1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for Xilinx TEMAC Ethernet device
4 *
5 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
6 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8 *
9 * This is a driver for the Xilinx ll_temac ipcore which is often used
10 * in the Virtex and Spartan series of chips.
11 *
12 * Notes:
13 * - The ll_temac hardware uses indirect access for many of the TEMAC
14 * registers, include the MDIO bus. However, indirect access to MDIO
15 * registers take considerably more clock cycles than to TEMAC registers.
16 * MDIO accesses are long, so threads doing them should probably sleep
17 * rather than busywait. However, since only one indirect access can be
18 * in progress at any given time, that means that *all* indirect accesses
19 * could end up sleeping (to wait for an MDIO access to complete).
20 * Fortunately none of the indirect accesses are on the 'hot' path for tx
21 * or rx, so this should be okay.
22 *
23 * TODO:
24 * - Factor out locallink DMA code into separate driver
25 * - Fix support for hardware checksumming.
26 * - Testing. Lots and lots of testing.
27 *
28 */
29
30 #include <linux/delay.h>
31 #include <linux/etherdevice.h>
32 #include <linux/mii.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/netdevice.h>
36 #include <linux/if_ether.h>
37 #include <linux/of.h>
38 #include <linux/of_irq.h>
39 #include <linux/of_mdio.h>
40 #include <linux/of_net.h>
41 #include <linux/platform_device.h>
42 #include <linux/skbuff.h>
43 #include <linux/spinlock.h>
44 #include <linux/tcp.h> /* needed for sizeof(tcphdr) */
45 #include <linux/udp.h> /* needed for sizeof(udphdr) */
46 #include <linux/phy.h>
47 #include <linux/in.h>
48 #include <linux/io.h>
49 #include <linux/ip.h>
50 #include <linux/slab.h>
51 #include <linux/interrupt.h>
52 #include <linux/workqueue.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/processor.h>
55 #include <linux/platform_data/xilinx-ll-temac.h>
56
57 #include "ll_temac.h"
58
59 /* Descriptors defines for Tx and Rx DMA */
60 #define TX_BD_NUM_DEFAULT 64
61 #define RX_BD_NUM_DEFAULT 1024
62 #define TX_BD_NUM_MAX 4096
63 #define RX_BD_NUM_MAX 4096
64
65 /* ---------------------------------------------------------------------
66 * Low level register access functions
67 */
68
_temac_ior_be(struct temac_local * lp,int offset)69 static u32 _temac_ior_be(struct temac_local *lp, int offset)
70 {
71 return ioread32be(lp->regs + offset);
72 }
73
_temac_iow_be(struct temac_local * lp,int offset,u32 value)74 static void _temac_iow_be(struct temac_local *lp, int offset, u32 value)
75 {
76 return iowrite32be(value, lp->regs + offset);
77 }
78
_temac_ior_le(struct temac_local * lp,int offset)79 static u32 _temac_ior_le(struct temac_local *lp, int offset)
80 {
81 return ioread32(lp->regs + offset);
82 }
83
_temac_iow_le(struct temac_local * lp,int offset,u32 value)84 static void _temac_iow_le(struct temac_local *lp, int offset, u32 value)
85 {
86 return iowrite32(value, lp->regs + offset);
87 }
88
hard_acs_rdy(struct temac_local * lp)89 static bool hard_acs_rdy(struct temac_local *lp)
90 {
91 return temac_ior(lp, XTE_RDY0_OFFSET) & XTE_RDY0_HARD_ACS_RDY_MASK;
92 }
93
hard_acs_rdy_or_timeout(struct temac_local * lp,ktime_t timeout)94 static bool hard_acs_rdy_or_timeout(struct temac_local *lp, ktime_t timeout)
95 {
96 ktime_t cur = ktime_get();
97
98 return hard_acs_rdy(lp) || ktime_after(cur, timeout);
99 }
100
101 /* Poll for maximum 20 ms. This is similar to the 2 jiffies @ 100 Hz
102 * that was used before, and should cover MDIO bus speed down to 3200
103 * Hz.
104 */
105 #define HARD_ACS_RDY_POLL_NS (20 * NSEC_PER_MSEC)
106
107 /*
108 * temac_indirect_busywait - Wait for current indirect register access
109 * to complete.
110 */
temac_indirect_busywait(struct temac_local * lp)111 int temac_indirect_busywait(struct temac_local *lp)
112 {
113 ktime_t timeout = ktime_add_ns(ktime_get(), HARD_ACS_RDY_POLL_NS);
114
115 spin_until_cond(hard_acs_rdy_or_timeout(lp, timeout));
116 if (WARN_ON(!hard_acs_rdy(lp)))
117 return -ETIMEDOUT;
118
119 return 0;
120 }
121
122 /*
123 * temac_indirect_in32 - Indirect register read access. This function
124 * must be called without lp->indirect_lock being held.
125 */
temac_indirect_in32(struct temac_local * lp,int reg)126 u32 temac_indirect_in32(struct temac_local *lp, int reg)
127 {
128 unsigned long flags;
129 int val;
130
131 spin_lock_irqsave(lp->indirect_lock, flags);
132 val = temac_indirect_in32_locked(lp, reg);
133 spin_unlock_irqrestore(lp->indirect_lock, flags);
134 return val;
135 }
136
137 /*
138 * temac_indirect_in32_locked - Indirect register read access. This
139 * function must be called with lp->indirect_lock being held. Use
140 * this together with spin_lock_irqsave/spin_lock_irqrestore to avoid
141 * repeated lock/unlock and to ensure uninterrupted access to indirect
142 * registers.
143 */
temac_indirect_in32_locked(struct temac_local * lp,int reg)144 u32 temac_indirect_in32_locked(struct temac_local *lp, int reg)
145 {
146 /* This initial wait should normally not spin, as we always
147 * try to wait for indirect access to complete before
148 * releasing the indirect_lock.
149 */
150 if (WARN_ON(temac_indirect_busywait(lp)))
151 return -ETIMEDOUT;
152 /* Initiate read from indirect register */
153 temac_iow(lp, XTE_CTL0_OFFSET, reg);
154 /* Wait for indirect register access to complete. We really
155 * should not see timeouts, and could even end up causing
156 * problem for following indirect access, so let's make a bit
157 * of WARN noise.
158 */
159 if (WARN_ON(temac_indirect_busywait(lp)))
160 return -ETIMEDOUT;
161 /* Value is ready now */
162 return temac_ior(lp, XTE_LSW0_OFFSET);
163 }
164
165 /*
166 * temac_indirect_out32 - Indirect register write access. This function
167 * must be called without lp->indirect_lock being held.
168 */
temac_indirect_out32(struct temac_local * lp,int reg,u32 value)169 void temac_indirect_out32(struct temac_local *lp, int reg, u32 value)
170 {
171 unsigned long flags;
172
173 spin_lock_irqsave(lp->indirect_lock, flags);
174 temac_indirect_out32_locked(lp, reg, value);
175 spin_unlock_irqrestore(lp->indirect_lock, flags);
176 }
177
178 /*
179 * temac_indirect_out32_locked - Indirect register write access. This
180 * function must be called with lp->indirect_lock being held. Use
181 * this together with spin_lock_irqsave/spin_lock_irqrestore to avoid
182 * repeated lock/unlock and to ensure uninterrupted access to indirect
183 * registers.
184 */
temac_indirect_out32_locked(struct temac_local * lp,int reg,u32 value)185 void temac_indirect_out32_locked(struct temac_local *lp, int reg, u32 value)
186 {
187 /* As in temac_indirect_in32_locked(), we should normally not
188 * spin here. And if it happens, we actually end up silently
189 * ignoring the write request. Ouch.
190 */
191 if (WARN_ON(temac_indirect_busywait(lp)))
192 return;
193 /* Initiate write to indirect register */
194 temac_iow(lp, XTE_LSW0_OFFSET, value);
195 temac_iow(lp, XTE_CTL0_OFFSET, CNTLREG_WRITE_ENABLE_MASK | reg);
196 /* As in temac_indirect_in32_locked(), we should not see timeouts
197 * here. And if it happens, we continue before the write has
198 * completed. Not good.
199 */
200 WARN_ON(temac_indirect_busywait(lp));
201 }
202
203 /*
204 * temac_dma_in32_* - Memory mapped DMA read, these function expects a
205 * register input that is based on DCR word addresses which are then
206 * converted to memory mapped byte addresses. To be assigned to
207 * lp->dma_in32.
208 */
temac_dma_in32_be(struct temac_local * lp,int reg)209 static u32 temac_dma_in32_be(struct temac_local *lp, int reg)
210 {
211 return ioread32be(lp->sdma_regs + (reg << 2));
212 }
213
temac_dma_in32_le(struct temac_local * lp,int reg)214 static u32 temac_dma_in32_le(struct temac_local *lp, int reg)
215 {
216 return ioread32(lp->sdma_regs + (reg << 2));
217 }
218
219 /*
220 * temac_dma_out32_* - Memory mapped DMA read, these function expects
221 * a register input that is based on DCR word addresses which are then
222 * converted to memory mapped byte addresses. To be assigned to
223 * lp->dma_out32.
224 */
temac_dma_out32_be(struct temac_local * lp,int reg,u32 value)225 static void temac_dma_out32_be(struct temac_local *lp, int reg, u32 value)
226 {
227 iowrite32be(value, lp->sdma_regs + (reg << 2));
228 }
229
temac_dma_out32_le(struct temac_local * lp,int reg,u32 value)230 static void temac_dma_out32_le(struct temac_local *lp, int reg, u32 value)
231 {
232 iowrite32(value, lp->sdma_regs + (reg << 2));
233 }
234
235 /* DMA register access functions can be DCR based or memory mapped.
236 * The PowerPC 440 is DCR based, the PowerPC 405 and MicroBlaze are both
237 * memory mapped.
238 */
239 #ifdef CONFIG_PPC_DCR
240
241 /*
242 * temac_dma_dcr_in32 - DCR based DMA read
243 */
temac_dma_dcr_in(struct temac_local * lp,int reg)244 static u32 temac_dma_dcr_in(struct temac_local *lp, int reg)
245 {
246 return dcr_read(lp->sdma_dcrs, reg);
247 }
248
249 /*
250 * temac_dma_dcr_out32 - DCR based DMA write
251 */
temac_dma_dcr_out(struct temac_local * lp,int reg,u32 value)252 static void temac_dma_dcr_out(struct temac_local *lp, int reg, u32 value)
253 {
254 dcr_write(lp->sdma_dcrs, reg, value);
255 }
256
257 /*
258 * temac_dcr_setup - If the DMA is DCR based, then setup the address and
259 * I/O functions
260 */
temac_dcr_setup(struct temac_local * lp,struct platform_device * op,struct device_node * np)261 static int temac_dcr_setup(struct temac_local *lp, struct platform_device *op,
262 struct device_node *np)
263 {
264 unsigned int dcrs;
265
266 /* setup the dcr address mapping if it's in the device tree */
267
268 dcrs = dcr_resource_start(np, 0);
269 if (dcrs != 0) {
270 lp->sdma_dcrs = dcr_map(np, dcrs, dcr_resource_len(np, 0));
271 lp->dma_in = temac_dma_dcr_in;
272 lp->dma_out = temac_dma_dcr_out;
273 dev_dbg(&op->dev, "DCR base: %x\n", dcrs);
274 return 0;
275 }
276 /* no DCR in the device tree, indicate a failure */
277 return -1;
278 }
279
280 #else
281
282 /*
283 * temac_dcr_setup - This is a stub for when DCR is not supported,
284 * such as with MicroBlaze and x86
285 */
temac_dcr_setup(struct temac_local * lp,struct platform_device * op,struct device_node * np)286 static int temac_dcr_setup(struct temac_local *lp, struct platform_device *op,
287 struct device_node *np)
288 {
289 return -1;
290 }
291
292 #endif
293
294 /*
295 * temac_dma_bd_release - Release buffer descriptor rings
296 */
temac_dma_bd_release(struct net_device * ndev)297 static void temac_dma_bd_release(struct net_device *ndev)
298 {
299 struct temac_local *lp = netdev_priv(ndev);
300 int i;
301
302 /* Reset Local Link (DMA) */
303 lp->dma_out(lp, DMA_CONTROL_REG, DMA_CONTROL_RST);
304
305 for (i = 0; i < lp->rx_bd_num; i++) {
306 if (!lp->rx_skb[i])
307 break;
308 dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
309 XTE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE);
310 dev_kfree_skb(lp->rx_skb[i]);
311 }
312 if (lp->rx_bd_v)
313 dma_free_coherent(ndev->dev.parent,
314 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
315 lp->rx_bd_v, lp->rx_bd_p);
316 if (lp->tx_bd_v)
317 dma_free_coherent(ndev->dev.parent,
318 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
319 lp->tx_bd_v, lp->tx_bd_p);
320 }
321
322 /*
323 * temac_dma_bd_init - Setup buffer descriptor rings
324 */
temac_dma_bd_init(struct net_device * ndev)325 static int temac_dma_bd_init(struct net_device *ndev)
326 {
327 struct temac_local *lp = netdev_priv(ndev);
328 struct sk_buff *skb;
329 dma_addr_t skb_dma_addr;
330 int i;
331
332 lp->rx_skb = devm_kcalloc(&ndev->dev, lp->rx_bd_num,
333 sizeof(*lp->rx_skb), GFP_KERNEL);
334 if (!lp->rx_skb)
335 goto out;
336
337 /* allocate the tx and rx ring buffer descriptors. */
338 /* returns a virtual address and a physical address. */
339 lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
340 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
341 &lp->tx_bd_p, GFP_KERNEL);
342 if (!lp->tx_bd_v)
343 goto out;
344
345 lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
346 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
347 &lp->rx_bd_p, GFP_KERNEL);
348 if (!lp->rx_bd_v)
349 goto out;
350
351 for (i = 0; i < lp->tx_bd_num; i++) {
352 lp->tx_bd_v[i].next = cpu_to_be32(lp->tx_bd_p
353 + sizeof(*lp->tx_bd_v) * ((i + 1) % lp->tx_bd_num));
354 }
355
356 for (i = 0; i < lp->rx_bd_num; i++) {
357 lp->rx_bd_v[i].next = cpu_to_be32(lp->rx_bd_p
358 + sizeof(*lp->rx_bd_v) * ((i + 1) % lp->rx_bd_num));
359
360 skb = __netdev_alloc_skb_ip_align(ndev,
361 XTE_MAX_JUMBO_FRAME_SIZE,
362 GFP_KERNEL);
363 if (!skb)
364 goto out;
365
366 lp->rx_skb[i] = skb;
367 /* returns physical address of skb->data */
368 skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data,
369 XTE_MAX_JUMBO_FRAME_SIZE,
370 DMA_FROM_DEVICE);
371 if (dma_mapping_error(ndev->dev.parent, skb_dma_addr))
372 goto out;
373 lp->rx_bd_v[i].phys = cpu_to_be32(skb_dma_addr);
374 lp->rx_bd_v[i].len = cpu_to_be32(XTE_MAX_JUMBO_FRAME_SIZE);
375 lp->rx_bd_v[i].app0 = cpu_to_be32(STS_CTRL_APP0_IRQONEND);
376 }
377
378 /* Configure DMA channel (irq setup) */
379 lp->dma_out(lp, TX_CHNL_CTRL,
380 lp->coalesce_delay_tx << 24 | lp->coalesce_count_tx << 16 |
381 0x00000400 | // Use 1 Bit Wide Counters. Currently Not Used!
382 CHNL_CTRL_IRQ_EN | CHNL_CTRL_IRQ_ERR_EN |
383 CHNL_CTRL_IRQ_DLY_EN | CHNL_CTRL_IRQ_COAL_EN);
384 lp->dma_out(lp, RX_CHNL_CTRL,
385 lp->coalesce_delay_rx << 24 | lp->coalesce_count_rx << 16 |
386 CHNL_CTRL_IRQ_IOE |
387 CHNL_CTRL_IRQ_EN | CHNL_CTRL_IRQ_ERR_EN |
388 CHNL_CTRL_IRQ_DLY_EN | CHNL_CTRL_IRQ_COAL_EN);
389
390 /* Init descriptor indexes */
391 lp->tx_bd_ci = 0;
392 lp->tx_bd_tail = 0;
393 lp->rx_bd_ci = 0;
394 lp->rx_bd_tail = lp->rx_bd_num - 1;
395
396 /* Enable RX DMA transfers */
397 wmb();
398 lp->dma_out(lp, RX_CURDESC_PTR, lp->rx_bd_p);
399 lp->dma_out(lp, RX_TAILDESC_PTR,
400 lp->rx_bd_p + (sizeof(*lp->rx_bd_v) * lp->rx_bd_tail));
401
402 /* Prepare for TX DMA transfer */
403 lp->dma_out(lp, TX_CURDESC_PTR, lp->tx_bd_p);
404
405 return 0;
406
407 out:
408 temac_dma_bd_release(ndev);
409 return -ENOMEM;
410 }
411
412 /* ---------------------------------------------------------------------
413 * net_device_ops
414 */
415
temac_do_set_mac_address(struct net_device * ndev)416 static void temac_do_set_mac_address(struct net_device *ndev)
417 {
418 struct temac_local *lp = netdev_priv(ndev);
419 unsigned long flags;
420
421 /* set up unicast MAC address filter set its mac address */
422 spin_lock_irqsave(lp->indirect_lock, flags);
423 temac_indirect_out32_locked(lp, XTE_UAW0_OFFSET,
424 (ndev->dev_addr[0]) |
425 (ndev->dev_addr[1] << 8) |
426 (ndev->dev_addr[2] << 16) |
427 (ndev->dev_addr[3] << 24));
428 /* There are reserved bits in EUAW1
429 * so don't affect them Set MAC bits [47:32] in EUAW1
430 */
431 temac_indirect_out32_locked(lp, XTE_UAW1_OFFSET,
432 (ndev->dev_addr[4] & 0x000000ff) |
433 (ndev->dev_addr[5] << 8));
434 spin_unlock_irqrestore(lp->indirect_lock, flags);
435 }
436
temac_init_mac_address(struct net_device * ndev,const void * address)437 static int temac_init_mac_address(struct net_device *ndev, const void *address)
438 {
439 eth_hw_addr_set(ndev, address);
440 if (!is_valid_ether_addr(ndev->dev_addr))
441 eth_hw_addr_random(ndev);
442 temac_do_set_mac_address(ndev);
443 return 0;
444 }
445
temac_set_mac_address(struct net_device * ndev,void * p)446 static int temac_set_mac_address(struct net_device *ndev, void *p)
447 {
448 struct sockaddr *addr = p;
449
450 if (!is_valid_ether_addr(addr->sa_data))
451 return -EADDRNOTAVAIL;
452 eth_hw_addr_set(ndev, addr->sa_data);
453 temac_do_set_mac_address(ndev);
454 return 0;
455 }
456
temac_set_multicast_list(struct net_device * ndev)457 static void temac_set_multicast_list(struct net_device *ndev)
458 {
459 struct temac_local *lp = netdev_priv(ndev);
460 u32 multi_addr_msw, multi_addr_lsw;
461 int i = 0;
462 unsigned long flags;
463 bool promisc_mode_disabled = false;
464
465 if (ndev->flags & (IFF_PROMISC | IFF_ALLMULTI) ||
466 (netdev_mc_count(ndev) > MULTICAST_CAM_TABLE_NUM)) {
467 temac_indirect_out32(lp, XTE_AFM_OFFSET, XTE_AFM_EPPRM_MASK);
468 dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
469 return;
470 }
471
472 spin_lock_irqsave(lp->indirect_lock, flags);
473
474 if (!netdev_mc_empty(ndev)) {
475 struct netdev_hw_addr *ha;
476
477 netdev_for_each_mc_addr(ha, ndev) {
478 if (WARN_ON(i >= MULTICAST_CAM_TABLE_NUM))
479 break;
480 multi_addr_msw = ((ha->addr[3] << 24) |
481 (ha->addr[2] << 16) |
482 (ha->addr[1] << 8) |
483 (ha->addr[0]));
484 temac_indirect_out32_locked(lp, XTE_MAW0_OFFSET,
485 multi_addr_msw);
486 multi_addr_lsw = ((ha->addr[5] << 8) |
487 (ha->addr[4]) | (i << 16));
488 temac_indirect_out32_locked(lp, XTE_MAW1_OFFSET,
489 multi_addr_lsw);
490 i++;
491 }
492 }
493
494 /* Clear all or remaining/unused address table entries */
495 while (i < MULTICAST_CAM_TABLE_NUM) {
496 temac_indirect_out32_locked(lp, XTE_MAW0_OFFSET, 0);
497 temac_indirect_out32_locked(lp, XTE_MAW1_OFFSET, i << 16);
498 i++;
499 }
500
501 /* Enable address filter block if currently disabled */
502 if (temac_indirect_in32_locked(lp, XTE_AFM_OFFSET)
503 & XTE_AFM_EPPRM_MASK) {
504 temac_indirect_out32_locked(lp, XTE_AFM_OFFSET, 0);
505 promisc_mode_disabled = true;
506 }
507
508 spin_unlock_irqrestore(lp->indirect_lock, flags);
509
510 if (promisc_mode_disabled)
511 dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
512 }
513
514 static struct temac_option {
515 int flg;
516 u32 opt;
517 u32 reg;
518 u32 m_or;
519 u32 m_and;
520 } temac_options[] = {
521 /* Turn on jumbo packet support for both Rx and Tx */
522 {
523 .opt = XTE_OPTION_JUMBO,
524 .reg = XTE_TXC_OFFSET,
525 .m_or = XTE_TXC_TXJMBO_MASK,
526 },
527 {
528 .opt = XTE_OPTION_JUMBO,
529 .reg = XTE_RXC1_OFFSET,
530 .m_or = XTE_RXC1_RXJMBO_MASK,
531 },
532 /* Turn on VLAN packet support for both Rx and Tx */
533 {
534 .opt = XTE_OPTION_VLAN,
535 .reg = XTE_TXC_OFFSET,
536 .m_or = XTE_TXC_TXVLAN_MASK,
537 },
538 {
539 .opt = XTE_OPTION_VLAN,
540 .reg = XTE_RXC1_OFFSET,
541 .m_or = XTE_RXC1_RXVLAN_MASK,
542 },
543 /* Turn on FCS stripping on receive packets */
544 {
545 .opt = XTE_OPTION_FCS_STRIP,
546 .reg = XTE_RXC1_OFFSET,
547 .m_or = XTE_RXC1_RXFCS_MASK,
548 },
549 /* Turn on FCS insertion on transmit packets */
550 {
551 .opt = XTE_OPTION_FCS_INSERT,
552 .reg = XTE_TXC_OFFSET,
553 .m_or = XTE_TXC_TXFCS_MASK,
554 },
555 /* Turn on length/type field checking on receive packets */
556 {
557 .opt = XTE_OPTION_LENTYPE_ERR,
558 .reg = XTE_RXC1_OFFSET,
559 .m_or = XTE_RXC1_RXLT_MASK,
560 },
561 /* Turn on flow control */
562 {
563 .opt = XTE_OPTION_FLOW_CONTROL,
564 .reg = XTE_FCC_OFFSET,
565 .m_or = XTE_FCC_RXFLO_MASK,
566 },
567 /* Turn on flow control */
568 {
569 .opt = XTE_OPTION_FLOW_CONTROL,
570 .reg = XTE_FCC_OFFSET,
571 .m_or = XTE_FCC_TXFLO_MASK,
572 },
573 /* Turn on promiscuous frame filtering (all frames are received ) */
574 {
575 .opt = XTE_OPTION_PROMISC,
576 .reg = XTE_AFM_OFFSET,
577 .m_or = XTE_AFM_EPPRM_MASK,
578 },
579 /* Enable transmitter if not already enabled */
580 {
581 .opt = XTE_OPTION_TXEN,
582 .reg = XTE_TXC_OFFSET,
583 .m_or = XTE_TXC_TXEN_MASK,
584 },
585 /* Enable receiver? */
586 {
587 .opt = XTE_OPTION_RXEN,
588 .reg = XTE_RXC1_OFFSET,
589 .m_or = XTE_RXC1_RXEN_MASK,
590 },
591 {}
592 };
593
594 /*
595 * temac_setoptions
596 */
temac_setoptions(struct net_device * ndev,u32 options)597 static u32 temac_setoptions(struct net_device *ndev, u32 options)
598 {
599 struct temac_local *lp = netdev_priv(ndev);
600 struct temac_option *tp = &temac_options[0];
601 int reg;
602 unsigned long flags;
603
604 spin_lock_irqsave(lp->indirect_lock, flags);
605 while (tp->opt) {
606 reg = temac_indirect_in32_locked(lp, tp->reg) & ~tp->m_or;
607 if (options & tp->opt) {
608 reg |= tp->m_or;
609 temac_indirect_out32_locked(lp, tp->reg, reg);
610 }
611 tp++;
612 }
613 spin_unlock_irqrestore(lp->indirect_lock, flags);
614 lp->options |= options;
615
616 return 0;
617 }
618
619 /* Initialize temac */
temac_device_reset(struct net_device * ndev)620 static void temac_device_reset(struct net_device *ndev)
621 {
622 struct temac_local *lp = netdev_priv(ndev);
623 u32 timeout;
624 u32 val;
625 unsigned long flags;
626
627 /* Perform a software reset */
628
629 /* 0x300 host enable bit ? */
630 /* reset PHY through control register ?:1 */
631
632 dev_dbg(&ndev->dev, "%s()\n", __func__);
633
634 /* Reset the receiver and wait for it to finish reset */
635 temac_indirect_out32(lp, XTE_RXC1_OFFSET, XTE_RXC1_RXRST_MASK);
636 timeout = 1000;
637 while (temac_indirect_in32(lp, XTE_RXC1_OFFSET) & XTE_RXC1_RXRST_MASK) {
638 udelay(1);
639 if (--timeout == 0) {
640 dev_err(&ndev->dev,
641 "%s RX reset timeout!!\n", __func__);
642 break;
643 }
644 }
645
646 /* Reset the transmitter and wait for it to finish reset */
647 temac_indirect_out32(lp, XTE_TXC_OFFSET, XTE_TXC_TXRST_MASK);
648 timeout = 1000;
649 while (temac_indirect_in32(lp, XTE_TXC_OFFSET) & XTE_TXC_TXRST_MASK) {
650 udelay(1);
651 if (--timeout == 0) {
652 dev_err(&ndev->dev,
653 "%s TX reset timeout!!\n", __func__);
654 break;
655 }
656 }
657
658 /* Disable the receiver */
659 spin_lock_irqsave(lp->indirect_lock, flags);
660 val = temac_indirect_in32_locked(lp, XTE_RXC1_OFFSET);
661 temac_indirect_out32_locked(lp, XTE_RXC1_OFFSET,
662 val & ~XTE_RXC1_RXEN_MASK);
663 spin_unlock_irqrestore(lp->indirect_lock, flags);
664
665 /* Reset Local Link (DMA) */
666 lp->dma_out(lp, DMA_CONTROL_REG, DMA_CONTROL_RST);
667 timeout = 1000;
668 while (lp->dma_in(lp, DMA_CONTROL_REG) & DMA_CONTROL_RST) {
669 udelay(1);
670 if (--timeout == 0) {
671 dev_err(&ndev->dev,
672 "%s DMA reset timeout!!\n", __func__);
673 break;
674 }
675 }
676 lp->dma_out(lp, DMA_CONTROL_REG, DMA_TAIL_ENABLE);
677
678 if (temac_dma_bd_init(ndev)) {
679 dev_err(&ndev->dev,
680 "%s descriptor allocation failed\n", __func__);
681 }
682
683 spin_lock_irqsave(lp->indirect_lock, flags);
684 temac_indirect_out32_locked(lp, XTE_RXC0_OFFSET, 0);
685 temac_indirect_out32_locked(lp, XTE_RXC1_OFFSET, 0);
686 temac_indirect_out32_locked(lp, XTE_TXC_OFFSET, 0);
687 temac_indirect_out32_locked(lp, XTE_FCC_OFFSET, XTE_FCC_RXFLO_MASK);
688 spin_unlock_irqrestore(lp->indirect_lock, flags);
689
690 /* Sync default options with HW
691 * but leave receiver and transmitter disabled.
692 */
693 temac_setoptions(ndev,
694 lp->options & ~(XTE_OPTION_TXEN | XTE_OPTION_RXEN));
695
696 temac_do_set_mac_address(ndev);
697
698 /* Set address filter table */
699 temac_set_multicast_list(ndev);
700 if (temac_setoptions(ndev, lp->options))
701 dev_err(&ndev->dev, "Error setting TEMAC options\n");
702
703 /* Init Driver variable */
704 netif_trans_update(ndev); /* prevent tx timeout */
705 }
706
temac_adjust_link(struct net_device * ndev)707 static void temac_adjust_link(struct net_device *ndev)
708 {
709 struct temac_local *lp = netdev_priv(ndev);
710 struct phy_device *phy = ndev->phydev;
711 u32 mii_speed;
712 int link_state;
713 unsigned long flags;
714
715 /* hash together the state values to decide if something has changed */
716 link_state = phy->speed | (phy->duplex << 1) | phy->link;
717
718 if (lp->last_link != link_state) {
719 spin_lock_irqsave(lp->indirect_lock, flags);
720 mii_speed = temac_indirect_in32_locked(lp, XTE_EMCFG_OFFSET);
721 mii_speed &= ~XTE_EMCFG_LINKSPD_MASK;
722
723 switch (phy->speed) {
724 case SPEED_1000:
725 mii_speed |= XTE_EMCFG_LINKSPD_1000;
726 break;
727 case SPEED_100:
728 mii_speed |= XTE_EMCFG_LINKSPD_100;
729 break;
730 case SPEED_10:
731 mii_speed |= XTE_EMCFG_LINKSPD_10;
732 break;
733 }
734
735 /* Write new speed setting out to TEMAC */
736 temac_indirect_out32_locked(lp, XTE_EMCFG_OFFSET, mii_speed);
737 spin_unlock_irqrestore(lp->indirect_lock, flags);
738
739 lp->last_link = link_state;
740 phy_print_status(phy);
741 }
742 }
743
744 #ifdef CONFIG_64BIT
745
ptr_to_txbd(void * p,struct cdmac_bd * bd)746 static void ptr_to_txbd(void *p, struct cdmac_bd *bd)
747 {
748 bd->app3 = (u32)(((u64)p) >> 32);
749 bd->app4 = (u32)((u64)p & 0xFFFFFFFF);
750 }
751
ptr_from_txbd(struct cdmac_bd * bd)752 static void *ptr_from_txbd(struct cdmac_bd *bd)
753 {
754 return (void *)(((u64)(bd->app3) << 32) | bd->app4);
755 }
756
757 #else
758
ptr_to_txbd(void * p,struct cdmac_bd * bd)759 static void ptr_to_txbd(void *p, struct cdmac_bd *bd)
760 {
761 bd->app4 = (u32)p;
762 }
763
ptr_from_txbd(struct cdmac_bd * bd)764 static void *ptr_from_txbd(struct cdmac_bd *bd)
765 {
766 return (void *)(bd->app4);
767 }
768
769 #endif
770
temac_start_xmit_done(struct net_device * ndev)771 static void temac_start_xmit_done(struct net_device *ndev)
772 {
773 struct temac_local *lp = netdev_priv(ndev);
774 struct cdmac_bd *cur_p;
775 unsigned int stat = 0;
776 struct sk_buff *skb;
777
778 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
779 stat = be32_to_cpu(cur_p->app0);
780
781 while (stat & STS_CTRL_APP0_CMPLT) {
782 /* Make sure that the other fields are read after bd is
783 * released by dma
784 */
785 rmb();
786 dma_unmap_single(ndev->dev.parent, be32_to_cpu(cur_p->phys),
787 be32_to_cpu(cur_p->len), DMA_TO_DEVICE);
788 skb = (struct sk_buff *)ptr_from_txbd(cur_p);
789 if (skb)
790 dev_consume_skb_irq(skb);
791 cur_p->app1 = 0;
792 cur_p->app2 = 0;
793 cur_p->app3 = 0;
794 cur_p->app4 = 0;
795
796 ndev->stats.tx_packets++;
797 ndev->stats.tx_bytes += be32_to_cpu(cur_p->len);
798
799 /* app0 must be visible last, as it is used to flag
800 * availability of the bd
801 */
802 smp_mb();
803 cur_p->app0 = 0;
804
805 lp->tx_bd_ci++;
806 if (lp->tx_bd_ci >= lp->tx_bd_num)
807 lp->tx_bd_ci = 0;
808
809 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
810 stat = be32_to_cpu(cur_p->app0);
811 }
812
813 /* Matches barrier in temac_start_xmit */
814 smp_mb();
815
816 netif_wake_queue(ndev);
817 }
818
temac_check_tx_bd_space(struct temac_local * lp,int num_frag)819 static inline int temac_check_tx_bd_space(struct temac_local *lp, int num_frag)
820 {
821 struct cdmac_bd *cur_p;
822 int tail;
823
824 tail = lp->tx_bd_tail;
825 cur_p = &lp->tx_bd_v[tail];
826
827 do {
828 if (cur_p->app0)
829 return NETDEV_TX_BUSY;
830
831 /* Make sure to read next bd app0 after this one */
832 rmb();
833
834 tail++;
835 if (tail >= lp->tx_bd_num)
836 tail = 0;
837
838 cur_p = &lp->tx_bd_v[tail];
839 num_frag--;
840 } while (num_frag >= 0);
841
842 return 0;
843 }
844
845 static netdev_tx_t
temac_start_xmit(struct sk_buff * skb,struct net_device * ndev)846 temac_start_xmit(struct sk_buff *skb, struct net_device *ndev)
847 {
848 struct temac_local *lp = netdev_priv(ndev);
849 struct cdmac_bd *cur_p;
850 dma_addr_t tail_p, skb_dma_addr;
851 int ii;
852 unsigned long num_frag;
853 skb_frag_t *frag;
854
855 num_frag = skb_shinfo(skb)->nr_frags;
856 frag = &skb_shinfo(skb)->frags[0];
857 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
858
859 if (temac_check_tx_bd_space(lp, num_frag + 1)) {
860 if (netif_queue_stopped(ndev))
861 return NETDEV_TX_BUSY;
862
863 netif_stop_queue(ndev);
864
865 /* Matches barrier in temac_start_xmit_done */
866 smp_mb();
867
868 /* Space might have just been freed - check again */
869 if (temac_check_tx_bd_space(lp, num_frag + 1))
870 return NETDEV_TX_BUSY;
871
872 netif_wake_queue(ndev);
873 }
874
875 cur_p->app0 = 0;
876 if (skb->ip_summed == CHECKSUM_PARTIAL) {
877 unsigned int csum_start_off = skb_checksum_start_offset(skb);
878 unsigned int csum_index_off = csum_start_off + skb->csum_offset;
879
880 cur_p->app0 |= cpu_to_be32(0x000001); /* TX Checksum Enabled */
881 cur_p->app1 = cpu_to_be32((csum_start_off << 16)
882 | csum_index_off);
883 cur_p->app2 = 0; /* initial checksum seed */
884 }
885
886 cur_p->app0 |= cpu_to_be32(STS_CTRL_APP0_SOP);
887 skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data,
888 skb_headlen(skb), DMA_TO_DEVICE);
889 cur_p->len = cpu_to_be32(skb_headlen(skb));
890 if (WARN_ON_ONCE(dma_mapping_error(ndev->dev.parent, skb_dma_addr))) {
891 dev_kfree_skb_any(skb);
892 ndev->stats.tx_dropped++;
893 return NETDEV_TX_OK;
894 }
895 cur_p->phys = cpu_to_be32(skb_dma_addr);
896
897 for (ii = 0; ii < num_frag; ii++) {
898 if (++lp->tx_bd_tail >= lp->tx_bd_num)
899 lp->tx_bd_tail = 0;
900
901 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
902 skb_dma_addr = dma_map_single(ndev->dev.parent,
903 skb_frag_address(frag),
904 skb_frag_size(frag),
905 DMA_TO_DEVICE);
906 if (dma_mapping_error(ndev->dev.parent, skb_dma_addr)) {
907 if (--lp->tx_bd_tail < 0)
908 lp->tx_bd_tail = lp->tx_bd_num - 1;
909 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
910 while (--ii >= 0) {
911 --frag;
912 dma_unmap_single(ndev->dev.parent,
913 be32_to_cpu(cur_p->phys),
914 skb_frag_size(frag),
915 DMA_TO_DEVICE);
916 if (--lp->tx_bd_tail < 0)
917 lp->tx_bd_tail = lp->tx_bd_num - 1;
918 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
919 }
920 dma_unmap_single(ndev->dev.parent,
921 be32_to_cpu(cur_p->phys),
922 skb_headlen(skb), DMA_TO_DEVICE);
923 dev_kfree_skb_any(skb);
924 ndev->stats.tx_dropped++;
925 return NETDEV_TX_OK;
926 }
927 cur_p->phys = cpu_to_be32(skb_dma_addr);
928 cur_p->len = cpu_to_be32(skb_frag_size(frag));
929 cur_p->app0 = 0;
930 frag++;
931 }
932 cur_p->app0 |= cpu_to_be32(STS_CTRL_APP0_EOP);
933
934 /* Mark last fragment with skb address, so it can be consumed
935 * in temac_start_xmit_done()
936 */
937 ptr_to_txbd((void *)skb, cur_p);
938
939 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
940 lp->tx_bd_tail++;
941 if (lp->tx_bd_tail >= lp->tx_bd_num)
942 lp->tx_bd_tail = 0;
943
944 skb_tx_timestamp(skb);
945
946 /* Kick off the transfer */
947 wmb();
948 lp->dma_out(lp, TX_TAILDESC_PTR, tail_p); /* DMA start */
949
950 if (temac_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
951 netif_stop_queue(ndev);
952
953 return NETDEV_TX_OK;
954 }
955
ll_temac_recv_buffers_available(struct temac_local * lp)956 static int ll_temac_recv_buffers_available(struct temac_local *lp)
957 {
958 int available;
959
960 if (!lp->rx_skb[lp->rx_bd_ci])
961 return 0;
962 available = 1 + lp->rx_bd_tail - lp->rx_bd_ci;
963 if (available <= 0)
964 available += lp->rx_bd_num;
965 return available;
966 }
967
ll_temac_recv(struct net_device * ndev)968 static void ll_temac_recv(struct net_device *ndev)
969 {
970 struct temac_local *lp = netdev_priv(ndev);
971 unsigned long flags;
972 int rx_bd;
973 bool update_tail = false;
974
975 spin_lock_irqsave(&lp->rx_lock, flags);
976
977 /* Process all received buffers, passing them on network
978 * stack. After this, the buffer descriptors will be in an
979 * un-allocated stage, where no skb is allocated for it, and
980 * they are therefore not available for TEMAC/DMA.
981 */
982 do {
983 struct cdmac_bd *bd = &lp->rx_bd_v[lp->rx_bd_ci];
984 struct sk_buff *skb = lp->rx_skb[lp->rx_bd_ci];
985 unsigned int bdstat = be32_to_cpu(bd->app0);
986 int length;
987
988 /* While this should not normally happen, we can end
989 * here when GFP_ATOMIC allocations fail, and we
990 * therefore have un-allocated buffers.
991 */
992 if (!skb)
993 break;
994
995 /* Loop over all completed buffer descriptors */
996 if (!(bdstat & STS_CTRL_APP0_CMPLT))
997 break;
998
999 dma_unmap_single(ndev->dev.parent, be32_to_cpu(bd->phys),
1000 XTE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE);
1001 /* The buffer is not valid for DMA anymore */
1002 bd->phys = 0;
1003 bd->len = 0;
1004
1005 length = be32_to_cpu(bd->app4) & 0x3FFF;
1006 skb_put(skb, length);
1007 skb->protocol = eth_type_trans(skb, ndev);
1008 skb_checksum_none_assert(skb);
1009
1010 /* if we're doing rx csum offload, set it up */
1011 if (((lp->temac_features & TEMAC_FEATURE_RX_CSUM) != 0) &&
1012 (skb->protocol == htons(ETH_P_IP)) &&
1013 (skb->len > 64)) {
1014 /* Convert from device endianness (be32) to cpu
1015 * endianness, and if necessary swap the bytes
1016 * (back) for proper IP checksum byte order
1017 * (be16).
1018 */
1019 skb->csum = htons(be32_to_cpu(bd->app3) & 0xFFFF);
1020 skb->ip_summed = CHECKSUM_COMPLETE;
1021 }
1022
1023 if (!skb_defer_rx_timestamp(skb))
1024 netif_rx(skb);
1025 /* The skb buffer is now owned by network stack above */
1026 lp->rx_skb[lp->rx_bd_ci] = NULL;
1027
1028 ndev->stats.rx_packets++;
1029 ndev->stats.rx_bytes += length;
1030
1031 rx_bd = lp->rx_bd_ci;
1032 if (++lp->rx_bd_ci >= lp->rx_bd_num)
1033 lp->rx_bd_ci = 0;
1034 } while (rx_bd != lp->rx_bd_tail);
1035
1036 /* DMA operations will halt when the last buffer descriptor is
1037 * processed (ie. the one pointed to by RX_TAILDESC_PTR).
1038 * When that happens, no more interrupt events will be
1039 * generated. No IRQ_COAL or IRQ_DLY, and not even an
1040 * IRQ_ERR. To avoid stalling, we schedule a delayed work
1041 * when there is a potential risk of that happening. The work
1042 * will call this function, and thus re-schedule itself until
1043 * enough buffers are available again.
1044 */
1045 if (ll_temac_recv_buffers_available(lp) < lp->coalesce_count_rx)
1046 schedule_delayed_work(&lp->restart_work, HZ / 1000);
1047
1048 /* Allocate new buffers for those buffer descriptors that were
1049 * passed to network stack. Note that GFP_ATOMIC allocations
1050 * can fail (e.g. when a larger burst of GFP_ATOMIC
1051 * allocations occurs), so while we try to allocate all
1052 * buffers in the same interrupt where they were processed, we
1053 * continue with what we could get in case of allocation
1054 * failure. Allocation of remaining buffers will be retried
1055 * in following calls.
1056 */
1057 while (1) {
1058 struct sk_buff *skb;
1059 struct cdmac_bd *bd;
1060 dma_addr_t skb_dma_addr;
1061
1062 rx_bd = lp->rx_bd_tail + 1;
1063 if (rx_bd >= lp->rx_bd_num)
1064 rx_bd = 0;
1065 bd = &lp->rx_bd_v[rx_bd];
1066
1067 if (bd->phys)
1068 break; /* All skb's allocated */
1069
1070 skb = netdev_alloc_skb_ip_align(ndev, XTE_MAX_JUMBO_FRAME_SIZE);
1071 if (!skb) {
1072 dev_warn(&ndev->dev, "skb alloc failed\n");
1073 break;
1074 }
1075
1076 skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data,
1077 XTE_MAX_JUMBO_FRAME_SIZE,
1078 DMA_FROM_DEVICE);
1079 if (WARN_ON_ONCE(dma_mapping_error(ndev->dev.parent,
1080 skb_dma_addr))) {
1081 dev_kfree_skb_any(skb);
1082 break;
1083 }
1084
1085 bd->phys = cpu_to_be32(skb_dma_addr);
1086 bd->len = cpu_to_be32(XTE_MAX_JUMBO_FRAME_SIZE);
1087 bd->app0 = cpu_to_be32(STS_CTRL_APP0_IRQONEND);
1088 lp->rx_skb[rx_bd] = skb;
1089
1090 lp->rx_bd_tail = rx_bd;
1091 update_tail = true;
1092 }
1093
1094 /* Move tail pointer when buffers have been allocated */
1095 if (update_tail) {
1096 lp->dma_out(lp, RX_TAILDESC_PTR,
1097 lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_tail);
1098 }
1099
1100 spin_unlock_irqrestore(&lp->rx_lock, flags);
1101 }
1102
1103 /* Function scheduled to ensure a restart in case of DMA halt
1104 * condition caused by running out of buffer descriptors.
1105 */
ll_temac_restart_work_func(struct work_struct * work)1106 static void ll_temac_restart_work_func(struct work_struct *work)
1107 {
1108 struct temac_local *lp = container_of(work, struct temac_local,
1109 restart_work.work);
1110 struct net_device *ndev = lp->ndev;
1111
1112 ll_temac_recv(ndev);
1113 }
1114
ll_temac_tx_irq(int irq,void * _ndev)1115 static irqreturn_t ll_temac_tx_irq(int irq, void *_ndev)
1116 {
1117 struct net_device *ndev = _ndev;
1118 struct temac_local *lp = netdev_priv(ndev);
1119 unsigned int status;
1120
1121 status = lp->dma_in(lp, TX_IRQ_REG);
1122 lp->dma_out(lp, TX_IRQ_REG, status);
1123
1124 if (status & (IRQ_COAL | IRQ_DLY))
1125 temac_start_xmit_done(lp->ndev);
1126 if (status & (IRQ_ERR | IRQ_DMAERR))
1127 dev_err_ratelimited(&ndev->dev,
1128 "TX error 0x%x TX_CHNL_STS=0x%08x\n",
1129 status, lp->dma_in(lp, TX_CHNL_STS));
1130
1131 return IRQ_HANDLED;
1132 }
1133
ll_temac_rx_irq(int irq,void * _ndev)1134 static irqreturn_t ll_temac_rx_irq(int irq, void *_ndev)
1135 {
1136 struct net_device *ndev = _ndev;
1137 struct temac_local *lp = netdev_priv(ndev);
1138 unsigned int status;
1139
1140 /* Read and clear the status registers */
1141 status = lp->dma_in(lp, RX_IRQ_REG);
1142 lp->dma_out(lp, RX_IRQ_REG, status);
1143
1144 if (status & (IRQ_COAL | IRQ_DLY))
1145 ll_temac_recv(lp->ndev);
1146 if (status & (IRQ_ERR | IRQ_DMAERR))
1147 dev_err_ratelimited(&ndev->dev,
1148 "RX error 0x%x RX_CHNL_STS=0x%08x\n",
1149 status, lp->dma_in(lp, RX_CHNL_STS));
1150
1151 return IRQ_HANDLED;
1152 }
1153
temac_open(struct net_device * ndev)1154 static int temac_open(struct net_device *ndev)
1155 {
1156 struct temac_local *lp = netdev_priv(ndev);
1157 struct phy_device *phydev = NULL;
1158 int rc;
1159
1160 dev_dbg(&ndev->dev, "temac_open()\n");
1161
1162 if (lp->phy_node) {
1163 phydev = of_phy_connect(lp->ndev, lp->phy_node,
1164 temac_adjust_link, 0, 0);
1165 if (!phydev) {
1166 dev_err(lp->dev, "of_phy_connect() failed\n");
1167 return -ENODEV;
1168 }
1169 phy_start(phydev);
1170 } else if (strlen(lp->phy_name) > 0) {
1171 phydev = phy_connect(lp->ndev, lp->phy_name, temac_adjust_link,
1172 lp->phy_interface);
1173 if (IS_ERR(phydev)) {
1174 dev_err(lp->dev, "phy_connect() failed\n");
1175 return PTR_ERR(phydev);
1176 }
1177 phy_start(phydev);
1178 }
1179
1180 temac_device_reset(ndev);
1181
1182 rc = request_irq(lp->tx_irq, ll_temac_tx_irq, 0, ndev->name, ndev);
1183 if (rc)
1184 goto err_tx_irq;
1185 rc = request_irq(lp->rx_irq, ll_temac_rx_irq, 0, ndev->name, ndev);
1186 if (rc)
1187 goto err_rx_irq;
1188
1189 return 0;
1190
1191 err_rx_irq:
1192 free_irq(lp->tx_irq, ndev);
1193 err_tx_irq:
1194 if (phydev)
1195 phy_disconnect(phydev);
1196 dev_err(lp->dev, "request_irq() failed\n");
1197 return rc;
1198 }
1199
temac_stop(struct net_device * ndev)1200 static int temac_stop(struct net_device *ndev)
1201 {
1202 struct temac_local *lp = netdev_priv(ndev);
1203 struct phy_device *phydev = ndev->phydev;
1204
1205 dev_dbg(&ndev->dev, "temac_close()\n");
1206
1207 cancel_delayed_work_sync(&lp->restart_work);
1208
1209 free_irq(lp->tx_irq, ndev);
1210 free_irq(lp->rx_irq, ndev);
1211
1212 if (phydev)
1213 phy_disconnect(phydev);
1214
1215 temac_dma_bd_release(ndev);
1216
1217 return 0;
1218 }
1219
1220 #ifdef CONFIG_NET_POLL_CONTROLLER
1221 static void
temac_poll_controller(struct net_device * ndev)1222 temac_poll_controller(struct net_device *ndev)
1223 {
1224 struct temac_local *lp = netdev_priv(ndev);
1225
1226 disable_irq(lp->tx_irq);
1227 disable_irq(lp->rx_irq);
1228
1229 ll_temac_rx_irq(lp->tx_irq, ndev);
1230 ll_temac_tx_irq(lp->rx_irq, ndev);
1231
1232 enable_irq(lp->tx_irq);
1233 enable_irq(lp->rx_irq);
1234 }
1235 #endif
1236
1237 static const struct net_device_ops temac_netdev_ops = {
1238 .ndo_open = temac_open,
1239 .ndo_stop = temac_stop,
1240 .ndo_start_xmit = temac_start_xmit,
1241 .ndo_set_rx_mode = temac_set_multicast_list,
1242 .ndo_set_mac_address = temac_set_mac_address,
1243 .ndo_validate_addr = eth_validate_addr,
1244 .ndo_eth_ioctl = phy_do_ioctl_running,
1245 #ifdef CONFIG_NET_POLL_CONTROLLER
1246 .ndo_poll_controller = temac_poll_controller,
1247 #endif
1248 };
1249
1250 /* ---------------------------------------------------------------------
1251 * SYSFS device attributes
1252 */
temac_show_llink_regs(struct device * dev,struct device_attribute * attr,char * buf)1253 static ssize_t temac_show_llink_regs(struct device *dev,
1254 struct device_attribute *attr, char *buf)
1255 {
1256 struct net_device *ndev = dev_get_drvdata(dev);
1257 struct temac_local *lp = netdev_priv(ndev);
1258 int i, len = 0;
1259
1260 for (i = 0; i < 0x11; i++)
1261 len += sprintf(buf + len, "%.8x%s", lp->dma_in(lp, i),
1262 (i % 8) == 7 ? "\n" : " ");
1263 len += sprintf(buf + len, "\n");
1264
1265 return len;
1266 }
1267
1268 static DEVICE_ATTR(llink_regs, 0440, temac_show_llink_regs, NULL);
1269
1270 static struct attribute *temac_device_attrs[] = {
1271 &dev_attr_llink_regs.attr,
1272 NULL,
1273 };
1274
1275 static const struct attribute_group temac_attr_group = {
1276 .attrs = temac_device_attrs,
1277 };
1278
1279 /* ---------------------------------------------------------------------
1280 * ethtool support
1281 */
1282
1283 static void
ll_temac_ethtools_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ering,struct kernel_ethtool_ringparam * kernel_ering,struct netlink_ext_ack * extack)1284 ll_temac_ethtools_get_ringparam(struct net_device *ndev,
1285 struct ethtool_ringparam *ering,
1286 struct kernel_ethtool_ringparam *kernel_ering,
1287 struct netlink_ext_ack *extack)
1288 {
1289 struct temac_local *lp = netdev_priv(ndev);
1290
1291 ering->rx_max_pending = RX_BD_NUM_MAX;
1292 ering->rx_mini_max_pending = 0;
1293 ering->rx_jumbo_max_pending = 0;
1294 ering->tx_max_pending = TX_BD_NUM_MAX;
1295 ering->rx_pending = lp->rx_bd_num;
1296 ering->rx_mini_pending = 0;
1297 ering->rx_jumbo_pending = 0;
1298 ering->tx_pending = lp->tx_bd_num;
1299 }
1300
1301 static int
ll_temac_ethtools_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ering,struct kernel_ethtool_ringparam * kernel_ering,struct netlink_ext_ack * extack)1302 ll_temac_ethtools_set_ringparam(struct net_device *ndev,
1303 struct ethtool_ringparam *ering,
1304 struct kernel_ethtool_ringparam *kernel_ering,
1305 struct netlink_ext_ack *extack)
1306 {
1307 struct temac_local *lp = netdev_priv(ndev);
1308
1309 if (ering->rx_pending > RX_BD_NUM_MAX ||
1310 ering->rx_mini_pending ||
1311 ering->rx_jumbo_pending ||
1312 ering->rx_pending > TX_BD_NUM_MAX)
1313 return -EINVAL;
1314
1315 if (netif_running(ndev))
1316 return -EBUSY;
1317
1318 lp->rx_bd_num = ering->rx_pending;
1319 lp->tx_bd_num = ering->tx_pending;
1320 return 0;
1321 }
1322
1323 static int
ll_temac_ethtools_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1324 ll_temac_ethtools_get_coalesce(struct net_device *ndev,
1325 struct ethtool_coalesce *ec,
1326 struct kernel_ethtool_coalesce *kernel_coal,
1327 struct netlink_ext_ack *extack)
1328 {
1329 struct temac_local *lp = netdev_priv(ndev);
1330
1331 ec->rx_max_coalesced_frames = lp->coalesce_count_rx;
1332 ec->tx_max_coalesced_frames = lp->coalesce_count_tx;
1333 ec->rx_coalesce_usecs = (lp->coalesce_delay_rx * 512) / 100;
1334 ec->tx_coalesce_usecs = (lp->coalesce_delay_tx * 512) / 100;
1335 return 0;
1336 }
1337
1338 static int
ll_temac_ethtools_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1339 ll_temac_ethtools_set_coalesce(struct net_device *ndev,
1340 struct ethtool_coalesce *ec,
1341 struct kernel_ethtool_coalesce *kernel_coal,
1342 struct netlink_ext_ack *extack)
1343 {
1344 struct temac_local *lp = netdev_priv(ndev);
1345
1346 if (netif_running(ndev)) {
1347 netdev_err(ndev,
1348 "Please stop netif before applying configuration\n");
1349 return -EFAULT;
1350 }
1351
1352 if (ec->rx_max_coalesced_frames)
1353 lp->coalesce_count_rx = ec->rx_max_coalesced_frames;
1354 if (ec->tx_max_coalesced_frames)
1355 lp->coalesce_count_tx = ec->tx_max_coalesced_frames;
1356 /* With typical LocalLink clock speed of 200 MHz and
1357 * C_PRESCALAR=1023, each delay count corresponds to 5.12 us.
1358 */
1359 if (ec->rx_coalesce_usecs)
1360 lp->coalesce_delay_rx =
1361 min(255U, (ec->rx_coalesce_usecs * 100) / 512);
1362 if (ec->tx_coalesce_usecs)
1363 lp->coalesce_delay_tx =
1364 min(255U, (ec->tx_coalesce_usecs * 100) / 512);
1365
1366 return 0;
1367 }
1368
1369 static const struct ethtool_ops temac_ethtool_ops = {
1370 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
1371 ETHTOOL_COALESCE_MAX_FRAMES,
1372 .nway_reset = phy_ethtool_nway_reset,
1373 .get_link = ethtool_op_get_link,
1374 .get_ts_info = ethtool_op_get_ts_info,
1375 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1376 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1377 .get_ringparam = ll_temac_ethtools_get_ringparam,
1378 .set_ringparam = ll_temac_ethtools_set_ringparam,
1379 .get_coalesce = ll_temac_ethtools_get_coalesce,
1380 .set_coalesce = ll_temac_ethtools_set_coalesce,
1381 };
1382
temac_probe(struct platform_device * pdev)1383 static int temac_probe(struct platform_device *pdev)
1384 {
1385 struct ll_temac_platform_data *pdata = dev_get_platdata(&pdev->dev);
1386 struct device_node *temac_np = dev_of_node(&pdev->dev), *dma_np;
1387 struct temac_local *lp;
1388 struct net_device *ndev;
1389 u8 addr[ETH_ALEN];
1390 __be32 *p;
1391 bool little_endian;
1392 int rc = 0;
1393
1394 /* Init network device structure */
1395 ndev = devm_alloc_etherdev(&pdev->dev, sizeof(*lp));
1396 if (!ndev)
1397 return -ENOMEM;
1398
1399 platform_set_drvdata(pdev, ndev);
1400 SET_NETDEV_DEV(ndev, &pdev->dev);
1401 ndev->features = NETIF_F_SG;
1402 ndev->netdev_ops = &temac_netdev_ops;
1403 ndev->ethtool_ops = &temac_ethtool_ops;
1404 #if 0
1405 ndev->features |= NETIF_F_IP_CSUM; /* Can checksum TCP/UDP over IPv4. */
1406 ndev->features |= NETIF_F_HW_CSUM; /* Can checksum all the packets. */
1407 ndev->features |= NETIF_F_IPV6_CSUM; /* Can checksum IPV6 TCP/UDP */
1408 ndev->features |= NETIF_F_HIGHDMA; /* Can DMA to high memory. */
1409 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; /* Transmit VLAN hw accel */
1410 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; /* Receive VLAN hw acceleration */
1411 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; /* Receive VLAN filtering */
1412 ndev->features |= NETIF_F_VLAN_CHALLENGED; /* cannot handle VLAN pkts */
1413 ndev->features |= NETIF_F_GSO; /* Enable software GSO. */
1414 ndev->features |= NETIF_F_MULTI_QUEUE; /* Has multiple TX/RX queues */
1415 ndev->features |= NETIF_F_LRO; /* large receive offload */
1416 #endif
1417
1418 /* setup temac private info structure */
1419 lp = netdev_priv(ndev);
1420 lp->ndev = ndev;
1421 lp->dev = &pdev->dev;
1422 lp->options = XTE_OPTION_DEFAULTS;
1423 lp->rx_bd_num = RX_BD_NUM_DEFAULT;
1424 lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1425 spin_lock_init(&lp->rx_lock);
1426 INIT_DELAYED_WORK(&lp->restart_work, ll_temac_restart_work_func);
1427
1428 /* Setup mutex for synchronization of indirect register access */
1429 if (pdata) {
1430 if (!pdata->indirect_lock) {
1431 dev_err(&pdev->dev,
1432 "indirect_lock missing in platform_data\n");
1433 return -EINVAL;
1434 }
1435 lp->indirect_lock = pdata->indirect_lock;
1436 } else {
1437 lp->indirect_lock = devm_kmalloc(&pdev->dev,
1438 sizeof(*lp->indirect_lock),
1439 GFP_KERNEL);
1440 if (!lp->indirect_lock)
1441 return -ENOMEM;
1442 spin_lock_init(lp->indirect_lock);
1443 }
1444
1445 /* map device registers */
1446 lp->regs = devm_platform_ioremap_resource(pdev, 0);
1447 if (IS_ERR(lp->regs)) {
1448 dev_err(&pdev->dev, "could not map TEMAC registers\n");
1449 return -ENOMEM;
1450 }
1451
1452 /* Select register access functions with the specified
1453 * endianness mode. Default for OF devices is big-endian.
1454 */
1455 little_endian = false;
1456 if (temac_np)
1457 little_endian = of_property_read_bool(temac_np, "little-endian");
1458 else if (pdata)
1459 little_endian = pdata->reg_little_endian;
1460
1461 if (little_endian) {
1462 lp->temac_ior = _temac_ior_le;
1463 lp->temac_iow = _temac_iow_le;
1464 } else {
1465 lp->temac_ior = _temac_ior_be;
1466 lp->temac_iow = _temac_iow_be;
1467 }
1468
1469 /* Setup checksum offload, but default to off if not specified */
1470 lp->temac_features = 0;
1471 if (temac_np) {
1472 p = (__be32 *)of_get_property(temac_np, "xlnx,txcsum", NULL);
1473 if (p && be32_to_cpu(*p))
1474 lp->temac_features |= TEMAC_FEATURE_TX_CSUM;
1475 p = (__be32 *)of_get_property(temac_np, "xlnx,rxcsum", NULL);
1476 if (p && be32_to_cpu(*p))
1477 lp->temac_features |= TEMAC_FEATURE_RX_CSUM;
1478 } else if (pdata) {
1479 if (pdata->txcsum)
1480 lp->temac_features |= TEMAC_FEATURE_TX_CSUM;
1481 if (pdata->rxcsum)
1482 lp->temac_features |= TEMAC_FEATURE_RX_CSUM;
1483 }
1484 if (lp->temac_features & TEMAC_FEATURE_TX_CSUM)
1485 /* Can checksum TCP/UDP over IPv4. */
1486 ndev->features |= NETIF_F_IP_CSUM;
1487
1488 /* Defaults for IRQ delay/coalescing setup. These are
1489 * configuration values, so does not belong in device-tree.
1490 */
1491 lp->coalesce_delay_tx = 0x10;
1492 lp->coalesce_count_tx = 0x22;
1493 lp->coalesce_delay_rx = 0xff;
1494 lp->coalesce_count_rx = 0x07;
1495
1496 /* Setup LocalLink DMA */
1497 if (temac_np) {
1498 /* Find the DMA node, map the DMA registers, and
1499 * decode the DMA IRQs.
1500 */
1501 dma_np = of_parse_phandle(temac_np, "llink-connected", 0);
1502 if (!dma_np) {
1503 dev_err(&pdev->dev, "could not find DMA node\n");
1504 return -ENODEV;
1505 }
1506
1507 /* Setup the DMA register accesses, could be DCR or
1508 * memory mapped.
1509 */
1510 if (temac_dcr_setup(lp, pdev, dma_np)) {
1511 /* no DCR in the device tree, try non-DCR */
1512 lp->sdma_regs = devm_of_iomap(&pdev->dev, dma_np, 0,
1513 NULL);
1514 if (IS_ERR(lp->sdma_regs)) {
1515 dev_err(&pdev->dev,
1516 "unable to map DMA registers\n");
1517 of_node_put(dma_np);
1518 return PTR_ERR(lp->sdma_regs);
1519 }
1520 if (of_property_read_bool(dma_np, "little-endian")) {
1521 lp->dma_in = temac_dma_in32_le;
1522 lp->dma_out = temac_dma_out32_le;
1523 } else {
1524 lp->dma_in = temac_dma_in32_be;
1525 lp->dma_out = temac_dma_out32_be;
1526 }
1527 dev_dbg(&pdev->dev, "MEM base: %p\n", lp->sdma_regs);
1528 }
1529
1530 /* Get DMA RX and TX interrupts */
1531 lp->rx_irq = irq_of_parse_and_map(dma_np, 0);
1532 lp->tx_irq = irq_of_parse_and_map(dma_np, 1);
1533
1534 /* Finished with the DMA node; drop the reference */
1535 of_node_put(dma_np);
1536 } else if (pdata) {
1537 /* 2nd memory resource specifies DMA registers */
1538 lp->sdma_regs = devm_platform_ioremap_resource(pdev, 1);
1539 if (IS_ERR(lp->sdma_regs)) {
1540 dev_err(&pdev->dev,
1541 "could not map DMA registers\n");
1542 return PTR_ERR(lp->sdma_regs);
1543 }
1544 if (pdata->dma_little_endian) {
1545 lp->dma_in = temac_dma_in32_le;
1546 lp->dma_out = temac_dma_out32_le;
1547 } else {
1548 lp->dma_in = temac_dma_in32_be;
1549 lp->dma_out = temac_dma_out32_be;
1550 }
1551
1552 /* Get DMA RX and TX interrupts */
1553 lp->rx_irq = platform_get_irq(pdev, 0);
1554 lp->tx_irq = platform_get_irq(pdev, 1);
1555
1556 /* IRQ delay/coalescing setup */
1557 if (pdata->tx_irq_timeout || pdata->tx_irq_count) {
1558 lp->coalesce_delay_tx = pdata->tx_irq_timeout;
1559 lp->coalesce_count_tx = pdata->tx_irq_count;
1560 }
1561 if (pdata->rx_irq_timeout || pdata->rx_irq_count) {
1562 lp->coalesce_delay_rx = pdata->rx_irq_timeout;
1563 lp->coalesce_count_rx = pdata->rx_irq_count;
1564 }
1565 }
1566
1567 /* Error handle returned DMA RX and TX interrupts */
1568 if (lp->rx_irq <= 0) {
1569 rc = lp->rx_irq ?: -EINVAL;
1570 return dev_err_probe(&pdev->dev, rc,
1571 "could not get DMA RX irq\n");
1572 }
1573 if (lp->tx_irq <= 0) {
1574 rc = lp->tx_irq ?: -EINVAL;
1575 return dev_err_probe(&pdev->dev, rc,
1576 "could not get DMA TX irq\n");
1577 }
1578
1579 if (temac_np) {
1580 /* Retrieve the MAC address */
1581 rc = of_get_mac_address(temac_np, addr);
1582 if (rc) {
1583 dev_err(&pdev->dev, "could not find MAC address\n");
1584 return -ENODEV;
1585 }
1586 temac_init_mac_address(ndev, addr);
1587 } else if (pdata) {
1588 temac_init_mac_address(ndev, pdata->mac_addr);
1589 }
1590
1591 rc = temac_mdio_setup(lp, pdev);
1592 if (rc)
1593 dev_warn(&pdev->dev, "error registering MDIO bus\n");
1594
1595 if (temac_np) {
1596 lp->phy_node = of_parse_phandle(temac_np, "phy-handle", 0);
1597 if (lp->phy_node)
1598 dev_dbg(lp->dev, "using PHY node %pOF\n", temac_np);
1599 } else if (pdata) {
1600 snprintf(lp->phy_name, sizeof(lp->phy_name),
1601 PHY_ID_FMT, lp->mii_bus->id, pdata->phy_addr);
1602 lp->phy_interface = pdata->phy_interface;
1603 }
1604
1605 /* Add the device attributes */
1606 rc = sysfs_create_group(&lp->dev->kobj, &temac_attr_group);
1607 if (rc) {
1608 dev_err(lp->dev, "Error creating sysfs files\n");
1609 goto err_sysfs_create;
1610 }
1611
1612 rc = register_netdev(lp->ndev);
1613 if (rc) {
1614 dev_err(lp->dev, "register_netdev() error (%i)\n", rc);
1615 goto err_register_ndev;
1616 }
1617
1618 return 0;
1619
1620 err_register_ndev:
1621 sysfs_remove_group(&lp->dev->kobj, &temac_attr_group);
1622 err_sysfs_create:
1623 if (lp->phy_node)
1624 of_node_put(lp->phy_node);
1625 temac_mdio_teardown(lp);
1626 return rc;
1627 }
1628
temac_remove(struct platform_device * pdev)1629 static void temac_remove(struct platform_device *pdev)
1630 {
1631 struct net_device *ndev = platform_get_drvdata(pdev);
1632 struct temac_local *lp = netdev_priv(ndev);
1633
1634 unregister_netdev(ndev);
1635 sysfs_remove_group(&lp->dev->kobj, &temac_attr_group);
1636 if (lp->phy_node)
1637 of_node_put(lp->phy_node);
1638 temac_mdio_teardown(lp);
1639 }
1640
1641 static const struct of_device_id temac_of_match[] = {
1642 { .compatible = "xlnx,xps-ll-temac-1.01.b", },
1643 { .compatible = "xlnx,xps-ll-temac-2.00.a", },
1644 { .compatible = "xlnx,xps-ll-temac-2.02.a", },
1645 { .compatible = "xlnx,xps-ll-temac-2.03.a", },
1646 {},
1647 };
1648 MODULE_DEVICE_TABLE(of, temac_of_match);
1649
1650 static struct platform_driver temac_driver = {
1651 .probe = temac_probe,
1652 .remove_new = temac_remove,
1653 .driver = {
1654 .name = "xilinx_temac",
1655 .of_match_table = temac_of_match,
1656 },
1657 };
1658
1659 module_platform_driver(temac_driver);
1660
1661 MODULE_DESCRIPTION("Xilinx LL_TEMAC Ethernet driver");
1662 MODULE_AUTHOR("Yoshio Kashiwagi");
1663 MODULE_LICENSE("GPL");
1664