xref: /linux/include/linux/list.h (revision 79790b6818e96c58fe2bffee1b418c16e64e7b80)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_LIST_H
3 #define _LINUX_LIST_H
4 
5 #include <linux/container_of.h>
6 #include <linux/types.h>
7 #include <linux/stddef.h>
8 #include <linux/poison.h>
9 #include <linux/const.h>
10 
11 #include <asm/barrier.h>
12 
13 /*
14  * Circular doubly linked list implementation.
15  *
16  * Some of the internal functions ("__xxx") are useful when
17  * manipulating whole lists rather than single entries, as
18  * sometimes we already know the next/prev entries and we can
19  * generate better code by using them directly rather than
20  * using the generic single-entry routines.
21  */
22 
23 #define LIST_HEAD_INIT(name) { &(name), &(name) }
24 
25 #define LIST_HEAD(name) \
26 	struct list_head name = LIST_HEAD_INIT(name)
27 
28 /**
29  * INIT_LIST_HEAD - Initialize a list_head structure
30  * @list: list_head structure to be initialized.
31  *
32  * Initializes the list_head to point to itself.  If it is a list header,
33  * the result is an empty list.
34  */
INIT_LIST_HEAD(struct list_head * list)35 static inline void INIT_LIST_HEAD(struct list_head *list)
36 {
37 	WRITE_ONCE(list->next, list);
38 	WRITE_ONCE(list->prev, list);
39 }
40 
41 #ifdef CONFIG_LIST_HARDENED
42 
43 #ifdef CONFIG_DEBUG_LIST
44 # define __list_valid_slowpath
45 #else
46 # define __list_valid_slowpath __cold __preserve_most
47 #endif
48 
49 /*
50  * Performs the full set of list corruption checks before __list_add().
51  * On list corruption reports a warning, and returns false.
52  */
53 extern bool __list_valid_slowpath __list_add_valid_or_report(struct list_head *new,
54 							     struct list_head *prev,
55 							     struct list_head *next);
56 
57 /*
58  * Performs list corruption checks before __list_add(). Returns false if a
59  * corruption is detected, true otherwise.
60  *
61  * With CONFIG_LIST_HARDENED only, performs minimal list integrity checking
62  * inline to catch non-faulting corruptions, and only if a corruption is
63  * detected calls the reporting function __list_add_valid_or_report().
64  */
__list_add_valid(struct list_head * new,struct list_head * prev,struct list_head * next)65 static __always_inline bool __list_add_valid(struct list_head *new,
66 					     struct list_head *prev,
67 					     struct list_head *next)
68 {
69 	bool ret = true;
70 
71 	if (!IS_ENABLED(CONFIG_DEBUG_LIST)) {
72 		/*
73 		 * With the hardening version, elide checking if next and prev
74 		 * are NULL, since the immediate dereference of them below would
75 		 * result in a fault if NULL.
76 		 *
77 		 * With the reduced set of checks, we can afford to inline the
78 		 * checks, which also gives the compiler a chance to elide some
79 		 * of them completely if they can be proven at compile-time. If
80 		 * one of the pre-conditions does not hold, the slow-path will
81 		 * show a report which pre-condition failed.
82 		 */
83 		if (likely(next->prev == prev && prev->next == next && new != prev && new != next))
84 			return true;
85 		ret = false;
86 	}
87 
88 	ret &= __list_add_valid_or_report(new, prev, next);
89 	return ret;
90 }
91 
92 /*
93  * Performs the full set of list corruption checks before __list_del_entry().
94  * On list corruption reports a warning, and returns false.
95  */
96 extern bool __list_valid_slowpath __list_del_entry_valid_or_report(struct list_head *entry);
97 
98 /*
99  * Performs list corruption checks before __list_del_entry(). Returns false if a
100  * corruption is detected, true otherwise.
101  *
102  * With CONFIG_LIST_HARDENED only, performs minimal list integrity checking
103  * inline to catch non-faulting corruptions, and only if a corruption is
104  * detected calls the reporting function __list_del_entry_valid_or_report().
105  */
__list_del_entry_valid(struct list_head * entry)106 static __always_inline bool __list_del_entry_valid(struct list_head *entry)
107 {
108 	bool ret = true;
109 
110 	if (!IS_ENABLED(CONFIG_DEBUG_LIST)) {
111 		struct list_head *prev = entry->prev;
112 		struct list_head *next = entry->next;
113 
114 		/*
115 		 * With the hardening version, elide checking if next and prev
116 		 * are NULL, LIST_POISON1 or LIST_POISON2, since the immediate
117 		 * dereference of them below would result in a fault.
118 		 */
119 		if (likely(prev->next == entry && next->prev == entry))
120 			return true;
121 		ret = false;
122 	}
123 
124 	ret &= __list_del_entry_valid_or_report(entry);
125 	return ret;
126 }
127 #else
__list_add_valid(struct list_head * new,struct list_head * prev,struct list_head * next)128 static inline bool __list_add_valid(struct list_head *new,
129 				struct list_head *prev,
130 				struct list_head *next)
131 {
132 	return true;
133 }
__list_del_entry_valid(struct list_head * entry)134 static inline bool __list_del_entry_valid(struct list_head *entry)
135 {
136 	return true;
137 }
138 #endif
139 
140 /*
141  * Insert a new entry between two known consecutive entries.
142  *
143  * This is only for internal list manipulation where we know
144  * the prev/next entries already!
145  */
__list_add(struct list_head * new,struct list_head * prev,struct list_head * next)146 static inline void __list_add(struct list_head *new,
147 			      struct list_head *prev,
148 			      struct list_head *next)
149 {
150 	if (!__list_add_valid(new, prev, next))
151 		return;
152 
153 	next->prev = new;
154 	new->next = next;
155 	new->prev = prev;
156 	WRITE_ONCE(prev->next, new);
157 }
158 
159 /**
160  * list_add - add a new entry
161  * @new: new entry to be added
162  * @head: list head to add it after
163  *
164  * Insert a new entry after the specified head.
165  * This is good for implementing stacks.
166  */
list_add(struct list_head * new,struct list_head * head)167 static inline void list_add(struct list_head *new, struct list_head *head)
168 {
169 	__list_add(new, head, head->next);
170 }
171 
172 
173 /**
174  * list_add_tail - add a new entry
175  * @new: new entry to be added
176  * @head: list head to add it before
177  *
178  * Insert a new entry before the specified head.
179  * This is useful for implementing queues.
180  */
list_add_tail(struct list_head * new,struct list_head * head)181 static inline void list_add_tail(struct list_head *new, struct list_head *head)
182 {
183 	__list_add(new, head->prev, head);
184 }
185 
186 /*
187  * Delete a list entry by making the prev/next entries
188  * point to each other.
189  *
190  * This is only for internal list manipulation where we know
191  * the prev/next entries already!
192  */
__list_del(struct list_head * prev,struct list_head * next)193 static inline void __list_del(struct list_head * prev, struct list_head * next)
194 {
195 	next->prev = prev;
196 	WRITE_ONCE(prev->next, next);
197 }
198 
199 /*
200  * Delete a list entry and clear the 'prev' pointer.
201  *
202  * This is a special-purpose list clearing method used in the networking code
203  * for lists allocated as per-cpu, where we don't want to incur the extra
204  * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
205  * needs to check the node 'prev' pointer instead of calling list_empty().
206  */
__list_del_clearprev(struct list_head * entry)207 static inline void __list_del_clearprev(struct list_head *entry)
208 {
209 	__list_del(entry->prev, entry->next);
210 	entry->prev = NULL;
211 }
212 
__list_del_entry(struct list_head * entry)213 static inline void __list_del_entry(struct list_head *entry)
214 {
215 	if (!__list_del_entry_valid(entry))
216 		return;
217 
218 	__list_del(entry->prev, entry->next);
219 }
220 
221 /**
222  * list_del - deletes entry from list.
223  * @entry: the element to delete from the list.
224  * Note: list_empty() on entry does not return true after this, the entry is
225  * in an undefined state.
226  */
list_del(struct list_head * entry)227 static inline void list_del(struct list_head *entry)
228 {
229 	__list_del_entry(entry);
230 	entry->next = LIST_POISON1;
231 	entry->prev = LIST_POISON2;
232 }
233 
234 /**
235  * list_replace - replace old entry by new one
236  * @old : the element to be replaced
237  * @new : the new element to insert
238  *
239  * If @old was empty, it will be overwritten.
240  */
list_replace(struct list_head * old,struct list_head * new)241 static inline void list_replace(struct list_head *old,
242 				struct list_head *new)
243 {
244 	new->next = old->next;
245 	new->next->prev = new;
246 	new->prev = old->prev;
247 	new->prev->next = new;
248 }
249 
250 /**
251  * list_replace_init - replace old entry by new one and initialize the old one
252  * @old : the element to be replaced
253  * @new : the new element to insert
254  *
255  * If @old was empty, it will be overwritten.
256  */
list_replace_init(struct list_head * old,struct list_head * new)257 static inline void list_replace_init(struct list_head *old,
258 				     struct list_head *new)
259 {
260 	list_replace(old, new);
261 	INIT_LIST_HEAD(old);
262 }
263 
264 /**
265  * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
266  * @entry1: the location to place entry2
267  * @entry2: the location to place entry1
268  */
list_swap(struct list_head * entry1,struct list_head * entry2)269 static inline void list_swap(struct list_head *entry1,
270 			     struct list_head *entry2)
271 {
272 	struct list_head *pos = entry2->prev;
273 
274 	list_del(entry2);
275 	list_replace(entry1, entry2);
276 	if (pos == entry1)
277 		pos = entry2;
278 	list_add(entry1, pos);
279 }
280 
281 /**
282  * list_del_init - deletes entry from list and reinitialize it.
283  * @entry: the element to delete from the list.
284  */
list_del_init(struct list_head * entry)285 static inline void list_del_init(struct list_head *entry)
286 {
287 	__list_del_entry(entry);
288 	INIT_LIST_HEAD(entry);
289 }
290 
291 /**
292  * list_move - delete from one list and add as another's head
293  * @list: the entry to move
294  * @head: the head that will precede our entry
295  */
list_move(struct list_head * list,struct list_head * head)296 static inline void list_move(struct list_head *list, struct list_head *head)
297 {
298 	__list_del_entry(list);
299 	list_add(list, head);
300 }
301 
302 /**
303  * list_move_tail - delete from one list and add as another's tail
304  * @list: the entry to move
305  * @head: the head that will follow our entry
306  */
list_move_tail(struct list_head * list,struct list_head * head)307 static inline void list_move_tail(struct list_head *list,
308 				  struct list_head *head)
309 {
310 	__list_del_entry(list);
311 	list_add_tail(list, head);
312 }
313 
314 /**
315  * list_bulk_move_tail - move a subsection of a list to its tail
316  * @head: the head that will follow our entry
317  * @first: first entry to move
318  * @last: last entry to move, can be the same as first
319  *
320  * Move all entries between @first and including @last before @head.
321  * All three entries must belong to the same linked list.
322  */
list_bulk_move_tail(struct list_head * head,struct list_head * first,struct list_head * last)323 static inline void list_bulk_move_tail(struct list_head *head,
324 				       struct list_head *first,
325 				       struct list_head *last)
326 {
327 	first->prev->next = last->next;
328 	last->next->prev = first->prev;
329 
330 	head->prev->next = first;
331 	first->prev = head->prev;
332 
333 	last->next = head;
334 	head->prev = last;
335 }
336 
337 /**
338  * list_is_first -- tests whether @list is the first entry in list @head
339  * @list: the entry to test
340  * @head: the head of the list
341  */
list_is_first(const struct list_head * list,const struct list_head * head)342 static inline int list_is_first(const struct list_head *list, const struct list_head *head)
343 {
344 	return list->prev == head;
345 }
346 
347 /**
348  * list_is_last - tests whether @list is the last entry in list @head
349  * @list: the entry to test
350  * @head: the head of the list
351  */
list_is_last(const struct list_head * list,const struct list_head * head)352 static inline int list_is_last(const struct list_head *list, const struct list_head *head)
353 {
354 	return list->next == head;
355 }
356 
357 /**
358  * list_is_head - tests whether @list is the list @head
359  * @list: the entry to test
360  * @head: the head of the list
361  */
list_is_head(const struct list_head * list,const struct list_head * head)362 static inline int list_is_head(const struct list_head *list, const struct list_head *head)
363 {
364 	return list == head;
365 }
366 
367 /**
368  * list_empty - tests whether a list is empty
369  * @head: the list to test.
370  */
list_empty(const struct list_head * head)371 static inline int list_empty(const struct list_head *head)
372 {
373 	return READ_ONCE(head->next) == head;
374 }
375 
376 /**
377  * list_del_init_careful - deletes entry from list and reinitialize it.
378  * @entry: the element to delete from the list.
379  *
380  * This is the same as list_del_init(), except designed to be used
381  * together with list_empty_careful() in a way to guarantee ordering
382  * of other memory operations.
383  *
384  * Any memory operations done before a list_del_init_careful() are
385  * guaranteed to be visible after a list_empty_careful() test.
386  */
list_del_init_careful(struct list_head * entry)387 static inline void list_del_init_careful(struct list_head *entry)
388 {
389 	__list_del_entry(entry);
390 	WRITE_ONCE(entry->prev, entry);
391 	smp_store_release(&entry->next, entry);
392 }
393 
394 /**
395  * list_empty_careful - tests whether a list is empty and not being modified
396  * @head: the list to test
397  *
398  * Description:
399  * tests whether a list is empty _and_ checks that no other CPU might be
400  * in the process of modifying either member (next or prev)
401  *
402  * NOTE: using list_empty_careful() without synchronization
403  * can only be safe if the only activity that can happen
404  * to the list entry is list_del_init(). Eg. it cannot be used
405  * if another CPU could re-list_add() it.
406  */
list_empty_careful(const struct list_head * head)407 static inline int list_empty_careful(const struct list_head *head)
408 {
409 	struct list_head *next = smp_load_acquire(&head->next);
410 	return list_is_head(next, head) && (next == READ_ONCE(head->prev));
411 }
412 
413 /**
414  * list_rotate_left - rotate the list to the left
415  * @head: the head of the list
416  */
list_rotate_left(struct list_head * head)417 static inline void list_rotate_left(struct list_head *head)
418 {
419 	struct list_head *first;
420 
421 	if (!list_empty(head)) {
422 		first = head->next;
423 		list_move_tail(first, head);
424 	}
425 }
426 
427 /**
428  * list_rotate_to_front() - Rotate list to specific item.
429  * @list: The desired new front of the list.
430  * @head: The head of the list.
431  *
432  * Rotates list so that @list becomes the new front of the list.
433  */
list_rotate_to_front(struct list_head * list,struct list_head * head)434 static inline void list_rotate_to_front(struct list_head *list,
435 					struct list_head *head)
436 {
437 	/*
438 	 * Deletes the list head from the list denoted by @head and
439 	 * places it as the tail of @list, this effectively rotates the
440 	 * list so that @list is at the front.
441 	 */
442 	list_move_tail(head, list);
443 }
444 
445 /**
446  * list_is_singular - tests whether a list has just one entry.
447  * @head: the list to test.
448  */
list_is_singular(const struct list_head * head)449 static inline int list_is_singular(const struct list_head *head)
450 {
451 	return !list_empty(head) && (head->next == head->prev);
452 }
453 
__list_cut_position(struct list_head * list,struct list_head * head,struct list_head * entry)454 static inline void __list_cut_position(struct list_head *list,
455 		struct list_head *head, struct list_head *entry)
456 {
457 	struct list_head *new_first = entry->next;
458 	list->next = head->next;
459 	list->next->prev = list;
460 	list->prev = entry;
461 	entry->next = list;
462 	head->next = new_first;
463 	new_first->prev = head;
464 }
465 
466 /**
467  * list_cut_position - cut a list into two
468  * @list: a new list to add all removed entries
469  * @head: a list with entries
470  * @entry: an entry within head, could be the head itself
471  *	and if so we won't cut the list
472  *
473  * This helper moves the initial part of @head, up to and
474  * including @entry, from @head to @list. You should
475  * pass on @entry an element you know is on @head. @list
476  * should be an empty list or a list you do not care about
477  * losing its data.
478  *
479  */
list_cut_position(struct list_head * list,struct list_head * head,struct list_head * entry)480 static inline void list_cut_position(struct list_head *list,
481 		struct list_head *head, struct list_head *entry)
482 {
483 	if (list_empty(head))
484 		return;
485 	if (list_is_singular(head) && !list_is_head(entry, head) && (entry != head->next))
486 		return;
487 	if (list_is_head(entry, head))
488 		INIT_LIST_HEAD(list);
489 	else
490 		__list_cut_position(list, head, entry);
491 }
492 
493 /**
494  * list_cut_before - cut a list into two, before given entry
495  * @list: a new list to add all removed entries
496  * @head: a list with entries
497  * @entry: an entry within head, could be the head itself
498  *
499  * This helper moves the initial part of @head, up to but
500  * excluding @entry, from @head to @list.  You should pass
501  * in @entry an element you know is on @head.  @list should
502  * be an empty list or a list you do not care about losing
503  * its data.
504  * If @entry == @head, all entries on @head are moved to
505  * @list.
506  */
list_cut_before(struct list_head * list,struct list_head * head,struct list_head * entry)507 static inline void list_cut_before(struct list_head *list,
508 				   struct list_head *head,
509 				   struct list_head *entry)
510 {
511 	if (head->next == entry) {
512 		INIT_LIST_HEAD(list);
513 		return;
514 	}
515 	list->next = head->next;
516 	list->next->prev = list;
517 	list->prev = entry->prev;
518 	list->prev->next = list;
519 	head->next = entry;
520 	entry->prev = head;
521 }
522 
__list_splice(const struct list_head * list,struct list_head * prev,struct list_head * next)523 static inline void __list_splice(const struct list_head *list,
524 				 struct list_head *prev,
525 				 struct list_head *next)
526 {
527 	struct list_head *first = list->next;
528 	struct list_head *last = list->prev;
529 
530 	first->prev = prev;
531 	prev->next = first;
532 
533 	last->next = next;
534 	next->prev = last;
535 }
536 
537 /**
538  * list_splice - join two lists, this is designed for stacks
539  * @list: the new list to add.
540  * @head: the place to add it in the first list.
541  */
list_splice(const struct list_head * list,struct list_head * head)542 static inline void list_splice(const struct list_head *list,
543 				struct list_head *head)
544 {
545 	if (!list_empty(list))
546 		__list_splice(list, head, head->next);
547 }
548 
549 /**
550  * list_splice_tail - join two lists, each list being a queue
551  * @list: the new list to add.
552  * @head: the place to add it in the first list.
553  */
list_splice_tail(struct list_head * list,struct list_head * head)554 static inline void list_splice_tail(struct list_head *list,
555 				struct list_head *head)
556 {
557 	if (!list_empty(list))
558 		__list_splice(list, head->prev, head);
559 }
560 
561 /**
562  * list_splice_init - join two lists and reinitialise the emptied list.
563  * @list: the new list to add.
564  * @head: the place to add it in the first list.
565  *
566  * The list at @list is reinitialised
567  */
list_splice_init(struct list_head * list,struct list_head * head)568 static inline void list_splice_init(struct list_head *list,
569 				    struct list_head *head)
570 {
571 	if (!list_empty(list)) {
572 		__list_splice(list, head, head->next);
573 		INIT_LIST_HEAD(list);
574 	}
575 }
576 
577 /**
578  * list_splice_tail_init - join two lists and reinitialise the emptied list
579  * @list: the new list to add.
580  * @head: the place to add it in the first list.
581  *
582  * Each of the lists is a queue.
583  * The list at @list is reinitialised
584  */
list_splice_tail_init(struct list_head * list,struct list_head * head)585 static inline void list_splice_tail_init(struct list_head *list,
586 					 struct list_head *head)
587 {
588 	if (!list_empty(list)) {
589 		__list_splice(list, head->prev, head);
590 		INIT_LIST_HEAD(list);
591 	}
592 }
593 
594 /**
595  * list_entry - get the struct for this entry
596  * @ptr:	the &struct list_head pointer.
597  * @type:	the type of the struct this is embedded in.
598  * @member:	the name of the list_head within the struct.
599  */
600 #define list_entry(ptr, type, member) \
601 	container_of(ptr, type, member)
602 
603 /**
604  * list_first_entry - get the first element from a list
605  * @ptr:	the list head to take the element from.
606  * @type:	the type of the struct this is embedded in.
607  * @member:	the name of the list_head within the struct.
608  *
609  * Note, that list is expected to be not empty.
610  */
611 #define list_first_entry(ptr, type, member) \
612 	list_entry((ptr)->next, type, member)
613 
614 /**
615  * list_last_entry - get the last element from a list
616  * @ptr:	the list head to take the element from.
617  * @type:	the type of the struct this is embedded in.
618  * @member:	the name of the list_head within the struct.
619  *
620  * Note, that list is expected to be not empty.
621  */
622 #define list_last_entry(ptr, type, member) \
623 	list_entry((ptr)->prev, type, member)
624 
625 /**
626  * list_first_entry_or_null - get the first element from a list
627  * @ptr:	the list head to take the element from.
628  * @type:	the type of the struct this is embedded in.
629  * @member:	the name of the list_head within the struct.
630  *
631  * Note that if the list is empty, it returns NULL.
632  */
633 #define list_first_entry_or_null(ptr, type, member) ({ \
634 	struct list_head *head__ = (ptr); \
635 	struct list_head *pos__ = READ_ONCE(head__->next); \
636 	pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
637 })
638 
639 /**
640  * list_next_entry - get the next element in list
641  * @pos:	the type * to cursor
642  * @member:	the name of the list_head within the struct.
643  */
644 #define list_next_entry(pos, member) \
645 	list_entry((pos)->member.next, typeof(*(pos)), member)
646 
647 /**
648  * list_next_entry_circular - get the next element in list
649  * @pos:	the type * to cursor.
650  * @head:	the list head to take the element from.
651  * @member:	the name of the list_head within the struct.
652  *
653  * Wraparound if pos is the last element (return the first element).
654  * Note, that list is expected to be not empty.
655  */
656 #define list_next_entry_circular(pos, head, member) \
657 	(list_is_last(&(pos)->member, head) ? \
658 	list_first_entry(head, typeof(*(pos)), member) : list_next_entry(pos, member))
659 
660 /**
661  * list_prev_entry - get the prev element in list
662  * @pos:	the type * to cursor
663  * @member:	the name of the list_head within the struct.
664  */
665 #define list_prev_entry(pos, member) \
666 	list_entry((pos)->member.prev, typeof(*(pos)), member)
667 
668 /**
669  * list_prev_entry_circular - get the prev element in list
670  * @pos:	the type * to cursor.
671  * @head:	the list head to take the element from.
672  * @member:	the name of the list_head within the struct.
673  *
674  * Wraparound if pos is the first element (return the last element).
675  * Note, that list is expected to be not empty.
676  */
677 #define list_prev_entry_circular(pos, head, member) \
678 	(list_is_first(&(pos)->member, head) ? \
679 	list_last_entry(head, typeof(*(pos)), member) : list_prev_entry(pos, member))
680 
681 /**
682  * list_for_each	-	iterate over a list
683  * @pos:	the &struct list_head to use as a loop cursor.
684  * @head:	the head for your list.
685  */
686 #define list_for_each(pos, head) \
687 	for (pos = (head)->next; !list_is_head(pos, (head)); pos = pos->next)
688 
689 /**
690  * list_for_each_reverse - iterate backwards over a list
691  * @pos:	the &struct list_head to use as a loop cursor.
692  * @head:	the head for your list.
693  */
694 #define list_for_each_reverse(pos, head) \
695 	for (pos = (head)->prev; pos != (head); pos = pos->prev)
696 
697 /**
698  * list_for_each_rcu - Iterate over a list in an RCU-safe fashion
699  * @pos:	the &struct list_head to use as a loop cursor.
700  * @head:	the head for your list.
701  */
702 #define list_for_each_rcu(pos, head)		  \
703 	for (pos = rcu_dereference((head)->next); \
704 	     !list_is_head(pos, (head)); \
705 	     pos = rcu_dereference(pos->next))
706 
707 /**
708  * list_for_each_continue - continue iteration over a list
709  * @pos:	the &struct list_head to use as a loop cursor.
710  * @head:	the head for your list.
711  *
712  * Continue to iterate over a list, continuing after the current position.
713  */
714 #define list_for_each_continue(pos, head) \
715 	for (pos = pos->next; !list_is_head(pos, (head)); pos = pos->next)
716 
717 /**
718  * list_for_each_prev	-	iterate over a list backwards
719  * @pos:	the &struct list_head to use as a loop cursor.
720  * @head:	the head for your list.
721  */
722 #define list_for_each_prev(pos, head) \
723 	for (pos = (head)->prev; !list_is_head(pos, (head)); pos = pos->prev)
724 
725 /**
726  * list_for_each_safe - iterate over a list safe against removal of list entry
727  * @pos:	the &struct list_head to use as a loop cursor.
728  * @n:		another &struct list_head to use as temporary storage
729  * @head:	the head for your list.
730  */
731 #define list_for_each_safe(pos, n, head) \
732 	for (pos = (head)->next, n = pos->next; \
733 	     !list_is_head(pos, (head)); \
734 	     pos = n, n = pos->next)
735 
736 /**
737  * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
738  * @pos:	the &struct list_head to use as a loop cursor.
739  * @n:		another &struct list_head to use as temporary storage
740  * @head:	the head for your list.
741  */
742 #define list_for_each_prev_safe(pos, n, head) \
743 	for (pos = (head)->prev, n = pos->prev; \
744 	     !list_is_head(pos, (head)); \
745 	     pos = n, n = pos->prev)
746 
747 /**
748  * list_count_nodes - count nodes in the list
749  * @head:	the head for your list.
750  */
list_count_nodes(struct list_head * head)751 static inline size_t list_count_nodes(struct list_head *head)
752 {
753 	struct list_head *pos;
754 	size_t count = 0;
755 
756 	list_for_each(pos, head)
757 		count++;
758 
759 	return count;
760 }
761 
762 /**
763  * list_entry_is_head - test if the entry points to the head of the list
764  * @pos:	the type * to cursor
765  * @head:	the head for your list.
766  * @member:	the name of the list_head within the struct.
767  */
768 #define list_entry_is_head(pos, head, member)				\
769 	list_is_head(&pos->member, (head))
770 
771 /**
772  * list_for_each_entry	-	iterate over list of given type
773  * @pos:	the type * to use as a loop cursor.
774  * @head:	the head for your list.
775  * @member:	the name of the list_head within the struct.
776  */
777 #define list_for_each_entry(pos, head, member)				\
778 	for (pos = list_first_entry(head, typeof(*pos), member);	\
779 	     !list_entry_is_head(pos, head, member);			\
780 	     pos = list_next_entry(pos, member))
781 
782 /**
783  * list_for_each_entry_reverse - iterate backwards over list of given type.
784  * @pos:	the type * to use as a loop cursor.
785  * @head:	the head for your list.
786  * @member:	the name of the list_head within the struct.
787  */
788 #define list_for_each_entry_reverse(pos, head, member)			\
789 	for (pos = list_last_entry(head, typeof(*pos), member);		\
790 	     !list_entry_is_head(pos, head, member); 			\
791 	     pos = list_prev_entry(pos, member))
792 
793 /**
794  * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
795  * @pos:	the type * to use as a start point
796  * @head:	the head of the list
797  * @member:	the name of the list_head within the struct.
798  *
799  * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
800  */
801 #define list_prepare_entry(pos, head, member) \
802 	((pos) ? : list_entry(head, typeof(*pos), member))
803 
804 /**
805  * list_for_each_entry_continue - continue iteration over list of given type
806  * @pos:	the type * to use as a loop cursor.
807  * @head:	the head for your list.
808  * @member:	the name of the list_head within the struct.
809  *
810  * Continue to iterate over list of given type, continuing after
811  * the current position.
812  */
813 #define list_for_each_entry_continue(pos, head, member) 		\
814 	for (pos = list_next_entry(pos, member);			\
815 	     !list_entry_is_head(pos, head, member);			\
816 	     pos = list_next_entry(pos, member))
817 
818 /**
819  * list_for_each_entry_continue_reverse - iterate backwards from the given point
820  * @pos:	the type * to use as a loop cursor.
821  * @head:	the head for your list.
822  * @member:	the name of the list_head within the struct.
823  *
824  * Start to iterate over list of given type backwards, continuing after
825  * the current position.
826  */
827 #define list_for_each_entry_continue_reverse(pos, head, member)		\
828 	for (pos = list_prev_entry(pos, member);			\
829 	     !list_entry_is_head(pos, head, member);			\
830 	     pos = list_prev_entry(pos, member))
831 
832 /**
833  * list_for_each_entry_from - iterate over list of given type from the current point
834  * @pos:	the type * to use as a loop cursor.
835  * @head:	the head for your list.
836  * @member:	the name of the list_head within the struct.
837  *
838  * Iterate over list of given type, continuing from current position.
839  */
840 #define list_for_each_entry_from(pos, head, member) 			\
841 	for (; !list_entry_is_head(pos, head, member);			\
842 	     pos = list_next_entry(pos, member))
843 
844 /**
845  * list_for_each_entry_from_reverse - iterate backwards over list of given type
846  *                                    from the current point
847  * @pos:	the type * to use as a loop cursor.
848  * @head:	the head for your list.
849  * @member:	the name of the list_head within the struct.
850  *
851  * Iterate backwards over list of given type, continuing from current position.
852  */
853 #define list_for_each_entry_from_reverse(pos, head, member)		\
854 	for (; !list_entry_is_head(pos, head, member);			\
855 	     pos = list_prev_entry(pos, member))
856 
857 /**
858  * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
859  * @pos:	the type * to use as a loop cursor.
860  * @n:		another type * to use as temporary storage
861  * @head:	the head for your list.
862  * @member:	the name of the list_head within the struct.
863  */
864 #define list_for_each_entry_safe(pos, n, head, member)			\
865 	for (pos = list_first_entry(head, typeof(*pos), member),	\
866 		n = list_next_entry(pos, member);			\
867 	     !list_entry_is_head(pos, head, member); 			\
868 	     pos = n, n = list_next_entry(n, member))
869 
870 /**
871  * list_for_each_entry_safe_continue - continue list iteration safe against removal
872  * @pos:	the type * to use as a loop cursor.
873  * @n:		another type * to use as temporary storage
874  * @head:	the head for your list.
875  * @member:	the name of the list_head within the struct.
876  *
877  * Iterate over list of given type, continuing after current point,
878  * safe against removal of list entry.
879  */
880 #define list_for_each_entry_safe_continue(pos, n, head, member) 		\
881 	for (pos = list_next_entry(pos, member), 				\
882 		n = list_next_entry(pos, member);				\
883 	     !list_entry_is_head(pos, head, member);				\
884 	     pos = n, n = list_next_entry(n, member))
885 
886 /**
887  * list_for_each_entry_safe_from - iterate over list from current point safe against removal
888  * @pos:	the type * to use as a loop cursor.
889  * @n:		another type * to use as temporary storage
890  * @head:	the head for your list.
891  * @member:	the name of the list_head within the struct.
892  *
893  * Iterate over list of given type from current point, safe against
894  * removal of list entry.
895  */
896 #define list_for_each_entry_safe_from(pos, n, head, member) 			\
897 	for (n = list_next_entry(pos, member);					\
898 	     !list_entry_is_head(pos, head, member);				\
899 	     pos = n, n = list_next_entry(n, member))
900 
901 /**
902  * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
903  * @pos:	the type * to use as a loop cursor.
904  * @n:		another type * to use as temporary storage
905  * @head:	the head for your list.
906  * @member:	the name of the list_head within the struct.
907  *
908  * Iterate backwards over list of given type, safe against removal
909  * of list entry.
910  */
911 #define list_for_each_entry_safe_reverse(pos, n, head, member)		\
912 	for (pos = list_last_entry(head, typeof(*pos), member),		\
913 		n = list_prev_entry(pos, member);			\
914 	     !list_entry_is_head(pos, head, member); 			\
915 	     pos = n, n = list_prev_entry(n, member))
916 
917 /**
918  * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
919  * @pos:	the loop cursor used in the list_for_each_entry_safe loop
920  * @n:		temporary storage used in list_for_each_entry_safe
921  * @member:	the name of the list_head within the struct.
922  *
923  * list_safe_reset_next is not safe to use in general if the list may be
924  * modified concurrently (eg. the lock is dropped in the loop body). An
925  * exception to this is if the cursor element (pos) is pinned in the list,
926  * and list_safe_reset_next is called after re-taking the lock and before
927  * completing the current iteration of the loop body.
928  */
929 #define list_safe_reset_next(pos, n, member)				\
930 	n = list_next_entry(pos, member)
931 
932 /*
933  * Double linked lists with a single pointer list head.
934  * Mostly useful for hash tables where the two pointer list head is
935  * too wasteful.
936  * You lose the ability to access the tail in O(1).
937  */
938 
939 #define HLIST_HEAD_INIT { .first = NULL }
940 #define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
941 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
INIT_HLIST_NODE(struct hlist_node * h)942 static inline void INIT_HLIST_NODE(struct hlist_node *h)
943 {
944 	h->next = NULL;
945 	h->pprev = NULL;
946 }
947 
948 /**
949  * hlist_unhashed - Has node been removed from list and reinitialized?
950  * @h: Node to be checked
951  *
952  * Not that not all removal functions will leave a node in unhashed
953  * state.  For example, hlist_nulls_del_init_rcu() does leave the
954  * node in unhashed state, but hlist_nulls_del() does not.
955  */
hlist_unhashed(const struct hlist_node * h)956 static inline int hlist_unhashed(const struct hlist_node *h)
957 {
958 	return !h->pprev;
959 }
960 
961 /**
962  * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use
963  * @h: Node to be checked
964  *
965  * This variant of hlist_unhashed() must be used in lockless contexts
966  * to avoid potential load-tearing.  The READ_ONCE() is paired with the
967  * various WRITE_ONCE() in hlist helpers that are defined below.
968  */
hlist_unhashed_lockless(const struct hlist_node * h)969 static inline int hlist_unhashed_lockless(const struct hlist_node *h)
970 {
971 	return !READ_ONCE(h->pprev);
972 }
973 
974 /**
975  * hlist_empty - Is the specified hlist_head structure an empty hlist?
976  * @h: Structure to check.
977  */
hlist_empty(const struct hlist_head * h)978 static inline int hlist_empty(const struct hlist_head *h)
979 {
980 	return !READ_ONCE(h->first);
981 }
982 
__hlist_del(struct hlist_node * n)983 static inline void __hlist_del(struct hlist_node *n)
984 {
985 	struct hlist_node *next = n->next;
986 	struct hlist_node **pprev = n->pprev;
987 
988 	WRITE_ONCE(*pprev, next);
989 	if (next)
990 		WRITE_ONCE(next->pprev, pprev);
991 }
992 
993 /**
994  * hlist_del - Delete the specified hlist_node from its list
995  * @n: Node to delete.
996  *
997  * Note that this function leaves the node in hashed state.  Use
998  * hlist_del_init() or similar instead to unhash @n.
999  */
hlist_del(struct hlist_node * n)1000 static inline void hlist_del(struct hlist_node *n)
1001 {
1002 	__hlist_del(n);
1003 	n->next = LIST_POISON1;
1004 	n->pprev = LIST_POISON2;
1005 }
1006 
1007 /**
1008  * hlist_del_init - Delete the specified hlist_node from its list and initialize
1009  * @n: Node to delete.
1010  *
1011  * Note that this function leaves the node in unhashed state.
1012  */
hlist_del_init(struct hlist_node * n)1013 static inline void hlist_del_init(struct hlist_node *n)
1014 {
1015 	if (!hlist_unhashed(n)) {
1016 		__hlist_del(n);
1017 		INIT_HLIST_NODE(n);
1018 	}
1019 }
1020 
1021 /**
1022  * hlist_add_head - add a new entry at the beginning of the hlist
1023  * @n: new entry to be added
1024  * @h: hlist head to add it after
1025  *
1026  * Insert a new entry after the specified head.
1027  * This is good for implementing stacks.
1028  */
hlist_add_head(struct hlist_node * n,struct hlist_head * h)1029 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
1030 {
1031 	struct hlist_node *first = h->first;
1032 	WRITE_ONCE(n->next, first);
1033 	if (first)
1034 		WRITE_ONCE(first->pprev, &n->next);
1035 	WRITE_ONCE(h->first, n);
1036 	WRITE_ONCE(n->pprev, &h->first);
1037 }
1038 
1039 /**
1040  * hlist_add_before - add a new entry before the one specified
1041  * @n: new entry to be added
1042  * @next: hlist node to add it before, which must be non-NULL
1043  */
hlist_add_before(struct hlist_node * n,struct hlist_node * next)1044 static inline void hlist_add_before(struct hlist_node *n,
1045 				    struct hlist_node *next)
1046 {
1047 	WRITE_ONCE(n->pprev, next->pprev);
1048 	WRITE_ONCE(n->next, next);
1049 	WRITE_ONCE(next->pprev, &n->next);
1050 	WRITE_ONCE(*(n->pprev), n);
1051 }
1052 
1053 /**
1054  * hlist_add_behind - add a new entry after the one specified
1055  * @n: new entry to be added
1056  * @prev: hlist node to add it after, which must be non-NULL
1057  */
hlist_add_behind(struct hlist_node * n,struct hlist_node * prev)1058 static inline void hlist_add_behind(struct hlist_node *n,
1059 				    struct hlist_node *prev)
1060 {
1061 	WRITE_ONCE(n->next, prev->next);
1062 	WRITE_ONCE(prev->next, n);
1063 	WRITE_ONCE(n->pprev, &prev->next);
1064 
1065 	if (n->next)
1066 		WRITE_ONCE(n->next->pprev, &n->next);
1067 }
1068 
1069 /**
1070  * hlist_add_fake - create a fake hlist consisting of a single headless node
1071  * @n: Node to make a fake list out of
1072  *
1073  * This makes @n appear to be its own predecessor on a headless hlist.
1074  * The point of this is to allow things like hlist_del() to work correctly
1075  * in cases where there is no list.
1076  */
hlist_add_fake(struct hlist_node * n)1077 static inline void hlist_add_fake(struct hlist_node *n)
1078 {
1079 	n->pprev = &n->next;
1080 }
1081 
1082 /**
1083  * hlist_fake: Is this node a fake hlist?
1084  * @h: Node to check for being a self-referential fake hlist.
1085  */
hlist_fake(struct hlist_node * h)1086 static inline bool hlist_fake(struct hlist_node *h)
1087 {
1088 	return h->pprev == &h->next;
1089 }
1090 
1091 /**
1092  * hlist_is_singular_node - is node the only element of the specified hlist?
1093  * @n: Node to check for singularity.
1094  * @h: Header for potentially singular list.
1095  *
1096  * Check whether the node is the only node of the head without
1097  * accessing head, thus avoiding unnecessary cache misses.
1098  */
1099 static inline bool
hlist_is_singular_node(struct hlist_node * n,struct hlist_head * h)1100 hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
1101 {
1102 	return !n->next && n->pprev == &h->first;
1103 }
1104 
1105 /**
1106  * hlist_move_list - Move an hlist
1107  * @old: hlist_head for old list.
1108  * @new: hlist_head for new list.
1109  *
1110  * Move a list from one list head to another. Fixup the pprev
1111  * reference of the first entry if it exists.
1112  */
hlist_move_list(struct hlist_head * old,struct hlist_head * new)1113 static inline void hlist_move_list(struct hlist_head *old,
1114 				   struct hlist_head *new)
1115 {
1116 	new->first = old->first;
1117 	if (new->first)
1118 		new->first->pprev = &new->first;
1119 	old->first = NULL;
1120 }
1121 
1122 /**
1123  * hlist_splice_init() - move all entries from one list to another
1124  * @from: hlist_head from which entries will be moved
1125  * @last: last entry on the @from list
1126  * @to:   hlist_head to which entries will be moved
1127  *
1128  * @to can be empty, @from must contain at least @last.
1129  */
hlist_splice_init(struct hlist_head * from,struct hlist_node * last,struct hlist_head * to)1130 static inline void hlist_splice_init(struct hlist_head *from,
1131 				     struct hlist_node *last,
1132 				     struct hlist_head *to)
1133 {
1134 	if (to->first)
1135 		to->first->pprev = &last->next;
1136 	last->next = to->first;
1137 	to->first = from->first;
1138 	from->first->pprev = &to->first;
1139 	from->first = NULL;
1140 }
1141 
1142 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
1143 
1144 #define hlist_for_each(pos, head) \
1145 	for (pos = (head)->first; pos ; pos = pos->next)
1146 
1147 #define hlist_for_each_safe(pos, n, head) \
1148 	for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
1149 	     pos = n)
1150 
1151 #define hlist_entry_safe(ptr, type, member) \
1152 	({ typeof(ptr) ____ptr = (ptr); \
1153 	   ____ptr ? hlist_entry(____ptr, type, member) : NULL; \
1154 	})
1155 
1156 /**
1157  * hlist_for_each_entry	- iterate over list of given type
1158  * @pos:	the type * to use as a loop cursor.
1159  * @head:	the head for your list.
1160  * @member:	the name of the hlist_node within the struct.
1161  */
1162 #define hlist_for_each_entry(pos, head, member)				\
1163 	for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\
1164 	     pos;							\
1165 	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1166 
1167 /**
1168  * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
1169  * @pos:	the type * to use as a loop cursor.
1170  * @member:	the name of the hlist_node within the struct.
1171  */
1172 #define hlist_for_each_entry_continue(pos, member)			\
1173 	for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\
1174 	     pos;							\
1175 	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1176 
1177 /**
1178  * hlist_for_each_entry_from - iterate over a hlist continuing from current point
1179  * @pos:	the type * to use as a loop cursor.
1180  * @member:	the name of the hlist_node within the struct.
1181  */
1182 #define hlist_for_each_entry_from(pos, member)				\
1183 	for (; pos;							\
1184 	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1185 
1186 /**
1187  * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1188  * @pos:	the type * to use as a loop cursor.
1189  * @n:		a &struct hlist_node to use as temporary storage
1190  * @head:	the head for your list.
1191  * @member:	the name of the hlist_node within the struct.
1192  */
1193 #define hlist_for_each_entry_safe(pos, n, head, member) 		\
1194 	for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\
1195 	     pos && ({ n = pos->member.next; 1; });			\
1196 	     pos = hlist_entry_safe(n, typeof(*pos), member))
1197 
1198 /**
1199  * hlist_count_nodes - count nodes in the hlist
1200  * @head:	the head for your hlist.
1201  */
hlist_count_nodes(struct hlist_head * head)1202 static inline size_t hlist_count_nodes(struct hlist_head *head)
1203 {
1204 	struct hlist_node *pos;
1205 	size_t count = 0;
1206 
1207 	hlist_for_each(pos, head)
1208 		count++;
1209 
1210 	return count;
1211 }
1212 
1213 #endif
1214