1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "discard.h"
34 #include "zoned.h"
35 #include "dev-replace.h"
36 #include "fs.h"
37 #include "accessors.h"
38 #include "root-tree.h"
39 #include "file-item.h"
40 #include "orphan.h"
41 #include "tree-checker.h"
42 #include "raid-stripe-tree.h"
43
44 #undef SCRAMBLE_DELAYED_REFS
45
46
47 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
48 struct btrfs_delayed_ref_head *href,
49 struct btrfs_delayed_ref_node *node,
50 struct btrfs_delayed_extent_op *extra_op);
51 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
52 struct extent_buffer *leaf,
53 struct btrfs_extent_item *ei);
54 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
55 u64 parent, u64 root_objectid,
56 u64 flags, u64 owner, u64 offset,
57 struct btrfs_key *ins, int ref_mod, u64 oref_root);
58 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
59 struct btrfs_delayed_ref_node *node,
60 struct btrfs_delayed_extent_op *extent_op);
61 static int find_next_key(struct btrfs_path *path, int level,
62 struct btrfs_key *key);
63
block_group_bits(struct btrfs_block_group * cache,u64 bits)64 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
65 {
66 return (cache->flags & bits) == bits;
67 }
68
69 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)70 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
71 {
72 struct btrfs_root *root = btrfs_extent_root(fs_info, start);
73 int ret;
74 struct btrfs_key key;
75 struct btrfs_path *path;
76
77 path = btrfs_alloc_path();
78 if (!path)
79 return -ENOMEM;
80
81 key.objectid = start;
82 key.offset = len;
83 key.type = BTRFS_EXTENT_ITEM_KEY;
84 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
85 btrfs_free_path(path);
86 return ret;
87 }
88
89 /*
90 * helper function to lookup reference count and flags of a tree block.
91 *
92 * the head node for delayed ref is used to store the sum of all the
93 * reference count modifications queued up in the rbtree. the head
94 * node may also store the extent flags to set. This way you can check
95 * to see what the reference count and extent flags would be if all of
96 * the delayed refs are not processed.
97 */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags,u64 * owning_root)98 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
99 struct btrfs_fs_info *fs_info, u64 bytenr,
100 u64 offset, int metadata, u64 *refs, u64 *flags,
101 u64 *owning_root)
102 {
103 struct btrfs_root *extent_root;
104 struct btrfs_delayed_ref_head *head;
105 struct btrfs_delayed_ref_root *delayed_refs;
106 struct btrfs_path *path;
107 struct btrfs_key key;
108 u64 num_refs;
109 u64 extent_flags;
110 u64 owner = 0;
111 int ret;
112
113 /*
114 * If we don't have skinny metadata, don't bother doing anything
115 * different
116 */
117 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
118 offset = fs_info->nodesize;
119 metadata = 0;
120 }
121
122 path = btrfs_alloc_path();
123 if (!path)
124 return -ENOMEM;
125
126 search_again:
127 key.objectid = bytenr;
128 key.offset = offset;
129 if (metadata)
130 key.type = BTRFS_METADATA_ITEM_KEY;
131 else
132 key.type = BTRFS_EXTENT_ITEM_KEY;
133
134 extent_root = btrfs_extent_root(fs_info, bytenr);
135 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
136 if (ret < 0)
137 goto out_free;
138
139 if (ret > 0 && key.type == BTRFS_METADATA_ITEM_KEY) {
140 if (path->slots[0]) {
141 path->slots[0]--;
142 btrfs_item_key_to_cpu(path->nodes[0], &key,
143 path->slots[0]);
144 if (key.objectid == bytenr &&
145 key.type == BTRFS_EXTENT_ITEM_KEY &&
146 key.offset == fs_info->nodesize)
147 ret = 0;
148 }
149 }
150
151 if (ret == 0) {
152 struct extent_buffer *leaf = path->nodes[0];
153 struct btrfs_extent_item *ei;
154 const u32 item_size = btrfs_item_size(leaf, path->slots[0]);
155
156 if (unlikely(item_size < sizeof(*ei))) {
157 ret = -EUCLEAN;
158 btrfs_err(fs_info,
159 "unexpected extent item size, has %u expect >= %zu",
160 item_size, sizeof(*ei));
161 btrfs_abort_transaction(trans, ret);
162 goto out_free;
163 }
164
165 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
166 num_refs = btrfs_extent_refs(leaf, ei);
167 if (unlikely(num_refs == 0)) {
168 ret = -EUCLEAN;
169 btrfs_err(fs_info,
170 "unexpected zero reference count for extent item (%llu %u %llu)",
171 key.objectid, key.type, key.offset);
172 btrfs_abort_transaction(trans, ret);
173 goto out_free;
174 }
175 extent_flags = btrfs_extent_flags(leaf, ei);
176 owner = btrfs_get_extent_owner_root(fs_info, leaf, path->slots[0]);
177 } else {
178 num_refs = 0;
179 extent_flags = 0;
180 ret = 0;
181 }
182
183 delayed_refs = &trans->transaction->delayed_refs;
184 spin_lock(&delayed_refs->lock);
185 head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
186 if (head) {
187 if (!mutex_trylock(&head->mutex)) {
188 refcount_inc(&head->refs);
189 spin_unlock(&delayed_refs->lock);
190
191 btrfs_release_path(path);
192
193 /*
194 * Mutex was contended, block until it's released and try
195 * again
196 */
197 mutex_lock(&head->mutex);
198 mutex_unlock(&head->mutex);
199 btrfs_put_delayed_ref_head(head);
200 goto search_again;
201 }
202 spin_lock(&head->lock);
203 if (head->extent_op && head->extent_op->update_flags)
204 extent_flags |= head->extent_op->flags_to_set;
205
206 num_refs += head->ref_mod;
207 spin_unlock(&head->lock);
208 mutex_unlock(&head->mutex);
209 }
210 spin_unlock(&delayed_refs->lock);
211
212 WARN_ON(num_refs == 0);
213 if (refs)
214 *refs = num_refs;
215 if (flags)
216 *flags = extent_flags;
217 if (owning_root)
218 *owning_root = owner;
219 out_free:
220 btrfs_free_path(path);
221 return ret;
222 }
223
224 /*
225 * Back reference rules. Back refs have three main goals:
226 *
227 * 1) differentiate between all holders of references to an extent so that
228 * when a reference is dropped we can make sure it was a valid reference
229 * before freeing the extent.
230 *
231 * 2) Provide enough information to quickly find the holders of an extent
232 * if we notice a given block is corrupted or bad.
233 *
234 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
235 * maintenance. This is actually the same as #2, but with a slightly
236 * different use case.
237 *
238 * There are two kinds of back refs. The implicit back refs is optimized
239 * for pointers in non-shared tree blocks. For a given pointer in a block,
240 * back refs of this kind provide information about the block's owner tree
241 * and the pointer's key. These information allow us to find the block by
242 * b-tree searching. The full back refs is for pointers in tree blocks not
243 * referenced by their owner trees. The location of tree block is recorded
244 * in the back refs. Actually the full back refs is generic, and can be
245 * used in all cases the implicit back refs is used. The major shortcoming
246 * of the full back refs is its overhead. Every time a tree block gets
247 * COWed, we have to update back refs entry for all pointers in it.
248 *
249 * For a newly allocated tree block, we use implicit back refs for
250 * pointers in it. This means most tree related operations only involve
251 * implicit back refs. For a tree block created in old transaction, the
252 * only way to drop a reference to it is COW it. So we can detect the
253 * event that tree block loses its owner tree's reference and do the
254 * back refs conversion.
255 *
256 * When a tree block is COWed through a tree, there are four cases:
257 *
258 * The reference count of the block is one and the tree is the block's
259 * owner tree. Nothing to do in this case.
260 *
261 * The reference count of the block is one and the tree is not the
262 * block's owner tree. In this case, full back refs is used for pointers
263 * in the block. Remove these full back refs, add implicit back refs for
264 * every pointers in the new block.
265 *
266 * The reference count of the block is greater than one and the tree is
267 * the block's owner tree. In this case, implicit back refs is used for
268 * pointers in the block. Add full back refs for every pointers in the
269 * block, increase lower level extents' reference counts. The original
270 * implicit back refs are entailed to the new block.
271 *
272 * The reference count of the block is greater than one and the tree is
273 * not the block's owner tree. Add implicit back refs for every pointer in
274 * the new block, increase lower level extents' reference count.
275 *
276 * Back Reference Key composing:
277 *
278 * The key objectid corresponds to the first byte in the extent,
279 * The key type is used to differentiate between types of back refs.
280 * There are different meanings of the key offset for different types
281 * of back refs.
282 *
283 * File extents can be referenced by:
284 *
285 * - multiple snapshots, subvolumes, or different generations in one subvol
286 * - different files inside a single subvolume
287 * - different offsets inside a file (bookend extents in file.c)
288 *
289 * The extent ref structure for the implicit back refs has fields for:
290 *
291 * - Objectid of the subvolume root
292 * - objectid of the file holding the reference
293 * - original offset in the file
294 * - how many bookend extents
295 *
296 * The key offset for the implicit back refs is hash of the first
297 * three fields.
298 *
299 * The extent ref structure for the full back refs has field for:
300 *
301 * - number of pointers in the tree leaf
302 *
303 * The key offset for the implicit back refs is the first byte of
304 * the tree leaf
305 *
306 * When a file extent is allocated, The implicit back refs is used.
307 * the fields are filled in:
308 *
309 * (root_key.objectid, inode objectid, offset in file, 1)
310 *
311 * When a file extent is removed file truncation, we find the
312 * corresponding implicit back refs and check the following fields:
313 *
314 * (btrfs_header_owner(leaf), inode objectid, offset in file)
315 *
316 * Btree extents can be referenced by:
317 *
318 * - Different subvolumes
319 *
320 * Both the implicit back refs and the full back refs for tree blocks
321 * only consist of key. The key offset for the implicit back refs is
322 * objectid of block's owner tree. The key offset for the full back refs
323 * is the first byte of parent block.
324 *
325 * When implicit back refs is used, information about the lowest key and
326 * level of the tree block are required. These information are stored in
327 * tree block info structure.
328 */
329
330 /*
331 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
332 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
333 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
334 */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)335 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
336 struct btrfs_extent_inline_ref *iref,
337 enum btrfs_inline_ref_type is_data)
338 {
339 struct btrfs_fs_info *fs_info = eb->fs_info;
340 int type = btrfs_extent_inline_ref_type(eb, iref);
341 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
342
343 if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
344 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
345 return type;
346 }
347
348 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
349 type == BTRFS_SHARED_BLOCK_REF_KEY ||
350 type == BTRFS_SHARED_DATA_REF_KEY ||
351 type == BTRFS_EXTENT_DATA_REF_KEY) {
352 if (is_data == BTRFS_REF_TYPE_BLOCK) {
353 if (type == BTRFS_TREE_BLOCK_REF_KEY)
354 return type;
355 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
356 ASSERT(fs_info);
357 /*
358 * Every shared one has parent tree block,
359 * which must be aligned to sector size.
360 */
361 if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
362 return type;
363 }
364 } else if (is_data == BTRFS_REF_TYPE_DATA) {
365 if (type == BTRFS_EXTENT_DATA_REF_KEY)
366 return type;
367 if (type == BTRFS_SHARED_DATA_REF_KEY) {
368 ASSERT(fs_info);
369 /*
370 * Every shared one has parent tree block,
371 * which must be aligned to sector size.
372 */
373 if (offset &&
374 IS_ALIGNED(offset, fs_info->sectorsize))
375 return type;
376 }
377 } else {
378 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
379 return type;
380 }
381 }
382
383 WARN_ON(1);
384 btrfs_print_leaf(eb);
385 btrfs_err(fs_info,
386 "eb %llu iref 0x%lx invalid extent inline ref type %d",
387 eb->start, (unsigned long)iref, type);
388
389 return BTRFS_REF_TYPE_INVALID;
390 }
391
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)392 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
393 {
394 u32 high_crc = ~(u32)0;
395 u32 low_crc = ~(u32)0;
396 __le64 lenum;
397
398 lenum = cpu_to_le64(root_objectid);
399 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
400 lenum = cpu_to_le64(owner);
401 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
402 lenum = cpu_to_le64(offset);
403 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
404
405 return ((u64)high_crc << 31) ^ (u64)low_crc;
406 }
407
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)408 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
409 struct btrfs_extent_data_ref *ref)
410 {
411 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
412 btrfs_extent_data_ref_objectid(leaf, ref),
413 btrfs_extent_data_ref_offset(leaf, ref));
414 }
415
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)416 static int match_extent_data_ref(struct extent_buffer *leaf,
417 struct btrfs_extent_data_ref *ref,
418 u64 root_objectid, u64 owner, u64 offset)
419 {
420 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
421 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
422 btrfs_extent_data_ref_offset(leaf, ref) != offset)
423 return 0;
424 return 1;
425 }
426
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)427 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
428 struct btrfs_path *path,
429 u64 bytenr, u64 parent,
430 u64 root_objectid,
431 u64 owner, u64 offset)
432 {
433 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
434 struct btrfs_key key;
435 struct btrfs_extent_data_ref *ref;
436 struct extent_buffer *leaf;
437 u32 nritems;
438 int recow;
439 int ret;
440
441 key.objectid = bytenr;
442 if (parent) {
443 key.type = BTRFS_SHARED_DATA_REF_KEY;
444 key.offset = parent;
445 } else {
446 key.type = BTRFS_EXTENT_DATA_REF_KEY;
447 key.offset = hash_extent_data_ref(root_objectid,
448 owner, offset);
449 }
450 again:
451 recow = 0;
452 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
453 if (ret < 0)
454 return ret;
455
456 if (parent) {
457 if (ret)
458 return -ENOENT;
459 return 0;
460 }
461
462 ret = -ENOENT;
463 leaf = path->nodes[0];
464 nritems = btrfs_header_nritems(leaf);
465 while (1) {
466 if (path->slots[0] >= nritems) {
467 ret = btrfs_next_leaf(root, path);
468 if (ret) {
469 if (ret > 0)
470 return -ENOENT;
471 return ret;
472 }
473
474 leaf = path->nodes[0];
475 nritems = btrfs_header_nritems(leaf);
476 recow = 1;
477 }
478
479 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
480 if (key.objectid != bytenr ||
481 key.type != BTRFS_EXTENT_DATA_REF_KEY)
482 goto fail;
483
484 ref = btrfs_item_ptr(leaf, path->slots[0],
485 struct btrfs_extent_data_ref);
486
487 if (match_extent_data_ref(leaf, ref, root_objectid,
488 owner, offset)) {
489 if (recow) {
490 btrfs_release_path(path);
491 goto again;
492 }
493 ret = 0;
494 break;
495 }
496 path->slots[0]++;
497 }
498 fail:
499 return ret;
500 }
501
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_ref_node * node,u64 bytenr)502 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
503 struct btrfs_path *path,
504 struct btrfs_delayed_ref_node *node,
505 u64 bytenr)
506 {
507 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
508 struct btrfs_key key;
509 struct extent_buffer *leaf;
510 u64 owner = btrfs_delayed_ref_owner(node);
511 u64 offset = btrfs_delayed_ref_offset(node);
512 u32 size;
513 u32 num_refs;
514 int ret;
515
516 key.objectid = bytenr;
517 if (node->parent) {
518 key.type = BTRFS_SHARED_DATA_REF_KEY;
519 key.offset = node->parent;
520 size = sizeof(struct btrfs_shared_data_ref);
521 } else {
522 key.type = BTRFS_EXTENT_DATA_REF_KEY;
523 key.offset = hash_extent_data_ref(node->ref_root, owner, offset);
524 size = sizeof(struct btrfs_extent_data_ref);
525 }
526
527 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
528 if (ret && ret != -EEXIST)
529 goto fail;
530
531 leaf = path->nodes[0];
532 if (node->parent) {
533 struct btrfs_shared_data_ref *ref;
534 ref = btrfs_item_ptr(leaf, path->slots[0],
535 struct btrfs_shared_data_ref);
536 if (ret == 0) {
537 btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod);
538 } else {
539 num_refs = btrfs_shared_data_ref_count(leaf, ref);
540 num_refs += node->ref_mod;
541 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
542 }
543 } else {
544 struct btrfs_extent_data_ref *ref;
545 while (ret == -EEXIST) {
546 ref = btrfs_item_ptr(leaf, path->slots[0],
547 struct btrfs_extent_data_ref);
548 if (match_extent_data_ref(leaf, ref, node->ref_root,
549 owner, offset))
550 break;
551 btrfs_release_path(path);
552 key.offset++;
553 ret = btrfs_insert_empty_item(trans, root, path, &key,
554 size);
555 if (ret && ret != -EEXIST)
556 goto fail;
557
558 leaf = path->nodes[0];
559 }
560 ref = btrfs_item_ptr(leaf, path->slots[0],
561 struct btrfs_extent_data_ref);
562 if (ret == 0) {
563 btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root);
564 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
565 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
566 btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod);
567 } else {
568 num_refs = btrfs_extent_data_ref_count(leaf, ref);
569 num_refs += node->ref_mod;
570 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
571 }
572 }
573 ret = 0;
574 fail:
575 btrfs_release_path(path);
576 return ret;
577 }
578
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int refs_to_drop)579 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
580 struct btrfs_root *root,
581 struct btrfs_path *path,
582 int refs_to_drop)
583 {
584 struct btrfs_key key;
585 struct btrfs_extent_data_ref *ref1 = NULL;
586 struct btrfs_shared_data_ref *ref2 = NULL;
587 struct extent_buffer *leaf;
588 u32 num_refs = 0;
589 int ret = 0;
590
591 leaf = path->nodes[0];
592 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
593
594 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
595 ref1 = btrfs_item_ptr(leaf, path->slots[0],
596 struct btrfs_extent_data_ref);
597 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
598 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
599 ref2 = btrfs_item_ptr(leaf, path->slots[0],
600 struct btrfs_shared_data_ref);
601 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
602 } else {
603 btrfs_err(trans->fs_info,
604 "unrecognized backref key (%llu %u %llu)",
605 key.objectid, key.type, key.offset);
606 btrfs_abort_transaction(trans, -EUCLEAN);
607 return -EUCLEAN;
608 }
609
610 BUG_ON(num_refs < refs_to_drop);
611 num_refs -= refs_to_drop;
612
613 if (num_refs == 0) {
614 ret = btrfs_del_item(trans, root, path);
615 } else {
616 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
617 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
618 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
619 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
620 }
621 return ret;
622 }
623
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)624 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
625 struct btrfs_extent_inline_ref *iref)
626 {
627 struct btrfs_key key;
628 struct extent_buffer *leaf;
629 struct btrfs_extent_data_ref *ref1;
630 struct btrfs_shared_data_ref *ref2;
631 u32 num_refs = 0;
632 int type;
633
634 leaf = path->nodes[0];
635 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
636
637 if (iref) {
638 /*
639 * If type is invalid, we should have bailed out earlier than
640 * this call.
641 */
642 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
643 ASSERT(type != BTRFS_REF_TYPE_INVALID);
644 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
645 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
646 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
647 } else {
648 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
649 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
650 }
651 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
652 ref1 = btrfs_item_ptr(leaf, path->slots[0],
653 struct btrfs_extent_data_ref);
654 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
655 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
656 ref2 = btrfs_item_ptr(leaf, path->slots[0],
657 struct btrfs_shared_data_ref);
658 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
659 } else {
660 WARN_ON(1);
661 }
662 return num_refs;
663 }
664
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)665 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
666 struct btrfs_path *path,
667 u64 bytenr, u64 parent,
668 u64 root_objectid)
669 {
670 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
671 struct btrfs_key key;
672 int ret;
673
674 key.objectid = bytenr;
675 if (parent) {
676 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
677 key.offset = parent;
678 } else {
679 key.type = BTRFS_TREE_BLOCK_REF_KEY;
680 key.offset = root_objectid;
681 }
682
683 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
684 if (ret > 0)
685 ret = -ENOENT;
686 return ret;
687 }
688
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_ref_node * node,u64 bytenr)689 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
690 struct btrfs_path *path,
691 struct btrfs_delayed_ref_node *node,
692 u64 bytenr)
693 {
694 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
695 struct btrfs_key key;
696 int ret;
697
698 key.objectid = bytenr;
699 if (node->parent) {
700 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
701 key.offset = node->parent;
702 } else {
703 key.type = BTRFS_TREE_BLOCK_REF_KEY;
704 key.offset = node->ref_root;
705 }
706
707 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
708 btrfs_release_path(path);
709 return ret;
710 }
711
extent_ref_type(u64 parent,u64 owner)712 static inline int extent_ref_type(u64 parent, u64 owner)
713 {
714 int type;
715 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
716 if (parent > 0)
717 type = BTRFS_SHARED_BLOCK_REF_KEY;
718 else
719 type = BTRFS_TREE_BLOCK_REF_KEY;
720 } else {
721 if (parent > 0)
722 type = BTRFS_SHARED_DATA_REF_KEY;
723 else
724 type = BTRFS_EXTENT_DATA_REF_KEY;
725 }
726 return type;
727 }
728
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)729 static int find_next_key(struct btrfs_path *path, int level,
730 struct btrfs_key *key)
731
732 {
733 for (; level < BTRFS_MAX_LEVEL; level++) {
734 if (!path->nodes[level])
735 break;
736 if (path->slots[level] + 1 >=
737 btrfs_header_nritems(path->nodes[level]))
738 continue;
739 if (level == 0)
740 btrfs_item_key_to_cpu(path->nodes[level], key,
741 path->slots[level] + 1);
742 else
743 btrfs_node_key_to_cpu(path->nodes[level], key,
744 path->slots[level] + 1);
745 return 0;
746 }
747 return 1;
748 }
749
750 /*
751 * look for inline back ref. if back ref is found, *ref_ret is set
752 * to the address of inline back ref, and 0 is returned.
753 *
754 * if back ref isn't found, *ref_ret is set to the address where it
755 * should be inserted, and -ENOENT is returned.
756 *
757 * if insert is true and there are too many inline back refs, the path
758 * points to the extent item, and -EAGAIN is returned.
759 *
760 * NOTE: inline back refs are ordered in the same way that back ref
761 * items in the tree are ordered.
762 */
763 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)764 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
765 struct btrfs_path *path,
766 struct btrfs_extent_inline_ref **ref_ret,
767 u64 bytenr, u64 num_bytes,
768 u64 parent, u64 root_objectid,
769 u64 owner, u64 offset, int insert)
770 {
771 struct btrfs_fs_info *fs_info = trans->fs_info;
772 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
773 struct btrfs_key key;
774 struct extent_buffer *leaf;
775 struct btrfs_extent_item *ei;
776 struct btrfs_extent_inline_ref *iref;
777 u64 flags;
778 u64 item_size;
779 unsigned long ptr;
780 unsigned long end;
781 int extra_size;
782 int type;
783 int want;
784 int ret;
785 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
786 int needed;
787
788 key.objectid = bytenr;
789 key.type = BTRFS_EXTENT_ITEM_KEY;
790 key.offset = num_bytes;
791
792 want = extent_ref_type(parent, owner);
793 if (insert) {
794 extra_size = btrfs_extent_inline_ref_size(want);
795 path->search_for_extension = 1;
796 } else
797 extra_size = -1;
798
799 /*
800 * Owner is our level, so we can just add one to get the level for the
801 * block we are interested in.
802 */
803 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
804 key.type = BTRFS_METADATA_ITEM_KEY;
805 key.offset = owner;
806 }
807
808 again:
809 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
810 if (ret < 0)
811 goto out;
812
813 /*
814 * We may be a newly converted file system which still has the old fat
815 * extent entries for metadata, so try and see if we have one of those.
816 */
817 if (ret > 0 && skinny_metadata) {
818 skinny_metadata = false;
819 if (path->slots[0]) {
820 path->slots[0]--;
821 btrfs_item_key_to_cpu(path->nodes[0], &key,
822 path->slots[0]);
823 if (key.objectid == bytenr &&
824 key.type == BTRFS_EXTENT_ITEM_KEY &&
825 key.offset == num_bytes)
826 ret = 0;
827 }
828 if (ret) {
829 key.objectid = bytenr;
830 key.type = BTRFS_EXTENT_ITEM_KEY;
831 key.offset = num_bytes;
832 btrfs_release_path(path);
833 goto again;
834 }
835 }
836
837 if (ret && !insert) {
838 ret = -ENOENT;
839 goto out;
840 } else if (WARN_ON(ret)) {
841 btrfs_print_leaf(path->nodes[0]);
842 btrfs_err(fs_info,
843 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
844 bytenr, num_bytes, parent, root_objectid, owner,
845 offset);
846 ret = -EUCLEAN;
847 goto out;
848 }
849
850 leaf = path->nodes[0];
851 item_size = btrfs_item_size(leaf, path->slots[0]);
852 if (unlikely(item_size < sizeof(*ei))) {
853 ret = -EUCLEAN;
854 btrfs_err(fs_info,
855 "unexpected extent item size, has %llu expect >= %zu",
856 item_size, sizeof(*ei));
857 btrfs_abort_transaction(trans, ret);
858 goto out;
859 }
860
861 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
862 flags = btrfs_extent_flags(leaf, ei);
863
864 ptr = (unsigned long)(ei + 1);
865 end = (unsigned long)ei + item_size;
866
867 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
868 ptr += sizeof(struct btrfs_tree_block_info);
869 BUG_ON(ptr > end);
870 }
871
872 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
873 needed = BTRFS_REF_TYPE_DATA;
874 else
875 needed = BTRFS_REF_TYPE_BLOCK;
876
877 ret = -ENOENT;
878 while (ptr < end) {
879 iref = (struct btrfs_extent_inline_ref *)ptr;
880 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
881 if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
882 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
883 ptr += btrfs_extent_inline_ref_size(type);
884 continue;
885 }
886 if (type == BTRFS_REF_TYPE_INVALID) {
887 ret = -EUCLEAN;
888 goto out;
889 }
890
891 if (want < type)
892 break;
893 if (want > type) {
894 ptr += btrfs_extent_inline_ref_size(type);
895 continue;
896 }
897
898 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
899 struct btrfs_extent_data_ref *dref;
900 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
901 if (match_extent_data_ref(leaf, dref, root_objectid,
902 owner, offset)) {
903 ret = 0;
904 break;
905 }
906 if (hash_extent_data_ref_item(leaf, dref) <
907 hash_extent_data_ref(root_objectid, owner, offset))
908 break;
909 } else {
910 u64 ref_offset;
911 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
912 if (parent > 0) {
913 if (parent == ref_offset) {
914 ret = 0;
915 break;
916 }
917 if (ref_offset < parent)
918 break;
919 } else {
920 if (root_objectid == ref_offset) {
921 ret = 0;
922 break;
923 }
924 if (ref_offset < root_objectid)
925 break;
926 }
927 }
928 ptr += btrfs_extent_inline_ref_size(type);
929 }
930
931 if (unlikely(ptr > end)) {
932 ret = -EUCLEAN;
933 btrfs_print_leaf(path->nodes[0]);
934 btrfs_crit(fs_info,
935 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
936 path->slots[0], root_objectid, owner, offset, parent);
937 goto out;
938 }
939
940 if (ret == -ENOENT && insert) {
941 if (item_size + extra_size >=
942 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
943 ret = -EAGAIN;
944 goto out;
945 }
946
947 if (path->slots[0] + 1 < btrfs_header_nritems(path->nodes[0])) {
948 struct btrfs_key tmp_key;
949
950 btrfs_item_key_to_cpu(path->nodes[0], &tmp_key, path->slots[0] + 1);
951 if (tmp_key.objectid == bytenr &&
952 tmp_key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
953 ret = -EAGAIN;
954 goto out;
955 }
956 goto out_no_entry;
957 }
958
959 if (!path->keep_locks) {
960 btrfs_release_path(path);
961 path->keep_locks = 1;
962 goto again;
963 }
964
965 /*
966 * To add new inline back ref, we have to make sure
967 * there is no corresponding back ref item.
968 * For simplicity, we just do not add new inline back
969 * ref if there is any kind of item for this block
970 */
971 if (find_next_key(path, 0, &key) == 0 &&
972 key.objectid == bytenr &&
973 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
974 ret = -EAGAIN;
975 goto out;
976 }
977 }
978 out_no_entry:
979 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
980 out:
981 if (path->keep_locks) {
982 path->keep_locks = 0;
983 btrfs_unlock_up_safe(path, 1);
984 }
985 if (insert)
986 path->search_for_extension = 0;
987 return ret;
988 }
989
990 /*
991 * helper to add new inline back ref
992 */
993 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)994 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
995 struct btrfs_path *path,
996 struct btrfs_extent_inline_ref *iref,
997 u64 parent, u64 root_objectid,
998 u64 owner, u64 offset, int refs_to_add,
999 struct btrfs_delayed_extent_op *extent_op)
1000 {
1001 struct extent_buffer *leaf;
1002 struct btrfs_extent_item *ei;
1003 unsigned long ptr;
1004 unsigned long end;
1005 unsigned long item_offset;
1006 u64 refs;
1007 int size;
1008 int type;
1009
1010 leaf = path->nodes[0];
1011 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1012 item_offset = (unsigned long)iref - (unsigned long)ei;
1013
1014 type = extent_ref_type(parent, owner);
1015 size = btrfs_extent_inline_ref_size(type);
1016
1017 btrfs_extend_item(trans, path, size);
1018
1019 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1020 refs = btrfs_extent_refs(leaf, ei);
1021 refs += refs_to_add;
1022 btrfs_set_extent_refs(leaf, ei, refs);
1023 if (extent_op)
1024 __run_delayed_extent_op(extent_op, leaf, ei);
1025
1026 ptr = (unsigned long)ei + item_offset;
1027 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1028 if (ptr < end - size)
1029 memmove_extent_buffer(leaf, ptr + size, ptr,
1030 end - size - ptr);
1031
1032 iref = (struct btrfs_extent_inline_ref *)ptr;
1033 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1034 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1035 struct btrfs_extent_data_ref *dref;
1036 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1037 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1038 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1039 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1040 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1041 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1042 struct btrfs_shared_data_ref *sref;
1043 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1044 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1045 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1046 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1047 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1048 } else {
1049 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1050 }
1051 }
1052
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1053 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1054 struct btrfs_path *path,
1055 struct btrfs_extent_inline_ref **ref_ret,
1056 u64 bytenr, u64 num_bytes, u64 parent,
1057 u64 root_objectid, u64 owner, u64 offset)
1058 {
1059 int ret;
1060
1061 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1062 num_bytes, parent, root_objectid,
1063 owner, offset, 0);
1064 if (ret != -ENOENT)
1065 return ret;
1066
1067 btrfs_release_path(path);
1068 *ref_ret = NULL;
1069
1070 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1071 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1072 root_objectid);
1073 } else {
1074 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1075 root_objectid, owner, offset);
1076 }
1077 return ret;
1078 }
1079
1080 /*
1081 * helper to update/remove inline back ref
1082 */
update_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op)1083 static noinline_for_stack int update_inline_extent_backref(
1084 struct btrfs_trans_handle *trans,
1085 struct btrfs_path *path,
1086 struct btrfs_extent_inline_ref *iref,
1087 int refs_to_mod,
1088 struct btrfs_delayed_extent_op *extent_op)
1089 {
1090 struct extent_buffer *leaf = path->nodes[0];
1091 struct btrfs_fs_info *fs_info = leaf->fs_info;
1092 struct btrfs_extent_item *ei;
1093 struct btrfs_extent_data_ref *dref = NULL;
1094 struct btrfs_shared_data_ref *sref = NULL;
1095 unsigned long ptr;
1096 unsigned long end;
1097 u32 item_size;
1098 int size;
1099 int type;
1100 u64 refs;
1101
1102 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1103 refs = btrfs_extent_refs(leaf, ei);
1104 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1105 struct btrfs_key key;
1106 u32 extent_size;
1107
1108 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1109 if (key.type == BTRFS_METADATA_ITEM_KEY)
1110 extent_size = fs_info->nodesize;
1111 else
1112 extent_size = key.offset;
1113 btrfs_print_leaf(leaf);
1114 btrfs_err(fs_info,
1115 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1116 key.objectid, extent_size, refs_to_mod, refs);
1117 return -EUCLEAN;
1118 }
1119 refs += refs_to_mod;
1120 btrfs_set_extent_refs(leaf, ei, refs);
1121 if (extent_op)
1122 __run_delayed_extent_op(extent_op, leaf, ei);
1123
1124 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1125 /*
1126 * Function btrfs_get_extent_inline_ref_type() has already printed
1127 * error messages.
1128 */
1129 if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1130 return -EUCLEAN;
1131
1132 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1133 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1134 refs = btrfs_extent_data_ref_count(leaf, dref);
1135 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1136 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1137 refs = btrfs_shared_data_ref_count(leaf, sref);
1138 } else {
1139 refs = 1;
1140 /*
1141 * For tree blocks we can only drop one ref for it, and tree
1142 * blocks should not have refs > 1.
1143 *
1144 * Furthermore if we're inserting a new inline backref, we
1145 * won't reach this path either. That would be
1146 * setup_inline_extent_backref().
1147 */
1148 if (unlikely(refs_to_mod != -1)) {
1149 struct btrfs_key key;
1150
1151 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1152
1153 btrfs_print_leaf(leaf);
1154 btrfs_err(fs_info,
1155 "invalid refs_to_mod for tree block %llu, has %d expect -1",
1156 key.objectid, refs_to_mod);
1157 return -EUCLEAN;
1158 }
1159 }
1160
1161 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1162 struct btrfs_key key;
1163 u32 extent_size;
1164
1165 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1166 if (key.type == BTRFS_METADATA_ITEM_KEY)
1167 extent_size = fs_info->nodesize;
1168 else
1169 extent_size = key.offset;
1170 btrfs_print_leaf(leaf);
1171 btrfs_err(fs_info,
1172 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1173 (unsigned long)iref, key.objectid, extent_size,
1174 refs_to_mod, refs);
1175 return -EUCLEAN;
1176 }
1177 refs += refs_to_mod;
1178
1179 if (refs > 0) {
1180 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1181 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1182 else
1183 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1184 } else {
1185 size = btrfs_extent_inline_ref_size(type);
1186 item_size = btrfs_item_size(leaf, path->slots[0]);
1187 ptr = (unsigned long)iref;
1188 end = (unsigned long)ei + item_size;
1189 if (ptr + size < end)
1190 memmove_extent_buffer(leaf, ptr, ptr + size,
1191 end - ptr - size);
1192 item_size -= size;
1193 btrfs_truncate_item(trans, path, item_size, 1);
1194 }
1195 return 0;
1196 }
1197
1198 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1199 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1200 struct btrfs_path *path,
1201 u64 bytenr, u64 num_bytes, u64 parent,
1202 u64 root_objectid, u64 owner,
1203 u64 offset, int refs_to_add,
1204 struct btrfs_delayed_extent_op *extent_op)
1205 {
1206 struct btrfs_extent_inline_ref *iref;
1207 int ret;
1208
1209 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1210 num_bytes, parent, root_objectid,
1211 owner, offset, 1);
1212 if (ret == 0) {
1213 /*
1214 * We're adding refs to a tree block we already own, this
1215 * should not happen at all.
1216 */
1217 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1218 btrfs_print_leaf(path->nodes[0]);
1219 btrfs_crit(trans->fs_info,
1220 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1221 bytenr, num_bytes, root_objectid, path->slots[0]);
1222 return -EUCLEAN;
1223 }
1224 ret = update_inline_extent_backref(trans, path, iref,
1225 refs_to_add, extent_op);
1226 } else if (ret == -ENOENT) {
1227 setup_inline_extent_backref(trans, path, iref, parent,
1228 root_objectid, owner, offset,
1229 refs_to_add, extent_op);
1230 ret = 0;
1231 }
1232 return ret;
1233 }
1234
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data)1235 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1236 struct btrfs_root *root,
1237 struct btrfs_path *path,
1238 struct btrfs_extent_inline_ref *iref,
1239 int refs_to_drop, int is_data)
1240 {
1241 int ret = 0;
1242
1243 BUG_ON(!is_data && refs_to_drop != 1);
1244 if (iref)
1245 ret = update_inline_extent_backref(trans, path, iref,
1246 -refs_to_drop, NULL);
1247 else if (is_data)
1248 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1249 else
1250 ret = btrfs_del_item(trans, root, path);
1251 return ret;
1252 }
1253
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1254 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1255 u64 *discarded_bytes)
1256 {
1257 int j, ret = 0;
1258 u64 bytes_left, end;
1259 u64 aligned_start = ALIGN(start, SECTOR_SIZE);
1260
1261 /* Adjust the range to be aligned to 512B sectors if necessary. */
1262 if (start != aligned_start) {
1263 len -= aligned_start - start;
1264 len = round_down(len, SECTOR_SIZE);
1265 start = aligned_start;
1266 }
1267
1268 *discarded_bytes = 0;
1269
1270 if (!len)
1271 return 0;
1272
1273 end = start + len;
1274 bytes_left = len;
1275
1276 /* Skip any superblocks on this device. */
1277 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1278 u64 sb_start = btrfs_sb_offset(j);
1279 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1280 u64 size = sb_start - start;
1281
1282 if (!in_range(sb_start, start, bytes_left) &&
1283 !in_range(sb_end, start, bytes_left) &&
1284 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1285 continue;
1286
1287 /*
1288 * Superblock spans beginning of range. Adjust start and
1289 * try again.
1290 */
1291 if (sb_start <= start) {
1292 start += sb_end - start;
1293 if (start > end) {
1294 bytes_left = 0;
1295 break;
1296 }
1297 bytes_left = end - start;
1298 continue;
1299 }
1300
1301 if (size) {
1302 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1303 size >> SECTOR_SHIFT,
1304 GFP_NOFS);
1305 if (!ret)
1306 *discarded_bytes += size;
1307 else if (ret != -EOPNOTSUPP)
1308 return ret;
1309 }
1310
1311 start = sb_end;
1312 if (start > end) {
1313 bytes_left = 0;
1314 break;
1315 }
1316 bytes_left = end - start;
1317 }
1318
1319 while (bytes_left) {
1320 u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left);
1321
1322 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1323 bytes_to_discard >> SECTOR_SHIFT,
1324 GFP_NOFS);
1325
1326 if (ret) {
1327 if (ret != -EOPNOTSUPP)
1328 break;
1329 continue;
1330 }
1331
1332 start += bytes_to_discard;
1333 bytes_left -= bytes_to_discard;
1334 *discarded_bytes += bytes_to_discard;
1335
1336 if (btrfs_trim_interrupted()) {
1337 ret = -ERESTARTSYS;
1338 break;
1339 }
1340 }
1341
1342 return ret;
1343 }
1344
do_discard_extent(struct btrfs_discard_stripe * stripe,u64 * bytes)1345 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1346 {
1347 struct btrfs_device *dev = stripe->dev;
1348 struct btrfs_fs_info *fs_info = dev->fs_info;
1349 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1350 u64 phys = stripe->physical;
1351 u64 len = stripe->length;
1352 u64 discarded = 0;
1353 int ret = 0;
1354
1355 /* Zone reset on a zoned filesystem */
1356 if (btrfs_can_zone_reset(dev, phys, len)) {
1357 u64 src_disc;
1358
1359 ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1360 if (ret)
1361 goto out;
1362
1363 if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1364 dev != dev_replace->srcdev)
1365 goto out;
1366
1367 src_disc = discarded;
1368
1369 /* Send to replace target as well */
1370 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1371 &discarded);
1372 discarded += src_disc;
1373 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1374 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1375 } else {
1376 ret = 0;
1377 *bytes = 0;
1378 }
1379
1380 out:
1381 *bytes = discarded;
1382 return ret;
1383 }
1384
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1385 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1386 u64 num_bytes, u64 *actual_bytes)
1387 {
1388 int ret = 0;
1389 u64 discarded_bytes = 0;
1390 u64 end = bytenr + num_bytes;
1391 u64 cur = bytenr;
1392
1393 /*
1394 * Avoid races with device replace and make sure the devices in the
1395 * stripes don't go away while we are discarding.
1396 */
1397 btrfs_bio_counter_inc_blocked(fs_info);
1398 while (cur < end) {
1399 struct btrfs_discard_stripe *stripes;
1400 unsigned int num_stripes;
1401 int i;
1402
1403 num_bytes = end - cur;
1404 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1405 if (IS_ERR(stripes)) {
1406 ret = PTR_ERR(stripes);
1407 if (ret == -EOPNOTSUPP)
1408 ret = 0;
1409 break;
1410 }
1411
1412 for (i = 0; i < num_stripes; i++) {
1413 struct btrfs_discard_stripe *stripe = stripes + i;
1414 u64 bytes;
1415
1416 if (!stripe->dev->bdev) {
1417 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1418 continue;
1419 }
1420
1421 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1422 &stripe->dev->dev_state))
1423 continue;
1424
1425 ret = do_discard_extent(stripe, &bytes);
1426 if (ret) {
1427 /*
1428 * Keep going if discard is not supported by the
1429 * device.
1430 */
1431 if (ret != -EOPNOTSUPP)
1432 break;
1433 ret = 0;
1434 } else {
1435 discarded_bytes += bytes;
1436 }
1437 }
1438 kfree(stripes);
1439 if (ret)
1440 break;
1441 cur += num_bytes;
1442 }
1443 btrfs_bio_counter_dec(fs_info);
1444 if (actual_bytes)
1445 *actual_bytes = discarded_bytes;
1446 return ret;
1447 }
1448
1449 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref)1450 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1451 struct btrfs_ref *generic_ref)
1452 {
1453 struct btrfs_fs_info *fs_info = trans->fs_info;
1454 int ret;
1455
1456 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1457 generic_ref->action);
1458 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1459 generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID);
1460
1461 if (generic_ref->type == BTRFS_REF_METADATA)
1462 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1463 else
1464 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1465
1466 btrfs_ref_tree_mod(fs_info, generic_ref);
1467
1468 return ret;
1469 }
1470
1471 /*
1472 * Insert backreference for a given extent.
1473 *
1474 * The counterpart is in __btrfs_free_extent(), with examples and more details
1475 * how it works.
1476 *
1477 * @trans: Handle of transaction
1478 *
1479 * @node: The delayed ref node used to get the bytenr/length for
1480 * extent whose references are incremented.
1481 *
1482 * @extent_op Pointer to a structure, holding information necessary when
1483 * updating a tree block's flags
1484 *
1485 */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)1486 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1487 struct btrfs_delayed_ref_node *node,
1488 struct btrfs_delayed_extent_op *extent_op)
1489 {
1490 struct btrfs_path *path;
1491 struct extent_buffer *leaf;
1492 struct btrfs_extent_item *item;
1493 struct btrfs_key key;
1494 u64 bytenr = node->bytenr;
1495 u64 num_bytes = node->num_bytes;
1496 u64 owner = btrfs_delayed_ref_owner(node);
1497 u64 offset = btrfs_delayed_ref_offset(node);
1498 u64 refs;
1499 int refs_to_add = node->ref_mod;
1500 int ret;
1501
1502 path = btrfs_alloc_path();
1503 if (!path)
1504 return -ENOMEM;
1505
1506 /* this will setup the path even if it fails to insert the back ref */
1507 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1508 node->parent, node->ref_root, owner,
1509 offset, refs_to_add, extent_op);
1510 if ((ret < 0 && ret != -EAGAIN) || !ret)
1511 goto out;
1512
1513 /*
1514 * Ok we had -EAGAIN which means we didn't have space to insert and
1515 * inline extent ref, so just update the reference count and add a
1516 * normal backref.
1517 */
1518 leaf = path->nodes[0];
1519 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1520 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1521 refs = btrfs_extent_refs(leaf, item);
1522 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1523 if (extent_op)
1524 __run_delayed_extent_op(extent_op, leaf, item);
1525
1526 btrfs_release_path(path);
1527
1528 /* now insert the actual backref */
1529 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1530 ret = insert_tree_block_ref(trans, path, node, bytenr);
1531 else
1532 ret = insert_extent_data_ref(trans, path, node, bytenr);
1533
1534 if (ret)
1535 btrfs_abort_transaction(trans, ret);
1536 out:
1537 btrfs_free_path(path);
1538 return ret;
1539 }
1540
free_head_ref_squota_rsv(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_head * href)1541 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info,
1542 struct btrfs_delayed_ref_head *href)
1543 {
1544 u64 root = href->owning_root;
1545
1546 /*
1547 * Don't check must_insert_reserved, as this is called from contexts
1548 * where it has already been unset.
1549 */
1550 if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE ||
1551 !href->is_data || !is_fstree(root))
1552 return;
1553
1554 btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes,
1555 BTRFS_QGROUP_RSV_DATA);
1556 }
1557
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1558 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1559 struct btrfs_delayed_ref_head *href,
1560 struct btrfs_delayed_ref_node *node,
1561 struct btrfs_delayed_extent_op *extent_op,
1562 bool insert_reserved)
1563 {
1564 int ret = 0;
1565 u64 parent = 0;
1566 u64 flags = 0;
1567
1568 trace_run_delayed_data_ref(trans->fs_info, node);
1569
1570 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1571 parent = node->parent;
1572
1573 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1574 struct btrfs_key key;
1575 struct btrfs_squota_delta delta = {
1576 .root = href->owning_root,
1577 .num_bytes = node->num_bytes,
1578 .is_data = true,
1579 .is_inc = true,
1580 .generation = trans->transid,
1581 };
1582 u64 owner = btrfs_delayed_ref_owner(node);
1583 u64 offset = btrfs_delayed_ref_offset(node);
1584
1585 if (extent_op)
1586 flags |= extent_op->flags_to_set;
1587
1588 key.objectid = node->bytenr;
1589 key.type = BTRFS_EXTENT_ITEM_KEY;
1590 key.offset = node->num_bytes;
1591
1592 ret = alloc_reserved_file_extent(trans, parent, node->ref_root,
1593 flags, owner, offset, &key,
1594 node->ref_mod,
1595 href->owning_root);
1596 free_head_ref_squota_rsv(trans->fs_info, href);
1597 if (!ret)
1598 ret = btrfs_record_squota_delta(trans->fs_info, &delta);
1599 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1600 ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1601 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1602 ret = __btrfs_free_extent(trans, href, node, extent_op);
1603 } else {
1604 BUG();
1605 }
1606 return ret;
1607 }
1608
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)1609 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1610 struct extent_buffer *leaf,
1611 struct btrfs_extent_item *ei)
1612 {
1613 u64 flags = btrfs_extent_flags(leaf, ei);
1614 if (extent_op->update_flags) {
1615 flags |= extent_op->flags_to_set;
1616 btrfs_set_extent_flags(leaf, ei, flags);
1617 }
1618
1619 if (extent_op->update_key) {
1620 struct btrfs_tree_block_info *bi;
1621 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1622 bi = (struct btrfs_tree_block_info *)(ei + 1);
1623 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1624 }
1625 }
1626
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)1627 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1628 struct btrfs_delayed_ref_head *head,
1629 struct btrfs_delayed_extent_op *extent_op)
1630 {
1631 struct btrfs_fs_info *fs_info = trans->fs_info;
1632 struct btrfs_root *root;
1633 struct btrfs_key key;
1634 struct btrfs_path *path;
1635 struct btrfs_extent_item *ei;
1636 struct extent_buffer *leaf;
1637 u32 item_size;
1638 int ret;
1639 int metadata = 1;
1640
1641 if (TRANS_ABORTED(trans))
1642 return 0;
1643
1644 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1645 metadata = 0;
1646
1647 path = btrfs_alloc_path();
1648 if (!path)
1649 return -ENOMEM;
1650
1651 key.objectid = head->bytenr;
1652
1653 if (metadata) {
1654 key.type = BTRFS_METADATA_ITEM_KEY;
1655 key.offset = head->level;
1656 } else {
1657 key.type = BTRFS_EXTENT_ITEM_KEY;
1658 key.offset = head->num_bytes;
1659 }
1660
1661 root = btrfs_extent_root(fs_info, key.objectid);
1662 again:
1663 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1664 if (ret < 0) {
1665 goto out;
1666 } else if (ret > 0) {
1667 if (metadata) {
1668 if (path->slots[0] > 0) {
1669 path->slots[0]--;
1670 btrfs_item_key_to_cpu(path->nodes[0], &key,
1671 path->slots[0]);
1672 if (key.objectid == head->bytenr &&
1673 key.type == BTRFS_EXTENT_ITEM_KEY &&
1674 key.offset == head->num_bytes)
1675 ret = 0;
1676 }
1677 if (ret > 0) {
1678 btrfs_release_path(path);
1679 metadata = 0;
1680
1681 key.objectid = head->bytenr;
1682 key.offset = head->num_bytes;
1683 key.type = BTRFS_EXTENT_ITEM_KEY;
1684 goto again;
1685 }
1686 } else {
1687 ret = -EUCLEAN;
1688 btrfs_err(fs_info,
1689 "missing extent item for extent %llu num_bytes %llu level %d",
1690 head->bytenr, head->num_bytes, head->level);
1691 goto out;
1692 }
1693 }
1694
1695 leaf = path->nodes[0];
1696 item_size = btrfs_item_size(leaf, path->slots[0]);
1697
1698 if (unlikely(item_size < sizeof(*ei))) {
1699 ret = -EUCLEAN;
1700 btrfs_err(fs_info,
1701 "unexpected extent item size, has %u expect >= %zu",
1702 item_size, sizeof(*ei));
1703 btrfs_abort_transaction(trans, ret);
1704 goto out;
1705 }
1706
1707 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1708 __run_delayed_extent_op(extent_op, leaf, ei);
1709 out:
1710 btrfs_free_path(path);
1711 return ret;
1712 }
1713
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1714 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1715 struct btrfs_delayed_ref_head *href,
1716 struct btrfs_delayed_ref_node *node,
1717 struct btrfs_delayed_extent_op *extent_op,
1718 bool insert_reserved)
1719 {
1720 int ret = 0;
1721 struct btrfs_fs_info *fs_info = trans->fs_info;
1722 u64 parent = 0;
1723 u64 ref_root = 0;
1724
1725 trace_run_delayed_tree_ref(trans->fs_info, node);
1726
1727 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1728 parent = node->parent;
1729 ref_root = node->ref_root;
1730
1731 if (unlikely(node->ref_mod != 1)) {
1732 btrfs_err(trans->fs_info,
1733 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1734 node->bytenr, node->ref_mod, node->action, ref_root,
1735 parent);
1736 return -EUCLEAN;
1737 }
1738 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1739 struct btrfs_squota_delta delta = {
1740 .root = href->owning_root,
1741 .num_bytes = fs_info->nodesize,
1742 .is_data = false,
1743 .is_inc = true,
1744 .generation = trans->transid,
1745 };
1746
1747 ret = alloc_reserved_tree_block(trans, node, extent_op);
1748 if (!ret)
1749 btrfs_record_squota_delta(fs_info, &delta);
1750 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1751 ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1752 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1753 ret = __btrfs_free_extent(trans, href, node, extent_op);
1754 } else {
1755 BUG();
1756 }
1757 return ret;
1758 }
1759
1760 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1761 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1762 struct btrfs_delayed_ref_head *href,
1763 struct btrfs_delayed_ref_node *node,
1764 struct btrfs_delayed_extent_op *extent_op,
1765 bool insert_reserved)
1766 {
1767 int ret = 0;
1768
1769 if (TRANS_ABORTED(trans)) {
1770 if (insert_reserved) {
1771 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1772 free_head_ref_squota_rsv(trans->fs_info, href);
1773 }
1774 return 0;
1775 }
1776
1777 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1778 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1779 ret = run_delayed_tree_ref(trans, href, node, extent_op,
1780 insert_reserved);
1781 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1782 node->type == BTRFS_SHARED_DATA_REF_KEY)
1783 ret = run_delayed_data_ref(trans, href, node, extent_op,
1784 insert_reserved);
1785 else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1786 ret = 0;
1787 else
1788 BUG();
1789 if (ret && insert_reserved)
1790 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1791 if (ret < 0)
1792 btrfs_err(trans->fs_info,
1793 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1794 node->bytenr, node->num_bytes, node->type,
1795 node->action, node->ref_mod, ret);
1796 return ret;
1797 }
1798
cleanup_extent_op(struct btrfs_delayed_ref_head * head)1799 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1800 struct btrfs_delayed_ref_head *head)
1801 {
1802 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1803
1804 if (!extent_op)
1805 return NULL;
1806
1807 if (head->must_insert_reserved) {
1808 head->extent_op = NULL;
1809 btrfs_free_delayed_extent_op(extent_op);
1810 return NULL;
1811 }
1812 return extent_op;
1813 }
1814
run_and_cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1815 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1816 struct btrfs_delayed_ref_head *head)
1817 {
1818 struct btrfs_delayed_extent_op *extent_op;
1819 int ret;
1820
1821 extent_op = cleanup_extent_op(head);
1822 if (!extent_op)
1823 return 0;
1824 head->extent_op = NULL;
1825 spin_unlock(&head->lock);
1826 ret = run_delayed_extent_op(trans, head, extent_op);
1827 btrfs_free_delayed_extent_op(extent_op);
1828 return ret ? ret : 1;
1829 }
1830
btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1831 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1832 struct btrfs_delayed_ref_root *delayed_refs,
1833 struct btrfs_delayed_ref_head *head)
1834 {
1835 u64 ret = 0;
1836
1837 /*
1838 * We had csum deletions accounted for in our delayed refs rsv, we need
1839 * to drop the csum leaves for this update from our delayed_refs_rsv.
1840 */
1841 if (head->total_ref_mod < 0 && head->is_data) {
1842 int nr_csums;
1843
1844 spin_lock(&delayed_refs->lock);
1845 delayed_refs->pending_csums -= head->num_bytes;
1846 spin_unlock(&delayed_refs->lock);
1847 nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1848
1849 btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums);
1850
1851 ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
1852 }
1853 /* must_insert_reserved can be set only if we didn't run the head ref. */
1854 if (head->must_insert_reserved)
1855 free_head_ref_squota_rsv(fs_info, head);
1856
1857 return ret;
1858 }
1859
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,u64 * bytes_released)1860 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1861 struct btrfs_delayed_ref_head *head,
1862 u64 *bytes_released)
1863 {
1864
1865 struct btrfs_fs_info *fs_info = trans->fs_info;
1866 struct btrfs_delayed_ref_root *delayed_refs;
1867 int ret;
1868
1869 delayed_refs = &trans->transaction->delayed_refs;
1870
1871 ret = run_and_cleanup_extent_op(trans, head);
1872 if (ret < 0) {
1873 btrfs_unselect_ref_head(delayed_refs, head);
1874 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1875 return ret;
1876 } else if (ret) {
1877 return ret;
1878 }
1879
1880 /*
1881 * Need to drop our head ref lock and re-acquire the delayed ref lock
1882 * and then re-check to make sure nobody got added.
1883 */
1884 spin_unlock(&head->lock);
1885 spin_lock(&delayed_refs->lock);
1886 spin_lock(&head->lock);
1887 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1888 spin_unlock(&head->lock);
1889 spin_unlock(&delayed_refs->lock);
1890 return 1;
1891 }
1892 btrfs_delete_ref_head(fs_info, delayed_refs, head);
1893 spin_unlock(&head->lock);
1894 spin_unlock(&delayed_refs->lock);
1895
1896 if (head->must_insert_reserved) {
1897 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1898 if (head->is_data) {
1899 struct btrfs_root *csum_root;
1900
1901 csum_root = btrfs_csum_root(fs_info, head->bytenr);
1902 ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1903 head->num_bytes);
1904 }
1905 }
1906
1907 *bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1908
1909 trace_run_delayed_ref_head(fs_info, head, 0);
1910 btrfs_delayed_ref_unlock(head);
1911 btrfs_put_delayed_ref_head(head);
1912 return ret;
1913 }
1914
btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * locked_ref,u64 * bytes_released)1915 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1916 struct btrfs_delayed_ref_head *locked_ref,
1917 u64 *bytes_released)
1918 {
1919 struct btrfs_fs_info *fs_info = trans->fs_info;
1920 struct btrfs_delayed_ref_root *delayed_refs;
1921 struct btrfs_delayed_extent_op *extent_op;
1922 struct btrfs_delayed_ref_node *ref;
1923 bool must_insert_reserved;
1924 int ret;
1925
1926 delayed_refs = &trans->transaction->delayed_refs;
1927
1928 lockdep_assert_held(&locked_ref->mutex);
1929 lockdep_assert_held(&locked_ref->lock);
1930
1931 while ((ref = btrfs_select_delayed_ref(locked_ref))) {
1932 if (ref->seq &&
1933 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1934 spin_unlock(&locked_ref->lock);
1935 btrfs_unselect_ref_head(delayed_refs, locked_ref);
1936 return -EAGAIN;
1937 }
1938
1939 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1940 RB_CLEAR_NODE(&ref->ref_node);
1941 if (!list_empty(&ref->add_list))
1942 list_del(&ref->add_list);
1943 /*
1944 * When we play the delayed ref, also correct the ref_mod on
1945 * head
1946 */
1947 switch (ref->action) {
1948 case BTRFS_ADD_DELAYED_REF:
1949 case BTRFS_ADD_DELAYED_EXTENT:
1950 locked_ref->ref_mod -= ref->ref_mod;
1951 break;
1952 case BTRFS_DROP_DELAYED_REF:
1953 locked_ref->ref_mod += ref->ref_mod;
1954 break;
1955 default:
1956 WARN_ON(1);
1957 }
1958
1959 /*
1960 * Record the must_insert_reserved flag before we drop the
1961 * spin lock.
1962 */
1963 must_insert_reserved = locked_ref->must_insert_reserved;
1964 /*
1965 * Unsetting this on the head ref relinquishes ownership of
1966 * the rsv_bytes, so it is critical that every possible code
1967 * path from here forward frees all reserves including qgroup
1968 * reserve.
1969 */
1970 locked_ref->must_insert_reserved = false;
1971
1972 extent_op = locked_ref->extent_op;
1973 locked_ref->extent_op = NULL;
1974 spin_unlock(&locked_ref->lock);
1975
1976 ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op,
1977 must_insert_reserved);
1978 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
1979 *bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1);
1980
1981 btrfs_free_delayed_extent_op(extent_op);
1982 if (ret) {
1983 btrfs_unselect_ref_head(delayed_refs, locked_ref);
1984 btrfs_put_delayed_ref(ref);
1985 return ret;
1986 }
1987
1988 btrfs_put_delayed_ref(ref);
1989 cond_resched();
1990
1991 spin_lock(&locked_ref->lock);
1992 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
1993 }
1994
1995 return 0;
1996 }
1997
1998 /*
1999 * Returns 0 on success or if called with an already aborted transaction.
2000 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2001 */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,u64 min_bytes)2002 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2003 u64 min_bytes)
2004 {
2005 struct btrfs_fs_info *fs_info = trans->fs_info;
2006 struct btrfs_delayed_ref_root *delayed_refs;
2007 struct btrfs_delayed_ref_head *locked_ref = NULL;
2008 int ret;
2009 unsigned long count = 0;
2010 unsigned long max_count = 0;
2011 u64 bytes_processed = 0;
2012
2013 delayed_refs = &trans->transaction->delayed_refs;
2014 if (min_bytes == 0) {
2015 max_count = delayed_refs->num_heads_ready;
2016 min_bytes = U64_MAX;
2017 }
2018
2019 do {
2020 if (!locked_ref) {
2021 locked_ref = btrfs_select_ref_head(fs_info, delayed_refs);
2022 if (IS_ERR_OR_NULL(locked_ref)) {
2023 if (PTR_ERR(locked_ref) == -EAGAIN) {
2024 continue;
2025 } else {
2026 break;
2027 }
2028 }
2029 count++;
2030 }
2031 /*
2032 * We need to try and merge add/drops of the same ref since we
2033 * can run into issues with relocate dropping the implicit ref
2034 * and then it being added back again before the drop can
2035 * finish. If we merged anything we need to re-loop so we can
2036 * get a good ref.
2037 * Or we can get node references of the same type that weren't
2038 * merged when created due to bumps in the tree mod seq, and
2039 * we need to merge them to prevent adding an inline extent
2040 * backref before dropping it (triggering a BUG_ON at
2041 * insert_inline_extent_backref()).
2042 */
2043 spin_lock(&locked_ref->lock);
2044 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2045
2046 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed);
2047 if (ret < 0 && ret != -EAGAIN) {
2048 /*
2049 * Error, btrfs_run_delayed_refs_for_head already
2050 * unlocked everything so just bail out
2051 */
2052 return ret;
2053 } else if (!ret) {
2054 /*
2055 * Success, perform the usual cleanup of a processed
2056 * head
2057 */
2058 ret = cleanup_ref_head(trans, locked_ref, &bytes_processed);
2059 if (ret > 0 ) {
2060 /* We dropped our lock, we need to loop. */
2061 ret = 0;
2062 continue;
2063 } else if (ret) {
2064 return ret;
2065 }
2066 }
2067
2068 /*
2069 * Either success case or btrfs_run_delayed_refs_for_head
2070 * returned -EAGAIN, meaning we need to select another head
2071 */
2072
2073 locked_ref = NULL;
2074 cond_resched();
2075 } while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2076 (max_count > 0 && count < max_count) ||
2077 locked_ref);
2078
2079 return 0;
2080 }
2081
2082 #ifdef SCRAMBLE_DELAYED_REFS
2083 /*
2084 * Normally delayed refs get processed in ascending bytenr order. This
2085 * correlates in most cases to the order added. To expose dependencies on this
2086 * order, we start to process the tree in the middle instead of the beginning
2087 */
find_middle(struct rb_root * root)2088 static u64 find_middle(struct rb_root *root)
2089 {
2090 struct rb_node *n = root->rb_node;
2091 struct btrfs_delayed_ref_node *entry;
2092 int alt = 1;
2093 u64 middle;
2094 u64 first = 0, last = 0;
2095
2096 n = rb_first(root);
2097 if (n) {
2098 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2099 first = entry->bytenr;
2100 }
2101 n = rb_last(root);
2102 if (n) {
2103 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2104 last = entry->bytenr;
2105 }
2106 n = root->rb_node;
2107
2108 while (n) {
2109 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2110 WARN_ON(!entry->in_tree);
2111
2112 middle = entry->bytenr;
2113
2114 if (alt)
2115 n = n->rb_left;
2116 else
2117 n = n->rb_right;
2118
2119 alt = 1 - alt;
2120 }
2121 return middle;
2122 }
2123 #endif
2124
2125 /*
2126 * Start processing the delayed reference count updates and extent insertions
2127 * we have queued up so far.
2128 *
2129 * @trans: Transaction handle.
2130 * @min_bytes: How many bytes of delayed references to process. After this
2131 * many bytes we stop processing delayed references if there are
2132 * any more. If 0 it means to run all existing delayed references,
2133 * but not new ones added after running all existing ones.
2134 * Use (u64)-1 (U64_MAX) to run all existing delayed references
2135 * plus any new ones that are added.
2136 *
2137 * Returns 0 on success or if called with an aborted transaction
2138 * Returns <0 on error and aborts the transaction
2139 */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,u64 min_bytes)2140 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
2141 {
2142 struct btrfs_fs_info *fs_info = trans->fs_info;
2143 struct btrfs_delayed_ref_root *delayed_refs;
2144 int ret;
2145
2146 /* We'll clean this up in btrfs_cleanup_transaction */
2147 if (TRANS_ABORTED(trans))
2148 return 0;
2149
2150 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2151 return 0;
2152
2153 delayed_refs = &trans->transaction->delayed_refs;
2154 again:
2155 #ifdef SCRAMBLE_DELAYED_REFS
2156 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2157 #endif
2158 ret = __btrfs_run_delayed_refs(trans, min_bytes);
2159 if (ret < 0) {
2160 btrfs_abort_transaction(trans, ret);
2161 return ret;
2162 }
2163
2164 if (min_bytes == U64_MAX) {
2165 btrfs_create_pending_block_groups(trans);
2166
2167 spin_lock(&delayed_refs->lock);
2168 if (xa_empty(&delayed_refs->head_refs)) {
2169 spin_unlock(&delayed_refs->lock);
2170 return 0;
2171 }
2172 spin_unlock(&delayed_refs->lock);
2173
2174 cond_resched();
2175 goto again;
2176 }
2177
2178 return 0;
2179 }
2180
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct extent_buffer * eb,u64 flags)2181 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2182 struct extent_buffer *eb, u64 flags)
2183 {
2184 struct btrfs_delayed_extent_op *extent_op;
2185 int ret;
2186
2187 extent_op = btrfs_alloc_delayed_extent_op();
2188 if (!extent_op)
2189 return -ENOMEM;
2190
2191 extent_op->flags_to_set = flags;
2192 extent_op->update_flags = true;
2193 extent_op->update_key = false;
2194
2195 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len,
2196 btrfs_header_level(eb), extent_op);
2197 if (ret)
2198 btrfs_free_delayed_extent_op(extent_op);
2199 return ret;
2200 }
2201
check_delayed_ref(struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 bytenr)2202 static noinline int check_delayed_ref(struct btrfs_inode *inode,
2203 struct btrfs_path *path,
2204 u64 offset, u64 bytenr)
2205 {
2206 struct btrfs_root *root = inode->root;
2207 struct btrfs_delayed_ref_head *head;
2208 struct btrfs_delayed_ref_node *ref;
2209 struct btrfs_delayed_ref_root *delayed_refs;
2210 struct btrfs_transaction *cur_trans;
2211 struct rb_node *node;
2212 int ret = 0;
2213
2214 spin_lock(&root->fs_info->trans_lock);
2215 cur_trans = root->fs_info->running_transaction;
2216 if (cur_trans)
2217 refcount_inc(&cur_trans->use_count);
2218 spin_unlock(&root->fs_info->trans_lock);
2219 if (!cur_trans)
2220 return 0;
2221
2222 delayed_refs = &cur_trans->delayed_refs;
2223 spin_lock(&delayed_refs->lock);
2224 head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
2225 if (!head) {
2226 spin_unlock(&delayed_refs->lock);
2227 btrfs_put_transaction(cur_trans);
2228 return 0;
2229 }
2230
2231 if (!mutex_trylock(&head->mutex)) {
2232 if (path->nowait) {
2233 spin_unlock(&delayed_refs->lock);
2234 btrfs_put_transaction(cur_trans);
2235 return -EAGAIN;
2236 }
2237
2238 refcount_inc(&head->refs);
2239 spin_unlock(&delayed_refs->lock);
2240
2241 btrfs_release_path(path);
2242
2243 /*
2244 * Mutex was contended, block until it's released and let
2245 * caller try again
2246 */
2247 mutex_lock(&head->mutex);
2248 mutex_unlock(&head->mutex);
2249 btrfs_put_delayed_ref_head(head);
2250 btrfs_put_transaction(cur_trans);
2251 return -EAGAIN;
2252 }
2253 spin_unlock(&delayed_refs->lock);
2254
2255 spin_lock(&head->lock);
2256 /*
2257 * XXX: We should replace this with a proper search function in the
2258 * future.
2259 */
2260 for (node = rb_first_cached(&head->ref_tree); node;
2261 node = rb_next(node)) {
2262 u64 ref_owner;
2263 u64 ref_offset;
2264
2265 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2266 /* If it's a shared ref we know a cross reference exists */
2267 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2268 ret = 1;
2269 break;
2270 }
2271
2272 ref_owner = btrfs_delayed_ref_owner(ref);
2273 ref_offset = btrfs_delayed_ref_offset(ref);
2274
2275 /*
2276 * If our ref doesn't match the one we're currently looking at
2277 * then we have a cross reference.
2278 */
2279 if (ref->ref_root != btrfs_root_id(root) ||
2280 ref_owner != btrfs_ino(inode) || ref_offset != offset) {
2281 ret = 1;
2282 break;
2283 }
2284 }
2285 spin_unlock(&head->lock);
2286 mutex_unlock(&head->mutex);
2287 btrfs_put_transaction(cur_trans);
2288 return ret;
2289 }
2290
2291 /*
2292 * Check if there are references for a data extent other than the one belonging
2293 * to the given inode and offset.
2294 *
2295 * @inode: The only inode we expect to find associated with the data extent.
2296 * @path: A path to use for searching the extent tree.
2297 * @offset: The only offset we expect to find associated with the data extent.
2298 * @bytenr: The logical address of the data extent.
2299 *
2300 * When the extent does not have any other references other than the one we
2301 * expect to find, we always return a value of 0 with the path having a locked
2302 * leaf that contains the extent's extent item - this is necessary to ensure
2303 * we don't race with a task running delayed references, and our caller must
2304 * have such a path when calling check_delayed_ref() - it must lock a delayed
2305 * ref head while holding the leaf locked. In case the extent item is not found
2306 * in the extent tree, we return -ENOENT with the path having the leaf (locked)
2307 * where the extent item should be, in order to prevent races with another task
2308 * running delayed references, so that we don't miss any reference when calling
2309 * check_delayed_ref().
2310 *
2311 * Note: this may return false positives, and this is because we want to be
2312 * quick here as we're called in write paths (when flushing delalloc and
2313 * in the direct IO write path). For example we can have an extent with
2314 * a single reference but that reference is not inlined, or we may have
2315 * many references in the extent tree but we also have delayed references
2316 * that cancel all the reference except the one for our inode and offset,
2317 * but it would be expensive to do such checks and complex due to all
2318 * locking to avoid races between the checks and flushing delayed refs,
2319 * plus non-inline references may be located on leaves other than the one
2320 * that contains the extent item in the extent tree. The important thing
2321 * here is to not return false negatives and that the false positives are
2322 * not very common.
2323 *
2324 * Returns: 0 if there are no cross references and with the path having a locked
2325 * leaf from the extent tree that contains the extent's extent item.
2326 *
2327 * 1 if there are cross references (false positives can happen).
2328 *
2329 * < 0 in case of an error. In case of -ENOENT the leaf in the extent
2330 * tree where the extent item should be located at is read locked and
2331 * accessible in the given path.
2332 */
check_committed_ref(struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 bytenr)2333 static noinline int check_committed_ref(struct btrfs_inode *inode,
2334 struct btrfs_path *path,
2335 u64 offset, u64 bytenr)
2336 {
2337 struct btrfs_root *root = inode->root;
2338 struct btrfs_fs_info *fs_info = root->fs_info;
2339 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2340 struct extent_buffer *leaf;
2341 struct btrfs_extent_data_ref *ref;
2342 struct btrfs_extent_inline_ref *iref;
2343 struct btrfs_extent_item *ei;
2344 struct btrfs_key key;
2345 u32 item_size;
2346 u32 expected_size;
2347 int type;
2348 int ret;
2349
2350 key.objectid = bytenr;
2351 key.offset = (u64)-1;
2352 key.type = BTRFS_EXTENT_ITEM_KEY;
2353
2354 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2355 if (ret < 0)
2356 return ret;
2357 if (ret == 0) {
2358 /*
2359 * Key with offset -1 found, there would have to exist an extent
2360 * item with such offset, but this is out of the valid range.
2361 */
2362 return -EUCLEAN;
2363 }
2364
2365 if (path->slots[0] == 0)
2366 return -ENOENT;
2367
2368 path->slots[0]--;
2369 leaf = path->nodes[0];
2370 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2371
2372 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2373 return -ENOENT;
2374
2375 item_size = btrfs_item_size(leaf, path->slots[0]);
2376 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2377 expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2378
2379 /* No inline refs; we need to bail before checking for owner ref. */
2380 if (item_size == sizeof(*ei))
2381 return 1;
2382
2383 /* Check for an owner ref; skip over it to the real inline refs. */
2384 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2385 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2386 if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2387 expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2388 iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2389 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2390 }
2391
2392 /* If extent item has more than 1 inline ref then it's shared */
2393 if (item_size != expected_size)
2394 return 1;
2395
2396 /* If this extent has SHARED_DATA_REF then it's shared */
2397 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2398 return 1;
2399
2400 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2401 if (btrfs_extent_refs(leaf, ei) !=
2402 btrfs_extent_data_ref_count(leaf, ref) ||
2403 btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) ||
2404 btrfs_extent_data_ref_objectid(leaf, ref) != btrfs_ino(inode) ||
2405 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2406 return 1;
2407
2408 return 0;
2409 }
2410
btrfs_cross_ref_exist(struct btrfs_inode * inode,u64 offset,u64 bytenr,struct btrfs_path * path)2411 int btrfs_cross_ref_exist(struct btrfs_inode *inode, u64 offset,
2412 u64 bytenr, struct btrfs_path *path)
2413 {
2414 int ret;
2415
2416 do {
2417 ret = check_committed_ref(inode, path, offset, bytenr);
2418 if (ret && ret != -ENOENT)
2419 goto out;
2420
2421 /*
2422 * The path must have a locked leaf from the extent tree where
2423 * the extent item for our extent is located, in case it exists,
2424 * or where it should be located in case it doesn't exist yet
2425 * because it's new and its delayed ref was not yet flushed.
2426 * We need to lock the delayed ref head at check_delayed_ref(),
2427 * if one exists, while holding the leaf locked in order to not
2428 * race with delayed ref flushing, missing references and
2429 * incorrectly reporting that the extent is not shared.
2430 */
2431 if (IS_ENABLED(CONFIG_BTRFS_ASSERT)) {
2432 struct extent_buffer *leaf = path->nodes[0];
2433
2434 ASSERT(leaf != NULL);
2435 btrfs_assert_tree_read_locked(leaf);
2436
2437 if (ret != -ENOENT) {
2438 struct btrfs_key key;
2439
2440 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2441 ASSERT(key.objectid == bytenr);
2442 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY);
2443 }
2444 }
2445
2446 ret = check_delayed_ref(inode, path, offset, bytenr);
2447 } while (ret == -EAGAIN && !path->nowait);
2448
2449 out:
2450 btrfs_release_path(path);
2451 if (btrfs_is_data_reloc_root(inode->root))
2452 WARN_ON(ret > 0);
2453 return ret;
2454 }
2455
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)2456 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2457 struct btrfs_root *root,
2458 struct extent_buffer *buf,
2459 int full_backref, int inc)
2460 {
2461 struct btrfs_fs_info *fs_info = root->fs_info;
2462 u64 parent;
2463 u64 ref_root;
2464 u32 nritems;
2465 struct btrfs_key key;
2466 struct btrfs_file_extent_item *fi;
2467 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2468 int i;
2469 int action;
2470 int level;
2471 int ret = 0;
2472
2473 if (btrfs_is_testing(fs_info))
2474 return 0;
2475
2476 ref_root = btrfs_header_owner(buf);
2477 nritems = btrfs_header_nritems(buf);
2478 level = btrfs_header_level(buf);
2479
2480 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2481 return 0;
2482
2483 if (full_backref)
2484 parent = buf->start;
2485 else
2486 parent = 0;
2487 if (inc)
2488 action = BTRFS_ADD_DELAYED_REF;
2489 else
2490 action = BTRFS_DROP_DELAYED_REF;
2491
2492 for (i = 0; i < nritems; i++) {
2493 struct btrfs_ref ref = {
2494 .action = action,
2495 .parent = parent,
2496 .ref_root = ref_root,
2497 };
2498
2499 if (level == 0) {
2500 btrfs_item_key_to_cpu(buf, &key, i);
2501 if (key.type != BTRFS_EXTENT_DATA_KEY)
2502 continue;
2503 fi = btrfs_item_ptr(buf, i,
2504 struct btrfs_file_extent_item);
2505 if (btrfs_file_extent_type(buf, fi) ==
2506 BTRFS_FILE_EXTENT_INLINE)
2507 continue;
2508 ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2509 if (ref.bytenr == 0)
2510 continue;
2511
2512 ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2513 ref.owning_root = ref_root;
2514
2515 key.offset -= btrfs_file_extent_offset(buf, fi);
2516 btrfs_init_data_ref(&ref, key.objectid, key.offset,
2517 btrfs_root_id(root), for_reloc);
2518 if (inc)
2519 ret = btrfs_inc_extent_ref(trans, &ref);
2520 else
2521 ret = btrfs_free_extent(trans, &ref);
2522 if (ret)
2523 goto fail;
2524 } else {
2525 /* We don't know the owning_root, leave as 0. */
2526 ref.bytenr = btrfs_node_blockptr(buf, i);
2527 ref.num_bytes = fs_info->nodesize;
2528
2529 btrfs_init_tree_ref(&ref, level - 1,
2530 btrfs_root_id(root), for_reloc);
2531 if (inc)
2532 ret = btrfs_inc_extent_ref(trans, &ref);
2533 else
2534 ret = btrfs_free_extent(trans, &ref);
2535 if (ret)
2536 goto fail;
2537 }
2538 }
2539 return 0;
2540 fail:
2541 return ret;
2542 }
2543
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2544 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2545 struct extent_buffer *buf, int full_backref)
2546 {
2547 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2548 }
2549
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2550 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2551 struct extent_buffer *buf, int full_backref)
2552 {
2553 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2554 }
2555
get_alloc_profile_by_root(struct btrfs_root * root,int data)2556 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2557 {
2558 struct btrfs_fs_info *fs_info = root->fs_info;
2559 u64 flags;
2560 u64 ret;
2561
2562 if (data)
2563 flags = BTRFS_BLOCK_GROUP_DATA;
2564 else if (root == fs_info->chunk_root)
2565 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2566 else
2567 flags = BTRFS_BLOCK_GROUP_METADATA;
2568
2569 ret = btrfs_get_alloc_profile(fs_info, flags);
2570 return ret;
2571 }
2572
first_logical_byte(struct btrfs_fs_info * fs_info)2573 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2574 {
2575 struct rb_node *leftmost;
2576 u64 bytenr = 0;
2577
2578 read_lock(&fs_info->block_group_cache_lock);
2579 /* Get the block group with the lowest logical start address. */
2580 leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2581 if (leftmost) {
2582 struct btrfs_block_group *bg;
2583
2584 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2585 bytenr = bg->start;
2586 }
2587 read_unlock(&fs_info->block_group_cache_lock);
2588
2589 return bytenr;
2590 }
2591
pin_down_extent(struct btrfs_trans_handle * trans,struct btrfs_block_group * cache,u64 bytenr,u64 num_bytes,int reserved)2592 static int pin_down_extent(struct btrfs_trans_handle *trans,
2593 struct btrfs_block_group *cache,
2594 u64 bytenr, u64 num_bytes, int reserved)
2595 {
2596 spin_lock(&cache->space_info->lock);
2597 spin_lock(&cache->lock);
2598 cache->pinned += num_bytes;
2599 btrfs_space_info_update_bytes_pinned(cache->space_info, num_bytes);
2600 if (reserved) {
2601 cache->reserved -= num_bytes;
2602 cache->space_info->bytes_reserved -= num_bytes;
2603 }
2604 spin_unlock(&cache->lock);
2605 spin_unlock(&cache->space_info->lock);
2606
2607 set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2608 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2609 return 0;
2610 }
2611
btrfs_pin_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int reserved)2612 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2613 u64 bytenr, u64 num_bytes, int reserved)
2614 {
2615 struct btrfs_block_group *cache;
2616
2617 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2618 BUG_ON(!cache); /* Logic error */
2619
2620 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2621
2622 btrfs_put_block_group(cache);
2623 return 0;
2624 }
2625
btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle * trans,const struct extent_buffer * eb)2626 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2627 const struct extent_buffer *eb)
2628 {
2629 struct btrfs_block_group *cache;
2630 int ret;
2631
2632 cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
2633 if (!cache)
2634 return -EINVAL;
2635
2636 /*
2637 * Fully cache the free space first so that our pin removes the free space
2638 * from the cache.
2639 */
2640 ret = btrfs_cache_block_group(cache, true);
2641 if (ret)
2642 goto out;
2643
2644 pin_down_extent(trans, cache, eb->start, eb->len, 0);
2645
2646 /* remove us from the free space cache (if we're there at all) */
2647 ret = btrfs_remove_free_space(cache, eb->start, eb->len);
2648 out:
2649 btrfs_put_block_group(cache);
2650 return ret;
2651 }
2652
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)2653 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2654 u64 start, u64 num_bytes)
2655 {
2656 int ret;
2657 struct btrfs_block_group *block_group;
2658
2659 block_group = btrfs_lookup_block_group(fs_info, start);
2660 if (!block_group)
2661 return -EINVAL;
2662
2663 ret = btrfs_cache_block_group(block_group, true);
2664 if (ret)
2665 goto out;
2666
2667 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2668 out:
2669 btrfs_put_block_group(block_group);
2670 return ret;
2671 }
2672
btrfs_exclude_logged_extents(struct extent_buffer * eb)2673 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2674 {
2675 struct btrfs_fs_info *fs_info = eb->fs_info;
2676 struct btrfs_file_extent_item *item;
2677 struct btrfs_key key;
2678 int found_type;
2679 int i;
2680 int ret = 0;
2681
2682 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2683 return 0;
2684
2685 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2686 btrfs_item_key_to_cpu(eb, &key, i);
2687 if (key.type != BTRFS_EXTENT_DATA_KEY)
2688 continue;
2689 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2690 found_type = btrfs_file_extent_type(eb, item);
2691 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2692 continue;
2693 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2694 continue;
2695 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2696 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2697 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2698 if (ret)
2699 break;
2700 }
2701
2702 return ret;
2703 }
2704
2705 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group * bg)2706 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2707 {
2708 atomic_inc(&bg->reservations);
2709 }
2710
2711 /*
2712 * Returns the free cluster for the given space info and sets empty_cluster to
2713 * what it should be based on the mount options.
2714 */
2715 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)2716 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2717 struct btrfs_space_info *space_info, u64 *empty_cluster)
2718 {
2719 struct btrfs_free_cluster *ret = NULL;
2720
2721 *empty_cluster = 0;
2722 if (btrfs_mixed_space_info(space_info))
2723 return ret;
2724
2725 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2726 ret = &fs_info->meta_alloc_cluster;
2727 if (btrfs_test_opt(fs_info, SSD))
2728 *empty_cluster = SZ_2M;
2729 else
2730 *empty_cluster = SZ_64K;
2731 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2732 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2733 *empty_cluster = SZ_2M;
2734 ret = &fs_info->data_alloc_cluster;
2735 }
2736
2737 return ret;
2738 }
2739
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)2740 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2741 u64 start, u64 end,
2742 const bool return_free_space)
2743 {
2744 struct btrfs_block_group *cache = NULL;
2745 struct btrfs_space_info *space_info;
2746 struct btrfs_free_cluster *cluster = NULL;
2747 u64 total_unpinned = 0;
2748 u64 empty_cluster = 0;
2749 bool readonly;
2750 int ret = 0;
2751
2752 while (start <= end) {
2753 u64 len;
2754
2755 readonly = false;
2756 if (!cache ||
2757 start >= cache->start + cache->length) {
2758 if (cache)
2759 btrfs_put_block_group(cache);
2760 total_unpinned = 0;
2761 cache = btrfs_lookup_block_group(fs_info, start);
2762 if (cache == NULL) {
2763 /* Logic error, something removed the block group. */
2764 ret = -EUCLEAN;
2765 goto out;
2766 }
2767
2768 cluster = fetch_cluster_info(fs_info,
2769 cache->space_info,
2770 &empty_cluster);
2771 empty_cluster <<= 1;
2772 }
2773
2774 len = cache->start + cache->length - start;
2775 len = min(len, end + 1 - start);
2776
2777 if (return_free_space)
2778 btrfs_add_free_space(cache, start, len);
2779
2780 start += len;
2781 total_unpinned += len;
2782 space_info = cache->space_info;
2783
2784 /*
2785 * If this space cluster has been marked as fragmented and we've
2786 * unpinned enough in this block group to potentially allow a
2787 * cluster to be created inside of it go ahead and clear the
2788 * fragmented check.
2789 */
2790 if (cluster && cluster->fragmented &&
2791 total_unpinned > empty_cluster) {
2792 spin_lock(&cluster->lock);
2793 cluster->fragmented = 0;
2794 spin_unlock(&cluster->lock);
2795 }
2796
2797 spin_lock(&space_info->lock);
2798 spin_lock(&cache->lock);
2799 cache->pinned -= len;
2800 btrfs_space_info_update_bytes_pinned(space_info, -len);
2801 space_info->max_extent_size = 0;
2802 if (cache->ro) {
2803 space_info->bytes_readonly += len;
2804 readonly = true;
2805 } else if (btrfs_is_zoned(fs_info)) {
2806 /* Need reset before reusing in a zoned block group */
2807 btrfs_space_info_update_bytes_zone_unusable(space_info, len);
2808 readonly = true;
2809 }
2810 spin_unlock(&cache->lock);
2811 if (!readonly && return_free_space)
2812 btrfs_return_free_space(space_info, len);
2813 spin_unlock(&space_info->lock);
2814 }
2815
2816 if (cache)
2817 btrfs_put_block_group(cache);
2818 out:
2819 return ret;
2820 }
2821
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)2822 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2823 {
2824 struct btrfs_fs_info *fs_info = trans->fs_info;
2825 struct btrfs_block_group *block_group, *tmp;
2826 struct list_head *deleted_bgs;
2827 struct extent_io_tree *unpin;
2828 u64 start;
2829 u64 end;
2830 int ret;
2831
2832 unpin = &trans->transaction->pinned_extents;
2833
2834 while (!TRANS_ABORTED(trans)) {
2835 struct extent_state *cached_state = NULL;
2836
2837 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2838 if (!find_first_extent_bit(unpin, 0, &start, &end,
2839 EXTENT_DIRTY, &cached_state)) {
2840 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2841 break;
2842 }
2843
2844 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2845 ret = btrfs_discard_extent(fs_info, start,
2846 end + 1 - start, NULL);
2847
2848 clear_extent_dirty(unpin, start, end, &cached_state);
2849 ret = unpin_extent_range(fs_info, start, end, true);
2850 BUG_ON(ret);
2851 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2852 free_extent_state(cached_state);
2853 cond_resched();
2854 }
2855
2856 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2857 btrfs_discard_calc_delay(&fs_info->discard_ctl);
2858 btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2859 }
2860
2861 /*
2862 * Transaction is finished. We don't need the lock anymore. We
2863 * do need to clean up the block groups in case of a transaction
2864 * abort.
2865 */
2866 deleted_bgs = &trans->transaction->deleted_bgs;
2867 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2868 u64 trimmed = 0;
2869
2870 ret = -EROFS;
2871 if (!TRANS_ABORTED(trans))
2872 ret = btrfs_discard_extent(fs_info,
2873 block_group->start,
2874 block_group->length,
2875 &trimmed);
2876
2877 list_del_init(&block_group->bg_list);
2878 btrfs_unfreeze_block_group(block_group);
2879 btrfs_put_block_group(block_group);
2880
2881 if (ret) {
2882 const char *errstr = btrfs_decode_error(ret);
2883 btrfs_warn(fs_info,
2884 "discard failed while removing blockgroup: errno=%d %s",
2885 ret, errstr);
2886 }
2887 }
2888
2889 return 0;
2890 }
2891
2892 /*
2893 * Parse an extent item's inline extents looking for a simple quotas owner ref.
2894 *
2895 * @fs_info: the btrfs_fs_info for this mount
2896 * @leaf: a leaf in the extent tree containing the extent item
2897 * @slot: the slot in the leaf where the extent item is found
2898 *
2899 * Returns the objectid of the root that originally allocated the extent item
2900 * if the inline owner ref is expected and present, otherwise 0.
2901 *
2902 * If an extent item has an owner ref item, it will be the first inline ref
2903 * item. Therefore the logic is to check whether there are any inline ref
2904 * items, then check the type of the first one.
2905 */
btrfs_get_extent_owner_root(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,int slot)2906 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2907 struct extent_buffer *leaf, int slot)
2908 {
2909 struct btrfs_extent_item *ei;
2910 struct btrfs_extent_inline_ref *iref;
2911 struct btrfs_extent_owner_ref *oref;
2912 unsigned long ptr;
2913 unsigned long end;
2914 int type;
2915
2916 if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2917 return 0;
2918
2919 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2920 ptr = (unsigned long)(ei + 1);
2921 end = (unsigned long)ei + btrfs_item_size(leaf, slot);
2922
2923 /* No inline ref items of any kind, can't check type. */
2924 if (ptr == end)
2925 return 0;
2926
2927 iref = (struct btrfs_extent_inline_ref *)ptr;
2928 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
2929
2930 /* We found an owner ref, get the root out of it. */
2931 if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2932 oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2933 return btrfs_extent_owner_ref_root_id(leaf, oref);
2934 }
2935
2936 /* We have inline refs, but not an owner ref. */
2937 return 0;
2938 }
2939
do_free_extent_accounting(struct btrfs_trans_handle * trans,u64 bytenr,struct btrfs_squota_delta * delta)2940 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2941 u64 bytenr, struct btrfs_squota_delta *delta)
2942 {
2943 int ret;
2944 u64 num_bytes = delta->num_bytes;
2945
2946 if (delta->is_data) {
2947 struct btrfs_root *csum_root;
2948
2949 csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2950 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2951 if (ret) {
2952 btrfs_abort_transaction(trans, ret);
2953 return ret;
2954 }
2955
2956 ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes);
2957 if (ret) {
2958 btrfs_abort_transaction(trans, ret);
2959 return ret;
2960 }
2961 }
2962
2963 ret = btrfs_record_squota_delta(trans->fs_info, delta);
2964 if (ret) {
2965 btrfs_abort_transaction(trans, ret);
2966 return ret;
2967 }
2968
2969 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2970 if (ret) {
2971 btrfs_abort_transaction(trans, ret);
2972 return ret;
2973 }
2974
2975 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2976 if (ret)
2977 btrfs_abort_transaction(trans, ret);
2978
2979 return ret;
2980 }
2981
2982 #define abort_and_dump(trans, path, fmt, args...) \
2983 ({ \
2984 btrfs_abort_transaction(trans, -EUCLEAN); \
2985 btrfs_print_leaf(path->nodes[0]); \
2986 btrfs_crit(trans->fs_info, fmt, ##args); \
2987 })
2988
2989 /*
2990 * Drop one or more refs of @node.
2991 *
2992 * 1. Locate the extent refs.
2993 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2994 * Locate it, then reduce the refs number or remove the ref line completely.
2995 *
2996 * 2. Update the refs count in EXTENT/METADATA_ITEM
2997 *
2998 * Inline backref case:
2999 *
3000 * in extent tree we have:
3001 *
3002 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3003 * refs 2 gen 6 flags DATA
3004 * extent data backref root FS_TREE objectid 258 offset 0 count 1
3005 * extent data backref root FS_TREE objectid 257 offset 0 count 1
3006 *
3007 * This function gets called with:
3008 *
3009 * node->bytenr = 13631488
3010 * node->num_bytes = 1048576
3011 * root_objectid = FS_TREE
3012 * owner_objectid = 257
3013 * owner_offset = 0
3014 * refs_to_drop = 1
3015 *
3016 * Then we should get some like:
3017 *
3018 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3019 * refs 1 gen 6 flags DATA
3020 * extent data backref root FS_TREE objectid 258 offset 0 count 1
3021 *
3022 * Keyed backref case:
3023 *
3024 * in extent tree we have:
3025 *
3026 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3027 * refs 754 gen 6 flags DATA
3028 * [...]
3029 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3030 * extent data backref root FS_TREE objectid 866 offset 0 count 1
3031 *
3032 * This function get called with:
3033 *
3034 * node->bytenr = 13631488
3035 * node->num_bytes = 1048576
3036 * root_objectid = FS_TREE
3037 * owner_objectid = 866
3038 * owner_offset = 0
3039 * refs_to_drop = 1
3040 *
3041 * Then we should get some like:
3042 *
3043 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3044 * refs 753 gen 6 flags DATA
3045 *
3046 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3047 */
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)3048 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3049 struct btrfs_delayed_ref_head *href,
3050 struct btrfs_delayed_ref_node *node,
3051 struct btrfs_delayed_extent_op *extent_op)
3052 {
3053 struct btrfs_fs_info *info = trans->fs_info;
3054 struct btrfs_key key;
3055 struct btrfs_path *path;
3056 struct btrfs_root *extent_root;
3057 struct extent_buffer *leaf;
3058 struct btrfs_extent_item *ei;
3059 struct btrfs_extent_inline_ref *iref;
3060 int ret;
3061 int is_data;
3062 int extent_slot = 0;
3063 int found_extent = 0;
3064 int num_to_del = 1;
3065 int refs_to_drop = node->ref_mod;
3066 u32 item_size;
3067 u64 refs;
3068 u64 bytenr = node->bytenr;
3069 u64 num_bytes = node->num_bytes;
3070 u64 owner_objectid = btrfs_delayed_ref_owner(node);
3071 u64 owner_offset = btrfs_delayed_ref_offset(node);
3072 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3073 u64 delayed_ref_root = href->owning_root;
3074
3075 extent_root = btrfs_extent_root(info, bytenr);
3076 ASSERT(extent_root);
3077
3078 path = btrfs_alloc_path();
3079 if (!path)
3080 return -ENOMEM;
3081
3082 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3083
3084 if (!is_data && refs_to_drop != 1) {
3085 btrfs_crit(info,
3086 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3087 node->bytenr, refs_to_drop);
3088 ret = -EINVAL;
3089 btrfs_abort_transaction(trans, ret);
3090 goto out;
3091 }
3092
3093 if (is_data)
3094 skinny_metadata = false;
3095
3096 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3097 node->parent, node->ref_root, owner_objectid,
3098 owner_offset);
3099 if (ret == 0) {
3100 /*
3101 * Either the inline backref or the SHARED_DATA_REF/
3102 * SHARED_BLOCK_REF is found
3103 *
3104 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3105 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3106 */
3107 extent_slot = path->slots[0];
3108 while (extent_slot >= 0) {
3109 btrfs_item_key_to_cpu(path->nodes[0], &key,
3110 extent_slot);
3111 if (key.objectid != bytenr)
3112 break;
3113 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3114 key.offset == num_bytes) {
3115 found_extent = 1;
3116 break;
3117 }
3118 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3119 key.offset == owner_objectid) {
3120 found_extent = 1;
3121 break;
3122 }
3123
3124 /* Quick path didn't find the EXTENT/METADATA_ITEM */
3125 if (path->slots[0] - extent_slot > 5)
3126 break;
3127 extent_slot--;
3128 }
3129
3130 if (!found_extent) {
3131 if (iref) {
3132 abort_and_dump(trans, path,
3133 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3134 path->slots[0]);
3135 ret = -EUCLEAN;
3136 goto out;
3137 }
3138 /* Must be SHARED_* item, remove the backref first */
3139 ret = remove_extent_backref(trans, extent_root, path,
3140 NULL, refs_to_drop, is_data);
3141 if (ret) {
3142 btrfs_abort_transaction(trans, ret);
3143 goto out;
3144 }
3145 btrfs_release_path(path);
3146
3147 /* Slow path to locate EXTENT/METADATA_ITEM */
3148 key.objectid = bytenr;
3149 key.type = BTRFS_EXTENT_ITEM_KEY;
3150 key.offset = num_bytes;
3151
3152 if (!is_data && skinny_metadata) {
3153 key.type = BTRFS_METADATA_ITEM_KEY;
3154 key.offset = owner_objectid;
3155 }
3156
3157 ret = btrfs_search_slot(trans, extent_root,
3158 &key, path, -1, 1);
3159 if (ret > 0 && skinny_metadata && path->slots[0]) {
3160 /*
3161 * Couldn't find our skinny metadata item,
3162 * see if we have ye olde extent item.
3163 */
3164 path->slots[0]--;
3165 btrfs_item_key_to_cpu(path->nodes[0], &key,
3166 path->slots[0]);
3167 if (key.objectid == bytenr &&
3168 key.type == BTRFS_EXTENT_ITEM_KEY &&
3169 key.offset == num_bytes)
3170 ret = 0;
3171 }
3172
3173 if (ret > 0 && skinny_metadata) {
3174 skinny_metadata = false;
3175 key.objectid = bytenr;
3176 key.type = BTRFS_EXTENT_ITEM_KEY;
3177 key.offset = num_bytes;
3178 btrfs_release_path(path);
3179 ret = btrfs_search_slot(trans, extent_root,
3180 &key, path, -1, 1);
3181 }
3182
3183 if (ret) {
3184 if (ret > 0)
3185 btrfs_print_leaf(path->nodes[0]);
3186 btrfs_err(info,
3187 "umm, got %d back from search, was looking for %llu, slot %d",
3188 ret, bytenr, path->slots[0]);
3189 }
3190 if (ret < 0) {
3191 btrfs_abort_transaction(trans, ret);
3192 goto out;
3193 }
3194 extent_slot = path->slots[0];
3195 }
3196 } else if (WARN_ON(ret == -ENOENT)) {
3197 abort_and_dump(trans, path,
3198 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3199 bytenr, node->parent, node->ref_root, owner_objectid,
3200 owner_offset, path->slots[0]);
3201 goto out;
3202 } else {
3203 btrfs_abort_transaction(trans, ret);
3204 goto out;
3205 }
3206
3207 leaf = path->nodes[0];
3208 item_size = btrfs_item_size(leaf, extent_slot);
3209 if (unlikely(item_size < sizeof(*ei))) {
3210 ret = -EUCLEAN;
3211 btrfs_err(trans->fs_info,
3212 "unexpected extent item size, has %u expect >= %zu",
3213 item_size, sizeof(*ei));
3214 btrfs_abort_transaction(trans, ret);
3215 goto out;
3216 }
3217 ei = btrfs_item_ptr(leaf, extent_slot,
3218 struct btrfs_extent_item);
3219 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3220 key.type == BTRFS_EXTENT_ITEM_KEY) {
3221 struct btrfs_tree_block_info *bi;
3222
3223 if (item_size < sizeof(*ei) + sizeof(*bi)) {
3224 abort_and_dump(trans, path,
3225 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3226 key.objectid, key.type, key.offset,
3227 path->slots[0], owner_objectid, item_size,
3228 sizeof(*ei) + sizeof(*bi));
3229 ret = -EUCLEAN;
3230 goto out;
3231 }
3232 bi = (struct btrfs_tree_block_info *)(ei + 1);
3233 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3234 }
3235
3236 refs = btrfs_extent_refs(leaf, ei);
3237 if (refs < refs_to_drop) {
3238 abort_and_dump(trans, path,
3239 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3240 refs_to_drop, refs, bytenr, path->slots[0]);
3241 ret = -EUCLEAN;
3242 goto out;
3243 }
3244 refs -= refs_to_drop;
3245
3246 if (refs > 0) {
3247 if (extent_op)
3248 __run_delayed_extent_op(extent_op, leaf, ei);
3249 /*
3250 * In the case of inline back ref, reference count will
3251 * be updated by remove_extent_backref
3252 */
3253 if (iref) {
3254 if (!found_extent) {
3255 abort_and_dump(trans, path,
3256 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3257 path->slots[0]);
3258 ret = -EUCLEAN;
3259 goto out;
3260 }
3261 } else {
3262 btrfs_set_extent_refs(leaf, ei, refs);
3263 }
3264 if (found_extent) {
3265 ret = remove_extent_backref(trans, extent_root, path,
3266 iref, refs_to_drop, is_data);
3267 if (ret) {
3268 btrfs_abort_transaction(trans, ret);
3269 goto out;
3270 }
3271 }
3272 } else {
3273 struct btrfs_squota_delta delta = {
3274 .root = delayed_ref_root,
3275 .num_bytes = num_bytes,
3276 .is_data = is_data,
3277 .is_inc = false,
3278 .generation = btrfs_extent_generation(leaf, ei),
3279 };
3280
3281 /* In this branch refs == 1 */
3282 if (found_extent) {
3283 if (is_data && refs_to_drop !=
3284 extent_data_ref_count(path, iref)) {
3285 abort_and_dump(trans, path,
3286 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3287 extent_data_ref_count(path, iref),
3288 refs_to_drop, path->slots[0]);
3289 ret = -EUCLEAN;
3290 goto out;
3291 }
3292 if (iref) {
3293 if (path->slots[0] != extent_slot) {
3294 abort_and_dump(trans, path,
3295 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3296 key.objectid, key.type,
3297 key.offset, path->slots[0]);
3298 ret = -EUCLEAN;
3299 goto out;
3300 }
3301 } else {
3302 /*
3303 * No inline ref, we must be at SHARED_* item,
3304 * And it's single ref, it must be:
3305 * | extent_slot ||extent_slot + 1|
3306 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3307 */
3308 if (path->slots[0] != extent_slot + 1) {
3309 abort_and_dump(trans, path,
3310 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3311 path->slots[0]);
3312 ret = -EUCLEAN;
3313 goto out;
3314 }
3315 path->slots[0] = extent_slot;
3316 num_to_del = 2;
3317 }
3318 }
3319 /*
3320 * We can't infer the data owner from the delayed ref, so we need
3321 * to try to get it from the owning ref item.
3322 *
3323 * If it is not present, then that extent was not written under
3324 * simple quotas mode, so we don't need to account for its deletion.
3325 */
3326 if (is_data)
3327 delta.root = btrfs_get_extent_owner_root(trans->fs_info,
3328 leaf, extent_slot);
3329
3330 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3331 num_to_del);
3332 if (ret) {
3333 btrfs_abort_transaction(trans, ret);
3334 goto out;
3335 }
3336 btrfs_release_path(path);
3337
3338 ret = do_free_extent_accounting(trans, bytenr, &delta);
3339 }
3340 btrfs_release_path(path);
3341
3342 out:
3343 btrfs_free_path(path);
3344 return ret;
3345 }
3346
3347 /*
3348 * when we free an block, it is possible (and likely) that we free the last
3349 * delayed ref for that extent as well. This searches the delayed ref tree for
3350 * a given extent, and if there are no other delayed refs to be processed, it
3351 * removes it from the tree.
3352 */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)3353 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3354 u64 bytenr)
3355 {
3356 struct btrfs_fs_info *fs_info = trans->fs_info;
3357 struct btrfs_delayed_ref_head *head;
3358 struct btrfs_delayed_ref_root *delayed_refs;
3359 int ret = 0;
3360
3361 delayed_refs = &trans->transaction->delayed_refs;
3362 spin_lock(&delayed_refs->lock);
3363 head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
3364 if (!head)
3365 goto out_delayed_unlock;
3366
3367 spin_lock(&head->lock);
3368 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3369 goto out;
3370
3371 if (cleanup_extent_op(head) != NULL)
3372 goto out;
3373
3374 /*
3375 * waiting for the lock here would deadlock. If someone else has it
3376 * locked they are already in the process of dropping it anyway
3377 */
3378 if (!mutex_trylock(&head->mutex))
3379 goto out;
3380
3381 btrfs_delete_ref_head(fs_info, delayed_refs, head);
3382 head->processing = false;
3383
3384 spin_unlock(&head->lock);
3385 spin_unlock(&delayed_refs->lock);
3386
3387 BUG_ON(head->extent_op);
3388 if (head->must_insert_reserved)
3389 ret = 1;
3390
3391 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
3392 mutex_unlock(&head->mutex);
3393 btrfs_put_delayed_ref_head(head);
3394 return ret;
3395 out:
3396 spin_unlock(&head->lock);
3397
3398 out_delayed_unlock:
3399 spin_unlock(&delayed_refs->lock);
3400 return 0;
3401 }
3402
btrfs_free_tree_block(struct btrfs_trans_handle * trans,u64 root_id,struct extent_buffer * buf,u64 parent,int last_ref)3403 int btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3404 u64 root_id,
3405 struct extent_buffer *buf,
3406 u64 parent, int last_ref)
3407 {
3408 struct btrfs_fs_info *fs_info = trans->fs_info;
3409 struct btrfs_block_group *bg;
3410 int ret;
3411
3412 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3413 struct btrfs_ref generic_ref = {
3414 .action = BTRFS_DROP_DELAYED_REF,
3415 .bytenr = buf->start,
3416 .num_bytes = buf->len,
3417 .parent = parent,
3418 .owning_root = btrfs_header_owner(buf),
3419 .ref_root = root_id,
3420 };
3421
3422 /*
3423 * Assert that the extent buffer is not cleared due to
3424 * EXTENT_BUFFER_ZONED_ZEROOUT. Please refer
3425 * btrfs_clear_buffer_dirty() and btree_csum_one_bio() for
3426 * detail.
3427 */
3428 ASSERT(btrfs_header_bytenr(buf) != 0);
3429
3430 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false);
3431 btrfs_ref_tree_mod(fs_info, &generic_ref);
3432 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3433 if (ret < 0)
3434 return ret;
3435 }
3436
3437 if (!last_ref)
3438 return 0;
3439
3440 if (btrfs_header_generation(buf) != trans->transid)
3441 goto out;
3442
3443 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3444 ret = check_ref_cleanup(trans, buf->start);
3445 if (!ret)
3446 goto out;
3447 }
3448
3449 bg = btrfs_lookup_block_group(fs_info, buf->start);
3450
3451 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3452 pin_down_extent(trans, bg, buf->start, buf->len, 1);
3453 btrfs_put_block_group(bg);
3454 goto out;
3455 }
3456
3457 /*
3458 * If there are tree mod log users we may have recorded mod log
3459 * operations for this node. If we re-allocate this node we
3460 * could replay operations on this node that happened when it
3461 * existed in a completely different root. For example if it
3462 * was part of root A, then was reallocated to root B, and we
3463 * are doing a btrfs_old_search_slot(root b), we could replay
3464 * operations that happened when the block was part of root A,
3465 * giving us an inconsistent view of the btree.
3466 *
3467 * We are safe from races here because at this point no other
3468 * node or root points to this extent buffer, so if after this
3469 * check a new tree mod log user joins we will not have an
3470 * existing log of operations on this node that we have to
3471 * contend with.
3472 */
3473
3474 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)
3475 || btrfs_is_zoned(fs_info)) {
3476 pin_down_extent(trans, bg, buf->start, buf->len, 1);
3477 btrfs_put_block_group(bg);
3478 goto out;
3479 }
3480
3481 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3482
3483 btrfs_add_free_space(bg, buf->start, buf->len);
3484 btrfs_free_reserved_bytes(bg, buf->len, 0);
3485 btrfs_put_block_group(bg);
3486 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3487
3488 out:
3489
3490 /*
3491 * Deleting the buffer, clear the corrupt flag since it doesn't
3492 * matter anymore.
3493 */
3494 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3495 return 0;
3496 }
3497
3498 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_ref * ref)3499 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3500 {
3501 struct btrfs_fs_info *fs_info = trans->fs_info;
3502 int ret;
3503
3504 if (btrfs_is_testing(fs_info))
3505 return 0;
3506
3507 /*
3508 * tree log blocks never actually go into the extent allocation
3509 * tree, just update pinning info and exit early.
3510 */
3511 if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) {
3512 btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes, 1);
3513 ret = 0;
3514 } else if (ref->type == BTRFS_REF_METADATA) {
3515 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3516 } else {
3517 ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3518 }
3519
3520 if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID)
3521 btrfs_ref_tree_mod(fs_info, ref);
3522
3523 return ret;
3524 }
3525
3526 enum btrfs_loop_type {
3527 /*
3528 * Start caching block groups but do not wait for progress or for them
3529 * to be done.
3530 */
3531 LOOP_CACHING_NOWAIT,
3532
3533 /*
3534 * Wait for the block group free_space >= the space we're waiting for if
3535 * the block group isn't cached.
3536 */
3537 LOOP_CACHING_WAIT,
3538
3539 /*
3540 * Allow allocations to happen from block groups that do not yet have a
3541 * size classification.
3542 */
3543 LOOP_UNSET_SIZE_CLASS,
3544
3545 /*
3546 * Allocate a chunk and then retry the allocation.
3547 */
3548 LOOP_ALLOC_CHUNK,
3549
3550 /*
3551 * Ignore the size class restrictions for this allocation.
3552 */
3553 LOOP_WRONG_SIZE_CLASS,
3554
3555 /*
3556 * Ignore the empty size, only try to allocate the number of bytes
3557 * needed for this allocation.
3558 */
3559 LOOP_NO_EMPTY_SIZE,
3560 };
3561
3562 static inline void
btrfs_lock_block_group(struct btrfs_block_group * cache,int delalloc)3563 btrfs_lock_block_group(struct btrfs_block_group *cache,
3564 int delalloc)
3565 {
3566 if (delalloc)
3567 down_read(&cache->data_rwsem);
3568 }
3569
btrfs_grab_block_group(struct btrfs_block_group * cache,int delalloc)3570 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3571 int delalloc)
3572 {
3573 btrfs_get_block_group(cache);
3574 if (delalloc)
3575 down_read(&cache->data_rwsem);
3576 }
3577
btrfs_lock_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,int delalloc)3578 static struct btrfs_block_group *btrfs_lock_cluster(
3579 struct btrfs_block_group *block_group,
3580 struct btrfs_free_cluster *cluster,
3581 int delalloc)
3582 __acquires(&cluster->refill_lock)
3583 {
3584 struct btrfs_block_group *used_bg = NULL;
3585
3586 spin_lock(&cluster->refill_lock);
3587 while (1) {
3588 used_bg = cluster->block_group;
3589 if (!used_bg)
3590 return NULL;
3591
3592 if (used_bg == block_group)
3593 return used_bg;
3594
3595 btrfs_get_block_group(used_bg);
3596
3597 if (!delalloc)
3598 return used_bg;
3599
3600 if (down_read_trylock(&used_bg->data_rwsem))
3601 return used_bg;
3602
3603 spin_unlock(&cluster->refill_lock);
3604
3605 /* We should only have one-level nested. */
3606 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3607
3608 spin_lock(&cluster->refill_lock);
3609 if (used_bg == cluster->block_group)
3610 return used_bg;
3611
3612 up_read(&used_bg->data_rwsem);
3613 btrfs_put_block_group(used_bg);
3614 }
3615 }
3616
3617 static inline void
btrfs_release_block_group(struct btrfs_block_group * cache,int delalloc)3618 btrfs_release_block_group(struct btrfs_block_group *cache,
3619 int delalloc)
3620 {
3621 if (delalloc)
3622 up_read(&cache->data_rwsem);
3623 btrfs_put_block_group(cache);
3624 }
3625
3626 /*
3627 * Helper function for find_free_extent().
3628 *
3629 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3630 * Return >0 to inform caller that we find nothing
3631 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3632 */
find_free_extent_clustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** cluster_bg_ret)3633 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3634 struct find_free_extent_ctl *ffe_ctl,
3635 struct btrfs_block_group **cluster_bg_ret)
3636 {
3637 struct btrfs_block_group *cluster_bg;
3638 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3639 u64 aligned_cluster;
3640 u64 offset;
3641 int ret;
3642
3643 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3644 if (!cluster_bg)
3645 goto refill_cluster;
3646 if (cluster_bg != bg && (cluster_bg->ro ||
3647 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3648 goto release_cluster;
3649
3650 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3651 ffe_ctl->num_bytes, cluster_bg->start,
3652 &ffe_ctl->max_extent_size);
3653 if (offset) {
3654 /* We have a block, we're done */
3655 spin_unlock(&last_ptr->refill_lock);
3656 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3657 *cluster_bg_ret = cluster_bg;
3658 ffe_ctl->found_offset = offset;
3659 return 0;
3660 }
3661 WARN_ON(last_ptr->block_group != cluster_bg);
3662
3663 release_cluster:
3664 /*
3665 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3666 * lets just skip it and let the allocator find whatever block it can
3667 * find. If we reach this point, we will have tried the cluster
3668 * allocator plenty of times and not have found anything, so we are
3669 * likely way too fragmented for the clustering stuff to find anything.
3670 *
3671 * However, if the cluster is taken from the current block group,
3672 * release the cluster first, so that we stand a better chance of
3673 * succeeding in the unclustered allocation.
3674 */
3675 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3676 spin_unlock(&last_ptr->refill_lock);
3677 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3678 return -ENOENT;
3679 }
3680
3681 /* This cluster didn't work out, free it and start over */
3682 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3683
3684 if (cluster_bg != bg)
3685 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3686
3687 refill_cluster:
3688 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3689 spin_unlock(&last_ptr->refill_lock);
3690 return -ENOENT;
3691 }
3692
3693 aligned_cluster = max_t(u64,
3694 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3695 bg->full_stripe_len);
3696 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3697 ffe_ctl->num_bytes, aligned_cluster);
3698 if (ret == 0) {
3699 /* Now pull our allocation out of this cluster */
3700 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3701 ffe_ctl->num_bytes, ffe_ctl->search_start,
3702 &ffe_ctl->max_extent_size);
3703 if (offset) {
3704 /* We found one, proceed */
3705 spin_unlock(&last_ptr->refill_lock);
3706 ffe_ctl->found_offset = offset;
3707 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3708 return 0;
3709 }
3710 }
3711 /*
3712 * At this point we either didn't find a cluster or we weren't able to
3713 * allocate a block from our cluster. Free the cluster we've been
3714 * trying to use, and go to the next block group.
3715 */
3716 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3717 spin_unlock(&last_ptr->refill_lock);
3718 return 1;
3719 }
3720
3721 /*
3722 * Return >0 to inform caller that we find nothing
3723 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3724 */
find_free_extent_unclustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl)3725 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3726 struct find_free_extent_ctl *ffe_ctl)
3727 {
3728 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3729 u64 offset;
3730
3731 /*
3732 * We are doing an unclustered allocation, set the fragmented flag so
3733 * we don't bother trying to setup a cluster again until we get more
3734 * space.
3735 */
3736 if (unlikely(last_ptr)) {
3737 spin_lock(&last_ptr->lock);
3738 last_ptr->fragmented = 1;
3739 spin_unlock(&last_ptr->lock);
3740 }
3741 if (ffe_ctl->cached) {
3742 struct btrfs_free_space_ctl *free_space_ctl;
3743
3744 free_space_ctl = bg->free_space_ctl;
3745 spin_lock(&free_space_ctl->tree_lock);
3746 if (free_space_ctl->free_space <
3747 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3748 ffe_ctl->empty_size) {
3749 ffe_ctl->total_free_space = max_t(u64,
3750 ffe_ctl->total_free_space,
3751 free_space_ctl->free_space);
3752 spin_unlock(&free_space_ctl->tree_lock);
3753 return 1;
3754 }
3755 spin_unlock(&free_space_ctl->tree_lock);
3756 }
3757
3758 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3759 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3760 &ffe_ctl->max_extent_size);
3761 if (!offset)
3762 return 1;
3763 ffe_ctl->found_offset = offset;
3764 return 0;
3765 }
3766
do_allocation_clustered(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3767 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3768 struct find_free_extent_ctl *ffe_ctl,
3769 struct btrfs_block_group **bg_ret)
3770 {
3771 int ret;
3772
3773 /* We want to try and use the cluster allocator, so lets look there */
3774 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3775 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3776 if (ret >= 0)
3777 return ret;
3778 /* ret == -ENOENT case falls through */
3779 }
3780
3781 return find_free_extent_unclustered(block_group, ffe_ctl);
3782 }
3783
3784 /*
3785 * Tree-log block group locking
3786 * ============================
3787 *
3788 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3789 * indicates the starting address of a block group, which is reserved only
3790 * for tree-log metadata.
3791 *
3792 * Lock nesting
3793 * ============
3794 *
3795 * space_info::lock
3796 * block_group::lock
3797 * fs_info::treelog_bg_lock
3798 */
3799
3800 /*
3801 * Simple allocator for sequential-only block group. It only allows sequential
3802 * allocation. No need to play with trees. This function also reserves the
3803 * bytes as in btrfs_add_reserved_bytes.
3804 */
do_allocation_zoned(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3805 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3806 struct find_free_extent_ctl *ffe_ctl,
3807 struct btrfs_block_group **bg_ret)
3808 {
3809 struct btrfs_fs_info *fs_info = block_group->fs_info;
3810 struct btrfs_space_info *space_info = block_group->space_info;
3811 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3812 u64 start = block_group->start;
3813 u64 num_bytes = ffe_ctl->num_bytes;
3814 u64 avail;
3815 u64 bytenr = block_group->start;
3816 u64 log_bytenr;
3817 u64 data_reloc_bytenr;
3818 int ret = 0;
3819 bool skip = false;
3820
3821 ASSERT(btrfs_is_zoned(block_group->fs_info));
3822
3823 /*
3824 * Do not allow non-tree-log blocks in the dedicated tree-log block
3825 * group, and vice versa.
3826 */
3827 spin_lock(&fs_info->treelog_bg_lock);
3828 log_bytenr = fs_info->treelog_bg;
3829 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3830 (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3831 skip = true;
3832 spin_unlock(&fs_info->treelog_bg_lock);
3833 if (skip)
3834 return 1;
3835
3836 /*
3837 * Do not allow non-relocation blocks in the dedicated relocation block
3838 * group, and vice versa.
3839 */
3840 spin_lock(&fs_info->relocation_bg_lock);
3841 data_reloc_bytenr = fs_info->data_reloc_bg;
3842 if (data_reloc_bytenr &&
3843 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3844 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3845 skip = true;
3846 spin_unlock(&fs_info->relocation_bg_lock);
3847 if (skip)
3848 return 1;
3849
3850 /* Check RO and no space case before trying to activate it */
3851 spin_lock(&block_group->lock);
3852 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3853 ret = 1;
3854 /*
3855 * May need to clear fs_info->{treelog,data_reloc}_bg.
3856 * Return the error after taking the locks.
3857 */
3858 }
3859 spin_unlock(&block_group->lock);
3860
3861 /* Metadata block group is activated at write time. */
3862 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3863 !btrfs_zone_activate(block_group)) {
3864 ret = 1;
3865 /*
3866 * May need to clear fs_info->{treelog,data_reloc}_bg.
3867 * Return the error after taking the locks.
3868 */
3869 }
3870
3871 spin_lock(&space_info->lock);
3872 spin_lock(&block_group->lock);
3873 spin_lock(&fs_info->treelog_bg_lock);
3874 spin_lock(&fs_info->relocation_bg_lock);
3875
3876 if (ret)
3877 goto out;
3878
3879 ASSERT(!ffe_ctl->for_treelog ||
3880 block_group->start == fs_info->treelog_bg ||
3881 fs_info->treelog_bg == 0);
3882 ASSERT(!ffe_ctl->for_data_reloc ||
3883 block_group->start == fs_info->data_reloc_bg ||
3884 fs_info->data_reloc_bg == 0);
3885
3886 if (block_group->ro ||
3887 (!ffe_ctl->for_data_reloc &&
3888 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3889 ret = 1;
3890 goto out;
3891 }
3892
3893 /*
3894 * Do not allow currently using block group to be tree-log dedicated
3895 * block group.
3896 */
3897 if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3898 (block_group->used || block_group->reserved)) {
3899 ret = 1;
3900 goto out;
3901 }
3902
3903 /*
3904 * Do not allow currently used block group to be the data relocation
3905 * dedicated block group.
3906 */
3907 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3908 (block_group->used || block_group->reserved)) {
3909 ret = 1;
3910 goto out;
3911 }
3912
3913 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3914 avail = block_group->zone_capacity - block_group->alloc_offset;
3915 if (avail < num_bytes) {
3916 if (ffe_ctl->max_extent_size < avail) {
3917 /*
3918 * With sequential allocator, free space is always
3919 * contiguous
3920 */
3921 ffe_ctl->max_extent_size = avail;
3922 ffe_ctl->total_free_space = avail;
3923 }
3924 ret = 1;
3925 goto out;
3926 }
3927
3928 if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3929 fs_info->treelog_bg = block_group->start;
3930
3931 if (ffe_ctl->for_data_reloc) {
3932 if (!fs_info->data_reloc_bg)
3933 fs_info->data_reloc_bg = block_group->start;
3934 /*
3935 * Do not allow allocations from this block group, unless it is
3936 * for data relocation. Compared to increasing the ->ro, setting
3937 * the ->zoned_data_reloc_ongoing flag still allows nocow
3938 * writers to come in. See btrfs_inc_nocow_writers().
3939 *
3940 * We need to disable an allocation to avoid an allocation of
3941 * regular (non-relocation data) extent. With mix of relocation
3942 * extents and regular extents, we can dispatch WRITE commands
3943 * (for relocation extents) and ZONE APPEND commands (for
3944 * regular extents) at the same time to the same zone, which
3945 * easily break the write pointer.
3946 *
3947 * Also, this flag avoids this block group to be zone finished.
3948 */
3949 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3950 }
3951
3952 ffe_ctl->found_offset = start + block_group->alloc_offset;
3953 block_group->alloc_offset += num_bytes;
3954 spin_lock(&ctl->tree_lock);
3955 ctl->free_space -= num_bytes;
3956 spin_unlock(&ctl->tree_lock);
3957
3958 /*
3959 * We do not check if found_offset is aligned to stripesize. The
3960 * address is anyway rewritten when using zone append writing.
3961 */
3962
3963 ffe_ctl->search_start = ffe_ctl->found_offset;
3964
3965 out:
3966 if (ret && ffe_ctl->for_treelog)
3967 fs_info->treelog_bg = 0;
3968 if (ret && ffe_ctl->for_data_reloc)
3969 fs_info->data_reloc_bg = 0;
3970 spin_unlock(&fs_info->relocation_bg_lock);
3971 spin_unlock(&fs_info->treelog_bg_lock);
3972 spin_unlock(&block_group->lock);
3973 spin_unlock(&space_info->lock);
3974 return ret;
3975 }
3976
do_allocation(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3977 static int do_allocation(struct btrfs_block_group *block_group,
3978 struct find_free_extent_ctl *ffe_ctl,
3979 struct btrfs_block_group **bg_ret)
3980 {
3981 switch (ffe_ctl->policy) {
3982 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3983 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3984 case BTRFS_EXTENT_ALLOC_ZONED:
3985 return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3986 default:
3987 BUG();
3988 }
3989 }
3990
release_block_group(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,int delalloc)3991 static void release_block_group(struct btrfs_block_group *block_group,
3992 struct find_free_extent_ctl *ffe_ctl,
3993 int delalloc)
3994 {
3995 switch (ffe_ctl->policy) {
3996 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3997 ffe_ctl->retry_uncached = false;
3998 break;
3999 case BTRFS_EXTENT_ALLOC_ZONED:
4000 /* Nothing to do */
4001 break;
4002 default:
4003 BUG();
4004 }
4005
4006 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4007 ffe_ctl->index);
4008 btrfs_release_block_group(block_group, delalloc);
4009 }
4010
found_extent_clustered(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)4011 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4012 struct btrfs_key *ins)
4013 {
4014 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4015
4016 if (!ffe_ctl->use_cluster && last_ptr) {
4017 spin_lock(&last_ptr->lock);
4018 last_ptr->window_start = ins->objectid;
4019 spin_unlock(&last_ptr->lock);
4020 }
4021 }
4022
found_extent(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)4023 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4024 struct btrfs_key *ins)
4025 {
4026 switch (ffe_ctl->policy) {
4027 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4028 found_extent_clustered(ffe_ctl, ins);
4029 break;
4030 case BTRFS_EXTENT_ALLOC_ZONED:
4031 /* Nothing to do */
4032 break;
4033 default:
4034 BUG();
4035 }
4036 }
4037
can_allocate_chunk_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4038 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4039 struct find_free_extent_ctl *ffe_ctl)
4040 {
4041 /* Block group's activeness is not a requirement for METADATA block groups. */
4042 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4043 return 0;
4044
4045 /* If we can activate new zone, just allocate a chunk and use it */
4046 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
4047 return 0;
4048
4049 /*
4050 * We already reached the max active zones. Try to finish one block
4051 * group to make a room for a new block group. This is only possible
4052 * for a data block group because btrfs_zone_finish() may need to wait
4053 * for a running transaction which can cause a deadlock for metadata
4054 * allocation.
4055 */
4056 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4057 int ret = btrfs_zone_finish_one_bg(fs_info);
4058
4059 if (ret == 1)
4060 return 0;
4061 else if (ret < 0)
4062 return ret;
4063 }
4064
4065 /*
4066 * If we have enough free space left in an already active block group
4067 * and we can't activate any other zone now, do not allow allocating a
4068 * new chunk and let find_free_extent() retry with a smaller size.
4069 */
4070 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4071 return -ENOSPC;
4072
4073 /*
4074 * Even min_alloc_size is not left in any block groups. Since we cannot
4075 * activate a new block group, allocating it may not help. Let's tell a
4076 * caller to try again and hope it progress something by writing some
4077 * parts of the region. That is only possible for data block groups,
4078 * where a part of the region can be written.
4079 */
4080 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4081 return -EAGAIN;
4082
4083 /*
4084 * We cannot activate a new block group and no enough space left in any
4085 * block groups. So, allocating a new block group may not help. But,
4086 * there is nothing to do anyway, so let's go with it.
4087 */
4088 return 0;
4089 }
4090
can_allocate_chunk(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4091 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4092 struct find_free_extent_ctl *ffe_ctl)
4093 {
4094 switch (ffe_ctl->policy) {
4095 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4096 return 0;
4097 case BTRFS_EXTENT_ALLOC_ZONED:
4098 return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4099 default:
4100 BUG();
4101 }
4102 }
4103
4104 /*
4105 * Return >0 means caller needs to re-search for free extent
4106 * Return 0 means we have the needed free extent.
4107 * Return <0 means we failed to locate any free extent.
4108 */
find_free_extent_update_loop(struct btrfs_fs_info * fs_info,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl,bool full_search)4109 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4110 struct btrfs_key *ins,
4111 struct find_free_extent_ctl *ffe_ctl,
4112 bool full_search)
4113 {
4114 struct btrfs_root *root = fs_info->chunk_root;
4115 int ret;
4116
4117 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4118 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4119 ffe_ctl->orig_have_caching_bg = true;
4120
4121 if (ins->objectid) {
4122 found_extent(ffe_ctl, ins);
4123 return 0;
4124 }
4125
4126 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4127 return 1;
4128
4129 ffe_ctl->index++;
4130 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4131 return 1;
4132
4133 /* See the comments for btrfs_loop_type for an explanation of the phases. */
4134 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4135 ffe_ctl->index = 0;
4136 /*
4137 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4138 * any uncached bgs and we've already done a full search
4139 * through.
4140 */
4141 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4142 (!ffe_ctl->orig_have_caching_bg && full_search))
4143 ffe_ctl->loop++;
4144 ffe_ctl->loop++;
4145
4146 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4147 struct btrfs_trans_handle *trans;
4148 int exist = 0;
4149
4150 /* Check if allocation policy allows to create a new chunk */
4151 ret = can_allocate_chunk(fs_info, ffe_ctl);
4152 if (ret)
4153 return ret;
4154
4155 trans = current->journal_info;
4156 if (trans)
4157 exist = 1;
4158 else
4159 trans = btrfs_join_transaction(root);
4160
4161 if (IS_ERR(trans)) {
4162 ret = PTR_ERR(trans);
4163 return ret;
4164 }
4165
4166 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4167 CHUNK_ALLOC_FORCE_FOR_EXTENT);
4168
4169 /* Do not bail out on ENOSPC since we can do more. */
4170 if (ret == -ENOSPC) {
4171 ret = 0;
4172 ffe_ctl->loop++;
4173 }
4174 else if (ret < 0)
4175 btrfs_abort_transaction(trans, ret);
4176 else
4177 ret = 0;
4178 if (!exist)
4179 btrfs_end_transaction(trans);
4180 if (ret)
4181 return ret;
4182 }
4183
4184 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4185 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4186 return -ENOSPC;
4187
4188 /*
4189 * Don't loop again if we already have no empty_size and
4190 * no empty_cluster.
4191 */
4192 if (ffe_ctl->empty_size == 0 &&
4193 ffe_ctl->empty_cluster == 0)
4194 return -ENOSPC;
4195 ffe_ctl->empty_size = 0;
4196 ffe_ctl->empty_cluster = 0;
4197 }
4198 return 1;
4199 }
4200 return -ENOSPC;
4201 }
4202
find_free_extent_check_size_class(struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group * bg)4203 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4204 struct btrfs_block_group *bg)
4205 {
4206 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4207 return true;
4208 if (!btrfs_block_group_should_use_size_class(bg))
4209 return true;
4210 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4211 return true;
4212 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4213 bg->size_class == BTRFS_BG_SZ_NONE)
4214 return true;
4215 return ffe_ctl->size_class == bg->size_class;
4216 }
4217
prepare_allocation_clustered(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4218 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4219 struct find_free_extent_ctl *ffe_ctl,
4220 struct btrfs_space_info *space_info,
4221 struct btrfs_key *ins)
4222 {
4223 /*
4224 * If our free space is heavily fragmented we may not be able to make
4225 * big contiguous allocations, so instead of doing the expensive search
4226 * for free space, simply return ENOSPC with our max_extent_size so we
4227 * can go ahead and search for a more manageable chunk.
4228 *
4229 * If our max_extent_size is large enough for our allocation simply
4230 * disable clustering since we will likely not be able to find enough
4231 * space to create a cluster and induce latency trying.
4232 */
4233 if (space_info->max_extent_size) {
4234 spin_lock(&space_info->lock);
4235 if (space_info->max_extent_size &&
4236 ffe_ctl->num_bytes > space_info->max_extent_size) {
4237 ins->offset = space_info->max_extent_size;
4238 spin_unlock(&space_info->lock);
4239 return -ENOSPC;
4240 } else if (space_info->max_extent_size) {
4241 ffe_ctl->use_cluster = false;
4242 }
4243 spin_unlock(&space_info->lock);
4244 }
4245
4246 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4247 &ffe_ctl->empty_cluster);
4248 if (ffe_ctl->last_ptr) {
4249 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4250
4251 spin_lock(&last_ptr->lock);
4252 if (last_ptr->block_group)
4253 ffe_ctl->hint_byte = last_ptr->window_start;
4254 if (last_ptr->fragmented) {
4255 /*
4256 * We still set window_start so we can keep track of the
4257 * last place we found an allocation to try and save
4258 * some time.
4259 */
4260 ffe_ctl->hint_byte = last_ptr->window_start;
4261 ffe_ctl->use_cluster = false;
4262 }
4263 spin_unlock(&last_ptr->lock);
4264 }
4265
4266 return 0;
4267 }
4268
prepare_allocation_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4269 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4270 struct find_free_extent_ctl *ffe_ctl)
4271 {
4272 if (ffe_ctl->for_treelog) {
4273 spin_lock(&fs_info->treelog_bg_lock);
4274 if (fs_info->treelog_bg)
4275 ffe_ctl->hint_byte = fs_info->treelog_bg;
4276 spin_unlock(&fs_info->treelog_bg_lock);
4277 } else if (ffe_ctl->for_data_reloc) {
4278 spin_lock(&fs_info->relocation_bg_lock);
4279 if (fs_info->data_reloc_bg)
4280 ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4281 spin_unlock(&fs_info->relocation_bg_lock);
4282 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4283 struct btrfs_block_group *block_group;
4284
4285 spin_lock(&fs_info->zone_active_bgs_lock);
4286 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4287 /*
4288 * No lock is OK here because avail is monotinically
4289 * decreasing, and this is just a hint.
4290 */
4291 u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4292
4293 if (block_group_bits(block_group, ffe_ctl->flags) &&
4294 avail >= ffe_ctl->num_bytes) {
4295 ffe_ctl->hint_byte = block_group->start;
4296 break;
4297 }
4298 }
4299 spin_unlock(&fs_info->zone_active_bgs_lock);
4300 }
4301
4302 return 0;
4303 }
4304
prepare_allocation(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4305 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4306 struct find_free_extent_ctl *ffe_ctl,
4307 struct btrfs_space_info *space_info,
4308 struct btrfs_key *ins)
4309 {
4310 switch (ffe_ctl->policy) {
4311 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4312 return prepare_allocation_clustered(fs_info, ffe_ctl,
4313 space_info, ins);
4314 case BTRFS_EXTENT_ALLOC_ZONED:
4315 return prepare_allocation_zoned(fs_info, ffe_ctl);
4316 default:
4317 BUG();
4318 }
4319 }
4320
4321 /*
4322 * walks the btree of allocated extents and find a hole of a given size.
4323 * The key ins is changed to record the hole:
4324 * ins->objectid == start position
4325 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4326 * ins->offset == the size of the hole.
4327 * Any available blocks before search_start are skipped.
4328 *
4329 * If there is no suitable free space, we will record the max size of
4330 * the free space extent currently.
4331 *
4332 * The overall logic and call chain:
4333 *
4334 * find_free_extent()
4335 * |- Iterate through all block groups
4336 * | |- Get a valid block group
4337 * | |- Try to do clustered allocation in that block group
4338 * | |- Try to do unclustered allocation in that block group
4339 * | |- Check if the result is valid
4340 * | | |- If valid, then exit
4341 * | |- Jump to next block group
4342 * |
4343 * |- Push harder to find free extents
4344 * |- If not found, re-iterate all block groups
4345 */
find_free_extent(struct btrfs_root * root,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl)4346 static noinline int find_free_extent(struct btrfs_root *root,
4347 struct btrfs_key *ins,
4348 struct find_free_extent_ctl *ffe_ctl)
4349 {
4350 struct btrfs_fs_info *fs_info = root->fs_info;
4351 int ret = 0;
4352 int cache_block_group_error = 0;
4353 struct btrfs_block_group *block_group = NULL;
4354 struct btrfs_space_info *space_info;
4355 bool full_search = false;
4356
4357 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4358
4359 ffe_ctl->search_start = 0;
4360 /* For clustered allocation */
4361 ffe_ctl->empty_cluster = 0;
4362 ffe_ctl->last_ptr = NULL;
4363 ffe_ctl->use_cluster = true;
4364 ffe_ctl->have_caching_bg = false;
4365 ffe_ctl->orig_have_caching_bg = false;
4366 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4367 ffe_ctl->loop = 0;
4368 ffe_ctl->retry_uncached = false;
4369 ffe_ctl->cached = 0;
4370 ffe_ctl->max_extent_size = 0;
4371 ffe_ctl->total_free_space = 0;
4372 ffe_ctl->found_offset = 0;
4373 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4374 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4375
4376 if (btrfs_is_zoned(fs_info))
4377 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4378
4379 ins->type = BTRFS_EXTENT_ITEM_KEY;
4380 ins->objectid = 0;
4381 ins->offset = 0;
4382
4383 trace_find_free_extent(root, ffe_ctl);
4384
4385 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4386 if (!space_info) {
4387 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4388 return -ENOSPC;
4389 }
4390
4391 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4392 if (ret < 0)
4393 return ret;
4394
4395 ffe_ctl->search_start = max(ffe_ctl->search_start,
4396 first_logical_byte(fs_info));
4397 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4398 if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4399 block_group = btrfs_lookup_block_group(fs_info,
4400 ffe_ctl->search_start);
4401 /*
4402 * we don't want to use the block group if it doesn't match our
4403 * allocation bits, or if its not cached.
4404 *
4405 * However if we are re-searching with an ideal block group
4406 * picked out then we don't care that the block group is cached.
4407 */
4408 if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4409 block_group->cached != BTRFS_CACHE_NO) {
4410 down_read(&space_info->groups_sem);
4411 if (list_empty(&block_group->list) ||
4412 block_group->ro) {
4413 /*
4414 * someone is removing this block group,
4415 * we can't jump into the have_block_group
4416 * target because our list pointers are not
4417 * valid
4418 */
4419 btrfs_put_block_group(block_group);
4420 up_read(&space_info->groups_sem);
4421 } else {
4422 ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4423 block_group->flags);
4424 btrfs_lock_block_group(block_group,
4425 ffe_ctl->delalloc);
4426 ffe_ctl->hinted = true;
4427 goto have_block_group;
4428 }
4429 } else if (block_group) {
4430 btrfs_put_block_group(block_group);
4431 }
4432 }
4433 search:
4434 trace_find_free_extent_search_loop(root, ffe_ctl);
4435 ffe_ctl->have_caching_bg = false;
4436 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4437 ffe_ctl->index == 0)
4438 full_search = true;
4439 down_read(&space_info->groups_sem);
4440 list_for_each_entry(block_group,
4441 &space_info->block_groups[ffe_ctl->index], list) {
4442 struct btrfs_block_group *bg_ret;
4443
4444 ffe_ctl->hinted = false;
4445 /* If the block group is read-only, we can skip it entirely. */
4446 if (unlikely(block_group->ro)) {
4447 if (ffe_ctl->for_treelog)
4448 btrfs_clear_treelog_bg(block_group);
4449 if (ffe_ctl->for_data_reloc)
4450 btrfs_clear_data_reloc_bg(block_group);
4451 continue;
4452 }
4453
4454 btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4455 ffe_ctl->search_start = block_group->start;
4456
4457 /*
4458 * this can happen if we end up cycling through all the
4459 * raid types, but we want to make sure we only allocate
4460 * for the proper type.
4461 */
4462 if (!block_group_bits(block_group, ffe_ctl->flags)) {
4463 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4464 BTRFS_BLOCK_GROUP_RAID1_MASK |
4465 BTRFS_BLOCK_GROUP_RAID56_MASK |
4466 BTRFS_BLOCK_GROUP_RAID10;
4467
4468 /*
4469 * if they asked for extra copies and this block group
4470 * doesn't provide them, bail. This does allow us to
4471 * fill raid0 from raid1.
4472 */
4473 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4474 goto loop;
4475
4476 /*
4477 * This block group has different flags than we want.
4478 * It's possible that we have MIXED_GROUP flag but no
4479 * block group is mixed. Just skip such block group.
4480 */
4481 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4482 continue;
4483 }
4484
4485 have_block_group:
4486 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4487 ffe_ctl->cached = btrfs_block_group_done(block_group);
4488 if (unlikely(!ffe_ctl->cached)) {
4489 ffe_ctl->have_caching_bg = true;
4490 ret = btrfs_cache_block_group(block_group, false);
4491
4492 /*
4493 * If we get ENOMEM here or something else we want to
4494 * try other block groups, because it may not be fatal.
4495 * However if we can't find anything else we need to
4496 * save our return here so that we return the actual
4497 * error that caused problems, not ENOSPC.
4498 */
4499 if (ret < 0) {
4500 if (!cache_block_group_error)
4501 cache_block_group_error = ret;
4502 ret = 0;
4503 goto loop;
4504 }
4505 ret = 0;
4506 }
4507
4508 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4509 if (!cache_block_group_error)
4510 cache_block_group_error = -EIO;
4511 goto loop;
4512 }
4513
4514 if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4515 goto loop;
4516
4517 bg_ret = NULL;
4518 ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4519 if (ret > 0)
4520 goto loop;
4521
4522 if (bg_ret && bg_ret != block_group) {
4523 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4524 block_group = bg_ret;
4525 }
4526
4527 /* Checks */
4528 ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4529 fs_info->stripesize);
4530
4531 /* move on to the next group */
4532 if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4533 block_group->start + block_group->length) {
4534 btrfs_add_free_space_unused(block_group,
4535 ffe_ctl->found_offset,
4536 ffe_ctl->num_bytes);
4537 goto loop;
4538 }
4539
4540 if (ffe_ctl->found_offset < ffe_ctl->search_start)
4541 btrfs_add_free_space_unused(block_group,
4542 ffe_ctl->found_offset,
4543 ffe_ctl->search_start - ffe_ctl->found_offset);
4544
4545 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4546 ffe_ctl->num_bytes,
4547 ffe_ctl->delalloc,
4548 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4549 if (ret == -EAGAIN) {
4550 btrfs_add_free_space_unused(block_group,
4551 ffe_ctl->found_offset,
4552 ffe_ctl->num_bytes);
4553 goto loop;
4554 }
4555 btrfs_inc_block_group_reservations(block_group);
4556
4557 /* we are all good, lets return */
4558 ins->objectid = ffe_ctl->search_start;
4559 ins->offset = ffe_ctl->num_bytes;
4560
4561 trace_btrfs_reserve_extent(block_group, ffe_ctl);
4562 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4563 break;
4564 loop:
4565 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4566 !ffe_ctl->retry_uncached) {
4567 ffe_ctl->retry_uncached = true;
4568 btrfs_wait_block_group_cache_progress(block_group,
4569 ffe_ctl->num_bytes +
4570 ffe_ctl->empty_cluster +
4571 ffe_ctl->empty_size);
4572 goto have_block_group;
4573 }
4574 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4575 cond_resched();
4576 }
4577 up_read(&space_info->groups_sem);
4578
4579 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4580 if (ret > 0)
4581 goto search;
4582
4583 if (ret == -ENOSPC && !cache_block_group_error) {
4584 /*
4585 * Use ffe_ctl->total_free_space as fallback if we can't find
4586 * any contiguous hole.
4587 */
4588 if (!ffe_ctl->max_extent_size)
4589 ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4590 spin_lock(&space_info->lock);
4591 space_info->max_extent_size = ffe_ctl->max_extent_size;
4592 spin_unlock(&space_info->lock);
4593 ins->offset = ffe_ctl->max_extent_size;
4594 } else if (ret == -ENOSPC) {
4595 ret = cache_block_group_error;
4596 }
4597 return ret;
4598 }
4599
4600 /*
4601 * Entry point to the extent allocator. Tries to find a hole that is at least
4602 * as big as @num_bytes.
4603 *
4604 * @root - The root that will contain this extent
4605 *
4606 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4607 * is used for accounting purposes. This value differs
4608 * from @num_bytes only in the case of compressed extents.
4609 *
4610 * @num_bytes - Number of bytes to allocate on-disk.
4611 *
4612 * @min_alloc_size - Indicates the minimum amount of space that the
4613 * allocator should try to satisfy. In some cases
4614 * @num_bytes may be larger than what is required and if
4615 * the filesystem is fragmented then allocation fails.
4616 * However, the presence of @min_alloc_size gives a
4617 * chance to try and satisfy the smaller allocation.
4618 *
4619 * @empty_size - A hint that you plan on doing more COW. This is the
4620 * size in bytes the allocator should try to find free
4621 * next to the block it returns. This is just a hint and
4622 * may be ignored by the allocator.
4623 *
4624 * @hint_byte - Hint to the allocator to start searching above the byte
4625 * address passed. It might be ignored.
4626 *
4627 * @ins - This key is modified to record the found hole. It will
4628 * have the following values:
4629 * ins->objectid == start position
4630 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4631 * ins->offset == the size of the hole.
4632 *
4633 * @is_data - Boolean flag indicating whether an extent is
4634 * allocated for data (true) or metadata (false)
4635 *
4636 * @delalloc - Boolean flag indicating whether this allocation is for
4637 * delalloc or not. If 'true' data_rwsem of block groups
4638 * is going to be acquired.
4639 *
4640 *
4641 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4642 * case -ENOSPC is returned then @ins->offset will contain the size of the
4643 * largest available hole the allocator managed to find.
4644 */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)4645 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4646 u64 num_bytes, u64 min_alloc_size,
4647 u64 empty_size, u64 hint_byte,
4648 struct btrfs_key *ins, int is_data, int delalloc)
4649 {
4650 struct btrfs_fs_info *fs_info = root->fs_info;
4651 struct find_free_extent_ctl ffe_ctl = {};
4652 bool final_tried = num_bytes == min_alloc_size;
4653 u64 flags;
4654 int ret;
4655 bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
4656 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4657
4658 flags = get_alloc_profile_by_root(root, is_data);
4659 again:
4660 WARN_ON(num_bytes < fs_info->sectorsize);
4661
4662 ffe_ctl.ram_bytes = ram_bytes;
4663 ffe_ctl.num_bytes = num_bytes;
4664 ffe_ctl.min_alloc_size = min_alloc_size;
4665 ffe_ctl.empty_size = empty_size;
4666 ffe_ctl.flags = flags;
4667 ffe_ctl.delalloc = delalloc;
4668 ffe_ctl.hint_byte = hint_byte;
4669 ffe_ctl.for_treelog = for_treelog;
4670 ffe_ctl.for_data_reloc = for_data_reloc;
4671
4672 ret = find_free_extent(root, ins, &ffe_ctl);
4673 if (!ret && !is_data) {
4674 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4675 } else if (ret == -ENOSPC) {
4676 if (!final_tried && ins->offset) {
4677 num_bytes = min(num_bytes >> 1, ins->offset);
4678 num_bytes = round_down(num_bytes,
4679 fs_info->sectorsize);
4680 num_bytes = max(num_bytes, min_alloc_size);
4681 ram_bytes = num_bytes;
4682 if (num_bytes == min_alloc_size)
4683 final_tried = true;
4684 goto again;
4685 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4686 struct btrfs_space_info *sinfo;
4687
4688 sinfo = btrfs_find_space_info(fs_info, flags);
4689 btrfs_err(fs_info,
4690 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4691 flags, num_bytes, for_treelog, for_data_reloc);
4692 if (sinfo)
4693 btrfs_dump_space_info(fs_info, sinfo,
4694 num_bytes, 1);
4695 }
4696 }
4697
4698 return ret;
4699 }
4700
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)4701 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4702 u64 start, u64 len, int delalloc)
4703 {
4704 struct btrfs_block_group *cache;
4705
4706 cache = btrfs_lookup_block_group(fs_info, start);
4707 if (!cache) {
4708 btrfs_err(fs_info, "Unable to find block group for %llu",
4709 start);
4710 return -ENOSPC;
4711 }
4712
4713 btrfs_add_free_space(cache, start, len);
4714 btrfs_free_reserved_bytes(cache, len, delalloc);
4715 trace_btrfs_reserved_extent_free(fs_info, start, len);
4716
4717 btrfs_put_block_group(cache);
4718 return 0;
4719 }
4720
btrfs_pin_reserved_extent(struct btrfs_trans_handle * trans,const struct extent_buffer * eb)4721 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4722 const struct extent_buffer *eb)
4723 {
4724 struct btrfs_block_group *cache;
4725 int ret = 0;
4726
4727 cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
4728 if (!cache) {
4729 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4730 eb->start);
4731 return -ENOSPC;
4732 }
4733
4734 ret = pin_down_extent(trans, cache, eb->start, eb->len, 1);
4735 btrfs_put_block_group(cache);
4736 return ret;
4737 }
4738
alloc_reserved_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)4739 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4740 u64 num_bytes)
4741 {
4742 struct btrfs_fs_info *fs_info = trans->fs_info;
4743 int ret;
4744
4745 ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4746 if (ret)
4747 return ret;
4748
4749 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4750 if (ret) {
4751 ASSERT(!ret);
4752 btrfs_err(fs_info, "update block group failed for %llu %llu",
4753 bytenr, num_bytes);
4754 return ret;
4755 }
4756
4757 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4758 return 0;
4759 }
4760
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod,u64 oref_root)4761 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4762 u64 parent, u64 root_objectid,
4763 u64 flags, u64 owner, u64 offset,
4764 struct btrfs_key *ins, int ref_mod, u64 oref_root)
4765 {
4766 struct btrfs_fs_info *fs_info = trans->fs_info;
4767 struct btrfs_root *extent_root;
4768 int ret;
4769 struct btrfs_extent_item *extent_item;
4770 struct btrfs_extent_owner_ref *oref;
4771 struct btrfs_extent_inline_ref *iref;
4772 struct btrfs_path *path;
4773 struct extent_buffer *leaf;
4774 int type;
4775 u32 size;
4776 const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4777
4778 if (parent > 0)
4779 type = BTRFS_SHARED_DATA_REF_KEY;
4780 else
4781 type = BTRFS_EXTENT_DATA_REF_KEY;
4782
4783 size = sizeof(*extent_item);
4784 if (simple_quota)
4785 size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4786 size += btrfs_extent_inline_ref_size(type);
4787
4788 path = btrfs_alloc_path();
4789 if (!path)
4790 return -ENOMEM;
4791
4792 extent_root = btrfs_extent_root(fs_info, ins->objectid);
4793 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4794 if (ret) {
4795 btrfs_free_path(path);
4796 return ret;
4797 }
4798
4799 leaf = path->nodes[0];
4800 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4801 struct btrfs_extent_item);
4802 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4803 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4804 btrfs_set_extent_flags(leaf, extent_item,
4805 flags | BTRFS_EXTENT_FLAG_DATA);
4806
4807 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4808 if (simple_quota) {
4809 btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY);
4810 oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4811 btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root);
4812 iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4813 }
4814 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4815
4816 if (parent > 0) {
4817 struct btrfs_shared_data_ref *ref;
4818 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4819 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4820 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4821 } else {
4822 struct btrfs_extent_data_ref *ref;
4823 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4824 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4825 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4826 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4827 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4828 }
4829
4830 btrfs_free_path(path);
4831
4832 return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4833 }
4834
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)4835 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4836 struct btrfs_delayed_ref_node *node,
4837 struct btrfs_delayed_extent_op *extent_op)
4838 {
4839 struct btrfs_fs_info *fs_info = trans->fs_info;
4840 struct btrfs_root *extent_root;
4841 int ret;
4842 struct btrfs_extent_item *extent_item;
4843 struct btrfs_key extent_key;
4844 struct btrfs_tree_block_info *block_info;
4845 struct btrfs_extent_inline_ref *iref;
4846 struct btrfs_path *path;
4847 struct extent_buffer *leaf;
4848 u32 size = sizeof(*extent_item) + sizeof(*iref);
4849 const u64 flags = (extent_op ? extent_op->flags_to_set : 0);
4850 /* The owner of a tree block is the level. */
4851 int level = btrfs_delayed_ref_owner(node);
4852 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4853
4854 extent_key.objectid = node->bytenr;
4855 if (skinny_metadata) {
4856 /* The owner of a tree block is the level. */
4857 extent_key.offset = level;
4858 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4859 } else {
4860 extent_key.offset = node->num_bytes;
4861 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4862 size += sizeof(*block_info);
4863 }
4864
4865 path = btrfs_alloc_path();
4866 if (!path)
4867 return -ENOMEM;
4868
4869 extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4870 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4871 size);
4872 if (ret) {
4873 btrfs_free_path(path);
4874 return ret;
4875 }
4876
4877 leaf = path->nodes[0];
4878 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4879 struct btrfs_extent_item);
4880 btrfs_set_extent_refs(leaf, extent_item, 1);
4881 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4882 btrfs_set_extent_flags(leaf, extent_item,
4883 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4884
4885 if (skinny_metadata) {
4886 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4887 } else {
4888 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4889 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4890 btrfs_set_tree_block_level(leaf, block_info, level);
4891 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4892 }
4893
4894 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4895 btrfs_set_extent_inline_ref_type(leaf, iref,
4896 BTRFS_SHARED_BLOCK_REF_KEY);
4897 btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent);
4898 } else {
4899 btrfs_set_extent_inline_ref_type(leaf, iref,
4900 BTRFS_TREE_BLOCK_REF_KEY);
4901 btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root);
4902 }
4903
4904 btrfs_free_path(path);
4905
4906 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4907 }
4908
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)4909 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4910 struct btrfs_root *root, u64 owner,
4911 u64 offset, u64 ram_bytes,
4912 struct btrfs_key *ins)
4913 {
4914 struct btrfs_ref generic_ref = {
4915 .action = BTRFS_ADD_DELAYED_EXTENT,
4916 .bytenr = ins->objectid,
4917 .num_bytes = ins->offset,
4918 .owning_root = btrfs_root_id(root),
4919 .ref_root = btrfs_root_id(root),
4920 };
4921
4922 ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID);
4923
4924 if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root))
4925 generic_ref.owning_root = root->relocation_src_root;
4926
4927 btrfs_init_data_ref(&generic_ref, owner, offset, 0, false);
4928 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4929
4930 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4931 }
4932
4933 /*
4934 * this is used by the tree logging recovery code. It records that
4935 * an extent has been allocated and makes sure to clear the free
4936 * space cache bits as well
4937 */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)4938 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4939 u64 root_objectid, u64 owner, u64 offset,
4940 struct btrfs_key *ins)
4941 {
4942 struct btrfs_fs_info *fs_info = trans->fs_info;
4943 int ret;
4944 struct btrfs_block_group *block_group;
4945 struct btrfs_space_info *space_info;
4946 struct btrfs_squota_delta delta = {
4947 .root = root_objectid,
4948 .num_bytes = ins->offset,
4949 .generation = trans->transid,
4950 .is_data = true,
4951 .is_inc = true,
4952 };
4953
4954 /*
4955 * Mixed block groups will exclude before processing the log so we only
4956 * need to do the exclude dance if this fs isn't mixed.
4957 */
4958 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4959 ret = __exclude_logged_extent(fs_info, ins->objectid,
4960 ins->offset);
4961 if (ret)
4962 return ret;
4963 }
4964
4965 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4966 if (!block_group)
4967 return -EINVAL;
4968
4969 space_info = block_group->space_info;
4970 spin_lock(&space_info->lock);
4971 spin_lock(&block_group->lock);
4972 space_info->bytes_reserved += ins->offset;
4973 block_group->reserved += ins->offset;
4974 spin_unlock(&block_group->lock);
4975 spin_unlock(&space_info->lock);
4976
4977 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4978 offset, ins, 1, root_objectid);
4979 if (ret)
4980 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4981 ret = btrfs_record_squota_delta(fs_info, &delta);
4982 btrfs_put_block_group(block_group);
4983 return ret;
4984 }
4985
4986 #ifdef CONFIG_BTRFS_DEBUG
4987 /*
4988 * Extra safety check in case the extent tree is corrupted and extent allocator
4989 * chooses to use a tree block which is already used and locked.
4990 */
check_eb_lock_owner(const struct extent_buffer * eb)4991 static bool check_eb_lock_owner(const struct extent_buffer *eb)
4992 {
4993 if (eb->lock_owner == current->pid) {
4994 btrfs_err_rl(eb->fs_info,
4995 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4996 eb->start, btrfs_header_owner(eb), current->pid);
4997 return true;
4998 }
4999 return false;
5000 }
5001 #else
check_eb_lock_owner(struct extent_buffer * eb)5002 static bool check_eb_lock_owner(struct extent_buffer *eb)
5003 {
5004 return false;
5005 }
5006 #endif
5007
5008 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner,enum btrfs_lock_nesting nest)5009 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5010 u64 bytenr, int level, u64 owner,
5011 enum btrfs_lock_nesting nest)
5012 {
5013 struct btrfs_fs_info *fs_info = root->fs_info;
5014 struct extent_buffer *buf;
5015 u64 lockdep_owner = owner;
5016
5017 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
5018 if (IS_ERR(buf))
5019 return buf;
5020
5021 if (check_eb_lock_owner(buf)) {
5022 free_extent_buffer(buf);
5023 return ERR_PTR(-EUCLEAN);
5024 }
5025
5026 /*
5027 * The reloc trees are just snapshots, so we need them to appear to be
5028 * just like any other fs tree WRT lockdep.
5029 *
5030 * The exception however is in replace_path() in relocation, where we
5031 * hold the lock on the original fs root and then search for the reloc
5032 * root. At that point we need to make sure any reloc root buffers are
5033 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5034 * lockdep happy.
5035 */
5036 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5037 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5038 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5039
5040 /* btrfs_clear_buffer_dirty() accesses generation field. */
5041 btrfs_set_header_generation(buf, trans->transid);
5042
5043 /*
5044 * This needs to stay, because we could allocate a freed block from an
5045 * old tree into a new tree, so we need to make sure this new block is
5046 * set to the appropriate level and owner.
5047 */
5048 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
5049
5050 btrfs_tree_lock_nested(buf, nest);
5051 btrfs_clear_buffer_dirty(trans, buf);
5052 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
5053 clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags);
5054
5055 set_extent_buffer_uptodate(buf);
5056
5057 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
5058 btrfs_set_header_level(buf, level);
5059 btrfs_set_header_bytenr(buf, buf->start);
5060 btrfs_set_header_generation(buf, trans->transid);
5061 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
5062 btrfs_set_header_owner(buf, owner);
5063 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
5064 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
5065 if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
5066 buf->log_index = root->log_transid % 2;
5067 /*
5068 * we allow two log transactions at a time, use different
5069 * EXTENT bit to differentiate dirty pages.
5070 */
5071 if (buf->log_index == 0)
5072 set_extent_bit(&root->dirty_log_pages, buf->start,
5073 buf->start + buf->len - 1,
5074 EXTENT_DIRTY, NULL);
5075 else
5076 set_extent_bit(&root->dirty_log_pages, buf->start,
5077 buf->start + buf->len - 1,
5078 EXTENT_NEW, NULL);
5079 } else {
5080 buf->log_index = -1;
5081 set_extent_bit(&trans->transaction->dirty_pages, buf->start,
5082 buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
5083 }
5084 /* this returns a buffer locked for blocking */
5085 return buf;
5086 }
5087
5088 /*
5089 * finds a free extent and does all the dirty work required for allocation
5090 * returns the tree buffer or an ERR_PTR on error.
5091 */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size,u64 reloc_src_root,enum btrfs_lock_nesting nest)5092 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5093 struct btrfs_root *root,
5094 u64 parent, u64 root_objectid,
5095 const struct btrfs_disk_key *key,
5096 int level, u64 hint,
5097 u64 empty_size,
5098 u64 reloc_src_root,
5099 enum btrfs_lock_nesting nest)
5100 {
5101 struct btrfs_fs_info *fs_info = root->fs_info;
5102 struct btrfs_key ins;
5103 struct btrfs_block_rsv *block_rsv;
5104 struct extent_buffer *buf;
5105 u64 flags = 0;
5106 int ret;
5107 u32 blocksize = fs_info->nodesize;
5108 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5109 u64 owning_root;
5110
5111 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5112 if (btrfs_is_testing(fs_info)) {
5113 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5114 level, root_objectid, nest);
5115 if (!IS_ERR(buf))
5116 root->alloc_bytenr += blocksize;
5117 return buf;
5118 }
5119 #endif
5120
5121 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5122 if (IS_ERR(block_rsv))
5123 return ERR_CAST(block_rsv);
5124
5125 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5126 empty_size, hint, &ins, 0, 0);
5127 if (ret)
5128 goto out_unuse;
5129
5130 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5131 root_objectid, nest);
5132 if (IS_ERR(buf)) {
5133 ret = PTR_ERR(buf);
5134 goto out_free_reserved;
5135 }
5136 owning_root = btrfs_header_owner(buf);
5137
5138 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5139 if (parent == 0)
5140 parent = ins.objectid;
5141 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5142 owning_root = reloc_src_root;
5143 } else
5144 BUG_ON(parent > 0);
5145
5146 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5147 struct btrfs_delayed_extent_op *extent_op;
5148 struct btrfs_ref generic_ref = {
5149 .action = BTRFS_ADD_DELAYED_EXTENT,
5150 .bytenr = ins.objectid,
5151 .num_bytes = ins.offset,
5152 .parent = parent,
5153 .owning_root = owning_root,
5154 .ref_root = root_objectid,
5155 };
5156
5157 if (!skinny_metadata || flags != 0) {
5158 extent_op = btrfs_alloc_delayed_extent_op();
5159 if (!extent_op) {
5160 ret = -ENOMEM;
5161 goto out_free_buf;
5162 }
5163 if (key)
5164 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5165 else
5166 memset(&extent_op->key, 0, sizeof(extent_op->key));
5167 extent_op->flags_to_set = flags;
5168 extent_op->update_key = (skinny_metadata ? false : true);
5169 extent_op->update_flags = (flags != 0);
5170 } else {
5171 extent_op = NULL;
5172 }
5173
5174 btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false);
5175 btrfs_ref_tree_mod(fs_info, &generic_ref);
5176 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5177 if (ret) {
5178 btrfs_free_delayed_extent_op(extent_op);
5179 goto out_free_buf;
5180 }
5181 }
5182 return buf;
5183
5184 out_free_buf:
5185 btrfs_tree_unlock(buf);
5186 free_extent_buffer(buf);
5187 out_free_reserved:
5188 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5189 out_unuse:
5190 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5191 return ERR_PTR(ret);
5192 }
5193
5194 struct walk_control {
5195 u64 refs[BTRFS_MAX_LEVEL];
5196 u64 flags[BTRFS_MAX_LEVEL];
5197 struct btrfs_key update_progress;
5198 struct btrfs_key drop_progress;
5199 int drop_level;
5200 int stage;
5201 int level;
5202 int shared_level;
5203 int update_ref;
5204 int keep_locks;
5205 int reada_slot;
5206 int reada_count;
5207 int restarted;
5208 /* Indicate that extent info needs to be looked up when walking the tree. */
5209 int lookup_info;
5210 };
5211
5212 /*
5213 * This is our normal stage. We are traversing blocks the current snapshot owns
5214 * and we are dropping any of our references to any children we are able to, and
5215 * then freeing the block once we've processed all of the children.
5216 */
5217 #define DROP_REFERENCE 1
5218
5219 /*
5220 * We enter this stage when we have to walk into a child block (meaning we can't
5221 * simply drop our reference to it from our current parent node) and there are
5222 * more than one reference on it. If we are the owner of any of the children
5223 * blocks from the current parent node then we have to do the FULL_BACKREF dance
5224 * on them in order to drop our normal ref and add the shared ref.
5225 */
5226 #define UPDATE_BACKREF 2
5227
5228 /*
5229 * Decide if we need to walk down into this node to adjust the references.
5230 *
5231 * @root: the root we are currently deleting
5232 * @wc: the walk control for this deletion
5233 * @eb: the parent eb that we're currently visiting
5234 * @refs: the number of refs for wc->level - 1
5235 * @flags: the flags for wc->level - 1
5236 * @slot: the slot in the eb that we're currently checking
5237 *
5238 * This is meant to be called when we're evaluating if a node we point to at
5239 * wc->level should be read and walked into, or if we can simply delete our
5240 * reference to it. We return true if we should walk into the node, false if we
5241 * can skip it.
5242 *
5243 * We have assertions in here to make sure this is called correctly. We assume
5244 * that sanity checking on the blocks read to this point has been done, so any
5245 * corrupted file systems must have been caught before calling this function.
5246 */
visit_node_for_delete(struct btrfs_root * root,struct walk_control * wc,struct extent_buffer * eb,u64 flags,int slot)5247 static bool visit_node_for_delete(struct btrfs_root *root, struct walk_control *wc,
5248 struct extent_buffer *eb, u64 flags, int slot)
5249 {
5250 struct btrfs_key key;
5251 u64 generation;
5252 int level = wc->level;
5253
5254 ASSERT(level > 0);
5255 ASSERT(wc->refs[level - 1] > 0);
5256
5257 /*
5258 * The update backref stage we only want to skip if we already have
5259 * FULL_BACKREF set, otherwise we need to read.
5260 */
5261 if (wc->stage == UPDATE_BACKREF) {
5262 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5263 return false;
5264 return true;
5265 }
5266
5267 /*
5268 * We're the last ref on this block, we must walk into it and process
5269 * any refs it's pointing at.
5270 */
5271 if (wc->refs[level - 1] == 1)
5272 return true;
5273
5274 /*
5275 * If we're already FULL_BACKREF then we know we can just drop our
5276 * current reference.
5277 */
5278 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5279 return false;
5280
5281 /*
5282 * This block is older than our creation generation, we can drop our
5283 * reference to it.
5284 */
5285 generation = btrfs_node_ptr_generation(eb, slot);
5286 if (!wc->update_ref || generation <= btrfs_root_origin_generation(root))
5287 return false;
5288
5289 /*
5290 * This block was processed from a previous snapshot deletion run, we
5291 * can skip it.
5292 */
5293 btrfs_node_key_to_cpu(eb, &key, slot);
5294 if (btrfs_comp_cpu_keys(&key, &wc->update_progress) < 0)
5295 return false;
5296
5297 /* All other cases we need to wander into the node. */
5298 return true;
5299 }
5300
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)5301 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5302 struct btrfs_root *root,
5303 struct walk_control *wc,
5304 struct btrfs_path *path)
5305 {
5306 struct btrfs_fs_info *fs_info = root->fs_info;
5307 u64 bytenr;
5308 u64 generation;
5309 u64 refs;
5310 u64 flags;
5311 u32 nritems;
5312 struct extent_buffer *eb;
5313 int ret;
5314 int slot;
5315 int nread = 0;
5316
5317 if (path->slots[wc->level] < wc->reada_slot) {
5318 wc->reada_count = wc->reada_count * 2 / 3;
5319 wc->reada_count = max(wc->reada_count, 2);
5320 } else {
5321 wc->reada_count = wc->reada_count * 3 / 2;
5322 wc->reada_count = min_t(int, wc->reada_count,
5323 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5324 }
5325
5326 eb = path->nodes[wc->level];
5327 nritems = btrfs_header_nritems(eb);
5328
5329 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5330 if (nread >= wc->reada_count)
5331 break;
5332
5333 cond_resched();
5334 bytenr = btrfs_node_blockptr(eb, slot);
5335 generation = btrfs_node_ptr_generation(eb, slot);
5336
5337 if (slot == path->slots[wc->level])
5338 goto reada;
5339
5340 if (wc->stage == UPDATE_BACKREF &&
5341 generation <= btrfs_root_origin_generation(root))
5342 continue;
5343
5344 /* We don't lock the tree block, it's OK to be racy here */
5345 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5346 wc->level - 1, 1, &refs,
5347 &flags, NULL);
5348 /* We don't care about errors in readahead. */
5349 if (ret < 0)
5350 continue;
5351
5352 /*
5353 * This could be racey, it's conceivable that we raced and end
5354 * up with a bogus refs count, if that's the case just skip, if
5355 * we are actually corrupt we will notice when we look up
5356 * everything again with our locks.
5357 */
5358 if (refs == 0)
5359 continue;
5360
5361 /* If we don't need to visit this node don't reada. */
5362 if (!visit_node_for_delete(root, wc, eb, flags, slot))
5363 continue;
5364 reada:
5365 btrfs_readahead_node_child(eb, slot);
5366 nread++;
5367 }
5368 wc->reada_slot = slot;
5369 }
5370
5371 /*
5372 * helper to process tree block while walking down the tree.
5373 *
5374 * when wc->stage == UPDATE_BACKREF, this function updates
5375 * back refs for pointers in the block.
5376 *
5377 * NOTE: return value 1 means we should stop walking down.
5378 */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5379 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5380 struct btrfs_root *root,
5381 struct btrfs_path *path,
5382 struct walk_control *wc)
5383 {
5384 struct btrfs_fs_info *fs_info = root->fs_info;
5385 int level = wc->level;
5386 struct extent_buffer *eb = path->nodes[level];
5387 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5388 int ret;
5389
5390 if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root))
5391 return 1;
5392
5393 /*
5394 * when reference count of tree block is 1, it won't increase
5395 * again. once full backref flag is set, we never clear it.
5396 */
5397 if (wc->lookup_info &&
5398 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5399 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5400 ASSERT(path->locks[level]);
5401 ret = btrfs_lookup_extent_info(trans, fs_info,
5402 eb->start, level, 1,
5403 &wc->refs[level],
5404 &wc->flags[level],
5405 NULL);
5406 if (ret)
5407 return ret;
5408 if (unlikely(wc->refs[level] == 0)) {
5409 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5410 eb->start);
5411 return -EUCLEAN;
5412 }
5413 }
5414
5415 if (wc->stage == DROP_REFERENCE) {
5416 if (wc->refs[level] > 1)
5417 return 1;
5418
5419 if (path->locks[level] && !wc->keep_locks) {
5420 btrfs_tree_unlock_rw(eb, path->locks[level]);
5421 path->locks[level] = 0;
5422 }
5423 return 0;
5424 }
5425
5426 /* wc->stage == UPDATE_BACKREF */
5427 if (!(wc->flags[level] & flag)) {
5428 ASSERT(path->locks[level]);
5429 ret = btrfs_inc_ref(trans, root, eb, 1);
5430 if (ret) {
5431 btrfs_abort_transaction(trans, ret);
5432 return ret;
5433 }
5434 ret = btrfs_dec_ref(trans, root, eb, 0);
5435 if (ret) {
5436 btrfs_abort_transaction(trans, ret);
5437 return ret;
5438 }
5439 ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5440 if (ret) {
5441 btrfs_abort_transaction(trans, ret);
5442 return ret;
5443 }
5444 wc->flags[level] |= flag;
5445 }
5446
5447 /*
5448 * the block is shared by multiple trees, so it's not good to
5449 * keep the tree lock
5450 */
5451 if (path->locks[level] && level > 0) {
5452 btrfs_tree_unlock_rw(eb, path->locks[level]);
5453 path->locks[level] = 0;
5454 }
5455 return 0;
5456 }
5457
5458 /*
5459 * This is used to verify a ref exists for this root to deal with a bug where we
5460 * would have a drop_progress key that hadn't been updated properly.
5461 */
check_ref_exists(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 parent,int level)5462 static int check_ref_exists(struct btrfs_trans_handle *trans,
5463 struct btrfs_root *root, u64 bytenr, u64 parent,
5464 int level)
5465 {
5466 struct btrfs_delayed_ref_root *delayed_refs;
5467 struct btrfs_delayed_ref_head *head;
5468 struct btrfs_path *path;
5469 struct btrfs_extent_inline_ref *iref;
5470 int ret;
5471 bool exists = false;
5472
5473 path = btrfs_alloc_path();
5474 if (!path)
5475 return -ENOMEM;
5476 again:
5477 ret = lookup_extent_backref(trans, path, &iref, bytenr,
5478 root->fs_info->nodesize, parent,
5479 btrfs_root_id(root), level, 0);
5480 if (ret != -ENOENT) {
5481 /*
5482 * If we get 0 then we found our reference, return 1, else
5483 * return the error if it's not -ENOENT;
5484 */
5485 btrfs_free_path(path);
5486 return (ret < 0 ) ? ret : 1;
5487 }
5488
5489 /*
5490 * We could have a delayed ref with this reference, so look it up while
5491 * we're holding the path open to make sure we don't race with the
5492 * delayed ref running.
5493 */
5494 delayed_refs = &trans->transaction->delayed_refs;
5495 spin_lock(&delayed_refs->lock);
5496 head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
5497 if (!head)
5498 goto out;
5499 if (!mutex_trylock(&head->mutex)) {
5500 /*
5501 * We're contended, means that the delayed ref is running, get a
5502 * reference and wait for the ref head to be complete and then
5503 * try again.
5504 */
5505 refcount_inc(&head->refs);
5506 spin_unlock(&delayed_refs->lock);
5507
5508 btrfs_release_path(path);
5509
5510 mutex_lock(&head->mutex);
5511 mutex_unlock(&head->mutex);
5512 btrfs_put_delayed_ref_head(head);
5513 goto again;
5514 }
5515
5516 exists = btrfs_find_delayed_tree_ref(head, root->root_key.objectid, parent);
5517 mutex_unlock(&head->mutex);
5518 out:
5519 spin_unlock(&delayed_refs->lock);
5520 btrfs_free_path(path);
5521 return exists ? 1 : 0;
5522 }
5523
5524 /*
5525 * We may not have an uptodate block, so if we are going to walk down into this
5526 * block we need to drop the lock, read it off of the disk, re-lock it and
5527 * return to continue dropping the snapshot.
5528 */
check_next_block_uptodate(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,struct extent_buffer * next)5529 static int check_next_block_uptodate(struct btrfs_trans_handle *trans,
5530 struct btrfs_root *root,
5531 struct btrfs_path *path,
5532 struct walk_control *wc,
5533 struct extent_buffer *next)
5534 {
5535 struct btrfs_tree_parent_check check = { 0 };
5536 u64 generation;
5537 int level = wc->level;
5538 int ret;
5539
5540 btrfs_assert_tree_write_locked(next);
5541
5542 generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]);
5543
5544 if (btrfs_buffer_uptodate(next, generation, 0))
5545 return 0;
5546
5547 check.level = level - 1;
5548 check.transid = generation;
5549 check.owner_root = btrfs_root_id(root);
5550 check.has_first_key = true;
5551 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]);
5552
5553 btrfs_tree_unlock(next);
5554 if (level == 1)
5555 reada_walk_down(trans, root, wc, path);
5556 ret = btrfs_read_extent_buffer(next, &check);
5557 if (ret) {
5558 free_extent_buffer(next);
5559 return ret;
5560 }
5561 btrfs_tree_lock(next);
5562 wc->lookup_info = 1;
5563 return 0;
5564 }
5565
5566 /*
5567 * If we determine that we don't have to visit wc->level - 1 then we need to
5568 * determine if we can drop our reference.
5569 *
5570 * If we are UPDATE_BACKREF then we will not, we need to update our backrefs.
5571 *
5572 * If we are DROP_REFERENCE this will figure out if we need to drop our current
5573 * reference, skipping it if we dropped it from a previous incompleted drop, or
5574 * dropping it if we still have a reference to it.
5575 */
maybe_drop_reference(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,struct extent_buffer * next,u64 owner_root)5576 static int maybe_drop_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5577 struct btrfs_path *path, struct walk_control *wc,
5578 struct extent_buffer *next, u64 owner_root)
5579 {
5580 struct btrfs_ref ref = {
5581 .action = BTRFS_DROP_DELAYED_REF,
5582 .bytenr = next->start,
5583 .num_bytes = root->fs_info->nodesize,
5584 .owning_root = owner_root,
5585 .ref_root = btrfs_root_id(root),
5586 };
5587 int level = wc->level;
5588 int ret;
5589
5590 /* We are UPDATE_BACKREF, we're not dropping anything. */
5591 if (wc->stage == UPDATE_BACKREF)
5592 return 0;
5593
5594 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5595 ref.parent = path->nodes[level]->start;
5596 } else {
5597 ASSERT(btrfs_root_id(root) == btrfs_header_owner(path->nodes[level]));
5598 if (btrfs_root_id(root) != btrfs_header_owner(path->nodes[level])) {
5599 btrfs_err(root->fs_info, "mismatched block owner");
5600 return -EIO;
5601 }
5602 }
5603
5604 /*
5605 * If we had a drop_progress we need to verify the refs are set as
5606 * expected. If we find our ref then we know that from here on out
5607 * everything should be correct, and we can clear the
5608 * ->restarted flag.
5609 */
5610 if (wc->restarted) {
5611 ret = check_ref_exists(trans, root, next->start, ref.parent,
5612 level - 1);
5613 if (ret <= 0)
5614 return ret;
5615 ret = 0;
5616 wc->restarted = 0;
5617 }
5618
5619 /*
5620 * Reloc tree doesn't contribute to qgroup numbers, and we have already
5621 * accounted them at merge time (replace_path), thus we could skip
5622 * expensive subtree trace here.
5623 */
5624 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
5625 wc->refs[level - 1] > 1) {
5626 u64 generation = btrfs_node_ptr_generation(path->nodes[level],
5627 path->slots[level]);
5628
5629 ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1);
5630 if (ret) {
5631 btrfs_err_rl(root->fs_info,
5632 "error %d accounting shared subtree, quota is out of sync, rescan required",
5633 ret);
5634 }
5635 }
5636
5637 /*
5638 * We need to update the next key in our walk control so we can update
5639 * the drop_progress key accordingly. We don't care if find_next_key
5640 * doesn't find a key because that means we're at the end and are going
5641 * to clean up now.
5642 */
5643 wc->drop_level = level;
5644 find_next_key(path, level, &wc->drop_progress);
5645
5646 btrfs_init_tree_ref(&ref, level - 1, 0, false);
5647 return btrfs_free_extent(trans, &ref);
5648 }
5649
5650 /*
5651 * helper to process tree block pointer.
5652 *
5653 * when wc->stage == DROP_REFERENCE, this function checks
5654 * reference count of the block pointed to. if the block
5655 * is shared and we need update back refs for the subtree
5656 * rooted at the block, this function changes wc->stage to
5657 * UPDATE_BACKREF. if the block is shared and there is no
5658 * need to update back, this function drops the reference
5659 * to the block.
5660 *
5661 * NOTE: return value 1 means we should stop walking down.
5662 */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5663 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5664 struct btrfs_root *root,
5665 struct btrfs_path *path,
5666 struct walk_control *wc)
5667 {
5668 struct btrfs_fs_info *fs_info = root->fs_info;
5669 u64 bytenr;
5670 u64 generation;
5671 u64 owner_root = 0;
5672 struct extent_buffer *next;
5673 int level = wc->level;
5674 int ret = 0;
5675
5676 generation = btrfs_node_ptr_generation(path->nodes[level],
5677 path->slots[level]);
5678 /*
5679 * if the lower level block was created before the snapshot
5680 * was created, we know there is no need to update back refs
5681 * for the subtree
5682 */
5683 if (wc->stage == UPDATE_BACKREF &&
5684 generation <= btrfs_root_origin_generation(root)) {
5685 wc->lookup_info = 1;
5686 return 1;
5687 }
5688
5689 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5690
5691 next = btrfs_find_create_tree_block(fs_info, bytenr, btrfs_root_id(root),
5692 level - 1);
5693 if (IS_ERR(next))
5694 return PTR_ERR(next);
5695
5696 btrfs_tree_lock(next);
5697
5698 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5699 &wc->refs[level - 1],
5700 &wc->flags[level - 1],
5701 &owner_root);
5702 if (ret < 0)
5703 goto out_unlock;
5704
5705 if (unlikely(wc->refs[level - 1] == 0)) {
5706 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5707 bytenr);
5708 ret = -EUCLEAN;
5709 goto out_unlock;
5710 }
5711 wc->lookup_info = 0;
5712
5713 /* If we don't have to walk into this node skip it. */
5714 if (!visit_node_for_delete(root, wc, path->nodes[level],
5715 wc->flags[level - 1], path->slots[level]))
5716 goto skip;
5717
5718 /*
5719 * We have to walk down into this node, and if we're currently at the
5720 * DROP_REFERNCE stage and this block is shared then we need to switch
5721 * to the UPDATE_BACKREF stage in order to convert to FULL_BACKREF.
5722 */
5723 if (wc->stage == DROP_REFERENCE && wc->refs[level - 1] > 1) {
5724 wc->stage = UPDATE_BACKREF;
5725 wc->shared_level = level - 1;
5726 }
5727
5728 ret = check_next_block_uptodate(trans, root, path, wc, next);
5729 if (ret)
5730 return ret;
5731
5732 level--;
5733 ASSERT(level == btrfs_header_level(next));
5734 if (level != btrfs_header_level(next)) {
5735 btrfs_err(root->fs_info, "mismatched level");
5736 ret = -EIO;
5737 goto out_unlock;
5738 }
5739 path->nodes[level] = next;
5740 path->slots[level] = 0;
5741 path->locks[level] = BTRFS_WRITE_LOCK;
5742 wc->level = level;
5743 if (wc->level == 1)
5744 wc->reada_slot = 0;
5745 return 0;
5746 skip:
5747 ret = maybe_drop_reference(trans, root, path, wc, next, owner_root);
5748 if (ret)
5749 goto out_unlock;
5750 wc->refs[level - 1] = 0;
5751 wc->flags[level - 1] = 0;
5752 wc->lookup_info = 1;
5753 ret = 1;
5754
5755 out_unlock:
5756 btrfs_tree_unlock(next);
5757 free_extent_buffer(next);
5758
5759 return ret;
5760 }
5761
5762 /*
5763 * helper to process tree block while walking up the tree.
5764 *
5765 * when wc->stage == DROP_REFERENCE, this function drops
5766 * reference count on the block.
5767 *
5768 * when wc->stage == UPDATE_BACKREF, this function changes
5769 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5770 * to UPDATE_BACKREF previously while processing the block.
5771 *
5772 * NOTE: return value 1 means we should stop walking up.
5773 */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5774 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5775 struct btrfs_root *root,
5776 struct btrfs_path *path,
5777 struct walk_control *wc)
5778 {
5779 struct btrfs_fs_info *fs_info = root->fs_info;
5780 int ret = 0;
5781 int level = wc->level;
5782 struct extent_buffer *eb = path->nodes[level];
5783 u64 parent = 0;
5784
5785 if (wc->stage == UPDATE_BACKREF) {
5786 ASSERT(wc->shared_level >= level);
5787 if (level < wc->shared_level)
5788 goto out;
5789
5790 ret = find_next_key(path, level + 1, &wc->update_progress);
5791 if (ret > 0)
5792 wc->update_ref = 0;
5793
5794 wc->stage = DROP_REFERENCE;
5795 wc->shared_level = -1;
5796 path->slots[level] = 0;
5797
5798 /*
5799 * check reference count again if the block isn't locked.
5800 * we should start walking down the tree again if reference
5801 * count is one.
5802 */
5803 if (!path->locks[level]) {
5804 ASSERT(level > 0);
5805 btrfs_tree_lock(eb);
5806 path->locks[level] = BTRFS_WRITE_LOCK;
5807
5808 ret = btrfs_lookup_extent_info(trans, fs_info,
5809 eb->start, level, 1,
5810 &wc->refs[level],
5811 &wc->flags[level],
5812 NULL);
5813 if (ret < 0) {
5814 btrfs_tree_unlock_rw(eb, path->locks[level]);
5815 path->locks[level] = 0;
5816 return ret;
5817 }
5818 if (unlikely(wc->refs[level] == 0)) {
5819 btrfs_tree_unlock_rw(eb, path->locks[level]);
5820 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5821 eb->start);
5822 return -EUCLEAN;
5823 }
5824 if (wc->refs[level] == 1) {
5825 btrfs_tree_unlock_rw(eb, path->locks[level]);
5826 path->locks[level] = 0;
5827 return 1;
5828 }
5829 }
5830 }
5831
5832 /* wc->stage == DROP_REFERENCE */
5833 ASSERT(path->locks[level] || wc->refs[level] == 1);
5834
5835 if (wc->refs[level] == 1) {
5836 if (level == 0) {
5837 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5838 ret = btrfs_dec_ref(trans, root, eb, 1);
5839 else
5840 ret = btrfs_dec_ref(trans, root, eb, 0);
5841 if (ret) {
5842 btrfs_abort_transaction(trans, ret);
5843 return ret;
5844 }
5845 if (is_fstree(btrfs_root_id(root))) {
5846 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5847 if (ret) {
5848 btrfs_err_rl(fs_info,
5849 "error %d accounting leaf items, quota is out of sync, rescan required",
5850 ret);
5851 }
5852 }
5853 }
5854 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5855 if (!path->locks[level]) {
5856 btrfs_tree_lock(eb);
5857 path->locks[level] = BTRFS_WRITE_LOCK;
5858 }
5859 btrfs_clear_buffer_dirty(trans, eb);
5860 }
5861
5862 if (eb == root->node) {
5863 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5864 parent = eb->start;
5865 else if (btrfs_root_id(root) != btrfs_header_owner(eb))
5866 goto owner_mismatch;
5867 } else {
5868 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5869 parent = path->nodes[level + 1]->start;
5870 else if (btrfs_root_id(root) !=
5871 btrfs_header_owner(path->nodes[level + 1]))
5872 goto owner_mismatch;
5873 }
5874
5875 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5876 wc->refs[level] == 1);
5877 if (ret < 0)
5878 btrfs_abort_transaction(trans, ret);
5879 out:
5880 wc->refs[level] = 0;
5881 wc->flags[level] = 0;
5882 return ret;
5883
5884 owner_mismatch:
5885 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5886 btrfs_header_owner(eb), btrfs_root_id(root));
5887 return -EUCLEAN;
5888 }
5889
5890 /*
5891 * walk_down_tree consists of two steps.
5892 *
5893 * walk_down_proc(). Look up the reference count and reference of our current
5894 * wc->level. At this point path->nodes[wc->level] should be populated and
5895 * uptodate, and in most cases should already be locked. If we are in
5896 * DROP_REFERENCE and our refcount is > 1 then we've entered a shared node and
5897 * we can walk back up the tree. If we are UPDATE_BACKREF we have to set
5898 * FULL_BACKREF on this node if it's not already set, and then do the
5899 * FULL_BACKREF conversion dance, which is to drop the root reference and add
5900 * the shared reference to all of this nodes children.
5901 *
5902 * do_walk_down(). This is where we actually start iterating on the children of
5903 * our current path->nodes[wc->level]. For DROP_REFERENCE that means dropping
5904 * our reference to the children that return false from visit_node_for_delete(),
5905 * which has various conditions where we know we can just drop our reference
5906 * without visiting the node. For UPDATE_BACKREF we will skip any children that
5907 * visit_node_for_delete() returns false for, only walking down when necessary.
5908 * The bulk of the work for UPDATE_BACKREF occurs in the walk_up_tree() part of
5909 * snapshot deletion.
5910 */
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5911 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5912 struct btrfs_root *root,
5913 struct btrfs_path *path,
5914 struct walk_control *wc)
5915 {
5916 int level = wc->level;
5917 int ret = 0;
5918
5919 wc->lookup_info = 1;
5920 while (level >= 0) {
5921 ret = walk_down_proc(trans, root, path, wc);
5922 if (ret)
5923 break;
5924
5925 if (level == 0)
5926 break;
5927
5928 if (path->slots[level] >=
5929 btrfs_header_nritems(path->nodes[level]))
5930 break;
5931
5932 ret = do_walk_down(trans, root, path, wc);
5933 if (ret > 0) {
5934 path->slots[level]++;
5935 continue;
5936 } else if (ret < 0)
5937 break;
5938 level = wc->level;
5939 }
5940 return (ret == 1) ? 0 : ret;
5941 }
5942
5943 /*
5944 * walk_up_tree() is responsible for making sure we visit every slot on our
5945 * current node, and if we're at the end of that node then we call
5946 * walk_up_proc() on our current node which will do one of a few things based on
5947 * our stage.
5948 *
5949 * UPDATE_BACKREF. If we wc->level is currently less than our wc->shared_level
5950 * then we need to walk back up the tree, and then going back down into the
5951 * other slots via walk_down_tree to update any other children from our original
5952 * wc->shared_level. Once we're at or above our wc->shared_level we can switch
5953 * back to DROP_REFERENCE, lookup the current nodes refs and flags, and carry on.
5954 *
5955 * DROP_REFERENCE. If our refs == 1 then we're going to free this tree block.
5956 * If we're level 0 then we need to btrfs_dec_ref() on all of the data extents
5957 * in our current leaf. After that we call btrfs_free_tree_block() on the
5958 * current node and walk up to the next node to walk down the next slot.
5959 */
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)5960 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5961 struct btrfs_root *root,
5962 struct btrfs_path *path,
5963 struct walk_control *wc, int max_level)
5964 {
5965 int level = wc->level;
5966 int ret;
5967
5968 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5969 while (level < max_level && path->nodes[level]) {
5970 wc->level = level;
5971 if (path->slots[level] + 1 <
5972 btrfs_header_nritems(path->nodes[level])) {
5973 path->slots[level]++;
5974 return 0;
5975 } else {
5976 ret = walk_up_proc(trans, root, path, wc);
5977 if (ret > 0)
5978 return 0;
5979 if (ret < 0)
5980 return ret;
5981
5982 if (path->locks[level]) {
5983 btrfs_tree_unlock_rw(path->nodes[level],
5984 path->locks[level]);
5985 path->locks[level] = 0;
5986 }
5987 free_extent_buffer(path->nodes[level]);
5988 path->nodes[level] = NULL;
5989 level++;
5990 }
5991 }
5992 return 1;
5993 }
5994
5995 /*
5996 * drop a subvolume tree.
5997 *
5998 * this function traverses the tree freeing any blocks that only
5999 * referenced by the tree.
6000 *
6001 * when a shared tree block is found. this function decreases its
6002 * reference count by one. if update_ref is true, this function
6003 * also make sure backrefs for the shared block and all lower level
6004 * blocks are properly updated.
6005 *
6006 * If called with for_reloc == 0, may exit early with -EAGAIN
6007 */
btrfs_drop_snapshot(struct btrfs_root * root,int update_ref,int for_reloc)6008 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
6009 {
6010 const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID);
6011 struct btrfs_fs_info *fs_info = root->fs_info;
6012 struct btrfs_path *path;
6013 struct btrfs_trans_handle *trans;
6014 struct btrfs_root *tree_root = fs_info->tree_root;
6015 struct btrfs_root_item *root_item = &root->root_item;
6016 struct walk_control *wc;
6017 struct btrfs_key key;
6018 const u64 rootid = btrfs_root_id(root);
6019 int ret = 0;
6020 int level;
6021 bool root_dropped = false;
6022 bool unfinished_drop = false;
6023
6024 btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root));
6025
6026 path = btrfs_alloc_path();
6027 if (!path) {
6028 ret = -ENOMEM;
6029 goto out;
6030 }
6031
6032 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6033 if (!wc) {
6034 btrfs_free_path(path);
6035 ret = -ENOMEM;
6036 goto out;
6037 }
6038
6039 /*
6040 * Use join to avoid potential EINTR from transaction start. See
6041 * wait_reserve_ticket and the whole reservation callchain.
6042 */
6043 if (for_reloc)
6044 trans = btrfs_join_transaction(tree_root);
6045 else
6046 trans = btrfs_start_transaction(tree_root, 0);
6047 if (IS_ERR(trans)) {
6048 ret = PTR_ERR(trans);
6049 goto out_free;
6050 }
6051
6052 ret = btrfs_run_delayed_items(trans);
6053 if (ret)
6054 goto out_end_trans;
6055
6056 /*
6057 * This will help us catch people modifying the fs tree while we're
6058 * dropping it. It is unsafe to mess with the fs tree while it's being
6059 * dropped as we unlock the root node and parent nodes as we walk down
6060 * the tree, assuming nothing will change. If something does change
6061 * then we'll have stale information and drop references to blocks we've
6062 * already dropped.
6063 */
6064 set_bit(BTRFS_ROOT_DELETING, &root->state);
6065 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
6066
6067 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6068 level = btrfs_header_level(root->node);
6069 path->nodes[level] = btrfs_lock_root_node(root);
6070 path->slots[level] = 0;
6071 path->locks[level] = BTRFS_WRITE_LOCK;
6072 memset(&wc->update_progress, 0,
6073 sizeof(wc->update_progress));
6074 } else {
6075 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6076 memcpy(&wc->update_progress, &key,
6077 sizeof(wc->update_progress));
6078
6079 level = btrfs_root_drop_level(root_item);
6080 BUG_ON(level == 0);
6081 path->lowest_level = level;
6082 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6083 path->lowest_level = 0;
6084 if (ret < 0)
6085 goto out_end_trans;
6086
6087 WARN_ON(ret > 0);
6088 ret = 0;
6089
6090 /*
6091 * unlock our path, this is safe because only this
6092 * function is allowed to delete this snapshot
6093 */
6094 btrfs_unlock_up_safe(path, 0);
6095
6096 level = btrfs_header_level(root->node);
6097 while (1) {
6098 btrfs_tree_lock(path->nodes[level]);
6099 path->locks[level] = BTRFS_WRITE_LOCK;
6100
6101 /*
6102 * btrfs_lookup_extent_info() returns 0 for success,
6103 * or < 0 for error.
6104 */
6105 ret = btrfs_lookup_extent_info(trans, fs_info,
6106 path->nodes[level]->start,
6107 level, 1, &wc->refs[level],
6108 &wc->flags[level], NULL);
6109 if (ret < 0)
6110 goto out_end_trans;
6111
6112 BUG_ON(wc->refs[level] == 0);
6113
6114 if (level == btrfs_root_drop_level(root_item))
6115 break;
6116
6117 btrfs_tree_unlock(path->nodes[level]);
6118 path->locks[level] = 0;
6119 WARN_ON(wc->refs[level] != 1);
6120 level--;
6121 }
6122 }
6123
6124 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
6125 wc->level = level;
6126 wc->shared_level = -1;
6127 wc->stage = DROP_REFERENCE;
6128 wc->update_ref = update_ref;
6129 wc->keep_locks = 0;
6130 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6131
6132 while (1) {
6133
6134 ret = walk_down_tree(trans, root, path, wc);
6135 if (ret < 0) {
6136 btrfs_abort_transaction(trans, ret);
6137 break;
6138 }
6139
6140 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6141 if (ret < 0) {
6142 btrfs_abort_transaction(trans, ret);
6143 break;
6144 }
6145
6146 if (ret > 0) {
6147 BUG_ON(wc->stage != DROP_REFERENCE);
6148 ret = 0;
6149 break;
6150 }
6151
6152 if (wc->stage == DROP_REFERENCE) {
6153 wc->drop_level = wc->level;
6154 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
6155 &wc->drop_progress,
6156 path->slots[wc->drop_level]);
6157 }
6158 btrfs_cpu_key_to_disk(&root_item->drop_progress,
6159 &wc->drop_progress);
6160 btrfs_set_root_drop_level(root_item, wc->drop_level);
6161
6162 BUG_ON(wc->level == 0);
6163 if (btrfs_should_end_transaction(trans) ||
6164 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
6165 ret = btrfs_update_root(trans, tree_root,
6166 &root->root_key,
6167 root_item);
6168 if (ret) {
6169 btrfs_abort_transaction(trans, ret);
6170 goto out_end_trans;
6171 }
6172
6173 if (!is_reloc_root)
6174 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6175
6176 btrfs_end_transaction_throttle(trans);
6177 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
6178 btrfs_debug(fs_info,
6179 "drop snapshot early exit");
6180 ret = -EAGAIN;
6181 goto out_free;
6182 }
6183
6184 /*
6185 * Use join to avoid potential EINTR from transaction
6186 * start. See wait_reserve_ticket and the whole
6187 * reservation callchain.
6188 */
6189 if (for_reloc)
6190 trans = btrfs_join_transaction(tree_root);
6191 else
6192 trans = btrfs_start_transaction(tree_root, 0);
6193 if (IS_ERR(trans)) {
6194 ret = PTR_ERR(trans);
6195 goto out_free;
6196 }
6197 }
6198 }
6199 btrfs_release_path(path);
6200 if (ret)
6201 goto out_end_trans;
6202
6203 ret = btrfs_del_root(trans, &root->root_key);
6204 if (ret) {
6205 btrfs_abort_transaction(trans, ret);
6206 goto out_end_trans;
6207 }
6208
6209 if (!is_reloc_root) {
6210 ret = btrfs_find_root(tree_root, &root->root_key, path,
6211 NULL, NULL);
6212 if (ret < 0) {
6213 btrfs_abort_transaction(trans, ret);
6214 goto out_end_trans;
6215 } else if (ret > 0) {
6216 ret = 0;
6217 /*
6218 * If we fail to delete the orphan item this time
6219 * around, it'll get picked up the next time.
6220 *
6221 * The most common failure here is just -ENOENT.
6222 */
6223 btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root));
6224 }
6225 }
6226
6227 /*
6228 * This subvolume is going to be completely dropped, and won't be
6229 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
6230 * commit transaction time. So free it here manually.
6231 */
6232 btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6233 btrfs_qgroup_free_meta_all_pertrans(root);
6234
6235 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6236 btrfs_add_dropped_root(trans, root);
6237 else
6238 btrfs_put_root(root);
6239 root_dropped = true;
6240 out_end_trans:
6241 if (!is_reloc_root)
6242 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6243
6244 btrfs_end_transaction_throttle(trans);
6245 out_free:
6246 kfree(wc);
6247 btrfs_free_path(path);
6248 out:
6249 if (!ret && root_dropped) {
6250 ret = btrfs_qgroup_cleanup_dropped_subvolume(fs_info, rootid);
6251 if (ret < 0)
6252 btrfs_warn_rl(fs_info,
6253 "failed to cleanup qgroup 0/%llu: %d",
6254 rootid, ret);
6255 ret = 0;
6256 }
6257 /*
6258 * We were an unfinished drop root, check to see if there are any
6259 * pending, and if not clear and wake up any waiters.
6260 */
6261 if (!ret && unfinished_drop)
6262 btrfs_maybe_wake_unfinished_drop(fs_info);
6263
6264 /*
6265 * So if we need to stop dropping the snapshot for whatever reason we
6266 * need to make sure to add it back to the dead root list so that we
6267 * keep trying to do the work later. This also cleans up roots if we
6268 * don't have it in the radix (like when we recover after a power fail
6269 * or unmount) so we don't leak memory.
6270 */
6271 if (!for_reloc && !root_dropped)
6272 btrfs_add_dead_root(root);
6273 return ret;
6274 }
6275
6276 /*
6277 * drop subtree rooted at tree block 'node'.
6278 *
6279 * NOTE: this function will unlock and release tree block 'node'
6280 * only used by relocation code
6281 */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)6282 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6283 struct btrfs_root *root,
6284 struct extent_buffer *node,
6285 struct extent_buffer *parent)
6286 {
6287 struct btrfs_fs_info *fs_info = root->fs_info;
6288 struct btrfs_path *path;
6289 struct walk_control *wc;
6290 int level;
6291 int parent_level;
6292 int ret = 0;
6293
6294 BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
6295
6296 path = btrfs_alloc_path();
6297 if (!path)
6298 return -ENOMEM;
6299
6300 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6301 if (!wc) {
6302 btrfs_free_path(path);
6303 return -ENOMEM;
6304 }
6305
6306 btrfs_assert_tree_write_locked(parent);
6307 parent_level = btrfs_header_level(parent);
6308 atomic_inc(&parent->refs);
6309 path->nodes[parent_level] = parent;
6310 path->slots[parent_level] = btrfs_header_nritems(parent);
6311
6312 btrfs_assert_tree_write_locked(node);
6313 level = btrfs_header_level(node);
6314 path->nodes[level] = node;
6315 path->slots[level] = 0;
6316 path->locks[level] = BTRFS_WRITE_LOCK;
6317
6318 wc->refs[parent_level] = 1;
6319 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6320 wc->level = level;
6321 wc->shared_level = -1;
6322 wc->stage = DROP_REFERENCE;
6323 wc->update_ref = 0;
6324 wc->keep_locks = 1;
6325 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6326
6327 while (1) {
6328 ret = walk_down_tree(trans, root, path, wc);
6329 if (ret < 0)
6330 break;
6331
6332 ret = walk_up_tree(trans, root, path, wc, parent_level);
6333 if (ret) {
6334 if (ret > 0)
6335 ret = 0;
6336 break;
6337 }
6338 }
6339
6340 kfree(wc);
6341 btrfs_free_path(path);
6342 return ret;
6343 }
6344
6345 /*
6346 * Unpin the extent range in an error context and don't add the space back.
6347 * Errors are not propagated further.
6348 */
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)6349 void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end)
6350 {
6351 unpin_extent_range(fs_info, start, end, false);
6352 }
6353
6354 /*
6355 * It used to be that old block groups would be left around forever.
6356 * Iterating over them would be enough to trim unused space. Since we
6357 * now automatically remove them, we also need to iterate over unallocated
6358 * space.
6359 *
6360 * We don't want a transaction for this since the discard may take a
6361 * substantial amount of time. We don't require that a transaction be
6362 * running, but we do need to take a running transaction into account
6363 * to ensure that we're not discarding chunks that were released or
6364 * allocated in the current transaction.
6365 *
6366 * Holding the chunks lock will prevent other threads from allocating
6367 * or releasing chunks, but it won't prevent a running transaction
6368 * from committing and releasing the memory that the pending chunks
6369 * list head uses. For that, we need to take a reference to the
6370 * transaction and hold the commit root sem. We only need to hold
6371 * it while performing the free space search since we have already
6372 * held back allocations.
6373 */
btrfs_trim_free_extents(struct btrfs_device * device,u64 * trimmed)6374 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6375 {
6376 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6377 int ret;
6378
6379 *trimmed = 0;
6380
6381 /* Discard not supported = nothing to do. */
6382 if (!bdev_max_discard_sectors(device->bdev))
6383 return 0;
6384
6385 /* Not writable = nothing to do. */
6386 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6387 return 0;
6388
6389 /* No free space = nothing to do. */
6390 if (device->total_bytes <= device->bytes_used)
6391 return 0;
6392
6393 ret = 0;
6394
6395 while (1) {
6396 struct btrfs_fs_info *fs_info = device->fs_info;
6397 u64 bytes;
6398
6399 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6400 if (ret)
6401 break;
6402
6403 find_first_clear_extent_bit(&device->alloc_state, start,
6404 &start, &end,
6405 CHUNK_TRIMMED | CHUNK_ALLOCATED);
6406
6407 /* Check if there are any CHUNK_* bits left */
6408 if (start > device->total_bytes) {
6409 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6410 btrfs_warn_in_rcu(fs_info,
6411 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6412 start, end - start + 1,
6413 btrfs_dev_name(device),
6414 device->total_bytes);
6415 mutex_unlock(&fs_info->chunk_mutex);
6416 ret = 0;
6417 break;
6418 }
6419
6420 /* Ensure we skip the reserved space on each device. */
6421 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6422
6423 /*
6424 * If find_first_clear_extent_bit find a range that spans the
6425 * end of the device it will set end to -1, in this case it's up
6426 * to the caller to trim the value to the size of the device.
6427 */
6428 end = min(end, device->total_bytes - 1);
6429
6430 len = end - start + 1;
6431
6432 /* We didn't find any extents */
6433 if (!len) {
6434 mutex_unlock(&fs_info->chunk_mutex);
6435 ret = 0;
6436 break;
6437 }
6438
6439 ret = btrfs_issue_discard(device->bdev, start, len,
6440 &bytes);
6441 if (!ret)
6442 set_extent_bit(&device->alloc_state, start,
6443 start + bytes - 1, CHUNK_TRIMMED, NULL);
6444 mutex_unlock(&fs_info->chunk_mutex);
6445
6446 if (ret)
6447 break;
6448
6449 start += len;
6450 *trimmed += bytes;
6451
6452 if (btrfs_trim_interrupted()) {
6453 ret = -ERESTARTSYS;
6454 break;
6455 }
6456
6457 cond_resched();
6458 }
6459
6460 return ret;
6461 }
6462
6463 /*
6464 * Trim the whole filesystem by:
6465 * 1) trimming the free space in each block group
6466 * 2) trimming the unallocated space on each device
6467 *
6468 * This will also continue trimming even if a block group or device encounters
6469 * an error. The return value will be the last error, or 0 if nothing bad
6470 * happens.
6471 */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)6472 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6473 {
6474 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6475 struct btrfs_block_group *cache = NULL;
6476 struct btrfs_device *device;
6477 u64 group_trimmed;
6478 u64 range_end = U64_MAX;
6479 u64 start;
6480 u64 end;
6481 u64 trimmed = 0;
6482 u64 bg_failed = 0;
6483 u64 dev_failed = 0;
6484 int bg_ret = 0;
6485 int dev_ret = 0;
6486 int ret = 0;
6487
6488 if (range->start == U64_MAX)
6489 return -EINVAL;
6490
6491 /*
6492 * Check range overflow if range->len is set.
6493 * The default range->len is U64_MAX.
6494 */
6495 if (range->len != U64_MAX &&
6496 check_add_overflow(range->start, range->len, &range_end))
6497 return -EINVAL;
6498
6499 cache = btrfs_lookup_first_block_group(fs_info, range->start);
6500 for (; cache; cache = btrfs_next_block_group(cache)) {
6501 if (cache->start >= range_end) {
6502 btrfs_put_block_group(cache);
6503 break;
6504 }
6505
6506 start = max(range->start, cache->start);
6507 end = min(range_end, cache->start + cache->length);
6508
6509 if (end - start >= range->minlen) {
6510 if (!btrfs_block_group_done(cache)) {
6511 ret = btrfs_cache_block_group(cache, true);
6512 if (ret) {
6513 bg_failed++;
6514 bg_ret = ret;
6515 continue;
6516 }
6517 }
6518 ret = btrfs_trim_block_group(cache,
6519 &group_trimmed,
6520 start,
6521 end,
6522 range->minlen);
6523
6524 trimmed += group_trimmed;
6525 if (ret) {
6526 bg_failed++;
6527 bg_ret = ret;
6528 continue;
6529 }
6530 }
6531 }
6532
6533 if (bg_failed)
6534 btrfs_warn(fs_info,
6535 "failed to trim %llu block group(s), last error %d",
6536 bg_failed, bg_ret);
6537
6538 mutex_lock(&fs_devices->device_list_mutex);
6539 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6540 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6541 continue;
6542
6543 ret = btrfs_trim_free_extents(device, &group_trimmed);
6544
6545 trimmed += group_trimmed;
6546 if (ret) {
6547 dev_failed++;
6548 dev_ret = ret;
6549 break;
6550 }
6551 }
6552 mutex_unlock(&fs_devices->device_list_mutex);
6553
6554 if (dev_failed)
6555 btrfs_warn(fs_info,
6556 "failed to trim %llu device(s), last error %d",
6557 dev_failed, dev_ret);
6558 range->len = trimmed;
6559 if (bg_ret)
6560 return bg_ret;
6561 return dev_ret;
6562 }
6563