1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) International Business Machines Corp., 2000-2004
4 * Portions Copyright (C) Christoph Hellwig, 2001-2002
5 */
6
7 /*
8 * jfs_logmgr.c: log manager
9 *
10 * for related information, see transaction manager (jfs_txnmgr.c), and
11 * recovery manager (jfs_logredo.c).
12 *
13 * note: for detail, RTFS.
14 *
15 * log buffer manager:
16 * special purpose buffer manager supporting log i/o requirements.
17 * per log serial pageout of logpage
18 * queuing i/o requests and redrive i/o at iodone
19 * maintain current logpage buffer
20 * no caching since append only
21 * appropriate jfs buffer cache buffers as needed
22 *
23 * group commit:
24 * transactions which wrote COMMIT records in the same in-memory
25 * log page during the pageout of previous/current log page(s) are
26 * committed together by the pageout of the page.
27 *
28 * TBD lazy commit:
29 * transactions are committed asynchronously when the log page
30 * containing it COMMIT is paged out when it becomes full;
31 *
32 * serialization:
33 * . a per log lock serialize log write.
34 * . a per log lock serialize group commit.
35 * . a per log lock serialize log open/close;
36 *
37 * TBD log integrity:
38 * careful-write (ping-pong) of last logpage to recover from crash
39 * in overwrite.
40 * detection of split (out-of-order) write of physical sectors
41 * of last logpage via timestamp at end of each sector
42 * with its mirror data array at trailer).
43 *
44 * alternatives:
45 * lsn - 64-bit monotonically increasing integer vs
46 * 32-bit lspn and page eor.
47 */
48
49 #include <linux/fs.h>
50 #include <linux/blkdev.h>
51 #include <linux/interrupt.h>
52 #include <linux/completion.h>
53 #include <linux/kthread.h>
54 #include <linux/buffer_head.h> /* for sync_blockdev() */
55 #include <linux/bio.h>
56 #include <linux/freezer.h>
57 #include <linux/export.h>
58 #include <linux/delay.h>
59 #include <linux/mutex.h>
60 #include <linux/seq_file.h>
61 #include <linux/slab.h>
62 #include "jfs_incore.h"
63 #include "jfs_filsys.h"
64 #include "jfs_metapage.h"
65 #include "jfs_superblock.h"
66 #include "jfs_txnmgr.h"
67 #include "jfs_debug.h"
68
69
70 /*
71 * lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread)
72 */
73 static struct lbuf *log_redrive_list;
74 static DEFINE_SPINLOCK(log_redrive_lock);
75
76
77 /*
78 * log read/write serialization (per log)
79 */
80 #define LOG_LOCK_INIT(log) mutex_init(&(log)->loglock)
81 #define LOG_LOCK(log) mutex_lock(&((log)->loglock))
82 #define LOG_UNLOCK(log) mutex_unlock(&((log)->loglock))
83
84
85 /*
86 * log group commit serialization (per log)
87 */
88
89 #define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock)
90 #define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock)
91 #define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock)
92 #define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait)
93
94 /*
95 * log sync serialization (per log)
96 */
97 #define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE)
98 #define LOGSYNC_BARRIER(logsize) ((logsize)/4)
99 /*
100 #define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE)
101 #define LOGSYNC_BARRIER(logsize) ((logsize)/2)
102 */
103
104
105 /*
106 * log buffer cache synchronization
107 */
108 static DEFINE_SPINLOCK(jfsLCacheLock);
109
110 #define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags)
111 #define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags)
112
113 /*
114 * See __SLEEP_COND in jfs_locks.h
115 */
116 #define LCACHE_SLEEP_COND(wq, cond, flags) \
117 do { \
118 if (cond) \
119 break; \
120 __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \
121 } while (0)
122
123 #define LCACHE_WAKEUP(event) wake_up(event)
124
125
126 /*
127 * lbuf buffer cache (lCache) control
128 */
129 /* log buffer manager pageout control (cumulative, inclusive) */
130 #define lbmREAD 0x0001
131 #define lbmWRITE 0x0002 /* enqueue at tail of write queue;
132 * init pageout if at head of queue;
133 */
134 #define lbmRELEASE 0x0004 /* remove from write queue
135 * at completion of pageout;
136 * do not free/recycle it yet:
137 * caller will free it;
138 */
139 #define lbmSYNC 0x0008 /* do not return to freelist
140 * when removed from write queue;
141 */
142 #define lbmFREE 0x0010 /* return to freelist
143 * at completion of pageout;
144 * the buffer may be recycled;
145 */
146 #define lbmDONE 0x0020
147 #define lbmERROR 0x0040
148 #define lbmGC 0x0080 /* lbmIODone to perform post-GC processing
149 * of log page
150 */
151 #define lbmDIRECT 0x0100
152
153 /*
154 * Global list of active external journals
155 */
156 static LIST_HEAD(jfs_external_logs);
157 static struct jfs_log *dummy_log;
158 static DEFINE_MUTEX(jfs_log_mutex);
159
160 /*
161 * forward references
162 */
163 static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk,
164 struct lrd * lrd, struct tlock * tlck);
165
166 static int lmNextPage(struct jfs_log * log);
167 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
168 int activate);
169
170 static int open_inline_log(struct super_block *sb);
171 static int open_dummy_log(struct super_block *sb);
172 static int lbmLogInit(struct jfs_log * log);
173 static void lbmLogShutdown(struct jfs_log * log);
174 static struct lbuf *lbmAllocate(struct jfs_log * log, int);
175 static void lbmFree(struct lbuf * bp);
176 static void lbmfree(struct lbuf * bp);
177 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp);
178 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block);
179 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag);
180 static int lbmIOWait(struct lbuf * bp, int flag);
181 static bio_end_io_t lbmIODone;
182 static void lbmStartIO(struct lbuf * bp);
183 static void lmGCwrite(struct jfs_log * log, int cant_block);
184 static int lmLogSync(struct jfs_log * log, int hard_sync);
185
186
187
188 /*
189 * statistics
190 */
191 #ifdef CONFIG_JFS_STATISTICS
192 static struct lmStat {
193 uint commit; /* # of commit */
194 uint pagedone; /* # of page written */
195 uint submitted; /* # of pages submitted */
196 uint full_page; /* # of full pages submitted */
197 uint partial_page; /* # of partial pages submitted */
198 } lmStat;
199 #endif
200
write_special_inodes(struct jfs_log * log,int (* writer)(struct address_space *))201 static void write_special_inodes(struct jfs_log *log,
202 int (*writer)(struct address_space *))
203 {
204 struct jfs_sb_info *sbi;
205
206 list_for_each_entry(sbi, &log->sb_list, log_list) {
207 writer(sbi->ipbmap->i_mapping);
208 writer(sbi->ipimap->i_mapping);
209 writer(sbi->direct_inode->i_mapping);
210 }
211 }
212
213 /*
214 * NAME: lmLog()
215 *
216 * FUNCTION: write a log record;
217 *
218 * PARAMETER:
219 *
220 * RETURN: lsn - offset to the next log record to write (end-of-log);
221 * -1 - error;
222 *
223 * note: todo: log error handler
224 */
lmLog(struct jfs_log * log,struct tblock * tblk,struct lrd * lrd,struct tlock * tlck)225 int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
226 struct tlock * tlck)
227 {
228 int lsn;
229 int diffp, difft;
230 struct metapage *mp = NULL;
231 unsigned long flags;
232
233 jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p",
234 log, tblk, lrd, tlck);
235
236 LOG_LOCK(log);
237
238 /* log by (out-of-transaction) JFS ? */
239 if (tblk == NULL)
240 goto writeRecord;
241
242 /* log from page ? */
243 if (tlck == NULL ||
244 tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL)
245 goto writeRecord;
246
247 /*
248 * initialize/update page/transaction recovery lsn
249 */
250 lsn = log->lsn;
251
252 LOGSYNC_LOCK(log, flags);
253
254 /*
255 * initialize page lsn if first log write of the page
256 */
257 if (mp->lsn == 0) {
258 mp->log = log;
259 mp->lsn = lsn;
260 log->count++;
261
262 /* insert page at tail of logsynclist */
263 list_add_tail(&mp->synclist, &log->synclist);
264 }
265
266 /*
267 * initialize/update lsn of tblock of the page
268 *
269 * transaction inherits oldest lsn of pages associated
270 * with allocation/deallocation of resources (their
271 * log records are used to reconstruct allocation map
272 * at recovery time: inode for inode allocation map,
273 * B+-tree index of extent descriptors for block
274 * allocation map);
275 * allocation map pages inherit transaction lsn at
276 * commit time to allow forwarding log syncpt past log
277 * records associated with allocation/deallocation of
278 * resources only after persistent map of these map pages
279 * have been updated and propagated to home.
280 */
281 /*
282 * initialize transaction lsn:
283 */
284 if (tblk->lsn == 0) {
285 /* inherit lsn of its first page logged */
286 tblk->lsn = mp->lsn;
287 log->count++;
288
289 /* insert tblock after the page on logsynclist */
290 list_add(&tblk->synclist, &mp->synclist);
291 }
292 /*
293 * update transaction lsn:
294 */
295 else {
296 /* inherit oldest/smallest lsn of page */
297 logdiff(diffp, mp->lsn, log);
298 logdiff(difft, tblk->lsn, log);
299 if (diffp < difft) {
300 /* update tblock lsn with page lsn */
301 tblk->lsn = mp->lsn;
302
303 /* move tblock after page on logsynclist */
304 list_move(&tblk->synclist, &mp->synclist);
305 }
306 }
307
308 LOGSYNC_UNLOCK(log, flags);
309
310 /*
311 * write the log record
312 */
313 writeRecord:
314 lsn = lmWriteRecord(log, tblk, lrd, tlck);
315
316 /*
317 * forward log syncpt if log reached next syncpt trigger
318 */
319 logdiff(diffp, lsn, log);
320 if (diffp >= log->nextsync)
321 lsn = lmLogSync(log, 0);
322
323 /* update end-of-log lsn */
324 log->lsn = lsn;
325
326 LOG_UNLOCK(log);
327
328 /* return end-of-log address */
329 return lsn;
330 }
331
332 /*
333 * NAME: lmWriteRecord()
334 *
335 * FUNCTION: move the log record to current log page
336 *
337 * PARAMETER: cd - commit descriptor
338 *
339 * RETURN: end-of-log address
340 *
341 * serialization: LOG_LOCK() held on entry/exit
342 */
343 static int
lmWriteRecord(struct jfs_log * log,struct tblock * tblk,struct lrd * lrd,struct tlock * tlck)344 lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
345 struct tlock * tlck)
346 {
347 int lsn = 0; /* end-of-log address */
348 struct lbuf *bp; /* dst log page buffer */
349 struct logpage *lp; /* dst log page */
350 caddr_t dst; /* destination address in log page */
351 int dstoffset; /* end-of-log offset in log page */
352 int freespace; /* free space in log page */
353 caddr_t p; /* src meta-data page */
354 caddr_t src;
355 int srclen;
356 int nbytes; /* number of bytes to move */
357 int i;
358 int len;
359 struct linelock *linelock;
360 struct lv *lv;
361 struct lvd *lvd;
362 int l2linesize;
363
364 len = 0;
365
366 /* retrieve destination log page to write */
367 bp = (struct lbuf *) log->bp;
368 lp = (struct logpage *) bp->l_ldata;
369 dstoffset = log->eor;
370
371 /* any log data to write ? */
372 if (tlck == NULL)
373 goto moveLrd;
374
375 /*
376 * move log record data
377 */
378 /* retrieve source meta-data page to log */
379 if (tlck->flag & tlckPAGELOCK) {
380 p = (caddr_t) (tlck->mp->data);
381 linelock = (struct linelock *) & tlck->lock;
382 }
383 /* retrieve source in-memory inode to log */
384 else if (tlck->flag & tlckINODELOCK) {
385 if (tlck->type & tlckDTREE)
386 p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot;
387 else
388 p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot;
389 linelock = (struct linelock *) & tlck->lock;
390 }
391 else {
392 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck);
393 return 0; /* Probably should trap */
394 }
395 l2linesize = linelock->l2linesize;
396
397 moveData:
398 ASSERT(linelock->index <= linelock->maxcnt);
399
400 lv = linelock->lv;
401 for (i = 0; i < linelock->index; i++, lv++) {
402 if (lv->length == 0)
403 continue;
404
405 /* is page full ? */
406 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) {
407 /* page become full: move on to next page */
408 lmNextPage(log);
409
410 bp = log->bp;
411 lp = (struct logpage *) bp->l_ldata;
412 dstoffset = LOGPHDRSIZE;
413 }
414
415 /*
416 * move log vector data
417 */
418 src = (u8 *) p + (lv->offset << l2linesize);
419 srclen = lv->length << l2linesize;
420 len += srclen;
421 while (srclen > 0) {
422 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
423 nbytes = min(freespace, srclen);
424 dst = (caddr_t) lp + dstoffset;
425 memcpy(dst, src, nbytes);
426 dstoffset += nbytes;
427
428 /* is page not full ? */
429 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
430 break;
431
432 /* page become full: move on to next page */
433 lmNextPage(log);
434
435 bp = (struct lbuf *) log->bp;
436 lp = (struct logpage *) bp->l_ldata;
437 dstoffset = LOGPHDRSIZE;
438
439 srclen -= nbytes;
440 src += nbytes;
441 }
442
443 /*
444 * move log vector descriptor
445 */
446 len += 4;
447 lvd = (struct lvd *) ((caddr_t) lp + dstoffset);
448 lvd->offset = cpu_to_le16(lv->offset);
449 lvd->length = cpu_to_le16(lv->length);
450 dstoffset += 4;
451 jfs_info("lmWriteRecord: lv offset:%d length:%d",
452 lv->offset, lv->length);
453 }
454
455 if ((i = linelock->next)) {
456 linelock = (struct linelock *) lid_to_tlock(i);
457 goto moveData;
458 }
459
460 /*
461 * move log record descriptor
462 */
463 moveLrd:
464 lrd->length = cpu_to_le16(len);
465
466 src = (caddr_t) lrd;
467 srclen = LOGRDSIZE;
468
469 while (srclen > 0) {
470 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
471 nbytes = min(freespace, srclen);
472 dst = (caddr_t) lp + dstoffset;
473 memcpy(dst, src, nbytes);
474
475 dstoffset += nbytes;
476 srclen -= nbytes;
477
478 /* are there more to move than freespace of page ? */
479 if (srclen)
480 goto pageFull;
481
482 /*
483 * end of log record descriptor
484 */
485
486 /* update last log record eor */
487 log->eor = dstoffset;
488 bp->l_eor = dstoffset;
489 lsn = (log->page << L2LOGPSIZE) + dstoffset;
490
491 if (lrd->type & cpu_to_le16(LOG_COMMIT)) {
492 tblk->clsn = lsn;
493 jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn,
494 bp->l_eor);
495
496 INCREMENT(lmStat.commit); /* # of commit */
497
498 /*
499 * enqueue tblock for group commit:
500 *
501 * enqueue tblock of non-trivial/synchronous COMMIT
502 * at tail of group commit queue
503 * (trivial/asynchronous COMMITs are ignored by
504 * group commit.)
505 */
506 LOGGC_LOCK(log);
507
508 /* init tblock gc state */
509 tblk->flag = tblkGC_QUEUE;
510 tblk->bp = log->bp;
511 tblk->pn = log->page;
512 tblk->eor = log->eor;
513
514 /* enqueue transaction to commit queue */
515 list_add_tail(&tblk->cqueue, &log->cqueue);
516
517 LOGGC_UNLOCK(log);
518 }
519
520 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x",
521 le16_to_cpu(lrd->type), log->bp, log->page, dstoffset);
522
523 /* page not full ? */
524 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
525 return lsn;
526
527 pageFull:
528 /* page become full: move on to next page */
529 lmNextPage(log);
530
531 bp = (struct lbuf *) log->bp;
532 lp = (struct logpage *) bp->l_ldata;
533 dstoffset = LOGPHDRSIZE;
534 src += nbytes;
535 }
536
537 return lsn;
538 }
539
540
541 /*
542 * NAME: lmNextPage()
543 *
544 * FUNCTION: write current page and allocate next page.
545 *
546 * PARAMETER: log
547 *
548 * RETURN: 0
549 *
550 * serialization: LOG_LOCK() held on entry/exit
551 */
lmNextPage(struct jfs_log * log)552 static int lmNextPage(struct jfs_log * log)
553 {
554 struct logpage *lp;
555 int lspn; /* log sequence page number */
556 int pn; /* current page number */
557 struct lbuf *bp;
558 struct lbuf *nextbp;
559 struct tblock *tblk;
560
561 /* get current log page number and log sequence page number */
562 pn = log->page;
563 bp = log->bp;
564 lp = (struct logpage *) bp->l_ldata;
565 lspn = le32_to_cpu(lp->h.page);
566
567 LOGGC_LOCK(log);
568
569 /*
570 * write or queue the full page at the tail of write queue
571 */
572 /* get the tail tblk on commit queue */
573 if (list_empty(&log->cqueue))
574 tblk = NULL;
575 else
576 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue);
577
578 /* every tblk who has COMMIT record on the current page,
579 * and has not been committed, must be on commit queue
580 * since tblk is queued at commit queueu at the time
581 * of writing its COMMIT record on the page before
582 * page becomes full (even though the tblk thread
583 * who wrote COMMIT record may have been suspended
584 * currently);
585 */
586
587 /* is page bound with outstanding tail tblk ? */
588 if (tblk && tblk->pn == pn) {
589 /* mark tblk for end-of-page */
590 tblk->flag |= tblkGC_EOP;
591
592 if (log->cflag & logGC_PAGEOUT) {
593 /* if page is not already on write queue,
594 * just enqueue (no lbmWRITE to prevent redrive)
595 * buffer to wqueue to ensure correct serial order
596 * of the pages since log pages will be added
597 * continuously
598 */
599 if (bp->l_wqnext == NULL)
600 lbmWrite(log, bp, 0, 0);
601 } else {
602 /*
603 * No current GC leader, initiate group commit
604 */
605 log->cflag |= logGC_PAGEOUT;
606 lmGCwrite(log, 0);
607 }
608 }
609 /* page is not bound with outstanding tblk:
610 * init write or mark it to be redriven (lbmWRITE)
611 */
612 else {
613 /* finalize the page */
614 bp->l_ceor = bp->l_eor;
615 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
616 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0);
617 }
618 LOGGC_UNLOCK(log);
619
620 /*
621 * allocate/initialize next page
622 */
623 /* if log wraps, the first data page of log is 2
624 * (0 never used, 1 is superblock).
625 */
626 log->page = (pn == log->size - 1) ? 2 : pn + 1;
627 log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */
628
629 /* allocate/initialize next log page buffer */
630 nextbp = lbmAllocate(log, log->page);
631 nextbp->l_eor = log->eor;
632 log->bp = nextbp;
633
634 /* initialize next log page */
635 lp = (struct logpage *) nextbp->l_ldata;
636 lp->h.page = lp->t.page = cpu_to_le32(lspn + 1);
637 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
638
639 return 0;
640 }
641
642
643 /*
644 * NAME: lmGroupCommit()
645 *
646 * FUNCTION: group commit
647 * initiate pageout of the pages with COMMIT in the order of
648 * page number - redrive pageout of the page at the head of
649 * pageout queue until full page has been written.
650 *
651 * RETURN:
652 *
653 * NOTE:
654 * LOGGC_LOCK serializes log group commit queue, and
655 * transaction blocks on the commit queue.
656 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
657 */
lmGroupCommit(struct jfs_log * log,struct tblock * tblk)658 int lmGroupCommit(struct jfs_log * log, struct tblock * tblk)
659 {
660 int rc = 0;
661
662 LOGGC_LOCK(log);
663
664 /* group committed already ? */
665 if (tblk->flag & tblkGC_COMMITTED) {
666 if (tblk->flag & tblkGC_ERROR)
667 rc = -EIO;
668
669 LOGGC_UNLOCK(log);
670 return rc;
671 }
672 jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc);
673
674 if (tblk->xflag & COMMIT_LAZY)
675 tblk->flag |= tblkGC_LAZY;
676
677 if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) &&
678 (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag)
679 || jfs_tlocks_low)) {
680 /*
681 * No pageout in progress
682 *
683 * start group commit as its group leader.
684 */
685 log->cflag |= logGC_PAGEOUT;
686
687 lmGCwrite(log, 0);
688 }
689
690 if (tblk->xflag & COMMIT_LAZY) {
691 /*
692 * Lazy transactions can leave now
693 */
694 LOGGC_UNLOCK(log);
695 return 0;
696 }
697
698 /* lmGCwrite gives up LOGGC_LOCK, check again */
699
700 if (tblk->flag & tblkGC_COMMITTED) {
701 if (tblk->flag & tblkGC_ERROR)
702 rc = -EIO;
703
704 LOGGC_UNLOCK(log);
705 return rc;
706 }
707
708 /* upcount transaction waiting for completion
709 */
710 log->gcrtc++;
711 tblk->flag |= tblkGC_READY;
712
713 __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED),
714 LOGGC_LOCK(log), LOGGC_UNLOCK(log));
715
716 /* removed from commit queue */
717 if (tblk->flag & tblkGC_ERROR)
718 rc = -EIO;
719
720 LOGGC_UNLOCK(log);
721 return rc;
722 }
723
724 /*
725 * NAME: lmGCwrite()
726 *
727 * FUNCTION: group commit write
728 * initiate write of log page, building a group of all transactions
729 * with commit records on that page.
730 *
731 * RETURN: None
732 *
733 * NOTE:
734 * LOGGC_LOCK must be held by caller.
735 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
736 */
lmGCwrite(struct jfs_log * log,int cant_write)737 static void lmGCwrite(struct jfs_log * log, int cant_write)
738 {
739 struct lbuf *bp;
740 struct logpage *lp;
741 int gcpn; /* group commit page number */
742 struct tblock *tblk;
743 struct tblock *xtblk = NULL;
744
745 /*
746 * build the commit group of a log page
747 *
748 * scan commit queue and make a commit group of all
749 * transactions with COMMIT records on the same log page.
750 */
751 /* get the head tblk on the commit queue */
752 gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn;
753
754 list_for_each_entry(tblk, &log->cqueue, cqueue) {
755 if (tblk->pn != gcpn)
756 break;
757
758 xtblk = tblk;
759
760 /* state transition: (QUEUE, READY) -> COMMIT */
761 tblk->flag |= tblkGC_COMMIT;
762 }
763 tblk = xtblk; /* last tblk of the page */
764
765 /*
766 * pageout to commit transactions on the log page.
767 */
768 bp = (struct lbuf *) tblk->bp;
769 lp = (struct logpage *) bp->l_ldata;
770 /* is page already full ? */
771 if (tblk->flag & tblkGC_EOP) {
772 /* mark page to free at end of group commit of the page */
773 tblk->flag &= ~tblkGC_EOP;
774 tblk->flag |= tblkGC_FREE;
775 bp->l_ceor = bp->l_eor;
776 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
777 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC,
778 cant_write);
779 INCREMENT(lmStat.full_page);
780 }
781 /* page is not yet full */
782 else {
783 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */
784 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
785 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write);
786 INCREMENT(lmStat.partial_page);
787 }
788 }
789
790 /*
791 * NAME: lmPostGC()
792 *
793 * FUNCTION: group commit post-processing
794 * Processes transactions after their commit records have been written
795 * to disk, redriving log I/O if necessary.
796 *
797 * RETURN: None
798 *
799 * NOTE:
800 * This routine is called a interrupt time by lbmIODone
801 */
lmPostGC(struct lbuf * bp)802 static void lmPostGC(struct lbuf * bp)
803 {
804 unsigned long flags;
805 struct jfs_log *log = bp->l_log;
806 struct logpage *lp;
807 struct tblock *tblk, *temp;
808
809 //LOGGC_LOCK(log);
810 spin_lock_irqsave(&log->gclock, flags);
811 /*
812 * current pageout of group commit completed.
813 *
814 * remove/wakeup transactions from commit queue who were
815 * group committed with the current log page
816 */
817 list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) {
818 if (!(tblk->flag & tblkGC_COMMIT))
819 break;
820 /* if transaction was marked GC_COMMIT then
821 * it has been shipped in the current pageout
822 * and made it to disk - it is committed.
823 */
824
825 if (bp->l_flag & lbmERROR)
826 tblk->flag |= tblkGC_ERROR;
827
828 /* remove it from the commit queue */
829 list_del(&tblk->cqueue);
830 tblk->flag &= ~tblkGC_QUEUE;
831
832 if (tblk == log->flush_tblk) {
833 /* we can stop flushing the log now */
834 clear_bit(log_FLUSH, &log->flag);
835 log->flush_tblk = NULL;
836 }
837
838 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk,
839 tblk->flag);
840
841 if (!(tblk->xflag & COMMIT_FORCE))
842 /*
843 * Hand tblk over to lazy commit thread
844 */
845 txLazyUnlock(tblk);
846 else {
847 /* state transition: COMMIT -> COMMITTED */
848 tblk->flag |= tblkGC_COMMITTED;
849
850 if (tblk->flag & tblkGC_READY)
851 log->gcrtc--;
852
853 LOGGC_WAKEUP(tblk);
854 }
855
856 /* was page full before pageout ?
857 * (and this is the last tblk bound with the page)
858 */
859 if (tblk->flag & tblkGC_FREE)
860 lbmFree(bp);
861 /* did page become full after pageout ?
862 * (and this is the last tblk bound with the page)
863 */
864 else if (tblk->flag & tblkGC_EOP) {
865 /* finalize the page */
866 lp = (struct logpage *) bp->l_ldata;
867 bp->l_ceor = bp->l_eor;
868 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
869 jfs_info("lmPostGC: calling lbmWrite");
870 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE,
871 1);
872 }
873
874 }
875
876 /* are there any transactions who have entered lnGroupCommit()
877 * (whose COMMITs are after that of the last log page written.
878 * They are waiting for new group commit (above at (SLEEP 1))
879 * or lazy transactions are on a full (queued) log page,
880 * select the latest ready transaction as new group leader and
881 * wake her up to lead her group.
882 */
883 if ((!list_empty(&log->cqueue)) &&
884 ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) ||
885 test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low))
886 /*
887 * Call lmGCwrite with new group leader
888 */
889 lmGCwrite(log, 1);
890
891 /* no transaction are ready yet (transactions are only just
892 * queued (GC_QUEUE) and not entered for group commit yet).
893 * the first transaction entering group commit
894 * will elect herself as new group leader.
895 */
896 else
897 log->cflag &= ~logGC_PAGEOUT;
898
899 //LOGGC_UNLOCK(log);
900 spin_unlock_irqrestore(&log->gclock, flags);
901 return;
902 }
903
904 /*
905 * NAME: lmLogSync()
906 *
907 * FUNCTION: write log SYNCPT record for specified log
908 * if new sync address is available
909 * (normally the case if sync() is executed by back-ground
910 * process).
911 * calculate new value of i_nextsync which determines when
912 * this code is called again.
913 *
914 * PARAMETERS: log - log structure
915 * hard_sync - 1 to force all metadata to be written
916 *
917 * RETURN: 0
918 *
919 * serialization: LOG_LOCK() held on entry/exit
920 */
lmLogSync(struct jfs_log * log,int hard_sync)921 static int lmLogSync(struct jfs_log * log, int hard_sync)
922 {
923 int logsize;
924 int written; /* written since last syncpt */
925 int free; /* free space left available */
926 int delta; /* additional delta to write normally */
927 int more; /* additional write granted */
928 struct lrd lrd;
929 int lsn;
930 struct logsyncblk *lp;
931 unsigned long flags;
932
933 /* push dirty metapages out to disk */
934 if (hard_sync)
935 write_special_inodes(log, filemap_fdatawrite);
936 else
937 write_special_inodes(log, filemap_flush);
938
939 /*
940 * forward syncpt
941 */
942 /* if last sync is same as last syncpt,
943 * invoke sync point forward processing to update sync.
944 */
945
946 if (log->sync == log->syncpt) {
947 LOGSYNC_LOCK(log, flags);
948 if (list_empty(&log->synclist))
949 log->sync = log->lsn;
950 else {
951 lp = list_entry(log->synclist.next,
952 struct logsyncblk, synclist);
953 log->sync = lp->lsn;
954 }
955 LOGSYNC_UNLOCK(log, flags);
956
957 }
958
959 /* if sync is different from last syncpt,
960 * write a SYNCPT record with syncpt = sync.
961 * reset syncpt = sync
962 */
963 if (log->sync != log->syncpt) {
964 lrd.logtid = 0;
965 lrd.backchain = 0;
966 lrd.type = cpu_to_le16(LOG_SYNCPT);
967 lrd.length = 0;
968 lrd.log.syncpt.sync = cpu_to_le32(log->sync);
969 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
970
971 log->syncpt = log->sync;
972 } else
973 lsn = log->lsn;
974
975 /*
976 * setup next syncpt trigger (SWAG)
977 */
978 logsize = log->logsize;
979
980 logdiff(written, lsn, log);
981 free = logsize - written;
982 delta = LOGSYNC_DELTA(logsize);
983 more = min(free / 2, delta);
984 if (more < 2 * LOGPSIZE) {
985 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n");
986 /*
987 * log wrapping
988 *
989 * option 1 - panic ? No.!
990 * option 2 - shutdown file systems
991 * associated with log ?
992 * option 3 - extend log ?
993 * option 4 - second chance
994 *
995 * mark log wrapped, and continue.
996 * when all active transactions are completed,
997 * mark log valid for recovery.
998 * if crashed during invalid state, log state
999 * implies invalid log, forcing fsck().
1000 */
1001 /* mark log state log wrap in log superblock */
1002 /* log->state = LOGWRAP; */
1003
1004 /* reset sync point computation */
1005 log->syncpt = log->sync = lsn;
1006 log->nextsync = delta;
1007 } else
1008 /* next syncpt trigger = written + more */
1009 log->nextsync = written + more;
1010
1011 /* if number of bytes written from last sync point is more
1012 * than 1/4 of the log size, stop new transactions from
1013 * starting until all current transactions are completed
1014 * by setting syncbarrier flag.
1015 */
1016 if (!test_bit(log_SYNCBARRIER, &log->flag) &&
1017 (written > LOGSYNC_BARRIER(logsize)) && log->active) {
1018 set_bit(log_SYNCBARRIER, &log->flag);
1019 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn,
1020 log->syncpt);
1021 /*
1022 * We may have to initiate group commit
1023 */
1024 jfs_flush_journal(log, 0);
1025 }
1026
1027 return lsn;
1028 }
1029
1030 /*
1031 * NAME: jfs_syncpt
1032 *
1033 * FUNCTION: write log SYNCPT record for specified log
1034 *
1035 * PARAMETERS: log - log structure
1036 * hard_sync - set to 1 to force metadata to be written
1037 */
jfs_syncpt(struct jfs_log * log,int hard_sync)1038 void jfs_syncpt(struct jfs_log *log, int hard_sync)
1039 { LOG_LOCK(log);
1040 if (!test_bit(log_QUIESCE, &log->flag))
1041 lmLogSync(log, hard_sync);
1042 LOG_UNLOCK(log);
1043 }
1044
1045 /*
1046 * NAME: lmLogOpen()
1047 *
1048 * FUNCTION: open the log on first open;
1049 * insert filesystem in the active list of the log.
1050 *
1051 * PARAMETER: ipmnt - file system mount inode
1052 * iplog - log inode (out)
1053 *
1054 * RETURN:
1055 *
1056 * serialization:
1057 */
lmLogOpen(struct super_block * sb)1058 int lmLogOpen(struct super_block *sb)
1059 {
1060 int rc;
1061 struct file *bdev_file;
1062 struct jfs_log *log;
1063 struct jfs_sb_info *sbi = JFS_SBI(sb);
1064
1065 if (sbi->flag & JFS_NOINTEGRITY)
1066 return open_dummy_log(sb);
1067
1068 if (sbi->mntflag & JFS_INLINELOG)
1069 return open_inline_log(sb);
1070
1071 mutex_lock(&jfs_log_mutex);
1072 list_for_each_entry(log, &jfs_external_logs, journal_list) {
1073 if (file_bdev(log->bdev_file)->bd_dev == sbi->logdev) {
1074 if (!uuid_equal(&log->uuid, &sbi->loguuid)) {
1075 jfs_warn("wrong uuid on JFS journal");
1076 mutex_unlock(&jfs_log_mutex);
1077 return -EINVAL;
1078 }
1079 /*
1080 * add file system to log active file system list
1081 */
1082 if ((rc = lmLogFileSystem(log, sbi, 1))) {
1083 mutex_unlock(&jfs_log_mutex);
1084 return rc;
1085 }
1086 goto journal_found;
1087 }
1088 }
1089
1090 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) {
1091 mutex_unlock(&jfs_log_mutex);
1092 return -ENOMEM;
1093 }
1094 INIT_LIST_HEAD(&log->sb_list);
1095 init_waitqueue_head(&log->syncwait);
1096
1097 /*
1098 * external log as separate logical volume
1099 *
1100 * file systems to log may have n-to-1 relationship;
1101 */
1102
1103 bdev_file = bdev_file_open_by_dev(sbi->logdev,
1104 BLK_OPEN_READ | BLK_OPEN_WRITE, log, NULL);
1105 if (IS_ERR(bdev_file)) {
1106 rc = PTR_ERR(bdev_file);
1107 goto free;
1108 }
1109
1110 log->bdev_file = bdev_file;
1111 uuid_copy(&log->uuid, &sbi->loguuid);
1112
1113 /*
1114 * initialize log:
1115 */
1116 if ((rc = lmLogInit(log)))
1117 goto close;
1118
1119 list_add(&log->journal_list, &jfs_external_logs);
1120
1121 /*
1122 * add file system to log active file system list
1123 */
1124 if ((rc = lmLogFileSystem(log, sbi, 1)))
1125 goto shutdown;
1126
1127 journal_found:
1128 LOG_LOCK(log);
1129 list_add(&sbi->log_list, &log->sb_list);
1130 sbi->log = log;
1131 LOG_UNLOCK(log);
1132
1133 mutex_unlock(&jfs_log_mutex);
1134 return 0;
1135
1136 /*
1137 * unwind on error
1138 */
1139 shutdown: /* unwind lbmLogInit() */
1140 list_del(&log->journal_list);
1141 lbmLogShutdown(log);
1142
1143 close: /* close external log device */
1144 bdev_fput(bdev_file);
1145
1146 free: /* free log descriptor */
1147 mutex_unlock(&jfs_log_mutex);
1148 kfree(log);
1149
1150 jfs_warn("lmLogOpen: exit(%d)", rc);
1151 return rc;
1152 }
1153
open_inline_log(struct super_block * sb)1154 static int open_inline_log(struct super_block *sb)
1155 {
1156 struct jfs_log *log;
1157 int rc;
1158
1159 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL)))
1160 return -ENOMEM;
1161 INIT_LIST_HEAD(&log->sb_list);
1162 init_waitqueue_head(&log->syncwait);
1163
1164 set_bit(log_INLINELOG, &log->flag);
1165 log->bdev_file = sb->s_bdev_file;
1166 log->base = addressPXD(&JFS_SBI(sb)->logpxd);
1167 log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >>
1168 (L2LOGPSIZE - sb->s_blocksize_bits);
1169 log->l2bsize = sb->s_blocksize_bits;
1170 ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits);
1171
1172 /*
1173 * initialize log.
1174 */
1175 if ((rc = lmLogInit(log))) {
1176 kfree(log);
1177 jfs_warn("lmLogOpen: exit(%d)", rc);
1178 return rc;
1179 }
1180
1181 list_add(&JFS_SBI(sb)->log_list, &log->sb_list);
1182 JFS_SBI(sb)->log = log;
1183
1184 return rc;
1185 }
1186
open_dummy_log(struct super_block * sb)1187 static int open_dummy_log(struct super_block *sb)
1188 {
1189 int rc;
1190
1191 mutex_lock(&jfs_log_mutex);
1192 if (!dummy_log) {
1193 dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL);
1194 if (!dummy_log) {
1195 mutex_unlock(&jfs_log_mutex);
1196 return -ENOMEM;
1197 }
1198 INIT_LIST_HEAD(&dummy_log->sb_list);
1199 init_waitqueue_head(&dummy_log->syncwait);
1200 dummy_log->no_integrity = 1;
1201 /* Make up some stuff */
1202 dummy_log->base = 0;
1203 dummy_log->size = 1024;
1204 rc = lmLogInit(dummy_log);
1205 if (rc) {
1206 kfree(dummy_log);
1207 dummy_log = NULL;
1208 mutex_unlock(&jfs_log_mutex);
1209 return rc;
1210 }
1211 }
1212
1213 LOG_LOCK(dummy_log);
1214 list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list);
1215 JFS_SBI(sb)->log = dummy_log;
1216 LOG_UNLOCK(dummy_log);
1217 mutex_unlock(&jfs_log_mutex);
1218
1219 return 0;
1220 }
1221
1222 /*
1223 * NAME: lmLogInit()
1224 *
1225 * FUNCTION: log initialization at first log open.
1226 *
1227 * logredo() (or logformat()) should have been run previously.
1228 * initialize the log from log superblock.
1229 * set the log state in the superblock to LOGMOUNT and
1230 * write SYNCPT log record.
1231 *
1232 * PARAMETER: log - log structure
1233 *
1234 * RETURN: 0 - if ok
1235 * -EINVAL - bad log magic number or superblock dirty
1236 * error returned from logwait()
1237 *
1238 * serialization: single first open thread
1239 */
lmLogInit(struct jfs_log * log)1240 int lmLogInit(struct jfs_log * log)
1241 {
1242 int rc = 0;
1243 struct lrd lrd;
1244 struct logsuper *logsuper;
1245 struct lbuf *bpsuper;
1246 struct lbuf *bp;
1247 struct logpage *lp;
1248 int lsn = 0;
1249
1250 jfs_info("lmLogInit: log:0x%p", log);
1251
1252 /* initialize the group commit serialization lock */
1253 LOGGC_LOCK_INIT(log);
1254
1255 /* allocate/initialize the log write serialization lock */
1256 LOG_LOCK_INIT(log);
1257
1258 LOGSYNC_LOCK_INIT(log);
1259
1260 INIT_LIST_HEAD(&log->synclist);
1261
1262 INIT_LIST_HEAD(&log->cqueue);
1263 log->flush_tblk = NULL;
1264
1265 log->count = 0;
1266
1267 /*
1268 * initialize log i/o
1269 */
1270 if ((rc = lbmLogInit(log)))
1271 return rc;
1272
1273 if (!test_bit(log_INLINELOG, &log->flag))
1274 log->l2bsize = L2LOGPSIZE;
1275
1276 /* check for disabled journaling to disk */
1277 if (log->no_integrity) {
1278 /*
1279 * Journal pages will still be filled. When the time comes
1280 * to actually do the I/O, the write is not done, and the
1281 * endio routine is called directly.
1282 */
1283 bp = lbmAllocate(log , 0);
1284 log->bp = bp;
1285 bp->l_pn = bp->l_eor = 0;
1286 } else {
1287 /*
1288 * validate log superblock
1289 */
1290 if ((rc = lbmRead(log, 1, &bpsuper)))
1291 goto errout10;
1292
1293 logsuper = (struct logsuper *) bpsuper->l_ldata;
1294
1295 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) {
1296 jfs_warn("*** Log Format Error ! ***");
1297 rc = -EINVAL;
1298 goto errout20;
1299 }
1300
1301 /* logredo() should have been run successfully. */
1302 if (logsuper->state != cpu_to_le32(LOGREDONE)) {
1303 jfs_warn("*** Log Is Dirty ! ***");
1304 rc = -EINVAL;
1305 goto errout20;
1306 }
1307
1308 /* initialize log from log superblock */
1309 if (test_bit(log_INLINELOG,&log->flag)) {
1310 if (log->size != le32_to_cpu(logsuper->size)) {
1311 rc = -EINVAL;
1312 goto errout20;
1313 }
1314 jfs_info("lmLogInit: inline log:0x%p base:0x%Lx size:0x%x",
1315 log, (unsigned long long)log->base, log->size);
1316 } else {
1317 if (!uuid_equal(&logsuper->uuid, &log->uuid)) {
1318 jfs_warn("wrong uuid on JFS log device");
1319 rc = -EINVAL;
1320 goto errout20;
1321 }
1322 log->size = le32_to_cpu(logsuper->size);
1323 log->l2bsize = le32_to_cpu(logsuper->l2bsize);
1324 jfs_info("lmLogInit: external log:0x%p base:0x%Lx size:0x%x",
1325 log, (unsigned long long)log->base, log->size);
1326 }
1327
1328 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE;
1329 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page);
1330
1331 /*
1332 * initialize for log append write mode
1333 */
1334 /* establish current/end-of-log page/buffer */
1335 if ((rc = lbmRead(log, log->page, &bp)))
1336 goto errout20;
1337
1338 lp = (struct logpage *) bp->l_ldata;
1339
1340 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d",
1341 le32_to_cpu(logsuper->end), log->page, log->eor,
1342 le16_to_cpu(lp->h.eor));
1343
1344 log->bp = bp;
1345 bp->l_pn = log->page;
1346 bp->l_eor = log->eor;
1347
1348 /* if current page is full, move on to next page */
1349 if (log->eor >= LOGPSIZE - LOGPTLRSIZE)
1350 lmNextPage(log);
1351
1352 /*
1353 * initialize log syncpoint
1354 */
1355 /*
1356 * write the first SYNCPT record with syncpoint = 0
1357 * (i.e., log redo up to HERE !);
1358 * remove current page from lbm write queue at end of pageout
1359 * (to write log superblock update), but do not release to
1360 * freelist;
1361 */
1362 lrd.logtid = 0;
1363 lrd.backchain = 0;
1364 lrd.type = cpu_to_le16(LOG_SYNCPT);
1365 lrd.length = 0;
1366 lrd.log.syncpt.sync = 0;
1367 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1368 bp = log->bp;
1369 bp->l_ceor = bp->l_eor;
1370 lp = (struct logpage *) bp->l_ldata;
1371 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1372 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0);
1373 if ((rc = lbmIOWait(bp, 0)))
1374 goto errout30;
1375
1376 /*
1377 * update/write superblock
1378 */
1379 logsuper->state = cpu_to_le32(LOGMOUNT);
1380 log->serial = le32_to_cpu(logsuper->serial) + 1;
1381 logsuper->serial = cpu_to_le32(log->serial);
1382 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1383 if ((rc = lbmIOWait(bpsuper, lbmFREE)))
1384 goto errout30;
1385 }
1386
1387 /* initialize logsync parameters */
1388 log->logsize = (log->size - 2) << L2LOGPSIZE;
1389 log->lsn = lsn;
1390 log->syncpt = lsn;
1391 log->sync = log->syncpt;
1392 log->nextsync = LOGSYNC_DELTA(log->logsize);
1393
1394 jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x",
1395 log->lsn, log->syncpt, log->sync);
1396
1397 /*
1398 * initialize for lazy/group commit
1399 */
1400 log->clsn = lsn;
1401
1402 return 0;
1403
1404 /*
1405 * unwind on error
1406 */
1407 errout30: /* release log page */
1408 log->wqueue = NULL;
1409 bp->l_wqnext = NULL;
1410 lbmFree(bp);
1411
1412 errout20: /* release log superblock */
1413 lbmFree(bpsuper);
1414
1415 errout10: /* unwind lbmLogInit() */
1416 lbmLogShutdown(log);
1417
1418 jfs_warn("lmLogInit: exit(%d)", rc);
1419 return rc;
1420 }
1421
1422
1423 /*
1424 * NAME: lmLogClose()
1425 *
1426 * FUNCTION: remove file system <ipmnt> from active list of log <iplog>
1427 * and close it on last close.
1428 *
1429 * PARAMETER: sb - superblock
1430 *
1431 * RETURN: errors from subroutines
1432 *
1433 * serialization:
1434 */
lmLogClose(struct super_block * sb)1435 int lmLogClose(struct super_block *sb)
1436 {
1437 struct jfs_sb_info *sbi = JFS_SBI(sb);
1438 struct jfs_log *log = sbi->log;
1439 struct file *bdev_file;
1440 int rc = 0;
1441
1442 jfs_info("lmLogClose: log:0x%p", log);
1443
1444 mutex_lock(&jfs_log_mutex);
1445 LOG_LOCK(log);
1446 list_del(&sbi->log_list);
1447 LOG_UNLOCK(log);
1448 sbi->log = NULL;
1449
1450 /*
1451 * We need to make sure all of the "written" metapages
1452 * actually make it to disk
1453 */
1454 sync_blockdev(sb->s_bdev);
1455
1456 if (test_bit(log_INLINELOG, &log->flag)) {
1457 /*
1458 * in-line log in host file system
1459 */
1460 rc = lmLogShutdown(log);
1461 kfree(log);
1462 goto out;
1463 }
1464
1465 if (!log->no_integrity)
1466 lmLogFileSystem(log, sbi, 0);
1467
1468 if (!list_empty(&log->sb_list))
1469 goto out;
1470
1471 /*
1472 * TODO: ensure that the dummy_log is in a state to allow
1473 * lbmLogShutdown to deallocate all the buffers and call
1474 * kfree against dummy_log. For now, leave dummy_log & its
1475 * buffers in memory, and resuse if another no-integrity mount
1476 * is requested.
1477 */
1478 if (log->no_integrity)
1479 goto out;
1480
1481 /*
1482 * external log as separate logical volume
1483 */
1484 list_del(&log->journal_list);
1485 bdev_file = log->bdev_file;
1486 rc = lmLogShutdown(log);
1487
1488 bdev_fput(bdev_file);
1489
1490 kfree(log);
1491
1492 out:
1493 mutex_unlock(&jfs_log_mutex);
1494 jfs_info("lmLogClose: exit(%d)", rc);
1495 return rc;
1496 }
1497
1498
1499 /*
1500 * NAME: jfs_flush_journal()
1501 *
1502 * FUNCTION: initiate write of any outstanding transactions to the journal
1503 * and optionally wait until they are all written to disk
1504 *
1505 * wait == 0 flush until latest txn is committed, don't wait
1506 * wait == 1 flush until latest txn is committed, wait
1507 * wait > 1 flush until all txn's are complete, wait
1508 */
jfs_flush_journal(struct jfs_log * log,int wait)1509 void jfs_flush_journal(struct jfs_log *log, int wait)
1510 {
1511 int i;
1512 struct tblock *target = NULL;
1513
1514 /* jfs_write_inode may call us during read-only mount */
1515 if (!log)
1516 return;
1517
1518 jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait);
1519
1520 LOGGC_LOCK(log);
1521
1522 if (!list_empty(&log->cqueue)) {
1523 /*
1524 * This ensures that we will keep writing to the journal as long
1525 * as there are unwritten commit records
1526 */
1527 target = list_entry(log->cqueue.prev, struct tblock, cqueue);
1528
1529 if (test_bit(log_FLUSH, &log->flag)) {
1530 /*
1531 * We're already flushing.
1532 * if flush_tblk is NULL, we are flushing everything,
1533 * so leave it that way. Otherwise, update it to the
1534 * latest transaction
1535 */
1536 if (log->flush_tblk)
1537 log->flush_tblk = target;
1538 } else {
1539 /* Only flush until latest transaction is committed */
1540 log->flush_tblk = target;
1541 set_bit(log_FLUSH, &log->flag);
1542
1543 /*
1544 * Initiate I/O on outstanding transactions
1545 */
1546 if (!(log->cflag & logGC_PAGEOUT)) {
1547 log->cflag |= logGC_PAGEOUT;
1548 lmGCwrite(log, 0);
1549 }
1550 }
1551 }
1552 if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) {
1553 /* Flush until all activity complete */
1554 set_bit(log_FLUSH, &log->flag);
1555 log->flush_tblk = NULL;
1556 }
1557
1558 if (wait && target && !(target->flag & tblkGC_COMMITTED)) {
1559 DECLARE_WAITQUEUE(__wait, current);
1560
1561 add_wait_queue(&target->gcwait, &__wait);
1562 set_current_state(TASK_UNINTERRUPTIBLE);
1563 LOGGC_UNLOCK(log);
1564 schedule();
1565 LOGGC_LOCK(log);
1566 remove_wait_queue(&target->gcwait, &__wait);
1567 }
1568 LOGGC_UNLOCK(log);
1569
1570 if (wait < 2)
1571 return;
1572
1573 write_special_inodes(log, filemap_fdatawrite);
1574
1575 /*
1576 * If there was recent activity, we may need to wait
1577 * for the lazycommit thread to catch up
1578 */
1579 if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) {
1580 for (i = 0; i < 200; i++) { /* Too much? */
1581 msleep(250);
1582 write_special_inodes(log, filemap_fdatawrite);
1583 if (list_empty(&log->cqueue) &&
1584 list_empty(&log->synclist))
1585 break;
1586 }
1587 }
1588 assert(list_empty(&log->cqueue));
1589
1590 #ifdef CONFIG_JFS_DEBUG
1591 if (!list_empty(&log->synclist)) {
1592 struct logsyncblk *lp;
1593
1594 printk(KERN_ERR "jfs_flush_journal: synclist not empty\n");
1595 list_for_each_entry(lp, &log->synclist, synclist) {
1596 if (lp->xflag & COMMIT_PAGE) {
1597 struct metapage *mp = (struct metapage *)lp;
1598 print_hex_dump(KERN_ERR, "metapage: ",
1599 DUMP_PREFIX_ADDRESS, 16, 4,
1600 mp, sizeof(struct metapage), 0);
1601 print_hex_dump(KERN_ERR, "page: ",
1602 DUMP_PREFIX_ADDRESS, 16,
1603 sizeof(long), mp->folio,
1604 sizeof(struct page), 0);
1605 } else
1606 print_hex_dump(KERN_ERR, "tblock:",
1607 DUMP_PREFIX_ADDRESS, 16, 4,
1608 lp, sizeof(struct tblock), 0);
1609 }
1610 }
1611 #else
1612 WARN_ON(!list_empty(&log->synclist));
1613 #endif
1614 clear_bit(log_FLUSH, &log->flag);
1615 }
1616
1617 /*
1618 * NAME: lmLogShutdown()
1619 *
1620 * FUNCTION: log shutdown at last LogClose().
1621 *
1622 * write log syncpt record.
1623 * update super block to set redone flag to 0.
1624 *
1625 * PARAMETER: log - log inode
1626 *
1627 * RETURN: 0 - success
1628 *
1629 * serialization: single last close thread
1630 */
lmLogShutdown(struct jfs_log * log)1631 int lmLogShutdown(struct jfs_log * log)
1632 {
1633 int rc;
1634 struct lrd lrd;
1635 int lsn;
1636 struct logsuper *logsuper;
1637 struct lbuf *bpsuper;
1638 struct lbuf *bp;
1639 struct logpage *lp;
1640
1641 jfs_info("lmLogShutdown: log:0x%p", log);
1642
1643 jfs_flush_journal(log, 2);
1644
1645 /*
1646 * write the last SYNCPT record with syncpoint = 0
1647 * (i.e., log redo up to HERE !)
1648 */
1649 lrd.logtid = 0;
1650 lrd.backchain = 0;
1651 lrd.type = cpu_to_le16(LOG_SYNCPT);
1652 lrd.length = 0;
1653 lrd.log.syncpt.sync = 0;
1654
1655 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1656 bp = log->bp;
1657 lp = (struct logpage *) bp->l_ldata;
1658 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1659 lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0);
1660 lbmIOWait(log->bp, lbmFREE);
1661 log->bp = NULL;
1662
1663 /*
1664 * synchronous update log superblock
1665 * mark log state as shutdown cleanly
1666 * (i.e., Log does not need to be replayed).
1667 */
1668 if ((rc = lbmRead(log, 1, &bpsuper)))
1669 goto out;
1670
1671 logsuper = (struct logsuper *) bpsuper->l_ldata;
1672 logsuper->state = cpu_to_le32(LOGREDONE);
1673 logsuper->end = cpu_to_le32(lsn);
1674 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1675 rc = lbmIOWait(bpsuper, lbmFREE);
1676
1677 jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d",
1678 lsn, log->page, log->eor);
1679
1680 out:
1681 /*
1682 * shutdown per log i/o
1683 */
1684 lbmLogShutdown(log);
1685
1686 if (rc) {
1687 jfs_warn("lmLogShutdown: exit(%d)", rc);
1688 }
1689 return rc;
1690 }
1691
1692
1693 /*
1694 * NAME: lmLogFileSystem()
1695 *
1696 * FUNCTION: insert (<activate> = true)/remove (<activate> = false)
1697 * file system into/from log active file system list.
1698 *
1699 * PARAMETE: log - pointer to logs inode.
1700 * fsdev - kdev_t of filesystem.
1701 * serial - pointer to returned log serial number
1702 * activate - insert/remove device from active list.
1703 *
1704 * RETURN: 0 - success
1705 * errors returned by vms_iowait().
1706 */
lmLogFileSystem(struct jfs_log * log,struct jfs_sb_info * sbi,int activate)1707 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
1708 int activate)
1709 {
1710 int rc = 0;
1711 int i;
1712 struct logsuper *logsuper;
1713 struct lbuf *bpsuper;
1714 uuid_t *uuid = &sbi->uuid;
1715
1716 /*
1717 * insert/remove file system device to log active file system list.
1718 */
1719 if ((rc = lbmRead(log, 1, &bpsuper)))
1720 return rc;
1721
1722 logsuper = (struct logsuper *) bpsuper->l_ldata;
1723 if (activate) {
1724 for (i = 0; i < MAX_ACTIVE; i++)
1725 if (uuid_is_null(&logsuper->active[i].uuid)) {
1726 uuid_copy(&logsuper->active[i].uuid, uuid);
1727 sbi->aggregate = i;
1728 break;
1729 }
1730 if (i == MAX_ACTIVE) {
1731 jfs_warn("Too many file systems sharing journal!");
1732 lbmFree(bpsuper);
1733 return -EMFILE; /* Is there a better rc? */
1734 }
1735 } else {
1736 for (i = 0; i < MAX_ACTIVE; i++)
1737 if (uuid_equal(&logsuper->active[i].uuid, uuid)) {
1738 uuid_copy(&logsuper->active[i].uuid,
1739 &uuid_null);
1740 break;
1741 }
1742 if (i == MAX_ACTIVE) {
1743 jfs_warn("Somebody stomped on the journal!");
1744 lbmFree(bpsuper);
1745 return -EIO;
1746 }
1747
1748 }
1749
1750 /*
1751 * synchronous write log superblock:
1752 *
1753 * write sidestream bypassing write queue:
1754 * at file system mount, log super block is updated for
1755 * activation of the file system before any log record
1756 * (MOUNT record) of the file system, and at file system
1757 * unmount, all meta data for the file system has been
1758 * flushed before log super block is updated for deactivation
1759 * of the file system.
1760 */
1761 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1762 rc = lbmIOWait(bpsuper, lbmFREE);
1763
1764 return rc;
1765 }
1766
1767 /*
1768 * log buffer manager (lbm)
1769 * ------------------------
1770 *
1771 * special purpose buffer manager supporting log i/o requirements.
1772 *
1773 * per log write queue:
1774 * log pageout occurs in serial order by fifo write queue and
1775 * restricting to a single i/o in pregress at any one time.
1776 * a circular singly-linked list
1777 * (log->wrqueue points to the tail, and buffers are linked via
1778 * bp->wrqueue field), and
1779 * maintains log page in pageout ot waiting for pageout in serial pageout.
1780 */
1781
1782 /*
1783 * lbmLogInit()
1784 *
1785 * initialize per log I/O setup at lmLogInit()
1786 */
lbmLogInit(struct jfs_log * log)1787 static int lbmLogInit(struct jfs_log * log)
1788 { /* log inode */
1789 int i;
1790 struct lbuf *lbuf;
1791
1792 jfs_info("lbmLogInit: log:0x%p", log);
1793
1794 /* initialize current buffer cursor */
1795 log->bp = NULL;
1796
1797 /* initialize log device write queue */
1798 log->wqueue = NULL;
1799
1800 /*
1801 * Each log has its own buffer pages allocated to it. These are
1802 * not managed by the page cache. This ensures that a transaction
1803 * writing to the log does not block trying to allocate a page from
1804 * the page cache (for the log). This would be bad, since page
1805 * allocation waits on the kswapd thread that may be committing inodes
1806 * which would cause log activity. Was that clear? I'm trying to
1807 * avoid deadlock here.
1808 */
1809 init_waitqueue_head(&log->free_wait);
1810
1811 log->lbuf_free = NULL;
1812
1813 for (i = 0; i < LOGPAGES;) {
1814 char *buffer;
1815 uint offset;
1816 struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1817
1818 if (!page)
1819 goto error;
1820 buffer = page_address(page);
1821 for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) {
1822 lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL);
1823 if (lbuf == NULL) {
1824 if (offset == 0)
1825 __free_page(page);
1826 goto error;
1827 }
1828 if (offset) /* we already have one reference */
1829 get_page(page);
1830 lbuf->l_offset = offset;
1831 lbuf->l_ldata = buffer + offset;
1832 lbuf->l_page = page;
1833 lbuf->l_log = log;
1834 init_waitqueue_head(&lbuf->l_ioevent);
1835
1836 lbuf->l_freelist = log->lbuf_free;
1837 log->lbuf_free = lbuf;
1838 i++;
1839 }
1840 }
1841
1842 return (0);
1843
1844 error:
1845 lbmLogShutdown(log);
1846 return -ENOMEM;
1847 }
1848
1849
1850 /*
1851 * lbmLogShutdown()
1852 *
1853 * finalize per log I/O setup at lmLogShutdown()
1854 */
lbmLogShutdown(struct jfs_log * log)1855 static void lbmLogShutdown(struct jfs_log * log)
1856 {
1857 struct lbuf *lbuf;
1858
1859 jfs_info("lbmLogShutdown: log:0x%p", log);
1860
1861 lbuf = log->lbuf_free;
1862 while (lbuf) {
1863 struct lbuf *next = lbuf->l_freelist;
1864 __free_page(lbuf->l_page);
1865 kfree(lbuf);
1866 lbuf = next;
1867 }
1868 }
1869
1870
1871 /*
1872 * lbmAllocate()
1873 *
1874 * allocate an empty log buffer
1875 */
lbmAllocate(struct jfs_log * log,int pn)1876 static struct lbuf *lbmAllocate(struct jfs_log * log, int pn)
1877 {
1878 struct lbuf *bp;
1879 unsigned long flags;
1880
1881 /*
1882 * recycle from log buffer freelist if any
1883 */
1884 LCACHE_LOCK(flags);
1885 LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags);
1886 log->lbuf_free = bp->l_freelist;
1887 LCACHE_UNLOCK(flags);
1888
1889 bp->l_flag = 0;
1890
1891 bp->l_wqnext = NULL;
1892 bp->l_freelist = NULL;
1893
1894 bp->l_pn = pn;
1895 bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize));
1896 bp->l_ceor = 0;
1897
1898 return bp;
1899 }
1900
1901
1902 /*
1903 * lbmFree()
1904 *
1905 * release a log buffer to freelist
1906 */
lbmFree(struct lbuf * bp)1907 static void lbmFree(struct lbuf * bp)
1908 {
1909 unsigned long flags;
1910
1911 LCACHE_LOCK(flags);
1912
1913 lbmfree(bp);
1914
1915 LCACHE_UNLOCK(flags);
1916 }
1917
lbmfree(struct lbuf * bp)1918 static void lbmfree(struct lbuf * bp)
1919 {
1920 struct jfs_log *log = bp->l_log;
1921
1922 assert(bp->l_wqnext == NULL);
1923
1924 /*
1925 * return the buffer to head of freelist
1926 */
1927 bp->l_freelist = log->lbuf_free;
1928 log->lbuf_free = bp;
1929
1930 wake_up(&log->free_wait);
1931 return;
1932 }
1933
1934
1935 /*
1936 * NAME: lbmRedrive
1937 *
1938 * FUNCTION: add a log buffer to the log redrive list
1939 *
1940 * PARAMETER:
1941 * bp - log buffer
1942 *
1943 * NOTES:
1944 * Takes log_redrive_lock.
1945 */
lbmRedrive(struct lbuf * bp)1946 static inline void lbmRedrive(struct lbuf *bp)
1947 {
1948 unsigned long flags;
1949
1950 spin_lock_irqsave(&log_redrive_lock, flags);
1951 bp->l_redrive_next = log_redrive_list;
1952 log_redrive_list = bp;
1953 spin_unlock_irqrestore(&log_redrive_lock, flags);
1954
1955 wake_up_process(jfsIOthread);
1956 }
1957
1958
1959 /*
1960 * lbmRead()
1961 */
lbmRead(struct jfs_log * log,int pn,struct lbuf ** bpp)1962 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp)
1963 {
1964 struct bio *bio;
1965 struct lbuf *bp;
1966
1967 /*
1968 * allocate a log buffer
1969 */
1970 *bpp = bp = lbmAllocate(log, pn);
1971 jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn);
1972
1973 bp->l_flag |= lbmREAD;
1974
1975 bio = bio_alloc(file_bdev(log->bdev_file), 1, REQ_OP_READ, GFP_NOFS);
1976 bio->bi_iter.bi_sector = bp->l_blkno << (log->l2bsize - 9);
1977 __bio_add_page(bio, bp->l_page, LOGPSIZE, bp->l_offset);
1978 BUG_ON(bio->bi_iter.bi_size != LOGPSIZE);
1979
1980 bio->bi_end_io = lbmIODone;
1981 bio->bi_private = bp;
1982 /*check if journaling to disk has been disabled*/
1983 if (log->no_integrity) {
1984 bio->bi_iter.bi_size = 0;
1985 lbmIODone(bio);
1986 } else {
1987 submit_bio(bio);
1988 }
1989
1990 wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD));
1991
1992 return 0;
1993 }
1994
1995
1996 /*
1997 * lbmWrite()
1998 *
1999 * buffer at head of pageout queue stays after completion of
2000 * partial-page pageout and redriven by explicit initiation of
2001 * pageout by caller until full-page pageout is completed and
2002 * released.
2003 *
2004 * device driver i/o done redrives pageout of new buffer at
2005 * head of pageout queue when current buffer at head of pageout
2006 * queue is released at the completion of its full-page pageout.
2007 *
2008 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit().
2009 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone()
2010 */
lbmWrite(struct jfs_log * log,struct lbuf * bp,int flag,int cant_block)2011 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag,
2012 int cant_block)
2013 {
2014 struct lbuf *tail;
2015 unsigned long flags;
2016
2017 jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn);
2018
2019 /* map the logical block address to physical block address */
2020 bp->l_blkno =
2021 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2022
2023 LCACHE_LOCK(flags); /* disable+lock */
2024
2025 /*
2026 * initialize buffer for device driver
2027 */
2028 bp->l_flag = flag;
2029
2030 /*
2031 * insert bp at tail of write queue associated with log
2032 *
2033 * (request is either for bp already/currently at head of queue
2034 * or new bp to be inserted at tail)
2035 */
2036 tail = log->wqueue;
2037
2038 /* is buffer not already on write queue ? */
2039 if (bp->l_wqnext == NULL) {
2040 /* insert at tail of wqueue */
2041 if (tail == NULL) {
2042 log->wqueue = bp;
2043 bp->l_wqnext = bp;
2044 } else {
2045 log->wqueue = bp;
2046 bp->l_wqnext = tail->l_wqnext;
2047 tail->l_wqnext = bp;
2048 }
2049
2050 tail = bp;
2051 }
2052
2053 /* is buffer at head of wqueue and for write ? */
2054 if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) {
2055 LCACHE_UNLOCK(flags); /* unlock+enable */
2056 return;
2057 }
2058
2059 LCACHE_UNLOCK(flags); /* unlock+enable */
2060
2061 if (cant_block)
2062 lbmRedrive(bp);
2063 else if (flag & lbmSYNC)
2064 lbmStartIO(bp);
2065 else {
2066 LOGGC_UNLOCK(log);
2067 lbmStartIO(bp);
2068 LOGGC_LOCK(log);
2069 }
2070 }
2071
2072
2073 /*
2074 * lbmDirectWrite()
2075 *
2076 * initiate pageout bypassing write queue for sidestream
2077 * (e.g., log superblock) write;
2078 */
lbmDirectWrite(struct jfs_log * log,struct lbuf * bp,int flag)2079 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag)
2080 {
2081 jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x",
2082 bp, flag, bp->l_pn);
2083
2084 /*
2085 * initialize buffer for device driver
2086 */
2087 bp->l_flag = flag | lbmDIRECT;
2088
2089 /* map the logical block address to physical block address */
2090 bp->l_blkno =
2091 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2092
2093 /*
2094 * initiate pageout of the page
2095 */
2096 lbmStartIO(bp);
2097 }
2098
2099
2100 /*
2101 * NAME: lbmStartIO()
2102 *
2103 * FUNCTION: Interface to DD strategy routine
2104 *
2105 * RETURN: none
2106 *
2107 * serialization: LCACHE_LOCK() is NOT held during log i/o;
2108 */
lbmStartIO(struct lbuf * bp)2109 static void lbmStartIO(struct lbuf * bp)
2110 {
2111 struct bio *bio;
2112 struct jfs_log *log = bp->l_log;
2113 struct block_device *bdev = NULL;
2114
2115 jfs_info("lbmStartIO");
2116
2117 if (!log->no_integrity)
2118 bdev = file_bdev(log->bdev_file);
2119
2120 bio = bio_alloc(bdev, 1, REQ_OP_WRITE | REQ_SYNC,
2121 GFP_NOFS);
2122 bio->bi_iter.bi_sector = bp->l_blkno << (log->l2bsize - 9);
2123 __bio_add_page(bio, bp->l_page, LOGPSIZE, bp->l_offset);
2124 BUG_ON(bio->bi_iter.bi_size != LOGPSIZE);
2125
2126 bio->bi_end_io = lbmIODone;
2127 bio->bi_private = bp;
2128
2129 /* check if journaling to disk has been disabled */
2130 if (log->no_integrity) {
2131 bio->bi_iter.bi_size = 0;
2132 lbmIODone(bio);
2133 } else {
2134 submit_bio(bio);
2135 INCREMENT(lmStat.submitted);
2136 }
2137 }
2138
2139
2140 /*
2141 * lbmIOWait()
2142 */
lbmIOWait(struct lbuf * bp,int flag)2143 static int lbmIOWait(struct lbuf * bp, int flag)
2144 {
2145 unsigned long flags;
2146 int rc = 0;
2147
2148 jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2149
2150 LCACHE_LOCK(flags); /* disable+lock */
2151
2152 LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags);
2153
2154 rc = (bp->l_flag & lbmERROR) ? -EIO : 0;
2155
2156 if (flag & lbmFREE)
2157 lbmfree(bp);
2158
2159 LCACHE_UNLOCK(flags); /* unlock+enable */
2160
2161 jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2162 return rc;
2163 }
2164
2165 /*
2166 * lbmIODone()
2167 *
2168 * executed at INTIODONE level
2169 */
lbmIODone(struct bio * bio)2170 static void lbmIODone(struct bio *bio)
2171 {
2172 struct lbuf *bp = bio->bi_private;
2173 struct lbuf *nextbp, *tail;
2174 struct jfs_log *log;
2175 unsigned long flags;
2176
2177 /*
2178 * get back jfs buffer bound to the i/o buffer
2179 */
2180 jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag);
2181
2182 LCACHE_LOCK(flags); /* disable+lock */
2183
2184 bp->l_flag |= lbmDONE;
2185
2186 if (bio->bi_status) {
2187 bp->l_flag |= lbmERROR;
2188
2189 jfs_err("lbmIODone: I/O error in JFS log");
2190 }
2191
2192 bio_put(bio);
2193
2194 /*
2195 * pagein completion
2196 */
2197 if (bp->l_flag & lbmREAD) {
2198 bp->l_flag &= ~lbmREAD;
2199
2200 LCACHE_UNLOCK(flags); /* unlock+enable */
2201
2202 /* wakeup I/O initiator */
2203 LCACHE_WAKEUP(&bp->l_ioevent);
2204
2205 return;
2206 }
2207
2208 /*
2209 * pageout completion
2210 *
2211 * the bp at the head of write queue has completed pageout.
2212 *
2213 * if single-commit/full-page pageout, remove the current buffer
2214 * from head of pageout queue, and redrive pageout with
2215 * the new buffer at head of pageout queue;
2216 * otherwise, the partial-page pageout buffer stays at
2217 * the head of pageout queue to be redriven for pageout
2218 * by lmGroupCommit() until full-page pageout is completed.
2219 */
2220 bp->l_flag &= ~lbmWRITE;
2221 INCREMENT(lmStat.pagedone);
2222
2223 /* update committed lsn */
2224 log = bp->l_log;
2225 log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor;
2226
2227 if (bp->l_flag & lbmDIRECT) {
2228 LCACHE_WAKEUP(&bp->l_ioevent);
2229 LCACHE_UNLOCK(flags);
2230 return;
2231 }
2232
2233 tail = log->wqueue;
2234
2235 /* single element queue */
2236 if (bp == tail) {
2237 /* remove head buffer of full-page pageout
2238 * from log device write queue
2239 */
2240 if (bp->l_flag & lbmRELEASE) {
2241 log->wqueue = NULL;
2242 bp->l_wqnext = NULL;
2243 }
2244 }
2245 /* multi element queue */
2246 else {
2247 /* remove head buffer of full-page pageout
2248 * from log device write queue
2249 */
2250 if (bp->l_flag & lbmRELEASE) {
2251 nextbp = tail->l_wqnext = bp->l_wqnext;
2252 bp->l_wqnext = NULL;
2253
2254 /*
2255 * redrive pageout of next page at head of write queue:
2256 * redrive next page without any bound tblk
2257 * (i.e., page w/o any COMMIT records), or
2258 * first page of new group commit which has been
2259 * queued after current page (subsequent pageout
2260 * is performed synchronously, except page without
2261 * any COMMITs) by lmGroupCommit() as indicated
2262 * by lbmWRITE flag;
2263 */
2264 if (nextbp->l_flag & lbmWRITE) {
2265 /*
2266 * We can't do the I/O at interrupt time.
2267 * The jfsIO thread can do it
2268 */
2269 lbmRedrive(nextbp);
2270 }
2271 }
2272 }
2273
2274 /*
2275 * synchronous pageout:
2276 *
2277 * buffer has not necessarily been removed from write queue
2278 * (e.g., synchronous write of partial-page with COMMIT):
2279 * leave buffer for i/o initiator to dispose
2280 */
2281 if (bp->l_flag & lbmSYNC) {
2282 LCACHE_UNLOCK(flags); /* unlock+enable */
2283
2284 /* wakeup I/O initiator */
2285 LCACHE_WAKEUP(&bp->l_ioevent);
2286 }
2287
2288 /*
2289 * Group Commit pageout:
2290 */
2291 else if (bp->l_flag & lbmGC) {
2292 LCACHE_UNLOCK(flags);
2293 lmPostGC(bp);
2294 }
2295
2296 /*
2297 * asynchronous pageout:
2298 *
2299 * buffer must have been removed from write queue:
2300 * insert buffer at head of freelist where it can be recycled
2301 */
2302 else {
2303 assert(bp->l_flag & lbmRELEASE);
2304 assert(bp->l_flag & lbmFREE);
2305 lbmfree(bp);
2306
2307 LCACHE_UNLOCK(flags); /* unlock+enable */
2308 }
2309 }
2310
jfsIOWait(void * arg)2311 int jfsIOWait(void *arg)
2312 {
2313 struct lbuf *bp;
2314
2315 do {
2316 spin_lock_irq(&log_redrive_lock);
2317 while ((bp = log_redrive_list)) {
2318 log_redrive_list = bp->l_redrive_next;
2319 bp->l_redrive_next = NULL;
2320 spin_unlock_irq(&log_redrive_lock);
2321 lbmStartIO(bp);
2322 spin_lock_irq(&log_redrive_lock);
2323 }
2324
2325 if (freezing(current)) {
2326 spin_unlock_irq(&log_redrive_lock);
2327 try_to_freeze();
2328 } else {
2329 set_current_state(TASK_INTERRUPTIBLE);
2330 spin_unlock_irq(&log_redrive_lock);
2331 schedule();
2332 }
2333 } while (!kthread_should_stop());
2334
2335 jfs_info("jfsIOWait being killed!");
2336 return 0;
2337 }
2338
2339 /*
2340 * NAME: lmLogFormat()/jfs_logform()
2341 *
2342 * FUNCTION: format file system log
2343 *
2344 * PARAMETERS:
2345 * log - volume log
2346 * logAddress - start address of log space in FS block
2347 * logSize - length of log space in FS block;
2348 *
2349 * RETURN: 0 - success
2350 * -EIO - i/o error
2351 *
2352 * XXX: We're synchronously writing one page at a time. This needs to
2353 * be improved by writing multiple pages at once.
2354 */
lmLogFormat(struct jfs_log * log,s64 logAddress,int logSize)2355 int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize)
2356 {
2357 int rc = -EIO;
2358 struct jfs_sb_info *sbi;
2359 struct logsuper *logsuper;
2360 struct logpage *lp;
2361 int lspn; /* log sequence page number */
2362 struct lrd *lrd_ptr;
2363 int npages = 0;
2364 struct lbuf *bp;
2365
2366 jfs_info("lmLogFormat: logAddress:%Ld logSize:%d",
2367 (long long)logAddress, logSize);
2368
2369 sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list);
2370
2371 /* allocate a log buffer */
2372 bp = lbmAllocate(log, 1);
2373
2374 npages = logSize >> sbi->l2nbperpage;
2375
2376 /*
2377 * log space:
2378 *
2379 * page 0 - reserved;
2380 * page 1 - log superblock;
2381 * page 2 - log data page: A SYNC log record is written
2382 * into this page at logform time;
2383 * pages 3-N - log data page: set to empty log data pages;
2384 */
2385 /*
2386 * init log superblock: log page 1
2387 */
2388 logsuper = (struct logsuper *) bp->l_ldata;
2389
2390 logsuper->magic = cpu_to_le32(LOGMAGIC);
2391 logsuper->version = cpu_to_le32(LOGVERSION);
2392 logsuper->state = cpu_to_le32(LOGREDONE);
2393 logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */
2394 logsuper->size = cpu_to_le32(npages);
2395 logsuper->bsize = cpu_to_le32(sbi->bsize);
2396 logsuper->l2bsize = cpu_to_le32(sbi->l2bsize);
2397 logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE);
2398
2399 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2400 bp->l_blkno = logAddress + sbi->nbperpage;
2401 lbmStartIO(bp);
2402 if ((rc = lbmIOWait(bp, 0)))
2403 goto exit;
2404
2405 /*
2406 * init pages 2 to npages-1 as log data pages:
2407 *
2408 * log page sequence number (lpsn) initialization:
2409 *
2410 * pn: 0 1 2 3 n-1
2411 * +-----+-----+=====+=====+===.....===+=====+
2412 * lspn: N-1 0 1 N-2
2413 * <--- N page circular file ---->
2414 *
2415 * the N (= npages-2) data pages of the log is maintained as
2416 * a circular file for the log records;
2417 * lpsn grows by 1 monotonically as each log page is written
2418 * to the circular file of the log;
2419 * and setLogpage() will not reset the page number even if
2420 * the eor is equal to LOGPHDRSIZE. In order for binary search
2421 * still work in find log end process, we have to simulate the
2422 * log wrap situation at the log format time.
2423 * The 1st log page written will have the highest lpsn. Then
2424 * the succeeding log pages will have ascending order of
2425 * the lspn starting from 0, ... (N-2)
2426 */
2427 lp = (struct logpage *) bp->l_ldata;
2428 /*
2429 * initialize 1st log page to be written: lpsn = N - 1,
2430 * write a SYNCPT log record is written to this page
2431 */
2432 lp->h.page = lp->t.page = cpu_to_le32(npages - 3);
2433 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE);
2434
2435 lrd_ptr = (struct lrd *) &lp->data;
2436 lrd_ptr->logtid = 0;
2437 lrd_ptr->backchain = 0;
2438 lrd_ptr->type = cpu_to_le16(LOG_SYNCPT);
2439 lrd_ptr->length = 0;
2440 lrd_ptr->log.syncpt.sync = 0;
2441
2442 bp->l_blkno += sbi->nbperpage;
2443 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2444 lbmStartIO(bp);
2445 if ((rc = lbmIOWait(bp, 0)))
2446 goto exit;
2447
2448 /*
2449 * initialize succeeding log pages: lpsn = 0, 1, ..., (N-2)
2450 */
2451 for (lspn = 0; lspn < npages - 3; lspn++) {
2452 lp->h.page = lp->t.page = cpu_to_le32(lspn);
2453 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
2454
2455 bp->l_blkno += sbi->nbperpage;
2456 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2457 lbmStartIO(bp);
2458 if ((rc = lbmIOWait(bp, 0)))
2459 goto exit;
2460 }
2461
2462 rc = 0;
2463 exit:
2464 /*
2465 * finalize log
2466 */
2467 /* release the buffer */
2468 lbmFree(bp);
2469
2470 return rc;
2471 }
2472
2473 #ifdef CONFIG_JFS_STATISTICS
jfs_lmstats_proc_show(struct seq_file * m,void * v)2474 int jfs_lmstats_proc_show(struct seq_file *m, void *v)
2475 {
2476 seq_printf(m,
2477 "JFS Logmgr stats\n"
2478 "================\n"
2479 "commits = %d\n"
2480 "writes submitted = %d\n"
2481 "writes completed = %d\n"
2482 "full pages submitted = %d\n"
2483 "partial pages submitted = %d\n",
2484 lmStat.commit,
2485 lmStat.submitted,
2486 lmStat.pagedone,
2487 lmStat.full_page,
2488 lmStat.partial_page);
2489 return 0;
2490 }
2491 #endif /* CONFIG_JFS_STATISTICS */
2492