 }
3149
proc_gid_map_open(struct inode * inode,struct file * file)3150 static int proc_gid_map_open(struct inode *inode, struct file *file)
3151 {
3152 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3153 }
3154
proc_projid_map_open(struct inode * inode,struct file * file)3155 static int proc_projid_map_open(struct inode *inode, struct file *file)
3156 {
3157 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3158 }
3159
3160 static const struct file_operations proc_uid_map_operations = {
3161 .open = proc_uid_map_open,
3162 .write = proc_uid_map_write,
3163 .read = seq_read,
3164 .llseek = seq_lseek,
3165 .release = proc_id_map_release,
3166 };
3167
3168 static const struct file_operations proc_gid_map_operations = {
3169 .open = proc_gid_map_open,
3170 .write = proc_gid_map_write,
3171 .read = seq_read,
3172 .llseek = seq_lseek,
3173 .release = proc_id_map_release,
3174 };
3175
3176 static const struct file_operations proc_projid_map_operations = {
3177 .open = proc_projid_map_open,
3178 .write = proc_projid_map_write,
3179 .read = seq_read,
3180 .llseek = seq_lseek,
3181 .release = proc_id_map_release,
3182 };
3183
proc_setgroups_open(struct inode * inode,struct file * file)3184 static int proc_setgroups_open(struct inode *inode, struct file *file)
3185 {
3186 struct user_namespace *ns = NULL;
3187 struct task_struct *task;
3188 int ret;
3189
3190 ret = -ESRCH;
3191 task = get_proc_task(inode);
3192 if (task) {
3193 rcu_read_lock();
3194 ns = get_user_ns(task_cred_xxx(task, user_ns));
3195 rcu_read_unlock();
3196 put_task_struct(task);
3197 }
3198 if (!ns)
3199 goto err;
3200
3201 if (file->f_mode & FMODE_WRITE) {
3202 ret = -EACCES;
3203 if (!ns_capable(ns, CAP_SYS_ADMIN))
3204 goto err_put_ns;
3205 }
3206
3207 ret = single_open(file, &proc_setgroups_show, ns);
3208 if (ret)
3209 goto err_put_ns;
3210
3211 return 0;
3212 err_put_ns:
3213 put_user_ns(ns);
3214 err:
3215 return ret;
3216 }
3217
proc_setgroups_release(struct inode * inode,struct file * file)3218 static int proc_setgroups_release(struct inode *inode, struct file *file)
3219 {
3220 struct seq_file *seq = file->private_data;
3221 struct user_namespace *ns = seq->private;
3222 int ret = single_release(inode, file);
3223 put_user_ns(ns);
3224 return ret;
3225 }
3226
3227 static const struct file_operations proc_setgroups_operations = {
3228 .open = proc_setgroups_open,
3229 .write = proc_setgroups_write,
3230 .read = seq_read,
3231 .llseek = seq_lseek,
3232 .release = proc_setgroups_release,
3233 };
3234 #endif /* CONFIG_USER_NS */
3235
proc_pid_personality(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3236 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3237 struct pid *pid, struct task_struct *task)
3238 {
3239 int err = lock_trace(task);
3240 if (!err) {
3241 seq_printf(m, "%08x\n", task->personality);
3242 unlock_trace(task);
3243 }
3244 return err;
3245 }
3246
3247 #ifdef CONFIG_LIVEPATCH
proc_pid_patch_state(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3248 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3249 struct pid *pid, struct task_struct *task)
3250 {
3251 seq_printf(m, "%d\n", task->patch_state);
3252 return 0;
3253 }
3254 #endif /* CONFIG_LIVEPATCH */
3255
3256 #ifdef CONFIG_KSM
proc_pid_ksm_merging_pages(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3257 static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
3258 struct pid *pid, struct task_struct *task)
3259 {
3260 struct mm_struct *mm;
3261
3262 mm = get_task_mm(task);
3263 if (mm) {
3264 seq_printf(m, "%lu\n", mm->ksm_merging_pages);
3265 mmput(mm);
3266 }
3267
3268 return 0;
3269 }
proc_pid_ksm_stat(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3270 static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns,
3271 struct pid *pid, struct task_struct *task)
3272 {
3273 struct mm_struct *mm;
3274 int ret = 0;
3275
3276 mm = get_task_mm(task);
3277 if (mm) {
3278 seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items);
3279 seq_printf(m, "ksm_zero_pages %ld\n", mm_ksm_zero_pages(mm));
3280 seq_printf(m, "ksm_merging_pages %lu\n", mm->ksm_merging_pages);
3281 seq_printf(m, "ksm_process_profit %ld\n", ksm_process_profit(mm));
3282 seq_printf(m, "ksm_merge_any: %s\n",
3283 test_bit(MMF_VM_MERGE_ANY, &mm->flags) ? "yes" : "no");
3284 ret = mmap_read_lock_killable(mm);
3285 if (ret) {
3286 mmput(mm);
3287 return ret;
3288 }
3289 seq_printf(m, "ksm_mergeable: %s\n",
3290 ksm_process_mergeable(mm) ? "yes" : "no");
3291 mmap_read_unlock(mm);
3292 mmput(mm);
3293 }
3294
3295 return 0;
3296 }
3297 #endif /* CONFIG_KSM */
3298
3299 #ifdef CONFIG_STACKLEAK_METRICS
proc_stack_depth(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3300 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3301 struct pid *pid, struct task_struct *task)
3302 {
3303 unsigned long prev_depth = THREAD_SIZE -
3304 (task->prev_lowest_stack & (THREAD_SIZE - 1));
3305 unsigned long depth = THREAD_SIZE -
3306 (task->lowest_stack & (THREAD_SIZE - 1));
3307
3308 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3309 prev_depth, depth);
3310 return 0;
3311 }
3312 #endif /* CONFIG_STACKLEAK_METRICS */
3313
3314 /*
3315 * Thread groups
3316 */
3317 static const struct file_operations proc_task_operations;
3318 static const struct inode_operations proc_task_inode_operations;
3319
3320 static const struct pid_entry tgid_base_stuff[] = {
3321 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3322 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3323 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3324 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3325 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3326 #ifdef CONFIG_NET
3327 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3328 #endif
3329 REG("environ", S_IRUSR, proc_environ_operations),
3330 REG("auxv", S_IRUSR, proc_auxv_operations),
3331 ONE("status", S_IRUGO, proc_pid_status),
3332 ONE("personality", S_IRUSR, proc_pid_personality),
3333 ONE("limits", S_IRUGO, proc_pid_limits),
3334 #ifdef CONFIG_SCHED_DEBUG
3335 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3336 #endif
3337 #ifdef CONFIG_SCHED_AUTOGROUP
3338 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3339 #endif
3340 #ifdef CONFIG_TIME_NS
3341 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3342 #endif
3343 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3344 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3345 ONE("syscall", S_IRUSR, proc_pid_syscall),
3346 #endif
3347 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3348 ONE("stat", S_IRUGO, proc_tgid_stat),
3349 ONE("statm", S_IRUGO, proc_pid_statm),
3350 REG("maps", S_IRUGO, proc_pid_maps_operations),
3351 #ifdef CONFIG_NUMA
3352 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3353 #endif
3354 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3355 LNK("cwd", proc_cwd_link),
3356 LNK("root", proc_root_link),
3357 LNK("exe", proc_exe_link),
3358 REG("mounts", S_IRUGO, proc_mounts_operations),
3359 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3360 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3361 #ifdef CONFIG_PROC_PAGE_MONITOR
3362 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3363 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3364 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3365 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3366 #endif
3367 #ifdef CONFIG_SECURITY
3368 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3369 #endif
3370 #ifdef CONFIG_KALLSYMS
3371 ONE("wchan", S_IRUGO, proc_pid_wchan),
3372 #endif
3373 #ifdef CONFIG_STACKTRACE
3374 ONE("stack", S_IRUSR, proc_pid_stack),
3375 #endif
3376 #ifdef CONFIG_SCHED_INFO
3377 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3378 #endif
3379 #ifdef CONFIG_LATENCYTOP
3380 REG("latency", S_IRUGO, proc_lstats_operations),
3381 #endif
3382 #ifdef CONFIG_PROC_PID_CPUSET
3383 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3384 #endif
3385 #ifdef CONFIG_CGROUPS
3386 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3387 #endif
3388 #ifdef CONFIG_PROC_CPU_RESCTRL
3389 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3390 #endif
3391 ONE("oom_score", S_IRUGO, proc_oom_score),
3392 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3393 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3394 #ifdef CONFIG_AUDIT
3395 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3396 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3397 #endif
3398 #ifdef CONFIG_FAULT_INJECTION
3399 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3400 REG("fail-nth", 0644, proc_fail_nth_operations),
3401 #endif
3402 #ifdef CONFIG_ELF_CORE
3403 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3404 #endif
3405 #ifdef CONFIG_TASK_IO_ACCOUNTING
3406 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3407 #endif
3408 #ifdef CONFIG_USER_NS
3409 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3410 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3411 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3412 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3413 #endif
3414 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3415 REG("timers", S_IRUGO, proc_timers_operations),
3416 #endif
3417 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3418 #ifdef CONFIG_LIVEPATCH
3419 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3420 #endif
3421 #ifdef CONFIG_STACKLEAK_METRICS
3422 ONE("stack_depth", S_IRUGO, proc_stack_depth),
3423 #endif
3424 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3425 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3426 #endif
3427 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3428 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3429 #endif
3430 #ifdef CONFIG_KSM
3431 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3432 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat),
3433 #endif
3434 };
3435
proc_tgid_base_readdir(struct file * file,struct dir_context * ctx)3436 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3437 {
3438 return proc_pident_readdir(file, ctx,
3439 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3440 }
3441
3442 static const struct file_operations proc_tgid_base_operations = {
3443 .read = generic_read_dir,
3444 .iterate_shared = proc_tgid_base_readdir,
3445 .llseek = generic_file_llseek,
3446 };
3447
tgid_pidfd_to_pid(const struct file * file)3448 struct pid *tgid_pidfd_to_pid(const struct file *file)
3449 {
3450 if (file->f_op != &proc_tgid_base_operations)
3451 return ERR_PTR(-EBADF);
3452
3453 return proc_pid(file_inode(file));
3454 }
3455
proc_tgid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3456 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3457 {
3458 return proc_pident_lookup(dir, dentry,
3459 tgid_base_stuff,
3460 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3461 }
3462
3463 static const struct inode_operations proc_tgid_base_inode_operations = {
3464 .lookup = proc_tgid_base_lookup,
3465 .getattr = pid_getattr,
3466 .setattr = proc_setattr,
3467 .permission = proc_pid_permission,
3468 };
3469
3470 /**
3471 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache.
3472 * @pid: pid that should be flushed.
3473 *
3474 * This function walks a list of inodes (that belong to any proc
3475 * filesystem) that are attached to the pid and flushes them from
3476 * the dentry cache.
3477 *
3478 * It is safe and reasonable to cache /proc entries for a task until
3479 * that task exits. After that they just clog up the dcache with
3480 * useless entries, possibly causing useful dcache entries to be
3481 * flushed instead. This routine is provided to flush those useless
3482 * dcache entries when a process is reaped.
3483 *
3484 * NOTE: This routine is just an optimization so it does not guarantee
3485 * that no dcache entries will exist after a process is reaped
3486 * it just makes it very unlikely that any will persist.
3487 */
3488
proc_flush_pid(struct pid * pid)3489 void proc_flush_pid(struct pid *pid)
3490 {
3491 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3492 }
3493
proc_pid_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3494 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3495 struct task_struct *task, const void *ptr)
3496 {
3497 struct inode *inode;
3498
3499 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3500 S_IFDIR | S_IRUGO | S_IXUGO);
3501 if (!inode)
3502 return ERR_PTR(-ENOENT);
3503
3504 inode->i_op = &proc_tgid_base_inode_operations;
3505 inode->i_fop = &proc_tgid_base_operations;
3506 inode->i_flags|=S_IMMUTABLE;
3507
3508 set_nlink(inode, nlink_tgid);
3509 pid_update_inode(task, inode);
3510
3511 d_set_d_op(dentry, &pid_dentry_operations);
3512 return d_splice_alias(inode, dentry);
3513 }
3514
proc_pid_lookup(struct dentry * dentry,unsigned int flags)3515 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3516 {
3517 struct task_struct *task;
3518 unsigned tgid;
3519 struct proc_fs_info *fs_info;
3520 struct pid_namespace *ns;
3521 struct dentry *result = ERR_PTR(-ENOENT);
3522
3523 tgid = name_to_int(&dentry->d_name);
3524 if (tgid == ~0U)
3525 goto out;
3526
3527 fs_info = proc_sb_info(dentry->d_sb);
3528 ns = fs_info->pid_ns;
3529 rcu_read_lock();
3530 task = find_task_by_pid_ns(tgid, ns);
3531 if (task)
3532 get_task_struct(task);
3533 rcu_read_unlock();
3534 if (!task)
3535 goto out;
3536
3537 /* Limit procfs to only ptraceable tasks */
3538 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3539 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3540 goto out_put_task;
3541 }
3542
3543 result = proc_pid_instantiate(dentry, task, NULL);
3544 out_put_task:
3545 put_task_struct(task);
3546 out:
3547 return result;
3548 }
3549
3550 /*
3551 * Find the first task with tgid >= tgid
3552 *
3553 */
3554 struct tgid_iter {
3555 unsigned int tgid;
3556 struct task_struct *task;
3557 };
next_tgid(struct pid_namespace * ns,struct tgid_iter iter)3558 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3559 {
3560 struct pid *pid;
3561
3562 if (iter.task)
3563 put_task_struct(iter.task);
3564 rcu_read_lock();
3565 retry:
3566 iter.task = NULL;
3567 pid = find_ge_pid(iter.tgid, ns);
3568 if (pid) {
3569 iter.tgid = pid_nr_ns(pid, ns);
3570 iter.task = pid_task(pid, PIDTYPE_TGID);
3571 if (!iter.task) {
3572 iter.tgid += 1;
3573 goto retry;
3574 }
3575 get_task_struct(iter.task);
3576 }
3577 rcu_read_unlock();
3578 return iter;
3579 }
3580
3581 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3582
3583 /* for the /proc/ directory itself, after non-process stuff has been done */
proc_pid_readdir(struct file * file,struct dir_context * ctx)3584 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3585 {
3586 struct tgid_iter iter;
3587 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3588 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3589 loff_t pos = ctx->pos;
3590
3591 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3592 return 0;
3593
3594 if (pos == TGID_OFFSET - 2) {
3595 struct inode *inode = d_inode(fs_info->proc_self);
3596 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3597 return 0;
3598 ctx->pos = pos = pos + 1;
3599 }
3600 if (pos == TGID_OFFSET - 1) {
3601 struct inode *inode = d_inode(fs_info->proc_thread_self);
3602 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3603 return 0;
3604 ctx->pos = pos = pos + 1;
3605 }
3606 iter.tgid = pos - TGID_OFFSET;
3607 iter.task = NULL;
3608 for (iter = next_tgid(ns, iter);
3609 iter.task;
3610 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3611 char name[10 + 1];
3612 unsigned int len;
3613
3614 cond_resched();
3615 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3616 continue;
3617
3618 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3619 ctx->pos = iter.tgid + TGID_OFFSET;
3620 if (!proc_fill_cache(file, ctx, name, len,
3621 proc_pid_instantiate, iter.task, NULL)) {
3622 put_task_struct(iter.task);
3623 return 0;
3624 }
3625 }
3626 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3627 return 0;
3628 }
3629
3630 /*
3631 * proc_tid_comm_permission is a special permission function exclusively
3632 * used for the node /proc/<pid>/task/<tid>/comm.
3633 * It bypasses generic permission checks in the case where a task of the same
3634 * task group attempts to access the node.
3635 * The rationale behind this is that glibc and bionic access this node for
3636 * cross thread naming (pthread_set/getname_np(!self)). However, if
3637 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3638 * which locks out the cross thread naming implementation.
3639 * This function makes sure that the node is always accessible for members of
3640 * same thread group.
3641 */
proc_tid_comm_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)3642 static int proc_tid_comm_permission(struct mnt_idmap *idmap,
3643 struct inode *inode, int mask)
3644 {
3645 bool is_same_tgroup;
3646 struct task_struct *task;
3647
3648 task = get_proc_task(inode);
3649 if (!task)
3650 return -ESRCH;
3651 is_same_tgroup = same_thread_group(current, task);
3652 put_task_struct(task);
3653
3654 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3655 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3656 * read or written by the members of the corresponding
3657 * thread group.
3658 */
3659 return 0;
3660 }
3661
3662 return generic_permission(&nop_mnt_idmap, inode, mask);
3663 }
3664
3665 static const struct inode_operations proc_tid_comm_inode_operations = {
3666 .setattr = proc_setattr,
3667 .permission = proc_tid_comm_permission,
3668 };
3669
3670 /*
3671 * Tasks
3672 */
3673 static const struct pid_entry tid_base_stuff[] = {
3674 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3675 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3676 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3677 #ifdef CONFIG_NET
3678 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3679 #endif
3680 REG("environ", S_IRUSR, proc_environ_operations),
3681 REG("auxv", S_IRUSR, proc_auxv_operations),
3682 ONE("status", S_IRUGO, proc_pid_status),
3683 ONE("personality", S_IRUSR, proc_pid_personality),
3684 ONE("limits", S_IRUGO, proc_pid_limits),
3685 #ifdef CONFIG_SCHED_DEBUG
3686 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3687 #endif
3688 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3689 &proc_tid_comm_inode_operations,
3690 &proc_pid_set_comm_operations, {}),
3691 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3692 ONE("syscall", S_IRUSR, proc_pid_syscall),
3693 #endif
3694 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3695 ONE("stat", S_IRUGO, proc_tid_stat),
3696 ONE("statm", S_IRUGO, proc_pid_statm),
3697 REG("maps", S_IRUGO, proc_pid_maps_operations),
3698 #ifdef CONFIG_PROC_CHILDREN
3699 REG("children", S_IRUGO, proc_tid_children_operations),
3700 #endif
3701 #ifdef CONFIG_NUMA
3702 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3703 #endif
3704 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3705 LNK("cwd", proc_cwd_link),
3706 LNK("root", proc_root_link),
3707 LNK("exe", proc_exe_link),
3708 REG("mounts", S_IRUGO, proc_mounts_operations),
3709 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3710 #ifdef CONFIG_PROC_PAGE_MONITOR
3711 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3712 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3713 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3714 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3715 #endif
3716 #ifdef CONFIG_SECURITY
3717 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3718 #endif
3719 #ifdef CONFIG_KALLSYMS
3720 ONE("wchan", S_IRUGO, proc_pid_wchan),
3721 #endif
3722 #ifdef CONFIG_STACKTRACE
3723 ONE("stack", S_IRUSR, proc_pid_stack),
3724 #endif
3725 #ifdef CONFIG_SCHED_INFO
3726 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3727 #endif
3728 #ifdef CONFIG_LATENCYTOP
3729 REG("latency", S_IRUGO, proc_lstats_operations),
3730 #endif
3731 #ifdef CONFIG_PROC_PID_CPUSET
3732 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3733 #endif
3734 #ifdef CONFIG_CGROUPS
3735 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3736 #endif
3737 #ifdef CONFIG_PROC_CPU_RESCTRL
3738 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3739 #endif
3740 ONE("oom_score", S_IRUGO, proc_oom_score),
3741 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3742 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3743 #ifdef CONFIG_AUDIT
3744 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3745 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3746 #endif
3747 #ifdef CONFIG_FAULT_INJECTION
3748 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3749 REG("fail-nth", 0644, proc_fail_nth_operations),
3750 #endif
3751 #ifdef CONFIG_TASK_IO_ACCOUNTING
3752 ONE("io", S_IRUSR, proc_tid_io_accounting),
3753 #endif
3754 #ifdef CONFIG_USER_NS
3755 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3756 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3757 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3758 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3759 #endif
3760 #ifdef CONFIG_LIVEPATCH
3761 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3762 #endif
3763 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3764 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3765 #endif
3766 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3767 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3768 #endif
3769 #ifdef CONFIG_KSM
3770 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3771 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat),
3772 #endif
3773 };
3774
proc_tid_base_readdir(struct file * file,struct dir_context * ctx)3775 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3776 {
3777 return proc_pident_readdir(file, ctx,
3778 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3779 }
3780
proc_tid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3781 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3782 {
3783 return proc_pident_lookup(dir, dentry,
3784 tid_base_stuff,
3785 tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3786 }
3787
3788 static const struct file_operations proc_tid_base_operations = {
3789 .read = generic_read_dir,
3790 .iterate_shared = proc_tid_base_readdir,
3791 .llseek = generic_file_llseek,
3792 };
3793
3794 static const struct inode_operations proc_tid_base_inode_operations = {
3795 .lookup = proc_tid_base_lookup,
3796 .getattr = pid_getattr,
3797 .setattr = proc_setattr,
3798 };
3799
proc_task_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3800 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3801 struct task_struct *task, const void *ptr)
3802 {
3803 struct inode *inode;
3804 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3805 S_IFDIR | S_IRUGO | S_IXUGO);
3806 if (!inode)
3807 return ERR_PTR(-ENOENT);
3808
3809 inode->i_op = &proc_tid_base_inode_operations;
3810 inode->i_fop = &proc_tid_base_operations;
3811 inode->i_flags |= S_IMMUTABLE;
3812
3813 set_nlink(inode, nlink_tid);
3814 pid_update_inode(task, inode);
3815
3816 d_set_d_op(dentry, &pid_dentry_operations);
3817 return d_splice_alias(inode, dentry);
3818 }
3819
proc_task_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3820 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3821 {
3822 struct task_struct *task;
3823 struct task_struct *leader = get_proc_task(dir);
3824 unsigned tid;
3825 struct proc_fs_info *fs_info;
3826 struct pid_namespace *ns;
3827 struct dentry *result = ERR_PTR(-ENOENT);
3828
3829 if (!leader)
3830 goto out_no_task;
3831
3832 tid = name_to_int(&dentry->d_name);
3833 if (tid == ~0U)
3834 goto out;
3835
3836 fs_info = proc_sb_info(dentry->d_sb);
3837 ns = fs_info->pid_ns;
3838 rcu_read_lock();
3839 task = find_task_by_pid_ns(tid, ns);
3840 if (task)
3841 get_task_struct(task);
3842 rcu_read_unlock();
3843 if (!task)
3844 goto out;
3845 if (!same_thread_group(leader, task))
3846 goto out_drop_task;
3847
3848 result = proc_task_instantiate(dentry, task, NULL);
3849 out_drop_task:
3850 put_task_struct(task);
3851 out:
3852 put_task_struct(leader);
3853 out_no_task:
3854 return result;
3855 }
3856
3857 /*
3858 * Find the first tid of a thread group to return to user space.
3859 *
3860 * Usually this is just the thread group leader, but if the users
3861 * buffer was too small or there was a seek into the middle of the
3862 * directory we have more work todo.
3863 *
3864 * In the case of a short read we start with find_task_by_pid.
3865 *
3866 * In the case of a seek we start with the leader and walk nr
3867 * threads past it.
3868 */
first_tid(struct pid * pid,int tid,loff_t f_pos,struct pid_namespace * ns)3869 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3870 struct pid_namespace *ns)
3871 {
3872 struct task_struct *pos, *task;
3873 unsigned long nr = f_pos;
3874
3875 if (nr != f_pos) /* 32bit overflow? */
3876 return NULL;
3877
3878 rcu_read_lock();
3879 task = pid_task(pid, PIDTYPE_PID);
3880 if (!task)
3881 goto fail;
3882
3883 /* Attempt to start with the tid of a thread */
3884 if (tid && nr) {
3885 pos = find_task_by_pid_ns(tid, ns);
3886 if (pos && same_thread_group(pos, task))
3887 goto found;
3888 }
3889
3890 /* If nr exceeds the number of threads there is nothing todo */
3891 if (nr >= get_nr_threads(task))
3892 goto fail;
3893
3894 /* If we haven't found our starting place yet start
3895 * with the leader and walk nr threads forward.
3896 */
3897 for_each_thread(task, pos) {
3898 if (!nr--)
3899 goto found;
3900 }
3901 fail:
3902 pos = NULL;
3903 goto out;
3904 found:
3905 get_task_struct(pos);
3906 out:
3907 rcu_read_unlock();
3908 return pos;
3909 }
3910
3911 /*
3912 * Find the next thread in the thread list.
3913 * Return NULL if there is an error or no next thread.
3914 *
3915 * The reference to the input task_struct is released.
3916 */
next_tid(struct task_struct * start)3917 static struct task_struct *next_tid(struct task_struct *start)
3918 {
3919 struct task_struct *pos = NULL;
3920 rcu_read_lock();
3921 if (pid_alive(start)) {
3922 pos = __next_thread(start);
3923 if (pos)
3924 get_task_struct(pos);
3925 }
3926 rcu_read_unlock();
3927 put_task_struct(start);
3928 return pos;
3929 }
3930
3931 /* for the /proc/TGID/task/ directories */
proc_task_readdir(struct file * file,struct dir_context * ctx)3932 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3933 {
3934 struct inode *inode = file_inode(file);
3935 struct task_struct *task;
3936 struct pid_namespace *ns;
3937 int tid;
3938
3939 if (proc_inode_is_dead(inode))
3940 return -ENOENT;
3941
3942 if (!dir_emit_dots(file, ctx))
3943 return 0;
3944
3945 /* We cache the tgid value that the last readdir call couldn't
3946 * return and lseek resets it to 0.
3947 */
3948 ns = proc_pid_ns(inode->i_sb);
3949 tid = (int)(intptr_t)file->private_data;
3950 file->private_data = NULL;
3951 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3952 task;
3953 task = next_tid(task), ctx->pos++) {
3954 char name[10 + 1];
3955 unsigned int len;
3956
3957 tid = task_pid_nr_ns(task, ns);
3958 if (!tid)
3959 continue; /* The task has just exited. */
3960 len = snprintf(name, sizeof(name), "%u", tid);
3961 if (!proc_fill_cache(file, ctx, name, len,
3962 proc_task_instantiate, task, NULL)) {
3963 /* returning this tgid failed, save it as the first
3964 * pid for the next readir call */
3965 file->private_data = (void *)(intptr_t)tid;
3966 put_task_struct(task);
3967 break;
3968 }
3969 }
3970
3971 return 0;
3972 }
3973
proc_task_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)3974 static int proc_task_getattr(struct mnt_idmap *idmap,
3975 const struct path *path, struct kstat *stat,
3976 u32 request_mask, unsigned int query_flags)
3977 {
3978 struct inode *inode = d_inode(path->dentry);
3979 struct task_struct *p = get_proc_task(inode);
3980 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
3981
3982 if (p) {
3983 stat->nlink += get_nr_threads(p);
3984 put_task_struct(p);
3985 }
3986
3987 return 0;
3988 }
3989
3990 /*
3991 * proc_task_readdir() set @file->private_data to a positive integer
3992 * value, so casting that to u64 is safe. generic_llseek_cookie() will
3993 * set @cookie to 0, so casting to an int is safe. The WARN_ON_ONCE() is
3994 * here to catch any unexpected change in behavior either in
3995 * proc_task_readdir() or generic_llseek_cookie().
3996 */
proc_dir_llseek(struct file * file,loff_t offset,int whence)3997 static loff_t proc_dir_llseek(struct file *file, loff_t offset, int whence)
3998 {
3999 u64 cookie = (u64)(intptr_t)file->private_data;
4000 loff_t off;
4001
4002 off = generic_llseek_cookie(file, offset, whence, &cookie);
4003 WARN_ON_ONCE(cookie > INT_MAX);
4004 file->private_data = (void *)(intptr_t)cookie; /* serialized by f_pos_lock */
4005 return off;
4006 }
4007
4008 static const struct inode_operations proc_task_inode_operations = {
4009 .lookup = proc_task_lookup,
4010 .getattr = proc_task_getattr,
4011 .setattr = proc_setattr,
4012 .permission = proc_pid_permission,
4013 };
4014
4015 static const struct file_operations proc_task_operations = {
4016 .read = generic_read_dir,
4017 .iterate_shared = proc_task_readdir,
4018 .llseek = proc_dir_llseek,
4019 };
4020
set_proc_pid_nlink(void)4021 void __init set_proc_pid_nlink(void)
4022 {
4023 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
4024 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
4025 }
4026