1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Linutronix GmbH, Thomas Gleixner <tglx@kernel.org> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 #include <linux/percpu-rwsem.h> 59 #include <linux/unwind_deferred.h> 60 #include <linux/kvm_types.h> 61 62 #include "internal.h" 63 64 #include <asm/irq_regs.h> 65 66 typedef int (*remote_function_f)(void *); 67 68 struct remote_function_call { 69 struct task_struct *p; 70 remote_function_f func; 71 void *info; 72 int ret; 73 }; 74 75 static void remote_function(void *data) 76 { 77 struct remote_function_call *tfc = data; 78 struct task_struct *p = tfc->p; 79 80 if (p) { 81 /* -EAGAIN */ 82 if (task_cpu(p) != smp_processor_id()) 83 return; 84 85 /* 86 * Now that we're on right CPU with IRQs disabled, we can test 87 * if we hit the right task without races. 88 */ 89 90 tfc->ret = -ESRCH; /* No such (running) process */ 91 if (p != current) 92 return; 93 } 94 95 tfc->ret = tfc->func(tfc->info); 96 } 97 98 /** 99 * task_function_call - call a function on the cpu on which a task runs 100 * @p: the task to evaluate 101 * @func: the function to be called 102 * @info: the function call argument 103 * 104 * Calls the function @func when the task is currently running. This might 105 * be on the current CPU, which just calls the function directly. This will 106 * retry due to any failures in smp_call_function_single(), such as if the 107 * task_cpu() goes offline concurrently. 108 * 109 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 110 */ 111 static int 112 task_function_call(struct task_struct *p, remote_function_f func, void *info) 113 { 114 struct remote_function_call data = { 115 .p = p, 116 .func = func, 117 .info = info, 118 .ret = -EAGAIN, 119 }; 120 int ret; 121 122 for (;;) { 123 ret = smp_call_function_single(task_cpu(p), remote_function, 124 &data, 1); 125 if (!ret) 126 ret = data.ret; 127 128 if (ret != -EAGAIN) 129 break; 130 131 cond_resched(); 132 } 133 134 return ret; 135 } 136 137 /** 138 * cpu_function_call - call a function on the cpu 139 * @cpu: target cpu to queue this function 140 * @func: the function to be called 141 * @info: the function call argument 142 * 143 * Calls the function @func on the remote cpu. 144 * 145 * returns: @func return value or -ENXIO when the cpu is offline 146 */ 147 static int cpu_function_call(int cpu, remote_function_f func, void *info) 148 { 149 struct remote_function_call data = { 150 .p = NULL, 151 .func = func, 152 .info = info, 153 .ret = -ENXIO, /* No such CPU */ 154 }; 155 156 smp_call_function_single(cpu, remote_function, &data, 1); 157 158 return data.ret; 159 } 160 161 enum event_type_t { 162 EVENT_FLEXIBLE = 0x01, 163 EVENT_PINNED = 0x02, 164 EVENT_TIME = 0x04, 165 EVENT_FROZEN = 0x08, 166 /* see ctx_resched() for details */ 167 EVENT_CPU = 0x10, 168 EVENT_CGROUP = 0x20, 169 170 /* 171 * EVENT_GUEST is set when scheduling in/out events between the host 172 * and a guest with a mediated vPMU. Among other things, EVENT_GUEST 173 * is used: 174 * 175 * - In for_each_epc() to skip PMUs that don't support events in a 176 * MEDIATED_VPMU guest, i.e. don't need to be context switched. 177 * - To indicate the start/end point of the events in a guest. Guest 178 * running time is deducted for host-only (exclude_guest) events. 179 */ 180 EVENT_GUEST = 0x40, 181 EVENT_FLAGS = EVENT_CGROUP | EVENT_GUEST, 182 /* compound helpers */ 183 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 184 EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN, 185 }; 186 187 static inline void __perf_ctx_lock(struct perf_event_context *ctx) 188 { 189 raw_spin_lock(&ctx->lock); 190 WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN); 191 } 192 193 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 194 struct perf_event_context *ctx) 195 { 196 __perf_ctx_lock(&cpuctx->ctx); 197 if (ctx) 198 __perf_ctx_lock(ctx); 199 } 200 201 static inline void __perf_ctx_unlock(struct perf_event_context *ctx) 202 { 203 /* 204 * If ctx_sched_in() didn't again set any ALL flags, clean up 205 * after ctx_sched_out() by clearing is_active. 206 */ 207 if (ctx->is_active & EVENT_FROZEN) { 208 if (!(ctx->is_active & EVENT_ALL)) 209 ctx->is_active = 0; 210 else 211 ctx->is_active &= ~EVENT_FROZEN; 212 } 213 raw_spin_unlock(&ctx->lock); 214 } 215 216 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 217 struct perf_event_context *ctx) 218 { 219 if (ctx) 220 __perf_ctx_unlock(ctx); 221 __perf_ctx_unlock(&cpuctx->ctx); 222 } 223 224 typedef struct { 225 struct perf_cpu_context *cpuctx; 226 struct perf_event_context *ctx; 227 } class_perf_ctx_lock_t; 228 229 static inline void class_perf_ctx_lock_destructor(class_perf_ctx_lock_t *_T) 230 { perf_ctx_unlock(_T->cpuctx, _T->ctx); } 231 232 static inline class_perf_ctx_lock_t 233 class_perf_ctx_lock_constructor(struct perf_cpu_context *cpuctx, 234 struct perf_event_context *ctx) 235 { perf_ctx_lock(cpuctx, ctx); return (class_perf_ctx_lock_t){ cpuctx, ctx }; } 236 237 #define TASK_TOMBSTONE ((void *)-1L) 238 239 static bool is_kernel_event(struct perf_event *event) 240 { 241 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 242 } 243 244 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 245 246 struct perf_event_context *perf_cpu_task_ctx(void) 247 { 248 lockdep_assert_irqs_disabled(); 249 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 250 } 251 252 /* 253 * On task ctx scheduling... 254 * 255 * When !ctx->nr_events a task context will not be scheduled. This means 256 * we can disable the scheduler hooks (for performance) without leaving 257 * pending task ctx state. 258 * 259 * This however results in two special cases: 260 * 261 * - removing the last event from a task ctx; this is relatively straight 262 * forward and is done in __perf_remove_from_context. 263 * 264 * - adding the first event to a task ctx; this is tricky because we cannot 265 * rely on ctx->is_active and therefore cannot use event_function_call(). 266 * See perf_install_in_context(). 267 * 268 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 269 */ 270 271 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 272 struct perf_event_context *, void *); 273 274 struct event_function_struct { 275 struct perf_event *event; 276 event_f func; 277 void *data; 278 }; 279 280 static int event_function(void *info) 281 { 282 struct event_function_struct *efs = info; 283 struct perf_event *event = efs->event; 284 struct perf_event_context *ctx = event->ctx; 285 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 286 struct perf_event_context *task_ctx = cpuctx->task_ctx; 287 int ret = 0; 288 289 lockdep_assert_irqs_disabled(); 290 291 perf_ctx_lock(cpuctx, task_ctx); 292 /* 293 * Since we do the IPI call without holding ctx->lock things can have 294 * changed, double check we hit the task we set out to hit. 295 */ 296 if (ctx->task) { 297 if (ctx->task != current) { 298 ret = -ESRCH; 299 goto unlock; 300 } 301 302 /* 303 * We only use event_function_call() on established contexts, 304 * and event_function() is only ever called when active (or 305 * rather, we'll have bailed in task_function_call() or the 306 * above ctx->task != current test), therefore we must have 307 * ctx->is_active here. 308 */ 309 WARN_ON_ONCE(!ctx->is_active); 310 /* 311 * And since we have ctx->is_active, cpuctx->task_ctx must 312 * match. 313 */ 314 WARN_ON_ONCE(task_ctx != ctx); 315 } else { 316 WARN_ON_ONCE(&cpuctx->ctx != ctx); 317 } 318 319 efs->func(event, cpuctx, ctx, efs->data); 320 unlock: 321 perf_ctx_unlock(cpuctx, task_ctx); 322 323 return ret; 324 } 325 326 static void event_function_call(struct perf_event *event, event_f func, void *data) 327 { 328 struct perf_event_context *ctx = event->ctx; 329 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 330 struct perf_cpu_context *cpuctx; 331 struct event_function_struct efs = { 332 .event = event, 333 .func = func, 334 .data = data, 335 }; 336 337 if (!event->parent) { 338 /* 339 * If this is a !child event, we must hold ctx::mutex to 340 * stabilize the event->ctx relation. See 341 * perf_event_ctx_lock(). 342 */ 343 lockdep_assert_held(&ctx->mutex); 344 } 345 346 if (!task) { 347 cpu_function_call(event->cpu, event_function, &efs); 348 return; 349 } 350 351 if (task == TASK_TOMBSTONE) 352 return; 353 354 again: 355 if (!task_function_call(task, event_function, &efs)) 356 return; 357 358 local_irq_disable(); 359 cpuctx = this_cpu_ptr(&perf_cpu_context); 360 perf_ctx_lock(cpuctx, ctx); 361 /* 362 * Reload the task pointer, it might have been changed by 363 * a concurrent perf_event_context_sched_out(). 364 */ 365 task = ctx->task; 366 if (task == TASK_TOMBSTONE) 367 goto unlock; 368 if (ctx->is_active) { 369 perf_ctx_unlock(cpuctx, ctx); 370 local_irq_enable(); 371 goto again; 372 } 373 func(event, NULL, ctx, data); 374 unlock: 375 perf_ctx_unlock(cpuctx, ctx); 376 local_irq_enable(); 377 } 378 379 /* 380 * Similar to event_function_call() + event_function(), but hard assumes IRQs 381 * are already disabled and we're on the right CPU. 382 */ 383 static void event_function_local(struct perf_event *event, event_f func, void *data) 384 { 385 struct perf_event_context *ctx = event->ctx; 386 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 387 struct task_struct *task = READ_ONCE(ctx->task); 388 struct perf_event_context *task_ctx = NULL; 389 390 lockdep_assert_irqs_disabled(); 391 392 if (task) { 393 if (task == TASK_TOMBSTONE) 394 return; 395 396 task_ctx = ctx; 397 } 398 399 perf_ctx_lock(cpuctx, task_ctx); 400 401 task = ctx->task; 402 if (task == TASK_TOMBSTONE) 403 goto unlock; 404 405 if (task) { 406 /* 407 * We must be either inactive or active and the right task, 408 * otherwise we're screwed, since we cannot IPI to somewhere 409 * else. 410 */ 411 if (ctx->is_active) { 412 if (WARN_ON_ONCE(task != current)) 413 goto unlock; 414 415 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 416 goto unlock; 417 } 418 } else { 419 WARN_ON_ONCE(&cpuctx->ctx != ctx); 420 } 421 422 func(event, cpuctx, ctx, data); 423 unlock: 424 perf_ctx_unlock(cpuctx, task_ctx); 425 } 426 427 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 428 PERF_FLAG_FD_OUTPUT |\ 429 PERF_FLAG_PID_CGROUP |\ 430 PERF_FLAG_FD_CLOEXEC) 431 432 /* 433 * branch priv levels that need permission checks 434 */ 435 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 436 (PERF_SAMPLE_BRANCH_KERNEL |\ 437 PERF_SAMPLE_BRANCH_HV) 438 439 /* 440 * perf_sched_events : >0 events exist 441 */ 442 443 static void perf_sched_delayed(struct work_struct *work); 444 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 445 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 446 static DEFINE_MUTEX(perf_sched_mutex); 447 static atomic_t perf_sched_count; 448 449 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 450 451 static atomic_t nr_mmap_events __read_mostly; 452 static atomic_t nr_comm_events __read_mostly; 453 static atomic_t nr_namespaces_events __read_mostly; 454 static atomic_t nr_task_events __read_mostly; 455 static atomic_t nr_freq_events __read_mostly; 456 static atomic_t nr_switch_events __read_mostly; 457 static atomic_t nr_ksymbol_events __read_mostly; 458 static atomic_t nr_bpf_events __read_mostly; 459 static atomic_t nr_cgroup_events __read_mostly; 460 static atomic_t nr_text_poke_events __read_mostly; 461 static atomic_t nr_build_id_events __read_mostly; 462 463 static LIST_HEAD(pmus); 464 static DEFINE_MUTEX(pmus_lock); 465 static struct srcu_struct pmus_srcu; 466 static cpumask_var_t perf_online_mask; 467 static cpumask_var_t perf_online_core_mask; 468 static cpumask_var_t perf_online_die_mask; 469 static cpumask_var_t perf_online_cluster_mask; 470 static cpumask_var_t perf_online_pkg_mask; 471 static cpumask_var_t perf_online_sys_mask; 472 static struct kmem_cache *perf_event_cache; 473 474 #ifdef CONFIG_PERF_GUEST_MEDIATED_PMU 475 static DEFINE_PER_CPU(bool, guest_ctx_loaded); 476 477 static __always_inline bool is_guest_mediated_pmu_loaded(void) 478 { 479 return __this_cpu_read(guest_ctx_loaded); 480 } 481 #else 482 static __always_inline bool is_guest_mediated_pmu_loaded(void) 483 { 484 return false; 485 } 486 #endif 487 488 /* 489 * perf event paranoia level: 490 * -1 - not paranoid at all 491 * 0 - disallow raw tracepoint access for unpriv 492 * 1 - disallow cpu events for unpriv 493 * 2 - disallow kernel profiling for unpriv 494 */ 495 int sysctl_perf_event_paranoid __read_mostly = 2; 496 497 /* Minimum for 512 kiB + 1 user control page. 'free' kiB per user. */ 498 static int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); 499 500 /* 501 * max perf event sample rate 502 */ 503 #define DEFAULT_MAX_SAMPLE_RATE 100000 504 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 505 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 506 507 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 508 static int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 509 510 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 511 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 512 513 static int perf_sample_allowed_ns __read_mostly = 514 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 515 516 static void update_perf_cpu_limits(void) 517 { 518 u64 tmp = perf_sample_period_ns; 519 520 tmp *= sysctl_perf_cpu_time_max_percent; 521 tmp = div_u64(tmp, 100); 522 if (!tmp) 523 tmp = 1; 524 525 WRITE_ONCE(perf_sample_allowed_ns, tmp); 526 } 527 528 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 529 530 static int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write, 531 void *buffer, size_t *lenp, loff_t *ppos) 532 { 533 int ret; 534 int perf_cpu = sysctl_perf_cpu_time_max_percent; 535 /* 536 * If throttling is disabled don't allow the write: 537 */ 538 if (write && (perf_cpu == 100 || perf_cpu == 0)) 539 return -EINVAL; 540 541 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 542 if (ret || !write) 543 return ret; 544 545 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 547 update_perf_cpu_limits(); 548 549 return 0; 550 } 551 552 static int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write, 553 void *buffer, size_t *lenp, loff_t *ppos) 554 { 555 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 556 557 if (ret || !write) 558 return ret; 559 560 if (sysctl_perf_cpu_time_max_percent == 100 || 561 sysctl_perf_cpu_time_max_percent == 0) { 562 printk(KERN_WARNING 563 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 564 WRITE_ONCE(perf_sample_allowed_ns, 0); 565 } else { 566 update_perf_cpu_limits(); 567 } 568 569 return 0; 570 } 571 572 static const struct ctl_table events_core_sysctl_table[] = { 573 /* 574 * User-space relies on this file as a feature check for 575 * perf_events being enabled. It's an ABI, do not remove! 576 */ 577 { 578 .procname = "perf_event_paranoid", 579 .data = &sysctl_perf_event_paranoid, 580 .maxlen = sizeof(sysctl_perf_event_paranoid), 581 .mode = 0644, 582 .proc_handler = proc_dointvec, 583 }, 584 { 585 .procname = "perf_event_mlock_kb", 586 .data = &sysctl_perf_event_mlock, 587 .maxlen = sizeof(sysctl_perf_event_mlock), 588 .mode = 0644, 589 .proc_handler = proc_dointvec, 590 }, 591 { 592 .procname = "perf_event_max_sample_rate", 593 .data = &sysctl_perf_event_sample_rate, 594 .maxlen = sizeof(sysctl_perf_event_sample_rate), 595 .mode = 0644, 596 .proc_handler = perf_event_max_sample_rate_handler, 597 .extra1 = SYSCTL_ONE, 598 }, 599 { 600 .procname = "perf_cpu_time_max_percent", 601 .data = &sysctl_perf_cpu_time_max_percent, 602 .maxlen = sizeof(sysctl_perf_cpu_time_max_percent), 603 .mode = 0644, 604 .proc_handler = perf_cpu_time_max_percent_handler, 605 .extra1 = SYSCTL_ZERO, 606 .extra2 = SYSCTL_ONE_HUNDRED, 607 }, 608 }; 609 610 static int __init init_events_core_sysctls(void) 611 { 612 register_sysctl_init("kernel", events_core_sysctl_table); 613 return 0; 614 } 615 core_initcall(init_events_core_sysctls); 616 617 618 /* 619 * perf samples are done in some very critical code paths (NMIs). 620 * If they take too much CPU time, the system can lock up and not 621 * get any real work done. This will drop the sample rate when 622 * we detect that events are taking too long. 623 */ 624 #define NR_ACCUMULATED_SAMPLES 128 625 static DEFINE_PER_CPU(u64, running_sample_length); 626 627 static u64 __report_avg; 628 static u64 __report_allowed; 629 630 static void perf_duration_warn(struct irq_work *w) 631 { 632 printk_ratelimited(KERN_INFO 633 "perf: interrupt took too long (%lld > %lld), lowering " 634 "kernel.perf_event_max_sample_rate to %d\n", 635 __report_avg, __report_allowed, 636 sysctl_perf_event_sample_rate); 637 } 638 639 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 640 641 void perf_sample_event_took(u64 sample_len_ns) 642 { 643 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 644 u64 running_len; 645 u64 avg_len; 646 u32 max; 647 648 if (max_len == 0) 649 return; 650 651 /* Decay the counter by 1 average sample. */ 652 running_len = __this_cpu_read(running_sample_length); 653 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 654 running_len += sample_len_ns; 655 __this_cpu_write(running_sample_length, running_len); 656 657 /* 658 * Note: this will be biased artificially low until we have 659 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 660 * from having to maintain a count. 661 */ 662 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 663 if (avg_len <= max_len) 664 return; 665 666 __report_avg = avg_len; 667 __report_allowed = max_len; 668 669 /* 670 * Compute a throttle threshold 25% below the current duration. 671 */ 672 avg_len += avg_len / 4; 673 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 674 if (avg_len < max) 675 max /= (u32)avg_len; 676 else 677 max = 1; 678 679 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 680 WRITE_ONCE(max_samples_per_tick, max); 681 682 sysctl_perf_event_sample_rate = max * HZ; 683 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 684 685 if (!irq_work_queue(&perf_duration_work)) { 686 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 687 "kernel.perf_event_max_sample_rate to %d\n", 688 __report_avg, __report_allowed, 689 sysctl_perf_event_sample_rate); 690 } 691 } 692 693 static atomic64_t perf_event_id; 694 695 static void update_context_time(struct perf_event_context *ctx); 696 static u64 perf_event_time(struct perf_event *event); 697 698 void __weak perf_event_print_debug(void) { } 699 700 static inline u64 perf_clock(void) 701 { 702 return local_clock(); 703 } 704 705 static inline u64 perf_event_clock(struct perf_event *event) 706 { 707 return event->clock(); 708 } 709 710 /* 711 * State based event timekeeping... 712 * 713 * The basic idea is to use event->state to determine which (if any) time 714 * fields to increment with the current delta. This means we only need to 715 * update timestamps when we change state or when they are explicitly requested 716 * (read). 717 * 718 * Event groups make things a little more complicated, but not terribly so. The 719 * rules for a group are that if the group leader is OFF the entire group is 720 * OFF, irrespective of what the group member states are. This results in 721 * __perf_effective_state(). 722 * 723 * A further ramification is that when a group leader flips between OFF and 724 * !OFF, we need to update all group member times. 725 * 726 * 727 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 728 * need to make sure the relevant context time is updated before we try and 729 * update our timestamps. 730 */ 731 732 static __always_inline enum perf_event_state 733 __perf_effective_state(struct perf_event *event) 734 { 735 struct perf_event *leader = event->group_leader; 736 737 if (leader->state <= PERF_EVENT_STATE_OFF) 738 return leader->state; 739 740 return event->state; 741 } 742 743 static __always_inline void 744 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 745 { 746 enum perf_event_state state = __perf_effective_state(event); 747 u64 delta = now - event->tstamp; 748 749 *enabled = event->total_time_enabled; 750 if (state >= PERF_EVENT_STATE_INACTIVE) 751 *enabled += delta; 752 753 *running = event->total_time_running; 754 if (state >= PERF_EVENT_STATE_ACTIVE) 755 *running += delta; 756 } 757 758 static void perf_event_update_time(struct perf_event *event) 759 { 760 u64 now = perf_event_time(event); 761 762 __perf_update_times(event, now, &event->total_time_enabled, 763 &event->total_time_running); 764 event->tstamp = now; 765 } 766 767 static void perf_event_update_sibling_time(struct perf_event *leader) 768 { 769 struct perf_event *sibling; 770 771 for_each_sibling_event(sibling, leader) 772 perf_event_update_time(sibling); 773 } 774 775 static void 776 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 777 { 778 if (event->state == state) 779 return; 780 781 perf_event_update_time(event); 782 /* 783 * If a group leader gets enabled/disabled all its siblings 784 * are affected too. 785 */ 786 if ((event->state < 0) ^ (state < 0)) 787 perf_event_update_sibling_time(event); 788 789 WRITE_ONCE(event->state, state); 790 } 791 792 /* 793 * UP store-release, load-acquire 794 */ 795 796 #define __store_release(ptr, val) \ 797 do { \ 798 barrier(); \ 799 WRITE_ONCE(*(ptr), (val)); \ 800 } while (0) 801 802 #define __load_acquire(ptr) \ 803 ({ \ 804 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 805 barrier(); \ 806 ___p; \ 807 }) 808 809 static bool perf_skip_pmu_ctx(struct perf_event_pmu_context *pmu_ctx, 810 enum event_type_t event_type) 811 { 812 if ((event_type & EVENT_CGROUP) && !pmu_ctx->nr_cgroups) 813 return true; 814 if ((event_type & EVENT_GUEST) && 815 !(pmu_ctx->pmu->capabilities & PERF_PMU_CAP_MEDIATED_VPMU)) 816 return true; 817 return false; 818 } 819 820 #define for_each_epc(_epc, _ctx, _pmu, _event_type) \ 821 list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \ 822 if (perf_skip_pmu_ctx(_epc, _event_type)) \ 823 continue; \ 824 else if (_pmu && _epc->pmu != _pmu) \ 825 continue; \ 826 else 827 828 static void perf_ctx_disable(struct perf_event_context *ctx, 829 enum event_type_t event_type) 830 { 831 struct perf_event_pmu_context *pmu_ctx; 832 833 for_each_epc(pmu_ctx, ctx, NULL, event_type) 834 perf_pmu_disable(pmu_ctx->pmu); 835 } 836 837 static void perf_ctx_enable(struct perf_event_context *ctx, 838 enum event_type_t event_type) 839 { 840 struct perf_event_pmu_context *pmu_ctx; 841 842 for_each_epc(pmu_ctx, ctx, NULL, event_type) 843 perf_pmu_enable(pmu_ctx->pmu); 844 } 845 846 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 847 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 848 849 static inline void update_perf_time_ctx(struct perf_time_ctx *time, u64 now, bool adv) 850 { 851 if (adv) 852 time->time += now - time->stamp; 853 time->stamp = now; 854 855 /* 856 * The above: time' = time + (now - timestamp), can be re-arranged 857 * into: time` = now + (time - timestamp), which gives a single value 858 * offset to compute future time without locks on. 859 * 860 * See perf_event_time_now(), which can be used from NMI context where 861 * it's (obviously) not possible to acquire ctx->lock in order to read 862 * both the above values in a consistent manner. 863 */ 864 WRITE_ONCE(time->offset, time->time - time->stamp); 865 } 866 867 static_assert(offsetof(struct perf_event_context, timeguest) - 868 offsetof(struct perf_event_context, time) == 869 sizeof(struct perf_time_ctx)); 870 871 #define T_TOTAL 0 872 #define T_GUEST 1 873 874 static inline u64 __perf_event_time_ctx(struct perf_event *event, 875 struct perf_time_ctx *times) 876 { 877 u64 time = times[T_TOTAL].time; 878 879 if (event->attr.exclude_guest) 880 time -= times[T_GUEST].time; 881 882 return time; 883 } 884 885 static inline u64 __perf_event_time_ctx_now(struct perf_event *event, 886 struct perf_time_ctx *times, 887 u64 now) 888 { 889 if (is_guest_mediated_pmu_loaded() && event->attr.exclude_guest) { 890 /* 891 * (now + times[total].offset) - (now + times[guest].offset) := 892 * times[total].offset - times[guest].offset 893 */ 894 return READ_ONCE(times[T_TOTAL].offset) - READ_ONCE(times[T_GUEST].offset); 895 } 896 897 return now + READ_ONCE(times[T_TOTAL].offset); 898 } 899 900 #ifdef CONFIG_CGROUP_PERF 901 902 static inline bool 903 perf_cgroup_match(struct perf_event *event) 904 { 905 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 906 907 /* @event doesn't care about cgroup */ 908 if (!event->cgrp) 909 return true; 910 911 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 912 if (!cpuctx->cgrp) 913 return false; 914 915 /* 916 * Cgroup scoping is recursive. An event enabled for a cgroup is 917 * also enabled for all its descendant cgroups. If @cpuctx's 918 * cgroup is a descendant of @event's (the test covers identity 919 * case), it's a match. 920 */ 921 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 922 event->cgrp->css.cgroup); 923 } 924 925 static inline void perf_detach_cgroup(struct perf_event *event) 926 { 927 css_put(&event->cgrp->css); 928 event->cgrp = NULL; 929 } 930 931 static inline int is_cgroup_event(struct perf_event *event) 932 { 933 return event->cgrp != NULL; 934 } 935 936 static_assert(offsetof(struct perf_cgroup_info, timeguest) - 937 offsetof(struct perf_cgroup_info, time) == 938 sizeof(struct perf_time_ctx)); 939 940 static inline u64 perf_cgroup_event_time(struct perf_event *event) 941 { 942 struct perf_cgroup_info *t; 943 944 t = per_cpu_ptr(event->cgrp->info, event->cpu); 945 return __perf_event_time_ctx(event, &t->time); 946 } 947 948 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 949 { 950 struct perf_cgroup_info *t; 951 952 t = per_cpu_ptr(event->cgrp->info, event->cpu); 953 if (!__load_acquire(&t->active)) 954 return __perf_event_time_ctx(event, &t->time); 955 956 return __perf_event_time_ctx_now(event, &t->time, now); 957 } 958 959 static inline void __update_cgrp_guest_time(struct perf_cgroup_info *info, u64 now, bool adv) 960 { 961 update_perf_time_ctx(&info->timeguest, now, adv); 962 } 963 964 static inline void update_cgrp_time(struct perf_cgroup_info *info, u64 now) 965 { 966 update_perf_time_ctx(&info->time, now, true); 967 if (is_guest_mediated_pmu_loaded()) 968 __update_cgrp_guest_time(info, now, true); 969 } 970 971 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 972 { 973 struct perf_cgroup *cgrp = cpuctx->cgrp; 974 struct cgroup_subsys_state *css; 975 struct perf_cgroup_info *info; 976 977 if (cgrp) { 978 u64 now = perf_clock(); 979 980 for (css = &cgrp->css; css; css = css->parent) { 981 cgrp = container_of(css, struct perf_cgroup, css); 982 info = this_cpu_ptr(cgrp->info); 983 984 update_cgrp_time(info, now); 985 if (final) 986 __store_release(&info->active, 0); 987 } 988 } 989 } 990 991 static inline void update_cgrp_time_from_event(struct perf_event *event) 992 { 993 struct perf_cgroup_info *info; 994 995 /* 996 * ensure we access cgroup data only when needed and 997 * when we know the cgroup is pinned (css_get) 998 */ 999 if (!is_cgroup_event(event)) 1000 return; 1001 1002 info = this_cpu_ptr(event->cgrp->info); 1003 /* 1004 * Do not update time when cgroup is not active 1005 */ 1006 if (info->active) 1007 update_cgrp_time(info, perf_clock()); 1008 } 1009 1010 static inline void 1011 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx, bool guest) 1012 { 1013 struct perf_event_context *ctx = &cpuctx->ctx; 1014 struct perf_cgroup *cgrp = cpuctx->cgrp; 1015 struct perf_cgroup_info *info; 1016 struct cgroup_subsys_state *css; 1017 1018 /* 1019 * ctx->lock held by caller 1020 * ensure we do not access cgroup data 1021 * unless we have the cgroup pinned (css_get) 1022 */ 1023 if (!cgrp) 1024 return; 1025 1026 WARN_ON_ONCE(!ctx->nr_cgroups); 1027 1028 for (css = &cgrp->css; css; css = css->parent) { 1029 cgrp = container_of(css, struct perf_cgroup, css); 1030 info = this_cpu_ptr(cgrp->info); 1031 if (guest) { 1032 __update_cgrp_guest_time(info, ctx->time.stamp, false); 1033 } else { 1034 update_perf_time_ctx(&info->time, ctx->time.stamp, false); 1035 __store_release(&info->active, 1); 1036 } 1037 } 1038 } 1039 1040 /* 1041 * reschedule events based on the cgroup constraint of task. 1042 */ 1043 static void perf_cgroup_switch(struct task_struct *task) 1044 { 1045 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 1046 struct perf_cgroup *cgrp; 1047 1048 /* 1049 * cpuctx->cgrp is set when the first cgroup event enabled, 1050 * and is cleared when the last cgroup event disabled. 1051 */ 1052 if (READ_ONCE(cpuctx->cgrp) == NULL) 1053 return; 1054 1055 cgrp = perf_cgroup_from_task(task, NULL); 1056 if (READ_ONCE(cpuctx->cgrp) == cgrp) 1057 return; 1058 1059 guard(perf_ctx_lock)(cpuctx, cpuctx->task_ctx); 1060 /* 1061 * Re-check, could've raced vs perf_remove_from_context(). 1062 */ 1063 if (READ_ONCE(cpuctx->cgrp) == NULL) 1064 return; 1065 1066 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 1067 perf_ctx_disable(&cpuctx->ctx, EVENT_CGROUP); 1068 1069 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 1070 /* 1071 * must not be done before ctxswout due 1072 * to update_cgrp_time_from_cpuctx() in 1073 * ctx_sched_out() 1074 */ 1075 cpuctx->cgrp = cgrp; 1076 /* 1077 * set cgrp before ctxsw in to allow 1078 * perf_cgroup_set_timestamp() in ctx_sched_in() 1079 * to not have to pass task around 1080 */ 1081 ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 1082 1083 perf_ctx_enable(&cpuctx->ctx, EVENT_CGROUP); 1084 } 1085 1086 static int perf_cgroup_ensure_storage(struct perf_event *event, 1087 struct cgroup_subsys_state *css) 1088 { 1089 struct perf_cpu_context *cpuctx; 1090 struct perf_event **storage; 1091 int cpu, heap_size, ret = 0; 1092 1093 /* 1094 * Allow storage to have sufficient space for an iterator for each 1095 * possibly nested cgroup plus an iterator for events with no cgroup. 1096 */ 1097 for (heap_size = 1; css; css = css->parent) 1098 heap_size++; 1099 1100 for_each_possible_cpu(cpu) { 1101 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 1102 if (heap_size <= cpuctx->heap_size) 1103 continue; 1104 1105 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 1106 GFP_KERNEL, cpu_to_node(cpu)); 1107 if (!storage) { 1108 ret = -ENOMEM; 1109 break; 1110 } 1111 1112 raw_spin_lock_irq(&cpuctx->ctx.lock); 1113 if (cpuctx->heap_size < heap_size) { 1114 swap(cpuctx->heap, storage); 1115 if (storage == cpuctx->heap_default) 1116 storage = NULL; 1117 cpuctx->heap_size = heap_size; 1118 } 1119 raw_spin_unlock_irq(&cpuctx->ctx.lock); 1120 1121 kfree(storage); 1122 } 1123 1124 return ret; 1125 } 1126 1127 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 1128 struct perf_event_attr *attr, 1129 struct perf_event *group_leader) 1130 { 1131 struct perf_cgroup *cgrp; 1132 struct cgroup_subsys_state *css; 1133 CLASS(fd, f)(fd); 1134 int ret = 0; 1135 1136 if (fd_empty(f)) 1137 return -EBADF; 1138 1139 css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry, 1140 &perf_event_cgrp_subsys); 1141 if (IS_ERR(css)) 1142 return PTR_ERR(css); 1143 1144 ret = perf_cgroup_ensure_storage(event, css); 1145 if (ret) 1146 return ret; 1147 1148 cgrp = container_of(css, struct perf_cgroup, css); 1149 event->cgrp = cgrp; 1150 1151 /* 1152 * all events in a group must monitor 1153 * the same cgroup because a task belongs 1154 * to only one perf cgroup at a time 1155 */ 1156 if (group_leader && group_leader->cgrp != cgrp) { 1157 perf_detach_cgroup(event); 1158 ret = -EINVAL; 1159 } 1160 return ret; 1161 } 1162 1163 static inline void 1164 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1165 { 1166 struct perf_cpu_context *cpuctx; 1167 1168 if (!is_cgroup_event(event)) 1169 return; 1170 1171 event->pmu_ctx->nr_cgroups++; 1172 1173 /* 1174 * Because cgroup events are always per-cpu events, 1175 * @ctx == &cpuctx->ctx. 1176 */ 1177 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1178 1179 if (ctx->nr_cgroups++) 1180 return; 1181 1182 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 1183 } 1184 1185 static inline void 1186 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1187 { 1188 struct perf_cpu_context *cpuctx; 1189 1190 if (!is_cgroup_event(event)) 1191 return; 1192 1193 event->pmu_ctx->nr_cgroups--; 1194 1195 /* 1196 * Because cgroup events are always per-cpu events, 1197 * @ctx == &cpuctx->ctx. 1198 */ 1199 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1200 1201 if (--ctx->nr_cgroups) 1202 return; 1203 1204 cpuctx->cgrp = NULL; 1205 } 1206 1207 #else /* !CONFIG_CGROUP_PERF */ 1208 1209 static inline bool 1210 perf_cgroup_match(struct perf_event *event) 1211 { 1212 return true; 1213 } 1214 1215 static inline void perf_detach_cgroup(struct perf_event *event) 1216 {} 1217 1218 static inline int is_cgroup_event(struct perf_event *event) 1219 { 1220 return 0; 1221 } 1222 1223 static inline void update_cgrp_time_from_event(struct perf_event *event) 1224 { 1225 } 1226 1227 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1228 bool final) 1229 { 1230 } 1231 1232 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1233 struct perf_event_attr *attr, 1234 struct perf_event *group_leader) 1235 { 1236 return -EINVAL; 1237 } 1238 1239 static inline void 1240 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx, bool guest) 1241 { 1242 } 1243 1244 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1245 { 1246 return 0; 1247 } 1248 1249 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1250 { 1251 return 0; 1252 } 1253 1254 static inline void 1255 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1256 { 1257 } 1258 1259 static inline void 1260 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1261 { 1262 } 1263 1264 static void perf_cgroup_switch(struct task_struct *task) 1265 { 1266 } 1267 #endif 1268 1269 /* 1270 * set default to be dependent on timer tick just 1271 * like original code 1272 */ 1273 #define PERF_CPU_HRTIMER (1000 / HZ) 1274 /* 1275 * function must be called with interrupts disabled 1276 */ 1277 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1278 { 1279 struct perf_cpu_pmu_context *cpc; 1280 bool rotations; 1281 1282 lockdep_assert_irqs_disabled(); 1283 1284 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1285 rotations = perf_rotate_context(cpc); 1286 1287 raw_spin_lock(&cpc->hrtimer_lock); 1288 if (rotations) 1289 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1290 else 1291 cpc->hrtimer_active = 0; 1292 raw_spin_unlock(&cpc->hrtimer_lock); 1293 1294 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1295 } 1296 1297 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1298 { 1299 struct hrtimer *timer = &cpc->hrtimer; 1300 struct pmu *pmu = cpc->epc.pmu; 1301 u64 interval; 1302 1303 /* 1304 * check default is sane, if not set then force to 1305 * default interval (1/tick) 1306 */ 1307 interval = pmu->hrtimer_interval_ms; 1308 if (interval < 1) 1309 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1310 1311 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1312 1313 raw_spin_lock_init(&cpc->hrtimer_lock); 1314 hrtimer_setup(timer, perf_mux_hrtimer_handler, CLOCK_MONOTONIC, 1315 HRTIMER_MODE_ABS_PINNED_HARD); 1316 } 1317 1318 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1319 { 1320 struct hrtimer *timer = &cpc->hrtimer; 1321 unsigned long flags; 1322 1323 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1324 if (!cpc->hrtimer_active) { 1325 cpc->hrtimer_active = 1; 1326 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1327 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1328 } 1329 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1330 1331 return 0; 1332 } 1333 1334 static int perf_mux_hrtimer_restart_ipi(void *arg) 1335 { 1336 return perf_mux_hrtimer_restart(arg); 1337 } 1338 1339 static __always_inline struct perf_cpu_pmu_context *this_cpc(struct pmu *pmu) 1340 { 1341 return *this_cpu_ptr(pmu->cpu_pmu_context); 1342 } 1343 1344 void perf_pmu_disable(struct pmu *pmu) 1345 { 1346 int *count = &this_cpc(pmu)->pmu_disable_count; 1347 if (!(*count)++) 1348 pmu->pmu_disable(pmu); 1349 } 1350 1351 void perf_pmu_enable(struct pmu *pmu) 1352 { 1353 int *count = &this_cpc(pmu)->pmu_disable_count; 1354 if (!--(*count)) 1355 pmu->pmu_enable(pmu); 1356 } 1357 1358 static void perf_assert_pmu_disabled(struct pmu *pmu) 1359 { 1360 int *count = &this_cpc(pmu)->pmu_disable_count; 1361 WARN_ON_ONCE(*count == 0); 1362 } 1363 1364 static inline void perf_pmu_read(struct perf_event *event) 1365 { 1366 if (event->state == PERF_EVENT_STATE_ACTIVE) 1367 event->pmu->read(event); 1368 } 1369 1370 static void get_ctx(struct perf_event_context *ctx) 1371 { 1372 refcount_inc(&ctx->refcount); 1373 } 1374 1375 static void free_ctx(struct rcu_head *head) 1376 { 1377 struct perf_event_context *ctx; 1378 1379 ctx = container_of(head, struct perf_event_context, rcu_head); 1380 kfree(ctx); 1381 } 1382 1383 static void put_ctx(struct perf_event_context *ctx) 1384 { 1385 if (refcount_dec_and_test(&ctx->refcount)) { 1386 if (ctx->parent_ctx) 1387 put_ctx(ctx->parent_ctx); 1388 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1389 put_task_struct(ctx->task); 1390 call_rcu(&ctx->rcu_head, free_ctx); 1391 } else { 1392 smp_mb__after_atomic(); /* pairs with wait_var_event() */ 1393 if (ctx->task == TASK_TOMBSTONE) 1394 wake_up_var(&ctx->refcount); 1395 } 1396 } 1397 1398 /* 1399 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1400 * perf_pmu_migrate_context() we need some magic. 1401 * 1402 * Those places that change perf_event::ctx will hold both 1403 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1404 * 1405 * Lock ordering is by mutex address. There are two other sites where 1406 * perf_event_context::mutex nests and those are: 1407 * 1408 * - perf_event_exit_task_context() [ child , 0 ] 1409 * perf_event_exit_event() 1410 * put_event() [ parent, 1 ] 1411 * 1412 * - perf_event_init_context() [ parent, 0 ] 1413 * inherit_task_group() 1414 * inherit_group() 1415 * inherit_event() 1416 * perf_event_alloc() 1417 * perf_init_event() 1418 * perf_try_init_event() [ child , 1 ] 1419 * 1420 * While it appears there is an obvious deadlock here -- the parent and child 1421 * nesting levels are inverted between the two. This is in fact safe because 1422 * life-time rules separate them. That is an exiting task cannot fork, and a 1423 * spawning task cannot (yet) exit. 1424 * 1425 * But remember that these are parent<->child context relations, and 1426 * migration does not affect children, therefore these two orderings should not 1427 * interact. 1428 * 1429 * The change in perf_event::ctx does not affect children (as claimed above) 1430 * because the sys_perf_event_open() case will install a new event and break 1431 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1432 * concerned with cpuctx and that doesn't have children. 1433 * 1434 * The places that change perf_event::ctx will issue: 1435 * 1436 * perf_remove_from_context(); 1437 * synchronize_rcu(); 1438 * perf_install_in_context(); 1439 * 1440 * to affect the change. The remove_from_context() + synchronize_rcu() should 1441 * quiesce the event, after which we can install it in the new location. This 1442 * means that only external vectors (perf_fops, prctl) can perturb the event 1443 * while in transit. Therefore all such accessors should also acquire 1444 * perf_event_context::mutex to serialize against this. 1445 * 1446 * However; because event->ctx can change while we're waiting to acquire 1447 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1448 * function. 1449 * 1450 * Lock order: 1451 * exec_update_lock 1452 * task_struct::perf_event_mutex 1453 * perf_event_context::mutex 1454 * perf_event::child_mutex; 1455 * perf_event_context::lock 1456 * mmap_lock 1457 * perf_event::mmap_mutex 1458 * perf_buffer::aux_mutex 1459 * perf_addr_filters_head::lock 1460 * 1461 * cpu_hotplug_lock 1462 * pmus_lock 1463 * cpuctx->mutex / perf_event_context::mutex 1464 */ 1465 static struct perf_event_context * 1466 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1467 { 1468 struct perf_event_context *ctx; 1469 1470 again: 1471 rcu_read_lock(); 1472 ctx = READ_ONCE(event->ctx); 1473 if (!refcount_inc_not_zero(&ctx->refcount)) { 1474 rcu_read_unlock(); 1475 goto again; 1476 } 1477 rcu_read_unlock(); 1478 1479 mutex_lock_nested(&ctx->mutex, nesting); 1480 if (event->ctx != ctx) { 1481 mutex_unlock(&ctx->mutex); 1482 put_ctx(ctx); 1483 goto again; 1484 } 1485 1486 return ctx; 1487 } 1488 1489 static inline struct perf_event_context * 1490 perf_event_ctx_lock(struct perf_event *event) 1491 { 1492 return perf_event_ctx_lock_nested(event, 0); 1493 } 1494 1495 static void perf_event_ctx_unlock(struct perf_event *event, 1496 struct perf_event_context *ctx) 1497 { 1498 mutex_unlock(&ctx->mutex); 1499 put_ctx(ctx); 1500 } 1501 1502 /* 1503 * This must be done under the ctx->lock, such as to serialize against 1504 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1505 * calling scheduler related locks and ctx->lock nests inside those. 1506 */ 1507 static __must_check struct perf_event_context * 1508 unclone_ctx(struct perf_event_context *ctx) 1509 { 1510 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1511 1512 lockdep_assert_held(&ctx->lock); 1513 1514 if (parent_ctx) 1515 ctx->parent_ctx = NULL; 1516 ctx->generation++; 1517 1518 return parent_ctx; 1519 } 1520 1521 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1522 enum pid_type type) 1523 { 1524 u32 nr; 1525 /* 1526 * only top level events have the pid namespace they were created in 1527 */ 1528 if (event->parent) 1529 event = event->parent; 1530 1531 nr = __task_pid_nr_ns(p, type, event->ns); 1532 /* avoid -1 if it is idle thread or runs in another ns */ 1533 if (!nr && !pid_alive(p)) 1534 nr = -1; 1535 return nr; 1536 } 1537 1538 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1539 { 1540 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1541 } 1542 1543 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1544 { 1545 return perf_event_pid_type(event, p, PIDTYPE_PID); 1546 } 1547 1548 /* 1549 * If we inherit events we want to return the parent event id 1550 * to userspace. 1551 */ 1552 static u64 primary_event_id(struct perf_event *event) 1553 { 1554 u64 id = event->id; 1555 1556 if (event->parent) 1557 id = event->parent->id; 1558 1559 return id; 1560 } 1561 1562 /* 1563 * Get the perf_event_context for a task and lock it. 1564 * 1565 * This has to cope with the fact that until it is locked, 1566 * the context could get moved to another task. 1567 */ 1568 static struct perf_event_context * 1569 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1570 { 1571 struct perf_event_context *ctx; 1572 1573 retry: 1574 /* 1575 * One of the few rules of preemptible RCU is that one cannot do 1576 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1577 * part of the read side critical section was irqs-enabled -- see 1578 * rcu_read_unlock_special(). 1579 * 1580 * Since ctx->lock nests under rq->lock we must ensure the entire read 1581 * side critical section has interrupts disabled. 1582 */ 1583 local_irq_save(*flags); 1584 rcu_read_lock(); 1585 ctx = rcu_dereference(task->perf_event_ctxp); 1586 if (ctx) { 1587 /* 1588 * If this context is a clone of another, it might 1589 * get swapped for another underneath us by 1590 * perf_event_task_sched_out, though the 1591 * rcu_read_lock() protects us from any context 1592 * getting freed. Lock the context and check if it 1593 * got swapped before we could get the lock, and retry 1594 * if so. If we locked the right context, then it 1595 * can't get swapped on us any more. 1596 */ 1597 raw_spin_lock(&ctx->lock); 1598 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1599 raw_spin_unlock(&ctx->lock); 1600 rcu_read_unlock(); 1601 local_irq_restore(*flags); 1602 goto retry; 1603 } 1604 1605 if (ctx->task == TASK_TOMBSTONE || 1606 !refcount_inc_not_zero(&ctx->refcount)) { 1607 raw_spin_unlock(&ctx->lock); 1608 ctx = NULL; 1609 } else { 1610 WARN_ON_ONCE(ctx->task != task); 1611 } 1612 } 1613 rcu_read_unlock(); 1614 if (!ctx) 1615 local_irq_restore(*flags); 1616 return ctx; 1617 } 1618 1619 /* 1620 * Get the context for a task and increment its pin_count so it 1621 * can't get swapped to another task. This also increments its 1622 * reference count so that the context can't get freed. 1623 */ 1624 static struct perf_event_context * 1625 perf_pin_task_context(struct task_struct *task) 1626 { 1627 struct perf_event_context *ctx; 1628 unsigned long flags; 1629 1630 ctx = perf_lock_task_context(task, &flags); 1631 if (ctx) { 1632 ++ctx->pin_count; 1633 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1634 } 1635 return ctx; 1636 } 1637 1638 static void perf_unpin_context(struct perf_event_context *ctx) 1639 { 1640 unsigned long flags; 1641 1642 raw_spin_lock_irqsave(&ctx->lock, flags); 1643 --ctx->pin_count; 1644 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1645 } 1646 1647 /* 1648 * Update the record of the current time in a context. 1649 */ 1650 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1651 { 1652 lockdep_assert_held(&ctx->lock); 1653 1654 update_perf_time_ctx(&ctx->time, perf_clock(), adv); 1655 } 1656 1657 static void __update_context_guest_time(struct perf_event_context *ctx, bool adv) 1658 { 1659 lockdep_assert_held(&ctx->lock); 1660 1661 /* must be called after __update_context_time(); */ 1662 update_perf_time_ctx(&ctx->timeguest, ctx->time.stamp, adv); 1663 } 1664 1665 static void update_context_time(struct perf_event_context *ctx) 1666 { 1667 __update_context_time(ctx, true); 1668 if (is_guest_mediated_pmu_loaded()) 1669 __update_context_guest_time(ctx, true); 1670 } 1671 1672 static u64 perf_event_time(struct perf_event *event) 1673 { 1674 struct perf_event_context *ctx = event->ctx; 1675 1676 if (unlikely(!ctx)) 1677 return 0; 1678 1679 if (is_cgroup_event(event)) 1680 return perf_cgroup_event_time(event); 1681 1682 return __perf_event_time_ctx(event, &ctx->time); 1683 } 1684 1685 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1686 { 1687 struct perf_event_context *ctx = event->ctx; 1688 1689 if (unlikely(!ctx)) 1690 return 0; 1691 1692 if (is_cgroup_event(event)) 1693 return perf_cgroup_event_time_now(event, now); 1694 1695 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1696 return __perf_event_time_ctx(event, &ctx->time); 1697 1698 return __perf_event_time_ctx_now(event, &ctx->time, now); 1699 } 1700 1701 static enum event_type_t get_event_type(struct perf_event *event) 1702 { 1703 struct perf_event_context *ctx = event->ctx; 1704 enum event_type_t event_type; 1705 1706 lockdep_assert_held(&ctx->lock); 1707 1708 /* 1709 * It's 'group type', really, because if our group leader is 1710 * pinned, so are we. 1711 */ 1712 if (event->group_leader != event) 1713 event = event->group_leader; 1714 1715 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1716 if (!ctx->task) 1717 event_type |= EVENT_CPU; 1718 1719 return event_type; 1720 } 1721 1722 /* 1723 * Helper function to initialize event group nodes. 1724 */ 1725 static void init_event_group(struct perf_event *event) 1726 { 1727 RB_CLEAR_NODE(&event->group_node); 1728 event->group_index = 0; 1729 } 1730 1731 /* 1732 * Extract pinned or flexible groups from the context 1733 * based on event attrs bits. 1734 */ 1735 static struct perf_event_groups * 1736 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1737 { 1738 if (event->attr.pinned) 1739 return &ctx->pinned_groups; 1740 else 1741 return &ctx->flexible_groups; 1742 } 1743 1744 /* 1745 * Helper function to initializes perf_event_group trees. 1746 */ 1747 static void perf_event_groups_init(struct perf_event_groups *groups) 1748 { 1749 groups->tree = RB_ROOT; 1750 groups->index = 0; 1751 } 1752 1753 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1754 { 1755 struct cgroup *cgroup = NULL; 1756 1757 #ifdef CONFIG_CGROUP_PERF 1758 if (event->cgrp) 1759 cgroup = event->cgrp->css.cgroup; 1760 #endif 1761 1762 return cgroup; 1763 } 1764 1765 /* 1766 * Compare function for event groups; 1767 * 1768 * Implements complex key that first sorts by CPU and then by virtual index 1769 * which provides ordering when rotating groups for the same CPU. 1770 */ 1771 static __always_inline int 1772 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1773 const struct cgroup *left_cgroup, const u64 left_group_index, 1774 const struct perf_event *right) 1775 { 1776 if (left_cpu < right->cpu) 1777 return -1; 1778 if (left_cpu > right->cpu) 1779 return 1; 1780 1781 if (left_pmu) { 1782 if (left_pmu < right->pmu_ctx->pmu) 1783 return -1; 1784 if (left_pmu > right->pmu_ctx->pmu) 1785 return 1; 1786 } 1787 1788 #ifdef CONFIG_CGROUP_PERF 1789 { 1790 const struct cgroup *right_cgroup = event_cgroup(right); 1791 1792 if (left_cgroup != right_cgroup) { 1793 if (!left_cgroup) { 1794 /* 1795 * Left has no cgroup but right does, no 1796 * cgroups come first. 1797 */ 1798 return -1; 1799 } 1800 if (!right_cgroup) { 1801 /* 1802 * Right has no cgroup but left does, no 1803 * cgroups come first. 1804 */ 1805 return 1; 1806 } 1807 /* Two dissimilar cgroups, order by id. */ 1808 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1809 return -1; 1810 1811 return 1; 1812 } 1813 } 1814 #endif 1815 1816 if (left_group_index < right->group_index) 1817 return -1; 1818 if (left_group_index > right->group_index) 1819 return 1; 1820 1821 return 0; 1822 } 1823 1824 #define __node_2_pe(node) \ 1825 rb_entry((node), struct perf_event, group_node) 1826 1827 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1828 { 1829 struct perf_event *e = __node_2_pe(a); 1830 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1831 e->group_index, __node_2_pe(b)) < 0; 1832 } 1833 1834 struct __group_key { 1835 int cpu; 1836 struct pmu *pmu; 1837 struct cgroup *cgroup; 1838 }; 1839 1840 static inline int __group_cmp(const void *key, const struct rb_node *node) 1841 { 1842 const struct __group_key *a = key; 1843 const struct perf_event *b = __node_2_pe(node); 1844 1845 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1846 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1847 } 1848 1849 static inline int 1850 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1851 { 1852 const struct __group_key *a = key; 1853 const struct perf_event *b = __node_2_pe(node); 1854 1855 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1856 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1857 b->group_index, b); 1858 } 1859 1860 /* 1861 * Insert @event into @groups' tree; using 1862 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1863 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1864 */ 1865 static void 1866 perf_event_groups_insert(struct perf_event_groups *groups, 1867 struct perf_event *event) 1868 { 1869 event->group_index = ++groups->index; 1870 1871 rb_add(&event->group_node, &groups->tree, __group_less); 1872 } 1873 1874 /* 1875 * Helper function to insert event into the pinned or flexible groups. 1876 */ 1877 static void 1878 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1879 { 1880 struct perf_event_groups *groups; 1881 1882 groups = get_event_groups(event, ctx); 1883 perf_event_groups_insert(groups, event); 1884 } 1885 1886 /* 1887 * Delete a group from a tree. 1888 */ 1889 static void 1890 perf_event_groups_delete(struct perf_event_groups *groups, 1891 struct perf_event *event) 1892 { 1893 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1894 RB_EMPTY_ROOT(&groups->tree)); 1895 1896 rb_erase(&event->group_node, &groups->tree); 1897 init_event_group(event); 1898 } 1899 1900 /* 1901 * Helper function to delete event from its groups. 1902 */ 1903 static void 1904 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1905 { 1906 struct perf_event_groups *groups; 1907 1908 groups = get_event_groups(event, ctx); 1909 perf_event_groups_delete(groups, event); 1910 } 1911 1912 /* 1913 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1914 */ 1915 static struct perf_event * 1916 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1917 struct pmu *pmu, struct cgroup *cgrp) 1918 { 1919 struct __group_key key = { 1920 .cpu = cpu, 1921 .pmu = pmu, 1922 .cgroup = cgrp, 1923 }; 1924 struct rb_node *node; 1925 1926 node = rb_find_first(&key, &groups->tree, __group_cmp); 1927 if (node) 1928 return __node_2_pe(node); 1929 1930 return NULL; 1931 } 1932 1933 static struct perf_event * 1934 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1935 { 1936 struct __group_key key = { 1937 .cpu = event->cpu, 1938 .pmu = pmu, 1939 .cgroup = event_cgroup(event), 1940 }; 1941 struct rb_node *next; 1942 1943 next = rb_next_match(&key, &event->group_node, __group_cmp); 1944 if (next) 1945 return __node_2_pe(next); 1946 1947 return NULL; 1948 } 1949 1950 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1951 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1952 event; event = perf_event_groups_next(event, pmu)) 1953 1954 /* 1955 * Iterate through the whole groups tree. 1956 */ 1957 #define perf_event_groups_for_each(event, groups) \ 1958 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1959 typeof(*event), group_node); event; \ 1960 event = rb_entry_safe(rb_next(&event->group_node), \ 1961 typeof(*event), group_node)) 1962 1963 /* 1964 * Does the event attribute request inherit with PERF_SAMPLE_READ 1965 */ 1966 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr) 1967 { 1968 return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ); 1969 } 1970 1971 /* 1972 * Add an event from the lists for its context. 1973 * Must be called with ctx->mutex and ctx->lock held. 1974 */ 1975 static void 1976 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1977 { 1978 lockdep_assert_held(&ctx->lock); 1979 1980 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1981 event->attach_state |= PERF_ATTACH_CONTEXT; 1982 1983 event->tstamp = perf_event_time(event); 1984 1985 /* 1986 * If we're a stand alone event or group leader, we go to the context 1987 * list, group events are kept attached to the group so that 1988 * perf_group_detach can, at all times, locate all siblings. 1989 */ 1990 if (event->group_leader == event) { 1991 event->group_caps = event->event_caps; 1992 add_event_to_groups(event, ctx); 1993 } 1994 1995 list_add_rcu(&event->event_entry, &ctx->event_list); 1996 ctx->nr_events++; 1997 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1998 ctx->nr_user++; 1999 if (event->attr.inherit_stat) 2000 ctx->nr_stat++; 2001 if (has_inherit_and_sample_read(&event->attr)) 2002 local_inc(&ctx->nr_no_switch_fast); 2003 2004 if (event->state > PERF_EVENT_STATE_OFF) 2005 perf_cgroup_event_enable(event, ctx); 2006 2007 ctx->generation++; 2008 event->pmu_ctx->nr_events++; 2009 } 2010 2011 /* 2012 * Initialize event state based on the perf_event_attr::disabled. 2013 */ 2014 static inline void perf_event__state_init(struct perf_event *event) 2015 { 2016 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 2017 PERF_EVENT_STATE_INACTIVE; 2018 } 2019 2020 static int __perf_event_read_size(u64 read_format, int nr_siblings) 2021 { 2022 int entry = sizeof(u64); /* value */ 2023 int size = 0; 2024 int nr = 1; 2025 2026 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2027 size += sizeof(u64); 2028 2029 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2030 size += sizeof(u64); 2031 2032 if (read_format & PERF_FORMAT_ID) 2033 entry += sizeof(u64); 2034 2035 if (read_format & PERF_FORMAT_LOST) 2036 entry += sizeof(u64); 2037 2038 if (read_format & PERF_FORMAT_GROUP) { 2039 nr += nr_siblings; 2040 size += sizeof(u64); 2041 } 2042 2043 /* 2044 * Since perf_event_validate_size() limits this to 16k and inhibits 2045 * adding more siblings, this will never overflow. 2046 */ 2047 return size + nr * entry; 2048 } 2049 2050 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 2051 { 2052 struct perf_sample_data *data; 2053 u16 size = 0; 2054 2055 if (sample_type & PERF_SAMPLE_IP) 2056 size += sizeof(data->ip); 2057 2058 if (sample_type & PERF_SAMPLE_ADDR) 2059 size += sizeof(data->addr); 2060 2061 if (sample_type & PERF_SAMPLE_PERIOD) 2062 size += sizeof(data->period); 2063 2064 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 2065 size += sizeof(data->weight.full); 2066 2067 if (sample_type & PERF_SAMPLE_READ) 2068 size += event->read_size; 2069 2070 if (sample_type & PERF_SAMPLE_DATA_SRC) 2071 size += sizeof(data->data_src.val); 2072 2073 if (sample_type & PERF_SAMPLE_TRANSACTION) 2074 size += sizeof(data->txn); 2075 2076 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 2077 size += sizeof(data->phys_addr); 2078 2079 if (sample_type & PERF_SAMPLE_CGROUP) 2080 size += sizeof(data->cgroup); 2081 2082 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 2083 size += sizeof(data->data_page_size); 2084 2085 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 2086 size += sizeof(data->code_page_size); 2087 2088 event->header_size = size; 2089 } 2090 2091 /* 2092 * Called at perf_event creation and when events are attached/detached from a 2093 * group. 2094 */ 2095 static void perf_event__header_size(struct perf_event *event) 2096 { 2097 event->read_size = 2098 __perf_event_read_size(event->attr.read_format, 2099 event->group_leader->nr_siblings); 2100 __perf_event_header_size(event, event->attr.sample_type); 2101 } 2102 2103 static void perf_event__id_header_size(struct perf_event *event) 2104 { 2105 struct perf_sample_data *data; 2106 u64 sample_type = event->attr.sample_type; 2107 u16 size = 0; 2108 2109 if (sample_type & PERF_SAMPLE_TID) 2110 size += sizeof(data->tid_entry); 2111 2112 if (sample_type & PERF_SAMPLE_TIME) 2113 size += sizeof(data->time); 2114 2115 if (sample_type & PERF_SAMPLE_IDENTIFIER) 2116 size += sizeof(data->id); 2117 2118 if (sample_type & PERF_SAMPLE_ID) 2119 size += sizeof(data->id); 2120 2121 if (sample_type & PERF_SAMPLE_STREAM_ID) 2122 size += sizeof(data->stream_id); 2123 2124 if (sample_type & PERF_SAMPLE_CPU) 2125 size += sizeof(data->cpu_entry); 2126 2127 event->id_header_size = size; 2128 } 2129 2130 /* 2131 * Check that adding an event to the group does not result in anybody 2132 * overflowing the 64k event limit imposed by the output buffer. 2133 * 2134 * Specifically, check that the read_size for the event does not exceed 16k, 2135 * read_size being the one term that grows with groups size. Since read_size 2136 * depends on per-event read_format, also (re)check the existing events. 2137 * 2138 * This leaves 48k for the constant size fields and things like callchains, 2139 * branch stacks and register sets. 2140 */ 2141 static bool perf_event_validate_size(struct perf_event *event) 2142 { 2143 struct perf_event *sibling, *group_leader = event->group_leader; 2144 2145 if (__perf_event_read_size(event->attr.read_format, 2146 group_leader->nr_siblings + 1) > 16*1024) 2147 return false; 2148 2149 if (__perf_event_read_size(group_leader->attr.read_format, 2150 group_leader->nr_siblings + 1) > 16*1024) 2151 return false; 2152 2153 /* 2154 * When creating a new group leader, group_leader->ctx is initialized 2155 * after the size has been validated, but we cannot safely use 2156 * for_each_sibling_event() until group_leader->ctx is set. A new group 2157 * leader cannot have any siblings yet, so we can safely skip checking 2158 * the non-existent siblings. 2159 */ 2160 if (event == group_leader) 2161 return true; 2162 2163 for_each_sibling_event(sibling, group_leader) { 2164 if (__perf_event_read_size(sibling->attr.read_format, 2165 group_leader->nr_siblings + 1) > 16*1024) 2166 return false; 2167 } 2168 2169 return true; 2170 } 2171 2172 static void perf_group_attach(struct perf_event *event) 2173 { 2174 struct perf_event *group_leader = event->group_leader, *pos; 2175 2176 lockdep_assert_held(&event->ctx->lock); 2177 2178 /* 2179 * We can have double attach due to group movement (move_group) in 2180 * perf_event_open(). 2181 */ 2182 if (event->attach_state & PERF_ATTACH_GROUP) 2183 return; 2184 2185 event->attach_state |= PERF_ATTACH_GROUP; 2186 2187 if (group_leader == event) 2188 return; 2189 2190 WARN_ON_ONCE(group_leader->ctx != event->ctx); 2191 2192 group_leader->group_caps &= event->event_caps; 2193 2194 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 2195 group_leader->nr_siblings++; 2196 group_leader->group_generation++; 2197 2198 perf_event__header_size(group_leader); 2199 2200 for_each_sibling_event(pos, group_leader) 2201 perf_event__header_size(pos); 2202 } 2203 2204 /* 2205 * Remove an event from the lists for its context. 2206 * Must be called with ctx->mutex and ctx->lock held. 2207 */ 2208 static void 2209 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2210 { 2211 WARN_ON_ONCE(event->ctx != ctx); 2212 lockdep_assert_held(&ctx->lock); 2213 2214 /* 2215 * We can have double detach due to exit/hot-unplug + close. 2216 */ 2217 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2218 return; 2219 2220 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2221 2222 ctx->nr_events--; 2223 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2224 ctx->nr_user--; 2225 if (event->attr.inherit_stat) 2226 ctx->nr_stat--; 2227 if (has_inherit_and_sample_read(&event->attr)) 2228 local_dec(&ctx->nr_no_switch_fast); 2229 2230 list_del_rcu(&event->event_entry); 2231 2232 if (event->group_leader == event) 2233 del_event_from_groups(event, ctx); 2234 2235 ctx->generation++; 2236 event->pmu_ctx->nr_events--; 2237 } 2238 2239 static int 2240 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2241 { 2242 if (!has_aux(aux_event)) 2243 return 0; 2244 2245 if (!event->pmu->aux_output_match) 2246 return 0; 2247 2248 return event->pmu->aux_output_match(aux_event); 2249 } 2250 2251 static void put_event(struct perf_event *event); 2252 static void __event_disable(struct perf_event *event, 2253 struct perf_event_context *ctx, 2254 enum perf_event_state state); 2255 2256 static void perf_put_aux_event(struct perf_event *event) 2257 { 2258 struct perf_event_context *ctx = event->ctx; 2259 struct perf_event *iter; 2260 2261 /* 2262 * If event uses aux_event tear down the link 2263 */ 2264 if (event->aux_event) { 2265 iter = event->aux_event; 2266 event->aux_event = NULL; 2267 put_event(iter); 2268 return; 2269 } 2270 2271 /* 2272 * If the event is an aux_event, tear down all links to 2273 * it from other events. 2274 */ 2275 for_each_sibling_event(iter, event) { 2276 if (iter->aux_event != event) 2277 continue; 2278 2279 iter->aux_event = NULL; 2280 put_event(event); 2281 2282 /* 2283 * If it's ACTIVE, schedule it out and put it into ERROR 2284 * state so that we don't try to schedule it again. Note 2285 * that perf_event_enable() will clear the ERROR status. 2286 */ 2287 __event_disable(iter, ctx, PERF_EVENT_STATE_ERROR); 2288 } 2289 } 2290 2291 static bool perf_need_aux_event(struct perf_event *event) 2292 { 2293 return event->attr.aux_output || has_aux_action(event); 2294 } 2295 2296 static int perf_get_aux_event(struct perf_event *event, 2297 struct perf_event *group_leader) 2298 { 2299 /* 2300 * Our group leader must be an aux event if we want to be 2301 * an aux_output. This way, the aux event will precede its 2302 * aux_output events in the group, and therefore will always 2303 * schedule first. 2304 */ 2305 if (!group_leader) 2306 return 0; 2307 2308 /* 2309 * aux_output and aux_sample_size are mutually exclusive. 2310 */ 2311 if (event->attr.aux_output && event->attr.aux_sample_size) 2312 return 0; 2313 2314 if (event->attr.aux_output && 2315 !perf_aux_output_match(event, group_leader)) 2316 return 0; 2317 2318 if ((event->attr.aux_pause || event->attr.aux_resume) && 2319 !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) 2320 return 0; 2321 2322 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2323 return 0; 2324 2325 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2326 return 0; 2327 2328 /* 2329 * Link aux_outputs to their aux event; this is undone in 2330 * perf_group_detach() by perf_put_aux_event(). When the 2331 * group in torn down, the aux_output events loose their 2332 * link to the aux_event and can't schedule any more. 2333 */ 2334 event->aux_event = group_leader; 2335 2336 return 1; 2337 } 2338 2339 static inline struct list_head *get_event_list(struct perf_event *event) 2340 { 2341 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2342 &event->pmu_ctx->flexible_active; 2343 } 2344 2345 static void perf_group_detach(struct perf_event *event) 2346 { 2347 struct perf_event *leader = event->group_leader; 2348 struct perf_event *sibling, *tmp; 2349 struct perf_event_context *ctx = event->ctx; 2350 2351 lockdep_assert_held(&ctx->lock); 2352 2353 /* 2354 * We can have double detach due to exit/hot-unplug + close. 2355 */ 2356 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2357 return; 2358 2359 event->attach_state &= ~PERF_ATTACH_GROUP; 2360 2361 perf_put_aux_event(event); 2362 2363 /* 2364 * If this is a sibling, remove it from its group. 2365 */ 2366 if (leader != event) { 2367 list_del_init(&event->sibling_list); 2368 event->group_leader->nr_siblings--; 2369 event->group_leader->group_generation++; 2370 goto out; 2371 } 2372 2373 /* 2374 * If this was a group event with sibling events then 2375 * upgrade the siblings to singleton events by adding them 2376 * to whatever list we are on. 2377 */ 2378 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2379 2380 /* 2381 * Events that have PERF_EV_CAP_SIBLING require being part of 2382 * a group and cannot exist on their own, schedule them out 2383 * and move them into the ERROR state. Also see 2384 * _perf_event_enable(), it will not be able to recover this 2385 * ERROR state. 2386 */ 2387 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2388 __event_disable(sibling, ctx, PERF_EVENT_STATE_ERROR); 2389 2390 sibling->group_leader = sibling; 2391 list_del_init(&sibling->sibling_list); 2392 2393 /* Inherit group flags from the previous leader */ 2394 sibling->group_caps = event->group_caps; 2395 2396 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2397 add_event_to_groups(sibling, event->ctx); 2398 2399 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2400 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2401 } 2402 2403 WARN_ON_ONCE(sibling->ctx != event->ctx); 2404 } 2405 2406 out: 2407 for_each_sibling_event(tmp, leader) 2408 perf_event__header_size(tmp); 2409 2410 perf_event__header_size(leader); 2411 } 2412 2413 static void perf_child_detach(struct perf_event *event) 2414 { 2415 struct perf_event *parent_event = event->parent; 2416 2417 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2418 return; 2419 2420 event->attach_state &= ~PERF_ATTACH_CHILD; 2421 2422 if (WARN_ON_ONCE(!parent_event)) 2423 return; 2424 2425 /* 2426 * Can't check this from an IPI, the holder is likey another CPU. 2427 * 2428 lockdep_assert_held(&parent_event->child_mutex); 2429 */ 2430 2431 list_del_init(&event->child_list); 2432 } 2433 2434 static bool is_orphaned_event(struct perf_event *event) 2435 { 2436 return event->state == PERF_EVENT_STATE_DEAD; 2437 } 2438 2439 static inline int 2440 event_filter_match(struct perf_event *event) 2441 { 2442 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2443 perf_cgroup_match(event); 2444 } 2445 2446 static inline bool is_event_in_freq_mode(struct perf_event *event) 2447 { 2448 return event->attr.freq && event->attr.sample_freq; 2449 } 2450 2451 static void 2452 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2453 { 2454 struct perf_event_pmu_context *epc = event->pmu_ctx; 2455 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu); 2456 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2457 2458 // XXX cpc serialization, probably per-cpu IRQ disabled 2459 2460 WARN_ON_ONCE(event->ctx != ctx); 2461 lockdep_assert_held(&ctx->lock); 2462 2463 if (event->state != PERF_EVENT_STATE_ACTIVE) 2464 return; 2465 2466 /* 2467 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2468 * we can schedule events _OUT_ individually through things like 2469 * __perf_remove_from_context(). 2470 */ 2471 list_del_init(&event->active_list); 2472 2473 perf_pmu_disable(event->pmu); 2474 2475 event->pmu->del(event, 0); 2476 event->oncpu = -1; 2477 2478 if (event->pending_disable) { 2479 event->pending_disable = 0; 2480 perf_cgroup_event_disable(event, ctx); 2481 state = PERF_EVENT_STATE_OFF; 2482 } 2483 2484 perf_event_set_state(event, state); 2485 2486 if (!is_software_event(event)) 2487 cpc->active_oncpu--; 2488 if (is_event_in_freq_mode(event)) { 2489 ctx->nr_freq--; 2490 epc->nr_freq--; 2491 } 2492 if (event->attr.exclusive || !cpc->active_oncpu) 2493 cpc->exclusive = 0; 2494 2495 perf_pmu_enable(event->pmu); 2496 } 2497 2498 static void 2499 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2500 { 2501 struct perf_event *event; 2502 2503 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2504 return; 2505 2506 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2507 2508 event_sched_out(group_event, ctx); 2509 2510 /* 2511 * Schedule out siblings (if any): 2512 */ 2513 for_each_sibling_event(event, group_event) 2514 event_sched_out(event, ctx); 2515 } 2516 2517 static inline void 2518 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, 2519 bool final, enum event_type_t event_type) 2520 { 2521 if (ctx->is_active & EVENT_TIME) { 2522 if (ctx->is_active & EVENT_FROZEN) 2523 return; 2524 2525 update_context_time(ctx); 2526 /* vPMU should not stop time */ 2527 update_cgrp_time_from_cpuctx(cpuctx, !(event_type & EVENT_GUEST) && final); 2528 } 2529 } 2530 2531 static inline void 2532 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2533 { 2534 __ctx_time_update(cpuctx, ctx, false, 0); 2535 } 2536 2537 /* 2538 * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock(). 2539 */ 2540 static inline void 2541 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2542 { 2543 ctx_time_update(cpuctx, ctx); 2544 if (ctx->is_active & EVENT_TIME) 2545 ctx->is_active |= EVENT_FROZEN; 2546 } 2547 2548 static inline void 2549 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event) 2550 { 2551 if (ctx->is_active & EVENT_TIME) { 2552 if (ctx->is_active & EVENT_FROZEN) 2553 return; 2554 update_context_time(ctx); 2555 update_cgrp_time_from_event(event); 2556 } 2557 } 2558 2559 #define DETACH_GROUP 0x01UL 2560 #define DETACH_CHILD 0x02UL 2561 #define DETACH_EXIT 0x04UL 2562 #define DETACH_REVOKE 0x08UL 2563 #define DETACH_DEAD 0x10UL 2564 2565 /* 2566 * Cross CPU call to remove a performance event 2567 * 2568 * We disable the event on the hardware level first. After that we 2569 * remove it from the context list. 2570 */ 2571 static void 2572 __perf_remove_from_context(struct perf_event *event, 2573 struct perf_cpu_context *cpuctx, 2574 struct perf_event_context *ctx, 2575 void *info) 2576 { 2577 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2578 enum perf_event_state state = PERF_EVENT_STATE_OFF; 2579 unsigned long flags = (unsigned long)info; 2580 2581 ctx_time_update(cpuctx, ctx); 2582 2583 /* 2584 * Ensure event_sched_out() switches to OFF, at the very least 2585 * this avoids raising perf_pending_task() at this time. 2586 */ 2587 if (flags & DETACH_EXIT) 2588 state = PERF_EVENT_STATE_EXIT; 2589 if (flags & DETACH_REVOKE) 2590 state = PERF_EVENT_STATE_REVOKED; 2591 if (flags & DETACH_DEAD) 2592 state = PERF_EVENT_STATE_DEAD; 2593 2594 event_sched_out(event, ctx); 2595 2596 if (event->state > PERF_EVENT_STATE_OFF) 2597 perf_cgroup_event_disable(event, ctx); 2598 2599 perf_event_set_state(event, min(event->state, state)); 2600 2601 if (flags & DETACH_GROUP) 2602 perf_group_detach(event); 2603 if (flags & DETACH_CHILD) 2604 perf_child_detach(event); 2605 list_del_event(event, ctx); 2606 2607 if (!pmu_ctx->nr_events) { 2608 pmu_ctx->rotate_necessary = 0; 2609 2610 if (ctx->task && ctx->is_active) { 2611 struct perf_cpu_pmu_context *cpc = this_cpc(pmu_ctx->pmu); 2612 2613 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2614 cpc->task_epc = NULL; 2615 } 2616 } 2617 2618 if (!ctx->nr_events && ctx->is_active) { 2619 if (ctx == &cpuctx->ctx) 2620 update_cgrp_time_from_cpuctx(cpuctx, true); 2621 2622 ctx->is_active = 0; 2623 if (ctx->task) { 2624 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2625 cpuctx->task_ctx = NULL; 2626 } 2627 } 2628 } 2629 2630 /* 2631 * Remove the event from a task's (or a CPU's) list of events. 2632 * 2633 * If event->ctx is a cloned context, callers must make sure that 2634 * every task struct that event->ctx->task could possibly point to 2635 * remains valid. This is OK when called from perf_release since 2636 * that only calls us on the top-level context, which can't be a clone. 2637 * When called from perf_event_exit_task, it's OK because the 2638 * context has been detached from its task. 2639 */ 2640 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2641 { 2642 struct perf_event_context *ctx = event->ctx; 2643 2644 lockdep_assert_held(&ctx->mutex); 2645 2646 /* 2647 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2648 * to work in the face of TASK_TOMBSTONE, unlike every other 2649 * event_function_call() user. 2650 */ 2651 raw_spin_lock_irq(&ctx->lock); 2652 if (!ctx->is_active) { 2653 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2654 ctx, (void *)flags); 2655 raw_spin_unlock_irq(&ctx->lock); 2656 return; 2657 } 2658 raw_spin_unlock_irq(&ctx->lock); 2659 2660 event_function_call(event, __perf_remove_from_context, (void *)flags); 2661 } 2662 2663 static void __event_disable(struct perf_event *event, 2664 struct perf_event_context *ctx, 2665 enum perf_event_state state) 2666 { 2667 event_sched_out(event, ctx); 2668 perf_cgroup_event_disable(event, ctx); 2669 perf_event_set_state(event, state); 2670 } 2671 2672 /* 2673 * Cross CPU call to disable a performance event 2674 */ 2675 static void __perf_event_disable(struct perf_event *event, 2676 struct perf_cpu_context *cpuctx, 2677 struct perf_event_context *ctx, 2678 void *info) 2679 { 2680 if (event->state < PERF_EVENT_STATE_INACTIVE) 2681 return; 2682 2683 perf_pmu_disable(event->pmu_ctx->pmu); 2684 ctx_time_update_event(ctx, event); 2685 2686 /* 2687 * When disabling a group leader, the whole group becomes ineligible 2688 * to run, so schedule out the full group. 2689 */ 2690 if (event == event->group_leader) 2691 group_sched_out(event, ctx); 2692 2693 /* 2694 * But only mark the leader OFF; the siblings will remain 2695 * INACTIVE. 2696 */ 2697 __event_disable(event, ctx, PERF_EVENT_STATE_OFF); 2698 2699 perf_pmu_enable(event->pmu_ctx->pmu); 2700 } 2701 2702 /* 2703 * Disable an event. 2704 * 2705 * If event->ctx is a cloned context, callers must make sure that 2706 * every task struct that event->ctx->task could possibly point to 2707 * remains valid. This condition is satisfied when called through 2708 * perf_event_for_each_child or perf_event_for_each because they 2709 * hold the top-level event's child_mutex, so any descendant that 2710 * goes to exit will block in perf_event_exit_event(). 2711 * 2712 * When called from perf_pending_disable it's OK because event->ctx 2713 * is the current context on this CPU and preemption is disabled, 2714 * hence we can't get into perf_event_task_sched_out for this context. 2715 */ 2716 static void _perf_event_disable(struct perf_event *event) 2717 { 2718 struct perf_event_context *ctx = event->ctx; 2719 2720 raw_spin_lock_irq(&ctx->lock); 2721 if (event->state <= PERF_EVENT_STATE_OFF) { 2722 raw_spin_unlock_irq(&ctx->lock); 2723 return; 2724 } 2725 raw_spin_unlock_irq(&ctx->lock); 2726 2727 event_function_call(event, __perf_event_disable, NULL); 2728 } 2729 2730 void perf_event_disable_local(struct perf_event *event) 2731 { 2732 event_function_local(event, __perf_event_disable, NULL); 2733 } 2734 2735 /* 2736 * Strictly speaking kernel users cannot create groups and therefore this 2737 * interface does not need the perf_event_ctx_lock() magic. 2738 */ 2739 void perf_event_disable(struct perf_event *event) 2740 { 2741 struct perf_event_context *ctx; 2742 2743 ctx = perf_event_ctx_lock(event); 2744 _perf_event_disable(event); 2745 perf_event_ctx_unlock(event, ctx); 2746 } 2747 EXPORT_SYMBOL_GPL(perf_event_disable); 2748 2749 void perf_event_disable_inatomic(struct perf_event *event) 2750 { 2751 event->pending_disable = 1; 2752 irq_work_queue(&event->pending_disable_irq); 2753 } 2754 2755 #define MAX_INTERRUPTS (~0ULL) 2756 2757 static void perf_log_throttle(struct perf_event *event, int enable); 2758 static void perf_log_itrace_start(struct perf_event *event); 2759 2760 static void perf_event_unthrottle(struct perf_event *event, bool start) 2761 { 2762 if (event->state != PERF_EVENT_STATE_ACTIVE) 2763 return; 2764 2765 event->hw.interrupts = 0; 2766 if (start) 2767 event->pmu->start(event, 0); 2768 if (event == event->group_leader) 2769 perf_log_throttle(event, 1); 2770 } 2771 2772 static void perf_event_throttle(struct perf_event *event) 2773 { 2774 if (event->state != PERF_EVENT_STATE_ACTIVE) 2775 return; 2776 2777 event->hw.interrupts = MAX_INTERRUPTS; 2778 event->pmu->stop(event, 0); 2779 if (event == event->group_leader) 2780 perf_log_throttle(event, 0); 2781 } 2782 2783 static void perf_event_unthrottle_group(struct perf_event *event, bool skip_start_event) 2784 { 2785 struct perf_event *sibling, *leader = event->group_leader; 2786 2787 perf_event_unthrottle(leader, skip_start_event ? leader != event : true); 2788 for_each_sibling_event(sibling, leader) 2789 perf_event_unthrottle(sibling, skip_start_event ? sibling != event : true); 2790 } 2791 2792 static void perf_event_throttle_group(struct perf_event *event) 2793 { 2794 struct perf_event *sibling, *leader = event->group_leader; 2795 2796 perf_event_throttle(leader); 2797 for_each_sibling_event(sibling, leader) 2798 perf_event_throttle(sibling); 2799 } 2800 2801 static int 2802 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2803 { 2804 struct perf_event_pmu_context *epc = event->pmu_ctx; 2805 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu); 2806 int ret = 0; 2807 2808 WARN_ON_ONCE(event->ctx != ctx); 2809 2810 lockdep_assert_held(&ctx->lock); 2811 2812 if (event->state <= PERF_EVENT_STATE_OFF) 2813 return 0; 2814 2815 WRITE_ONCE(event->oncpu, smp_processor_id()); 2816 /* 2817 * Order event::oncpu write to happen before the ACTIVE state is 2818 * visible. This allows perf_event_{stop,read}() to observe the correct 2819 * ->oncpu if it sees ACTIVE. 2820 */ 2821 smp_wmb(); 2822 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2823 2824 /* 2825 * Unthrottle events, since we scheduled we might have missed several 2826 * ticks already, also for a heavily scheduling task there is little 2827 * guarantee it'll get a tick in a timely manner. 2828 */ 2829 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) 2830 perf_event_unthrottle(event, false); 2831 2832 perf_pmu_disable(event->pmu); 2833 2834 perf_log_itrace_start(event); 2835 2836 if (event->pmu->add(event, PERF_EF_START)) { 2837 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2838 event->oncpu = -1; 2839 ret = -EAGAIN; 2840 goto out; 2841 } 2842 2843 if (!is_software_event(event)) 2844 cpc->active_oncpu++; 2845 if (is_event_in_freq_mode(event)) { 2846 ctx->nr_freq++; 2847 epc->nr_freq++; 2848 } 2849 if (event->attr.exclusive) 2850 cpc->exclusive = 1; 2851 2852 out: 2853 perf_pmu_enable(event->pmu); 2854 2855 return ret; 2856 } 2857 2858 static int 2859 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2860 { 2861 struct perf_event *event, *partial_group = NULL; 2862 struct pmu *pmu = group_event->pmu_ctx->pmu; 2863 2864 if (group_event->state == PERF_EVENT_STATE_OFF) 2865 return 0; 2866 2867 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2868 2869 if (event_sched_in(group_event, ctx)) 2870 goto error; 2871 2872 /* 2873 * Schedule in siblings as one group (if any): 2874 */ 2875 for_each_sibling_event(event, group_event) { 2876 if (event_sched_in(event, ctx)) { 2877 partial_group = event; 2878 goto group_error; 2879 } 2880 } 2881 2882 if (!pmu->commit_txn(pmu)) 2883 return 0; 2884 2885 group_error: 2886 /* 2887 * Groups can be scheduled in as one unit only, so undo any 2888 * partial group before returning: 2889 * The events up to the failed event are scheduled out normally. 2890 */ 2891 for_each_sibling_event(event, group_event) { 2892 if (event == partial_group) 2893 break; 2894 2895 event_sched_out(event, ctx); 2896 } 2897 event_sched_out(group_event, ctx); 2898 2899 error: 2900 pmu->cancel_txn(pmu); 2901 return -EAGAIN; 2902 } 2903 2904 /* 2905 * Work out whether we can put this event group on the CPU now. 2906 */ 2907 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2908 { 2909 struct perf_event_pmu_context *epc = event->pmu_ctx; 2910 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu); 2911 2912 /* 2913 * Groups consisting entirely of software events can always go on. 2914 */ 2915 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2916 return 1; 2917 /* 2918 * If an exclusive group is already on, no other hardware 2919 * events can go on. 2920 */ 2921 if (cpc->exclusive) 2922 return 0; 2923 /* 2924 * If this group is exclusive and there are already 2925 * events on the CPU, it can't go on. 2926 */ 2927 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2928 return 0; 2929 /* 2930 * Otherwise, try to add it if all previous groups were able 2931 * to go on. 2932 */ 2933 return can_add_hw; 2934 } 2935 2936 static void add_event_to_ctx(struct perf_event *event, 2937 struct perf_event_context *ctx) 2938 { 2939 list_add_event(event, ctx); 2940 perf_group_attach(event); 2941 } 2942 2943 static void task_ctx_sched_out(struct perf_event_context *ctx, 2944 struct pmu *pmu, 2945 enum event_type_t event_type) 2946 { 2947 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2948 2949 if (!cpuctx->task_ctx) 2950 return; 2951 2952 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2953 return; 2954 2955 ctx_sched_out(ctx, pmu, event_type); 2956 } 2957 2958 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2959 struct perf_event_context *ctx, 2960 struct pmu *pmu, 2961 enum event_type_t event_type) 2962 { 2963 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED | event_type); 2964 if (ctx) 2965 ctx_sched_in(ctx, pmu, EVENT_PINNED | event_type); 2966 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE | event_type); 2967 if (ctx) 2968 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE | event_type); 2969 } 2970 2971 /* 2972 * We want to maintain the following priority of scheduling: 2973 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2974 * - task pinned (EVENT_PINNED) 2975 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2976 * - task flexible (EVENT_FLEXIBLE). 2977 * 2978 * In order to avoid unscheduling and scheduling back in everything every 2979 * time an event is added, only do it for the groups of equal priority and 2980 * below. 2981 * 2982 * This can be called after a batch operation on task events, in which case 2983 * event_type is a bit mask of the types of events involved. For CPU events, 2984 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2985 */ 2986 static void ctx_resched(struct perf_cpu_context *cpuctx, 2987 struct perf_event_context *task_ctx, 2988 struct pmu *pmu, enum event_type_t event_type) 2989 { 2990 bool cpu_event = !!(event_type & EVENT_CPU); 2991 struct perf_event_pmu_context *epc; 2992 2993 /* 2994 * If pinned groups are involved, flexible groups also need to be 2995 * scheduled out. 2996 */ 2997 if (event_type & EVENT_PINNED) 2998 event_type |= EVENT_FLEXIBLE; 2999 3000 event_type &= EVENT_ALL; 3001 3002 for_each_epc(epc, &cpuctx->ctx, pmu, 0) 3003 perf_pmu_disable(epc->pmu); 3004 3005 if (task_ctx) { 3006 for_each_epc(epc, task_ctx, pmu, 0) 3007 perf_pmu_disable(epc->pmu); 3008 3009 task_ctx_sched_out(task_ctx, pmu, event_type); 3010 } 3011 3012 /* 3013 * Decide which cpu ctx groups to schedule out based on the types 3014 * of events that caused rescheduling: 3015 * - EVENT_CPU: schedule out corresponding groups; 3016 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 3017 * - otherwise, do nothing more. 3018 */ 3019 if (cpu_event) 3020 ctx_sched_out(&cpuctx->ctx, pmu, event_type); 3021 else if (event_type & EVENT_PINNED) 3022 ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 3023 3024 perf_event_sched_in(cpuctx, task_ctx, pmu, 0); 3025 3026 for_each_epc(epc, &cpuctx->ctx, pmu, 0) 3027 perf_pmu_enable(epc->pmu); 3028 3029 if (task_ctx) { 3030 for_each_epc(epc, task_ctx, pmu, 0) 3031 perf_pmu_enable(epc->pmu); 3032 } 3033 } 3034 3035 void perf_pmu_resched(struct pmu *pmu) 3036 { 3037 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3038 struct perf_event_context *task_ctx = cpuctx->task_ctx; 3039 3040 perf_ctx_lock(cpuctx, task_ctx); 3041 ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU); 3042 perf_ctx_unlock(cpuctx, task_ctx); 3043 } 3044 3045 /* 3046 * Cross CPU call to install and enable a performance event 3047 * 3048 * Very similar to remote_function() + event_function() but cannot assume that 3049 * things like ctx->is_active and cpuctx->task_ctx are set. 3050 */ 3051 static int __perf_install_in_context(void *info) 3052 { 3053 struct perf_event *event = info; 3054 struct perf_event_context *ctx = event->ctx; 3055 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3056 struct perf_event_context *task_ctx = cpuctx->task_ctx; 3057 bool reprogram = true; 3058 int ret = 0; 3059 3060 raw_spin_lock(&cpuctx->ctx.lock); 3061 if (ctx->task) { 3062 raw_spin_lock(&ctx->lock); 3063 task_ctx = ctx; 3064 3065 reprogram = (ctx->task == current); 3066 3067 /* 3068 * If the task is running, it must be running on this CPU, 3069 * otherwise we cannot reprogram things. 3070 * 3071 * If its not running, we don't care, ctx->lock will 3072 * serialize against it becoming runnable. 3073 */ 3074 if (task_curr(ctx->task) && !reprogram) { 3075 ret = -ESRCH; 3076 goto unlock; 3077 } 3078 3079 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 3080 } else if (task_ctx) { 3081 raw_spin_lock(&task_ctx->lock); 3082 } 3083 3084 #ifdef CONFIG_CGROUP_PERF 3085 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 3086 /* 3087 * If the current cgroup doesn't match the event's 3088 * cgroup, we should not try to schedule it. 3089 */ 3090 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 3091 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 3092 event->cgrp->css.cgroup); 3093 } 3094 #endif 3095 3096 if (reprogram) { 3097 ctx_time_freeze(cpuctx, ctx); 3098 add_event_to_ctx(event, ctx); 3099 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, 3100 get_event_type(event)); 3101 } else { 3102 add_event_to_ctx(event, ctx); 3103 } 3104 3105 unlock: 3106 perf_ctx_unlock(cpuctx, task_ctx); 3107 3108 return ret; 3109 } 3110 3111 static bool exclusive_event_installable(struct perf_event *event, 3112 struct perf_event_context *ctx); 3113 3114 /* 3115 * Attach a performance event to a context. 3116 * 3117 * Very similar to event_function_call, see comment there. 3118 */ 3119 static void 3120 perf_install_in_context(struct perf_event_context *ctx, 3121 struct perf_event *event, 3122 int cpu) 3123 { 3124 struct task_struct *task = READ_ONCE(ctx->task); 3125 3126 lockdep_assert_held(&ctx->mutex); 3127 3128 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 3129 3130 if (event->cpu != -1) 3131 WARN_ON_ONCE(event->cpu != cpu); 3132 3133 /* 3134 * Ensures that if we can observe event->ctx, both the event and ctx 3135 * will be 'complete'. See perf_iterate_sb_cpu(). 3136 */ 3137 smp_store_release(&event->ctx, ctx); 3138 3139 /* 3140 * perf_event_attr::disabled events will not run and can be initialized 3141 * without IPI. Except when this is the first event for the context, in 3142 * that case we need the magic of the IPI to set ctx->is_active. 3143 * 3144 * The IOC_ENABLE that is sure to follow the creation of a disabled 3145 * event will issue the IPI and reprogram the hardware. 3146 */ 3147 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 3148 ctx->nr_events && !is_cgroup_event(event)) { 3149 raw_spin_lock_irq(&ctx->lock); 3150 if (ctx->task == TASK_TOMBSTONE) { 3151 raw_spin_unlock_irq(&ctx->lock); 3152 return; 3153 } 3154 add_event_to_ctx(event, ctx); 3155 raw_spin_unlock_irq(&ctx->lock); 3156 return; 3157 } 3158 3159 if (!task) { 3160 cpu_function_call(cpu, __perf_install_in_context, event); 3161 return; 3162 } 3163 3164 /* 3165 * Should not happen, we validate the ctx is still alive before calling. 3166 */ 3167 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 3168 return; 3169 3170 /* 3171 * Installing events is tricky because we cannot rely on ctx->is_active 3172 * to be set in case this is the nr_events 0 -> 1 transition. 3173 * 3174 * Instead we use task_curr(), which tells us if the task is running. 3175 * However, since we use task_curr() outside of rq::lock, we can race 3176 * against the actual state. This means the result can be wrong. 3177 * 3178 * If we get a false positive, we retry, this is harmless. 3179 * 3180 * If we get a false negative, things are complicated. If we are after 3181 * perf_event_context_sched_in() ctx::lock will serialize us, and the 3182 * value must be correct. If we're before, it doesn't matter since 3183 * perf_event_context_sched_in() will program the counter. 3184 * 3185 * However, this hinges on the remote context switch having observed 3186 * our task->perf_event_ctxp[] store, such that it will in fact take 3187 * ctx::lock in perf_event_context_sched_in(). 3188 * 3189 * We do this by task_function_call(), if the IPI fails to hit the task 3190 * we know any future context switch of task must see the 3191 * perf_event_ctpx[] store. 3192 */ 3193 3194 /* 3195 * This smp_mb() orders the task->perf_event_ctxp[] store with the 3196 * task_cpu() load, such that if the IPI then does not find the task 3197 * running, a future context switch of that task must observe the 3198 * store. 3199 */ 3200 smp_mb(); 3201 again: 3202 if (!task_function_call(task, __perf_install_in_context, event)) 3203 return; 3204 3205 raw_spin_lock_irq(&ctx->lock); 3206 task = ctx->task; 3207 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 3208 /* 3209 * Cannot happen because we already checked above (which also 3210 * cannot happen), and we hold ctx->mutex, which serializes us 3211 * against perf_event_exit_task_context(). 3212 */ 3213 raw_spin_unlock_irq(&ctx->lock); 3214 return; 3215 } 3216 /* 3217 * If the task is not running, ctx->lock will avoid it becoming so, 3218 * thus we can safely install the event. 3219 */ 3220 if (task_curr(task)) { 3221 raw_spin_unlock_irq(&ctx->lock); 3222 goto again; 3223 } 3224 add_event_to_ctx(event, ctx); 3225 raw_spin_unlock_irq(&ctx->lock); 3226 } 3227 3228 /* 3229 * Cross CPU call to enable a performance event 3230 */ 3231 static void __perf_event_enable(struct perf_event *event, 3232 struct perf_cpu_context *cpuctx, 3233 struct perf_event_context *ctx, 3234 void *info) 3235 { 3236 struct perf_event *leader = event->group_leader; 3237 struct perf_event_context *task_ctx; 3238 3239 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3240 event->state <= PERF_EVENT_STATE_ERROR) 3241 return; 3242 3243 ctx_time_freeze(cpuctx, ctx); 3244 3245 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3246 perf_cgroup_event_enable(event, ctx); 3247 3248 if (!ctx->is_active) 3249 return; 3250 3251 if (!event_filter_match(event)) 3252 return; 3253 3254 /* 3255 * If the event is in a group and isn't the group leader, 3256 * then don't put it on unless the group is on. 3257 */ 3258 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 3259 return; 3260 3261 task_ctx = cpuctx->task_ctx; 3262 if (ctx->task) 3263 WARN_ON_ONCE(task_ctx != ctx); 3264 3265 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event)); 3266 } 3267 3268 /* 3269 * Enable an event. 3270 * 3271 * If event->ctx is a cloned context, callers must make sure that 3272 * every task struct that event->ctx->task could possibly point to 3273 * remains valid. This condition is satisfied when called through 3274 * perf_event_for_each_child or perf_event_for_each as described 3275 * for perf_event_disable. 3276 */ 3277 static void _perf_event_enable(struct perf_event *event) 3278 { 3279 struct perf_event_context *ctx = event->ctx; 3280 3281 raw_spin_lock_irq(&ctx->lock); 3282 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3283 event->state < PERF_EVENT_STATE_ERROR) { 3284 out: 3285 raw_spin_unlock_irq(&ctx->lock); 3286 return; 3287 } 3288 3289 /* 3290 * If the event is in error state, clear that first. 3291 * 3292 * That way, if we see the event in error state below, we know that it 3293 * has gone back into error state, as distinct from the task having 3294 * been scheduled away before the cross-call arrived. 3295 */ 3296 if (event->state == PERF_EVENT_STATE_ERROR) { 3297 /* 3298 * Detached SIBLING events cannot leave ERROR state. 3299 */ 3300 if (event->event_caps & PERF_EV_CAP_SIBLING && 3301 event->group_leader == event) 3302 goto out; 3303 3304 event->state = PERF_EVENT_STATE_OFF; 3305 } 3306 raw_spin_unlock_irq(&ctx->lock); 3307 3308 event_function_call(event, __perf_event_enable, NULL); 3309 } 3310 3311 /* 3312 * See perf_event_disable(); 3313 */ 3314 void perf_event_enable(struct perf_event *event) 3315 { 3316 struct perf_event_context *ctx; 3317 3318 ctx = perf_event_ctx_lock(event); 3319 _perf_event_enable(event); 3320 perf_event_ctx_unlock(event, ctx); 3321 } 3322 EXPORT_SYMBOL_GPL(perf_event_enable); 3323 3324 struct stop_event_data { 3325 struct perf_event *event; 3326 unsigned int restart; 3327 }; 3328 3329 static int __perf_event_stop(void *info) 3330 { 3331 struct stop_event_data *sd = info; 3332 struct perf_event *event = sd->event; 3333 3334 /* if it's already INACTIVE, do nothing */ 3335 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3336 return 0; 3337 3338 /* matches smp_wmb() in event_sched_in() */ 3339 smp_rmb(); 3340 3341 /* 3342 * There is a window with interrupts enabled before we get here, 3343 * so we need to check again lest we try to stop another CPU's event. 3344 */ 3345 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3346 return -EAGAIN; 3347 3348 event->pmu->stop(event, PERF_EF_UPDATE); 3349 3350 /* 3351 * May race with the actual stop (through perf_pmu_output_stop()), 3352 * but it is only used for events with AUX ring buffer, and such 3353 * events will refuse to restart because of rb::aux_mmap_count==0, 3354 * see comments in perf_aux_output_begin(). 3355 * 3356 * Since this is happening on an event-local CPU, no trace is lost 3357 * while restarting. 3358 */ 3359 if (sd->restart) 3360 event->pmu->start(event, 0); 3361 3362 return 0; 3363 } 3364 3365 static int perf_event_stop(struct perf_event *event, int restart) 3366 { 3367 struct stop_event_data sd = { 3368 .event = event, 3369 .restart = restart, 3370 }; 3371 int ret = 0; 3372 3373 do { 3374 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3375 return 0; 3376 3377 /* matches smp_wmb() in event_sched_in() */ 3378 smp_rmb(); 3379 3380 /* 3381 * We only want to restart ACTIVE events, so if the event goes 3382 * inactive here (event->oncpu==-1), there's nothing more to do; 3383 * fall through with ret==-ENXIO. 3384 */ 3385 ret = cpu_function_call(READ_ONCE(event->oncpu), 3386 __perf_event_stop, &sd); 3387 } while (ret == -EAGAIN); 3388 3389 return ret; 3390 } 3391 3392 /* 3393 * In order to contain the amount of racy and tricky in the address filter 3394 * configuration management, it is a two part process: 3395 * 3396 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3397 * we update the addresses of corresponding vmas in 3398 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3399 * (p2) when an event is scheduled in (pmu::add), it calls 3400 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3401 * if the generation has changed since the previous call. 3402 * 3403 * If (p1) happens while the event is active, we restart it to force (p2). 3404 * 3405 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3406 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3407 * ioctl; 3408 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3409 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3410 * for reading; 3411 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3412 * of exec. 3413 */ 3414 void perf_event_addr_filters_sync(struct perf_event *event) 3415 { 3416 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3417 3418 if (!has_addr_filter(event)) 3419 return; 3420 3421 raw_spin_lock(&ifh->lock); 3422 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3423 event->pmu->addr_filters_sync(event); 3424 event->hw.addr_filters_gen = event->addr_filters_gen; 3425 } 3426 raw_spin_unlock(&ifh->lock); 3427 } 3428 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3429 3430 static int _perf_event_refresh(struct perf_event *event, int refresh) 3431 { 3432 /* 3433 * not supported on inherited events 3434 */ 3435 if (event->attr.inherit || !is_sampling_event(event)) 3436 return -EINVAL; 3437 3438 atomic_add(refresh, &event->event_limit); 3439 _perf_event_enable(event); 3440 3441 return 0; 3442 } 3443 3444 /* 3445 * See perf_event_disable() 3446 */ 3447 int perf_event_refresh(struct perf_event *event, int refresh) 3448 { 3449 struct perf_event_context *ctx; 3450 int ret; 3451 3452 ctx = perf_event_ctx_lock(event); 3453 ret = _perf_event_refresh(event, refresh); 3454 perf_event_ctx_unlock(event, ctx); 3455 3456 return ret; 3457 } 3458 EXPORT_SYMBOL_GPL(perf_event_refresh); 3459 3460 static int perf_event_modify_breakpoint(struct perf_event *bp, 3461 struct perf_event_attr *attr) 3462 { 3463 int err; 3464 3465 _perf_event_disable(bp); 3466 3467 err = modify_user_hw_breakpoint_check(bp, attr, true); 3468 3469 if (!bp->attr.disabled) 3470 _perf_event_enable(bp); 3471 3472 return err; 3473 } 3474 3475 /* 3476 * Copy event-type-independent attributes that may be modified. 3477 */ 3478 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3479 const struct perf_event_attr *from) 3480 { 3481 to->sig_data = from->sig_data; 3482 } 3483 3484 static int perf_event_modify_attr(struct perf_event *event, 3485 struct perf_event_attr *attr) 3486 { 3487 int (*func)(struct perf_event *, struct perf_event_attr *); 3488 struct perf_event *child; 3489 int err; 3490 3491 if (event->attr.type != attr->type) 3492 return -EINVAL; 3493 3494 switch (event->attr.type) { 3495 case PERF_TYPE_BREAKPOINT: 3496 func = perf_event_modify_breakpoint; 3497 break; 3498 default: 3499 /* Place holder for future additions. */ 3500 return -EOPNOTSUPP; 3501 } 3502 3503 WARN_ON_ONCE(event->ctx->parent_ctx); 3504 3505 mutex_lock(&event->child_mutex); 3506 /* 3507 * Event-type-independent attributes must be copied before event-type 3508 * modification, which will validate that final attributes match the 3509 * source attributes after all relevant attributes have been copied. 3510 */ 3511 perf_event_modify_copy_attr(&event->attr, attr); 3512 err = func(event, attr); 3513 if (err) 3514 goto out; 3515 list_for_each_entry(child, &event->child_list, child_list) { 3516 perf_event_modify_copy_attr(&child->attr, attr); 3517 err = func(child, attr); 3518 if (err) 3519 goto out; 3520 } 3521 out: 3522 mutex_unlock(&event->child_mutex); 3523 return err; 3524 } 3525 3526 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3527 enum event_type_t event_type) 3528 { 3529 struct perf_event_context *ctx = pmu_ctx->ctx; 3530 struct perf_event *event, *tmp; 3531 struct pmu *pmu = pmu_ctx->pmu; 3532 3533 if (ctx->task && !(ctx->is_active & EVENT_ALL)) { 3534 struct perf_cpu_pmu_context *cpc = this_cpc(pmu); 3535 3536 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3537 cpc->task_epc = NULL; 3538 } 3539 3540 if (!(event_type & EVENT_ALL)) 3541 return; 3542 3543 perf_pmu_disable(pmu); 3544 if (event_type & EVENT_PINNED) { 3545 list_for_each_entry_safe(event, tmp, 3546 &pmu_ctx->pinned_active, 3547 active_list) 3548 group_sched_out(event, ctx); 3549 } 3550 3551 if (event_type & EVENT_FLEXIBLE) { 3552 list_for_each_entry_safe(event, tmp, 3553 &pmu_ctx->flexible_active, 3554 active_list) 3555 group_sched_out(event, ctx); 3556 /* 3557 * Since we cleared EVENT_FLEXIBLE, also clear 3558 * rotate_necessary, is will be reset by 3559 * ctx_flexible_sched_in() when needed. 3560 */ 3561 pmu_ctx->rotate_necessary = 0; 3562 } 3563 perf_pmu_enable(pmu); 3564 } 3565 3566 /* 3567 * Be very careful with the @pmu argument since this will change ctx state. 3568 * The @pmu argument works for ctx_resched(), because that is symmetric in 3569 * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant. 3570 * 3571 * However, if you were to be asymmetrical, you could end up with messed up 3572 * state, eg. ctx->is_active cleared even though most EPCs would still actually 3573 * be active. 3574 */ 3575 static void 3576 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 3577 { 3578 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3579 enum event_type_t active_type = event_type & ~EVENT_FLAGS; 3580 struct perf_event_pmu_context *pmu_ctx; 3581 int is_active = ctx->is_active; 3582 3583 3584 lockdep_assert_held(&ctx->lock); 3585 3586 if (likely(!ctx->nr_events)) { 3587 /* 3588 * See __perf_remove_from_context(). 3589 */ 3590 WARN_ON_ONCE(ctx->is_active); 3591 if (ctx->task) 3592 WARN_ON_ONCE(cpuctx->task_ctx); 3593 return; 3594 } 3595 3596 /* 3597 * Always update time if it was set; not only when it changes. 3598 * Otherwise we can 'forget' to update time for any but the last 3599 * context we sched out. For example: 3600 * 3601 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3602 * ctx_sched_out(.event_type = EVENT_PINNED) 3603 * 3604 * would only update time for the pinned events. 3605 */ 3606 __ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx, event_type); 3607 3608 /* 3609 * CPU-release for the below ->is_active store, 3610 * see __load_acquire() in perf_event_time_now() 3611 */ 3612 barrier(); 3613 ctx->is_active &= ~active_type; 3614 3615 if (!(ctx->is_active & EVENT_ALL)) { 3616 /* 3617 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now() 3618 * does not observe a hole. perf_ctx_unlock() will clean up. 3619 */ 3620 if (ctx->is_active & EVENT_FROZEN) 3621 ctx->is_active &= EVENT_TIME_FROZEN; 3622 else 3623 ctx->is_active = 0; 3624 } 3625 3626 if (ctx->task) { 3627 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3628 if (!(ctx->is_active & EVENT_ALL)) 3629 cpuctx->task_ctx = NULL; 3630 } 3631 3632 if (event_type & EVENT_GUEST) { 3633 /* 3634 * Schedule out all exclude_guest events of PMU 3635 * with PERF_PMU_CAP_MEDIATED_VPMU. 3636 */ 3637 is_active = EVENT_ALL; 3638 __update_context_guest_time(ctx, false); 3639 perf_cgroup_set_timestamp(cpuctx, true); 3640 barrier(); 3641 } else { 3642 is_active ^= ctx->is_active; /* changed bits */ 3643 } 3644 3645 for_each_epc(pmu_ctx, ctx, pmu, event_type) 3646 __pmu_ctx_sched_out(pmu_ctx, is_active); 3647 } 3648 3649 /* 3650 * Test whether two contexts are equivalent, i.e. whether they have both been 3651 * cloned from the same version of the same context. 3652 * 3653 * Equivalence is measured using a generation number in the context that is 3654 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3655 * and list_del_event(). 3656 */ 3657 static int context_equiv(struct perf_event_context *ctx1, 3658 struct perf_event_context *ctx2) 3659 { 3660 lockdep_assert_held(&ctx1->lock); 3661 lockdep_assert_held(&ctx2->lock); 3662 3663 /* Pinning disables the swap optimization */ 3664 if (ctx1->pin_count || ctx2->pin_count) 3665 return 0; 3666 3667 /* If ctx1 is the parent of ctx2 */ 3668 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3669 return 1; 3670 3671 /* If ctx2 is the parent of ctx1 */ 3672 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3673 return 1; 3674 3675 /* 3676 * If ctx1 and ctx2 have the same parent; we flatten the parent 3677 * hierarchy, see perf_event_init_context(). 3678 */ 3679 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3680 ctx1->parent_gen == ctx2->parent_gen) 3681 return 1; 3682 3683 /* Unmatched */ 3684 return 0; 3685 } 3686 3687 static void __perf_event_sync_stat(struct perf_event *event, 3688 struct perf_event *next_event) 3689 { 3690 u64 value; 3691 3692 if (!event->attr.inherit_stat) 3693 return; 3694 3695 /* 3696 * Update the event value, we cannot use perf_event_read() 3697 * because we're in the middle of a context switch and have IRQs 3698 * disabled, which upsets smp_call_function_single(), however 3699 * we know the event must be on the current CPU, therefore we 3700 * don't need to use it. 3701 */ 3702 perf_pmu_read(event); 3703 3704 perf_event_update_time(event); 3705 3706 /* 3707 * In order to keep per-task stats reliable we need to flip the event 3708 * values when we flip the contexts. 3709 */ 3710 value = local64_read(&next_event->count); 3711 value = local64_xchg(&event->count, value); 3712 local64_set(&next_event->count, value); 3713 3714 swap(event->total_time_enabled, next_event->total_time_enabled); 3715 swap(event->total_time_running, next_event->total_time_running); 3716 3717 /* 3718 * Since we swizzled the values, update the user visible data too. 3719 */ 3720 perf_event_update_userpage(event); 3721 perf_event_update_userpage(next_event); 3722 } 3723 3724 static void perf_event_sync_stat(struct perf_event_context *ctx, 3725 struct perf_event_context *next_ctx) 3726 { 3727 struct perf_event *event, *next_event; 3728 3729 if (!ctx->nr_stat) 3730 return; 3731 3732 update_context_time(ctx); 3733 3734 event = list_first_entry(&ctx->event_list, 3735 struct perf_event, event_entry); 3736 3737 next_event = list_first_entry(&next_ctx->event_list, 3738 struct perf_event, event_entry); 3739 3740 while (&event->event_entry != &ctx->event_list && 3741 &next_event->event_entry != &next_ctx->event_list) { 3742 3743 __perf_event_sync_stat(event, next_event); 3744 3745 event = list_next_entry(event, event_entry); 3746 next_event = list_next_entry(next_event, event_entry); 3747 } 3748 } 3749 3750 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, 3751 struct task_struct *task, bool sched_in) 3752 { 3753 struct perf_event_pmu_context *pmu_ctx; 3754 struct perf_cpu_pmu_context *cpc; 3755 3756 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3757 cpc = this_cpc(pmu_ctx->pmu); 3758 3759 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3760 pmu_ctx->pmu->sched_task(pmu_ctx, task, sched_in); 3761 } 3762 } 3763 3764 static void 3765 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3766 { 3767 struct perf_event_context *ctx = task->perf_event_ctxp; 3768 struct perf_event_context *next_ctx; 3769 struct perf_event_context *parent, *next_parent; 3770 int do_switch = 1; 3771 3772 if (likely(!ctx)) 3773 return; 3774 3775 rcu_read_lock(); 3776 next_ctx = rcu_dereference(next->perf_event_ctxp); 3777 if (!next_ctx) 3778 goto unlock; 3779 3780 parent = rcu_dereference(ctx->parent_ctx); 3781 next_parent = rcu_dereference(next_ctx->parent_ctx); 3782 3783 /* If neither context have a parent context; they cannot be clones. */ 3784 if (!parent && !next_parent) 3785 goto unlock; 3786 3787 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3788 /* 3789 * Looks like the two contexts are clones, so we might be 3790 * able to optimize the context switch. We lock both 3791 * contexts and check that they are clones under the 3792 * lock (including re-checking that neither has been 3793 * uncloned in the meantime). It doesn't matter which 3794 * order we take the locks because no other cpu could 3795 * be trying to lock both of these tasks. 3796 */ 3797 raw_spin_lock(&ctx->lock); 3798 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3799 if (context_equiv(ctx, next_ctx)) { 3800 3801 perf_ctx_disable(ctx, 0); 3802 3803 /* PMIs are disabled; ctx->nr_no_switch_fast is stable. */ 3804 if (local_read(&ctx->nr_no_switch_fast) || 3805 local_read(&next_ctx->nr_no_switch_fast)) { 3806 /* 3807 * Must not swap out ctx when there's pending 3808 * events that rely on the ctx->task relation. 3809 * 3810 * Likewise, when a context contains inherit + 3811 * SAMPLE_READ events they should be switched 3812 * out using the slow path so that they are 3813 * treated as if they were distinct contexts. 3814 */ 3815 raw_spin_unlock(&next_ctx->lock); 3816 rcu_read_unlock(); 3817 goto inside_switch; 3818 } 3819 3820 WRITE_ONCE(ctx->task, next); 3821 WRITE_ONCE(next_ctx->task, task); 3822 3823 perf_ctx_sched_task_cb(ctx, task, false); 3824 3825 perf_ctx_enable(ctx, 0); 3826 3827 /* 3828 * RCU_INIT_POINTER here is safe because we've not 3829 * modified the ctx and the above modification of 3830 * ctx->task is immaterial since this value is 3831 * always verified under ctx->lock which we're now 3832 * holding. 3833 */ 3834 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3835 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3836 3837 do_switch = 0; 3838 3839 perf_event_sync_stat(ctx, next_ctx); 3840 } 3841 raw_spin_unlock(&next_ctx->lock); 3842 raw_spin_unlock(&ctx->lock); 3843 } 3844 unlock: 3845 rcu_read_unlock(); 3846 3847 if (do_switch) { 3848 raw_spin_lock(&ctx->lock); 3849 perf_ctx_disable(ctx, 0); 3850 3851 inside_switch: 3852 perf_ctx_sched_task_cb(ctx, task, false); 3853 task_ctx_sched_out(ctx, NULL, EVENT_ALL); 3854 3855 perf_ctx_enable(ctx, 0); 3856 raw_spin_unlock(&ctx->lock); 3857 } 3858 } 3859 3860 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3861 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3862 3863 void perf_sched_cb_dec(struct pmu *pmu) 3864 { 3865 struct perf_cpu_pmu_context *cpc = this_cpc(pmu); 3866 3867 this_cpu_dec(perf_sched_cb_usages); 3868 barrier(); 3869 3870 if (!--cpc->sched_cb_usage) 3871 list_del(&cpc->sched_cb_entry); 3872 } 3873 3874 3875 void perf_sched_cb_inc(struct pmu *pmu) 3876 { 3877 struct perf_cpu_pmu_context *cpc = this_cpc(pmu); 3878 3879 if (!cpc->sched_cb_usage++) 3880 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3881 3882 barrier(); 3883 this_cpu_inc(perf_sched_cb_usages); 3884 } 3885 3886 /* 3887 * This function provides the context switch callback to the lower code 3888 * layer. It is invoked ONLY when the context switch callback is enabled. 3889 * 3890 * This callback is relevant even to per-cpu events; for example multi event 3891 * PEBS requires this to provide PID/TID information. This requires we flush 3892 * all queued PEBS records before we context switch to a new task. 3893 */ 3894 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, 3895 struct task_struct *task, bool sched_in) 3896 { 3897 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3898 struct pmu *pmu; 3899 3900 pmu = cpc->epc.pmu; 3901 3902 /* software PMUs will not have sched_task */ 3903 if (WARN_ON_ONCE(!pmu->sched_task)) 3904 return; 3905 3906 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3907 perf_pmu_disable(pmu); 3908 3909 pmu->sched_task(cpc->task_epc, task, sched_in); 3910 3911 perf_pmu_enable(pmu); 3912 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3913 } 3914 3915 static void perf_pmu_sched_task(struct task_struct *prev, 3916 struct task_struct *next, 3917 bool sched_in) 3918 { 3919 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3920 struct perf_cpu_pmu_context *cpc; 3921 3922 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3923 if (prev == next || cpuctx->task_ctx) 3924 return; 3925 3926 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3927 __perf_pmu_sched_task(cpc, sched_in ? next : prev, sched_in); 3928 } 3929 3930 static void perf_event_switch(struct task_struct *task, 3931 struct task_struct *next_prev, bool sched_in); 3932 3933 /* 3934 * Called from scheduler to remove the events of the current task, 3935 * with interrupts disabled. 3936 * 3937 * We stop each event and update the event value in event->count. 3938 * 3939 * This does not protect us against NMI, but disable() 3940 * sets the disabled bit in the control field of event _before_ 3941 * accessing the event control register. If a NMI hits, then it will 3942 * not restart the event. 3943 */ 3944 void __perf_event_task_sched_out(struct task_struct *task, 3945 struct task_struct *next) 3946 { 3947 if (__this_cpu_read(perf_sched_cb_usages)) 3948 perf_pmu_sched_task(task, next, false); 3949 3950 if (atomic_read(&nr_switch_events)) 3951 perf_event_switch(task, next, false); 3952 3953 perf_event_context_sched_out(task, next); 3954 3955 /* 3956 * if cgroup events exist on this CPU, then we need 3957 * to check if we have to switch out PMU state. 3958 * cgroup event are system-wide mode only 3959 */ 3960 perf_cgroup_switch(next); 3961 } 3962 3963 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args) 3964 { 3965 const struct perf_event *le = *(const struct perf_event **)l; 3966 const struct perf_event *re = *(const struct perf_event **)r; 3967 3968 return le->group_index < re->group_index; 3969 } 3970 3971 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap); 3972 3973 static const struct min_heap_callbacks perf_min_heap = { 3974 .less = perf_less_group_idx, 3975 .swp = NULL, 3976 }; 3977 3978 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event) 3979 { 3980 struct perf_event **itrs = heap->data; 3981 3982 if (event) { 3983 itrs[heap->nr] = event; 3984 heap->nr++; 3985 } 3986 } 3987 3988 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3989 { 3990 struct perf_cpu_pmu_context *cpc; 3991 3992 if (!pmu_ctx->ctx->task) 3993 return; 3994 3995 cpc = this_cpc(pmu_ctx->pmu); 3996 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3997 cpc->task_epc = pmu_ctx; 3998 } 3999 4000 static noinline int visit_groups_merge(struct perf_event_context *ctx, 4001 struct perf_event_groups *groups, int cpu, 4002 struct pmu *pmu, 4003 int (*func)(struct perf_event *, void *), 4004 void *data) 4005 { 4006 #ifdef CONFIG_CGROUP_PERF 4007 struct cgroup_subsys_state *css = NULL; 4008 #endif 4009 struct perf_cpu_context *cpuctx = NULL; 4010 /* Space for per CPU and/or any CPU event iterators. */ 4011 struct perf_event *itrs[2]; 4012 struct perf_event_min_heap event_heap; 4013 struct perf_event **evt; 4014 int ret; 4015 4016 if (pmu->filter && pmu->filter(pmu, cpu)) 4017 return 0; 4018 4019 if (!ctx->task) { 4020 cpuctx = this_cpu_ptr(&perf_cpu_context); 4021 event_heap = (struct perf_event_min_heap){ 4022 .data = cpuctx->heap, 4023 .nr = 0, 4024 .size = cpuctx->heap_size, 4025 }; 4026 4027 lockdep_assert_held(&cpuctx->ctx.lock); 4028 4029 #ifdef CONFIG_CGROUP_PERF 4030 if (cpuctx->cgrp) 4031 css = &cpuctx->cgrp->css; 4032 #endif 4033 } else { 4034 event_heap = (struct perf_event_min_heap){ 4035 .data = itrs, 4036 .nr = 0, 4037 .size = ARRAY_SIZE(itrs), 4038 }; 4039 /* Events not within a CPU context may be on any CPU. */ 4040 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 4041 } 4042 evt = event_heap.data; 4043 4044 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 4045 4046 #ifdef CONFIG_CGROUP_PERF 4047 for (; css; css = css->parent) 4048 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 4049 #endif 4050 4051 if (event_heap.nr) { 4052 __link_epc((*evt)->pmu_ctx); 4053 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 4054 } 4055 4056 min_heapify_all_inline(&event_heap, &perf_min_heap, NULL); 4057 4058 while (event_heap.nr) { 4059 ret = func(*evt, data); 4060 if (ret) 4061 return ret; 4062 4063 *evt = perf_event_groups_next(*evt, pmu); 4064 if (*evt) 4065 min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL); 4066 else 4067 min_heap_pop_inline(&event_heap, &perf_min_heap, NULL); 4068 } 4069 4070 return 0; 4071 } 4072 4073 /* 4074 * Because the userpage is strictly per-event (there is no concept of context, 4075 * so there cannot be a context indirection), every userpage must be updated 4076 * when context time starts :-( 4077 * 4078 * IOW, we must not miss EVENT_TIME edges. 4079 */ 4080 static inline bool event_update_userpage(struct perf_event *event) 4081 { 4082 if (likely(!refcount_read(&event->mmap_count))) 4083 return false; 4084 4085 perf_event_update_time(event); 4086 perf_event_update_userpage(event); 4087 4088 return true; 4089 } 4090 4091 static inline void group_update_userpage(struct perf_event *group_event) 4092 { 4093 struct perf_event *event; 4094 4095 if (!event_update_userpage(group_event)) 4096 return; 4097 4098 for_each_sibling_event(event, group_event) 4099 event_update_userpage(event); 4100 } 4101 4102 struct merge_sched_data { 4103 int can_add_hw; 4104 enum event_type_t event_type; 4105 }; 4106 4107 static int merge_sched_in(struct perf_event *event, void *data) 4108 { 4109 struct perf_event_context *ctx = event->ctx; 4110 struct merge_sched_data *msd = data; 4111 4112 if (event->state <= PERF_EVENT_STATE_OFF) 4113 return 0; 4114 4115 if (!event_filter_match(event)) 4116 return 0; 4117 4118 /* 4119 * Don't schedule in any host events from PMU with 4120 * PERF_PMU_CAP_MEDIATED_VPMU, while a guest is running. 4121 */ 4122 if (is_guest_mediated_pmu_loaded() && 4123 event->pmu_ctx->pmu->capabilities & PERF_PMU_CAP_MEDIATED_VPMU && 4124 !(msd->event_type & EVENT_GUEST)) 4125 return 0; 4126 4127 if (group_can_go_on(event, msd->can_add_hw)) { 4128 if (!group_sched_in(event, ctx)) 4129 list_add_tail(&event->active_list, get_event_list(event)); 4130 } 4131 4132 if (event->state == PERF_EVENT_STATE_INACTIVE) { 4133 msd->can_add_hw = 0; 4134 if (event->attr.pinned) { 4135 perf_cgroup_event_disable(event, ctx); 4136 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 4137 4138 if (*perf_event_fasync(event)) 4139 event->pending_kill = POLL_ERR; 4140 4141 perf_event_wakeup(event); 4142 } else { 4143 struct perf_cpu_pmu_context *cpc = this_cpc(event->pmu_ctx->pmu); 4144 4145 event->pmu_ctx->rotate_necessary = 1; 4146 perf_mux_hrtimer_restart(cpc); 4147 group_update_userpage(event); 4148 } 4149 } 4150 4151 return 0; 4152 } 4153 4154 static void pmu_groups_sched_in(struct perf_event_context *ctx, 4155 struct perf_event_groups *groups, 4156 struct pmu *pmu, 4157 enum event_type_t event_type) 4158 { 4159 struct merge_sched_data msd = { 4160 .can_add_hw = 1, 4161 .event_type = event_type, 4162 }; 4163 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 4164 merge_sched_in, &msd); 4165 } 4166 4167 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx, 4168 enum event_type_t event_type) 4169 { 4170 struct perf_event_context *ctx = pmu_ctx->ctx; 4171 4172 if (event_type & EVENT_PINNED) 4173 pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu, event_type); 4174 if (event_type & EVENT_FLEXIBLE) 4175 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu, event_type); 4176 } 4177 4178 static void 4179 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 4180 { 4181 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4182 enum event_type_t active_type = event_type & ~EVENT_FLAGS; 4183 struct perf_event_pmu_context *pmu_ctx; 4184 int is_active = ctx->is_active; 4185 4186 lockdep_assert_held(&ctx->lock); 4187 4188 if (likely(!ctx->nr_events)) 4189 return; 4190 4191 if (!(is_active & EVENT_TIME)) { 4192 /* EVENT_TIME should be active while the guest runs */ 4193 WARN_ON_ONCE(event_type & EVENT_GUEST); 4194 /* start ctx time */ 4195 __update_context_time(ctx, false); 4196 perf_cgroup_set_timestamp(cpuctx, false); 4197 /* 4198 * CPU-release for the below ->is_active store, 4199 * see __load_acquire() in perf_event_time_now() 4200 */ 4201 barrier(); 4202 } 4203 4204 ctx->is_active |= active_type | EVENT_TIME; 4205 if (ctx->task) { 4206 if (!(is_active & EVENT_ALL)) 4207 cpuctx->task_ctx = ctx; 4208 else 4209 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 4210 } 4211 4212 if (event_type & EVENT_GUEST) { 4213 /* 4214 * Schedule in the required exclude_guest events of PMU 4215 * with PERF_PMU_CAP_MEDIATED_VPMU. 4216 */ 4217 is_active = event_type & EVENT_ALL; 4218 4219 /* 4220 * Update ctx time to set the new start time for 4221 * the exclude_guest events. 4222 */ 4223 update_context_time(ctx); 4224 update_cgrp_time_from_cpuctx(cpuctx, false); 4225 barrier(); 4226 } else { 4227 is_active ^= ctx->is_active; /* changed bits */ 4228 } 4229 4230 /* 4231 * First go through the list and put on any pinned groups 4232 * in order to give them the best chance of going on. 4233 */ 4234 if (is_active & EVENT_PINNED) { 4235 for_each_epc(pmu_ctx, ctx, pmu, event_type) 4236 __pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED | (event_type & EVENT_GUEST)); 4237 } 4238 4239 /* Then walk through the lower prio flexible groups */ 4240 if (is_active & EVENT_FLEXIBLE) { 4241 for_each_epc(pmu_ctx, ctx, pmu, event_type) 4242 __pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE | (event_type & EVENT_GUEST)); 4243 } 4244 } 4245 4246 static void perf_event_context_sched_in(struct task_struct *task) 4247 { 4248 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4249 struct perf_event_context *ctx; 4250 4251 rcu_read_lock(); 4252 ctx = rcu_dereference(task->perf_event_ctxp); 4253 if (!ctx) 4254 goto rcu_unlock; 4255 4256 if (cpuctx->task_ctx == ctx) { 4257 perf_ctx_lock(cpuctx, ctx); 4258 perf_ctx_disable(ctx, 0); 4259 4260 perf_ctx_sched_task_cb(ctx, task, true); 4261 4262 perf_ctx_enable(ctx, 0); 4263 perf_ctx_unlock(cpuctx, ctx); 4264 goto rcu_unlock; 4265 } 4266 4267 perf_ctx_lock(cpuctx, ctx); 4268 /* 4269 * We must check ctx->nr_events while holding ctx->lock, such 4270 * that we serialize against perf_install_in_context(). 4271 */ 4272 if (!ctx->nr_events) 4273 goto unlock; 4274 4275 perf_ctx_disable(ctx, 0); 4276 /* 4277 * We want to keep the following priority order: 4278 * cpu pinned (that don't need to move), task pinned, 4279 * cpu flexible, task flexible. 4280 * 4281 * However, if task's ctx is not carrying any pinned 4282 * events, no need to flip the cpuctx's events around. 4283 */ 4284 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 4285 perf_ctx_disable(&cpuctx->ctx, 0); 4286 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE); 4287 } 4288 4289 perf_event_sched_in(cpuctx, ctx, NULL, 0); 4290 4291 perf_ctx_sched_task_cb(cpuctx->task_ctx, task, true); 4292 4293 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 4294 perf_ctx_enable(&cpuctx->ctx, 0); 4295 4296 perf_ctx_enable(ctx, 0); 4297 4298 unlock: 4299 perf_ctx_unlock(cpuctx, ctx); 4300 rcu_unlock: 4301 rcu_read_unlock(); 4302 } 4303 4304 /* 4305 * Called from scheduler to add the events of the current task 4306 * with interrupts disabled. 4307 * 4308 * We restore the event value and then enable it. 4309 * 4310 * This does not protect us against NMI, but enable() 4311 * sets the enabled bit in the control field of event _before_ 4312 * accessing the event control register. If a NMI hits, then it will 4313 * keep the event running. 4314 */ 4315 void __perf_event_task_sched_in(struct task_struct *prev, 4316 struct task_struct *task) 4317 { 4318 perf_event_context_sched_in(task); 4319 4320 if (atomic_read(&nr_switch_events)) 4321 perf_event_switch(task, prev, true); 4322 4323 if (__this_cpu_read(perf_sched_cb_usages)) 4324 perf_pmu_sched_task(prev, task, true); 4325 } 4326 4327 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4328 { 4329 u64 frequency = event->attr.sample_freq; 4330 u64 sec = NSEC_PER_SEC; 4331 u64 divisor, dividend; 4332 4333 int count_fls, nsec_fls, frequency_fls, sec_fls; 4334 4335 count_fls = fls64(count); 4336 nsec_fls = fls64(nsec); 4337 frequency_fls = fls64(frequency); 4338 sec_fls = 30; 4339 4340 /* 4341 * We got @count in @nsec, with a target of sample_freq HZ 4342 * the target period becomes: 4343 * 4344 * @count * 10^9 4345 * period = ------------------- 4346 * @nsec * sample_freq 4347 * 4348 */ 4349 4350 /* 4351 * Reduce accuracy by one bit such that @a and @b converge 4352 * to a similar magnitude. 4353 */ 4354 #define REDUCE_FLS(a, b) \ 4355 do { \ 4356 if (a##_fls > b##_fls) { \ 4357 a >>= 1; \ 4358 a##_fls--; \ 4359 } else { \ 4360 b >>= 1; \ 4361 b##_fls--; \ 4362 } \ 4363 } while (0) 4364 4365 /* 4366 * Reduce accuracy until either term fits in a u64, then proceed with 4367 * the other, so that finally we can do a u64/u64 division. 4368 */ 4369 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4370 REDUCE_FLS(nsec, frequency); 4371 REDUCE_FLS(sec, count); 4372 } 4373 4374 if (count_fls + sec_fls > 64) { 4375 divisor = nsec * frequency; 4376 4377 while (count_fls + sec_fls > 64) { 4378 REDUCE_FLS(count, sec); 4379 divisor >>= 1; 4380 } 4381 4382 dividend = count * sec; 4383 } else { 4384 dividend = count * sec; 4385 4386 while (nsec_fls + frequency_fls > 64) { 4387 REDUCE_FLS(nsec, frequency); 4388 dividend >>= 1; 4389 } 4390 4391 divisor = nsec * frequency; 4392 } 4393 4394 if (!divisor) 4395 return dividend; 4396 4397 return div64_u64(dividend, divisor); 4398 } 4399 4400 static DEFINE_PER_CPU(int, perf_throttled_count); 4401 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4402 4403 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4404 { 4405 struct hw_perf_event *hwc = &event->hw; 4406 s64 period, sample_period; 4407 s64 delta; 4408 4409 period = perf_calculate_period(event, nsec, count); 4410 4411 delta = (s64)(period - hwc->sample_period); 4412 if (delta >= 0) 4413 delta += 7; 4414 else 4415 delta -= 7; 4416 delta /= 8; /* low pass filter */ 4417 4418 sample_period = hwc->sample_period + delta; 4419 4420 if (!sample_period) 4421 sample_period = 1; 4422 4423 hwc->sample_period = sample_period; 4424 4425 if (local64_read(&hwc->period_left) > 8*sample_period) { 4426 if (disable) 4427 event->pmu->stop(event, PERF_EF_UPDATE); 4428 4429 local64_set(&hwc->period_left, 0); 4430 4431 if (disable) 4432 event->pmu->start(event, PERF_EF_RELOAD); 4433 } 4434 } 4435 4436 static void perf_adjust_freq_unthr_events(struct list_head *event_list) 4437 { 4438 struct perf_event *event; 4439 struct hw_perf_event *hwc; 4440 u64 now, period = TICK_NSEC; 4441 s64 delta; 4442 4443 list_for_each_entry(event, event_list, active_list) { 4444 if (event->state != PERF_EVENT_STATE_ACTIVE) 4445 continue; 4446 4447 // XXX use visit thingy to avoid the -1,cpu match 4448 if (!event_filter_match(event)) 4449 continue; 4450 4451 hwc = &event->hw; 4452 4453 if (hwc->interrupts == MAX_INTERRUPTS) 4454 perf_event_unthrottle_group(event, is_event_in_freq_mode(event)); 4455 4456 if (!is_event_in_freq_mode(event)) 4457 continue; 4458 4459 /* 4460 * stop the event and update event->count 4461 */ 4462 event->pmu->stop(event, PERF_EF_UPDATE); 4463 4464 now = local64_read(&event->count); 4465 delta = now - hwc->freq_count_stamp; 4466 hwc->freq_count_stamp = now; 4467 4468 /* 4469 * restart the event 4470 * reload only if value has changed 4471 * we have stopped the event so tell that 4472 * to perf_adjust_period() to avoid stopping it 4473 * twice. 4474 */ 4475 if (delta > 0) 4476 perf_adjust_period(event, period, delta, false); 4477 4478 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4479 } 4480 } 4481 4482 /* 4483 * combine freq adjustment with unthrottling to avoid two passes over the 4484 * events. At the same time, make sure, having freq events does not change 4485 * the rate of unthrottling as that would introduce bias. 4486 */ 4487 static void 4488 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4489 { 4490 struct perf_event_pmu_context *pmu_ctx; 4491 4492 /* 4493 * only need to iterate over all events iff: 4494 * - context have events in frequency mode (needs freq adjust) 4495 * - there are events to unthrottle on this cpu 4496 */ 4497 if (!(ctx->nr_freq || unthrottle)) 4498 return; 4499 4500 raw_spin_lock(&ctx->lock); 4501 4502 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4503 if (!(pmu_ctx->nr_freq || unthrottle)) 4504 continue; 4505 if (!perf_pmu_ctx_is_active(pmu_ctx)) 4506 continue; 4507 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) 4508 continue; 4509 4510 perf_pmu_disable(pmu_ctx->pmu); 4511 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active); 4512 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active); 4513 perf_pmu_enable(pmu_ctx->pmu); 4514 } 4515 4516 raw_spin_unlock(&ctx->lock); 4517 } 4518 4519 /* 4520 * Move @event to the tail of the @ctx's elegible events. 4521 */ 4522 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4523 { 4524 /* 4525 * Rotate the first entry last of non-pinned groups. Rotation might be 4526 * disabled by the inheritance code. 4527 */ 4528 if (ctx->rotate_disable) 4529 return; 4530 4531 perf_event_groups_delete(&ctx->flexible_groups, event); 4532 perf_event_groups_insert(&ctx->flexible_groups, event); 4533 } 4534 4535 /* pick an event from the flexible_groups to rotate */ 4536 static inline struct perf_event * 4537 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4538 { 4539 struct perf_event *event; 4540 struct rb_node *node; 4541 struct rb_root *tree; 4542 struct __group_key key = { 4543 .pmu = pmu_ctx->pmu, 4544 }; 4545 4546 /* pick the first active flexible event */ 4547 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4548 struct perf_event, active_list); 4549 if (event) 4550 goto out; 4551 4552 /* if no active flexible event, pick the first event */ 4553 tree = &pmu_ctx->ctx->flexible_groups.tree; 4554 4555 if (!pmu_ctx->ctx->task) { 4556 key.cpu = smp_processor_id(); 4557 4558 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4559 if (node) 4560 event = __node_2_pe(node); 4561 goto out; 4562 } 4563 4564 key.cpu = -1; 4565 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4566 if (node) { 4567 event = __node_2_pe(node); 4568 goto out; 4569 } 4570 4571 key.cpu = smp_processor_id(); 4572 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4573 if (node) 4574 event = __node_2_pe(node); 4575 4576 out: 4577 /* 4578 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4579 * finds there are unschedulable events, it will set it again. 4580 */ 4581 pmu_ctx->rotate_necessary = 0; 4582 4583 return event; 4584 } 4585 4586 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4587 { 4588 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4589 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4590 struct perf_event *cpu_event = NULL, *task_event = NULL; 4591 int cpu_rotate, task_rotate; 4592 struct pmu *pmu; 4593 4594 /* 4595 * Since we run this from IRQ context, nobody can install new 4596 * events, thus the event count values are stable. 4597 */ 4598 4599 cpu_epc = &cpc->epc; 4600 pmu = cpu_epc->pmu; 4601 task_epc = cpc->task_epc; 4602 4603 cpu_rotate = cpu_epc->rotate_necessary; 4604 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4605 4606 if (!(cpu_rotate || task_rotate)) 4607 return false; 4608 4609 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4610 perf_pmu_disable(pmu); 4611 4612 if (task_rotate) 4613 task_event = ctx_event_to_rotate(task_epc); 4614 if (cpu_rotate) 4615 cpu_event = ctx_event_to_rotate(cpu_epc); 4616 4617 /* 4618 * As per the order given at ctx_resched() first 'pop' task flexible 4619 * and then, if needed CPU flexible. 4620 */ 4621 if (task_event || (task_epc && cpu_event)) { 4622 update_context_time(task_epc->ctx); 4623 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4624 } 4625 4626 if (cpu_event) { 4627 update_context_time(&cpuctx->ctx); 4628 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4629 rotate_ctx(&cpuctx->ctx, cpu_event); 4630 __pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE); 4631 } 4632 4633 if (task_event) 4634 rotate_ctx(task_epc->ctx, task_event); 4635 4636 if (task_event || (task_epc && cpu_event)) 4637 __pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE); 4638 4639 perf_pmu_enable(pmu); 4640 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4641 4642 return true; 4643 } 4644 4645 void perf_event_task_tick(void) 4646 { 4647 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4648 struct perf_event_context *ctx; 4649 int throttled; 4650 4651 lockdep_assert_irqs_disabled(); 4652 4653 __this_cpu_inc(perf_throttled_seq); 4654 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4655 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4656 4657 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4658 4659 rcu_read_lock(); 4660 ctx = rcu_dereference(current->perf_event_ctxp); 4661 if (ctx) 4662 perf_adjust_freq_unthr_context(ctx, !!throttled); 4663 rcu_read_unlock(); 4664 } 4665 4666 static int event_enable_on_exec(struct perf_event *event, 4667 struct perf_event_context *ctx) 4668 { 4669 if (!event->attr.enable_on_exec) 4670 return 0; 4671 4672 event->attr.enable_on_exec = 0; 4673 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4674 return 0; 4675 4676 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4677 4678 return 1; 4679 } 4680 4681 /* 4682 * Enable all of a task's events that have been marked enable-on-exec. 4683 * This expects task == current. 4684 */ 4685 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4686 { 4687 struct perf_event_context *clone_ctx = NULL; 4688 enum event_type_t event_type = 0; 4689 struct perf_cpu_context *cpuctx; 4690 struct perf_event *event; 4691 unsigned long flags; 4692 int enabled = 0; 4693 4694 local_irq_save(flags); 4695 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4696 goto out; 4697 4698 if (!ctx->nr_events) 4699 goto out; 4700 4701 cpuctx = this_cpu_ptr(&perf_cpu_context); 4702 perf_ctx_lock(cpuctx, ctx); 4703 ctx_time_freeze(cpuctx, ctx); 4704 4705 list_for_each_entry(event, &ctx->event_list, event_entry) { 4706 enabled |= event_enable_on_exec(event, ctx); 4707 event_type |= get_event_type(event); 4708 } 4709 4710 /* 4711 * Unclone and reschedule this context if we enabled any event. 4712 */ 4713 if (enabled) { 4714 clone_ctx = unclone_ctx(ctx); 4715 ctx_resched(cpuctx, ctx, NULL, event_type); 4716 } 4717 perf_ctx_unlock(cpuctx, ctx); 4718 4719 out: 4720 local_irq_restore(flags); 4721 4722 if (clone_ctx) 4723 put_ctx(clone_ctx); 4724 } 4725 4726 static void perf_remove_from_owner(struct perf_event *event); 4727 static void perf_event_exit_event(struct perf_event *event, 4728 struct perf_event_context *ctx, 4729 struct task_struct *task, 4730 bool revoke); 4731 4732 /* 4733 * Removes all events from the current task that have been marked 4734 * remove-on-exec, and feeds their values back to parent events. 4735 */ 4736 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4737 { 4738 struct perf_event_context *clone_ctx = NULL; 4739 struct perf_event *event, *next; 4740 unsigned long flags; 4741 bool modified = false; 4742 4743 mutex_lock(&ctx->mutex); 4744 4745 if (WARN_ON_ONCE(ctx->task != current)) 4746 goto unlock; 4747 4748 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4749 if (!event->attr.remove_on_exec) 4750 continue; 4751 4752 if (!is_kernel_event(event)) 4753 perf_remove_from_owner(event); 4754 4755 modified = true; 4756 4757 perf_event_exit_event(event, ctx, ctx->task, false); 4758 } 4759 4760 raw_spin_lock_irqsave(&ctx->lock, flags); 4761 if (modified) 4762 clone_ctx = unclone_ctx(ctx); 4763 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4764 4765 unlock: 4766 mutex_unlock(&ctx->mutex); 4767 4768 if (clone_ctx) 4769 put_ctx(clone_ctx); 4770 } 4771 4772 struct perf_read_data { 4773 struct perf_event *event; 4774 bool group; 4775 int ret; 4776 }; 4777 4778 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu); 4779 4780 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4781 { 4782 int local_cpu = smp_processor_id(); 4783 u16 local_pkg, event_pkg; 4784 4785 if ((unsigned)event_cpu >= nr_cpu_ids) 4786 return event_cpu; 4787 4788 if (event->group_caps & PERF_EV_CAP_READ_SCOPE) { 4789 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu); 4790 4791 if (cpumask && cpumask_test_cpu(local_cpu, cpumask)) 4792 return local_cpu; 4793 } 4794 4795 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4796 event_pkg = topology_physical_package_id(event_cpu); 4797 local_pkg = topology_physical_package_id(local_cpu); 4798 4799 if (event_pkg == local_pkg) 4800 return local_cpu; 4801 } 4802 4803 return event_cpu; 4804 } 4805 4806 /* 4807 * Cross CPU call to read the hardware event 4808 */ 4809 static void __perf_event_read(void *info) 4810 { 4811 struct perf_read_data *data = info; 4812 struct perf_event *sub, *event = data->event; 4813 struct perf_event_context *ctx = event->ctx; 4814 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4815 struct pmu *pmu = event->pmu; 4816 4817 /* 4818 * If this is a task context, we need to check whether it is 4819 * the current task context of this cpu. If not it has been 4820 * scheduled out before the smp call arrived. In that case 4821 * event->count would have been updated to a recent sample 4822 * when the event was scheduled out. 4823 */ 4824 if (ctx->task && cpuctx->task_ctx != ctx) 4825 return; 4826 4827 raw_spin_lock(&ctx->lock); 4828 ctx_time_update_event(ctx, event); 4829 4830 perf_event_update_time(event); 4831 if (data->group) 4832 perf_event_update_sibling_time(event); 4833 4834 if (event->state != PERF_EVENT_STATE_ACTIVE) 4835 goto unlock; 4836 4837 if (!data->group) { 4838 pmu->read(event); 4839 data->ret = 0; 4840 goto unlock; 4841 } 4842 4843 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4844 4845 pmu->read(event); 4846 4847 for_each_sibling_event(sub, event) 4848 perf_pmu_read(sub); 4849 4850 data->ret = pmu->commit_txn(pmu); 4851 4852 unlock: 4853 raw_spin_unlock(&ctx->lock); 4854 } 4855 4856 static inline u64 perf_event_count(struct perf_event *event, bool self) 4857 { 4858 if (self) 4859 return local64_read(&event->count); 4860 4861 return local64_read(&event->count) + atomic64_read(&event->child_count); 4862 } 4863 4864 static void calc_timer_values(struct perf_event *event, 4865 u64 *now, 4866 u64 *enabled, 4867 u64 *running) 4868 { 4869 u64 ctx_time; 4870 4871 *now = perf_clock(); 4872 ctx_time = perf_event_time_now(event, *now); 4873 __perf_update_times(event, ctx_time, enabled, running); 4874 } 4875 4876 /* 4877 * NMI-safe method to read a local event, that is an event that 4878 * is: 4879 * - either for the current task, or for this CPU 4880 * - does not have inherit set, for inherited task events 4881 * will not be local and we cannot read them atomically 4882 * - must not have a pmu::count method 4883 */ 4884 int perf_event_read_local(struct perf_event *event, u64 *value, 4885 u64 *enabled, u64 *running) 4886 { 4887 unsigned long flags; 4888 int event_oncpu; 4889 int event_cpu; 4890 int ret = 0; 4891 4892 /* 4893 * Disabling interrupts avoids all counter scheduling (context 4894 * switches, timer based rotation and IPIs). 4895 */ 4896 local_irq_save(flags); 4897 4898 /* 4899 * It must not be an event with inherit set, we cannot read 4900 * all child counters from atomic context. 4901 */ 4902 if (event->attr.inherit) { 4903 ret = -EOPNOTSUPP; 4904 goto out; 4905 } 4906 4907 /* If this is a per-task event, it must be for current */ 4908 if ((event->attach_state & PERF_ATTACH_TASK) && 4909 event->hw.target != current) { 4910 ret = -EINVAL; 4911 goto out; 4912 } 4913 4914 /* 4915 * Get the event CPU numbers, and adjust them to local if the event is 4916 * a per-package event that can be read locally 4917 */ 4918 event_oncpu = __perf_event_read_cpu(event, event->oncpu); 4919 event_cpu = __perf_event_read_cpu(event, event->cpu); 4920 4921 /* If this is a per-CPU event, it must be for this CPU */ 4922 if (!(event->attach_state & PERF_ATTACH_TASK) && 4923 event_cpu != smp_processor_id()) { 4924 ret = -EINVAL; 4925 goto out; 4926 } 4927 4928 /* If this is a pinned event it must be running on this CPU */ 4929 if (event->attr.pinned && event_oncpu != smp_processor_id()) { 4930 ret = -EBUSY; 4931 goto out; 4932 } 4933 4934 /* 4935 * If the event is currently on this CPU, its either a per-task event, 4936 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4937 * oncpu == -1). 4938 */ 4939 if (event_oncpu == smp_processor_id()) 4940 event->pmu->read(event); 4941 4942 *value = local64_read(&event->count); 4943 if (enabled || running) { 4944 u64 __enabled, __running, __now; 4945 4946 calc_timer_values(event, &__now, &__enabled, &__running); 4947 if (enabled) 4948 *enabled = __enabled; 4949 if (running) 4950 *running = __running; 4951 } 4952 out: 4953 local_irq_restore(flags); 4954 4955 return ret; 4956 } 4957 4958 static int perf_event_read(struct perf_event *event, bool group) 4959 { 4960 enum perf_event_state state = READ_ONCE(event->state); 4961 int event_cpu, ret = 0; 4962 4963 /* 4964 * If event is enabled and currently active on a CPU, update the 4965 * value in the event structure: 4966 */ 4967 again: 4968 if (state == PERF_EVENT_STATE_ACTIVE) { 4969 struct perf_read_data data; 4970 4971 /* 4972 * Orders the ->state and ->oncpu loads such that if we see 4973 * ACTIVE we must also see the right ->oncpu. 4974 * 4975 * Matches the smp_wmb() from event_sched_in(). 4976 */ 4977 smp_rmb(); 4978 4979 event_cpu = READ_ONCE(event->oncpu); 4980 if ((unsigned)event_cpu >= nr_cpu_ids) 4981 return 0; 4982 4983 data = (struct perf_read_data){ 4984 .event = event, 4985 .group = group, 4986 .ret = 0, 4987 }; 4988 4989 preempt_disable(); 4990 event_cpu = __perf_event_read_cpu(event, event_cpu); 4991 4992 /* 4993 * Purposely ignore the smp_call_function_single() return 4994 * value. 4995 * 4996 * If event_cpu isn't a valid CPU it means the event got 4997 * scheduled out and that will have updated the event count. 4998 * 4999 * Therefore, either way, we'll have an up-to-date event count 5000 * after this. 5001 */ 5002 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 5003 preempt_enable(); 5004 ret = data.ret; 5005 5006 } else if (state == PERF_EVENT_STATE_INACTIVE) { 5007 struct perf_event_context *ctx = event->ctx; 5008 unsigned long flags; 5009 5010 raw_spin_lock_irqsave(&ctx->lock, flags); 5011 state = event->state; 5012 if (state != PERF_EVENT_STATE_INACTIVE) { 5013 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5014 goto again; 5015 } 5016 5017 /* 5018 * May read while context is not active (e.g., thread is 5019 * blocked), in that case we cannot update context time 5020 */ 5021 ctx_time_update_event(ctx, event); 5022 5023 perf_event_update_time(event); 5024 if (group) 5025 perf_event_update_sibling_time(event); 5026 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5027 } 5028 5029 return ret; 5030 } 5031 5032 /* 5033 * Initialize the perf_event context in a task_struct: 5034 */ 5035 static void __perf_event_init_context(struct perf_event_context *ctx) 5036 { 5037 raw_spin_lock_init(&ctx->lock); 5038 mutex_init(&ctx->mutex); 5039 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 5040 perf_event_groups_init(&ctx->pinned_groups); 5041 perf_event_groups_init(&ctx->flexible_groups); 5042 INIT_LIST_HEAD(&ctx->event_list); 5043 refcount_set(&ctx->refcount, 1); 5044 } 5045 5046 static void 5047 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 5048 { 5049 epc->pmu = pmu; 5050 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 5051 INIT_LIST_HEAD(&epc->pinned_active); 5052 INIT_LIST_HEAD(&epc->flexible_active); 5053 atomic_set(&epc->refcount, 1); 5054 } 5055 5056 static struct perf_event_context * 5057 alloc_perf_context(struct task_struct *task) 5058 { 5059 struct perf_event_context *ctx; 5060 5061 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 5062 if (!ctx) 5063 return NULL; 5064 5065 __perf_event_init_context(ctx); 5066 if (task) 5067 ctx->task = get_task_struct(task); 5068 5069 return ctx; 5070 } 5071 5072 static struct task_struct * 5073 find_lively_task_by_vpid(pid_t vpid) 5074 { 5075 struct task_struct *task; 5076 5077 rcu_read_lock(); 5078 if (!vpid) 5079 task = current; 5080 else 5081 task = find_task_by_vpid(vpid); 5082 if (task) 5083 get_task_struct(task); 5084 rcu_read_unlock(); 5085 5086 if (!task) 5087 return ERR_PTR(-ESRCH); 5088 5089 return task; 5090 } 5091 5092 /* 5093 * Returns a matching context with refcount and pincount. 5094 */ 5095 static struct perf_event_context * 5096 find_get_context(struct task_struct *task, struct perf_event *event) 5097 { 5098 struct perf_event_context *ctx, *clone_ctx = NULL; 5099 struct perf_cpu_context *cpuctx; 5100 unsigned long flags; 5101 int err; 5102 5103 if (!task) { 5104 /* Must be root to operate on a CPU event: */ 5105 err = perf_allow_cpu(); 5106 if (err) 5107 return ERR_PTR(err); 5108 5109 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 5110 ctx = &cpuctx->ctx; 5111 get_ctx(ctx); 5112 raw_spin_lock_irqsave(&ctx->lock, flags); 5113 ++ctx->pin_count; 5114 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5115 5116 return ctx; 5117 } 5118 5119 err = -EINVAL; 5120 retry: 5121 ctx = perf_lock_task_context(task, &flags); 5122 if (ctx) { 5123 clone_ctx = unclone_ctx(ctx); 5124 ++ctx->pin_count; 5125 5126 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5127 5128 if (clone_ctx) 5129 put_ctx(clone_ctx); 5130 } else { 5131 ctx = alloc_perf_context(task); 5132 err = -ENOMEM; 5133 if (!ctx) 5134 goto errout; 5135 5136 err = 0; 5137 mutex_lock(&task->perf_event_mutex); 5138 /* 5139 * If it has already passed perf_event_exit_task(). 5140 * we must see PF_EXITING, it takes this mutex too. 5141 */ 5142 if (task->flags & PF_EXITING) 5143 err = -ESRCH; 5144 else if (task->perf_event_ctxp) 5145 err = -EAGAIN; 5146 else { 5147 get_ctx(ctx); 5148 ++ctx->pin_count; 5149 rcu_assign_pointer(task->perf_event_ctxp, ctx); 5150 } 5151 mutex_unlock(&task->perf_event_mutex); 5152 5153 if (unlikely(err)) { 5154 put_ctx(ctx); 5155 5156 if (err == -EAGAIN) 5157 goto retry; 5158 goto errout; 5159 } 5160 } 5161 5162 return ctx; 5163 5164 errout: 5165 return ERR_PTR(err); 5166 } 5167 5168 static struct perf_event_pmu_context * 5169 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 5170 struct perf_event *event) 5171 { 5172 struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc; 5173 5174 if (!ctx->task) { 5175 /* 5176 * perf_pmu_migrate_context() / __perf_pmu_install_event() 5177 * relies on the fact that find_get_pmu_context() cannot fail 5178 * for CPU contexts. 5179 */ 5180 struct perf_cpu_pmu_context *cpc; 5181 5182 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 5183 epc = &cpc->epc; 5184 raw_spin_lock_irq(&ctx->lock); 5185 if (!epc->ctx) { 5186 /* 5187 * One extra reference for the pmu; see perf_pmu_free(). 5188 */ 5189 atomic_set(&epc->refcount, 2); 5190 epc->embedded = 1; 5191 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 5192 epc->ctx = ctx; 5193 } else { 5194 WARN_ON_ONCE(epc->ctx != ctx); 5195 atomic_inc(&epc->refcount); 5196 } 5197 raw_spin_unlock_irq(&ctx->lock); 5198 return epc; 5199 } 5200 5201 new = kzalloc(sizeof(*epc), GFP_KERNEL); 5202 if (!new) 5203 return ERR_PTR(-ENOMEM); 5204 5205 __perf_init_event_pmu_context(new, pmu); 5206 5207 /* 5208 * XXX 5209 * 5210 * lockdep_assert_held(&ctx->mutex); 5211 * 5212 * can't because perf_event_init_task() doesn't actually hold the 5213 * child_ctx->mutex. 5214 */ 5215 5216 raw_spin_lock_irq(&ctx->lock); 5217 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 5218 if (epc->pmu == pmu) { 5219 WARN_ON_ONCE(epc->ctx != ctx); 5220 atomic_inc(&epc->refcount); 5221 goto found_epc; 5222 } 5223 /* Make sure the pmu_ctx_list is sorted by PMU type: */ 5224 if (!pos && epc->pmu->type > pmu->type) 5225 pos = epc; 5226 } 5227 5228 epc = new; 5229 new = NULL; 5230 5231 if (!pos) 5232 list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 5233 else 5234 list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev); 5235 5236 epc->ctx = ctx; 5237 5238 found_epc: 5239 raw_spin_unlock_irq(&ctx->lock); 5240 kfree(new); 5241 5242 return epc; 5243 } 5244 5245 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 5246 { 5247 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 5248 } 5249 5250 static void free_cpc_rcu(struct rcu_head *head) 5251 { 5252 struct perf_cpu_pmu_context *cpc = 5253 container_of(head, typeof(*cpc), epc.rcu_head); 5254 5255 kfree(cpc); 5256 } 5257 5258 static void free_epc_rcu(struct rcu_head *head) 5259 { 5260 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 5261 5262 kfree(epc); 5263 } 5264 5265 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 5266 { 5267 struct perf_event_context *ctx = epc->ctx; 5268 unsigned long flags; 5269 5270 /* 5271 * XXX 5272 * 5273 * lockdep_assert_held(&ctx->mutex); 5274 * 5275 * can't because of the call-site in _free_event()/put_event() 5276 * which isn't always called under ctx->mutex. 5277 */ 5278 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 5279 return; 5280 5281 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 5282 5283 list_del_init(&epc->pmu_ctx_entry); 5284 epc->ctx = NULL; 5285 5286 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 5287 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 5288 5289 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5290 5291 if (epc->embedded) { 5292 call_rcu(&epc->rcu_head, free_cpc_rcu); 5293 return; 5294 } 5295 5296 call_rcu(&epc->rcu_head, free_epc_rcu); 5297 } 5298 5299 static void perf_event_free_filter(struct perf_event *event); 5300 5301 static void free_event_rcu(struct rcu_head *head) 5302 { 5303 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 5304 5305 if (event->ns) 5306 put_pid_ns(event->ns); 5307 perf_event_free_filter(event); 5308 kmem_cache_free(perf_event_cache, event); 5309 } 5310 5311 static void ring_buffer_attach(struct perf_event *event, 5312 struct perf_buffer *rb); 5313 5314 static void detach_sb_event(struct perf_event *event) 5315 { 5316 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 5317 5318 raw_spin_lock(&pel->lock); 5319 list_del_rcu(&event->sb_list); 5320 raw_spin_unlock(&pel->lock); 5321 } 5322 5323 static bool is_sb_event(struct perf_event *event) 5324 { 5325 struct perf_event_attr *attr = &event->attr; 5326 5327 if (event->parent) 5328 return false; 5329 5330 if (event->attach_state & PERF_ATTACH_TASK) 5331 return false; 5332 5333 if (attr->mmap || attr->mmap_data || attr->mmap2 || 5334 attr->comm || attr->comm_exec || 5335 attr->task || attr->ksymbol || 5336 attr->context_switch || attr->text_poke || 5337 attr->bpf_event) 5338 return true; 5339 5340 return false; 5341 } 5342 5343 static void unaccount_pmu_sb_event(struct perf_event *event) 5344 { 5345 if (is_sb_event(event)) 5346 detach_sb_event(event); 5347 } 5348 5349 #ifdef CONFIG_NO_HZ_FULL 5350 static DEFINE_SPINLOCK(nr_freq_lock); 5351 #endif 5352 5353 static void unaccount_freq_event_nohz(void) 5354 { 5355 #ifdef CONFIG_NO_HZ_FULL 5356 spin_lock(&nr_freq_lock); 5357 if (atomic_dec_and_test(&nr_freq_events)) 5358 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5359 spin_unlock(&nr_freq_lock); 5360 #endif 5361 } 5362 5363 static void unaccount_freq_event(void) 5364 { 5365 if (tick_nohz_full_enabled()) 5366 unaccount_freq_event_nohz(); 5367 else 5368 atomic_dec(&nr_freq_events); 5369 } 5370 5371 5372 static struct perf_ctx_data * 5373 alloc_perf_ctx_data(struct kmem_cache *ctx_cache, bool global) 5374 { 5375 struct perf_ctx_data *cd; 5376 5377 cd = kzalloc(sizeof(*cd), GFP_KERNEL); 5378 if (!cd) 5379 return NULL; 5380 5381 cd->data = kmem_cache_zalloc(ctx_cache, GFP_KERNEL); 5382 if (!cd->data) { 5383 kfree(cd); 5384 return NULL; 5385 } 5386 5387 cd->global = global; 5388 cd->ctx_cache = ctx_cache; 5389 refcount_set(&cd->refcount, 1); 5390 5391 return cd; 5392 } 5393 5394 static void free_perf_ctx_data(struct perf_ctx_data *cd) 5395 { 5396 kmem_cache_free(cd->ctx_cache, cd->data); 5397 kfree(cd); 5398 } 5399 5400 static void __free_perf_ctx_data_rcu(struct rcu_head *rcu_head) 5401 { 5402 struct perf_ctx_data *cd; 5403 5404 cd = container_of(rcu_head, struct perf_ctx_data, rcu_head); 5405 free_perf_ctx_data(cd); 5406 } 5407 5408 static inline void perf_free_ctx_data_rcu(struct perf_ctx_data *cd) 5409 { 5410 call_rcu(&cd->rcu_head, __free_perf_ctx_data_rcu); 5411 } 5412 5413 static int 5414 attach_task_ctx_data(struct task_struct *task, struct kmem_cache *ctx_cache, 5415 bool global) 5416 { 5417 struct perf_ctx_data *cd, *old = NULL; 5418 5419 cd = alloc_perf_ctx_data(ctx_cache, global); 5420 if (!cd) 5421 return -ENOMEM; 5422 5423 for (;;) { 5424 if (try_cmpxchg(&task->perf_ctx_data, &old, cd)) { 5425 if (old) 5426 perf_free_ctx_data_rcu(old); 5427 /* 5428 * Above try_cmpxchg() pairs with try_cmpxchg() from 5429 * detach_task_ctx_data() such that 5430 * if we race with perf_event_exit_task(), we must 5431 * observe PF_EXITING. 5432 */ 5433 if (task->flags & PF_EXITING) { 5434 /* detach_task_ctx_data() may free it already */ 5435 if (try_cmpxchg(&task->perf_ctx_data, &cd, NULL)) 5436 perf_free_ctx_data_rcu(cd); 5437 } 5438 return 0; 5439 } 5440 5441 if (!old) { 5442 /* 5443 * After seeing a dead @old, we raced with 5444 * removal and lost, try again to install @cd. 5445 */ 5446 continue; 5447 } 5448 5449 if (refcount_inc_not_zero(&old->refcount)) { 5450 free_perf_ctx_data(cd); /* unused */ 5451 return 0; 5452 } 5453 5454 /* 5455 * @old is a dead object, refcount==0 is stable, try and 5456 * replace it with @cd. 5457 */ 5458 } 5459 return 0; 5460 } 5461 5462 static void __detach_global_ctx_data(void); 5463 DEFINE_STATIC_PERCPU_RWSEM(global_ctx_data_rwsem); 5464 static refcount_t global_ctx_data_ref; 5465 5466 static int 5467 attach_global_ctx_data(struct kmem_cache *ctx_cache) 5468 { 5469 struct task_struct *g, *p; 5470 struct perf_ctx_data *cd; 5471 int ret; 5472 5473 if (refcount_inc_not_zero(&global_ctx_data_ref)) 5474 return 0; 5475 5476 guard(percpu_write)(&global_ctx_data_rwsem); 5477 if (refcount_inc_not_zero(&global_ctx_data_ref)) 5478 return 0; 5479 again: 5480 /* Allocate everything */ 5481 scoped_guard (rcu) { 5482 for_each_process_thread(g, p) { 5483 if (p->flags & PF_EXITING) 5484 continue; 5485 cd = rcu_dereference(p->perf_ctx_data); 5486 if (cd && !cd->global) { 5487 cd->global = 1; 5488 if (!refcount_inc_not_zero(&cd->refcount)) 5489 cd = NULL; 5490 } 5491 if (!cd) { 5492 get_task_struct(p); 5493 goto alloc; 5494 } 5495 } 5496 } 5497 5498 refcount_set(&global_ctx_data_ref, 1); 5499 5500 return 0; 5501 alloc: 5502 ret = attach_task_ctx_data(p, ctx_cache, true); 5503 put_task_struct(p); 5504 if (ret) { 5505 __detach_global_ctx_data(); 5506 return ret; 5507 } 5508 goto again; 5509 } 5510 5511 static int 5512 attach_perf_ctx_data(struct perf_event *event) 5513 { 5514 struct task_struct *task = event->hw.target; 5515 struct kmem_cache *ctx_cache = event->pmu->task_ctx_cache; 5516 int ret; 5517 5518 if (!ctx_cache) 5519 return -ENOMEM; 5520 5521 if (task) 5522 return attach_task_ctx_data(task, ctx_cache, false); 5523 5524 ret = attach_global_ctx_data(ctx_cache); 5525 if (ret) 5526 return ret; 5527 5528 event->attach_state |= PERF_ATTACH_GLOBAL_DATA; 5529 return 0; 5530 } 5531 5532 static void 5533 detach_task_ctx_data(struct task_struct *p) 5534 { 5535 struct perf_ctx_data *cd; 5536 5537 scoped_guard (rcu) { 5538 cd = rcu_dereference(p->perf_ctx_data); 5539 if (!cd || !refcount_dec_and_test(&cd->refcount)) 5540 return; 5541 } 5542 5543 /* 5544 * The old ctx_data may be lost because of the race. 5545 * Nothing is required to do for the case. 5546 * See attach_task_ctx_data(). 5547 */ 5548 if (try_cmpxchg((struct perf_ctx_data **)&p->perf_ctx_data, &cd, NULL)) 5549 perf_free_ctx_data_rcu(cd); 5550 } 5551 5552 static void __detach_global_ctx_data(void) 5553 { 5554 struct task_struct *g, *p; 5555 struct perf_ctx_data *cd; 5556 5557 again: 5558 scoped_guard (rcu) { 5559 for_each_process_thread(g, p) { 5560 cd = rcu_dereference(p->perf_ctx_data); 5561 if (!cd || !cd->global) 5562 continue; 5563 cd->global = 0; 5564 get_task_struct(p); 5565 goto detach; 5566 } 5567 } 5568 return; 5569 detach: 5570 detach_task_ctx_data(p); 5571 put_task_struct(p); 5572 goto again; 5573 } 5574 5575 static void detach_global_ctx_data(void) 5576 { 5577 if (refcount_dec_not_one(&global_ctx_data_ref)) 5578 return; 5579 5580 guard(percpu_write)(&global_ctx_data_rwsem); 5581 if (!refcount_dec_and_test(&global_ctx_data_ref)) 5582 return; 5583 5584 /* remove everything */ 5585 __detach_global_ctx_data(); 5586 } 5587 5588 static void detach_perf_ctx_data(struct perf_event *event) 5589 { 5590 struct task_struct *task = event->hw.target; 5591 5592 event->attach_state &= ~PERF_ATTACH_TASK_DATA; 5593 5594 if (task) 5595 return detach_task_ctx_data(task); 5596 5597 if (event->attach_state & PERF_ATTACH_GLOBAL_DATA) { 5598 detach_global_ctx_data(); 5599 event->attach_state &= ~PERF_ATTACH_GLOBAL_DATA; 5600 } 5601 } 5602 5603 static void unaccount_event(struct perf_event *event) 5604 { 5605 bool dec = false; 5606 5607 if (event->parent) 5608 return; 5609 5610 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5611 dec = true; 5612 if (event->attr.mmap || event->attr.mmap_data) 5613 atomic_dec(&nr_mmap_events); 5614 if (event->attr.build_id) 5615 atomic_dec(&nr_build_id_events); 5616 if (event->attr.comm) 5617 atomic_dec(&nr_comm_events); 5618 if (event->attr.namespaces) 5619 atomic_dec(&nr_namespaces_events); 5620 if (event->attr.cgroup) 5621 atomic_dec(&nr_cgroup_events); 5622 if (event->attr.task) 5623 atomic_dec(&nr_task_events); 5624 if (event->attr.freq) 5625 unaccount_freq_event(); 5626 if (event->attr.context_switch) { 5627 dec = true; 5628 atomic_dec(&nr_switch_events); 5629 } 5630 if (is_cgroup_event(event)) 5631 dec = true; 5632 if (has_branch_stack(event)) 5633 dec = true; 5634 if (event->attr.ksymbol) 5635 atomic_dec(&nr_ksymbol_events); 5636 if (event->attr.bpf_event) 5637 atomic_dec(&nr_bpf_events); 5638 if (event->attr.text_poke) 5639 atomic_dec(&nr_text_poke_events); 5640 5641 if (dec) { 5642 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5643 schedule_delayed_work(&perf_sched_work, HZ); 5644 } 5645 5646 unaccount_pmu_sb_event(event); 5647 } 5648 5649 static void perf_sched_delayed(struct work_struct *work) 5650 { 5651 mutex_lock(&perf_sched_mutex); 5652 if (atomic_dec_and_test(&perf_sched_count)) 5653 static_branch_disable(&perf_sched_events); 5654 mutex_unlock(&perf_sched_mutex); 5655 } 5656 5657 /* 5658 * The following implement mutual exclusion of events on "exclusive" pmus 5659 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5660 * at a time, so we disallow creating events that might conflict, namely: 5661 * 5662 * 1) cpu-wide events in the presence of per-task events, 5663 * 2) per-task events in the presence of cpu-wide events, 5664 * 3) two matching events on the same perf_event_context. 5665 * 5666 * The former two cases are handled in the allocation path (perf_event_alloc(), 5667 * _free_event()), the latter -- before the first perf_install_in_context(). 5668 */ 5669 static int exclusive_event_init(struct perf_event *event) 5670 { 5671 struct pmu *pmu = event->pmu; 5672 5673 if (!is_exclusive_pmu(pmu)) 5674 return 0; 5675 5676 /* 5677 * Prevent co-existence of per-task and cpu-wide events on the 5678 * same exclusive pmu. 5679 * 5680 * Negative pmu::exclusive_cnt means there are cpu-wide 5681 * events on this "exclusive" pmu, positive means there are 5682 * per-task events. 5683 * 5684 * Since this is called in perf_event_alloc() path, event::ctx 5685 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5686 * to mean "per-task event", because unlike other attach states it 5687 * never gets cleared. 5688 */ 5689 if (event->attach_state & PERF_ATTACH_TASK) { 5690 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5691 return -EBUSY; 5692 } else { 5693 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5694 return -EBUSY; 5695 } 5696 5697 event->attach_state |= PERF_ATTACH_EXCLUSIVE; 5698 5699 return 0; 5700 } 5701 5702 static void exclusive_event_destroy(struct perf_event *event) 5703 { 5704 struct pmu *pmu = event->pmu; 5705 5706 /* see comment in exclusive_event_init() */ 5707 if (event->attach_state & PERF_ATTACH_TASK) 5708 atomic_dec(&pmu->exclusive_cnt); 5709 else 5710 atomic_inc(&pmu->exclusive_cnt); 5711 5712 event->attach_state &= ~PERF_ATTACH_EXCLUSIVE; 5713 } 5714 5715 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5716 { 5717 if ((e1->pmu == e2->pmu) && 5718 (e1->cpu == e2->cpu || 5719 e1->cpu == -1 || 5720 e2->cpu == -1)) 5721 return true; 5722 return false; 5723 } 5724 5725 static bool exclusive_event_installable(struct perf_event *event, 5726 struct perf_event_context *ctx) 5727 { 5728 struct perf_event *iter_event; 5729 struct pmu *pmu = event->pmu; 5730 5731 lockdep_assert_held(&ctx->mutex); 5732 5733 if (!is_exclusive_pmu(pmu)) 5734 return true; 5735 5736 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5737 if (exclusive_event_match(iter_event, event)) 5738 return false; 5739 } 5740 5741 return true; 5742 } 5743 5744 static void perf_free_addr_filters(struct perf_event *event); 5745 5746 /* vs perf_event_alloc() error */ 5747 static void __free_event(struct perf_event *event) 5748 { 5749 struct pmu *pmu = event->pmu; 5750 5751 security_perf_event_free(event); 5752 5753 if (event->attach_state & PERF_ATTACH_CALLCHAIN) 5754 put_callchain_buffers(); 5755 5756 kfree(event->addr_filter_ranges); 5757 5758 if (event->attach_state & PERF_ATTACH_EXCLUSIVE) 5759 exclusive_event_destroy(event); 5760 5761 if (is_cgroup_event(event)) 5762 perf_detach_cgroup(event); 5763 5764 if (event->attach_state & PERF_ATTACH_TASK_DATA) 5765 detach_perf_ctx_data(event); 5766 5767 if (event->destroy) 5768 event->destroy(event); 5769 5770 /* 5771 * Must be after ->destroy(), due to uprobe_perf_close() using 5772 * hw.target. 5773 */ 5774 if (event->hw.target) 5775 put_task_struct(event->hw.target); 5776 5777 if (event->pmu_ctx) { 5778 /* 5779 * put_pmu_ctx() needs an event->ctx reference, because of 5780 * epc->ctx. 5781 */ 5782 WARN_ON_ONCE(!pmu); 5783 WARN_ON_ONCE(!event->ctx); 5784 WARN_ON_ONCE(event->pmu_ctx->ctx != event->ctx); 5785 put_pmu_ctx(event->pmu_ctx); 5786 } 5787 5788 /* 5789 * perf_event_free_task() relies on put_ctx() being 'last', in 5790 * particular all task references must be cleaned up. 5791 */ 5792 if (event->ctx) 5793 put_ctx(event->ctx); 5794 5795 if (pmu) { 5796 module_put(pmu->module); 5797 scoped_guard (spinlock, &pmu->events_lock) { 5798 list_del(&event->pmu_list); 5799 wake_up_var(pmu); 5800 } 5801 } 5802 5803 call_rcu(&event->rcu_head, free_event_rcu); 5804 } 5805 5806 static void mediated_pmu_unaccount_event(struct perf_event *event); 5807 5808 DEFINE_FREE(__free_event, struct perf_event *, if (_T) __free_event(_T)) 5809 5810 /* vs perf_event_alloc() success */ 5811 static void _free_event(struct perf_event *event) 5812 { 5813 irq_work_sync(&event->pending_irq); 5814 irq_work_sync(&event->pending_disable_irq); 5815 5816 unaccount_event(event); 5817 mediated_pmu_unaccount_event(event); 5818 5819 if (event->rb) { 5820 /* 5821 * Can happen when we close an event with re-directed output. 5822 * 5823 * Since we have a 0 refcount, perf_mmap_close() will skip 5824 * over us; possibly making our ring_buffer_put() the last. 5825 */ 5826 mutex_lock(&event->mmap_mutex); 5827 ring_buffer_attach(event, NULL); 5828 mutex_unlock(&event->mmap_mutex); 5829 } 5830 5831 perf_event_free_bpf_prog(event); 5832 perf_free_addr_filters(event); 5833 5834 __free_event(event); 5835 } 5836 5837 /* 5838 * Used to free events which have a known refcount of 1, such as in error paths 5839 * of inherited events. 5840 */ 5841 static void free_event(struct perf_event *event) 5842 { 5843 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5844 "unexpected event refcount: %ld; ptr=%p\n", 5845 atomic_long_read(&event->refcount), event)) { 5846 /* leak to avoid use-after-free */ 5847 return; 5848 } 5849 5850 _free_event(event); 5851 } 5852 5853 /* 5854 * Remove user event from the owner task. 5855 */ 5856 static void perf_remove_from_owner(struct perf_event *event) 5857 { 5858 struct task_struct *owner; 5859 5860 rcu_read_lock(); 5861 /* 5862 * Matches the smp_store_release() in perf_event_exit_task(). If we 5863 * observe !owner it means the list deletion is complete and we can 5864 * indeed free this event, otherwise we need to serialize on 5865 * owner->perf_event_mutex. 5866 */ 5867 owner = READ_ONCE(event->owner); 5868 if (owner) { 5869 /* 5870 * Since delayed_put_task_struct() also drops the last 5871 * task reference we can safely take a new reference 5872 * while holding the rcu_read_lock(). 5873 */ 5874 get_task_struct(owner); 5875 } 5876 rcu_read_unlock(); 5877 5878 if (owner) { 5879 /* 5880 * If we're here through perf_event_exit_task() we're already 5881 * holding ctx->mutex which would be an inversion wrt. the 5882 * normal lock order. 5883 * 5884 * However we can safely take this lock because its the child 5885 * ctx->mutex. 5886 */ 5887 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5888 5889 /* 5890 * We have to re-check the event->owner field, if it is cleared 5891 * we raced with perf_event_exit_task(), acquiring the mutex 5892 * ensured they're done, and we can proceed with freeing the 5893 * event. 5894 */ 5895 if (event->owner) { 5896 list_del_init(&event->owner_entry); 5897 smp_store_release(&event->owner, NULL); 5898 } 5899 mutex_unlock(&owner->perf_event_mutex); 5900 put_task_struct(owner); 5901 } 5902 } 5903 5904 static void put_event(struct perf_event *event) 5905 { 5906 struct perf_event *parent; 5907 5908 if (!atomic_long_dec_and_test(&event->refcount)) 5909 return; 5910 5911 parent = event->parent; 5912 _free_event(event); 5913 5914 /* Matches the refcount bump in inherit_event() */ 5915 if (parent) 5916 put_event(parent); 5917 } 5918 5919 /* 5920 * Kill an event dead; while event:refcount will preserve the event 5921 * object, it will not preserve its functionality. Once the last 'user' 5922 * gives up the object, we'll destroy the thing. 5923 */ 5924 int perf_event_release_kernel(struct perf_event *event) 5925 { 5926 struct perf_event_context *ctx = event->ctx; 5927 struct perf_event *child, *tmp; 5928 5929 /* 5930 * If we got here through err_alloc: free_event(event); we will not 5931 * have attached to a context yet. 5932 */ 5933 if (!ctx) { 5934 WARN_ON_ONCE(event->attach_state & 5935 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5936 goto no_ctx; 5937 } 5938 5939 if (!is_kernel_event(event)) 5940 perf_remove_from_owner(event); 5941 5942 ctx = perf_event_ctx_lock(event); 5943 WARN_ON_ONCE(ctx->parent_ctx); 5944 5945 /* 5946 * Mark this event as STATE_DEAD, there is no external reference to it 5947 * anymore. 5948 * 5949 * Anybody acquiring event->child_mutex after the below loop _must_ 5950 * also see this, most importantly inherit_event() which will avoid 5951 * placing more children on the list. 5952 * 5953 * Thus this guarantees that we will in fact observe and kill _ALL_ 5954 * child events. 5955 */ 5956 if (event->state > PERF_EVENT_STATE_REVOKED) { 5957 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5958 } else { 5959 event->state = PERF_EVENT_STATE_DEAD; 5960 } 5961 5962 perf_event_ctx_unlock(event, ctx); 5963 5964 again: 5965 mutex_lock(&event->child_mutex); 5966 list_for_each_entry(child, &event->child_list, child_list) { 5967 /* 5968 * Cannot change, child events are not migrated, see the 5969 * comment with perf_event_ctx_lock_nested(). 5970 */ 5971 ctx = READ_ONCE(child->ctx); 5972 /* 5973 * Since child_mutex nests inside ctx::mutex, we must jump 5974 * through hoops. We start by grabbing a reference on the ctx. 5975 * 5976 * Since the event cannot get freed while we hold the 5977 * child_mutex, the context must also exist and have a !0 5978 * reference count. 5979 */ 5980 get_ctx(ctx); 5981 5982 /* 5983 * Now that we have a ctx ref, we can drop child_mutex, and 5984 * acquire ctx::mutex without fear of it going away. Then we 5985 * can re-acquire child_mutex. 5986 */ 5987 mutex_unlock(&event->child_mutex); 5988 mutex_lock(&ctx->mutex); 5989 mutex_lock(&event->child_mutex); 5990 5991 /* 5992 * Now that we hold ctx::mutex and child_mutex, revalidate our 5993 * state, if child is still the first entry, it didn't get freed 5994 * and we can continue doing so. 5995 */ 5996 tmp = list_first_entry_or_null(&event->child_list, 5997 struct perf_event, child_list); 5998 if (tmp == child) { 5999 perf_remove_from_context(child, DETACH_GROUP | DETACH_CHILD); 6000 } else { 6001 child = NULL; 6002 } 6003 6004 mutex_unlock(&event->child_mutex); 6005 mutex_unlock(&ctx->mutex); 6006 6007 if (child) { 6008 /* Last reference unless ->pending_task work is pending */ 6009 put_event(child); 6010 } 6011 put_ctx(ctx); 6012 6013 goto again; 6014 } 6015 mutex_unlock(&event->child_mutex); 6016 6017 no_ctx: 6018 /* 6019 * Last reference unless ->pending_task work is pending on this event 6020 * or any of its children. 6021 */ 6022 put_event(event); 6023 return 0; 6024 } 6025 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 6026 6027 /* 6028 * Called when the last reference to the file is gone. 6029 */ 6030 static int perf_release(struct inode *inode, struct file *file) 6031 { 6032 perf_event_release_kernel(file->private_data); 6033 return 0; 6034 } 6035 6036 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 6037 { 6038 struct perf_event *child; 6039 u64 total = 0; 6040 6041 *enabled = 0; 6042 *running = 0; 6043 6044 mutex_lock(&event->child_mutex); 6045 6046 (void)perf_event_read(event, false); 6047 total += perf_event_count(event, false); 6048 6049 *enabled += event->total_time_enabled + 6050 atomic64_read(&event->child_total_time_enabled); 6051 *running += event->total_time_running + 6052 atomic64_read(&event->child_total_time_running); 6053 6054 list_for_each_entry(child, &event->child_list, child_list) { 6055 (void)perf_event_read(child, false); 6056 total += perf_event_count(child, false); 6057 *enabled += child->total_time_enabled; 6058 *running += child->total_time_running; 6059 } 6060 mutex_unlock(&event->child_mutex); 6061 6062 return total; 6063 } 6064 6065 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 6066 { 6067 struct perf_event_context *ctx; 6068 u64 count; 6069 6070 ctx = perf_event_ctx_lock(event); 6071 count = __perf_event_read_value(event, enabled, running); 6072 perf_event_ctx_unlock(event, ctx); 6073 6074 return count; 6075 } 6076 EXPORT_SYMBOL_GPL(perf_event_read_value); 6077 6078 static int __perf_read_group_add(struct perf_event *leader, 6079 u64 read_format, u64 *values) 6080 { 6081 struct perf_event_context *ctx = leader->ctx; 6082 struct perf_event *sub, *parent; 6083 unsigned long flags; 6084 int n = 1; /* skip @nr */ 6085 int ret; 6086 6087 ret = perf_event_read(leader, true); 6088 if (ret) 6089 return ret; 6090 6091 raw_spin_lock_irqsave(&ctx->lock, flags); 6092 /* 6093 * Verify the grouping between the parent and child (inherited) 6094 * events is still in tact. 6095 * 6096 * Specifically: 6097 * - leader->ctx->lock pins leader->sibling_list 6098 * - parent->child_mutex pins parent->child_list 6099 * - parent->ctx->mutex pins parent->sibling_list 6100 * 6101 * Because parent->ctx != leader->ctx (and child_list nests inside 6102 * ctx->mutex), group destruction is not atomic between children, also 6103 * see perf_event_release_kernel(). Additionally, parent can grow the 6104 * group. 6105 * 6106 * Therefore it is possible to have parent and child groups in a 6107 * different configuration and summing over such a beast makes no sense 6108 * what so ever. 6109 * 6110 * Reject this. 6111 */ 6112 parent = leader->parent; 6113 if (parent && 6114 (parent->group_generation != leader->group_generation || 6115 parent->nr_siblings != leader->nr_siblings)) { 6116 ret = -ECHILD; 6117 goto unlock; 6118 } 6119 6120 /* 6121 * Since we co-schedule groups, {enabled,running} times of siblings 6122 * will be identical to those of the leader, so we only publish one 6123 * set. 6124 */ 6125 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6126 values[n++] += leader->total_time_enabled + 6127 atomic64_read(&leader->child_total_time_enabled); 6128 } 6129 6130 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6131 values[n++] += leader->total_time_running + 6132 atomic64_read(&leader->child_total_time_running); 6133 } 6134 6135 /* 6136 * Write {count,id} tuples for every sibling. 6137 */ 6138 values[n++] += perf_event_count(leader, false); 6139 if (read_format & PERF_FORMAT_ID) 6140 values[n++] = primary_event_id(leader); 6141 if (read_format & PERF_FORMAT_LOST) 6142 values[n++] = atomic64_read(&leader->lost_samples); 6143 6144 for_each_sibling_event(sub, leader) { 6145 values[n++] += perf_event_count(sub, false); 6146 if (read_format & PERF_FORMAT_ID) 6147 values[n++] = primary_event_id(sub); 6148 if (read_format & PERF_FORMAT_LOST) 6149 values[n++] = atomic64_read(&sub->lost_samples); 6150 } 6151 6152 unlock: 6153 raw_spin_unlock_irqrestore(&ctx->lock, flags); 6154 return ret; 6155 } 6156 6157 static int perf_read_group(struct perf_event *event, 6158 u64 read_format, char __user *buf) 6159 { 6160 struct perf_event *leader = event->group_leader, *child; 6161 struct perf_event_context *ctx = leader->ctx; 6162 int ret; 6163 u64 *values; 6164 6165 lockdep_assert_held(&ctx->mutex); 6166 6167 values = kzalloc(event->read_size, GFP_KERNEL); 6168 if (!values) 6169 return -ENOMEM; 6170 6171 values[0] = 1 + leader->nr_siblings; 6172 6173 mutex_lock(&leader->child_mutex); 6174 6175 ret = __perf_read_group_add(leader, read_format, values); 6176 if (ret) 6177 goto unlock; 6178 6179 list_for_each_entry(child, &leader->child_list, child_list) { 6180 ret = __perf_read_group_add(child, read_format, values); 6181 if (ret) 6182 goto unlock; 6183 } 6184 6185 mutex_unlock(&leader->child_mutex); 6186 6187 ret = event->read_size; 6188 if (copy_to_user(buf, values, event->read_size)) 6189 ret = -EFAULT; 6190 goto out; 6191 6192 unlock: 6193 mutex_unlock(&leader->child_mutex); 6194 out: 6195 kfree(values); 6196 return ret; 6197 } 6198 6199 static int perf_read_one(struct perf_event *event, 6200 u64 read_format, char __user *buf) 6201 { 6202 u64 enabled, running; 6203 u64 values[5]; 6204 int n = 0; 6205 6206 values[n++] = __perf_event_read_value(event, &enabled, &running); 6207 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6208 values[n++] = enabled; 6209 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6210 values[n++] = running; 6211 if (read_format & PERF_FORMAT_ID) 6212 values[n++] = primary_event_id(event); 6213 if (read_format & PERF_FORMAT_LOST) 6214 values[n++] = atomic64_read(&event->lost_samples); 6215 6216 if (copy_to_user(buf, values, n * sizeof(u64))) 6217 return -EFAULT; 6218 6219 return n * sizeof(u64); 6220 } 6221 6222 static bool is_event_hup(struct perf_event *event) 6223 { 6224 bool no_children; 6225 6226 if (event->state > PERF_EVENT_STATE_EXIT) 6227 return false; 6228 6229 mutex_lock(&event->child_mutex); 6230 no_children = list_empty(&event->child_list); 6231 mutex_unlock(&event->child_mutex); 6232 return no_children; 6233 } 6234 6235 /* 6236 * Read the performance event - simple non blocking version for now 6237 */ 6238 static ssize_t 6239 __perf_read(struct perf_event *event, char __user *buf, size_t count) 6240 { 6241 u64 read_format = event->attr.read_format; 6242 int ret; 6243 6244 /* 6245 * Return end-of-file for a read on an event that is in 6246 * error state (i.e. because it was pinned but it couldn't be 6247 * scheduled on to the CPU at some point). 6248 */ 6249 if (event->state == PERF_EVENT_STATE_ERROR) 6250 return 0; 6251 6252 if (count < event->read_size) 6253 return -ENOSPC; 6254 6255 WARN_ON_ONCE(event->ctx->parent_ctx); 6256 if (read_format & PERF_FORMAT_GROUP) 6257 ret = perf_read_group(event, read_format, buf); 6258 else 6259 ret = perf_read_one(event, read_format, buf); 6260 6261 return ret; 6262 } 6263 6264 static ssize_t 6265 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 6266 { 6267 struct perf_event *event = file->private_data; 6268 struct perf_event_context *ctx; 6269 int ret; 6270 6271 ret = security_perf_event_read(event); 6272 if (ret) 6273 return ret; 6274 6275 ctx = perf_event_ctx_lock(event); 6276 ret = __perf_read(event, buf, count); 6277 perf_event_ctx_unlock(event, ctx); 6278 6279 return ret; 6280 } 6281 6282 static __poll_t perf_poll(struct file *file, poll_table *wait) 6283 { 6284 struct perf_event *event = file->private_data; 6285 struct perf_buffer *rb; 6286 __poll_t events = EPOLLHUP; 6287 6288 if (event->state <= PERF_EVENT_STATE_REVOKED) 6289 return EPOLLERR; 6290 6291 poll_wait(file, &event->waitq, wait); 6292 6293 if (event->state <= PERF_EVENT_STATE_REVOKED) 6294 return EPOLLERR; 6295 6296 if (is_event_hup(event)) 6297 return events; 6298 6299 if (unlikely(READ_ONCE(event->state) == PERF_EVENT_STATE_ERROR && 6300 event->attr.pinned)) 6301 return EPOLLERR; 6302 6303 /* 6304 * Pin the event->rb by taking event->mmap_mutex; otherwise 6305 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 6306 */ 6307 mutex_lock(&event->mmap_mutex); 6308 rb = event->rb; 6309 if (rb) 6310 events = atomic_xchg(&rb->poll, 0); 6311 mutex_unlock(&event->mmap_mutex); 6312 return events; 6313 } 6314 6315 static void _perf_event_reset(struct perf_event *event) 6316 { 6317 (void)perf_event_read(event, false); 6318 local64_set(&event->count, 0); 6319 perf_event_update_userpage(event); 6320 } 6321 6322 /* Assume it's not an event with inherit set. */ 6323 u64 perf_event_pause(struct perf_event *event, bool reset) 6324 { 6325 struct perf_event_context *ctx; 6326 u64 count; 6327 6328 ctx = perf_event_ctx_lock(event); 6329 WARN_ON_ONCE(event->attr.inherit); 6330 _perf_event_disable(event); 6331 count = local64_read(&event->count); 6332 if (reset) 6333 local64_set(&event->count, 0); 6334 perf_event_ctx_unlock(event, ctx); 6335 6336 return count; 6337 } 6338 EXPORT_SYMBOL_GPL(perf_event_pause); 6339 6340 #ifdef CONFIG_PERF_GUEST_MEDIATED_PMU 6341 static atomic_t nr_include_guest_events __read_mostly; 6342 6343 static atomic_t nr_mediated_pmu_vms __read_mostly; 6344 static DEFINE_MUTEX(perf_mediated_pmu_mutex); 6345 6346 /* !exclude_guest event of PMU with PERF_PMU_CAP_MEDIATED_VPMU */ 6347 static inline bool is_include_guest_event(struct perf_event *event) 6348 { 6349 if ((event->pmu->capabilities & PERF_PMU_CAP_MEDIATED_VPMU) && 6350 !event->attr.exclude_guest) 6351 return true; 6352 6353 return false; 6354 } 6355 6356 static int mediated_pmu_account_event(struct perf_event *event) 6357 { 6358 if (!is_include_guest_event(event)) 6359 return 0; 6360 6361 if (atomic_inc_not_zero(&nr_include_guest_events)) 6362 return 0; 6363 6364 guard(mutex)(&perf_mediated_pmu_mutex); 6365 if (atomic_read(&nr_mediated_pmu_vms)) 6366 return -EOPNOTSUPP; 6367 6368 atomic_inc(&nr_include_guest_events); 6369 return 0; 6370 } 6371 6372 static void mediated_pmu_unaccount_event(struct perf_event *event) 6373 { 6374 if (!is_include_guest_event(event)) 6375 return; 6376 6377 if (WARN_ON_ONCE(!atomic_read(&nr_include_guest_events))) 6378 return; 6379 6380 atomic_dec(&nr_include_guest_events); 6381 } 6382 6383 /* 6384 * Currently invoked at VM creation to 6385 * - Check whether there are existing !exclude_guest events of PMU with 6386 * PERF_PMU_CAP_MEDIATED_VPMU 6387 * - Set nr_mediated_pmu_vms to prevent !exclude_guest event creation on 6388 * PMUs with PERF_PMU_CAP_MEDIATED_VPMU 6389 * 6390 * No impact for the PMU without PERF_PMU_CAP_MEDIATED_VPMU. The perf 6391 * still owns all the PMU resources. 6392 */ 6393 int perf_create_mediated_pmu(void) 6394 { 6395 if (atomic_inc_not_zero(&nr_mediated_pmu_vms)) 6396 return 0; 6397 6398 guard(mutex)(&perf_mediated_pmu_mutex); 6399 if (atomic_read(&nr_include_guest_events)) 6400 return -EBUSY; 6401 6402 atomic_inc(&nr_mediated_pmu_vms); 6403 return 0; 6404 } 6405 EXPORT_SYMBOL_FOR_KVM(perf_create_mediated_pmu); 6406 6407 void perf_release_mediated_pmu(void) 6408 { 6409 if (WARN_ON_ONCE(!atomic_read(&nr_mediated_pmu_vms))) 6410 return; 6411 6412 atomic_dec(&nr_mediated_pmu_vms); 6413 } 6414 EXPORT_SYMBOL_FOR_KVM(perf_release_mediated_pmu); 6415 6416 /* When loading a guest's mediated PMU, schedule out all exclude_guest events. */ 6417 void perf_load_guest_context(void) 6418 { 6419 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 6420 6421 lockdep_assert_irqs_disabled(); 6422 6423 guard(perf_ctx_lock)(cpuctx, cpuctx->task_ctx); 6424 6425 if (WARN_ON_ONCE(__this_cpu_read(guest_ctx_loaded))) 6426 return; 6427 6428 perf_ctx_disable(&cpuctx->ctx, EVENT_GUEST); 6429 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_GUEST); 6430 if (cpuctx->task_ctx) { 6431 perf_ctx_disable(cpuctx->task_ctx, EVENT_GUEST); 6432 task_ctx_sched_out(cpuctx->task_ctx, NULL, EVENT_GUEST); 6433 } 6434 6435 perf_ctx_enable(&cpuctx->ctx, EVENT_GUEST); 6436 if (cpuctx->task_ctx) 6437 perf_ctx_enable(cpuctx->task_ctx, EVENT_GUEST); 6438 6439 __this_cpu_write(guest_ctx_loaded, true); 6440 } 6441 EXPORT_SYMBOL_GPL(perf_load_guest_context); 6442 6443 void perf_put_guest_context(void) 6444 { 6445 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 6446 6447 lockdep_assert_irqs_disabled(); 6448 6449 guard(perf_ctx_lock)(cpuctx, cpuctx->task_ctx); 6450 6451 if (WARN_ON_ONCE(!__this_cpu_read(guest_ctx_loaded))) 6452 return; 6453 6454 perf_ctx_disable(&cpuctx->ctx, EVENT_GUEST); 6455 if (cpuctx->task_ctx) 6456 perf_ctx_disable(cpuctx->task_ctx, EVENT_GUEST); 6457 6458 perf_event_sched_in(cpuctx, cpuctx->task_ctx, NULL, EVENT_GUEST); 6459 6460 if (cpuctx->task_ctx) 6461 perf_ctx_enable(cpuctx->task_ctx, EVENT_GUEST); 6462 perf_ctx_enable(&cpuctx->ctx, EVENT_GUEST); 6463 6464 __this_cpu_write(guest_ctx_loaded, false); 6465 } 6466 EXPORT_SYMBOL_GPL(perf_put_guest_context); 6467 #else 6468 static int mediated_pmu_account_event(struct perf_event *event) { return 0; } 6469 static void mediated_pmu_unaccount_event(struct perf_event *event) {} 6470 #endif 6471 6472 /* 6473 * Holding the top-level event's child_mutex means that any 6474 * descendant process that has inherited this event will block 6475 * in perf_event_exit_event() if it goes to exit, thus satisfying the 6476 * task existence requirements of perf_event_enable/disable. 6477 */ 6478 static void perf_event_for_each_child(struct perf_event *event, 6479 void (*func)(struct perf_event *)) 6480 { 6481 struct perf_event *child; 6482 6483 WARN_ON_ONCE(event->ctx->parent_ctx); 6484 6485 mutex_lock(&event->child_mutex); 6486 func(event); 6487 list_for_each_entry(child, &event->child_list, child_list) 6488 func(child); 6489 mutex_unlock(&event->child_mutex); 6490 } 6491 6492 static void perf_event_for_each(struct perf_event *event, 6493 void (*func)(struct perf_event *)) 6494 { 6495 struct perf_event_context *ctx = event->ctx; 6496 struct perf_event *sibling; 6497 6498 lockdep_assert_held(&ctx->mutex); 6499 6500 event = event->group_leader; 6501 6502 perf_event_for_each_child(event, func); 6503 for_each_sibling_event(sibling, event) 6504 perf_event_for_each_child(sibling, func); 6505 } 6506 6507 static void __perf_event_period(struct perf_event *event, 6508 struct perf_cpu_context *cpuctx, 6509 struct perf_event_context *ctx, 6510 void *info) 6511 { 6512 u64 value = *((u64 *)info); 6513 bool active; 6514 6515 if (event->attr.freq) { 6516 event->attr.sample_freq = value; 6517 } else { 6518 event->attr.sample_period = value; 6519 event->hw.sample_period = value; 6520 } 6521 6522 active = (event->state == PERF_EVENT_STATE_ACTIVE); 6523 if (active) { 6524 perf_pmu_disable(event->pmu); 6525 event->pmu->stop(event, PERF_EF_UPDATE); 6526 } 6527 6528 local64_set(&event->hw.period_left, 0); 6529 6530 if (active) { 6531 event->pmu->start(event, PERF_EF_RELOAD); 6532 /* 6533 * Once the period is force-reset, the event starts immediately. 6534 * But the event/group could be throttled. Unthrottle the 6535 * event/group now to avoid the next tick trying to unthrottle 6536 * while we already re-started the event/group. 6537 */ 6538 if (event->hw.interrupts == MAX_INTERRUPTS) 6539 perf_event_unthrottle_group(event, true); 6540 perf_pmu_enable(event->pmu); 6541 } 6542 } 6543 6544 static int perf_event_check_period(struct perf_event *event, u64 value) 6545 { 6546 return event->pmu->check_period(event, value); 6547 } 6548 6549 static int _perf_event_period(struct perf_event *event, u64 value) 6550 { 6551 if (!is_sampling_event(event)) 6552 return -EINVAL; 6553 6554 if (!value) 6555 return -EINVAL; 6556 6557 if (event->attr.freq) { 6558 if (value > sysctl_perf_event_sample_rate) 6559 return -EINVAL; 6560 } else { 6561 if (perf_event_check_period(event, value)) 6562 return -EINVAL; 6563 if (value & (1ULL << 63)) 6564 return -EINVAL; 6565 } 6566 6567 event_function_call(event, __perf_event_period, &value); 6568 6569 return 0; 6570 } 6571 6572 int perf_event_period(struct perf_event *event, u64 value) 6573 { 6574 struct perf_event_context *ctx; 6575 int ret; 6576 6577 ctx = perf_event_ctx_lock(event); 6578 ret = _perf_event_period(event, value); 6579 perf_event_ctx_unlock(event, ctx); 6580 6581 return ret; 6582 } 6583 EXPORT_SYMBOL_GPL(perf_event_period); 6584 6585 static const struct file_operations perf_fops; 6586 6587 static inline bool is_perf_file(struct fd f) 6588 { 6589 return !fd_empty(f) && fd_file(f)->f_op == &perf_fops; 6590 } 6591 6592 static int perf_event_set_output(struct perf_event *event, 6593 struct perf_event *output_event); 6594 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 6595 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6596 struct perf_event_attr *attr); 6597 static int __perf_event_set_bpf_prog(struct perf_event *event, 6598 struct bpf_prog *prog, 6599 u64 bpf_cookie); 6600 6601 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 6602 { 6603 void (*func)(struct perf_event *); 6604 u32 flags = arg; 6605 6606 if (event->state <= PERF_EVENT_STATE_REVOKED) 6607 return -ENODEV; 6608 6609 switch (cmd) { 6610 case PERF_EVENT_IOC_ENABLE: 6611 func = _perf_event_enable; 6612 break; 6613 case PERF_EVENT_IOC_DISABLE: 6614 func = _perf_event_disable; 6615 break; 6616 case PERF_EVENT_IOC_RESET: 6617 func = _perf_event_reset; 6618 break; 6619 6620 case PERF_EVENT_IOC_REFRESH: 6621 return _perf_event_refresh(event, arg); 6622 6623 case PERF_EVENT_IOC_PERIOD: 6624 { 6625 u64 value; 6626 6627 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 6628 return -EFAULT; 6629 6630 return _perf_event_period(event, value); 6631 } 6632 case PERF_EVENT_IOC_ID: 6633 { 6634 u64 id = primary_event_id(event); 6635 6636 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 6637 return -EFAULT; 6638 return 0; 6639 } 6640 6641 case PERF_EVENT_IOC_SET_OUTPUT: 6642 { 6643 CLASS(fd, output)(arg); // arg == -1 => empty 6644 struct perf_event *output_event = NULL; 6645 if (arg != -1) { 6646 if (!is_perf_file(output)) 6647 return -EBADF; 6648 output_event = fd_file(output)->private_data; 6649 } 6650 return perf_event_set_output(event, output_event); 6651 } 6652 6653 case PERF_EVENT_IOC_SET_FILTER: 6654 return perf_event_set_filter(event, (void __user *)arg); 6655 6656 case PERF_EVENT_IOC_SET_BPF: 6657 { 6658 struct bpf_prog *prog; 6659 int err; 6660 6661 prog = bpf_prog_get(arg); 6662 if (IS_ERR(prog)) 6663 return PTR_ERR(prog); 6664 6665 err = __perf_event_set_bpf_prog(event, prog, 0); 6666 if (err) { 6667 bpf_prog_put(prog); 6668 return err; 6669 } 6670 6671 return 0; 6672 } 6673 6674 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 6675 struct perf_buffer *rb; 6676 6677 rcu_read_lock(); 6678 rb = rcu_dereference(event->rb); 6679 if (!rb || !rb->nr_pages) { 6680 rcu_read_unlock(); 6681 return -EINVAL; 6682 } 6683 rb_toggle_paused(rb, !!arg); 6684 rcu_read_unlock(); 6685 return 0; 6686 } 6687 6688 case PERF_EVENT_IOC_QUERY_BPF: 6689 return perf_event_query_prog_array(event, (void __user *)arg); 6690 6691 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 6692 struct perf_event_attr new_attr; 6693 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 6694 &new_attr); 6695 6696 if (err) 6697 return err; 6698 6699 return perf_event_modify_attr(event, &new_attr); 6700 } 6701 default: 6702 return -ENOTTY; 6703 } 6704 6705 if (flags & PERF_IOC_FLAG_GROUP) 6706 perf_event_for_each(event, func); 6707 else 6708 perf_event_for_each_child(event, func); 6709 6710 return 0; 6711 } 6712 6713 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 6714 { 6715 struct perf_event *event = file->private_data; 6716 struct perf_event_context *ctx; 6717 long ret; 6718 6719 /* Treat ioctl like writes as it is likely a mutating operation. */ 6720 ret = security_perf_event_write(event); 6721 if (ret) 6722 return ret; 6723 6724 ctx = perf_event_ctx_lock(event); 6725 ret = _perf_ioctl(event, cmd, arg); 6726 perf_event_ctx_unlock(event, ctx); 6727 6728 return ret; 6729 } 6730 6731 #ifdef CONFIG_COMPAT 6732 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6733 unsigned long arg) 6734 { 6735 switch (_IOC_NR(cmd)) { 6736 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6737 case _IOC_NR(PERF_EVENT_IOC_ID): 6738 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6739 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6740 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6741 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6742 cmd &= ~IOCSIZE_MASK; 6743 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6744 } 6745 break; 6746 } 6747 return perf_ioctl(file, cmd, arg); 6748 } 6749 #else 6750 # define perf_compat_ioctl NULL 6751 #endif 6752 6753 int perf_event_task_enable(void) 6754 { 6755 struct perf_event_context *ctx; 6756 struct perf_event *event; 6757 6758 mutex_lock(¤t->perf_event_mutex); 6759 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6760 ctx = perf_event_ctx_lock(event); 6761 perf_event_for_each_child(event, _perf_event_enable); 6762 perf_event_ctx_unlock(event, ctx); 6763 } 6764 mutex_unlock(¤t->perf_event_mutex); 6765 6766 return 0; 6767 } 6768 6769 int perf_event_task_disable(void) 6770 { 6771 struct perf_event_context *ctx; 6772 struct perf_event *event; 6773 6774 mutex_lock(¤t->perf_event_mutex); 6775 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6776 ctx = perf_event_ctx_lock(event); 6777 perf_event_for_each_child(event, _perf_event_disable); 6778 perf_event_ctx_unlock(event, ctx); 6779 } 6780 mutex_unlock(¤t->perf_event_mutex); 6781 6782 return 0; 6783 } 6784 6785 static int perf_event_index(struct perf_event *event) 6786 { 6787 if (event->hw.state & PERF_HES_STOPPED) 6788 return 0; 6789 6790 if (event->state != PERF_EVENT_STATE_ACTIVE) 6791 return 0; 6792 6793 return event->pmu->event_idx(event); 6794 } 6795 6796 static void perf_event_init_userpage(struct perf_event *event) 6797 { 6798 struct perf_event_mmap_page *userpg; 6799 struct perf_buffer *rb; 6800 6801 rcu_read_lock(); 6802 rb = rcu_dereference(event->rb); 6803 if (!rb) 6804 goto unlock; 6805 6806 userpg = rb->user_page; 6807 6808 /* Allow new userspace to detect that bit 0 is deprecated */ 6809 userpg->cap_bit0_is_deprecated = 1; 6810 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6811 userpg->data_offset = PAGE_SIZE; 6812 userpg->data_size = perf_data_size(rb); 6813 6814 unlock: 6815 rcu_read_unlock(); 6816 } 6817 6818 void __weak arch_perf_update_userpage( 6819 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6820 { 6821 } 6822 6823 /* 6824 * Callers need to ensure there can be no nesting of this function, otherwise 6825 * the seqlock logic goes bad. We can not serialize this because the arch 6826 * code calls this from NMI context. 6827 */ 6828 void perf_event_update_userpage(struct perf_event *event) 6829 { 6830 struct perf_event_mmap_page *userpg; 6831 struct perf_buffer *rb; 6832 u64 enabled, running, now; 6833 6834 rcu_read_lock(); 6835 rb = rcu_dereference(event->rb); 6836 if (!rb) 6837 goto unlock; 6838 6839 /* 6840 * Disable preemption to guarantee consistent time stamps are stored to 6841 * the user page. 6842 */ 6843 preempt_disable(); 6844 6845 /* 6846 * Compute total_time_enabled, total_time_running based on snapshot 6847 * values taken when the event was last scheduled in. 6848 * 6849 * We cannot simply call update_context_time() because doing so would 6850 * lead to deadlock when called from NMI context. 6851 */ 6852 calc_timer_values(event, &now, &enabled, &running); 6853 6854 userpg = rb->user_page; 6855 6856 ++userpg->lock; 6857 barrier(); 6858 userpg->index = perf_event_index(event); 6859 userpg->offset = perf_event_count(event, false); 6860 if (userpg->index) 6861 userpg->offset -= local64_read(&event->hw.prev_count); 6862 6863 userpg->time_enabled = enabled + 6864 atomic64_read(&event->child_total_time_enabled); 6865 6866 userpg->time_running = running + 6867 atomic64_read(&event->child_total_time_running); 6868 6869 arch_perf_update_userpage(event, userpg, now); 6870 6871 barrier(); 6872 ++userpg->lock; 6873 preempt_enable(); 6874 unlock: 6875 rcu_read_unlock(); 6876 } 6877 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6878 6879 static void ring_buffer_attach(struct perf_event *event, 6880 struct perf_buffer *rb) 6881 { 6882 struct perf_buffer *old_rb = NULL; 6883 unsigned long flags; 6884 6885 WARN_ON_ONCE(event->parent); 6886 6887 if (event->rb) { 6888 /* 6889 * Should be impossible, we set this when removing 6890 * event->rb_entry and wait/clear when adding event->rb_entry. 6891 */ 6892 WARN_ON_ONCE(event->rcu_pending); 6893 6894 old_rb = event->rb; 6895 spin_lock_irqsave(&old_rb->event_lock, flags); 6896 list_del_rcu(&event->rb_entry); 6897 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6898 6899 event->rcu_batches = get_state_synchronize_rcu(); 6900 event->rcu_pending = 1; 6901 } 6902 6903 if (rb) { 6904 if (event->rcu_pending) { 6905 cond_synchronize_rcu(event->rcu_batches); 6906 event->rcu_pending = 0; 6907 } 6908 6909 spin_lock_irqsave(&rb->event_lock, flags); 6910 list_add_rcu(&event->rb_entry, &rb->event_list); 6911 spin_unlock_irqrestore(&rb->event_lock, flags); 6912 } 6913 6914 /* 6915 * Avoid racing with perf_mmap_close(AUX): stop the event 6916 * before swizzling the event::rb pointer; if it's getting 6917 * unmapped, its aux_mmap_count will be 0 and it won't 6918 * restart. See the comment in __perf_pmu_output_stop(). 6919 * 6920 * Data will inevitably be lost when set_output is done in 6921 * mid-air, but then again, whoever does it like this is 6922 * not in for the data anyway. 6923 */ 6924 if (has_aux(event)) 6925 perf_event_stop(event, 0); 6926 6927 rcu_assign_pointer(event->rb, rb); 6928 6929 if (old_rb) { 6930 ring_buffer_put(old_rb); 6931 /* 6932 * Since we detached before setting the new rb, so that we 6933 * could attach the new rb, we could have missed a wakeup. 6934 * Provide it now. 6935 */ 6936 wake_up_all(&event->waitq); 6937 } 6938 } 6939 6940 static void ring_buffer_wakeup(struct perf_event *event) 6941 { 6942 struct perf_buffer *rb; 6943 6944 if (event->parent) 6945 event = event->parent; 6946 6947 rcu_read_lock(); 6948 rb = rcu_dereference(event->rb); 6949 if (rb) { 6950 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6951 wake_up_all(&event->waitq); 6952 } 6953 rcu_read_unlock(); 6954 } 6955 6956 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6957 { 6958 struct perf_buffer *rb; 6959 6960 if (event->parent) 6961 event = event->parent; 6962 6963 rcu_read_lock(); 6964 rb = rcu_dereference(event->rb); 6965 if (rb) { 6966 if (!refcount_inc_not_zero(&rb->refcount)) 6967 rb = NULL; 6968 } 6969 rcu_read_unlock(); 6970 6971 return rb; 6972 } 6973 6974 void ring_buffer_put(struct perf_buffer *rb) 6975 { 6976 if (!refcount_dec_and_test(&rb->refcount)) 6977 return; 6978 6979 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6980 6981 call_rcu(&rb->rcu_head, rb_free_rcu); 6982 } 6983 6984 typedef void (*mapped_f)(struct perf_event *event, struct mm_struct *mm); 6985 6986 #define get_mapped(event, func) \ 6987 ({ struct pmu *pmu; \ 6988 mapped_f f = NULL; \ 6989 guard(rcu)(); \ 6990 pmu = READ_ONCE(event->pmu); \ 6991 if (pmu) \ 6992 f = pmu->func; \ 6993 f; \ 6994 }) 6995 6996 static void perf_mmap_open(struct vm_area_struct *vma) 6997 { 6998 struct perf_event *event = vma->vm_file->private_data; 6999 mapped_f mapped = get_mapped(event, event_mapped); 7000 7001 refcount_inc(&event->mmap_count); 7002 refcount_inc(&event->rb->mmap_count); 7003 7004 if (vma->vm_pgoff) 7005 refcount_inc(&event->rb->aux_mmap_count); 7006 7007 if (mapped) 7008 mapped(event, vma->vm_mm); 7009 } 7010 7011 static void perf_pmu_output_stop(struct perf_event *event); 7012 7013 /* 7014 * A buffer can be mmap()ed multiple times; either directly through the same 7015 * event, or through other events by use of perf_event_set_output(). 7016 * 7017 * In order to undo the VM accounting done by perf_mmap() we need to destroy 7018 * the buffer here, where we still have a VM context. This means we need 7019 * to detach all events redirecting to us. 7020 */ 7021 static void perf_mmap_close(struct vm_area_struct *vma) 7022 { 7023 struct perf_event *event = vma->vm_file->private_data; 7024 mapped_f unmapped = get_mapped(event, event_unmapped); 7025 struct perf_buffer *rb = ring_buffer_get(event); 7026 struct user_struct *mmap_user = rb->mmap_user; 7027 int mmap_locked = rb->mmap_locked; 7028 unsigned long size = perf_data_size(rb); 7029 bool detach_rest = false; 7030 7031 /* FIXIES vs perf_pmu_unregister() */ 7032 if (unmapped) 7033 unmapped(event, vma->vm_mm); 7034 7035 /* 7036 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex 7037 * to avoid complications. 7038 */ 7039 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 7040 refcount_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) { 7041 /* 7042 * Stop all AUX events that are writing to this buffer, 7043 * so that we can free its AUX pages and corresponding PMU 7044 * data. Note that after rb::aux_mmap_count dropped to zero, 7045 * they won't start any more (see perf_aux_output_begin()). 7046 */ 7047 perf_pmu_output_stop(event); 7048 7049 /* now it's safe to free the pages */ 7050 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 7051 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 7052 7053 /* this has to be the last one */ 7054 rb_free_aux(rb); 7055 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 7056 7057 mutex_unlock(&rb->aux_mutex); 7058 } 7059 7060 if (refcount_dec_and_test(&rb->mmap_count)) 7061 detach_rest = true; 7062 7063 if (!refcount_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 7064 goto out_put; 7065 7066 ring_buffer_attach(event, NULL); 7067 mutex_unlock(&event->mmap_mutex); 7068 7069 /* If there's still other mmap()s of this buffer, we're done. */ 7070 if (!detach_rest) 7071 goto out_put; 7072 7073 /* 7074 * No other mmap()s, detach from all other events that might redirect 7075 * into the now unreachable buffer. Somewhat complicated by the 7076 * fact that rb::event_lock otherwise nests inside mmap_mutex. 7077 */ 7078 again: 7079 rcu_read_lock(); 7080 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 7081 if (!atomic_long_inc_not_zero(&event->refcount)) { 7082 /* 7083 * This event is en-route to free_event() which will 7084 * detach it and remove it from the list. 7085 */ 7086 continue; 7087 } 7088 rcu_read_unlock(); 7089 7090 mutex_lock(&event->mmap_mutex); 7091 /* 7092 * Check we didn't race with perf_event_set_output() which can 7093 * swizzle the rb from under us while we were waiting to 7094 * acquire mmap_mutex. 7095 * 7096 * If we find a different rb; ignore this event, a next 7097 * iteration will no longer find it on the list. We have to 7098 * still restart the iteration to make sure we're not now 7099 * iterating the wrong list. 7100 */ 7101 if (event->rb == rb) 7102 ring_buffer_attach(event, NULL); 7103 7104 mutex_unlock(&event->mmap_mutex); 7105 put_event(event); 7106 7107 /* 7108 * Restart the iteration; either we're on the wrong list or 7109 * destroyed its integrity by doing a deletion. 7110 */ 7111 goto again; 7112 } 7113 rcu_read_unlock(); 7114 7115 /* 7116 * It could be there's still a few 0-ref events on the list; they'll 7117 * get cleaned up by free_event() -- they'll also still have their 7118 * ref on the rb and will free it whenever they are done with it. 7119 * 7120 * Aside from that, this buffer is 'fully' detached and unmapped, 7121 * undo the VM accounting. 7122 */ 7123 7124 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 7125 &mmap_user->locked_vm); 7126 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 7127 free_uid(mmap_user); 7128 7129 out_put: 7130 ring_buffer_put(rb); /* could be last */ 7131 } 7132 7133 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf) 7134 { 7135 /* The first page is the user control page, others are read-only. */ 7136 return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS; 7137 } 7138 7139 static int perf_mmap_may_split(struct vm_area_struct *vma, unsigned long addr) 7140 { 7141 /* 7142 * Forbid splitting perf mappings to prevent refcount leaks due to 7143 * the resulting non-matching offsets and sizes. See open()/close(). 7144 */ 7145 return -EINVAL; 7146 } 7147 7148 static const struct vm_operations_struct perf_mmap_vmops = { 7149 .open = perf_mmap_open, 7150 .close = perf_mmap_close, /* non mergeable */ 7151 .pfn_mkwrite = perf_mmap_pfn_mkwrite, 7152 .may_split = perf_mmap_may_split, 7153 }; 7154 7155 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma) 7156 { 7157 unsigned long nr_pages = vma_pages(vma); 7158 int err = 0; 7159 unsigned long pagenum; 7160 7161 /* 7162 * We map this as a VM_PFNMAP VMA. 7163 * 7164 * This is not ideal as this is designed broadly for mappings of PFNs 7165 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which 7166 * !pfn_valid(pfn). 7167 * 7168 * We are mapping kernel-allocated memory (memory we manage ourselves) 7169 * which would more ideally be mapped using vm_insert_page() or a 7170 * similar mechanism, that is as a VM_MIXEDMAP mapping. 7171 * 7172 * However this won't work here, because: 7173 * 7174 * 1. It uses vma->vm_page_prot, but this field has not been completely 7175 * setup at the point of the f_op->mmp() hook, so we are unable to 7176 * indicate that this should be mapped CoW in order that the 7177 * mkwrite() hook can be invoked to make the first page R/W and the 7178 * rest R/O as desired. 7179 * 7180 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in 7181 * vm_normal_page() returning a struct page * pointer, which means 7182 * vm_ops->page_mkwrite() will be invoked rather than 7183 * vm_ops->pfn_mkwrite(), and this means we have to set page->mapping 7184 * to work around retry logic in the fault handler, however this 7185 * field is no longer allowed to be used within struct page. 7186 * 7187 * 3. Having a struct page * made available in the fault logic also 7188 * means that the page gets put on the rmap and becomes 7189 * inappropriately accessible and subject to map and ref counting. 7190 * 7191 * Ideally we would have a mechanism that could explicitly express our 7192 * desires, but this is not currently the case, so we instead use 7193 * VM_PFNMAP. 7194 * 7195 * We manage the lifetime of these mappings with internal refcounts (see 7196 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of 7197 * this mapping is maintained correctly. 7198 */ 7199 for (pagenum = 0; pagenum < nr_pages; pagenum++) { 7200 unsigned long va = vma->vm_start + PAGE_SIZE * pagenum; 7201 struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum); 7202 7203 if (page == NULL) { 7204 err = -EINVAL; 7205 break; 7206 } 7207 7208 /* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */ 7209 err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE, 7210 vm_get_page_prot(vma->vm_flags & ~VM_SHARED)); 7211 if (err) 7212 break; 7213 } 7214 7215 #ifdef CONFIG_MMU 7216 /* Clear any partial mappings on error. */ 7217 if (err) 7218 zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL); 7219 #endif 7220 7221 return err; 7222 } 7223 7224 static bool perf_mmap_calc_limits(struct vm_area_struct *vma, long *user_extra, long *extra) 7225 { 7226 unsigned long user_locked, user_lock_limit, locked, lock_limit; 7227 struct user_struct *user = current_user(); 7228 7229 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 7230 /* Increase the limit linearly with more CPUs */ 7231 user_lock_limit *= num_online_cpus(); 7232 7233 user_locked = atomic_long_read(&user->locked_vm); 7234 7235 /* 7236 * sysctl_perf_event_mlock may have changed, so that 7237 * user->locked_vm > user_lock_limit 7238 */ 7239 if (user_locked > user_lock_limit) 7240 user_locked = user_lock_limit; 7241 user_locked += *user_extra; 7242 7243 if (user_locked > user_lock_limit) { 7244 /* 7245 * charge locked_vm until it hits user_lock_limit; 7246 * charge the rest from pinned_vm 7247 */ 7248 *extra = user_locked - user_lock_limit; 7249 *user_extra -= *extra; 7250 } 7251 7252 lock_limit = rlimit(RLIMIT_MEMLOCK); 7253 lock_limit >>= PAGE_SHIFT; 7254 locked = atomic64_read(&vma->vm_mm->pinned_vm) + *extra; 7255 7256 return locked <= lock_limit || !perf_is_paranoid() || capable(CAP_IPC_LOCK); 7257 } 7258 7259 static void perf_mmap_account(struct vm_area_struct *vma, long user_extra, long extra) 7260 { 7261 struct user_struct *user = current_user(); 7262 7263 atomic_long_add(user_extra, &user->locked_vm); 7264 atomic64_add(extra, &vma->vm_mm->pinned_vm); 7265 } 7266 7267 static int perf_mmap_rb(struct vm_area_struct *vma, struct perf_event *event, 7268 unsigned long nr_pages) 7269 { 7270 long extra = 0, user_extra = nr_pages; 7271 struct perf_buffer *rb; 7272 int rb_flags = 0; 7273 7274 nr_pages -= 1; 7275 7276 /* 7277 * If we have rb pages ensure they're a power-of-two number, so we 7278 * can do bitmasks instead of modulo. 7279 */ 7280 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 7281 return -EINVAL; 7282 7283 WARN_ON_ONCE(event->ctx->parent_ctx); 7284 7285 if (event->rb) { 7286 if (data_page_nr(event->rb) != nr_pages) 7287 return -EINVAL; 7288 7289 /* 7290 * If this event doesn't have mmap_count, we're attempting to 7291 * create an alias of another event's mmap(); this would mean 7292 * both events will end up scribbling the same user_page; 7293 * which makes no sense. 7294 */ 7295 if (!refcount_read(&event->mmap_count)) 7296 return -EBUSY; 7297 7298 if (refcount_inc_not_zero(&event->rb->mmap_count)) { 7299 /* 7300 * Success -- managed to mmap() the same buffer 7301 * multiple times. 7302 */ 7303 perf_mmap_account(vma, user_extra, extra); 7304 refcount_inc(&event->mmap_count); 7305 return 0; 7306 } 7307 7308 /* 7309 * Raced against perf_mmap_close()'s 7310 * refcount_dec_and_mutex_lock() remove the 7311 * event and continue as if !event->rb 7312 */ 7313 ring_buffer_attach(event, NULL); 7314 } 7315 7316 if (!perf_mmap_calc_limits(vma, &user_extra, &extra)) 7317 return -EPERM; 7318 7319 if (vma->vm_flags & VM_WRITE) 7320 rb_flags |= RING_BUFFER_WRITABLE; 7321 7322 rb = rb_alloc(nr_pages, 7323 event->attr.watermark ? event->attr.wakeup_watermark : 0, 7324 event->cpu, rb_flags); 7325 7326 if (!rb) 7327 return -ENOMEM; 7328 7329 refcount_set(&rb->mmap_count, 1); 7330 rb->mmap_user = get_current_user(); 7331 rb->mmap_locked = extra; 7332 7333 ring_buffer_attach(event, rb); 7334 7335 perf_event_update_time(event); 7336 perf_event_init_userpage(event); 7337 perf_event_update_userpage(event); 7338 7339 perf_mmap_account(vma, user_extra, extra); 7340 refcount_set(&event->mmap_count, 1); 7341 7342 return 0; 7343 } 7344 7345 static int perf_mmap_aux(struct vm_area_struct *vma, struct perf_event *event, 7346 unsigned long nr_pages) 7347 { 7348 long extra = 0, user_extra = nr_pages; 7349 u64 aux_offset, aux_size; 7350 struct perf_buffer *rb; 7351 int ret, rb_flags = 0; 7352 7353 rb = event->rb; 7354 if (!rb) 7355 return -EINVAL; 7356 7357 guard(mutex)(&rb->aux_mutex); 7358 7359 /* 7360 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 7361 * mapped, all subsequent mappings should have the same size 7362 * and offset. Must be above the normal perf buffer. 7363 */ 7364 aux_offset = READ_ONCE(rb->user_page->aux_offset); 7365 aux_size = READ_ONCE(rb->user_page->aux_size); 7366 7367 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 7368 return -EINVAL; 7369 7370 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 7371 return -EINVAL; 7372 7373 /* already mapped with a different offset */ 7374 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 7375 return -EINVAL; 7376 7377 if (aux_size != nr_pages * PAGE_SIZE) 7378 return -EINVAL; 7379 7380 /* already mapped with a different size */ 7381 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 7382 return -EINVAL; 7383 7384 if (!is_power_of_2(nr_pages)) 7385 return -EINVAL; 7386 7387 if (!refcount_inc_not_zero(&rb->mmap_count)) 7388 return -EINVAL; 7389 7390 if (rb_has_aux(rb)) { 7391 refcount_inc(&rb->aux_mmap_count); 7392 7393 } else { 7394 if (!perf_mmap_calc_limits(vma, &user_extra, &extra)) { 7395 refcount_dec(&rb->mmap_count); 7396 return -EPERM; 7397 } 7398 7399 WARN_ON(!rb && event->rb); 7400 7401 if (vma->vm_flags & VM_WRITE) 7402 rb_flags |= RING_BUFFER_WRITABLE; 7403 7404 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 7405 event->attr.aux_watermark, rb_flags); 7406 if (ret) { 7407 refcount_dec(&rb->mmap_count); 7408 return ret; 7409 } 7410 7411 refcount_set(&rb->aux_mmap_count, 1); 7412 rb->aux_mmap_locked = extra; 7413 } 7414 7415 perf_mmap_account(vma, user_extra, extra); 7416 refcount_inc(&event->mmap_count); 7417 7418 return 0; 7419 } 7420 7421 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 7422 { 7423 struct perf_event *event = file->private_data; 7424 unsigned long vma_size, nr_pages; 7425 mapped_f mapped; 7426 int ret; 7427 7428 /* 7429 * Don't allow mmap() of inherited per-task counters. This would 7430 * create a performance issue due to all children writing to the 7431 * same rb. 7432 */ 7433 if (event->cpu == -1 && event->attr.inherit) 7434 return -EINVAL; 7435 7436 if (!(vma->vm_flags & VM_SHARED)) 7437 return -EINVAL; 7438 7439 ret = security_perf_event_read(event); 7440 if (ret) 7441 return ret; 7442 7443 vma_size = vma->vm_end - vma->vm_start; 7444 nr_pages = vma_size / PAGE_SIZE; 7445 7446 if (nr_pages > INT_MAX) 7447 return -ENOMEM; 7448 7449 if (vma_size != PAGE_SIZE * nr_pages) 7450 return -EINVAL; 7451 7452 scoped_guard (mutex, &event->mmap_mutex) { 7453 /* 7454 * This relies on __pmu_detach_event() taking mmap_mutex after marking 7455 * the event REVOKED. Either we observe the state, or __pmu_detach_event() 7456 * will detach the rb created here. 7457 */ 7458 if (event->state <= PERF_EVENT_STATE_REVOKED) 7459 return -ENODEV; 7460 7461 if (vma->vm_pgoff == 0) 7462 ret = perf_mmap_rb(vma, event, nr_pages); 7463 else 7464 ret = perf_mmap_aux(vma, event, nr_pages); 7465 if (ret) 7466 return ret; 7467 } 7468 7469 /* 7470 * Since pinned accounting is per vm we cannot allow fork() to copy our 7471 * vma. 7472 */ 7473 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 7474 vma->vm_ops = &perf_mmap_vmops; 7475 7476 mapped = get_mapped(event, event_mapped); 7477 if (mapped) 7478 mapped(event, vma->vm_mm); 7479 7480 /* 7481 * Try to map it into the page table. On fail, invoke 7482 * perf_mmap_close() to undo the above, as the callsite expects 7483 * full cleanup in this case and therefore does not invoke 7484 * vmops::close(). 7485 */ 7486 ret = map_range(event->rb, vma); 7487 if (ret) 7488 perf_mmap_close(vma); 7489 7490 return ret; 7491 } 7492 7493 static int perf_fasync(int fd, struct file *filp, int on) 7494 { 7495 struct inode *inode = file_inode(filp); 7496 struct perf_event *event = filp->private_data; 7497 int retval; 7498 7499 if (event->state <= PERF_EVENT_STATE_REVOKED) 7500 return -ENODEV; 7501 7502 inode_lock(inode); 7503 retval = fasync_helper(fd, filp, on, &event->fasync); 7504 inode_unlock(inode); 7505 7506 if (retval < 0) 7507 return retval; 7508 7509 return 0; 7510 } 7511 7512 static const struct file_operations perf_fops = { 7513 .release = perf_release, 7514 .read = perf_read, 7515 .poll = perf_poll, 7516 .unlocked_ioctl = perf_ioctl, 7517 .compat_ioctl = perf_compat_ioctl, 7518 .mmap = perf_mmap, 7519 .fasync = perf_fasync, 7520 }; 7521 7522 /* 7523 * Perf event wakeup 7524 * 7525 * If there's data, ensure we set the poll() state and publish everything 7526 * to user-space before waking everybody up. 7527 */ 7528 7529 void perf_event_wakeup(struct perf_event *event) 7530 { 7531 ring_buffer_wakeup(event); 7532 7533 if (event->pending_kill) { 7534 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 7535 event->pending_kill = 0; 7536 } 7537 } 7538 7539 static void perf_sigtrap(struct perf_event *event) 7540 { 7541 /* 7542 * Both perf_pending_task() and perf_pending_irq() can race with the 7543 * task exiting. 7544 */ 7545 if (current->flags & PF_EXITING) 7546 return; 7547 7548 /* 7549 * We'd expect this to only occur if the irq_work is delayed and either 7550 * ctx->task or current has changed in the meantime. This can be the 7551 * case on architectures that do not implement arch_irq_work_raise(). 7552 */ 7553 if (WARN_ON_ONCE(event->ctx->task != current)) 7554 return; 7555 7556 send_sig_perf((void __user *)event->pending_addr, 7557 event->orig_type, event->attr.sig_data); 7558 } 7559 7560 /* 7561 * Deliver the pending work in-event-context or follow the context. 7562 */ 7563 static void __perf_pending_disable(struct perf_event *event) 7564 { 7565 int cpu = READ_ONCE(event->oncpu); 7566 7567 /* 7568 * If the event isn't running; we done. event_sched_out() will have 7569 * taken care of things. 7570 */ 7571 if (cpu < 0) 7572 return; 7573 7574 /* 7575 * Yay, we hit home and are in the context of the event. 7576 */ 7577 if (cpu == smp_processor_id()) { 7578 if (event->pending_disable) { 7579 event->pending_disable = 0; 7580 perf_event_disable_local(event); 7581 } 7582 return; 7583 } 7584 7585 /* 7586 * CPU-A CPU-B 7587 * 7588 * perf_event_disable_inatomic() 7589 * @pending_disable = 1; 7590 * irq_work_queue(); 7591 * 7592 * sched-out 7593 * @pending_disable = 0; 7594 * 7595 * sched-in 7596 * perf_event_disable_inatomic() 7597 * @pending_disable = 1; 7598 * irq_work_queue(); // FAILS 7599 * 7600 * irq_work_run() 7601 * perf_pending_disable() 7602 * 7603 * But the event runs on CPU-B and wants disabling there. 7604 */ 7605 irq_work_queue_on(&event->pending_disable_irq, cpu); 7606 } 7607 7608 static void perf_pending_disable(struct irq_work *entry) 7609 { 7610 struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq); 7611 int rctx; 7612 7613 /* 7614 * If we 'fail' here, that's OK, it means recursion is already disabled 7615 * and we won't recurse 'further'. 7616 */ 7617 rctx = perf_swevent_get_recursion_context(); 7618 __perf_pending_disable(event); 7619 if (rctx >= 0) 7620 perf_swevent_put_recursion_context(rctx); 7621 } 7622 7623 static void perf_pending_irq(struct irq_work *entry) 7624 { 7625 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 7626 int rctx; 7627 7628 /* 7629 * If we 'fail' here, that's OK, it means recursion is already disabled 7630 * and we won't recurse 'further'. 7631 */ 7632 rctx = perf_swevent_get_recursion_context(); 7633 7634 /* 7635 * The wakeup isn't bound to the context of the event -- it can happen 7636 * irrespective of where the event is. 7637 */ 7638 if (event->pending_wakeup) { 7639 event->pending_wakeup = 0; 7640 perf_event_wakeup(event); 7641 } 7642 7643 if (rctx >= 0) 7644 perf_swevent_put_recursion_context(rctx); 7645 } 7646 7647 static void perf_pending_task(struct callback_head *head) 7648 { 7649 struct perf_event *event = container_of(head, struct perf_event, pending_task); 7650 int rctx; 7651 7652 /* 7653 * If we 'fail' here, that's OK, it means recursion is already disabled 7654 * and we won't recurse 'further'. 7655 */ 7656 rctx = perf_swevent_get_recursion_context(); 7657 7658 if (event->pending_work) { 7659 event->pending_work = 0; 7660 perf_sigtrap(event); 7661 local_dec(&event->ctx->nr_no_switch_fast); 7662 } 7663 put_event(event); 7664 7665 if (rctx >= 0) 7666 perf_swevent_put_recursion_context(rctx); 7667 } 7668 7669 #ifdef CONFIG_GUEST_PERF_EVENTS 7670 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 7671 7672 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 7673 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 7674 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 7675 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_mediated_pmi, *perf_guest_cbs->handle_mediated_pmi); 7676 7677 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 7678 { 7679 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 7680 return; 7681 7682 rcu_assign_pointer(perf_guest_cbs, cbs); 7683 static_call_update(__perf_guest_state, cbs->state); 7684 static_call_update(__perf_guest_get_ip, cbs->get_ip); 7685 7686 /* Implementing ->handle_intel_pt_intr is optional. */ 7687 if (cbs->handle_intel_pt_intr) 7688 static_call_update(__perf_guest_handle_intel_pt_intr, 7689 cbs->handle_intel_pt_intr); 7690 7691 if (cbs->handle_mediated_pmi) 7692 static_call_update(__perf_guest_handle_mediated_pmi, 7693 cbs->handle_mediated_pmi); 7694 } 7695 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 7696 7697 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 7698 { 7699 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 7700 return; 7701 7702 rcu_assign_pointer(perf_guest_cbs, NULL); 7703 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 7704 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 7705 static_call_update(__perf_guest_handle_intel_pt_intr, (void *)&__static_call_return0); 7706 static_call_update(__perf_guest_handle_mediated_pmi, (void *)&__static_call_return0); 7707 synchronize_rcu(); 7708 } 7709 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 7710 #endif 7711 7712 static bool should_sample_guest(struct perf_event *event) 7713 { 7714 return !event->attr.exclude_guest && perf_guest_state(); 7715 } 7716 7717 unsigned long perf_misc_flags(struct perf_event *event, 7718 struct pt_regs *regs) 7719 { 7720 if (should_sample_guest(event)) 7721 return perf_arch_guest_misc_flags(regs); 7722 7723 return perf_arch_misc_flags(regs); 7724 } 7725 7726 unsigned long perf_instruction_pointer(struct perf_event *event, 7727 struct pt_regs *regs) 7728 { 7729 if (should_sample_guest(event)) 7730 return perf_guest_get_ip(); 7731 7732 return perf_arch_instruction_pointer(regs); 7733 } 7734 7735 static void 7736 perf_output_sample_regs(struct perf_output_handle *handle, 7737 struct pt_regs *regs, u64 mask) 7738 { 7739 int bit; 7740 DECLARE_BITMAP(_mask, 64); 7741 7742 bitmap_from_u64(_mask, mask); 7743 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 7744 u64 val; 7745 7746 val = perf_reg_value(regs, bit); 7747 perf_output_put(handle, val); 7748 } 7749 } 7750 7751 static void perf_sample_regs_user(struct perf_regs *regs_user, 7752 struct pt_regs *regs) 7753 { 7754 if (user_mode(regs)) { 7755 regs_user->abi = perf_reg_abi(current); 7756 regs_user->regs = regs; 7757 } else if (is_user_task(current)) { 7758 perf_get_regs_user(regs_user, regs); 7759 } else { 7760 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 7761 regs_user->regs = NULL; 7762 } 7763 } 7764 7765 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 7766 struct pt_regs *regs) 7767 { 7768 regs_intr->regs = regs; 7769 regs_intr->abi = perf_reg_abi(current); 7770 } 7771 7772 7773 /* 7774 * Get remaining task size from user stack pointer. 7775 * 7776 * It'd be better to take stack vma map and limit this more 7777 * precisely, but there's no way to get it safely under interrupt, 7778 * so using TASK_SIZE as limit. 7779 */ 7780 static u64 perf_ustack_task_size(struct pt_regs *regs) 7781 { 7782 unsigned long addr = perf_user_stack_pointer(regs); 7783 7784 if (!addr || addr >= TASK_SIZE) 7785 return 0; 7786 7787 return TASK_SIZE - addr; 7788 } 7789 7790 static u16 7791 perf_sample_ustack_size(u16 stack_size, u16 header_size, 7792 struct pt_regs *regs) 7793 { 7794 u64 task_size; 7795 7796 /* No regs, no stack pointer, no dump. */ 7797 if (!regs) 7798 return 0; 7799 7800 /* No mm, no stack, no dump. */ 7801 if (!current->mm) 7802 return 0; 7803 7804 /* 7805 * Check if we fit in with the requested stack size into the: 7806 * - TASK_SIZE 7807 * If we don't, we limit the size to the TASK_SIZE. 7808 * 7809 * - remaining sample size 7810 * If we don't, we customize the stack size to 7811 * fit in to the remaining sample size. 7812 */ 7813 7814 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 7815 stack_size = min(stack_size, (u16) task_size); 7816 7817 /* Current header size plus static size and dynamic size. */ 7818 header_size += 2 * sizeof(u64); 7819 7820 /* Do we fit in with the current stack dump size? */ 7821 if ((u16) (header_size + stack_size) < header_size) { 7822 /* 7823 * If we overflow the maximum size for the sample, 7824 * we customize the stack dump size to fit in. 7825 */ 7826 stack_size = USHRT_MAX - header_size - sizeof(u64); 7827 stack_size = round_up(stack_size, sizeof(u64)); 7828 } 7829 7830 return stack_size; 7831 } 7832 7833 static void 7834 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 7835 struct pt_regs *regs) 7836 { 7837 /* Case of a kernel thread, nothing to dump */ 7838 if (!regs) { 7839 u64 size = 0; 7840 perf_output_put(handle, size); 7841 } else { 7842 unsigned long sp; 7843 unsigned int rem; 7844 u64 dyn_size; 7845 7846 /* 7847 * We dump: 7848 * static size 7849 * - the size requested by user or the best one we can fit 7850 * in to the sample max size 7851 * data 7852 * - user stack dump data 7853 * dynamic size 7854 * - the actual dumped size 7855 */ 7856 7857 /* Static size. */ 7858 perf_output_put(handle, dump_size); 7859 7860 /* Data. */ 7861 sp = perf_user_stack_pointer(regs); 7862 rem = __output_copy_user(handle, (void *) sp, dump_size); 7863 dyn_size = dump_size - rem; 7864 7865 perf_output_skip(handle, rem); 7866 7867 /* Dynamic size. */ 7868 perf_output_put(handle, dyn_size); 7869 } 7870 } 7871 7872 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7873 struct perf_sample_data *data, 7874 size_t size) 7875 { 7876 struct perf_event *sampler = event->aux_event; 7877 struct perf_buffer *rb; 7878 7879 data->aux_size = 0; 7880 7881 if (!sampler) 7882 goto out; 7883 7884 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7885 goto out; 7886 7887 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7888 goto out; 7889 7890 rb = ring_buffer_get(sampler); 7891 if (!rb) 7892 goto out; 7893 7894 /* 7895 * If this is an NMI hit inside sampling code, don't take 7896 * the sample. See also perf_aux_sample_output(). 7897 */ 7898 if (READ_ONCE(rb->aux_in_sampling)) { 7899 data->aux_size = 0; 7900 } else { 7901 size = min_t(size_t, size, perf_aux_size(rb)); 7902 data->aux_size = ALIGN(size, sizeof(u64)); 7903 } 7904 ring_buffer_put(rb); 7905 7906 out: 7907 return data->aux_size; 7908 } 7909 7910 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7911 struct perf_event *event, 7912 struct perf_output_handle *handle, 7913 unsigned long size) 7914 { 7915 unsigned long flags; 7916 long ret; 7917 7918 /* 7919 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7920 * paths. If we start calling them in NMI context, they may race with 7921 * the IRQ ones, that is, for example, re-starting an event that's just 7922 * been stopped, which is why we're using a separate callback that 7923 * doesn't change the event state. 7924 * 7925 * IRQs need to be disabled to prevent IPIs from racing with us. 7926 */ 7927 local_irq_save(flags); 7928 /* 7929 * Guard against NMI hits inside the critical section; 7930 * see also perf_prepare_sample_aux(). 7931 */ 7932 WRITE_ONCE(rb->aux_in_sampling, 1); 7933 barrier(); 7934 7935 ret = event->pmu->snapshot_aux(event, handle, size); 7936 7937 barrier(); 7938 WRITE_ONCE(rb->aux_in_sampling, 0); 7939 local_irq_restore(flags); 7940 7941 return ret; 7942 } 7943 7944 static void perf_aux_sample_output(struct perf_event *event, 7945 struct perf_output_handle *handle, 7946 struct perf_sample_data *data) 7947 { 7948 struct perf_event *sampler = event->aux_event; 7949 struct perf_buffer *rb; 7950 unsigned long pad; 7951 long size; 7952 7953 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7954 return; 7955 7956 rb = ring_buffer_get(sampler); 7957 if (!rb) 7958 return; 7959 7960 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7961 7962 /* 7963 * An error here means that perf_output_copy() failed (returned a 7964 * non-zero surplus that it didn't copy), which in its current 7965 * enlightened implementation is not possible. If that changes, we'd 7966 * like to know. 7967 */ 7968 if (WARN_ON_ONCE(size < 0)) 7969 goto out_put; 7970 7971 /* 7972 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7973 * perf_prepare_sample_aux(), so should not be more than that. 7974 */ 7975 pad = data->aux_size - size; 7976 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7977 pad = 8; 7978 7979 if (pad) { 7980 u64 zero = 0; 7981 perf_output_copy(handle, &zero, pad); 7982 } 7983 7984 out_put: 7985 ring_buffer_put(rb); 7986 } 7987 7988 /* 7989 * A set of common sample data types saved even for non-sample records 7990 * when event->attr.sample_id_all is set. 7991 */ 7992 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7993 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7994 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7995 7996 static void __perf_event_header__init_id(struct perf_sample_data *data, 7997 struct perf_event *event, 7998 u64 sample_type) 7999 { 8000 data->type = event->attr.sample_type; 8001 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 8002 8003 if (sample_type & PERF_SAMPLE_TID) { 8004 /* namespace issues */ 8005 data->tid_entry.pid = perf_event_pid(event, current); 8006 data->tid_entry.tid = perf_event_tid(event, current); 8007 } 8008 8009 if (sample_type & PERF_SAMPLE_TIME) 8010 data->time = perf_event_clock(event); 8011 8012 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 8013 data->id = primary_event_id(event); 8014 8015 if (sample_type & PERF_SAMPLE_STREAM_ID) 8016 data->stream_id = event->id; 8017 8018 if (sample_type & PERF_SAMPLE_CPU) { 8019 data->cpu_entry.cpu = raw_smp_processor_id(); 8020 data->cpu_entry.reserved = 0; 8021 } 8022 } 8023 8024 void perf_event_header__init_id(struct perf_event_header *header, 8025 struct perf_sample_data *data, 8026 struct perf_event *event) 8027 { 8028 if (event->attr.sample_id_all) { 8029 header->size += event->id_header_size; 8030 __perf_event_header__init_id(data, event, event->attr.sample_type); 8031 } 8032 } 8033 8034 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 8035 struct perf_sample_data *data) 8036 { 8037 u64 sample_type = data->type; 8038 8039 if (sample_type & PERF_SAMPLE_TID) 8040 perf_output_put(handle, data->tid_entry); 8041 8042 if (sample_type & PERF_SAMPLE_TIME) 8043 perf_output_put(handle, data->time); 8044 8045 if (sample_type & PERF_SAMPLE_ID) 8046 perf_output_put(handle, data->id); 8047 8048 if (sample_type & PERF_SAMPLE_STREAM_ID) 8049 perf_output_put(handle, data->stream_id); 8050 8051 if (sample_type & PERF_SAMPLE_CPU) 8052 perf_output_put(handle, data->cpu_entry); 8053 8054 if (sample_type & PERF_SAMPLE_IDENTIFIER) 8055 perf_output_put(handle, data->id); 8056 } 8057 8058 void perf_event__output_id_sample(struct perf_event *event, 8059 struct perf_output_handle *handle, 8060 struct perf_sample_data *sample) 8061 { 8062 if (event->attr.sample_id_all) 8063 __perf_event__output_id_sample(handle, sample); 8064 } 8065 8066 static void perf_output_read_one(struct perf_output_handle *handle, 8067 struct perf_event *event, 8068 u64 enabled, u64 running) 8069 { 8070 u64 read_format = event->attr.read_format; 8071 u64 values[5]; 8072 int n = 0; 8073 8074 values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr)); 8075 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 8076 values[n++] = enabled + 8077 atomic64_read(&event->child_total_time_enabled); 8078 } 8079 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 8080 values[n++] = running + 8081 atomic64_read(&event->child_total_time_running); 8082 } 8083 if (read_format & PERF_FORMAT_ID) 8084 values[n++] = primary_event_id(event); 8085 if (read_format & PERF_FORMAT_LOST) 8086 values[n++] = atomic64_read(&event->lost_samples); 8087 8088 __output_copy(handle, values, n * sizeof(u64)); 8089 } 8090 8091 static void perf_output_read_group(struct perf_output_handle *handle, 8092 struct perf_event *event, 8093 u64 enabled, u64 running) 8094 { 8095 struct perf_event *leader = event->group_leader, *sub; 8096 u64 read_format = event->attr.read_format; 8097 unsigned long flags; 8098 u64 values[6]; 8099 int n = 0; 8100 bool self = has_inherit_and_sample_read(&event->attr); 8101 8102 /* 8103 * Disabling interrupts avoids all counter scheduling 8104 * (context switches, timer based rotation and IPIs). 8105 */ 8106 local_irq_save(flags); 8107 8108 values[n++] = 1 + leader->nr_siblings; 8109 8110 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 8111 values[n++] = enabled; 8112 8113 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 8114 values[n++] = running; 8115 8116 if ((leader != event) && !handle->skip_read) 8117 perf_pmu_read(leader); 8118 8119 values[n++] = perf_event_count(leader, self); 8120 if (read_format & PERF_FORMAT_ID) 8121 values[n++] = primary_event_id(leader); 8122 if (read_format & PERF_FORMAT_LOST) 8123 values[n++] = atomic64_read(&leader->lost_samples); 8124 8125 __output_copy(handle, values, n * sizeof(u64)); 8126 8127 for_each_sibling_event(sub, leader) { 8128 n = 0; 8129 8130 if ((sub != event) && !handle->skip_read) 8131 perf_pmu_read(sub); 8132 8133 values[n++] = perf_event_count(sub, self); 8134 if (read_format & PERF_FORMAT_ID) 8135 values[n++] = primary_event_id(sub); 8136 if (read_format & PERF_FORMAT_LOST) 8137 values[n++] = atomic64_read(&sub->lost_samples); 8138 8139 __output_copy(handle, values, n * sizeof(u64)); 8140 } 8141 8142 local_irq_restore(flags); 8143 } 8144 8145 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 8146 PERF_FORMAT_TOTAL_TIME_RUNNING) 8147 8148 /* 8149 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 8150 * 8151 * The problem is that its both hard and excessively expensive to iterate the 8152 * child list, not to mention that its impossible to IPI the children running 8153 * on another CPU, from interrupt/NMI context. 8154 * 8155 * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread 8156 * counts rather than attempting to accumulate some value across all children on 8157 * all cores. 8158 */ 8159 static void perf_output_read(struct perf_output_handle *handle, 8160 struct perf_event *event) 8161 { 8162 u64 enabled = 0, running = 0, now; 8163 u64 read_format = event->attr.read_format; 8164 8165 /* 8166 * Compute total_time_enabled, total_time_running based on snapshot 8167 * values taken when the event was last scheduled in. 8168 * 8169 * We cannot simply call update_context_time() because doing so would 8170 * lead to deadlock when called from NMI context. 8171 */ 8172 if (read_format & PERF_FORMAT_TOTAL_TIMES) 8173 calc_timer_values(event, &now, &enabled, &running); 8174 8175 if (event->attr.read_format & PERF_FORMAT_GROUP) 8176 perf_output_read_group(handle, event, enabled, running); 8177 else 8178 perf_output_read_one(handle, event, enabled, running); 8179 } 8180 8181 void perf_output_sample(struct perf_output_handle *handle, 8182 struct perf_event_header *header, 8183 struct perf_sample_data *data, 8184 struct perf_event *event) 8185 { 8186 u64 sample_type = data->type; 8187 8188 if (data->sample_flags & PERF_SAMPLE_READ) 8189 handle->skip_read = 1; 8190 8191 perf_output_put(handle, *header); 8192 8193 if (sample_type & PERF_SAMPLE_IDENTIFIER) 8194 perf_output_put(handle, data->id); 8195 8196 if (sample_type & PERF_SAMPLE_IP) 8197 perf_output_put(handle, data->ip); 8198 8199 if (sample_type & PERF_SAMPLE_TID) 8200 perf_output_put(handle, data->tid_entry); 8201 8202 if (sample_type & PERF_SAMPLE_TIME) 8203 perf_output_put(handle, data->time); 8204 8205 if (sample_type & PERF_SAMPLE_ADDR) 8206 perf_output_put(handle, data->addr); 8207 8208 if (sample_type & PERF_SAMPLE_ID) 8209 perf_output_put(handle, data->id); 8210 8211 if (sample_type & PERF_SAMPLE_STREAM_ID) 8212 perf_output_put(handle, data->stream_id); 8213 8214 if (sample_type & PERF_SAMPLE_CPU) 8215 perf_output_put(handle, data->cpu_entry); 8216 8217 if (sample_type & PERF_SAMPLE_PERIOD) 8218 perf_output_put(handle, data->period); 8219 8220 if (sample_type & PERF_SAMPLE_READ) 8221 perf_output_read(handle, event); 8222 8223 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 8224 int size = 1; 8225 8226 size += data->callchain->nr; 8227 size *= sizeof(u64); 8228 __output_copy(handle, data->callchain, size); 8229 } 8230 8231 if (sample_type & PERF_SAMPLE_RAW) { 8232 struct perf_raw_record *raw = data->raw; 8233 8234 if (raw) { 8235 struct perf_raw_frag *frag = &raw->frag; 8236 8237 perf_output_put(handle, raw->size); 8238 do { 8239 if (frag->copy) { 8240 __output_custom(handle, frag->copy, 8241 frag->data, frag->size); 8242 } else { 8243 __output_copy(handle, frag->data, 8244 frag->size); 8245 } 8246 if (perf_raw_frag_last(frag)) 8247 break; 8248 frag = frag->next; 8249 } while (1); 8250 if (frag->pad) 8251 __output_skip(handle, NULL, frag->pad); 8252 } else { 8253 struct { 8254 u32 size; 8255 u32 data; 8256 } raw = { 8257 .size = sizeof(u32), 8258 .data = 0, 8259 }; 8260 perf_output_put(handle, raw); 8261 } 8262 } 8263 8264 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 8265 if (data->br_stack) { 8266 size_t size; 8267 8268 size = data->br_stack->nr 8269 * sizeof(struct perf_branch_entry); 8270 8271 perf_output_put(handle, data->br_stack->nr); 8272 if (branch_sample_hw_index(event)) 8273 perf_output_put(handle, data->br_stack->hw_idx); 8274 perf_output_copy(handle, data->br_stack->entries, size); 8275 /* 8276 * Add the extension space which is appended 8277 * right after the struct perf_branch_stack. 8278 */ 8279 if (data->br_stack_cntr) { 8280 size = data->br_stack->nr * sizeof(u64); 8281 perf_output_copy(handle, data->br_stack_cntr, size); 8282 } 8283 } else { 8284 /* 8285 * we always store at least the value of nr 8286 */ 8287 u64 nr = 0; 8288 perf_output_put(handle, nr); 8289 } 8290 } 8291 8292 if (sample_type & PERF_SAMPLE_REGS_USER) { 8293 u64 abi = data->regs_user.abi; 8294 8295 /* 8296 * If there are no regs to dump, notice it through 8297 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 8298 */ 8299 perf_output_put(handle, abi); 8300 8301 if (abi) { 8302 u64 mask = event->attr.sample_regs_user; 8303 perf_output_sample_regs(handle, 8304 data->regs_user.regs, 8305 mask); 8306 } 8307 } 8308 8309 if (sample_type & PERF_SAMPLE_STACK_USER) { 8310 perf_output_sample_ustack(handle, 8311 data->stack_user_size, 8312 data->regs_user.regs); 8313 } 8314 8315 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 8316 perf_output_put(handle, data->weight.full); 8317 8318 if (sample_type & PERF_SAMPLE_DATA_SRC) 8319 perf_output_put(handle, data->data_src.val); 8320 8321 if (sample_type & PERF_SAMPLE_TRANSACTION) 8322 perf_output_put(handle, data->txn); 8323 8324 if (sample_type & PERF_SAMPLE_REGS_INTR) { 8325 u64 abi = data->regs_intr.abi; 8326 /* 8327 * If there are no regs to dump, notice it through 8328 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 8329 */ 8330 perf_output_put(handle, abi); 8331 8332 if (abi) { 8333 u64 mask = event->attr.sample_regs_intr; 8334 8335 perf_output_sample_regs(handle, 8336 data->regs_intr.regs, 8337 mask); 8338 } 8339 } 8340 8341 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 8342 perf_output_put(handle, data->phys_addr); 8343 8344 if (sample_type & PERF_SAMPLE_CGROUP) 8345 perf_output_put(handle, data->cgroup); 8346 8347 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 8348 perf_output_put(handle, data->data_page_size); 8349 8350 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 8351 perf_output_put(handle, data->code_page_size); 8352 8353 if (sample_type & PERF_SAMPLE_AUX) { 8354 perf_output_put(handle, data->aux_size); 8355 8356 if (data->aux_size) 8357 perf_aux_sample_output(event, handle, data); 8358 } 8359 8360 if (!event->attr.watermark) { 8361 int wakeup_events = event->attr.wakeup_events; 8362 8363 if (wakeup_events) { 8364 struct perf_buffer *rb = handle->rb; 8365 int events = local_inc_return(&rb->events); 8366 8367 if (events >= wakeup_events) { 8368 local_sub(wakeup_events, &rb->events); 8369 local_inc(&rb->wakeup); 8370 } 8371 } 8372 } 8373 } 8374 8375 static u64 perf_virt_to_phys(u64 virt) 8376 { 8377 u64 phys_addr = 0; 8378 8379 if (!virt) 8380 return 0; 8381 8382 if (virt >= TASK_SIZE) { 8383 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 8384 if (virt_addr_valid((void *)(uintptr_t)virt) && 8385 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 8386 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 8387 } else { 8388 /* 8389 * Walking the pages tables for user address. 8390 * Interrupts are disabled, so it prevents any tear down 8391 * of the page tables. 8392 * Try IRQ-safe get_user_page_fast_only first. 8393 * If failed, leave phys_addr as 0. 8394 */ 8395 if (is_user_task(current)) { 8396 struct page *p; 8397 8398 pagefault_disable(); 8399 if (get_user_page_fast_only(virt, 0, &p)) { 8400 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 8401 put_page(p); 8402 } 8403 pagefault_enable(); 8404 } 8405 } 8406 8407 return phys_addr; 8408 } 8409 8410 /* 8411 * Return the pagetable size of a given virtual address. 8412 */ 8413 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 8414 { 8415 u64 size = 0; 8416 8417 #ifdef CONFIG_HAVE_GUP_FAST 8418 pgd_t *pgdp, pgd; 8419 p4d_t *p4dp, p4d; 8420 pud_t *pudp, pud; 8421 pmd_t *pmdp, pmd; 8422 pte_t *ptep, pte; 8423 8424 pgdp = pgd_offset(mm, addr); 8425 pgd = READ_ONCE(*pgdp); 8426 if (pgd_none(pgd)) 8427 return 0; 8428 8429 if (pgd_leaf(pgd)) 8430 return pgd_leaf_size(pgd); 8431 8432 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 8433 p4d = READ_ONCE(*p4dp); 8434 if (!p4d_present(p4d)) 8435 return 0; 8436 8437 if (p4d_leaf(p4d)) 8438 return p4d_leaf_size(p4d); 8439 8440 pudp = pud_offset_lockless(p4dp, p4d, addr); 8441 pud = READ_ONCE(*pudp); 8442 if (!pud_present(pud)) 8443 return 0; 8444 8445 if (pud_leaf(pud)) 8446 return pud_leaf_size(pud); 8447 8448 pmdp = pmd_offset_lockless(pudp, pud, addr); 8449 again: 8450 pmd = pmdp_get_lockless(pmdp); 8451 if (!pmd_present(pmd)) 8452 return 0; 8453 8454 if (pmd_leaf(pmd)) 8455 return pmd_leaf_size(pmd); 8456 8457 ptep = pte_offset_map(&pmd, addr); 8458 if (!ptep) 8459 goto again; 8460 8461 pte = ptep_get_lockless(ptep); 8462 if (pte_present(pte)) 8463 size = __pte_leaf_size(pmd, pte); 8464 pte_unmap(ptep); 8465 #endif /* CONFIG_HAVE_GUP_FAST */ 8466 8467 return size; 8468 } 8469 8470 static u64 perf_get_page_size(unsigned long addr) 8471 { 8472 struct mm_struct *mm; 8473 unsigned long flags; 8474 u64 size; 8475 8476 if (!addr) 8477 return 0; 8478 8479 /* 8480 * Software page-table walkers must disable IRQs, 8481 * which prevents any tear down of the page tables. 8482 */ 8483 local_irq_save(flags); 8484 8485 mm = current->mm; 8486 if (!mm) { 8487 /* 8488 * For kernel threads and the like, use init_mm so that 8489 * we can find kernel memory. 8490 */ 8491 mm = &init_mm; 8492 } 8493 8494 size = perf_get_pgtable_size(mm, addr); 8495 8496 local_irq_restore(flags); 8497 8498 return size; 8499 } 8500 8501 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 8502 8503 static struct unwind_work perf_unwind_work; 8504 8505 struct perf_callchain_entry * 8506 perf_callchain(struct perf_event *event, struct pt_regs *regs) 8507 { 8508 bool kernel = !event->attr.exclude_callchain_kernel; 8509 bool user = !event->attr.exclude_callchain_user && 8510 is_user_task(current); 8511 /* Disallow cross-task user callchains. */ 8512 bool crosstask = event->ctx->task && event->ctx->task != current; 8513 bool defer_user = IS_ENABLED(CONFIG_UNWIND_USER) && user && 8514 event->attr.defer_callchain; 8515 const u32 max_stack = event->attr.sample_max_stack; 8516 struct perf_callchain_entry *callchain; 8517 u64 defer_cookie; 8518 8519 if (!current->mm) 8520 user = false; 8521 8522 if (!kernel && !user) 8523 return &__empty_callchain; 8524 8525 if (!(user && defer_user && !crosstask && 8526 unwind_deferred_request(&perf_unwind_work, &defer_cookie) >= 0)) 8527 defer_cookie = 0; 8528 8529 callchain = get_perf_callchain(regs, kernel, user, max_stack, 8530 crosstask, true, defer_cookie); 8531 8532 return callchain ?: &__empty_callchain; 8533 } 8534 8535 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 8536 { 8537 return d * !!(flags & s); 8538 } 8539 8540 void perf_prepare_sample(struct perf_sample_data *data, 8541 struct perf_event *event, 8542 struct pt_regs *regs) 8543 { 8544 u64 sample_type = event->attr.sample_type; 8545 u64 filtered_sample_type; 8546 8547 /* 8548 * Add the sample flags that are dependent to others. And clear the 8549 * sample flags that have already been done by the PMU driver. 8550 */ 8551 filtered_sample_type = sample_type; 8552 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 8553 PERF_SAMPLE_IP); 8554 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 8555 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 8556 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 8557 PERF_SAMPLE_REGS_USER); 8558 filtered_sample_type &= ~data->sample_flags; 8559 8560 if (filtered_sample_type == 0) { 8561 /* Make sure it has the correct data->type for output */ 8562 data->type = event->attr.sample_type; 8563 return; 8564 } 8565 8566 __perf_event_header__init_id(data, event, filtered_sample_type); 8567 8568 if (filtered_sample_type & PERF_SAMPLE_IP) { 8569 data->ip = perf_instruction_pointer(event, regs); 8570 data->sample_flags |= PERF_SAMPLE_IP; 8571 } 8572 8573 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 8574 perf_sample_save_callchain(data, event, regs); 8575 8576 if (filtered_sample_type & PERF_SAMPLE_RAW) { 8577 data->raw = NULL; 8578 data->dyn_size += sizeof(u64); 8579 data->sample_flags |= PERF_SAMPLE_RAW; 8580 } 8581 8582 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 8583 data->br_stack = NULL; 8584 data->dyn_size += sizeof(u64); 8585 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 8586 } 8587 8588 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 8589 perf_sample_regs_user(&data->regs_user, regs); 8590 8591 /* 8592 * It cannot use the filtered_sample_type here as REGS_USER can be set 8593 * by STACK_USER (using __cond_set() above) and we don't want to update 8594 * the dyn_size if it's not requested by users. 8595 */ 8596 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 8597 /* regs dump ABI info */ 8598 int size = sizeof(u64); 8599 8600 if (data->regs_user.regs) { 8601 u64 mask = event->attr.sample_regs_user; 8602 size += hweight64(mask) * sizeof(u64); 8603 } 8604 8605 data->dyn_size += size; 8606 data->sample_flags |= PERF_SAMPLE_REGS_USER; 8607 } 8608 8609 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 8610 /* 8611 * Either we need PERF_SAMPLE_STACK_USER bit to be always 8612 * processed as the last one or have additional check added 8613 * in case new sample type is added, because we could eat 8614 * up the rest of the sample size. 8615 */ 8616 u16 stack_size = event->attr.sample_stack_user; 8617 u16 header_size = perf_sample_data_size(data, event); 8618 u16 size = sizeof(u64); 8619 8620 stack_size = perf_sample_ustack_size(stack_size, header_size, 8621 data->regs_user.regs); 8622 8623 /* 8624 * If there is something to dump, add space for the dump 8625 * itself and for the field that tells the dynamic size, 8626 * which is how many have been actually dumped. 8627 */ 8628 if (stack_size) 8629 size += sizeof(u64) + stack_size; 8630 8631 data->stack_user_size = stack_size; 8632 data->dyn_size += size; 8633 data->sample_flags |= PERF_SAMPLE_STACK_USER; 8634 } 8635 8636 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 8637 data->weight.full = 0; 8638 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 8639 } 8640 8641 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 8642 data->data_src.val = PERF_MEM_NA; 8643 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 8644 } 8645 8646 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 8647 data->txn = 0; 8648 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 8649 } 8650 8651 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 8652 data->addr = 0; 8653 data->sample_flags |= PERF_SAMPLE_ADDR; 8654 } 8655 8656 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 8657 /* regs dump ABI info */ 8658 int size = sizeof(u64); 8659 8660 perf_sample_regs_intr(&data->regs_intr, regs); 8661 8662 if (data->regs_intr.regs) { 8663 u64 mask = event->attr.sample_regs_intr; 8664 8665 size += hweight64(mask) * sizeof(u64); 8666 } 8667 8668 data->dyn_size += size; 8669 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 8670 } 8671 8672 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 8673 data->phys_addr = perf_virt_to_phys(data->addr); 8674 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 8675 } 8676 8677 #ifdef CONFIG_CGROUP_PERF 8678 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 8679 struct cgroup *cgrp; 8680 8681 /* protected by RCU */ 8682 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 8683 data->cgroup = cgroup_id(cgrp); 8684 data->sample_flags |= PERF_SAMPLE_CGROUP; 8685 } 8686 #endif 8687 8688 /* 8689 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 8690 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 8691 * but the value will not dump to the userspace. 8692 */ 8693 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 8694 data->data_page_size = perf_get_page_size(data->addr); 8695 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 8696 } 8697 8698 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 8699 data->code_page_size = perf_get_page_size(data->ip); 8700 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 8701 } 8702 8703 if (filtered_sample_type & PERF_SAMPLE_AUX) { 8704 u64 size; 8705 u16 header_size = perf_sample_data_size(data, event); 8706 8707 header_size += sizeof(u64); /* size */ 8708 8709 /* 8710 * Given the 16bit nature of header::size, an AUX sample can 8711 * easily overflow it, what with all the preceding sample bits. 8712 * Make sure this doesn't happen by using up to U16_MAX bytes 8713 * per sample in total (rounded down to 8 byte boundary). 8714 */ 8715 size = min_t(size_t, U16_MAX - header_size, 8716 event->attr.aux_sample_size); 8717 size = rounddown(size, 8); 8718 size = perf_prepare_sample_aux(event, data, size); 8719 8720 WARN_ON_ONCE(size + header_size > U16_MAX); 8721 data->dyn_size += size + sizeof(u64); /* size above */ 8722 data->sample_flags |= PERF_SAMPLE_AUX; 8723 } 8724 } 8725 8726 void perf_prepare_header(struct perf_event_header *header, 8727 struct perf_sample_data *data, 8728 struct perf_event *event, 8729 struct pt_regs *regs) 8730 { 8731 header->type = PERF_RECORD_SAMPLE; 8732 header->size = perf_sample_data_size(data, event); 8733 header->misc = perf_misc_flags(event, regs); 8734 8735 /* 8736 * If you're adding more sample types here, you likely need to do 8737 * something about the overflowing header::size, like repurpose the 8738 * lowest 3 bits of size, which should be always zero at the moment. 8739 * This raises a more important question, do we really need 512k sized 8740 * samples and why, so good argumentation is in order for whatever you 8741 * do here next. 8742 */ 8743 WARN_ON_ONCE(header->size & 7); 8744 } 8745 8746 static void __perf_event_aux_pause(struct perf_event *event, bool pause) 8747 { 8748 if (pause) { 8749 if (!event->hw.aux_paused) { 8750 event->hw.aux_paused = 1; 8751 event->pmu->stop(event, PERF_EF_PAUSE); 8752 } 8753 } else { 8754 if (event->hw.aux_paused) { 8755 event->hw.aux_paused = 0; 8756 event->pmu->start(event, PERF_EF_RESUME); 8757 } 8758 } 8759 } 8760 8761 static void perf_event_aux_pause(struct perf_event *event, bool pause) 8762 { 8763 struct perf_buffer *rb; 8764 8765 if (WARN_ON_ONCE(!event)) 8766 return; 8767 8768 rb = ring_buffer_get(event); 8769 if (!rb) 8770 return; 8771 8772 scoped_guard (irqsave) { 8773 /* 8774 * Guard against self-recursion here. Another event could trip 8775 * this same from NMI context. 8776 */ 8777 if (READ_ONCE(rb->aux_in_pause_resume)) 8778 break; 8779 8780 WRITE_ONCE(rb->aux_in_pause_resume, 1); 8781 barrier(); 8782 __perf_event_aux_pause(event, pause); 8783 barrier(); 8784 WRITE_ONCE(rb->aux_in_pause_resume, 0); 8785 } 8786 ring_buffer_put(rb); 8787 } 8788 8789 static __always_inline int 8790 __perf_event_output(struct perf_event *event, 8791 struct perf_sample_data *data, 8792 struct pt_regs *regs, 8793 int (*output_begin)(struct perf_output_handle *, 8794 struct perf_sample_data *, 8795 struct perf_event *, 8796 unsigned int)) 8797 { 8798 struct perf_output_handle handle; 8799 struct perf_event_header header; 8800 int err; 8801 8802 /* protect the callchain buffers */ 8803 rcu_read_lock(); 8804 8805 perf_prepare_sample(data, event, regs); 8806 perf_prepare_header(&header, data, event, regs); 8807 8808 err = output_begin(&handle, data, event, header.size); 8809 if (err) 8810 goto exit; 8811 8812 perf_output_sample(&handle, &header, data, event); 8813 8814 perf_output_end(&handle); 8815 8816 exit: 8817 rcu_read_unlock(); 8818 return err; 8819 } 8820 8821 void 8822 perf_event_output_forward(struct perf_event *event, 8823 struct perf_sample_data *data, 8824 struct pt_regs *regs) 8825 { 8826 __perf_event_output(event, data, regs, perf_output_begin_forward); 8827 } 8828 8829 void 8830 perf_event_output_backward(struct perf_event *event, 8831 struct perf_sample_data *data, 8832 struct pt_regs *regs) 8833 { 8834 __perf_event_output(event, data, regs, perf_output_begin_backward); 8835 } 8836 8837 int 8838 perf_event_output(struct perf_event *event, 8839 struct perf_sample_data *data, 8840 struct pt_regs *regs) 8841 { 8842 return __perf_event_output(event, data, regs, perf_output_begin); 8843 } 8844 8845 /* 8846 * read event_id 8847 */ 8848 8849 struct perf_read_event { 8850 struct perf_event_header header; 8851 8852 u32 pid; 8853 u32 tid; 8854 }; 8855 8856 static void 8857 perf_event_read_event(struct perf_event *event, 8858 struct task_struct *task) 8859 { 8860 struct perf_output_handle handle; 8861 struct perf_sample_data sample; 8862 struct perf_read_event read_event = { 8863 .header = { 8864 .type = PERF_RECORD_READ, 8865 .misc = 0, 8866 .size = sizeof(read_event) + event->read_size, 8867 }, 8868 .pid = perf_event_pid(event, task), 8869 .tid = perf_event_tid(event, task), 8870 }; 8871 int ret; 8872 8873 perf_event_header__init_id(&read_event.header, &sample, event); 8874 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 8875 if (ret) 8876 return; 8877 8878 perf_output_put(&handle, read_event); 8879 perf_output_read(&handle, event); 8880 perf_event__output_id_sample(event, &handle, &sample); 8881 8882 perf_output_end(&handle); 8883 } 8884 8885 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 8886 8887 static void 8888 perf_iterate_ctx(struct perf_event_context *ctx, 8889 perf_iterate_f output, 8890 void *data, bool all) 8891 { 8892 struct perf_event *event; 8893 8894 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8895 if (!all) { 8896 if (event->state < PERF_EVENT_STATE_INACTIVE) 8897 continue; 8898 if (!event_filter_match(event)) 8899 continue; 8900 } 8901 8902 output(event, data); 8903 } 8904 } 8905 8906 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 8907 { 8908 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 8909 struct perf_event *event; 8910 8911 list_for_each_entry_rcu(event, &pel->list, sb_list) { 8912 /* 8913 * Skip events that are not fully formed yet; ensure that 8914 * if we observe event->ctx, both event and ctx will be 8915 * complete enough. See perf_install_in_context(). 8916 */ 8917 if (!smp_load_acquire(&event->ctx)) 8918 continue; 8919 8920 if (event->state < PERF_EVENT_STATE_INACTIVE) 8921 continue; 8922 if (!event_filter_match(event)) 8923 continue; 8924 output(event, data); 8925 } 8926 } 8927 8928 /* 8929 * Iterate all events that need to receive side-band events. 8930 * 8931 * For new callers; ensure that account_pmu_sb_event() includes 8932 * your event, otherwise it might not get delivered. 8933 */ 8934 static void 8935 perf_iterate_sb(perf_iterate_f output, void *data, 8936 struct perf_event_context *task_ctx) 8937 { 8938 struct perf_event_context *ctx; 8939 8940 rcu_read_lock(); 8941 preempt_disable(); 8942 8943 /* 8944 * If we have task_ctx != NULL we only notify the task context itself. 8945 * The task_ctx is set only for EXIT events before releasing task 8946 * context. 8947 */ 8948 if (task_ctx) { 8949 perf_iterate_ctx(task_ctx, output, data, false); 8950 goto done; 8951 } 8952 8953 perf_iterate_sb_cpu(output, data); 8954 8955 ctx = rcu_dereference(current->perf_event_ctxp); 8956 if (ctx) 8957 perf_iterate_ctx(ctx, output, data, false); 8958 done: 8959 preempt_enable(); 8960 rcu_read_unlock(); 8961 } 8962 8963 /* 8964 * Clear all file-based filters at exec, they'll have to be 8965 * re-instated when/if these objects are mmapped again. 8966 */ 8967 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8968 { 8969 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8970 struct perf_addr_filter *filter; 8971 unsigned int restart = 0, count = 0; 8972 unsigned long flags; 8973 8974 if (!has_addr_filter(event)) 8975 return; 8976 8977 raw_spin_lock_irqsave(&ifh->lock, flags); 8978 list_for_each_entry(filter, &ifh->list, entry) { 8979 if (filter->path.dentry) { 8980 event->addr_filter_ranges[count].start = 0; 8981 event->addr_filter_ranges[count].size = 0; 8982 restart++; 8983 } 8984 8985 count++; 8986 } 8987 8988 if (restart) 8989 event->addr_filters_gen++; 8990 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8991 8992 if (restart) 8993 perf_event_stop(event, 1); 8994 } 8995 8996 void perf_event_exec(void) 8997 { 8998 struct perf_event_context *ctx; 8999 9000 ctx = perf_pin_task_context(current); 9001 if (!ctx) 9002 return; 9003 9004 perf_event_enable_on_exec(ctx); 9005 perf_event_remove_on_exec(ctx); 9006 scoped_guard(rcu) 9007 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 9008 9009 perf_unpin_context(ctx); 9010 put_ctx(ctx); 9011 } 9012 9013 struct remote_output { 9014 struct perf_buffer *rb; 9015 int err; 9016 }; 9017 9018 static void __perf_event_output_stop(struct perf_event *event, void *data) 9019 { 9020 struct perf_event *parent = event->parent; 9021 struct remote_output *ro = data; 9022 struct perf_buffer *rb = ro->rb; 9023 struct stop_event_data sd = { 9024 .event = event, 9025 }; 9026 9027 if (!has_aux(event)) 9028 return; 9029 9030 if (!parent) 9031 parent = event; 9032 9033 /* 9034 * In case of inheritance, it will be the parent that links to the 9035 * ring-buffer, but it will be the child that's actually using it. 9036 * 9037 * We are using event::rb to determine if the event should be stopped, 9038 * however this may race with ring_buffer_attach() (through set_output), 9039 * which will make us skip the event that actually needs to be stopped. 9040 * So ring_buffer_attach() has to stop an aux event before re-assigning 9041 * its rb pointer. 9042 */ 9043 if (rcu_dereference(parent->rb) == rb) 9044 ro->err = __perf_event_stop(&sd); 9045 } 9046 9047 static int __perf_pmu_output_stop(void *info) 9048 { 9049 struct perf_event *event = info; 9050 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 9051 struct remote_output ro = { 9052 .rb = event->rb, 9053 }; 9054 9055 rcu_read_lock(); 9056 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 9057 if (cpuctx->task_ctx) 9058 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 9059 &ro, false); 9060 rcu_read_unlock(); 9061 9062 return ro.err; 9063 } 9064 9065 static void perf_pmu_output_stop(struct perf_event *event) 9066 { 9067 struct perf_event *iter; 9068 int err, cpu; 9069 9070 restart: 9071 rcu_read_lock(); 9072 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 9073 /* 9074 * For per-CPU events, we need to make sure that neither they 9075 * nor their children are running; for cpu==-1 events it's 9076 * sufficient to stop the event itself if it's active, since 9077 * it can't have children. 9078 */ 9079 cpu = iter->cpu; 9080 if (cpu == -1) 9081 cpu = READ_ONCE(iter->oncpu); 9082 9083 if (cpu == -1) 9084 continue; 9085 9086 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 9087 if (err == -EAGAIN) { 9088 rcu_read_unlock(); 9089 goto restart; 9090 } 9091 } 9092 rcu_read_unlock(); 9093 } 9094 9095 /* 9096 * task tracking -- fork/exit 9097 * 9098 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 9099 */ 9100 9101 struct perf_task_event { 9102 struct task_struct *task; 9103 struct perf_event_context *task_ctx; 9104 9105 struct { 9106 struct perf_event_header header; 9107 9108 u32 pid; 9109 u32 ppid; 9110 u32 tid; 9111 u32 ptid; 9112 u64 time; 9113 } event_id; 9114 }; 9115 9116 static int perf_event_task_match(struct perf_event *event) 9117 { 9118 return event->attr.comm || event->attr.mmap || 9119 event->attr.mmap2 || event->attr.mmap_data || 9120 event->attr.task; 9121 } 9122 9123 static void perf_event_task_output(struct perf_event *event, 9124 void *data) 9125 { 9126 struct perf_task_event *task_event = data; 9127 struct perf_output_handle handle; 9128 struct perf_sample_data sample; 9129 struct task_struct *task = task_event->task; 9130 int ret, size = task_event->event_id.header.size; 9131 9132 if (!perf_event_task_match(event)) 9133 return; 9134 9135 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 9136 9137 ret = perf_output_begin(&handle, &sample, event, 9138 task_event->event_id.header.size); 9139 if (ret) 9140 goto out; 9141 9142 task_event->event_id.pid = perf_event_pid(event, task); 9143 task_event->event_id.tid = perf_event_tid(event, task); 9144 9145 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 9146 task_event->event_id.ppid = perf_event_pid(event, 9147 task->real_parent); 9148 task_event->event_id.ptid = perf_event_pid(event, 9149 task->real_parent); 9150 } else { /* PERF_RECORD_FORK */ 9151 task_event->event_id.ppid = perf_event_pid(event, current); 9152 task_event->event_id.ptid = perf_event_tid(event, current); 9153 } 9154 9155 task_event->event_id.time = perf_event_clock(event); 9156 9157 perf_output_put(&handle, task_event->event_id); 9158 9159 perf_event__output_id_sample(event, &handle, &sample); 9160 9161 perf_output_end(&handle); 9162 out: 9163 task_event->event_id.header.size = size; 9164 } 9165 9166 static void perf_event_task(struct task_struct *task, 9167 struct perf_event_context *task_ctx, 9168 int new) 9169 { 9170 struct perf_task_event task_event; 9171 9172 if (!atomic_read(&nr_comm_events) && 9173 !atomic_read(&nr_mmap_events) && 9174 !atomic_read(&nr_task_events)) 9175 return; 9176 9177 task_event = (struct perf_task_event){ 9178 .task = task, 9179 .task_ctx = task_ctx, 9180 .event_id = { 9181 .header = { 9182 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 9183 .misc = 0, 9184 .size = sizeof(task_event.event_id), 9185 }, 9186 /* .pid */ 9187 /* .ppid */ 9188 /* .tid */ 9189 /* .ptid */ 9190 /* .time */ 9191 }, 9192 }; 9193 9194 perf_iterate_sb(perf_event_task_output, 9195 &task_event, 9196 task_ctx); 9197 } 9198 9199 /* 9200 * Allocate data for a new task when profiling system-wide 9201 * events which require PMU specific data 9202 */ 9203 static void 9204 perf_event_alloc_task_data(struct task_struct *child, 9205 struct task_struct *parent) 9206 { 9207 struct kmem_cache *ctx_cache = NULL; 9208 struct perf_ctx_data *cd; 9209 9210 if (!refcount_read(&global_ctx_data_ref)) 9211 return; 9212 9213 scoped_guard (rcu) { 9214 cd = rcu_dereference(parent->perf_ctx_data); 9215 if (cd) 9216 ctx_cache = cd->ctx_cache; 9217 } 9218 9219 if (!ctx_cache) 9220 return; 9221 9222 guard(percpu_read)(&global_ctx_data_rwsem); 9223 scoped_guard (rcu) { 9224 cd = rcu_dereference(child->perf_ctx_data); 9225 if (!cd) { 9226 /* 9227 * A system-wide event may be unaccount, 9228 * when attaching the perf_ctx_data. 9229 */ 9230 if (!refcount_read(&global_ctx_data_ref)) 9231 return; 9232 goto attach; 9233 } 9234 9235 if (!cd->global) { 9236 cd->global = 1; 9237 refcount_inc(&cd->refcount); 9238 } 9239 } 9240 9241 return; 9242 attach: 9243 attach_task_ctx_data(child, ctx_cache, true); 9244 } 9245 9246 void perf_event_fork(struct task_struct *task) 9247 { 9248 perf_event_task(task, NULL, 1); 9249 perf_event_namespaces(task); 9250 perf_event_alloc_task_data(task, current); 9251 } 9252 9253 /* 9254 * comm tracking 9255 */ 9256 9257 struct perf_comm_event { 9258 struct task_struct *task; 9259 char *comm; 9260 int comm_size; 9261 9262 struct { 9263 struct perf_event_header header; 9264 9265 u32 pid; 9266 u32 tid; 9267 } event_id; 9268 }; 9269 9270 static int perf_event_comm_match(struct perf_event *event) 9271 { 9272 return event->attr.comm; 9273 } 9274 9275 static void perf_event_comm_output(struct perf_event *event, 9276 void *data) 9277 { 9278 struct perf_comm_event *comm_event = data; 9279 struct perf_output_handle handle; 9280 struct perf_sample_data sample; 9281 int size = comm_event->event_id.header.size; 9282 int ret; 9283 9284 if (!perf_event_comm_match(event)) 9285 return; 9286 9287 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 9288 ret = perf_output_begin(&handle, &sample, event, 9289 comm_event->event_id.header.size); 9290 9291 if (ret) 9292 goto out; 9293 9294 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 9295 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 9296 9297 perf_output_put(&handle, comm_event->event_id); 9298 __output_copy(&handle, comm_event->comm, 9299 comm_event->comm_size); 9300 9301 perf_event__output_id_sample(event, &handle, &sample); 9302 9303 perf_output_end(&handle); 9304 out: 9305 comm_event->event_id.header.size = size; 9306 } 9307 9308 static void perf_event_comm_event(struct perf_comm_event *comm_event) 9309 { 9310 char comm[TASK_COMM_LEN]; 9311 unsigned int size; 9312 9313 memset(comm, 0, sizeof(comm)); 9314 strscpy(comm, comm_event->task->comm); 9315 size = ALIGN(strlen(comm)+1, sizeof(u64)); 9316 9317 comm_event->comm = comm; 9318 comm_event->comm_size = size; 9319 9320 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 9321 9322 perf_iterate_sb(perf_event_comm_output, 9323 comm_event, 9324 NULL); 9325 } 9326 9327 void perf_event_comm(struct task_struct *task, bool exec) 9328 { 9329 struct perf_comm_event comm_event; 9330 9331 if (!atomic_read(&nr_comm_events)) 9332 return; 9333 9334 comm_event = (struct perf_comm_event){ 9335 .task = task, 9336 /* .comm */ 9337 /* .comm_size */ 9338 .event_id = { 9339 .header = { 9340 .type = PERF_RECORD_COMM, 9341 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 9342 /* .size */ 9343 }, 9344 /* .pid */ 9345 /* .tid */ 9346 }, 9347 }; 9348 9349 perf_event_comm_event(&comm_event); 9350 } 9351 9352 /* 9353 * namespaces tracking 9354 */ 9355 9356 struct perf_namespaces_event { 9357 struct task_struct *task; 9358 9359 struct { 9360 struct perf_event_header header; 9361 9362 u32 pid; 9363 u32 tid; 9364 u64 nr_namespaces; 9365 struct perf_ns_link_info link_info[NR_NAMESPACES]; 9366 } event_id; 9367 }; 9368 9369 static int perf_event_namespaces_match(struct perf_event *event) 9370 { 9371 return event->attr.namespaces; 9372 } 9373 9374 static void perf_event_namespaces_output(struct perf_event *event, 9375 void *data) 9376 { 9377 struct perf_namespaces_event *namespaces_event = data; 9378 struct perf_output_handle handle; 9379 struct perf_sample_data sample; 9380 u16 header_size = namespaces_event->event_id.header.size; 9381 int ret; 9382 9383 if (!perf_event_namespaces_match(event)) 9384 return; 9385 9386 perf_event_header__init_id(&namespaces_event->event_id.header, 9387 &sample, event); 9388 ret = perf_output_begin(&handle, &sample, event, 9389 namespaces_event->event_id.header.size); 9390 if (ret) 9391 goto out; 9392 9393 namespaces_event->event_id.pid = perf_event_pid(event, 9394 namespaces_event->task); 9395 namespaces_event->event_id.tid = perf_event_tid(event, 9396 namespaces_event->task); 9397 9398 perf_output_put(&handle, namespaces_event->event_id); 9399 9400 perf_event__output_id_sample(event, &handle, &sample); 9401 9402 perf_output_end(&handle); 9403 out: 9404 namespaces_event->event_id.header.size = header_size; 9405 } 9406 9407 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 9408 struct task_struct *task, 9409 const struct proc_ns_operations *ns_ops) 9410 { 9411 struct path ns_path; 9412 struct inode *ns_inode; 9413 int error; 9414 9415 error = ns_get_path(&ns_path, task, ns_ops); 9416 if (!error) { 9417 ns_inode = ns_path.dentry->d_inode; 9418 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 9419 ns_link_info->ino = ns_inode->i_ino; 9420 path_put(&ns_path); 9421 } 9422 } 9423 9424 void perf_event_namespaces(struct task_struct *task) 9425 { 9426 struct perf_namespaces_event namespaces_event; 9427 struct perf_ns_link_info *ns_link_info; 9428 9429 if (!atomic_read(&nr_namespaces_events)) 9430 return; 9431 9432 namespaces_event = (struct perf_namespaces_event){ 9433 .task = task, 9434 .event_id = { 9435 .header = { 9436 .type = PERF_RECORD_NAMESPACES, 9437 .misc = 0, 9438 .size = sizeof(namespaces_event.event_id), 9439 }, 9440 /* .pid */ 9441 /* .tid */ 9442 .nr_namespaces = NR_NAMESPACES, 9443 /* .link_info[NR_NAMESPACES] */ 9444 }, 9445 }; 9446 9447 ns_link_info = namespaces_event.event_id.link_info; 9448 9449 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 9450 task, &mntns_operations); 9451 9452 #ifdef CONFIG_USER_NS 9453 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 9454 task, &userns_operations); 9455 #endif 9456 #ifdef CONFIG_NET_NS 9457 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 9458 task, &netns_operations); 9459 #endif 9460 #ifdef CONFIG_UTS_NS 9461 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 9462 task, &utsns_operations); 9463 #endif 9464 #ifdef CONFIG_IPC_NS 9465 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 9466 task, &ipcns_operations); 9467 #endif 9468 #ifdef CONFIG_PID_NS 9469 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 9470 task, &pidns_operations); 9471 #endif 9472 #ifdef CONFIG_CGROUPS 9473 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 9474 task, &cgroupns_operations); 9475 #endif 9476 9477 perf_iterate_sb(perf_event_namespaces_output, 9478 &namespaces_event, 9479 NULL); 9480 } 9481 9482 /* 9483 * cgroup tracking 9484 */ 9485 #ifdef CONFIG_CGROUP_PERF 9486 9487 struct perf_cgroup_event { 9488 char *path; 9489 int path_size; 9490 struct { 9491 struct perf_event_header header; 9492 u64 id; 9493 char path[]; 9494 } event_id; 9495 }; 9496 9497 static int perf_event_cgroup_match(struct perf_event *event) 9498 { 9499 return event->attr.cgroup; 9500 } 9501 9502 static void perf_event_cgroup_output(struct perf_event *event, void *data) 9503 { 9504 struct perf_cgroup_event *cgroup_event = data; 9505 struct perf_output_handle handle; 9506 struct perf_sample_data sample; 9507 u16 header_size = cgroup_event->event_id.header.size; 9508 int ret; 9509 9510 if (!perf_event_cgroup_match(event)) 9511 return; 9512 9513 perf_event_header__init_id(&cgroup_event->event_id.header, 9514 &sample, event); 9515 ret = perf_output_begin(&handle, &sample, event, 9516 cgroup_event->event_id.header.size); 9517 if (ret) 9518 goto out; 9519 9520 perf_output_put(&handle, cgroup_event->event_id); 9521 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 9522 9523 perf_event__output_id_sample(event, &handle, &sample); 9524 9525 perf_output_end(&handle); 9526 out: 9527 cgroup_event->event_id.header.size = header_size; 9528 } 9529 9530 static void perf_event_cgroup(struct cgroup *cgrp) 9531 { 9532 struct perf_cgroup_event cgroup_event; 9533 char path_enomem[16] = "//enomem"; 9534 char *pathname; 9535 size_t size; 9536 9537 if (!atomic_read(&nr_cgroup_events)) 9538 return; 9539 9540 cgroup_event = (struct perf_cgroup_event){ 9541 .event_id = { 9542 .header = { 9543 .type = PERF_RECORD_CGROUP, 9544 .misc = 0, 9545 .size = sizeof(cgroup_event.event_id), 9546 }, 9547 .id = cgroup_id(cgrp), 9548 }, 9549 }; 9550 9551 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 9552 if (pathname == NULL) { 9553 cgroup_event.path = path_enomem; 9554 } else { 9555 /* just to be sure to have enough space for alignment */ 9556 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 9557 cgroup_event.path = pathname; 9558 } 9559 9560 /* 9561 * Since our buffer works in 8 byte units we need to align our string 9562 * size to a multiple of 8. However, we must guarantee the tail end is 9563 * zero'd out to avoid leaking random bits to userspace. 9564 */ 9565 size = strlen(cgroup_event.path) + 1; 9566 while (!IS_ALIGNED(size, sizeof(u64))) 9567 cgroup_event.path[size++] = '\0'; 9568 9569 cgroup_event.event_id.header.size += size; 9570 cgroup_event.path_size = size; 9571 9572 perf_iterate_sb(perf_event_cgroup_output, 9573 &cgroup_event, 9574 NULL); 9575 9576 kfree(pathname); 9577 } 9578 9579 #endif 9580 9581 /* 9582 * mmap tracking 9583 */ 9584 9585 struct perf_mmap_event { 9586 struct vm_area_struct *vma; 9587 9588 const char *file_name; 9589 int file_size; 9590 int maj, min; 9591 u64 ino; 9592 u64 ino_generation; 9593 u32 prot, flags; 9594 u8 build_id[BUILD_ID_SIZE_MAX]; 9595 u32 build_id_size; 9596 9597 struct { 9598 struct perf_event_header header; 9599 9600 u32 pid; 9601 u32 tid; 9602 u64 start; 9603 u64 len; 9604 u64 pgoff; 9605 } event_id; 9606 }; 9607 9608 static int perf_event_mmap_match(struct perf_event *event, 9609 void *data) 9610 { 9611 struct perf_mmap_event *mmap_event = data; 9612 struct vm_area_struct *vma = mmap_event->vma; 9613 int executable = vma->vm_flags & VM_EXEC; 9614 9615 return (!executable && event->attr.mmap_data) || 9616 (executable && (event->attr.mmap || event->attr.mmap2)); 9617 } 9618 9619 static void perf_event_mmap_output(struct perf_event *event, 9620 void *data) 9621 { 9622 struct perf_mmap_event *mmap_event = data; 9623 struct perf_output_handle handle; 9624 struct perf_sample_data sample; 9625 int size = mmap_event->event_id.header.size; 9626 u32 type = mmap_event->event_id.header.type; 9627 bool use_build_id; 9628 int ret; 9629 9630 if (!perf_event_mmap_match(event, data)) 9631 return; 9632 9633 if (event->attr.mmap2) { 9634 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 9635 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 9636 mmap_event->event_id.header.size += sizeof(mmap_event->min); 9637 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 9638 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 9639 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 9640 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 9641 } 9642 9643 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 9644 ret = perf_output_begin(&handle, &sample, event, 9645 mmap_event->event_id.header.size); 9646 if (ret) 9647 goto out; 9648 9649 mmap_event->event_id.pid = perf_event_pid(event, current); 9650 mmap_event->event_id.tid = perf_event_tid(event, current); 9651 9652 use_build_id = event->attr.build_id && mmap_event->build_id_size; 9653 9654 if (event->attr.mmap2 && use_build_id) 9655 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 9656 9657 perf_output_put(&handle, mmap_event->event_id); 9658 9659 if (event->attr.mmap2) { 9660 if (use_build_id) { 9661 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 9662 9663 __output_copy(&handle, size, 4); 9664 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 9665 } else { 9666 perf_output_put(&handle, mmap_event->maj); 9667 perf_output_put(&handle, mmap_event->min); 9668 perf_output_put(&handle, mmap_event->ino); 9669 perf_output_put(&handle, mmap_event->ino_generation); 9670 } 9671 perf_output_put(&handle, mmap_event->prot); 9672 perf_output_put(&handle, mmap_event->flags); 9673 } 9674 9675 __output_copy(&handle, mmap_event->file_name, 9676 mmap_event->file_size); 9677 9678 perf_event__output_id_sample(event, &handle, &sample); 9679 9680 perf_output_end(&handle); 9681 out: 9682 mmap_event->event_id.header.size = size; 9683 mmap_event->event_id.header.type = type; 9684 } 9685 9686 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 9687 { 9688 struct vm_area_struct *vma = mmap_event->vma; 9689 struct file *file = vma->vm_file; 9690 int maj = 0, min = 0; 9691 u64 ino = 0, gen = 0; 9692 u32 prot = 0, flags = 0; 9693 unsigned int size; 9694 char tmp[16]; 9695 char *buf = NULL; 9696 char *name = NULL; 9697 9698 if (vma->vm_flags & VM_READ) 9699 prot |= PROT_READ; 9700 if (vma->vm_flags & VM_WRITE) 9701 prot |= PROT_WRITE; 9702 if (vma->vm_flags & VM_EXEC) 9703 prot |= PROT_EXEC; 9704 9705 if (vma->vm_flags & VM_MAYSHARE) 9706 flags = MAP_SHARED; 9707 else 9708 flags = MAP_PRIVATE; 9709 9710 if (vma->vm_flags & VM_LOCKED) 9711 flags |= MAP_LOCKED; 9712 if (is_vm_hugetlb_page(vma)) 9713 flags |= MAP_HUGETLB; 9714 9715 if (file) { 9716 const struct inode *inode; 9717 dev_t dev; 9718 9719 buf = kmalloc(PATH_MAX, GFP_KERNEL); 9720 if (!buf) { 9721 name = "//enomem"; 9722 goto cpy_name; 9723 } 9724 /* 9725 * d_path() works from the end of the rb backwards, so we 9726 * need to add enough zero bytes after the string to handle 9727 * the 64bit alignment we do later. 9728 */ 9729 name = d_path(file_user_path(file), buf, PATH_MAX - sizeof(u64)); 9730 if (IS_ERR(name)) { 9731 name = "//toolong"; 9732 goto cpy_name; 9733 } 9734 inode = file_user_inode(vma->vm_file); 9735 dev = inode->i_sb->s_dev; 9736 ino = inode->i_ino; 9737 gen = inode->i_generation; 9738 maj = MAJOR(dev); 9739 min = MINOR(dev); 9740 9741 goto got_name; 9742 } else { 9743 if (vma->vm_ops && vma->vm_ops->name) 9744 name = (char *) vma->vm_ops->name(vma); 9745 if (!name) 9746 name = (char *)arch_vma_name(vma); 9747 if (!name) { 9748 if (vma_is_initial_heap(vma)) 9749 name = "[heap]"; 9750 else if (vma_is_initial_stack(vma)) 9751 name = "[stack]"; 9752 else 9753 name = "//anon"; 9754 } 9755 } 9756 9757 cpy_name: 9758 strscpy(tmp, name); 9759 name = tmp; 9760 got_name: 9761 /* 9762 * Since our buffer works in 8 byte units we need to align our string 9763 * size to a multiple of 8. However, we must guarantee the tail end is 9764 * zero'd out to avoid leaking random bits to userspace. 9765 */ 9766 size = strlen(name)+1; 9767 while (!IS_ALIGNED(size, sizeof(u64))) 9768 name[size++] = '\0'; 9769 9770 mmap_event->file_name = name; 9771 mmap_event->file_size = size; 9772 mmap_event->maj = maj; 9773 mmap_event->min = min; 9774 mmap_event->ino = ino; 9775 mmap_event->ino_generation = gen; 9776 mmap_event->prot = prot; 9777 mmap_event->flags = flags; 9778 9779 if (!(vma->vm_flags & VM_EXEC)) 9780 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 9781 9782 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 9783 9784 if (atomic_read(&nr_build_id_events)) 9785 build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size); 9786 9787 perf_iterate_sb(perf_event_mmap_output, 9788 mmap_event, 9789 NULL); 9790 9791 kfree(buf); 9792 } 9793 9794 /* 9795 * Check whether inode and address range match filter criteria. 9796 */ 9797 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 9798 struct file *file, unsigned long offset, 9799 unsigned long size) 9800 { 9801 /* d_inode(NULL) won't be equal to any mapped user-space file */ 9802 if (!filter->path.dentry) 9803 return false; 9804 9805 if (d_inode(filter->path.dentry) != file_user_inode(file)) 9806 return false; 9807 9808 if (filter->offset > offset + size) 9809 return false; 9810 9811 if (filter->offset + filter->size < offset) 9812 return false; 9813 9814 return true; 9815 } 9816 9817 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 9818 struct vm_area_struct *vma, 9819 struct perf_addr_filter_range *fr) 9820 { 9821 unsigned long vma_size = vma->vm_end - vma->vm_start; 9822 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 9823 struct file *file = vma->vm_file; 9824 9825 if (!perf_addr_filter_match(filter, file, off, vma_size)) 9826 return false; 9827 9828 if (filter->offset < off) { 9829 fr->start = vma->vm_start; 9830 fr->size = min(vma_size, filter->size - (off - filter->offset)); 9831 } else { 9832 fr->start = vma->vm_start + filter->offset - off; 9833 fr->size = min(vma->vm_end - fr->start, filter->size); 9834 } 9835 9836 return true; 9837 } 9838 9839 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 9840 { 9841 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9842 struct vm_area_struct *vma = data; 9843 struct perf_addr_filter *filter; 9844 unsigned int restart = 0, count = 0; 9845 unsigned long flags; 9846 9847 if (!has_addr_filter(event)) 9848 return; 9849 9850 if (!vma->vm_file) 9851 return; 9852 9853 raw_spin_lock_irqsave(&ifh->lock, flags); 9854 list_for_each_entry(filter, &ifh->list, entry) { 9855 if (perf_addr_filter_vma_adjust(filter, vma, 9856 &event->addr_filter_ranges[count])) 9857 restart++; 9858 9859 count++; 9860 } 9861 9862 if (restart) 9863 event->addr_filters_gen++; 9864 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9865 9866 if (restart) 9867 perf_event_stop(event, 1); 9868 } 9869 9870 /* 9871 * Adjust all task's events' filters to the new vma 9872 */ 9873 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 9874 { 9875 struct perf_event_context *ctx; 9876 9877 /* 9878 * Data tracing isn't supported yet and as such there is no need 9879 * to keep track of anything that isn't related to executable code: 9880 */ 9881 if (!(vma->vm_flags & VM_EXEC)) 9882 return; 9883 9884 rcu_read_lock(); 9885 ctx = rcu_dereference(current->perf_event_ctxp); 9886 if (ctx) 9887 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 9888 rcu_read_unlock(); 9889 } 9890 9891 void perf_event_mmap(struct vm_area_struct *vma) 9892 { 9893 struct perf_mmap_event mmap_event; 9894 9895 if (!atomic_read(&nr_mmap_events)) 9896 return; 9897 9898 mmap_event = (struct perf_mmap_event){ 9899 .vma = vma, 9900 /* .file_name */ 9901 /* .file_size */ 9902 .event_id = { 9903 .header = { 9904 .type = PERF_RECORD_MMAP, 9905 .misc = PERF_RECORD_MISC_USER, 9906 /* .size */ 9907 }, 9908 /* .pid */ 9909 /* .tid */ 9910 .start = vma->vm_start, 9911 .len = vma->vm_end - vma->vm_start, 9912 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 9913 }, 9914 /* .maj (attr_mmap2 only) */ 9915 /* .min (attr_mmap2 only) */ 9916 /* .ino (attr_mmap2 only) */ 9917 /* .ino_generation (attr_mmap2 only) */ 9918 /* .prot (attr_mmap2 only) */ 9919 /* .flags (attr_mmap2 only) */ 9920 }; 9921 9922 perf_addr_filters_adjust(vma); 9923 perf_event_mmap_event(&mmap_event); 9924 } 9925 9926 void perf_event_aux_event(struct perf_event *event, unsigned long head, 9927 unsigned long size, u64 flags) 9928 { 9929 struct perf_output_handle handle; 9930 struct perf_sample_data sample; 9931 struct perf_aux_event { 9932 struct perf_event_header header; 9933 u64 offset; 9934 u64 size; 9935 u64 flags; 9936 } rec = { 9937 .header = { 9938 .type = PERF_RECORD_AUX, 9939 .misc = 0, 9940 .size = sizeof(rec), 9941 }, 9942 .offset = head, 9943 .size = size, 9944 .flags = flags, 9945 }; 9946 int ret; 9947 9948 perf_event_header__init_id(&rec.header, &sample, event); 9949 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9950 9951 if (ret) 9952 return; 9953 9954 perf_output_put(&handle, rec); 9955 perf_event__output_id_sample(event, &handle, &sample); 9956 9957 perf_output_end(&handle); 9958 } 9959 9960 /* 9961 * Lost/dropped samples logging 9962 */ 9963 void perf_log_lost_samples(struct perf_event *event, u64 lost) 9964 { 9965 struct perf_output_handle handle; 9966 struct perf_sample_data sample; 9967 int ret; 9968 9969 struct { 9970 struct perf_event_header header; 9971 u64 lost; 9972 } lost_samples_event = { 9973 .header = { 9974 .type = PERF_RECORD_LOST_SAMPLES, 9975 .misc = 0, 9976 .size = sizeof(lost_samples_event), 9977 }, 9978 .lost = lost, 9979 }; 9980 9981 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 9982 9983 ret = perf_output_begin(&handle, &sample, event, 9984 lost_samples_event.header.size); 9985 if (ret) 9986 return; 9987 9988 perf_output_put(&handle, lost_samples_event); 9989 perf_event__output_id_sample(event, &handle, &sample); 9990 perf_output_end(&handle); 9991 } 9992 9993 /* 9994 * context_switch tracking 9995 */ 9996 9997 struct perf_switch_event { 9998 struct task_struct *task; 9999 struct task_struct *next_prev; 10000 10001 struct { 10002 struct perf_event_header header; 10003 u32 next_prev_pid; 10004 u32 next_prev_tid; 10005 } event_id; 10006 }; 10007 10008 static int perf_event_switch_match(struct perf_event *event) 10009 { 10010 return event->attr.context_switch; 10011 } 10012 10013 static void perf_event_switch_output(struct perf_event *event, void *data) 10014 { 10015 struct perf_switch_event *se = data; 10016 struct perf_output_handle handle; 10017 struct perf_sample_data sample; 10018 int ret; 10019 10020 if (!perf_event_switch_match(event)) 10021 return; 10022 10023 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 10024 if (event->ctx->task) { 10025 se->event_id.header.type = PERF_RECORD_SWITCH; 10026 se->event_id.header.size = sizeof(se->event_id.header); 10027 } else { 10028 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 10029 se->event_id.header.size = sizeof(se->event_id); 10030 se->event_id.next_prev_pid = 10031 perf_event_pid(event, se->next_prev); 10032 se->event_id.next_prev_tid = 10033 perf_event_tid(event, se->next_prev); 10034 } 10035 10036 perf_event_header__init_id(&se->event_id.header, &sample, event); 10037 10038 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 10039 if (ret) 10040 return; 10041 10042 if (event->ctx->task) 10043 perf_output_put(&handle, se->event_id.header); 10044 else 10045 perf_output_put(&handle, se->event_id); 10046 10047 perf_event__output_id_sample(event, &handle, &sample); 10048 10049 perf_output_end(&handle); 10050 } 10051 10052 static void perf_event_switch(struct task_struct *task, 10053 struct task_struct *next_prev, bool sched_in) 10054 { 10055 struct perf_switch_event switch_event; 10056 10057 /* N.B. caller checks nr_switch_events != 0 */ 10058 10059 switch_event = (struct perf_switch_event){ 10060 .task = task, 10061 .next_prev = next_prev, 10062 .event_id = { 10063 .header = { 10064 /* .type */ 10065 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 10066 /* .size */ 10067 }, 10068 /* .next_prev_pid */ 10069 /* .next_prev_tid */ 10070 }, 10071 }; 10072 10073 if (!sched_in && task_is_runnable(task)) { 10074 switch_event.event_id.header.misc |= 10075 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 10076 } 10077 10078 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 10079 } 10080 10081 /* 10082 * IRQ throttle logging 10083 */ 10084 10085 static void perf_log_throttle(struct perf_event *event, int enable) 10086 { 10087 struct perf_output_handle handle; 10088 struct perf_sample_data sample; 10089 int ret; 10090 10091 struct { 10092 struct perf_event_header header; 10093 u64 time; 10094 u64 id; 10095 u64 stream_id; 10096 } throttle_event = { 10097 .header = { 10098 .type = PERF_RECORD_THROTTLE, 10099 .misc = 0, 10100 .size = sizeof(throttle_event), 10101 }, 10102 .time = perf_event_clock(event), 10103 .id = primary_event_id(event), 10104 .stream_id = event->id, 10105 }; 10106 10107 if (enable) 10108 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 10109 10110 perf_event_header__init_id(&throttle_event.header, &sample, event); 10111 10112 ret = perf_output_begin(&handle, &sample, event, 10113 throttle_event.header.size); 10114 if (ret) 10115 return; 10116 10117 perf_output_put(&handle, throttle_event); 10118 perf_event__output_id_sample(event, &handle, &sample); 10119 perf_output_end(&handle); 10120 } 10121 10122 /* 10123 * ksymbol register/unregister tracking 10124 */ 10125 10126 struct perf_ksymbol_event { 10127 const char *name; 10128 int name_len; 10129 struct { 10130 struct perf_event_header header; 10131 u64 addr; 10132 u32 len; 10133 u16 ksym_type; 10134 u16 flags; 10135 } event_id; 10136 }; 10137 10138 static int perf_event_ksymbol_match(struct perf_event *event) 10139 { 10140 return event->attr.ksymbol; 10141 } 10142 10143 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 10144 { 10145 struct perf_ksymbol_event *ksymbol_event = data; 10146 struct perf_output_handle handle; 10147 struct perf_sample_data sample; 10148 int ret; 10149 10150 if (!perf_event_ksymbol_match(event)) 10151 return; 10152 10153 perf_event_header__init_id(&ksymbol_event->event_id.header, 10154 &sample, event); 10155 ret = perf_output_begin(&handle, &sample, event, 10156 ksymbol_event->event_id.header.size); 10157 if (ret) 10158 return; 10159 10160 perf_output_put(&handle, ksymbol_event->event_id); 10161 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 10162 perf_event__output_id_sample(event, &handle, &sample); 10163 10164 perf_output_end(&handle); 10165 } 10166 10167 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 10168 const char *sym) 10169 { 10170 struct perf_ksymbol_event ksymbol_event; 10171 char name[KSYM_NAME_LEN]; 10172 u16 flags = 0; 10173 int name_len; 10174 10175 if (!atomic_read(&nr_ksymbol_events)) 10176 return; 10177 10178 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 10179 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 10180 goto err; 10181 10182 strscpy(name, sym); 10183 name_len = strlen(name) + 1; 10184 while (!IS_ALIGNED(name_len, sizeof(u64))) 10185 name[name_len++] = '\0'; 10186 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 10187 10188 if (unregister) 10189 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 10190 10191 ksymbol_event = (struct perf_ksymbol_event){ 10192 .name = name, 10193 .name_len = name_len, 10194 .event_id = { 10195 .header = { 10196 .type = PERF_RECORD_KSYMBOL, 10197 .size = sizeof(ksymbol_event.event_id) + 10198 name_len, 10199 }, 10200 .addr = addr, 10201 .len = len, 10202 .ksym_type = ksym_type, 10203 .flags = flags, 10204 }, 10205 }; 10206 10207 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 10208 return; 10209 err: 10210 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 10211 } 10212 10213 /* 10214 * bpf program load/unload tracking 10215 */ 10216 10217 struct perf_bpf_event { 10218 struct bpf_prog *prog; 10219 struct { 10220 struct perf_event_header header; 10221 u16 type; 10222 u16 flags; 10223 u32 id; 10224 u8 tag[BPF_TAG_SIZE]; 10225 } event_id; 10226 }; 10227 10228 static int perf_event_bpf_match(struct perf_event *event) 10229 { 10230 return event->attr.bpf_event; 10231 } 10232 10233 static void perf_event_bpf_output(struct perf_event *event, void *data) 10234 { 10235 struct perf_bpf_event *bpf_event = data; 10236 struct perf_output_handle handle; 10237 struct perf_sample_data sample; 10238 int ret; 10239 10240 if (!perf_event_bpf_match(event)) 10241 return; 10242 10243 perf_event_header__init_id(&bpf_event->event_id.header, 10244 &sample, event); 10245 ret = perf_output_begin(&handle, &sample, event, 10246 bpf_event->event_id.header.size); 10247 if (ret) 10248 return; 10249 10250 perf_output_put(&handle, bpf_event->event_id); 10251 perf_event__output_id_sample(event, &handle, &sample); 10252 10253 perf_output_end(&handle); 10254 } 10255 10256 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 10257 enum perf_bpf_event_type type) 10258 { 10259 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 10260 int i; 10261 10262 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 10263 (u64)(unsigned long)prog->bpf_func, 10264 prog->jited_len, unregister, 10265 prog->aux->ksym.name); 10266 10267 for (i = 1; i < prog->aux->func_cnt; i++) { 10268 struct bpf_prog *subprog = prog->aux->func[i]; 10269 10270 perf_event_ksymbol( 10271 PERF_RECORD_KSYMBOL_TYPE_BPF, 10272 (u64)(unsigned long)subprog->bpf_func, 10273 subprog->jited_len, unregister, 10274 subprog->aux->ksym.name); 10275 } 10276 } 10277 10278 void perf_event_bpf_event(struct bpf_prog *prog, 10279 enum perf_bpf_event_type type, 10280 u16 flags) 10281 { 10282 struct perf_bpf_event bpf_event; 10283 10284 switch (type) { 10285 case PERF_BPF_EVENT_PROG_LOAD: 10286 case PERF_BPF_EVENT_PROG_UNLOAD: 10287 if (atomic_read(&nr_ksymbol_events)) 10288 perf_event_bpf_emit_ksymbols(prog, type); 10289 break; 10290 default: 10291 return; 10292 } 10293 10294 if (!atomic_read(&nr_bpf_events)) 10295 return; 10296 10297 bpf_event = (struct perf_bpf_event){ 10298 .prog = prog, 10299 .event_id = { 10300 .header = { 10301 .type = PERF_RECORD_BPF_EVENT, 10302 .size = sizeof(bpf_event.event_id), 10303 }, 10304 .type = type, 10305 .flags = flags, 10306 .id = prog->aux->id, 10307 }, 10308 }; 10309 10310 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 10311 10312 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 10313 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 10314 } 10315 10316 struct perf_callchain_deferred_event { 10317 struct unwind_stacktrace *trace; 10318 struct { 10319 struct perf_event_header header; 10320 u64 cookie; 10321 u64 nr; 10322 u64 ips[]; 10323 } event; 10324 }; 10325 10326 static void perf_callchain_deferred_output(struct perf_event *event, void *data) 10327 { 10328 struct perf_callchain_deferred_event *deferred_event = data; 10329 struct perf_output_handle handle; 10330 struct perf_sample_data sample; 10331 int ret, size = deferred_event->event.header.size; 10332 10333 if (!event->attr.defer_output) 10334 return; 10335 10336 /* XXX do we really need sample_id_all for this ??? */ 10337 perf_event_header__init_id(&deferred_event->event.header, &sample, event); 10338 10339 ret = perf_output_begin(&handle, &sample, event, 10340 deferred_event->event.header.size); 10341 if (ret) 10342 goto out; 10343 10344 perf_output_put(&handle, deferred_event->event); 10345 for (int i = 0; i < deferred_event->trace->nr; i++) { 10346 u64 entry = deferred_event->trace->entries[i]; 10347 perf_output_put(&handle, entry); 10348 } 10349 perf_event__output_id_sample(event, &handle, &sample); 10350 10351 perf_output_end(&handle); 10352 out: 10353 deferred_event->event.header.size = size; 10354 } 10355 10356 static void perf_unwind_deferred_callback(struct unwind_work *work, 10357 struct unwind_stacktrace *trace, u64 cookie) 10358 { 10359 struct perf_callchain_deferred_event deferred_event = { 10360 .trace = trace, 10361 .event = { 10362 .header = { 10363 .type = PERF_RECORD_CALLCHAIN_DEFERRED, 10364 .misc = PERF_RECORD_MISC_USER, 10365 .size = sizeof(deferred_event.event) + 10366 (trace->nr * sizeof(u64)), 10367 }, 10368 .cookie = cookie, 10369 .nr = trace->nr, 10370 }, 10371 }; 10372 10373 perf_iterate_sb(perf_callchain_deferred_output, &deferred_event, NULL); 10374 } 10375 10376 struct perf_text_poke_event { 10377 const void *old_bytes; 10378 const void *new_bytes; 10379 size_t pad; 10380 u16 old_len; 10381 u16 new_len; 10382 10383 struct { 10384 struct perf_event_header header; 10385 10386 u64 addr; 10387 } event_id; 10388 }; 10389 10390 static int perf_event_text_poke_match(struct perf_event *event) 10391 { 10392 return event->attr.text_poke; 10393 } 10394 10395 static void perf_event_text_poke_output(struct perf_event *event, void *data) 10396 { 10397 struct perf_text_poke_event *text_poke_event = data; 10398 struct perf_output_handle handle; 10399 struct perf_sample_data sample; 10400 u64 padding = 0; 10401 int ret; 10402 10403 if (!perf_event_text_poke_match(event)) 10404 return; 10405 10406 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 10407 10408 ret = perf_output_begin(&handle, &sample, event, 10409 text_poke_event->event_id.header.size); 10410 if (ret) 10411 return; 10412 10413 perf_output_put(&handle, text_poke_event->event_id); 10414 perf_output_put(&handle, text_poke_event->old_len); 10415 perf_output_put(&handle, text_poke_event->new_len); 10416 10417 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 10418 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 10419 10420 if (text_poke_event->pad) 10421 __output_copy(&handle, &padding, text_poke_event->pad); 10422 10423 perf_event__output_id_sample(event, &handle, &sample); 10424 10425 perf_output_end(&handle); 10426 } 10427 10428 void perf_event_text_poke(const void *addr, const void *old_bytes, 10429 size_t old_len, const void *new_bytes, size_t new_len) 10430 { 10431 struct perf_text_poke_event text_poke_event; 10432 size_t tot, pad; 10433 10434 if (!atomic_read(&nr_text_poke_events)) 10435 return; 10436 10437 tot = sizeof(text_poke_event.old_len) + old_len; 10438 tot += sizeof(text_poke_event.new_len) + new_len; 10439 pad = ALIGN(tot, sizeof(u64)) - tot; 10440 10441 text_poke_event = (struct perf_text_poke_event){ 10442 .old_bytes = old_bytes, 10443 .new_bytes = new_bytes, 10444 .pad = pad, 10445 .old_len = old_len, 10446 .new_len = new_len, 10447 .event_id = { 10448 .header = { 10449 .type = PERF_RECORD_TEXT_POKE, 10450 .misc = PERF_RECORD_MISC_KERNEL, 10451 .size = sizeof(text_poke_event.event_id) + tot + pad, 10452 }, 10453 .addr = (unsigned long)addr, 10454 }, 10455 }; 10456 10457 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 10458 } 10459 10460 void perf_event_itrace_started(struct perf_event *event) 10461 { 10462 WRITE_ONCE(event->attach_state, event->attach_state | PERF_ATTACH_ITRACE); 10463 } 10464 10465 static void perf_log_itrace_start(struct perf_event *event) 10466 { 10467 struct perf_output_handle handle; 10468 struct perf_sample_data sample; 10469 struct perf_aux_event { 10470 struct perf_event_header header; 10471 u32 pid; 10472 u32 tid; 10473 } rec; 10474 int ret; 10475 10476 if (event->parent) 10477 event = event->parent; 10478 10479 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 10480 event->attach_state & PERF_ATTACH_ITRACE) 10481 return; 10482 10483 rec.header.type = PERF_RECORD_ITRACE_START; 10484 rec.header.misc = 0; 10485 rec.header.size = sizeof(rec); 10486 rec.pid = perf_event_pid(event, current); 10487 rec.tid = perf_event_tid(event, current); 10488 10489 perf_event_header__init_id(&rec.header, &sample, event); 10490 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 10491 10492 if (ret) 10493 return; 10494 10495 perf_output_put(&handle, rec); 10496 perf_event__output_id_sample(event, &handle, &sample); 10497 10498 perf_output_end(&handle); 10499 } 10500 10501 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 10502 { 10503 struct perf_output_handle handle; 10504 struct perf_sample_data sample; 10505 struct perf_aux_event { 10506 struct perf_event_header header; 10507 u64 hw_id; 10508 } rec; 10509 int ret; 10510 10511 if (event->parent) 10512 event = event->parent; 10513 10514 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 10515 rec.header.misc = 0; 10516 rec.header.size = sizeof(rec); 10517 rec.hw_id = hw_id; 10518 10519 perf_event_header__init_id(&rec.header, &sample, event); 10520 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 10521 10522 if (ret) 10523 return; 10524 10525 perf_output_put(&handle, rec); 10526 perf_event__output_id_sample(event, &handle, &sample); 10527 10528 perf_output_end(&handle); 10529 } 10530 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 10531 10532 static int 10533 __perf_event_account_interrupt(struct perf_event *event, int throttle) 10534 { 10535 struct hw_perf_event *hwc = &event->hw; 10536 int ret = 0; 10537 u64 seq; 10538 10539 seq = __this_cpu_read(perf_throttled_seq); 10540 if (seq != hwc->interrupts_seq) { 10541 hwc->interrupts_seq = seq; 10542 hwc->interrupts = 1; 10543 } else { 10544 hwc->interrupts++; 10545 } 10546 10547 if (unlikely(throttle && hwc->interrupts >= max_samples_per_tick)) { 10548 __this_cpu_inc(perf_throttled_count); 10549 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 10550 perf_event_throttle_group(event); 10551 ret = 1; 10552 } 10553 10554 if (event->attr.freq) { 10555 u64 now = perf_clock(); 10556 s64 delta = now - hwc->freq_time_stamp; 10557 10558 hwc->freq_time_stamp = now; 10559 10560 if (delta > 0 && delta < 2*TICK_NSEC) 10561 perf_adjust_period(event, delta, hwc->last_period, true); 10562 } 10563 10564 return ret; 10565 } 10566 10567 int perf_event_account_interrupt(struct perf_event *event) 10568 { 10569 return __perf_event_account_interrupt(event, 1); 10570 } 10571 10572 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 10573 { 10574 /* 10575 * Due to interrupt latency (AKA "skid"), we may enter the 10576 * kernel before taking an overflow, even if the PMU is only 10577 * counting user events. 10578 */ 10579 if (event->attr.exclude_kernel && !user_mode(regs)) 10580 return false; 10581 10582 return true; 10583 } 10584 10585 #ifdef CONFIG_BPF_SYSCALL 10586 static int bpf_overflow_handler(struct perf_event *event, 10587 struct perf_sample_data *data, 10588 struct pt_regs *regs) 10589 { 10590 struct bpf_perf_event_data_kern ctx = { 10591 .data = data, 10592 .event = event, 10593 }; 10594 struct bpf_prog *prog; 10595 int ret = 0; 10596 10597 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10598 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10599 goto out; 10600 rcu_read_lock(); 10601 prog = READ_ONCE(event->prog); 10602 if (prog) { 10603 perf_prepare_sample(data, event, regs); 10604 ret = bpf_prog_run(prog, &ctx); 10605 } 10606 rcu_read_unlock(); 10607 out: 10608 __this_cpu_dec(bpf_prog_active); 10609 10610 return ret; 10611 } 10612 10613 static inline int perf_event_set_bpf_handler(struct perf_event *event, 10614 struct bpf_prog *prog, 10615 u64 bpf_cookie) 10616 { 10617 if (event->overflow_handler_context) 10618 /* hw breakpoint or kernel counter */ 10619 return -EINVAL; 10620 10621 if (event->prog) 10622 return -EEXIST; 10623 10624 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10625 return -EINVAL; 10626 10627 if (event->attr.precise_ip && 10628 prog->call_get_stack && 10629 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 10630 event->attr.exclude_callchain_kernel || 10631 event->attr.exclude_callchain_user)) { 10632 /* 10633 * On perf_event with precise_ip, calling bpf_get_stack() 10634 * may trigger unwinder warnings and occasional crashes. 10635 * bpf_get_[stack|stackid] works around this issue by using 10636 * callchain attached to perf_sample_data. If the 10637 * perf_event does not full (kernel and user) callchain 10638 * attached to perf_sample_data, do not allow attaching BPF 10639 * program that calls bpf_get_[stack|stackid]. 10640 */ 10641 return -EPROTO; 10642 } 10643 10644 event->prog = prog; 10645 event->bpf_cookie = bpf_cookie; 10646 return 0; 10647 } 10648 10649 static inline void perf_event_free_bpf_handler(struct perf_event *event) 10650 { 10651 struct bpf_prog *prog = event->prog; 10652 10653 if (!prog) 10654 return; 10655 10656 event->prog = NULL; 10657 bpf_prog_put(prog); 10658 } 10659 #else 10660 static inline int bpf_overflow_handler(struct perf_event *event, 10661 struct perf_sample_data *data, 10662 struct pt_regs *regs) 10663 { 10664 return 1; 10665 } 10666 10667 static inline int perf_event_set_bpf_handler(struct perf_event *event, 10668 struct bpf_prog *prog, 10669 u64 bpf_cookie) 10670 { 10671 return -EOPNOTSUPP; 10672 } 10673 10674 static inline void perf_event_free_bpf_handler(struct perf_event *event) 10675 { 10676 } 10677 #endif 10678 10679 /* 10680 * Generic event overflow handling, sampling. 10681 */ 10682 10683 static int __perf_event_overflow(struct perf_event *event, 10684 int throttle, struct perf_sample_data *data, 10685 struct pt_regs *regs) 10686 { 10687 int events = atomic_read(&event->event_limit); 10688 int ret = 0; 10689 10690 /* 10691 * Non-sampling counters might still use the PMI to fold short 10692 * hardware counters, ignore those. 10693 */ 10694 if (unlikely(!is_sampling_event(event))) 10695 return 0; 10696 10697 ret = __perf_event_account_interrupt(event, throttle); 10698 10699 if (event->attr.aux_pause) 10700 perf_event_aux_pause(event->aux_event, true); 10701 10702 if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT && 10703 !bpf_overflow_handler(event, data, regs)) 10704 goto out; 10705 10706 /* 10707 * XXX event_limit might not quite work as expected on inherited 10708 * events 10709 */ 10710 10711 event->pending_kill = POLL_IN; 10712 if (events && atomic_dec_and_test(&event->event_limit)) { 10713 ret = 1; 10714 event->pending_kill = POLL_HUP; 10715 perf_event_disable_inatomic(event); 10716 event->pmu->stop(event, 0); 10717 } 10718 10719 if (event->attr.sigtrap) { 10720 /* 10721 * The desired behaviour of sigtrap vs invalid samples is a bit 10722 * tricky; on the one hand, one should not loose the SIGTRAP if 10723 * it is the first event, on the other hand, we should also not 10724 * trigger the WARN or override the data address. 10725 */ 10726 bool valid_sample = sample_is_allowed(event, regs); 10727 unsigned int pending_id = 1; 10728 enum task_work_notify_mode notify_mode; 10729 10730 if (regs) 10731 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 10732 10733 notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME; 10734 10735 if (!event->pending_work && 10736 !task_work_add(current, &event->pending_task, notify_mode)) { 10737 event->pending_work = pending_id; 10738 local_inc(&event->ctx->nr_no_switch_fast); 10739 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); 10740 10741 event->pending_addr = 0; 10742 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 10743 event->pending_addr = data->addr; 10744 10745 } else if (event->attr.exclude_kernel && valid_sample) { 10746 /* 10747 * Should not be able to return to user space without 10748 * consuming pending_work; with exceptions: 10749 * 10750 * 1. Where !exclude_kernel, events can overflow again 10751 * in the kernel without returning to user space. 10752 * 10753 * 2. Events that can overflow again before the IRQ- 10754 * work without user space progress (e.g. hrtimer). 10755 * To approximate progress (with false negatives), 10756 * check 32-bit hash of the current IP. 10757 */ 10758 WARN_ON_ONCE(event->pending_work != pending_id); 10759 } 10760 } 10761 10762 READ_ONCE(event->overflow_handler)(event, data, regs); 10763 10764 if (*perf_event_fasync(event) && event->pending_kill) { 10765 event->pending_wakeup = 1; 10766 irq_work_queue(&event->pending_irq); 10767 } 10768 out: 10769 if (event->attr.aux_resume) 10770 perf_event_aux_pause(event->aux_event, false); 10771 10772 return ret; 10773 } 10774 10775 int perf_event_overflow(struct perf_event *event, 10776 struct perf_sample_data *data, 10777 struct pt_regs *regs) 10778 { 10779 return __perf_event_overflow(event, 1, data, regs); 10780 } 10781 10782 /* 10783 * Generic software event infrastructure 10784 */ 10785 10786 struct swevent_htable { 10787 struct swevent_hlist *swevent_hlist; 10788 struct mutex hlist_mutex; 10789 int hlist_refcount; 10790 }; 10791 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 10792 10793 /* 10794 * We directly increment event->count and keep a second value in 10795 * event->hw.period_left to count intervals. This period event 10796 * is kept in the range [-sample_period, 0] so that we can use the 10797 * sign as trigger. 10798 */ 10799 10800 u64 perf_swevent_set_period(struct perf_event *event) 10801 { 10802 struct hw_perf_event *hwc = &event->hw; 10803 u64 period = hwc->last_period; 10804 u64 nr, offset; 10805 s64 old, val; 10806 10807 hwc->last_period = hwc->sample_period; 10808 10809 old = local64_read(&hwc->period_left); 10810 do { 10811 val = old; 10812 if (val < 0) 10813 return 0; 10814 10815 nr = div64_u64(period + val, period); 10816 offset = nr * period; 10817 val -= offset; 10818 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 10819 10820 return nr; 10821 } 10822 10823 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 10824 struct perf_sample_data *data, 10825 struct pt_regs *regs) 10826 { 10827 struct hw_perf_event *hwc = &event->hw; 10828 int throttle = 0; 10829 10830 if (!overflow) 10831 overflow = perf_swevent_set_period(event); 10832 10833 if (hwc->interrupts == MAX_INTERRUPTS) 10834 return; 10835 10836 for (; overflow; overflow--) { 10837 if (__perf_event_overflow(event, throttle, 10838 data, regs)) { 10839 /* 10840 * We inhibit the overflow from happening when 10841 * hwc->interrupts == MAX_INTERRUPTS. 10842 */ 10843 break; 10844 } 10845 throttle = 1; 10846 } 10847 } 10848 10849 static void perf_swevent_event(struct perf_event *event, u64 nr, 10850 struct perf_sample_data *data, 10851 struct pt_regs *regs) 10852 { 10853 struct hw_perf_event *hwc = &event->hw; 10854 10855 local64_add(nr, &event->count); 10856 10857 if (!regs) 10858 return; 10859 10860 if (!is_sampling_event(event)) 10861 return; 10862 10863 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 10864 data->period = nr; 10865 return perf_swevent_overflow(event, 1, data, regs); 10866 } else 10867 data->period = event->hw.last_period; 10868 10869 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 10870 return perf_swevent_overflow(event, 1, data, regs); 10871 10872 if (local64_add_negative(nr, &hwc->period_left)) 10873 return; 10874 10875 perf_swevent_overflow(event, 0, data, regs); 10876 } 10877 10878 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs) 10879 { 10880 if (event->hw.state & PERF_HES_STOPPED) 10881 return 1; 10882 10883 if (regs) { 10884 if (event->attr.exclude_user && user_mode(regs)) 10885 return 1; 10886 10887 if (event->attr.exclude_kernel && !user_mode(regs)) 10888 return 1; 10889 } 10890 10891 return 0; 10892 } 10893 10894 static int perf_swevent_match(struct perf_event *event, 10895 enum perf_type_id type, 10896 u32 event_id, 10897 struct perf_sample_data *data, 10898 struct pt_regs *regs) 10899 { 10900 if (event->attr.type != type) 10901 return 0; 10902 10903 if (event->attr.config != event_id) 10904 return 0; 10905 10906 if (perf_exclude_event(event, regs)) 10907 return 0; 10908 10909 return 1; 10910 } 10911 10912 static inline u64 swevent_hash(u64 type, u32 event_id) 10913 { 10914 u64 val = event_id | (type << 32); 10915 10916 return hash_64(val, SWEVENT_HLIST_BITS); 10917 } 10918 10919 static inline struct hlist_head * 10920 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 10921 { 10922 u64 hash = swevent_hash(type, event_id); 10923 10924 return &hlist->heads[hash]; 10925 } 10926 10927 /* For the read side: events when they trigger */ 10928 static inline struct hlist_head * 10929 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 10930 { 10931 struct swevent_hlist *hlist; 10932 10933 hlist = rcu_dereference(swhash->swevent_hlist); 10934 if (!hlist) 10935 return NULL; 10936 10937 return __find_swevent_head(hlist, type, event_id); 10938 } 10939 10940 /* For the event head insertion and removal in the hlist */ 10941 static inline struct hlist_head * 10942 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 10943 { 10944 struct swevent_hlist *hlist; 10945 u32 event_id = event->attr.config; 10946 u64 type = event->attr.type; 10947 10948 /* 10949 * Event scheduling is always serialized against hlist allocation 10950 * and release. Which makes the protected version suitable here. 10951 * The context lock guarantees that. 10952 */ 10953 hlist = rcu_dereference_protected(swhash->swevent_hlist, 10954 lockdep_is_held(&event->ctx->lock)); 10955 if (!hlist) 10956 return NULL; 10957 10958 return __find_swevent_head(hlist, type, event_id); 10959 } 10960 10961 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 10962 u64 nr, 10963 struct perf_sample_data *data, 10964 struct pt_regs *regs) 10965 { 10966 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10967 struct perf_event *event; 10968 struct hlist_head *head; 10969 10970 rcu_read_lock(); 10971 head = find_swevent_head_rcu(swhash, type, event_id); 10972 if (!head) 10973 goto end; 10974 10975 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10976 if (perf_swevent_match(event, type, event_id, data, regs)) 10977 perf_swevent_event(event, nr, data, regs); 10978 } 10979 end: 10980 rcu_read_unlock(); 10981 } 10982 10983 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 10984 10985 int perf_swevent_get_recursion_context(void) 10986 { 10987 return get_recursion_context(current->perf_recursion); 10988 } 10989 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 10990 10991 void perf_swevent_put_recursion_context(int rctx) 10992 { 10993 put_recursion_context(current->perf_recursion, rctx); 10994 } 10995 10996 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10997 { 10998 struct perf_sample_data data; 10999 11000 if (WARN_ON_ONCE(!regs)) 11001 return; 11002 11003 perf_sample_data_init(&data, addr, 0); 11004 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 11005 } 11006 11007 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 11008 { 11009 int rctx; 11010 11011 preempt_disable_notrace(); 11012 rctx = perf_swevent_get_recursion_context(); 11013 if (unlikely(rctx < 0)) 11014 goto fail; 11015 11016 ___perf_sw_event(event_id, nr, regs, addr); 11017 11018 perf_swevent_put_recursion_context(rctx); 11019 fail: 11020 preempt_enable_notrace(); 11021 } 11022 11023 static void perf_swevent_read(struct perf_event *event) 11024 { 11025 } 11026 11027 static int perf_swevent_add(struct perf_event *event, int flags) 11028 { 11029 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 11030 struct hw_perf_event *hwc = &event->hw; 11031 struct hlist_head *head; 11032 11033 if (is_sampling_event(event)) { 11034 hwc->last_period = hwc->sample_period; 11035 perf_swevent_set_period(event); 11036 } 11037 11038 hwc->state = !(flags & PERF_EF_START); 11039 11040 head = find_swevent_head(swhash, event); 11041 if (WARN_ON_ONCE(!head)) 11042 return -EINVAL; 11043 11044 hlist_add_head_rcu(&event->hlist_entry, head); 11045 perf_event_update_userpage(event); 11046 11047 return 0; 11048 } 11049 11050 static void perf_swevent_del(struct perf_event *event, int flags) 11051 { 11052 hlist_del_rcu(&event->hlist_entry); 11053 } 11054 11055 static void perf_swevent_start(struct perf_event *event, int flags) 11056 { 11057 event->hw.state = 0; 11058 } 11059 11060 static void perf_swevent_stop(struct perf_event *event, int flags) 11061 { 11062 event->hw.state = PERF_HES_STOPPED; 11063 } 11064 11065 /* Deref the hlist from the update side */ 11066 static inline struct swevent_hlist * 11067 swevent_hlist_deref(struct swevent_htable *swhash) 11068 { 11069 return rcu_dereference_protected(swhash->swevent_hlist, 11070 lockdep_is_held(&swhash->hlist_mutex)); 11071 } 11072 11073 static void swevent_hlist_release(struct swevent_htable *swhash) 11074 { 11075 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 11076 11077 if (!hlist) 11078 return; 11079 11080 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 11081 kfree_rcu(hlist, rcu_head); 11082 } 11083 11084 static void swevent_hlist_put_cpu(int cpu) 11085 { 11086 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 11087 11088 mutex_lock(&swhash->hlist_mutex); 11089 11090 if (!--swhash->hlist_refcount) 11091 swevent_hlist_release(swhash); 11092 11093 mutex_unlock(&swhash->hlist_mutex); 11094 } 11095 11096 static void swevent_hlist_put(void) 11097 { 11098 int cpu; 11099 11100 for_each_possible_cpu(cpu) 11101 swevent_hlist_put_cpu(cpu); 11102 } 11103 11104 static int swevent_hlist_get_cpu(int cpu) 11105 { 11106 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 11107 int err = 0; 11108 11109 mutex_lock(&swhash->hlist_mutex); 11110 if (!swevent_hlist_deref(swhash) && 11111 cpumask_test_cpu(cpu, perf_online_mask)) { 11112 struct swevent_hlist *hlist; 11113 11114 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 11115 if (!hlist) { 11116 err = -ENOMEM; 11117 goto exit; 11118 } 11119 rcu_assign_pointer(swhash->swevent_hlist, hlist); 11120 } 11121 swhash->hlist_refcount++; 11122 exit: 11123 mutex_unlock(&swhash->hlist_mutex); 11124 11125 return err; 11126 } 11127 11128 static int swevent_hlist_get(void) 11129 { 11130 int err, cpu, failed_cpu; 11131 11132 mutex_lock(&pmus_lock); 11133 for_each_possible_cpu(cpu) { 11134 err = swevent_hlist_get_cpu(cpu); 11135 if (err) { 11136 failed_cpu = cpu; 11137 goto fail; 11138 } 11139 } 11140 mutex_unlock(&pmus_lock); 11141 return 0; 11142 fail: 11143 for_each_possible_cpu(cpu) { 11144 if (cpu == failed_cpu) 11145 break; 11146 swevent_hlist_put_cpu(cpu); 11147 } 11148 mutex_unlock(&pmus_lock); 11149 return err; 11150 } 11151 11152 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 11153 11154 static void sw_perf_event_destroy(struct perf_event *event) 11155 { 11156 u64 event_id = event->attr.config; 11157 11158 WARN_ON(event->parent); 11159 11160 static_key_slow_dec(&perf_swevent_enabled[event_id]); 11161 swevent_hlist_put(); 11162 } 11163 11164 static struct pmu perf_cpu_clock; /* fwd declaration */ 11165 static struct pmu perf_task_clock; 11166 11167 static int perf_swevent_init(struct perf_event *event) 11168 { 11169 u64 event_id = event->attr.config; 11170 11171 if (event->attr.type != PERF_TYPE_SOFTWARE) 11172 return -ENOENT; 11173 11174 /* 11175 * no branch sampling for software events 11176 */ 11177 if (has_branch_stack(event)) 11178 return -EOPNOTSUPP; 11179 11180 switch (event_id) { 11181 case PERF_COUNT_SW_CPU_CLOCK: 11182 event->attr.type = perf_cpu_clock.type; 11183 return -ENOENT; 11184 case PERF_COUNT_SW_TASK_CLOCK: 11185 event->attr.type = perf_task_clock.type; 11186 return -ENOENT; 11187 11188 default: 11189 break; 11190 } 11191 11192 if (event_id >= PERF_COUNT_SW_MAX) 11193 return -ENOENT; 11194 11195 if (!event->parent) { 11196 int err; 11197 11198 err = swevent_hlist_get(); 11199 if (err) 11200 return err; 11201 11202 static_key_slow_inc(&perf_swevent_enabled[event_id]); 11203 event->destroy = sw_perf_event_destroy; 11204 } 11205 11206 return 0; 11207 } 11208 11209 static struct pmu perf_swevent = { 11210 .task_ctx_nr = perf_sw_context, 11211 11212 .capabilities = PERF_PMU_CAP_NO_NMI, 11213 11214 .event_init = perf_swevent_init, 11215 .add = perf_swevent_add, 11216 .del = perf_swevent_del, 11217 .start = perf_swevent_start, 11218 .stop = perf_swevent_stop, 11219 .read = perf_swevent_read, 11220 }; 11221 11222 #ifdef CONFIG_EVENT_TRACING 11223 11224 static void tp_perf_event_destroy(struct perf_event *event) 11225 { 11226 perf_trace_destroy(event); 11227 } 11228 11229 static int perf_tp_event_init(struct perf_event *event) 11230 { 11231 int err; 11232 11233 if (event->attr.type != PERF_TYPE_TRACEPOINT) 11234 return -ENOENT; 11235 11236 /* 11237 * no branch sampling for tracepoint events 11238 */ 11239 if (has_branch_stack(event)) 11240 return -EOPNOTSUPP; 11241 11242 err = perf_trace_init(event); 11243 if (err) 11244 return err; 11245 11246 event->destroy = tp_perf_event_destroy; 11247 11248 return 0; 11249 } 11250 11251 static struct pmu perf_tracepoint = { 11252 .task_ctx_nr = perf_sw_context, 11253 11254 .event_init = perf_tp_event_init, 11255 .add = perf_trace_add, 11256 .del = perf_trace_del, 11257 .start = perf_swevent_start, 11258 .stop = perf_swevent_stop, 11259 .read = perf_swevent_read, 11260 }; 11261 11262 static int perf_tp_filter_match(struct perf_event *event, 11263 struct perf_raw_record *raw) 11264 { 11265 void *record = raw->frag.data; 11266 11267 /* only top level events have filters set */ 11268 if (event->parent) 11269 event = event->parent; 11270 11271 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 11272 return 1; 11273 return 0; 11274 } 11275 11276 static int perf_tp_event_match(struct perf_event *event, 11277 struct perf_raw_record *raw, 11278 struct pt_regs *regs) 11279 { 11280 if (event->hw.state & PERF_HES_STOPPED) 11281 return 0; 11282 /* 11283 * If exclude_kernel, only trace user-space tracepoints (uprobes) 11284 */ 11285 if (event->attr.exclude_kernel && !user_mode(regs)) 11286 return 0; 11287 11288 if (!perf_tp_filter_match(event, raw)) 11289 return 0; 11290 11291 return 1; 11292 } 11293 11294 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 11295 struct trace_event_call *call, u64 count, 11296 struct pt_regs *regs, struct hlist_head *head, 11297 struct task_struct *task) 11298 { 11299 if (bpf_prog_array_valid(call)) { 11300 *(struct pt_regs **)raw_data = regs; 11301 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 11302 perf_swevent_put_recursion_context(rctx); 11303 return; 11304 } 11305 } 11306 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 11307 rctx, task); 11308 } 11309 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 11310 11311 static void __perf_tp_event_target_task(u64 count, void *record, 11312 struct pt_regs *regs, 11313 struct perf_sample_data *data, 11314 struct perf_raw_record *raw, 11315 struct perf_event *event) 11316 { 11317 struct trace_entry *entry = record; 11318 11319 if (event->attr.config != entry->type) 11320 return; 11321 /* Cannot deliver synchronous signal to other task. */ 11322 if (event->attr.sigtrap) 11323 return; 11324 if (perf_tp_event_match(event, raw, regs)) { 11325 perf_sample_data_init(data, 0, 0); 11326 perf_sample_save_raw_data(data, event, raw); 11327 perf_swevent_event(event, count, data, regs); 11328 } 11329 } 11330 11331 static void perf_tp_event_target_task(u64 count, void *record, 11332 struct pt_regs *regs, 11333 struct perf_sample_data *data, 11334 struct perf_raw_record *raw, 11335 struct perf_event_context *ctx) 11336 { 11337 unsigned int cpu = smp_processor_id(); 11338 struct pmu *pmu = &perf_tracepoint; 11339 struct perf_event *event, *sibling; 11340 11341 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 11342 __perf_tp_event_target_task(count, record, regs, data, raw, event); 11343 for_each_sibling_event(sibling, event) 11344 __perf_tp_event_target_task(count, record, regs, data, raw, sibling); 11345 } 11346 11347 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 11348 __perf_tp_event_target_task(count, record, regs, data, raw, event); 11349 for_each_sibling_event(sibling, event) 11350 __perf_tp_event_target_task(count, record, regs, data, raw, sibling); 11351 } 11352 } 11353 11354 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 11355 struct pt_regs *regs, struct hlist_head *head, int rctx, 11356 struct task_struct *task) 11357 { 11358 struct perf_sample_data data; 11359 struct perf_event *event; 11360 11361 struct perf_raw_record raw = { 11362 .frag = { 11363 .size = entry_size, 11364 .data = record, 11365 }, 11366 }; 11367 11368 perf_trace_buf_update(record, event_type); 11369 11370 hlist_for_each_entry_rcu(event, head, hlist_entry) { 11371 if (perf_tp_event_match(event, &raw, regs)) { 11372 /* 11373 * Here use the same on-stack perf_sample_data, 11374 * some members in data are event-specific and 11375 * need to be re-computed for different sweveents. 11376 * Re-initialize data->sample_flags safely to avoid 11377 * the problem that next event skips preparing data 11378 * because data->sample_flags is set. 11379 */ 11380 perf_sample_data_init(&data, 0, 0); 11381 perf_sample_save_raw_data(&data, event, &raw); 11382 perf_swevent_event(event, count, &data, regs); 11383 } 11384 } 11385 11386 /* 11387 * If we got specified a target task, also iterate its context and 11388 * deliver this event there too. 11389 */ 11390 if (task && task != current) { 11391 struct perf_event_context *ctx; 11392 11393 rcu_read_lock(); 11394 ctx = rcu_dereference(task->perf_event_ctxp); 11395 if (!ctx) 11396 goto unlock; 11397 11398 raw_spin_lock(&ctx->lock); 11399 perf_tp_event_target_task(count, record, regs, &data, &raw, ctx); 11400 raw_spin_unlock(&ctx->lock); 11401 unlock: 11402 rcu_read_unlock(); 11403 } 11404 11405 perf_swevent_put_recursion_context(rctx); 11406 } 11407 EXPORT_SYMBOL_GPL(perf_tp_event); 11408 11409 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 11410 /* 11411 * Flags in config, used by dynamic PMU kprobe and uprobe 11412 * The flags should match following PMU_FORMAT_ATTR(). 11413 * 11414 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 11415 * if not set, create kprobe/uprobe 11416 * 11417 * The following values specify a reference counter (or semaphore in the 11418 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 11419 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 11420 * 11421 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 11422 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 11423 */ 11424 enum perf_probe_config { 11425 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 11426 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 11427 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 11428 }; 11429 11430 PMU_FORMAT_ATTR(retprobe, "config:0"); 11431 #endif 11432 11433 #ifdef CONFIG_KPROBE_EVENTS 11434 static struct attribute *kprobe_attrs[] = { 11435 &format_attr_retprobe.attr, 11436 NULL, 11437 }; 11438 11439 static struct attribute_group kprobe_format_group = { 11440 .name = "format", 11441 .attrs = kprobe_attrs, 11442 }; 11443 11444 static const struct attribute_group *kprobe_attr_groups[] = { 11445 &kprobe_format_group, 11446 NULL, 11447 }; 11448 11449 static int perf_kprobe_event_init(struct perf_event *event); 11450 static struct pmu perf_kprobe = { 11451 .task_ctx_nr = perf_sw_context, 11452 .event_init = perf_kprobe_event_init, 11453 .add = perf_trace_add, 11454 .del = perf_trace_del, 11455 .start = perf_swevent_start, 11456 .stop = perf_swevent_stop, 11457 .read = perf_swevent_read, 11458 .attr_groups = kprobe_attr_groups, 11459 }; 11460 11461 static int perf_kprobe_event_init(struct perf_event *event) 11462 { 11463 int err; 11464 bool is_retprobe; 11465 11466 if (event->attr.type != perf_kprobe.type) 11467 return -ENOENT; 11468 11469 if (!perfmon_capable()) 11470 return -EACCES; 11471 11472 /* 11473 * no branch sampling for probe events 11474 */ 11475 if (has_branch_stack(event)) 11476 return -EOPNOTSUPP; 11477 11478 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 11479 err = perf_kprobe_init(event, is_retprobe); 11480 if (err) 11481 return err; 11482 11483 event->destroy = perf_kprobe_destroy; 11484 11485 return 0; 11486 } 11487 #endif /* CONFIG_KPROBE_EVENTS */ 11488 11489 #ifdef CONFIG_UPROBE_EVENTS 11490 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 11491 11492 static struct attribute *uprobe_attrs[] = { 11493 &format_attr_retprobe.attr, 11494 &format_attr_ref_ctr_offset.attr, 11495 NULL, 11496 }; 11497 11498 static struct attribute_group uprobe_format_group = { 11499 .name = "format", 11500 .attrs = uprobe_attrs, 11501 }; 11502 11503 static const struct attribute_group *uprobe_attr_groups[] = { 11504 &uprobe_format_group, 11505 NULL, 11506 }; 11507 11508 static int perf_uprobe_event_init(struct perf_event *event); 11509 static struct pmu perf_uprobe = { 11510 .task_ctx_nr = perf_sw_context, 11511 .event_init = perf_uprobe_event_init, 11512 .add = perf_trace_add, 11513 .del = perf_trace_del, 11514 .start = perf_swevent_start, 11515 .stop = perf_swevent_stop, 11516 .read = perf_swevent_read, 11517 .attr_groups = uprobe_attr_groups, 11518 }; 11519 11520 static int perf_uprobe_event_init(struct perf_event *event) 11521 { 11522 int err; 11523 unsigned long ref_ctr_offset; 11524 bool is_retprobe; 11525 11526 if (event->attr.type != perf_uprobe.type) 11527 return -ENOENT; 11528 11529 if (!capable(CAP_SYS_ADMIN)) 11530 return -EACCES; 11531 11532 /* 11533 * no branch sampling for probe events 11534 */ 11535 if (has_branch_stack(event)) 11536 return -EOPNOTSUPP; 11537 11538 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 11539 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 11540 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 11541 if (err) 11542 return err; 11543 11544 event->destroy = perf_uprobe_destroy; 11545 11546 return 0; 11547 } 11548 #endif /* CONFIG_UPROBE_EVENTS */ 11549 11550 static inline void perf_tp_register(void) 11551 { 11552 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 11553 #ifdef CONFIG_KPROBE_EVENTS 11554 perf_pmu_register(&perf_kprobe, "kprobe", -1); 11555 #endif 11556 #ifdef CONFIG_UPROBE_EVENTS 11557 perf_pmu_register(&perf_uprobe, "uprobe", -1); 11558 #endif 11559 } 11560 11561 static void perf_event_free_filter(struct perf_event *event) 11562 { 11563 ftrace_profile_free_filter(event); 11564 } 11565 11566 /* 11567 * returns true if the event is a tracepoint, or a kprobe/upprobe created 11568 * with perf_event_open() 11569 */ 11570 static inline bool perf_event_is_tracing(struct perf_event *event) 11571 { 11572 if (event->pmu == &perf_tracepoint) 11573 return true; 11574 #ifdef CONFIG_KPROBE_EVENTS 11575 if (event->pmu == &perf_kprobe) 11576 return true; 11577 #endif 11578 #ifdef CONFIG_UPROBE_EVENTS 11579 if (event->pmu == &perf_uprobe) 11580 return true; 11581 #endif 11582 return false; 11583 } 11584 11585 static int __perf_event_set_bpf_prog(struct perf_event *event, 11586 struct bpf_prog *prog, 11587 u64 bpf_cookie) 11588 { 11589 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 11590 11591 if (event->state <= PERF_EVENT_STATE_REVOKED) 11592 return -ENODEV; 11593 11594 if (!perf_event_is_tracing(event)) 11595 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 11596 11597 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 11598 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 11599 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 11600 is_syscall_tp = is_syscall_trace_event(event->tp_event); 11601 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 11602 /* bpf programs can only be attached to u/kprobe or tracepoint */ 11603 return -EINVAL; 11604 11605 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 11606 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 11607 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 11608 return -EINVAL; 11609 11610 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe) 11611 /* only uprobe programs are allowed to be sleepable */ 11612 return -EINVAL; 11613 11614 /* Kprobe override only works for kprobes, not uprobes. */ 11615 if (prog->kprobe_override && !is_kprobe) 11616 return -EINVAL; 11617 11618 /* Writing to context allowed only for uprobes. */ 11619 if (prog->aux->kprobe_write_ctx && !is_uprobe) 11620 return -EINVAL; 11621 11622 if (is_tracepoint || is_syscall_tp) { 11623 int off = trace_event_get_offsets(event->tp_event); 11624 11625 if (prog->aux->max_ctx_offset > off) 11626 return -EACCES; 11627 } 11628 11629 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 11630 } 11631 11632 int perf_event_set_bpf_prog(struct perf_event *event, 11633 struct bpf_prog *prog, 11634 u64 bpf_cookie) 11635 { 11636 struct perf_event_context *ctx; 11637 int ret; 11638 11639 ctx = perf_event_ctx_lock(event); 11640 ret = __perf_event_set_bpf_prog(event, prog, bpf_cookie); 11641 perf_event_ctx_unlock(event, ctx); 11642 11643 return ret; 11644 } 11645 11646 void perf_event_free_bpf_prog(struct perf_event *event) 11647 { 11648 if (!event->prog) 11649 return; 11650 11651 if (!perf_event_is_tracing(event)) { 11652 perf_event_free_bpf_handler(event); 11653 return; 11654 } 11655 perf_event_detach_bpf_prog(event); 11656 } 11657 11658 #else 11659 11660 static inline void perf_tp_register(void) 11661 { 11662 } 11663 11664 static void perf_event_free_filter(struct perf_event *event) 11665 { 11666 } 11667 11668 static int __perf_event_set_bpf_prog(struct perf_event *event, 11669 struct bpf_prog *prog, 11670 u64 bpf_cookie) 11671 { 11672 return -ENOENT; 11673 } 11674 11675 int perf_event_set_bpf_prog(struct perf_event *event, 11676 struct bpf_prog *prog, 11677 u64 bpf_cookie) 11678 { 11679 return -ENOENT; 11680 } 11681 11682 void perf_event_free_bpf_prog(struct perf_event *event) 11683 { 11684 } 11685 #endif /* CONFIG_EVENT_TRACING */ 11686 11687 #ifdef CONFIG_HAVE_HW_BREAKPOINT 11688 void perf_bp_event(struct perf_event *bp, void *data) 11689 { 11690 struct perf_sample_data sample; 11691 struct pt_regs *regs = data; 11692 11693 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 11694 11695 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 11696 perf_swevent_event(bp, 1, &sample, regs); 11697 } 11698 #endif 11699 11700 /* 11701 * Allocate a new address filter 11702 */ 11703 static struct perf_addr_filter * 11704 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 11705 { 11706 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 11707 struct perf_addr_filter *filter; 11708 11709 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 11710 if (!filter) 11711 return NULL; 11712 11713 INIT_LIST_HEAD(&filter->entry); 11714 list_add_tail(&filter->entry, filters); 11715 11716 return filter; 11717 } 11718 11719 static void free_filters_list(struct list_head *filters) 11720 { 11721 struct perf_addr_filter *filter, *iter; 11722 11723 list_for_each_entry_safe(filter, iter, filters, entry) { 11724 path_put(&filter->path); 11725 list_del(&filter->entry); 11726 kfree(filter); 11727 } 11728 } 11729 11730 /* 11731 * Free existing address filters and optionally install new ones 11732 */ 11733 static void perf_addr_filters_splice(struct perf_event *event, 11734 struct list_head *head) 11735 { 11736 unsigned long flags; 11737 LIST_HEAD(list); 11738 11739 if (!has_addr_filter(event)) 11740 return; 11741 11742 /* don't bother with children, they don't have their own filters */ 11743 if (event->parent) 11744 return; 11745 11746 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 11747 11748 list_splice_init(&event->addr_filters.list, &list); 11749 if (head) 11750 list_splice(head, &event->addr_filters.list); 11751 11752 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 11753 11754 free_filters_list(&list); 11755 } 11756 11757 static void perf_free_addr_filters(struct perf_event *event) 11758 { 11759 /* 11760 * Used during free paths, there is no concurrency. 11761 */ 11762 if (list_empty(&event->addr_filters.list)) 11763 return; 11764 11765 perf_addr_filters_splice(event, NULL); 11766 } 11767 11768 /* 11769 * Scan through mm's vmas and see if one of them matches the 11770 * @filter; if so, adjust filter's address range. 11771 * Called with mm::mmap_lock down for reading. 11772 */ 11773 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 11774 struct mm_struct *mm, 11775 struct perf_addr_filter_range *fr) 11776 { 11777 struct vm_area_struct *vma; 11778 VMA_ITERATOR(vmi, mm, 0); 11779 11780 for_each_vma(vmi, vma) { 11781 if (!vma->vm_file) 11782 continue; 11783 11784 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 11785 return; 11786 } 11787 } 11788 11789 /* 11790 * Update event's address range filters based on the 11791 * task's existing mappings, if any. 11792 */ 11793 static void perf_event_addr_filters_apply(struct perf_event *event) 11794 { 11795 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11796 struct task_struct *task = READ_ONCE(event->ctx->task); 11797 struct perf_addr_filter *filter; 11798 struct mm_struct *mm = NULL; 11799 unsigned int count = 0; 11800 unsigned long flags; 11801 11802 /* 11803 * We may observe TASK_TOMBSTONE, which means that the event tear-down 11804 * will stop on the parent's child_mutex that our caller is also holding 11805 */ 11806 if (task == TASK_TOMBSTONE) 11807 return; 11808 11809 if (ifh->nr_file_filters) { 11810 mm = get_task_mm(task); 11811 if (!mm) 11812 goto restart; 11813 11814 mmap_read_lock(mm); 11815 } 11816 11817 raw_spin_lock_irqsave(&ifh->lock, flags); 11818 list_for_each_entry(filter, &ifh->list, entry) { 11819 if (filter->path.dentry) { 11820 /* 11821 * Adjust base offset if the filter is associated to a 11822 * binary that needs to be mapped: 11823 */ 11824 event->addr_filter_ranges[count].start = 0; 11825 event->addr_filter_ranges[count].size = 0; 11826 11827 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 11828 } else { 11829 event->addr_filter_ranges[count].start = filter->offset; 11830 event->addr_filter_ranges[count].size = filter->size; 11831 } 11832 11833 count++; 11834 } 11835 11836 event->addr_filters_gen++; 11837 raw_spin_unlock_irqrestore(&ifh->lock, flags); 11838 11839 if (ifh->nr_file_filters) { 11840 mmap_read_unlock(mm); 11841 11842 mmput(mm); 11843 } 11844 11845 restart: 11846 perf_event_stop(event, 1); 11847 } 11848 11849 /* 11850 * Address range filtering: limiting the data to certain 11851 * instruction address ranges. Filters are ioctl()ed to us from 11852 * userspace as ascii strings. 11853 * 11854 * Filter string format: 11855 * 11856 * ACTION RANGE_SPEC 11857 * where ACTION is one of the 11858 * * "filter": limit the trace to this region 11859 * * "start": start tracing from this address 11860 * * "stop": stop tracing at this address/region; 11861 * RANGE_SPEC is 11862 * * for kernel addresses: <start address>[/<size>] 11863 * * for object files: <start address>[/<size>]@</path/to/object/file> 11864 * 11865 * if <size> is not specified or is zero, the range is treated as a single 11866 * address; not valid for ACTION=="filter". 11867 */ 11868 enum { 11869 IF_ACT_NONE = -1, 11870 IF_ACT_FILTER, 11871 IF_ACT_START, 11872 IF_ACT_STOP, 11873 IF_SRC_FILE, 11874 IF_SRC_KERNEL, 11875 IF_SRC_FILEADDR, 11876 IF_SRC_KERNELADDR, 11877 }; 11878 11879 enum { 11880 IF_STATE_ACTION = 0, 11881 IF_STATE_SOURCE, 11882 IF_STATE_END, 11883 }; 11884 11885 static const match_table_t if_tokens = { 11886 { IF_ACT_FILTER, "filter" }, 11887 { IF_ACT_START, "start" }, 11888 { IF_ACT_STOP, "stop" }, 11889 { IF_SRC_FILE, "%u/%u@%s" }, 11890 { IF_SRC_KERNEL, "%u/%u" }, 11891 { IF_SRC_FILEADDR, "%u@%s" }, 11892 { IF_SRC_KERNELADDR, "%u" }, 11893 { IF_ACT_NONE, NULL }, 11894 }; 11895 11896 /* 11897 * Address filter string parser 11898 */ 11899 static int 11900 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 11901 struct list_head *filters) 11902 { 11903 struct perf_addr_filter *filter = NULL; 11904 char *start, *orig, *filename = NULL; 11905 substring_t args[MAX_OPT_ARGS]; 11906 int state = IF_STATE_ACTION, token; 11907 unsigned int kernel = 0; 11908 int ret = -EINVAL; 11909 11910 orig = fstr = kstrdup(fstr, GFP_KERNEL); 11911 if (!fstr) 11912 return -ENOMEM; 11913 11914 while ((start = strsep(&fstr, " ,\n")) != NULL) { 11915 static const enum perf_addr_filter_action_t actions[] = { 11916 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 11917 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 11918 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 11919 }; 11920 ret = -EINVAL; 11921 11922 if (!*start) 11923 continue; 11924 11925 /* filter definition begins */ 11926 if (state == IF_STATE_ACTION) { 11927 filter = perf_addr_filter_new(event, filters); 11928 if (!filter) 11929 goto fail; 11930 } 11931 11932 token = match_token(start, if_tokens, args); 11933 switch (token) { 11934 case IF_ACT_FILTER: 11935 case IF_ACT_START: 11936 case IF_ACT_STOP: 11937 if (state != IF_STATE_ACTION) 11938 goto fail; 11939 11940 filter->action = actions[token]; 11941 state = IF_STATE_SOURCE; 11942 break; 11943 11944 case IF_SRC_KERNELADDR: 11945 case IF_SRC_KERNEL: 11946 kernel = 1; 11947 fallthrough; 11948 11949 case IF_SRC_FILEADDR: 11950 case IF_SRC_FILE: 11951 if (state != IF_STATE_SOURCE) 11952 goto fail; 11953 11954 *args[0].to = 0; 11955 ret = kstrtoul(args[0].from, 0, &filter->offset); 11956 if (ret) 11957 goto fail; 11958 11959 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 11960 *args[1].to = 0; 11961 ret = kstrtoul(args[1].from, 0, &filter->size); 11962 if (ret) 11963 goto fail; 11964 } 11965 11966 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 11967 int fpos = token == IF_SRC_FILE ? 2 : 1; 11968 11969 kfree(filename); 11970 filename = match_strdup(&args[fpos]); 11971 if (!filename) { 11972 ret = -ENOMEM; 11973 goto fail; 11974 } 11975 } 11976 11977 state = IF_STATE_END; 11978 break; 11979 11980 default: 11981 goto fail; 11982 } 11983 11984 /* 11985 * Filter definition is fully parsed, validate and install it. 11986 * Make sure that it doesn't contradict itself or the event's 11987 * attribute. 11988 */ 11989 if (state == IF_STATE_END) { 11990 ret = -EINVAL; 11991 11992 /* 11993 * ACTION "filter" must have a non-zero length region 11994 * specified. 11995 */ 11996 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 11997 !filter->size) 11998 goto fail; 11999 12000 if (!kernel) { 12001 if (!filename) 12002 goto fail; 12003 12004 /* 12005 * For now, we only support file-based filters 12006 * in per-task events; doing so for CPU-wide 12007 * events requires additional context switching 12008 * trickery, since same object code will be 12009 * mapped at different virtual addresses in 12010 * different processes. 12011 */ 12012 ret = -EOPNOTSUPP; 12013 if (!event->ctx->task) 12014 goto fail; 12015 12016 /* look up the path and grab its inode */ 12017 ret = kern_path(filename, LOOKUP_FOLLOW, 12018 &filter->path); 12019 if (ret) 12020 goto fail; 12021 12022 ret = -EINVAL; 12023 if (!filter->path.dentry || 12024 !S_ISREG(d_inode(filter->path.dentry) 12025 ->i_mode)) 12026 goto fail; 12027 12028 event->addr_filters.nr_file_filters++; 12029 } 12030 12031 /* ready to consume more filters */ 12032 kfree(filename); 12033 filename = NULL; 12034 state = IF_STATE_ACTION; 12035 filter = NULL; 12036 kernel = 0; 12037 } 12038 } 12039 12040 if (state != IF_STATE_ACTION) 12041 goto fail; 12042 12043 kfree(filename); 12044 kfree(orig); 12045 12046 return 0; 12047 12048 fail: 12049 kfree(filename); 12050 free_filters_list(filters); 12051 kfree(orig); 12052 12053 return ret; 12054 } 12055 12056 static int 12057 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 12058 { 12059 LIST_HEAD(filters); 12060 int ret; 12061 12062 /* 12063 * Since this is called in perf_ioctl() path, we're already holding 12064 * ctx::mutex. 12065 */ 12066 lockdep_assert_held(&event->ctx->mutex); 12067 12068 if (WARN_ON_ONCE(event->parent)) 12069 return -EINVAL; 12070 12071 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 12072 if (ret) 12073 goto fail_clear_files; 12074 12075 ret = event->pmu->addr_filters_validate(&filters); 12076 if (ret) 12077 goto fail_free_filters; 12078 12079 /* remove existing filters, if any */ 12080 perf_addr_filters_splice(event, &filters); 12081 12082 /* install new filters */ 12083 perf_event_for_each_child(event, perf_event_addr_filters_apply); 12084 12085 return ret; 12086 12087 fail_free_filters: 12088 free_filters_list(&filters); 12089 12090 fail_clear_files: 12091 event->addr_filters.nr_file_filters = 0; 12092 12093 return ret; 12094 } 12095 12096 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 12097 { 12098 int ret = -EINVAL; 12099 char *filter_str; 12100 12101 filter_str = strndup_user(arg, PAGE_SIZE); 12102 if (IS_ERR(filter_str)) 12103 return PTR_ERR(filter_str); 12104 12105 #ifdef CONFIG_EVENT_TRACING 12106 if (perf_event_is_tracing(event)) { 12107 struct perf_event_context *ctx = event->ctx; 12108 12109 /* 12110 * Beware, here be dragons!! 12111 * 12112 * the tracepoint muck will deadlock against ctx->mutex, but 12113 * the tracepoint stuff does not actually need it. So 12114 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 12115 * already have a reference on ctx. 12116 * 12117 * This can result in event getting moved to a different ctx, 12118 * but that does not affect the tracepoint state. 12119 */ 12120 mutex_unlock(&ctx->mutex); 12121 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 12122 mutex_lock(&ctx->mutex); 12123 } else 12124 #endif 12125 if (has_addr_filter(event)) 12126 ret = perf_event_set_addr_filter(event, filter_str); 12127 12128 kfree(filter_str); 12129 return ret; 12130 } 12131 12132 /* 12133 * hrtimer based swevent callback 12134 */ 12135 12136 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 12137 { 12138 enum hrtimer_restart ret = HRTIMER_RESTART; 12139 struct perf_sample_data data; 12140 struct pt_regs *regs; 12141 struct perf_event *event; 12142 u64 period; 12143 12144 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 12145 12146 if (event->state != PERF_EVENT_STATE_ACTIVE || 12147 event->hw.state & PERF_HES_STOPPED) 12148 return HRTIMER_NORESTART; 12149 12150 event->pmu->read(event); 12151 12152 perf_sample_data_init(&data, 0, event->hw.last_period); 12153 regs = get_irq_regs(); 12154 12155 if (regs && !perf_exclude_event(event, regs)) { 12156 if (!(event->attr.exclude_idle && is_idle_task(current))) 12157 if (__perf_event_overflow(event, 1, &data, regs)) 12158 ret = HRTIMER_NORESTART; 12159 } 12160 12161 period = max_t(u64, 10000, event->hw.sample_period); 12162 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 12163 12164 return ret; 12165 } 12166 12167 static void perf_swevent_start_hrtimer(struct perf_event *event) 12168 { 12169 struct hw_perf_event *hwc = &event->hw; 12170 s64 period; 12171 12172 if (!is_sampling_event(event)) 12173 return; 12174 12175 period = local64_read(&hwc->period_left); 12176 if (period) { 12177 if (period < 0) 12178 period = 10000; 12179 12180 local64_set(&hwc->period_left, 0); 12181 } else { 12182 period = max_t(u64, 10000, hwc->sample_period); 12183 } 12184 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 12185 HRTIMER_MODE_REL_PINNED_HARD); 12186 } 12187 12188 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 12189 { 12190 struct hw_perf_event *hwc = &event->hw; 12191 12192 /* 12193 * Careful: this function can be triggered in the hrtimer handler, 12194 * for cpu-clock events, so hrtimer_cancel() would cause a 12195 * deadlock. 12196 * 12197 * So use hrtimer_try_to_cancel() to try to stop the hrtimer, 12198 * and the cpu-clock handler also sets the PERF_HES_STOPPED flag, 12199 * which guarantees that perf_swevent_hrtimer() will stop the 12200 * hrtimer once it sees the PERF_HES_STOPPED flag. 12201 */ 12202 if (is_sampling_event(event) && (hwc->interrupts != MAX_INTERRUPTS)) { 12203 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 12204 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 12205 12206 hrtimer_try_to_cancel(&hwc->hrtimer); 12207 } 12208 } 12209 12210 static void perf_swevent_destroy_hrtimer(struct perf_event *event) 12211 { 12212 hrtimer_cancel(&event->hw.hrtimer); 12213 } 12214 12215 static void perf_swevent_init_hrtimer(struct perf_event *event) 12216 { 12217 struct hw_perf_event *hwc = &event->hw; 12218 12219 if (!is_sampling_event(event)) 12220 return; 12221 12222 hrtimer_setup(&hwc->hrtimer, perf_swevent_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 12223 event->destroy = perf_swevent_destroy_hrtimer; 12224 12225 /* 12226 * Since hrtimers have a fixed rate, we can do a static freq->period 12227 * mapping and avoid the whole period adjust feedback stuff. 12228 */ 12229 if (event->attr.freq) { 12230 long freq = event->attr.sample_freq; 12231 12232 event->attr.sample_period = NSEC_PER_SEC / freq; 12233 hwc->sample_period = event->attr.sample_period; 12234 local64_set(&hwc->period_left, hwc->sample_period); 12235 hwc->last_period = hwc->sample_period; 12236 event->attr.freq = 0; 12237 } 12238 } 12239 12240 /* 12241 * Software event: cpu wall time clock 12242 */ 12243 12244 static void cpu_clock_event_update(struct perf_event *event) 12245 { 12246 s64 prev; 12247 u64 now; 12248 12249 now = local_clock(); 12250 prev = local64_xchg(&event->hw.prev_count, now); 12251 local64_add(now - prev, &event->count); 12252 } 12253 12254 static void cpu_clock_event_start(struct perf_event *event, int flags) 12255 { 12256 event->hw.state = 0; 12257 local64_set(&event->hw.prev_count, local_clock()); 12258 perf_swevent_start_hrtimer(event); 12259 } 12260 12261 static void cpu_clock_event_stop(struct perf_event *event, int flags) 12262 { 12263 event->hw.state = PERF_HES_STOPPED; 12264 perf_swevent_cancel_hrtimer(event); 12265 if (flags & PERF_EF_UPDATE) 12266 cpu_clock_event_update(event); 12267 } 12268 12269 static int cpu_clock_event_add(struct perf_event *event, int flags) 12270 { 12271 if (flags & PERF_EF_START) 12272 cpu_clock_event_start(event, flags); 12273 perf_event_update_userpage(event); 12274 12275 return 0; 12276 } 12277 12278 static void cpu_clock_event_del(struct perf_event *event, int flags) 12279 { 12280 cpu_clock_event_stop(event, PERF_EF_UPDATE); 12281 } 12282 12283 static void cpu_clock_event_read(struct perf_event *event) 12284 { 12285 cpu_clock_event_update(event); 12286 } 12287 12288 static int cpu_clock_event_init(struct perf_event *event) 12289 { 12290 if (event->attr.type != perf_cpu_clock.type) 12291 return -ENOENT; 12292 12293 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 12294 return -ENOENT; 12295 12296 /* 12297 * no branch sampling for software events 12298 */ 12299 if (has_branch_stack(event)) 12300 return -EOPNOTSUPP; 12301 12302 perf_swevent_init_hrtimer(event); 12303 12304 return 0; 12305 } 12306 12307 static struct pmu perf_cpu_clock = { 12308 .task_ctx_nr = perf_sw_context, 12309 12310 .capabilities = PERF_PMU_CAP_NO_NMI, 12311 .dev = PMU_NULL_DEV, 12312 12313 .event_init = cpu_clock_event_init, 12314 .add = cpu_clock_event_add, 12315 .del = cpu_clock_event_del, 12316 .start = cpu_clock_event_start, 12317 .stop = cpu_clock_event_stop, 12318 .read = cpu_clock_event_read, 12319 }; 12320 12321 /* 12322 * Software event: task time clock 12323 */ 12324 12325 static void task_clock_event_update(struct perf_event *event, u64 now) 12326 { 12327 u64 prev; 12328 s64 delta; 12329 12330 prev = local64_xchg(&event->hw.prev_count, now); 12331 delta = now - prev; 12332 local64_add(delta, &event->count); 12333 } 12334 12335 static void task_clock_event_start(struct perf_event *event, int flags) 12336 { 12337 event->hw.state = 0; 12338 local64_set(&event->hw.prev_count, event->ctx->time.time); 12339 perf_swevent_start_hrtimer(event); 12340 } 12341 12342 static void task_clock_event_stop(struct perf_event *event, int flags) 12343 { 12344 event->hw.state = PERF_HES_STOPPED; 12345 perf_swevent_cancel_hrtimer(event); 12346 if (flags & PERF_EF_UPDATE) 12347 task_clock_event_update(event, event->ctx->time.time); 12348 } 12349 12350 static int task_clock_event_add(struct perf_event *event, int flags) 12351 { 12352 if (flags & PERF_EF_START) 12353 task_clock_event_start(event, flags); 12354 perf_event_update_userpage(event); 12355 12356 return 0; 12357 } 12358 12359 static void task_clock_event_del(struct perf_event *event, int flags) 12360 { 12361 task_clock_event_stop(event, PERF_EF_UPDATE); 12362 } 12363 12364 static void task_clock_event_read(struct perf_event *event) 12365 { 12366 u64 now = perf_clock(); 12367 u64 delta = now - event->ctx->time.stamp; 12368 u64 time = event->ctx->time.time + delta; 12369 12370 task_clock_event_update(event, time); 12371 } 12372 12373 static int task_clock_event_init(struct perf_event *event) 12374 { 12375 if (event->attr.type != perf_task_clock.type) 12376 return -ENOENT; 12377 12378 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 12379 return -ENOENT; 12380 12381 /* 12382 * no branch sampling for software events 12383 */ 12384 if (has_branch_stack(event)) 12385 return -EOPNOTSUPP; 12386 12387 perf_swevent_init_hrtimer(event); 12388 12389 return 0; 12390 } 12391 12392 static struct pmu perf_task_clock = { 12393 .task_ctx_nr = perf_sw_context, 12394 12395 .capabilities = PERF_PMU_CAP_NO_NMI, 12396 .dev = PMU_NULL_DEV, 12397 12398 .event_init = task_clock_event_init, 12399 .add = task_clock_event_add, 12400 .del = task_clock_event_del, 12401 .start = task_clock_event_start, 12402 .stop = task_clock_event_stop, 12403 .read = task_clock_event_read, 12404 }; 12405 12406 static void perf_pmu_nop_void(struct pmu *pmu) 12407 { 12408 } 12409 12410 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 12411 { 12412 } 12413 12414 static int perf_pmu_nop_int(struct pmu *pmu) 12415 { 12416 return 0; 12417 } 12418 12419 static int perf_event_nop_int(struct perf_event *event, u64 value) 12420 { 12421 return 0; 12422 } 12423 12424 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 12425 12426 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 12427 { 12428 __this_cpu_write(nop_txn_flags, flags); 12429 12430 if (flags & ~PERF_PMU_TXN_ADD) 12431 return; 12432 12433 perf_pmu_disable(pmu); 12434 } 12435 12436 static int perf_pmu_commit_txn(struct pmu *pmu) 12437 { 12438 unsigned int flags = __this_cpu_read(nop_txn_flags); 12439 12440 __this_cpu_write(nop_txn_flags, 0); 12441 12442 if (flags & ~PERF_PMU_TXN_ADD) 12443 return 0; 12444 12445 perf_pmu_enable(pmu); 12446 return 0; 12447 } 12448 12449 static void perf_pmu_cancel_txn(struct pmu *pmu) 12450 { 12451 unsigned int flags = __this_cpu_read(nop_txn_flags); 12452 12453 __this_cpu_write(nop_txn_flags, 0); 12454 12455 if (flags & ~PERF_PMU_TXN_ADD) 12456 return; 12457 12458 perf_pmu_enable(pmu); 12459 } 12460 12461 static int perf_event_idx_default(struct perf_event *event) 12462 { 12463 return 0; 12464 } 12465 12466 /* 12467 * Let userspace know that this PMU supports address range filtering: 12468 */ 12469 static ssize_t nr_addr_filters_show(struct device *dev, 12470 struct device_attribute *attr, 12471 char *page) 12472 { 12473 struct pmu *pmu = dev_get_drvdata(dev); 12474 12475 return sysfs_emit(page, "%d\n", pmu->nr_addr_filters); 12476 } 12477 DEVICE_ATTR_RO(nr_addr_filters); 12478 12479 static struct idr pmu_idr; 12480 12481 static ssize_t 12482 type_show(struct device *dev, struct device_attribute *attr, char *page) 12483 { 12484 struct pmu *pmu = dev_get_drvdata(dev); 12485 12486 return sysfs_emit(page, "%d\n", pmu->type); 12487 } 12488 static DEVICE_ATTR_RO(type); 12489 12490 static ssize_t 12491 perf_event_mux_interval_ms_show(struct device *dev, 12492 struct device_attribute *attr, 12493 char *page) 12494 { 12495 struct pmu *pmu = dev_get_drvdata(dev); 12496 12497 return sysfs_emit(page, "%d\n", pmu->hrtimer_interval_ms); 12498 } 12499 12500 static DEFINE_MUTEX(mux_interval_mutex); 12501 12502 static ssize_t 12503 perf_event_mux_interval_ms_store(struct device *dev, 12504 struct device_attribute *attr, 12505 const char *buf, size_t count) 12506 { 12507 struct pmu *pmu = dev_get_drvdata(dev); 12508 int timer, cpu, ret; 12509 12510 ret = kstrtoint(buf, 0, &timer); 12511 if (ret) 12512 return ret; 12513 12514 if (timer < 1) 12515 return -EINVAL; 12516 12517 /* same value, noting to do */ 12518 if (timer == pmu->hrtimer_interval_ms) 12519 return count; 12520 12521 mutex_lock(&mux_interval_mutex); 12522 pmu->hrtimer_interval_ms = timer; 12523 12524 /* update all cpuctx for this PMU */ 12525 cpus_read_lock(); 12526 for_each_online_cpu(cpu) { 12527 struct perf_cpu_pmu_context *cpc; 12528 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu); 12529 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 12530 12531 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 12532 } 12533 cpus_read_unlock(); 12534 mutex_unlock(&mux_interval_mutex); 12535 12536 return count; 12537 } 12538 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 12539 12540 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu) 12541 { 12542 switch (scope) { 12543 case PERF_PMU_SCOPE_CORE: 12544 return topology_sibling_cpumask(cpu); 12545 case PERF_PMU_SCOPE_DIE: 12546 return topology_die_cpumask(cpu); 12547 case PERF_PMU_SCOPE_CLUSTER: 12548 return topology_cluster_cpumask(cpu); 12549 case PERF_PMU_SCOPE_PKG: 12550 return topology_core_cpumask(cpu); 12551 case PERF_PMU_SCOPE_SYS_WIDE: 12552 return cpu_online_mask; 12553 } 12554 12555 return NULL; 12556 } 12557 12558 static inline struct cpumask *perf_scope_cpumask(unsigned int scope) 12559 { 12560 switch (scope) { 12561 case PERF_PMU_SCOPE_CORE: 12562 return perf_online_core_mask; 12563 case PERF_PMU_SCOPE_DIE: 12564 return perf_online_die_mask; 12565 case PERF_PMU_SCOPE_CLUSTER: 12566 return perf_online_cluster_mask; 12567 case PERF_PMU_SCOPE_PKG: 12568 return perf_online_pkg_mask; 12569 case PERF_PMU_SCOPE_SYS_WIDE: 12570 return perf_online_sys_mask; 12571 } 12572 12573 return NULL; 12574 } 12575 12576 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr, 12577 char *buf) 12578 { 12579 struct pmu *pmu = dev_get_drvdata(dev); 12580 struct cpumask *mask = perf_scope_cpumask(pmu->scope); 12581 12582 if (mask) 12583 return cpumap_print_to_pagebuf(true, buf, mask); 12584 return 0; 12585 } 12586 12587 static DEVICE_ATTR_RO(cpumask); 12588 12589 static struct attribute *pmu_dev_attrs[] = { 12590 &dev_attr_type.attr, 12591 &dev_attr_perf_event_mux_interval_ms.attr, 12592 &dev_attr_nr_addr_filters.attr, 12593 &dev_attr_cpumask.attr, 12594 NULL, 12595 }; 12596 12597 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 12598 { 12599 struct device *dev = kobj_to_dev(kobj); 12600 struct pmu *pmu = dev_get_drvdata(dev); 12601 12602 if (n == 2 && !pmu->nr_addr_filters) 12603 return 0; 12604 12605 /* cpumask */ 12606 if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE) 12607 return 0; 12608 12609 return a->mode; 12610 } 12611 12612 static struct attribute_group pmu_dev_attr_group = { 12613 .is_visible = pmu_dev_is_visible, 12614 .attrs = pmu_dev_attrs, 12615 }; 12616 12617 static const struct attribute_group *pmu_dev_groups[] = { 12618 &pmu_dev_attr_group, 12619 NULL, 12620 }; 12621 12622 static int pmu_bus_running; 12623 static const struct bus_type pmu_bus = { 12624 .name = "event_source", 12625 .dev_groups = pmu_dev_groups, 12626 }; 12627 12628 static void pmu_dev_release(struct device *dev) 12629 { 12630 kfree(dev); 12631 } 12632 12633 static int pmu_dev_alloc(struct pmu *pmu) 12634 { 12635 int ret = -ENOMEM; 12636 12637 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 12638 if (!pmu->dev) 12639 goto out; 12640 12641 pmu->dev->groups = pmu->attr_groups; 12642 device_initialize(pmu->dev); 12643 12644 dev_set_drvdata(pmu->dev, pmu); 12645 pmu->dev->bus = &pmu_bus; 12646 pmu->dev->parent = pmu->parent; 12647 pmu->dev->release = pmu_dev_release; 12648 12649 ret = dev_set_name(pmu->dev, "%s", pmu->name); 12650 if (ret) 12651 goto free_dev; 12652 12653 ret = device_add(pmu->dev); 12654 if (ret) 12655 goto free_dev; 12656 12657 if (pmu->attr_update) { 12658 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 12659 if (ret) 12660 goto del_dev; 12661 } 12662 12663 out: 12664 return ret; 12665 12666 del_dev: 12667 device_del(pmu->dev); 12668 12669 free_dev: 12670 put_device(pmu->dev); 12671 pmu->dev = NULL; 12672 goto out; 12673 } 12674 12675 static struct lock_class_key cpuctx_mutex; 12676 static struct lock_class_key cpuctx_lock; 12677 12678 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new) 12679 { 12680 void *tmp, *val = idr_find(idr, id); 12681 12682 if (val != old) 12683 return false; 12684 12685 tmp = idr_replace(idr, new, id); 12686 if (IS_ERR(tmp)) 12687 return false; 12688 12689 WARN_ON_ONCE(tmp != val); 12690 return true; 12691 } 12692 12693 static void perf_pmu_free(struct pmu *pmu) 12694 { 12695 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 12696 if (pmu->nr_addr_filters) 12697 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 12698 device_del(pmu->dev); 12699 put_device(pmu->dev); 12700 } 12701 12702 if (pmu->cpu_pmu_context) { 12703 int cpu; 12704 12705 for_each_possible_cpu(cpu) { 12706 struct perf_cpu_pmu_context *cpc; 12707 12708 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu); 12709 if (!cpc) 12710 continue; 12711 if (cpc->epc.embedded) { 12712 /* refcount managed */ 12713 put_pmu_ctx(&cpc->epc); 12714 continue; 12715 } 12716 kfree(cpc); 12717 } 12718 free_percpu(pmu->cpu_pmu_context); 12719 } 12720 } 12721 12722 DEFINE_FREE(pmu_unregister, struct pmu *, if (_T) perf_pmu_free(_T)) 12723 12724 int perf_pmu_register(struct pmu *_pmu, const char *name, int type) 12725 { 12726 int cpu, max = PERF_TYPE_MAX; 12727 12728 struct pmu *pmu __free(pmu_unregister) = _pmu; 12729 guard(mutex)(&pmus_lock); 12730 12731 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) 12732 return -EINVAL; 12733 12734 if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, 12735 "Can not register a pmu with an invalid scope.\n")) 12736 return -EINVAL; 12737 12738 pmu->name = name; 12739 12740 if (type >= 0) 12741 max = type; 12742 12743 CLASS(idr_alloc, pmu_type)(&pmu_idr, NULL, max, 0, GFP_KERNEL); 12744 if (pmu_type.id < 0) 12745 return pmu_type.id; 12746 12747 WARN_ON(type >= 0 && pmu_type.id != type); 12748 12749 pmu->type = pmu_type.id; 12750 atomic_set(&pmu->exclusive_cnt, 0); 12751 12752 if (pmu_bus_running && !pmu->dev) { 12753 int ret = pmu_dev_alloc(pmu); 12754 if (ret) 12755 return ret; 12756 } 12757 12758 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context *); 12759 if (!pmu->cpu_pmu_context) 12760 return -ENOMEM; 12761 12762 for_each_possible_cpu(cpu) { 12763 struct perf_cpu_pmu_context *cpc = 12764 kmalloc_node(sizeof(struct perf_cpu_pmu_context), 12765 GFP_KERNEL | __GFP_ZERO, 12766 cpu_to_node(cpu)); 12767 12768 if (!cpc) 12769 return -ENOMEM; 12770 12771 *per_cpu_ptr(pmu->cpu_pmu_context, cpu) = cpc; 12772 __perf_init_event_pmu_context(&cpc->epc, pmu); 12773 __perf_mux_hrtimer_init(cpc, cpu); 12774 } 12775 12776 if (!pmu->start_txn) { 12777 if (pmu->pmu_enable) { 12778 /* 12779 * If we have pmu_enable/pmu_disable calls, install 12780 * transaction stubs that use that to try and batch 12781 * hardware accesses. 12782 */ 12783 pmu->start_txn = perf_pmu_start_txn; 12784 pmu->commit_txn = perf_pmu_commit_txn; 12785 pmu->cancel_txn = perf_pmu_cancel_txn; 12786 } else { 12787 pmu->start_txn = perf_pmu_nop_txn; 12788 pmu->commit_txn = perf_pmu_nop_int; 12789 pmu->cancel_txn = perf_pmu_nop_void; 12790 } 12791 } 12792 12793 if (!pmu->pmu_enable) { 12794 pmu->pmu_enable = perf_pmu_nop_void; 12795 pmu->pmu_disable = perf_pmu_nop_void; 12796 } 12797 12798 if (!pmu->check_period) 12799 pmu->check_period = perf_event_nop_int; 12800 12801 if (!pmu->event_idx) 12802 pmu->event_idx = perf_event_idx_default; 12803 12804 INIT_LIST_HEAD(&pmu->events); 12805 spin_lock_init(&pmu->events_lock); 12806 12807 /* 12808 * Now that the PMU is complete, make it visible to perf_try_init_event(). 12809 */ 12810 if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu)) 12811 return -EINVAL; 12812 list_add_rcu(&pmu->entry, &pmus); 12813 12814 take_idr_id(pmu_type); 12815 _pmu = no_free_ptr(pmu); // let it rip 12816 return 0; 12817 } 12818 EXPORT_SYMBOL_GPL(perf_pmu_register); 12819 12820 static void __pmu_detach_event(struct pmu *pmu, struct perf_event *event, 12821 struct perf_event_context *ctx) 12822 { 12823 /* 12824 * De-schedule the event and mark it REVOKED. 12825 */ 12826 perf_event_exit_event(event, ctx, ctx->task, true); 12827 12828 /* 12829 * All _free_event() bits that rely on event->pmu: 12830 * 12831 * Notably, perf_mmap() relies on the ordering here. 12832 */ 12833 scoped_guard (mutex, &event->mmap_mutex) { 12834 WARN_ON_ONCE(pmu->event_unmapped); 12835 /* 12836 * Mostly an empty lock sequence, such that perf_mmap(), which 12837 * relies on mmap_mutex, is sure to observe the state change. 12838 */ 12839 } 12840 12841 perf_event_free_bpf_prog(event); 12842 perf_free_addr_filters(event); 12843 12844 if (event->destroy) { 12845 event->destroy(event); 12846 event->destroy = NULL; 12847 } 12848 12849 if (event->pmu_ctx) { 12850 put_pmu_ctx(event->pmu_ctx); 12851 event->pmu_ctx = NULL; 12852 } 12853 12854 exclusive_event_destroy(event); 12855 module_put(pmu->module); 12856 12857 event->pmu = NULL; /* force fault instead of UAF */ 12858 } 12859 12860 static void pmu_detach_event(struct pmu *pmu, struct perf_event *event) 12861 { 12862 struct perf_event_context *ctx; 12863 12864 ctx = perf_event_ctx_lock(event); 12865 __pmu_detach_event(pmu, event, ctx); 12866 perf_event_ctx_unlock(event, ctx); 12867 12868 scoped_guard (spinlock, &pmu->events_lock) 12869 list_del(&event->pmu_list); 12870 } 12871 12872 static struct perf_event *pmu_get_event(struct pmu *pmu) 12873 { 12874 struct perf_event *event; 12875 12876 guard(spinlock)(&pmu->events_lock); 12877 list_for_each_entry(event, &pmu->events, pmu_list) { 12878 if (atomic_long_inc_not_zero(&event->refcount)) 12879 return event; 12880 } 12881 12882 return NULL; 12883 } 12884 12885 static bool pmu_empty(struct pmu *pmu) 12886 { 12887 guard(spinlock)(&pmu->events_lock); 12888 return list_empty(&pmu->events); 12889 } 12890 12891 static void pmu_detach_events(struct pmu *pmu) 12892 { 12893 struct perf_event *event; 12894 12895 for (;;) { 12896 event = pmu_get_event(pmu); 12897 if (!event) 12898 break; 12899 12900 pmu_detach_event(pmu, event); 12901 put_event(event); 12902 } 12903 12904 /* 12905 * wait for pending _free_event()s 12906 */ 12907 wait_var_event(pmu, pmu_empty(pmu)); 12908 } 12909 12910 int perf_pmu_unregister(struct pmu *pmu) 12911 { 12912 scoped_guard (mutex, &pmus_lock) { 12913 if (!idr_cmpxchg(&pmu_idr, pmu->type, pmu, NULL)) 12914 return -EINVAL; 12915 12916 list_del_rcu(&pmu->entry); 12917 } 12918 12919 /* 12920 * We dereference the pmu list under both SRCU and regular RCU, so 12921 * synchronize against both of those. 12922 * 12923 * Notably, the entirety of event creation, from perf_init_event() 12924 * (which will now fail, because of the above) until 12925 * perf_install_in_context() should be under SRCU such that 12926 * this synchronizes against event creation. This avoids trying to 12927 * detach events that are not fully formed. 12928 */ 12929 synchronize_srcu(&pmus_srcu); 12930 synchronize_rcu(); 12931 12932 if (pmu->event_unmapped && !pmu_empty(pmu)) { 12933 /* 12934 * Can't force remove events when pmu::event_unmapped() 12935 * is used in perf_mmap_close(). 12936 */ 12937 guard(mutex)(&pmus_lock); 12938 idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu); 12939 list_add_rcu(&pmu->entry, &pmus); 12940 return -EBUSY; 12941 } 12942 12943 scoped_guard (mutex, &pmus_lock) 12944 idr_remove(&pmu_idr, pmu->type); 12945 12946 /* 12947 * PMU is removed from the pmus list, so no new events will 12948 * be created, now take care of the existing ones. 12949 */ 12950 pmu_detach_events(pmu); 12951 12952 /* 12953 * PMU is unused, make it go away. 12954 */ 12955 perf_pmu_free(pmu); 12956 return 0; 12957 } 12958 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 12959 12960 static inline bool has_extended_regs(struct perf_event *event) 12961 { 12962 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 12963 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 12964 } 12965 12966 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 12967 { 12968 struct perf_event_context *ctx = NULL; 12969 int ret; 12970 12971 if (!try_module_get(pmu->module)) 12972 return -ENODEV; 12973 12974 /* 12975 * A number of pmu->event_init() methods iterate the sibling_list to, 12976 * for example, validate if the group fits on the PMU. Therefore, 12977 * if this is a sibling event, acquire the ctx->mutex to protect 12978 * the sibling_list. 12979 */ 12980 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 12981 /* 12982 * This ctx->mutex can nest when we're called through 12983 * inheritance. See the perf_event_ctx_lock_nested() comment. 12984 */ 12985 ctx = perf_event_ctx_lock_nested(event->group_leader, 12986 SINGLE_DEPTH_NESTING); 12987 BUG_ON(!ctx); 12988 } 12989 12990 event->pmu = pmu; 12991 ret = pmu->event_init(event); 12992 12993 if (ctx) 12994 perf_event_ctx_unlock(event->group_leader, ctx); 12995 12996 if (ret) 12997 goto err_pmu; 12998 12999 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 13000 has_extended_regs(event)) { 13001 ret = -EOPNOTSUPP; 13002 goto err_destroy; 13003 } 13004 13005 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 13006 event_has_any_exclude_flag(event)) { 13007 ret = -EINVAL; 13008 goto err_destroy; 13009 } 13010 13011 if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) { 13012 const struct cpumask *cpumask; 13013 struct cpumask *pmu_cpumask; 13014 int cpu; 13015 13016 cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu); 13017 pmu_cpumask = perf_scope_cpumask(pmu->scope); 13018 13019 ret = -ENODEV; 13020 if (!pmu_cpumask || !cpumask) 13021 goto err_destroy; 13022 13023 cpu = cpumask_any_and(pmu_cpumask, cpumask); 13024 if (cpu >= nr_cpu_ids) 13025 goto err_destroy; 13026 13027 event->event_caps |= PERF_EV_CAP_READ_SCOPE; 13028 } 13029 13030 return 0; 13031 13032 err_destroy: 13033 if (event->destroy) { 13034 event->destroy(event); 13035 event->destroy = NULL; 13036 } 13037 13038 err_pmu: 13039 event->pmu = NULL; 13040 module_put(pmu->module); 13041 return ret; 13042 } 13043 13044 static struct pmu *perf_init_event(struct perf_event *event) 13045 { 13046 bool extended_type = false; 13047 struct pmu *pmu; 13048 int type, ret; 13049 13050 guard(srcu)(&pmus_srcu); /* pmu idr/list access */ 13051 13052 /* 13053 * Save original type before calling pmu->event_init() since certain 13054 * pmus overwrites event->attr.type to forward event to another pmu. 13055 */ 13056 event->orig_type = event->attr.type; 13057 13058 /* Try parent's PMU first: */ 13059 if (event->parent && event->parent->pmu) { 13060 pmu = event->parent->pmu; 13061 ret = perf_try_init_event(pmu, event); 13062 if (!ret) 13063 return pmu; 13064 } 13065 13066 /* 13067 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 13068 * are often aliases for PERF_TYPE_RAW. 13069 */ 13070 type = event->attr.type; 13071 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 13072 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 13073 if (!type) { 13074 type = PERF_TYPE_RAW; 13075 } else { 13076 extended_type = true; 13077 event->attr.config &= PERF_HW_EVENT_MASK; 13078 } 13079 } 13080 13081 again: 13082 scoped_guard (rcu) 13083 pmu = idr_find(&pmu_idr, type); 13084 if (pmu) { 13085 if (event->attr.type != type && type != PERF_TYPE_RAW && 13086 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 13087 return ERR_PTR(-ENOENT); 13088 13089 ret = perf_try_init_event(pmu, event); 13090 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 13091 type = event->attr.type; 13092 goto again; 13093 } 13094 13095 if (ret) 13096 return ERR_PTR(ret); 13097 13098 return pmu; 13099 } 13100 13101 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 13102 ret = perf_try_init_event(pmu, event); 13103 if (!ret) 13104 return pmu; 13105 13106 if (ret != -ENOENT) 13107 return ERR_PTR(ret); 13108 } 13109 13110 return ERR_PTR(-ENOENT); 13111 } 13112 13113 static void attach_sb_event(struct perf_event *event) 13114 { 13115 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 13116 13117 raw_spin_lock(&pel->lock); 13118 list_add_rcu(&event->sb_list, &pel->list); 13119 raw_spin_unlock(&pel->lock); 13120 } 13121 13122 /* 13123 * We keep a list of all !task (and therefore per-cpu) events 13124 * that need to receive side-band records. 13125 * 13126 * This avoids having to scan all the various PMU per-cpu contexts 13127 * looking for them. 13128 */ 13129 static void account_pmu_sb_event(struct perf_event *event) 13130 { 13131 if (is_sb_event(event)) 13132 attach_sb_event(event); 13133 } 13134 13135 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 13136 static void account_freq_event_nohz(void) 13137 { 13138 #ifdef CONFIG_NO_HZ_FULL 13139 /* Lock so we don't race with concurrent unaccount */ 13140 spin_lock(&nr_freq_lock); 13141 if (atomic_inc_return(&nr_freq_events) == 1) 13142 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 13143 spin_unlock(&nr_freq_lock); 13144 #endif 13145 } 13146 13147 static void account_freq_event(void) 13148 { 13149 if (tick_nohz_full_enabled()) 13150 account_freq_event_nohz(); 13151 else 13152 atomic_inc(&nr_freq_events); 13153 } 13154 13155 13156 static void account_event(struct perf_event *event) 13157 { 13158 bool inc = false; 13159 13160 if (event->parent) 13161 return; 13162 13163 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 13164 inc = true; 13165 if (event->attr.mmap || event->attr.mmap_data) 13166 atomic_inc(&nr_mmap_events); 13167 if (event->attr.build_id) 13168 atomic_inc(&nr_build_id_events); 13169 if (event->attr.comm) 13170 atomic_inc(&nr_comm_events); 13171 if (event->attr.namespaces) 13172 atomic_inc(&nr_namespaces_events); 13173 if (event->attr.cgroup) 13174 atomic_inc(&nr_cgroup_events); 13175 if (event->attr.task) 13176 atomic_inc(&nr_task_events); 13177 if (event->attr.freq) 13178 account_freq_event(); 13179 if (event->attr.context_switch) { 13180 atomic_inc(&nr_switch_events); 13181 inc = true; 13182 } 13183 if (has_branch_stack(event)) 13184 inc = true; 13185 if (is_cgroup_event(event)) 13186 inc = true; 13187 if (event->attr.ksymbol) 13188 atomic_inc(&nr_ksymbol_events); 13189 if (event->attr.bpf_event) 13190 atomic_inc(&nr_bpf_events); 13191 if (event->attr.text_poke) 13192 atomic_inc(&nr_text_poke_events); 13193 13194 if (inc) { 13195 /* 13196 * We need the mutex here because static_branch_enable() 13197 * must complete *before* the perf_sched_count increment 13198 * becomes visible. 13199 */ 13200 if (atomic_inc_not_zero(&perf_sched_count)) 13201 goto enabled; 13202 13203 mutex_lock(&perf_sched_mutex); 13204 if (!atomic_read(&perf_sched_count)) { 13205 static_branch_enable(&perf_sched_events); 13206 /* 13207 * Guarantee that all CPUs observe they key change and 13208 * call the perf scheduling hooks before proceeding to 13209 * install events that need them. 13210 */ 13211 synchronize_rcu(); 13212 } 13213 /* 13214 * Now that we have waited for the sync_sched(), allow further 13215 * increments to by-pass the mutex. 13216 */ 13217 atomic_inc(&perf_sched_count); 13218 mutex_unlock(&perf_sched_mutex); 13219 } 13220 enabled: 13221 13222 account_pmu_sb_event(event); 13223 } 13224 13225 /* 13226 * Allocate and initialize an event structure 13227 */ 13228 static struct perf_event * 13229 perf_event_alloc(struct perf_event_attr *attr, int cpu, 13230 struct task_struct *task, 13231 struct perf_event *group_leader, 13232 struct perf_event *parent_event, 13233 perf_overflow_handler_t overflow_handler, 13234 void *context, int cgroup_fd) 13235 { 13236 struct pmu *pmu; 13237 struct hw_perf_event *hwc; 13238 long err = -EINVAL; 13239 int node; 13240 13241 if ((unsigned)cpu >= nr_cpu_ids) { 13242 if (!task || cpu != -1) 13243 return ERR_PTR(-EINVAL); 13244 } 13245 if (attr->sigtrap && !task) { 13246 /* Requires a task: avoid signalling random tasks. */ 13247 return ERR_PTR(-EINVAL); 13248 } 13249 13250 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 13251 struct perf_event *event __free(__free_event) = 13252 kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, node); 13253 if (!event) 13254 return ERR_PTR(-ENOMEM); 13255 13256 /* 13257 * Single events are their own group leaders, with an 13258 * empty sibling list: 13259 */ 13260 if (!group_leader) 13261 group_leader = event; 13262 13263 mutex_init(&event->child_mutex); 13264 INIT_LIST_HEAD(&event->child_list); 13265 13266 INIT_LIST_HEAD(&event->event_entry); 13267 INIT_LIST_HEAD(&event->sibling_list); 13268 INIT_LIST_HEAD(&event->active_list); 13269 init_event_group(event); 13270 INIT_LIST_HEAD(&event->rb_entry); 13271 INIT_LIST_HEAD(&event->active_entry); 13272 INIT_LIST_HEAD(&event->addr_filters.list); 13273 INIT_HLIST_NODE(&event->hlist_entry); 13274 INIT_LIST_HEAD(&event->pmu_list); 13275 13276 13277 init_waitqueue_head(&event->waitq); 13278 init_irq_work(&event->pending_irq, perf_pending_irq); 13279 event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable); 13280 init_task_work(&event->pending_task, perf_pending_task); 13281 13282 mutex_init(&event->mmap_mutex); 13283 raw_spin_lock_init(&event->addr_filters.lock); 13284 13285 atomic_long_set(&event->refcount, 1); 13286 event->cpu = cpu; 13287 event->attr = *attr; 13288 event->group_leader = group_leader; 13289 event->pmu = NULL; 13290 event->oncpu = -1; 13291 13292 event->parent = parent_event; 13293 13294 event->ns = get_pid_ns(task_active_pid_ns(current)); 13295 event->id = atomic64_inc_return(&perf_event_id); 13296 13297 event->state = PERF_EVENT_STATE_INACTIVE; 13298 13299 if (parent_event) 13300 event->event_caps = parent_event->event_caps; 13301 13302 if (task) { 13303 event->attach_state = PERF_ATTACH_TASK; 13304 /* 13305 * XXX pmu::event_init needs to know what task to account to 13306 * and we cannot use the ctx information because we need the 13307 * pmu before we get a ctx. 13308 */ 13309 event->hw.target = get_task_struct(task); 13310 } 13311 13312 event->clock = &local_clock; 13313 if (parent_event) 13314 event->clock = parent_event->clock; 13315 13316 if (!overflow_handler && parent_event) { 13317 overflow_handler = parent_event->overflow_handler; 13318 context = parent_event->overflow_handler_context; 13319 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 13320 if (parent_event->prog) { 13321 struct bpf_prog *prog = parent_event->prog; 13322 13323 bpf_prog_inc(prog); 13324 event->prog = prog; 13325 } 13326 #endif 13327 } 13328 13329 if (overflow_handler) { 13330 event->overflow_handler = overflow_handler; 13331 event->overflow_handler_context = context; 13332 } else if (is_write_backward(event)){ 13333 event->overflow_handler = perf_event_output_backward; 13334 event->overflow_handler_context = NULL; 13335 } else { 13336 event->overflow_handler = perf_event_output_forward; 13337 event->overflow_handler_context = NULL; 13338 } 13339 13340 perf_event__state_init(event); 13341 13342 pmu = NULL; 13343 13344 hwc = &event->hw; 13345 hwc->sample_period = attr->sample_period; 13346 if (is_event_in_freq_mode(event)) 13347 hwc->sample_period = 1; 13348 hwc->last_period = hwc->sample_period; 13349 13350 local64_set(&hwc->period_left, hwc->sample_period); 13351 13352 /* 13353 * We do not support PERF_SAMPLE_READ on inherited events unless 13354 * PERF_SAMPLE_TID is also selected, which allows inherited events to 13355 * collect per-thread samples. 13356 * See perf_output_read(). 13357 */ 13358 if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID)) 13359 return ERR_PTR(-EINVAL); 13360 13361 if (!has_branch_stack(event)) 13362 event->attr.branch_sample_type = 0; 13363 13364 pmu = perf_init_event(event); 13365 if (IS_ERR(pmu)) 13366 return (void*)pmu; 13367 13368 /* 13369 * The PERF_ATTACH_TASK_DATA is set in the event_init()->hw_config(). 13370 * The attach should be right after the perf_init_event(). 13371 * Otherwise, the __free_event() would mistakenly detach the non-exist 13372 * perf_ctx_data because of the other errors between them. 13373 */ 13374 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 13375 err = attach_perf_ctx_data(event); 13376 if (err) 13377 return ERR_PTR(err); 13378 } 13379 13380 /* 13381 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 13382 * events (they don't make sense as the cgroup will be different 13383 * on other CPUs in the uncore mask). 13384 */ 13385 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) 13386 return ERR_PTR(-EINVAL); 13387 13388 if (event->attr.aux_output && 13389 (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) || 13390 event->attr.aux_pause || event->attr.aux_resume)) 13391 return ERR_PTR(-EOPNOTSUPP); 13392 13393 if (event->attr.aux_pause && event->attr.aux_resume) 13394 return ERR_PTR(-EINVAL); 13395 13396 if (event->attr.aux_start_paused) { 13397 if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) 13398 return ERR_PTR(-EOPNOTSUPP); 13399 event->hw.aux_paused = 1; 13400 } 13401 13402 if (cgroup_fd != -1) { 13403 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 13404 if (err) 13405 return ERR_PTR(err); 13406 } 13407 13408 err = exclusive_event_init(event); 13409 if (err) 13410 return ERR_PTR(err); 13411 13412 if (has_addr_filter(event)) { 13413 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 13414 sizeof(struct perf_addr_filter_range), 13415 GFP_KERNEL); 13416 if (!event->addr_filter_ranges) 13417 return ERR_PTR(-ENOMEM); 13418 13419 /* 13420 * Clone the parent's vma offsets: they are valid until exec() 13421 * even if the mm is not shared with the parent. 13422 */ 13423 if (event->parent) { 13424 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 13425 13426 raw_spin_lock_irq(&ifh->lock); 13427 memcpy(event->addr_filter_ranges, 13428 event->parent->addr_filter_ranges, 13429 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 13430 raw_spin_unlock_irq(&ifh->lock); 13431 } 13432 13433 /* force hw sync on the address filters */ 13434 event->addr_filters_gen = 1; 13435 } 13436 13437 if (!event->parent) { 13438 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 13439 err = get_callchain_buffers(attr->sample_max_stack); 13440 if (err) 13441 return ERR_PTR(err); 13442 event->attach_state |= PERF_ATTACH_CALLCHAIN; 13443 } 13444 } 13445 13446 err = security_perf_event_alloc(event); 13447 if (err) 13448 return ERR_PTR(err); 13449 13450 err = mediated_pmu_account_event(event); 13451 if (err) 13452 return ERR_PTR(err); 13453 13454 /* symmetric to unaccount_event() in _free_event() */ 13455 account_event(event); 13456 13457 /* 13458 * Event creation should be under SRCU, see perf_pmu_unregister(). 13459 */ 13460 lockdep_assert_held(&pmus_srcu); 13461 scoped_guard (spinlock, &pmu->events_lock) 13462 list_add(&event->pmu_list, &pmu->events); 13463 13464 return_ptr(event); 13465 } 13466 13467 static int perf_copy_attr(struct perf_event_attr __user *uattr, 13468 struct perf_event_attr *attr) 13469 { 13470 u32 size; 13471 int ret; 13472 13473 /* Zero the full structure, so that a short copy will be nice. */ 13474 memset(attr, 0, sizeof(*attr)); 13475 13476 ret = get_user(size, &uattr->size); 13477 if (ret) 13478 return ret; 13479 13480 /* ABI compatibility quirk: */ 13481 if (!size) 13482 size = PERF_ATTR_SIZE_VER0; 13483 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 13484 goto err_size; 13485 13486 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 13487 if (ret) { 13488 if (ret == -E2BIG) 13489 goto err_size; 13490 return ret; 13491 } 13492 13493 attr->size = size; 13494 13495 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 13496 return -EINVAL; 13497 13498 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 13499 return -EINVAL; 13500 13501 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 13502 return -EINVAL; 13503 13504 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 13505 u64 mask = attr->branch_sample_type; 13506 13507 /* only using defined bits */ 13508 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 13509 return -EINVAL; 13510 13511 /* at least one branch bit must be set */ 13512 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 13513 return -EINVAL; 13514 13515 /* propagate priv level, when not set for branch */ 13516 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 13517 13518 /* exclude_kernel checked on syscall entry */ 13519 if (!attr->exclude_kernel) 13520 mask |= PERF_SAMPLE_BRANCH_KERNEL; 13521 13522 if (!attr->exclude_user) 13523 mask |= PERF_SAMPLE_BRANCH_USER; 13524 13525 if (!attr->exclude_hv) 13526 mask |= PERF_SAMPLE_BRANCH_HV; 13527 /* 13528 * adjust user setting (for HW filter setup) 13529 */ 13530 attr->branch_sample_type = mask; 13531 } 13532 /* privileged levels capture (kernel, hv): check permissions */ 13533 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 13534 ret = perf_allow_kernel(); 13535 if (ret) 13536 return ret; 13537 } 13538 } 13539 13540 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 13541 ret = perf_reg_validate(attr->sample_regs_user); 13542 if (ret) 13543 return ret; 13544 } 13545 13546 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 13547 if (!arch_perf_have_user_stack_dump()) 13548 return -ENOSYS; 13549 13550 /* 13551 * We have __u32 type for the size, but so far 13552 * we can only use __u16 as maximum due to the 13553 * __u16 sample size limit. 13554 */ 13555 if (attr->sample_stack_user >= USHRT_MAX) 13556 return -EINVAL; 13557 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 13558 return -EINVAL; 13559 } 13560 13561 if (!attr->sample_max_stack) 13562 attr->sample_max_stack = sysctl_perf_event_max_stack; 13563 13564 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 13565 ret = perf_reg_validate(attr->sample_regs_intr); 13566 13567 #ifndef CONFIG_CGROUP_PERF 13568 if (attr->sample_type & PERF_SAMPLE_CGROUP) 13569 return -EINVAL; 13570 #endif 13571 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 13572 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 13573 return -EINVAL; 13574 13575 if (!attr->inherit && attr->inherit_thread) 13576 return -EINVAL; 13577 13578 if (attr->remove_on_exec && attr->enable_on_exec) 13579 return -EINVAL; 13580 13581 if (attr->sigtrap && !attr->remove_on_exec) 13582 return -EINVAL; 13583 13584 out: 13585 return ret; 13586 13587 err_size: 13588 put_user(sizeof(*attr), &uattr->size); 13589 ret = -E2BIG; 13590 goto out; 13591 } 13592 13593 static void mutex_lock_double(struct mutex *a, struct mutex *b) 13594 { 13595 if (b < a) 13596 swap(a, b); 13597 13598 mutex_lock(a); 13599 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 13600 } 13601 13602 static int 13603 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 13604 { 13605 struct perf_buffer *rb = NULL; 13606 int ret = -EINVAL; 13607 13608 if (!output_event) { 13609 mutex_lock(&event->mmap_mutex); 13610 goto set; 13611 } 13612 13613 /* don't allow circular references */ 13614 if (event == output_event) 13615 goto out; 13616 13617 /* 13618 * Don't allow cross-cpu buffers 13619 */ 13620 if (output_event->cpu != event->cpu) 13621 goto out; 13622 13623 /* 13624 * If its not a per-cpu rb, it must be the same task. 13625 */ 13626 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 13627 goto out; 13628 13629 /* 13630 * Mixing clocks in the same buffer is trouble you don't need. 13631 */ 13632 if (output_event->clock != event->clock) 13633 goto out; 13634 13635 /* 13636 * Either writing ring buffer from beginning or from end. 13637 * Mixing is not allowed. 13638 */ 13639 if (is_write_backward(output_event) != is_write_backward(event)) 13640 goto out; 13641 13642 /* 13643 * If both events generate aux data, they must be on the same PMU 13644 */ 13645 if (has_aux(event) && has_aux(output_event) && 13646 event->pmu != output_event->pmu) 13647 goto out; 13648 13649 /* 13650 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 13651 * output_event is already on rb->event_list, and the list iteration 13652 * restarts after every removal, it is guaranteed this new event is 13653 * observed *OR* if output_event is already removed, it's guaranteed we 13654 * observe !rb->mmap_count. 13655 */ 13656 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 13657 set: 13658 /* Can't redirect output if we've got an active mmap() */ 13659 if (refcount_read(&event->mmap_count)) 13660 goto unlock; 13661 13662 if (output_event) { 13663 if (output_event->state <= PERF_EVENT_STATE_REVOKED) 13664 goto unlock; 13665 13666 /* get the rb we want to redirect to */ 13667 rb = ring_buffer_get(output_event); 13668 if (!rb) 13669 goto unlock; 13670 13671 /* did we race against perf_mmap_close() */ 13672 if (!refcount_read(&rb->mmap_count)) { 13673 ring_buffer_put(rb); 13674 goto unlock; 13675 } 13676 } 13677 13678 ring_buffer_attach(event, rb); 13679 13680 ret = 0; 13681 unlock: 13682 mutex_unlock(&event->mmap_mutex); 13683 if (output_event) 13684 mutex_unlock(&output_event->mmap_mutex); 13685 13686 out: 13687 return ret; 13688 } 13689 13690 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 13691 { 13692 bool nmi_safe = false; 13693 13694 switch (clk_id) { 13695 case CLOCK_MONOTONIC: 13696 event->clock = &ktime_get_mono_fast_ns; 13697 nmi_safe = true; 13698 break; 13699 13700 case CLOCK_MONOTONIC_RAW: 13701 event->clock = &ktime_get_raw_fast_ns; 13702 nmi_safe = true; 13703 break; 13704 13705 case CLOCK_REALTIME: 13706 event->clock = &ktime_get_real_ns; 13707 break; 13708 13709 case CLOCK_BOOTTIME: 13710 event->clock = &ktime_get_boottime_ns; 13711 break; 13712 13713 case CLOCK_TAI: 13714 event->clock = &ktime_get_clocktai_ns; 13715 break; 13716 13717 default: 13718 return -EINVAL; 13719 } 13720 13721 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 13722 return -EINVAL; 13723 13724 return 0; 13725 } 13726 13727 static bool 13728 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 13729 { 13730 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 13731 bool is_capable = perfmon_capable(); 13732 13733 if (attr->sigtrap) { 13734 /* 13735 * perf_event_attr::sigtrap sends signals to the other task. 13736 * Require the current task to also have CAP_KILL. 13737 */ 13738 rcu_read_lock(); 13739 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 13740 rcu_read_unlock(); 13741 13742 /* 13743 * If the required capabilities aren't available, checks for 13744 * ptrace permissions: upgrade to ATTACH, since sending signals 13745 * can effectively change the target task. 13746 */ 13747 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 13748 } 13749 13750 /* 13751 * Preserve ptrace permission check for backwards compatibility. The 13752 * ptrace check also includes checks that the current task and other 13753 * task have matching uids, and is therefore not done here explicitly. 13754 */ 13755 return is_capable || ptrace_may_access(task, ptrace_mode); 13756 } 13757 13758 /** 13759 * sys_perf_event_open - open a performance event, associate it to a task/cpu 13760 * 13761 * @attr_uptr: event_id type attributes for monitoring/sampling 13762 * @pid: target pid 13763 * @cpu: target cpu 13764 * @group_fd: group leader event fd 13765 * @flags: perf event open flags 13766 */ 13767 SYSCALL_DEFINE5(perf_event_open, 13768 struct perf_event_attr __user *, attr_uptr, 13769 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 13770 { 13771 struct perf_event *group_leader = NULL, *output_event = NULL; 13772 struct perf_event_pmu_context *pmu_ctx; 13773 struct perf_event *event, *sibling; 13774 struct perf_event_attr attr; 13775 struct perf_event_context *ctx; 13776 struct file *event_file = NULL; 13777 struct task_struct *task = NULL; 13778 struct pmu *pmu; 13779 int event_fd; 13780 int move_group = 0; 13781 int err; 13782 int f_flags = O_RDWR; 13783 int cgroup_fd = -1; 13784 13785 /* for future expandability... */ 13786 if (flags & ~PERF_FLAG_ALL) 13787 return -EINVAL; 13788 13789 err = perf_copy_attr(attr_uptr, &attr); 13790 if (err) 13791 return err; 13792 13793 /* Do we allow access to perf_event_open(2) ? */ 13794 err = security_perf_event_open(PERF_SECURITY_OPEN); 13795 if (err) 13796 return err; 13797 13798 if (!attr.exclude_kernel) { 13799 err = perf_allow_kernel(); 13800 if (err) 13801 return err; 13802 } 13803 13804 if (attr.namespaces) { 13805 if (!perfmon_capable()) 13806 return -EACCES; 13807 } 13808 13809 if (attr.freq) { 13810 if (attr.sample_freq > sysctl_perf_event_sample_rate) 13811 return -EINVAL; 13812 } else { 13813 if (attr.sample_period & (1ULL << 63)) 13814 return -EINVAL; 13815 } 13816 13817 /* Only privileged users can get physical addresses */ 13818 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 13819 err = perf_allow_kernel(); 13820 if (err) 13821 return err; 13822 } 13823 13824 /* REGS_INTR can leak data, lockdown must prevent this */ 13825 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 13826 err = security_locked_down(LOCKDOWN_PERF); 13827 if (err) 13828 return err; 13829 } 13830 13831 /* 13832 * In cgroup mode, the pid argument is used to pass the fd 13833 * opened to the cgroup directory in cgroupfs. The cpu argument 13834 * designates the cpu on which to monitor threads from that 13835 * cgroup. 13836 */ 13837 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 13838 return -EINVAL; 13839 13840 if (flags & PERF_FLAG_FD_CLOEXEC) 13841 f_flags |= O_CLOEXEC; 13842 13843 event_fd = get_unused_fd_flags(f_flags); 13844 if (event_fd < 0) 13845 return event_fd; 13846 13847 /* 13848 * Event creation should be under SRCU, see perf_pmu_unregister(). 13849 */ 13850 guard(srcu)(&pmus_srcu); 13851 13852 CLASS(fd, group)(group_fd); // group_fd == -1 => empty 13853 if (group_fd != -1) { 13854 if (!is_perf_file(group)) { 13855 err = -EBADF; 13856 goto err_fd; 13857 } 13858 group_leader = fd_file(group)->private_data; 13859 if (group_leader->state <= PERF_EVENT_STATE_REVOKED) { 13860 err = -ENODEV; 13861 goto err_fd; 13862 } 13863 if (flags & PERF_FLAG_FD_OUTPUT) 13864 output_event = group_leader; 13865 if (flags & PERF_FLAG_FD_NO_GROUP) 13866 group_leader = NULL; 13867 } 13868 13869 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 13870 task = find_lively_task_by_vpid(pid); 13871 if (IS_ERR(task)) { 13872 err = PTR_ERR(task); 13873 goto err_fd; 13874 } 13875 } 13876 13877 if (task && group_leader && 13878 group_leader->attr.inherit != attr.inherit) { 13879 err = -EINVAL; 13880 goto err_task; 13881 } 13882 13883 if (flags & PERF_FLAG_PID_CGROUP) 13884 cgroup_fd = pid; 13885 13886 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 13887 NULL, NULL, cgroup_fd); 13888 if (IS_ERR(event)) { 13889 err = PTR_ERR(event); 13890 goto err_task; 13891 } 13892 13893 if (is_sampling_event(event)) { 13894 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 13895 err = -EOPNOTSUPP; 13896 goto err_alloc; 13897 } 13898 } 13899 13900 /* 13901 * Special case software events and allow them to be part of 13902 * any hardware group. 13903 */ 13904 pmu = event->pmu; 13905 13906 if (attr.use_clockid) { 13907 err = perf_event_set_clock(event, attr.clockid); 13908 if (err) 13909 goto err_alloc; 13910 } 13911 13912 if (pmu->task_ctx_nr == perf_sw_context) 13913 event->event_caps |= PERF_EV_CAP_SOFTWARE; 13914 13915 if (task) { 13916 err = down_read_interruptible(&task->signal->exec_update_lock); 13917 if (err) 13918 goto err_alloc; 13919 13920 /* 13921 * We must hold exec_update_lock across this and any potential 13922 * perf_install_in_context() call for this new event to 13923 * serialize against exec() altering our credentials (and the 13924 * perf_event_exit_task() that could imply). 13925 */ 13926 err = -EACCES; 13927 if (!perf_check_permission(&attr, task)) 13928 goto err_cred; 13929 } 13930 13931 /* 13932 * Get the target context (task or percpu): 13933 */ 13934 ctx = find_get_context(task, event); 13935 if (IS_ERR(ctx)) { 13936 err = PTR_ERR(ctx); 13937 goto err_cred; 13938 } 13939 13940 mutex_lock(&ctx->mutex); 13941 13942 if (ctx->task == TASK_TOMBSTONE) { 13943 err = -ESRCH; 13944 goto err_locked; 13945 } 13946 13947 if (!task) { 13948 /* 13949 * Check if the @cpu we're creating an event for is online. 13950 * 13951 * We use the perf_cpu_context::ctx::mutex to serialize against 13952 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 13953 */ 13954 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 13955 13956 if (!cpuctx->online) { 13957 err = -ENODEV; 13958 goto err_locked; 13959 } 13960 } 13961 13962 if (group_leader) { 13963 err = -EINVAL; 13964 13965 /* 13966 * Do not allow a recursive hierarchy (this new sibling 13967 * becoming part of another group-sibling): 13968 */ 13969 if (group_leader->group_leader != group_leader) 13970 goto err_locked; 13971 13972 /* All events in a group should have the same clock */ 13973 if (group_leader->clock != event->clock) 13974 goto err_locked; 13975 13976 /* 13977 * Make sure we're both events for the same CPU; 13978 * grouping events for different CPUs is broken; since 13979 * you can never concurrently schedule them anyhow. 13980 */ 13981 if (group_leader->cpu != event->cpu) 13982 goto err_locked; 13983 13984 /* 13985 * Make sure we're both on the same context; either task or cpu. 13986 */ 13987 if (group_leader->ctx != ctx) 13988 goto err_locked; 13989 13990 /* 13991 * Only a group leader can be exclusive or pinned 13992 */ 13993 if (attr.exclusive || attr.pinned) 13994 goto err_locked; 13995 13996 if (is_software_event(event) && 13997 !in_software_context(group_leader)) { 13998 /* 13999 * If the event is a sw event, but the group_leader 14000 * is on hw context. 14001 * 14002 * Allow the addition of software events to hw 14003 * groups, this is safe because software events 14004 * never fail to schedule. 14005 * 14006 * Note the comment that goes with struct 14007 * perf_event_pmu_context. 14008 */ 14009 pmu = group_leader->pmu_ctx->pmu; 14010 } else if (!is_software_event(event)) { 14011 if (is_software_event(group_leader) && 14012 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 14013 /* 14014 * In case the group is a pure software group, and we 14015 * try to add a hardware event, move the whole group to 14016 * the hardware context. 14017 */ 14018 move_group = 1; 14019 } 14020 14021 /* Don't allow group of multiple hw events from different pmus */ 14022 if (!in_software_context(group_leader) && 14023 group_leader->pmu_ctx->pmu != pmu) 14024 goto err_locked; 14025 } 14026 } 14027 14028 /* 14029 * Now that we're certain of the pmu; find the pmu_ctx. 14030 */ 14031 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 14032 if (IS_ERR(pmu_ctx)) { 14033 err = PTR_ERR(pmu_ctx); 14034 goto err_locked; 14035 } 14036 event->pmu_ctx = pmu_ctx; 14037 14038 if (output_event) { 14039 err = perf_event_set_output(event, output_event); 14040 if (err) 14041 goto err_context; 14042 } 14043 14044 if (!perf_event_validate_size(event)) { 14045 err = -E2BIG; 14046 goto err_context; 14047 } 14048 14049 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 14050 err = -EINVAL; 14051 goto err_context; 14052 } 14053 14054 /* 14055 * Must be under the same ctx::mutex as perf_install_in_context(), 14056 * because we need to serialize with concurrent event creation. 14057 */ 14058 if (!exclusive_event_installable(event, ctx)) { 14059 err = -EBUSY; 14060 goto err_context; 14061 } 14062 14063 WARN_ON_ONCE(ctx->parent_ctx); 14064 14065 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 14066 if (IS_ERR(event_file)) { 14067 err = PTR_ERR(event_file); 14068 event_file = NULL; 14069 goto err_context; 14070 } 14071 14072 /* 14073 * This is the point on no return; we cannot fail hereafter. This is 14074 * where we start modifying current state. 14075 */ 14076 14077 if (move_group) { 14078 perf_remove_from_context(group_leader, 0); 14079 put_pmu_ctx(group_leader->pmu_ctx); 14080 14081 for_each_sibling_event(sibling, group_leader) { 14082 perf_remove_from_context(sibling, 0); 14083 put_pmu_ctx(sibling->pmu_ctx); 14084 } 14085 14086 /* 14087 * Install the group siblings before the group leader. 14088 * 14089 * Because a group leader will try and install the entire group 14090 * (through the sibling list, which is still in-tact), we can 14091 * end up with siblings installed in the wrong context. 14092 * 14093 * By installing siblings first we NO-OP because they're not 14094 * reachable through the group lists. 14095 */ 14096 for_each_sibling_event(sibling, group_leader) { 14097 sibling->pmu_ctx = pmu_ctx; 14098 get_pmu_ctx(pmu_ctx); 14099 perf_event__state_init(sibling); 14100 perf_install_in_context(ctx, sibling, sibling->cpu); 14101 } 14102 14103 /* 14104 * Removing from the context ends up with disabled 14105 * event. What we want here is event in the initial 14106 * startup state, ready to be add into new context. 14107 */ 14108 group_leader->pmu_ctx = pmu_ctx; 14109 get_pmu_ctx(pmu_ctx); 14110 perf_event__state_init(group_leader); 14111 perf_install_in_context(ctx, group_leader, group_leader->cpu); 14112 } 14113 14114 /* 14115 * Precalculate sample_data sizes; do while holding ctx::mutex such 14116 * that we're serialized against further additions and before 14117 * perf_install_in_context() which is the point the event is active and 14118 * can use these values. 14119 */ 14120 perf_event__header_size(event); 14121 perf_event__id_header_size(event); 14122 14123 event->owner = current; 14124 14125 perf_install_in_context(ctx, event, event->cpu); 14126 perf_unpin_context(ctx); 14127 14128 mutex_unlock(&ctx->mutex); 14129 14130 if (task) { 14131 up_read(&task->signal->exec_update_lock); 14132 put_task_struct(task); 14133 } 14134 14135 mutex_lock(¤t->perf_event_mutex); 14136 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 14137 mutex_unlock(¤t->perf_event_mutex); 14138 14139 /* 14140 * File reference in group guarantees that group_leader has been 14141 * kept alive until we place the new event on the sibling_list. 14142 * This ensures destruction of the group leader will find 14143 * the pointer to itself in perf_group_detach(). 14144 */ 14145 fd_install(event_fd, event_file); 14146 return event_fd; 14147 14148 err_context: 14149 put_pmu_ctx(event->pmu_ctx); 14150 event->pmu_ctx = NULL; /* _free_event() */ 14151 err_locked: 14152 mutex_unlock(&ctx->mutex); 14153 perf_unpin_context(ctx); 14154 put_ctx(ctx); 14155 err_cred: 14156 if (task) 14157 up_read(&task->signal->exec_update_lock); 14158 err_alloc: 14159 put_event(event); 14160 err_task: 14161 if (task) 14162 put_task_struct(task); 14163 err_fd: 14164 put_unused_fd(event_fd); 14165 return err; 14166 } 14167 14168 /** 14169 * perf_event_create_kernel_counter 14170 * 14171 * @attr: attributes of the counter to create 14172 * @cpu: cpu in which the counter is bound 14173 * @task: task to profile (NULL for percpu) 14174 * @overflow_handler: callback to trigger when we hit the event 14175 * @context: context data could be used in overflow_handler callback 14176 */ 14177 struct perf_event * 14178 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 14179 struct task_struct *task, 14180 perf_overflow_handler_t overflow_handler, 14181 void *context) 14182 { 14183 struct perf_event_pmu_context *pmu_ctx; 14184 struct perf_event_context *ctx; 14185 struct perf_event *event; 14186 struct pmu *pmu; 14187 int err; 14188 14189 /* 14190 * Grouping is not supported for kernel events, neither is 'AUX', 14191 * make sure the caller's intentions are adjusted. 14192 */ 14193 if (attr->aux_output || attr->aux_action) 14194 return ERR_PTR(-EINVAL); 14195 14196 /* 14197 * Event creation should be under SRCU, see perf_pmu_unregister(). 14198 */ 14199 guard(srcu)(&pmus_srcu); 14200 14201 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 14202 overflow_handler, context, -1); 14203 if (IS_ERR(event)) { 14204 err = PTR_ERR(event); 14205 goto err; 14206 } 14207 14208 /* Mark owner so we could distinguish it from user events. */ 14209 event->owner = TASK_TOMBSTONE; 14210 pmu = event->pmu; 14211 14212 if (pmu->task_ctx_nr == perf_sw_context) 14213 event->event_caps |= PERF_EV_CAP_SOFTWARE; 14214 14215 /* 14216 * Get the target context (task or percpu): 14217 */ 14218 ctx = find_get_context(task, event); 14219 if (IS_ERR(ctx)) { 14220 err = PTR_ERR(ctx); 14221 goto err_alloc; 14222 } 14223 14224 WARN_ON_ONCE(ctx->parent_ctx); 14225 mutex_lock(&ctx->mutex); 14226 if (ctx->task == TASK_TOMBSTONE) { 14227 err = -ESRCH; 14228 goto err_unlock; 14229 } 14230 14231 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 14232 if (IS_ERR(pmu_ctx)) { 14233 err = PTR_ERR(pmu_ctx); 14234 goto err_unlock; 14235 } 14236 event->pmu_ctx = pmu_ctx; 14237 14238 if (!task) { 14239 /* 14240 * Check if the @cpu we're creating an event for is online. 14241 * 14242 * We use the perf_cpu_context::ctx::mutex to serialize against 14243 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 14244 */ 14245 struct perf_cpu_context *cpuctx = 14246 container_of(ctx, struct perf_cpu_context, ctx); 14247 if (!cpuctx->online) { 14248 err = -ENODEV; 14249 goto err_pmu_ctx; 14250 } 14251 } 14252 14253 if (!exclusive_event_installable(event, ctx)) { 14254 err = -EBUSY; 14255 goto err_pmu_ctx; 14256 } 14257 14258 perf_install_in_context(ctx, event, event->cpu); 14259 perf_unpin_context(ctx); 14260 mutex_unlock(&ctx->mutex); 14261 14262 return event; 14263 14264 err_pmu_ctx: 14265 put_pmu_ctx(pmu_ctx); 14266 event->pmu_ctx = NULL; /* _free_event() */ 14267 err_unlock: 14268 mutex_unlock(&ctx->mutex); 14269 perf_unpin_context(ctx); 14270 put_ctx(ctx); 14271 err_alloc: 14272 put_event(event); 14273 err: 14274 return ERR_PTR(err); 14275 } 14276 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 14277 14278 static void __perf_pmu_remove(struct perf_event_context *ctx, 14279 int cpu, struct pmu *pmu, 14280 struct perf_event_groups *groups, 14281 struct list_head *events) 14282 { 14283 struct perf_event *event, *sibling; 14284 14285 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 14286 perf_remove_from_context(event, 0); 14287 put_pmu_ctx(event->pmu_ctx); 14288 list_add(&event->migrate_entry, events); 14289 14290 for_each_sibling_event(sibling, event) { 14291 perf_remove_from_context(sibling, 0); 14292 put_pmu_ctx(sibling->pmu_ctx); 14293 list_add(&sibling->migrate_entry, events); 14294 } 14295 } 14296 } 14297 14298 static void __perf_pmu_install_event(struct pmu *pmu, 14299 struct perf_event_context *ctx, 14300 int cpu, struct perf_event *event) 14301 { 14302 struct perf_event_pmu_context *epc; 14303 struct perf_event_context *old_ctx = event->ctx; 14304 14305 get_ctx(ctx); /* normally find_get_context() */ 14306 14307 event->cpu = cpu; 14308 epc = find_get_pmu_context(pmu, ctx, event); 14309 event->pmu_ctx = epc; 14310 14311 if (event->state >= PERF_EVENT_STATE_OFF) 14312 event->state = PERF_EVENT_STATE_INACTIVE; 14313 perf_install_in_context(ctx, event, cpu); 14314 14315 /* 14316 * Now that event->ctx is updated and visible, put the old ctx. 14317 */ 14318 put_ctx(old_ctx); 14319 } 14320 14321 static void __perf_pmu_install(struct perf_event_context *ctx, 14322 int cpu, struct pmu *pmu, struct list_head *events) 14323 { 14324 struct perf_event *event, *tmp; 14325 14326 /* 14327 * Re-instate events in 2 passes. 14328 * 14329 * Skip over group leaders and only install siblings on this first 14330 * pass, siblings will not get enabled without a leader, however a 14331 * leader will enable its siblings, even if those are still on the old 14332 * context. 14333 */ 14334 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 14335 if (event->group_leader == event) 14336 continue; 14337 14338 list_del(&event->migrate_entry); 14339 __perf_pmu_install_event(pmu, ctx, cpu, event); 14340 } 14341 14342 /* 14343 * Once all the siblings are setup properly, install the group leaders 14344 * to make it go. 14345 */ 14346 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 14347 list_del(&event->migrate_entry); 14348 __perf_pmu_install_event(pmu, ctx, cpu, event); 14349 } 14350 } 14351 14352 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 14353 { 14354 struct perf_event_context *src_ctx, *dst_ctx; 14355 LIST_HEAD(events); 14356 14357 /* 14358 * Since per-cpu context is persistent, no need to grab an extra 14359 * reference. 14360 */ 14361 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 14362 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 14363 14364 /* 14365 * See perf_event_ctx_lock() for comments on the details 14366 * of swizzling perf_event::ctx. 14367 */ 14368 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 14369 14370 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 14371 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 14372 14373 if (!list_empty(&events)) { 14374 /* 14375 * Wait for the events to quiesce before re-instating them. 14376 */ 14377 synchronize_rcu(); 14378 14379 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 14380 } 14381 14382 mutex_unlock(&dst_ctx->mutex); 14383 mutex_unlock(&src_ctx->mutex); 14384 } 14385 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 14386 14387 static void sync_child_event(struct perf_event *child_event, 14388 struct task_struct *task) 14389 { 14390 struct perf_event *parent_event = child_event->parent; 14391 u64 child_val; 14392 14393 if (child_event->attr.inherit_stat) { 14394 if (task && task != TASK_TOMBSTONE) 14395 perf_event_read_event(child_event, task); 14396 } 14397 14398 child_val = perf_event_count(child_event, false); 14399 14400 /* 14401 * Add back the child's count to the parent's count: 14402 */ 14403 atomic64_add(child_val, &parent_event->child_count); 14404 atomic64_add(child_event->total_time_enabled, 14405 &parent_event->child_total_time_enabled); 14406 atomic64_add(child_event->total_time_running, 14407 &parent_event->child_total_time_running); 14408 } 14409 14410 static void 14411 perf_event_exit_event(struct perf_event *event, 14412 struct perf_event_context *ctx, 14413 struct task_struct *task, 14414 bool revoke) 14415 { 14416 struct perf_event *parent_event = event->parent; 14417 unsigned long detach_flags = DETACH_EXIT; 14418 unsigned int attach_state; 14419 14420 if (parent_event) { 14421 /* 14422 * Do not destroy the 'original' grouping; because of the 14423 * context switch optimization the original events could've 14424 * ended up in a random child task. 14425 * 14426 * If we were to destroy the original group, all group related 14427 * operations would cease to function properly after this 14428 * random child dies. 14429 * 14430 * Do destroy all inherited groups, we don't care about those 14431 * and being thorough is better. 14432 */ 14433 detach_flags |= DETACH_GROUP | DETACH_CHILD; 14434 mutex_lock(&parent_event->child_mutex); 14435 /* PERF_ATTACH_ITRACE might be set concurrently */ 14436 attach_state = READ_ONCE(event->attach_state); 14437 14438 if (attach_state & PERF_ATTACH_CHILD) 14439 sync_child_event(event, task); 14440 } 14441 14442 if (revoke) 14443 detach_flags |= DETACH_GROUP | DETACH_REVOKE; 14444 14445 perf_remove_from_context(event, detach_flags); 14446 /* 14447 * Child events can be freed. 14448 */ 14449 if (parent_event) { 14450 mutex_unlock(&parent_event->child_mutex); 14451 14452 /* 14453 * Match the refcount initialization. Make sure it doesn't happen 14454 * twice if pmu_detach_event() calls it on an already exited task. 14455 */ 14456 if (attach_state & PERF_ATTACH_CHILD) { 14457 /* 14458 * Kick perf_poll() for is_event_hup(); 14459 */ 14460 perf_event_wakeup(parent_event); 14461 /* 14462 * pmu_detach_event() will have an extra refcount. 14463 * perf_pending_task() might have one too. 14464 */ 14465 put_event(event); 14466 } 14467 14468 return; 14469 } 14470 14471 /* 14472 * Parent events are governed by their filedesc, retain them. 14473 */ 14474 perf_event_wakeup(event); 14475 } 14476 14477 static void perf_event_exit_task_context(struct task_struct *task, bool exit) 14478 { 14479 struct perf_event_context *ctx, *clone_ctx = NULL; 14480 struct perf_event *child_event, *next; 14481 14482 ctx = perf_pin_task_context(task); 14483 if (!ctx) 14484 return; 14485 14486 /* 14487 * In order to reduce the amount of tricky in ctx tear-down, we hold 14488 * ctx::mutex over the entire thing. This serializes against almost 14489 * everything that wants to access the ctx. 14490 * 14491 * The exception is sys_perf_event_open() / 14492 * perf_event_create_kernel_count() which does find_get_context() 14493 * without ctx::mutex (it cannot because of the move_group double mutex 14494 * lock thing). See the comments in perf_install_in_context(). 14495 */ 14496 mutex_lock(&ctx->mutex); 14497 14498 /* 14499 * In a single ctx::lock section, de-schedule the events and detach the 14500 * context from the task such that we cannot ever get it scheduled back 14501 * in. 14502 */ 14503 raw_spin_lock_irq(&ctx->lock); 14504 if (exit) 14505 task_ctx_sched_out(ctx, NULL, EVENT_ALL); 14506 14507 /* 14508 * Now that the context is inactive, destroy the task <-> ctx relation 14509 * and mark the context dead. 14510 */ 14511 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 14512 put_ctx(ctx); /* cannot be last */ 14513 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 14514 put_task_struct(task); /* cannot be last */ 14515 14516 clone_ctx = unclone_ctx(ctx); 14517 raw_spin_unlock_irq(&ctx->lock); 14518 14519 if (clone_ctx) 14520 put_ctx(clone_ctx); 14521 14522 /* 14523 * Report the task dead after unscheduling the events so that we 14524 * won't get any samples after PERF_RECORD_EXIT. We can however still 14525 * get a few PERF_RECORD_READ events. 14526 */ 14527 if (exit) 14528 perf_event_task(task, ctx, 0); 14529 14530 list_for_each_entry_safe(child_event, next, &ctx->event_list, event_entry) 14531 perf_event_exit_event(child_event, ctx, exit ? task : NULL, false); 14532 14533 mutex_unlock(&ctx->mutex); 14534 14535 if (!exit) { 14536 /* 14537 * perf_event_release_kernel() could still have a reference on 14538 * this context. In that case we must wait for these events to 14539 * have been freed (in particular all their references to this 14540 * task must've been dropped). 14541 * 14542 * Without this copy_process() will unconditionally free this 14543 * task (irrespective of its reference count) and 14544 * _free_event()'s put_task_struct(event->hw.target) will be a 14545 * use-after-free. 14546 * 14547 * Wait for all events to drop their context reference. 14548 */ 14549 wait_var_event(&ctx->refcount, 14550 refcount_read(&ctx->refcount) == 1); 14551 } 14552 put_ctx(ctx); 14553 } 14554 14555 /* 14556 * When a task exits, feed back event values to parent events. 14557 * 14558 * Can be called with exec_update_lock held when called from 14559 * setup_new_exec(). 14560 */ 14561 void perf_event_exit_task(struct task_struct *task) 14562 { 14563 struct perf_event *event, *tmp; 14564 14565 WARN_ON_ONCE(task != current); 14566 14567 mutex_lock(&task->perf_event_mutex); 14568 list_for_each_entry_safe(event, tmp, &task->perf_event_list, 14569 owner_entry) { 14570 list_del_init(&event->owner_entry); 14571 14572 /* 14573 * Ensure the list deletion is visible before we clear 14574 * the owner, closes a race against perf_release() where 14575 * we need to serialize on the owner->perf_event_mutex. 14576 */ 14577 smp_store_release(&event->owner, NULL); 14578 } 14579 mutex_unlock(&task->perf_event_mutex); 14580 14581 perf_event_exit_task_context(task, true); 14582 14583 /* 14584 * The perf_event_exit_task_context calls perf_event_task 14585 * with task's task_ctx, which generates EXIT events for 14586 * task contexts and sets task->perf_event_ctxp[] to NULL. 14587 * At this point we need to send EXIT events to cpu contexts. 14588 */ 14589 perf_event_task(task, NULL, 0); 14590 14591 /* 14592 * Detach the perf_ctx_data for the system-wide event. 14593 * 14594 * Done without holding global_ctx_data_rwsem; typically 14595 * attach_global_ctx_data() will skip over this task, but otherwise 14596 * attach_task_ctx_data() will observe PF_EXITING. 14597 */ 14598 detach_task_ctx_data(task); 14599 } 14600 14601 /* 14602 * Free a context as created by inheritance by perf_event_init_task() below, 14603 * used by fork() in case of fail. 14604 * 14605 * Even though the task has never lived, the context and events have been 14606 * exposed through the child_list, so we must take care tearing it all down. 14607 */ 14608 void perf_event_free_task(struct task_struct *task) 14609 { 14610 perf_event_exit_task_context(task, false); 14611 } 14612 14613 void perf_event_delayed_put(struct task_struct *task) 14614 { 14615 WARN_ON_ONCE(task->perf_event_ctxp); 14616 } 14617 14618 struct file *perf_event_get(unsigned int fd) 14619 { 14620 struct file *file = fget(fd); 14621 if (!file) 14622 return ERR_PTR(-EBADF); 14623 14624 if (file->f_op != &perf_fops) { 14625 fput(file); 14626 return ERR_PTR(-EBADF); 14627 } 14628 14629 return file; 14630 } 14631 14632 const struct perf_event *perf_get_event(struct file *file) 14633 { 14634 if (file->f_op != &perf_fops) 14635 return ERR_PTR(-EINVAL); 14636 14637 return file->private_data; 14638 } 14639 14640 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 14641 { 14642 if (!event) 14643 return ERR_PTR(-EINVAL); 14644 14645 return &event->attr; 14646 } 14647 14648 int perf_allow_kernel(void) 14649 { 14650 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 14651 return -EACCES; 14652 14653 return security_perf_event_open(PERF_SECURITY_KERNEL); 14654 } 14655 EXPORT_SYMBOL_GPL(perf_allow_kernel); 14656 14657 /* 14658 * Inherit an event from parent task to child task. 14659 * 14660 * Returns: 14661 * - valid pointer on success 14662 * - NULL for orphaned events 14663 * - IS_ERR() on error 14664 */ 14665 static struct perf_event * 14666 inherit_event(struct perf_event *parent_event, 14667 struct task_struct *parent, 14668 struct perf_event_context *parent_ctx, 14669 struct task_struct *child, 14670 struct perf_event *group_leader, 14671 struct perf_event_context *child_ctx) 14672 { 14673 enum perf_event_state parent_state = parent_event->state; 14674 struct perf_event_pmu_context *pmu_ctx; 14675 struct perf_event *child_event; 14676 unsigned long flags; 14677 14678 /* 14679 * Instead of creating recursive hierarchies of events, 14680 * we link inherited events back to the original parent, 14681 * which has a filp for sure, which we use as the reference 14682 * count: 14683 */ 14684 if (parent_event->parent) 14685 parent_event = parent_event->parent; 14686 14687 if (parent_event->state <= PERF_EVENT_STATE_REVOKED) 14688 return NULL; 14689 14690 /* 14691 * Event creation should be under SRCU, see perf_pmu_unregister(). 14692 */ 14693 guard(srcu)(&pmus_srcu); 14694 14695 child_event = perf_event_alloc(&parent_event->attr, 14696 parent_event->cpu, 14697 child, 14698 group_leader, parent_event, 14699 NULL, NULL, -1); 14700 if (IS_ERR(child_event)) 14701 return child_event; 14702 14703 get_ctx(child_ctx); 14704 child_event->ctx = child_ctx; 14705 14706 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 14707 if (IS_ERR(pmu_ctx)) { 14708 free_event(child_event); 14709 return ERR_CAST(pmu_ctx); 14710 } 14711 child_event->pmu_ctx = pmu_ctx; 14712 14713 /* 14714 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 14715 * must be under the same lock in order to serialize against 14716 * perf_event_release_kernel(), such that either we must observe 14717 * is_orphaned_event() or they will observe us on the child_list. 14718 */ 14719 mutex_lock(&parent_event->child_mutex); 14720 if (is_orphaned_event(parent_event) || 14721 !atomic_long_inc_not_zero(&parent_event->refcount)) { 14722 mutex_unlock(&parent_event->child_mutex); 14723 free_event(child_event); 14724 return NULL; 14725 } 14726 14727 /* 14728 * Make the child state follow the state of the parent event, 14729 * not its attr.disabled bit. We hold the parent's mutex, 14730 * so we won't race with perf_event_{en, dis}able_family. 14731 */ 14732 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 14733 child_event->state = PERF_EVENT_STATE_INACTIVE; 14734 else 14735 child_event->state = PERF_EVENT_STATE_OFF; 14736 14737 if (parent_event->attr.freq) { 14738 u64 sample_period = parent_event->hw.sample_period; 14739 struct hw_perf_event *hwc = &child_event->hw; 14740 14741 hwc->sample_period = sample_period; 14742 hwc->last_period = sample_period; 14743 14744 local64_set(&hwc->period_left, sample_period); 14745 } 14746 14747 child_event->overflow_handler = parent_event->overflow_handler; 14748 child_event->overflow_handler_context 14749 = parent_event->overflow_handler_context; 14750 14751 /* 14752 * Precalculate sample_data sizes 14753 */ 14754 perf_event__header_size(child_event); 14755 perf_event__id_header_size(child_event); 14756 14757 /* 14758 * Link it up in the child's context: 14759 */ 14760 raw_spin_lock_irqsave(&child_ctx->lock, flags); 14761 add_event_to_ctx(child_event, child_ctx); 14762 child_event->attach_state |= PERF_ATTACH_CHILD; 14763 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 14764 14765 /* 14766 * Link this into the parent event's child list 14767 */ 14768 list_add_tail(&child_event->child_list, &parent_event->child_list); 14769 mutex_unlock(&parent_event->child_mutex); 14770 14771 return child_event; 14772 } 14773 14774 /* 14775 * Inherits an event group. 14776 * 14777 * This will quietly suppress orphaned events; !inherit_event() is not an error. 14778 * This matches with perf_event_release_kernel() removing all child events. 14779 * 14780 * Returns: 14781 * - 0 on success 14782 * - <0 on error 14783 */ 14784 static int inherit_group(struct perf_event *parent_event, 14785 struct task_struct *parent, 14786 struct perf_event_context *parent_ctx, 14787 struct task_struct *child, 14788 struct perf_event_context *child_ctx) 14789 { 14790 struct perf_event *leader; 14791 struct perf_event *sub; 14792 struct perf_event *child_ctr; 14793 14794 leader = inherit_event(parent_event, parent, parent_ctx, 14795 child, NULL, child_ctx); 14796 if (IS_ERR(leader)) 14797 return PTR_ERR(leader); 14798 /* 14799 * @leader can be NULL here because of is_orphaned_event(). In this 14800 * case inherit_event() will create individual events, similar to what 14801 * perf_group_detach() would do anyway. 14802 */ 14803 for_each_sibling_event(sub, parent_event) { 14804 child_ctr = inherit_event(sub, parent, parent_ctx, 14805 child, leader, child_ctx); 14806 if (IS_ERR(child_ctr)) 14807 return PTR_ERR(child_ctr); 14808 14809 if (sub->aux_event == parent_event && child_ctr && 14810 !perf_get_aux_event(child_ctr, leader)) 14811 return -EINVAL; 14812 } 14813 if (leader) 14814 leader->group_generation = parent_event->group_generation; 14815 return 0; 14816 } 14817 14818 /* 14819 * Creates the child task context and tries to inherit the event-group. 14820 * 14821 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 14822 * inherited_all set when we 'fail' to inherit an orphaned event; this is 14823 * consistent with perf_event_release_kernel() removing all child events. 14824 * 14825 * Returns: 14826 * - 0 on success 14827 * - <0 on error 14828 */ 14829 static int 14830 inherit_task_group(struct perf_event *event, struct task_struct *parent, 14831 struct perf_event_context *parent_ctx, 14832 struct task_struct *child, 14833 u64 clone_flags, int *inherited_all) 14834 { 14835 struct perf_event_context *child_ctx; 14836 int ret; 14837 14838 if (!event->attr.inherit || 14839 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 14840 /* Do not inherit if sigtrap and signal handlers were cleared. */ 14841 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 14842 *inherited_all = 0; 14843 return 0; 14844 } 14845 14846 child_ctx = child->perf_event_ctxp; 14847 if (!child_ctx) { 14848 /* 14849 * This is executed from the parent task context, so 14850 * inherit events that have been marked for cloning. 14851 * First allocate and initialize a context for the 14852 * child. 14853 */ 14854 child_ctx = alloc_perf_context(child); 14855 if (!child_ctx) 14856 return -ENOMEM; 14857 14858 child->perf_event_ctxp = child_ctx; 14859 } 14860 14861 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 14862 if (ret) 14863 *inherited_all = 0; 14864 14865 return ret; 14866 } 14867 14868 /* 14869 * Initialize the perf_event context in task_struct 14870 */ 14871 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 14872 { 14873 struct perf_event_context *child_ctx, *parent_ctx; 14874 struct perf_event_context *cloned_ctx; 14875 struct perf_event *event; 14876 struct task_struct *parent = current; 14877 int inherited_all = 1; 14878 unsigned long flags; 14879 int ret = 0; 14880 14881 if (likely(!parent->perf_event_ctxp)) 14882 return 0; 14883 14884 /* 14885 * If the parent's context is a clone, pin it so it won't get 14886 * swapped under us. 14887 */ 14888 parent_ctx = perf_pin_task_context(parent); 14889 if (!parent_ctx) 14890 return 0; 14891 14892 /* 14893 * No need to check if parent_ctx != NULL here; since we saw 14894 * it non-NULL earlier, the only reason for it to become NULL 14895 * is if we exit, and since we're currently in the middle of 14896 * a fork we can't be exiting at the same time. 14897 */ 14898 14899 /* 14900 * Lock the parent list. No need to lock the child - not PID 14901 * hashed yet and not running, so nobody can access it. 14902 */ 14903 mutex_lock(&parent_ctx->mutex); 14904 14905 /* 14906 * We dont have to disable NMIs - we are only looking at 14907 * the list, not manipulating it: 14908 */ 14909 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 14910 ret = inherit_task_group(event, parent, parent_ctx, 14911 child, clone_flags, &inherited_all); 14912 if (ret) 14913 goto out_unlock; 14914 } 14915 14916 /* 14917 * We can't hold ctx->lock when iterating the ->flexible_group list due 14918 * to allocations, but we need to prevent rotation because 14919 * rotate_ctx() will change the list from interrupt context. 14920 */ 14921 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 14922 parent_ctx->rotate_disable = 1; 14923 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 14924 14925 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 14926 ret = inherit_task_group(event, parent, parent_ctx, 14927 child, clone_flags, &inherited_all); 14928 if (ret) 14929 goto out_unlock; 14930 } 14931 14932 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 14933 parent_ctx->rotate_disable = 0; 14934 14935 child_ctx = child->perf_event_ctxp; 14936 14937 if (child_ctx && inherited_all) { 14938 /* 14939 * Mark the child context as a clone of the parent 14940 * context, or of whatever the parent is a clone of. 14941 * 14942 * Note that if the parent is a clone, the holding of 14943 * parent_ctx->lock avoids it from being uncloned. 14944 */ 14945 cloned_ctx = parent_ctx->parent_ctx; 14946 if (cloned_ctx) { 14947 child_ctx->parent_ctx = cloned_ctx; 14948 child_ctx->parent_gen = parent_ctx->parent_gen; 14949 } else { 14950 child_ctx->parent_ctx = parent_ctx; 14951 child_ctx->parent_gen = parent_ctx->generation; 14952 } 14953 get_ctx(child_ctx->parent_ctx); 14954 } 14955 14956 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 14957 out_unlock: 14958 mutex_unlock(&parent_ctx->mutex); 14959 14960 perf_unpin_context(parent_ctx); 14961 put_ctx(parent_ctx); 14962 14963 return ret; 14964 } 14965 14966 /* 14967 * Initialize the perf_event context in task_struct 14968 */ 14969 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 14970 { 14971 int ret; 14972 14973 memset(child->perf_recursion, 0, sizeof(child->perf_recursion)); 14974 child->perf_event_ctxp = NULL; 14975 mutex_init(&child->perf_event_mutex); 14976 INIT_LIST_HEAD(&child->perf_event_list); 14977 child->perf_ctx_data = NULL; 14978 14979 ret = perf_event_init_context(child, clone_flags); 14980 if (ret) { 14981 perf_event_free_task(child); 14982 return ret; 14983 } 14984 14985 return 0; 14986 } 14987 14988 static void __init perf_event_init_all_cpus(void) 14989 { 14990 struct swevent_htable *swhash; 14991 struct perf_cpu_context *cpuctx; 14992 int cpu; 14993 14994 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 14995 zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL); 14996 zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL); 14997 zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL); 14998 zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL); 14999 zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL); 15000 15001 15002 for_each_possible_cpu(cpu) { 15003 swhash = &per_cpu(swevent_htable, cpu); 15004 mutex_init(&swhash->hlist_mutex); 15005 15006 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 15007 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 15008 15009 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 15010 15011 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 15012 __perf_event_init_context(&cpuctx->ctx); 15013 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 15014 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 15015 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 15016 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 15017 cpuctx->heap = cpuctx->heap_default; 15018 } 15019 } 15020 15021 static void perf_swevent_init_cpu(unsigned int cpu) 15022 { 15023 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 15024 15025 mutex_lock(&swhash->hlist_mutex); 15026 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 15027 struct swevent_hlist *hlist; 15028 15029 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 15030 WARN_ON(!hlist); 15031 rcu_assign_pointer(swhash->swevent_hlist, hlist); 15032 } 15033 mutex_unlock(&swhash->hlist_mutex); 15034 } 15035 15036 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 15037 static void __perf_event_exit_context(void *__info) 15038 { 15039 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 15040 struct perf_event_context *ctx = __info; 15041 struct perf_event *event; 15042 15043 raw_spin_lock(&ctx->lock); 15044 ctx_sched_out(ctx, NULL, EVENT_TIME); 15045 list_for_each_entry(event, &ctx->event_list, event_entry) 15046 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 15047 raw_spin_unlock(&ctx->lock); 15048 } 15049 15050 static void perf_event_clear_cpumask(unsigned int cpu) 15051 { 15052 int target[PERF_PMU_MAX_SCOPE]; 15053 unsigned int scope; 15054 struct pmu *pmu; 15055 15056 cpumask_clear_cpu(cpu, perf_online_mask); 15057 15058 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 15059 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 15060 struct cpumask *pmu_cpumask = perf_scope_cpumask(scope); 15061 15062 target[scope] = -1; 15063 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 15064 continue; 15065 15066 if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask)) 15067 continue; 15068 target[scope] = cpumask_any_but(cpumask, cpu); 15069 if (target[scope] < nr_cpu_ids) 15070 cpumask_set_cpu(target[scope], pmu_cpumask); 15071 } 15072 15073 /* migrate */ 15074 list_for_each_entry(pmu, &pmus, entry) { 15075 if (pmu->scope == PERF_PMU_SCOPE_NONE || 15076 WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE)) 15077 continue; 15078 15079 if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids) 15080 perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]); 15081 } 15082 } 15083 15084 static void perf_event_exit_cpu_context(int cpu) 15085 { 15086 struct perf_cpu_context *cpuctx; 15087 struct perf_event_context *ctx; 15088 15089 // XXX simplify cpuctx->online 15090 mutex_lock(&pmus_lock); 15091 /* 15092 * Clear the cpumasks, and migrate to other CPUs if possible. 15093 * Must be invoked before the __perf_event_exit_context. 15094 */ 15095 perf_event_clear_cpumask(cpu); 15096 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 15097 ctx = &cpuctx->ctx; 15098 15099 mutex_lock(&ctx->mutex); 15100 if (ctx->nr_events) 15101 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 15102 cpuctx->online = 0; 15103 mutex_unlock(&ctx->mutex); 15104 mutex_unlock(&pmus_lock); 15105 } 15106 #else 15107 15108 static void perf_event_exit_cpu_context(int cpu) { } 15109 15110 #endif 15111 15112 static void perf_event_setup_cpumask(unsigned int cpu) 15113 { 15114 struct cpumask *pmu_cpumask; 15115 unsigned int scope; 15116 15117 /* 15118 * Early boot stage, the cpumask hasn't been set yet. 15119 * The perf_online_<domain>_masks includes the first CPU of each domain. 15120 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks. 15121 */ 15122 if (cpumask_empty(perf_online_mask)) { 15123 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 15124 pmu_cpumask = perf_scope_cpumask(scope); 15125 if (WARN_ON_ONCE(!pmu_cpumask)) 15126 continue; 15127 cpumask_set_cpu(cpu, pmu_cpumask); 15128 } 15129 goto end; 15130 } 15131 15132 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 15133 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 15134 15135 pmu_cpumask = perf_scope_cpumask(scope); 15136 15137 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 15138 continue; 15139 15140 if (!cpumask_empty(cpumask) && 15141 cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids) 15142 cpumask_set_cpu(cpu, pmu_cpumask); 15143 } 15144 end: 15145 cpumask_set_cpu(cpu, perf_online_mask); 15146 } 15147 15148 int perf_event_init_cpu(unsigned int cpu) 15149 { 15150 struct perf_cpu_context *cpuctx; 15151 struct perf_event_context *ctx; 15152 15153 perf_swevent_init_cpu(cpu); 15154 15155 mutex_lock(&pmus_lock); 15156 perf_event_setup_cpumask(cpu); 15157 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 15158 ctx = &cpuctx->ctx; 15159 15160 mutex_lock(&ctx->mutex); 15161 cpuctx->online = 1; 15162 mutex_unlock(&ctx->mutex); 15163 mutex_unlock(&pmus_lock); 15164 15165 return 0; 15166 } 15167 15168 int perf_event_exit_cpu(unsigned int cpu) 15169 { 15170 perf_event_exit_cpu_context(cpu); 15171 return 0; 15172 } 15173 15174 static int 15175 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 15176 { 15177 int cpu; 15178 15179 for_each_online_cpu(cpu) 15180 perf_event_exit_cpu(cpu); 15181 15182 return NOTIFY_OK; 15183 } 15184 15185 /* 15186 * Run the perf reboot notifier at the very last possible moment so that 15187 * the generic watchdog code runs as long as possible. 15188 */ 15189 static struct notifier_block perf_reboot_notifier = { 15190 .notifier_call = perf_reboot, 15191 .priority = INT_MIN, 15192 }; 15193 15194 void __init perf_event_init(void) 15195 { 15196 int ret; 15197 15198 idr_init(&pmu_idr); 15199 15200 unwind_deferred_init(&perf_unwind_work, 15201 perf_unwind_deferred_callback); 15202 15203 perf_event_init_all_cpus(); 15204 init_srcu_struct(&pmus_srcu); 15205 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 15206 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 15207 perf_pmu_register(&perf_task_clock, "task_clock", -1); 15208 perf_tp_register(); 15209 perf_event_init_cpu(smp_processor_id()); 15210 register_reboot_notifier(&perf_reboot_notifier); 15211 15212 ret = init_hw_breakpoint(); 15213 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 15214 15215 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 15216 15217 /* 15218 * Build time assertion that we keep the data_head at the intended 15219 * location. IOW, validation we got the __reserved[] size right. 15220 */ 15221 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 15222 != 1024); 15223 } 15224 15225 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 15226 char *page) 15227 { 15228 struct perf_pmu_events_attr *pmu_attr = 15229 container_of(attr, struct perf_pmu_events_attr, attr); 15230 15231 if (pmu_attr->event_str) 15232 return sprintf(page, "%s\n", pmu_attr->event_str); 15233 15234 return 0; 15235 } 15236 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 15237 15238 static int __init perf_event_sysfs_init(void) 15239 { 15240 struct pmu *pmu; 15241 int ret; 15242 15243 mutex_lock(&pmus_lock); 15244 15245 ret = bus_register(&pmu_bus); 15246 if (ret) 15247 goto unlock; 15248 15249 list_for_each_entry(pmu, &pmus, entry) { 15250 if (pmu->dev) 15251 continue; 15252 15253 ret = pmu_dev_alloc(pmu); 15254 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 15255 } 15256 pmu_bus_running = 1; 15257 ret = 0; 15258 15259 unlock: 15260 mutex_unlock(&pmus_lock); 15261 15262 return ret; 15263 } 15264 device_initcall(perf_event_sysfs_init); 15265 15266 #ifdef CONFIG_CGROUP_PERF 15267 static struct cgroup_subsys_state * 15268 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 15269 { 15270 struct perf_cgroup *jc; 15271 15272 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 15273 if (!jc) 15274 return ERR_PTR(-ENOMEM); 15275 15276 jc->info = alloc_percpu(struct perf_cgroup_info); 15277 if (!jc->info) { 15278 kfree(jc); 15279 return ERR_PTR(-ENOMEM); 15280 } 15281 15282 return &jc->css; 15283 } 15284 15285 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 15286 { 15287 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 15288 15289 free_percpu(jc->info); 15290 kfree(jc); 15291 } 15292 15293 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 15294 { 15295 perf_event_cgroup(css->cgroup); 15296 return 0; 15297 } 15298 15299 static int __perf_cgroup_move(void *info) 15300 { 15301 struct task_struct *task = info; 15302 15303 preempt_disable(); 15304 perf_cgroup_switch(task); 15305 preempt_enable(); 15306 15307 return 0; 15308 } 15309 15310 static void perf_cgroup_attach(struct cgroup_taskset *tset) 15311 { 15312 struct task_struct *task; 15313 struct cgroup_subsys_state *css; 15314 15315 cgroup_taskset_for_each(task, css, tset) 15316 task_function_call(task, __perf_cgroup_move, task); 15317 } 15318 15319 struct cgroup_subsys perf_event_cgrp_subsys = { 15320 .css_alloc = perf_cgroup_css_alloc, 15321 .css_free = perf_cgroup_css_free, 15322 .css_online = perf_cgroup_css_online, 15323 .attach = perf_cgroup_attach, 15324 /* 15325 * Implicitly enable on dfl hierarchy so that perf events can 15326 * always be filtered by cgroup2 path as long as perf_event 15327 * controller is not mounted on a legacy hierarchy. 15328 */ 15329 .implicit_on_dfl = true, 15330 .threaded = true, 15331 }; 15332 #endif /* CONFIG_CGROUP_PERF */ 15333 15334 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 15335