xref: /linux/net/ipv4/tcp_output.c (revision c2933b2befe25309f4c5cfbea0ca80909735fd76)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 #include <net/proto_memory.h>
43 
44 #include <linux/compiler.h>
45 #include <linux/gfp.h>
46 #include <linux/module.h>
47 #include <linux/static_key.h>
48 #include <linux/skbuff_ref.h>
49 
50 #include <trace/events/tcp.h>
51 
52 /* Refresh clocks of a TCP socket,
53  * ensuring monotically increasing values.
54  */
tcp_mstamp_refresh(struct tcp_sock * tp)55 void tcp_mstamp_refresh(struct tcp_sock *tp)
56 {
57 	u64 val = tcp_clock_ns();
58 
59 	tp->tcp_clock_cache = val;
60 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
61 }
62 
63 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
64 			   int push_one, gfp_t gfp);
65 
66 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
68 {
69 	struct inet_connection_sock *icsk = inet_csk(sk);
70 	struct tcp_sock *tp = tcp_sk(sk);
71 	unsigned int prior_packets = tp->packets_out;
72 
73 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
74 
75 	__skb_unlink(skb, &sk->sk_write_queue);
76 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
77 
78 	if (tp->highest_sack == NULL)
79 		tp->highest_sack = skb;
80 
81 	tp->packets_out += tcp_skb_pcount(skb);
82 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
83 		tcp_rearm_rto(sk);
84 
85 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
86 		      tcp_skb_pcount(skb));
87 	tcp_check_space(sk);
88 }
89 
90 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
91  * window scaling factor due to loss of precision.
92  * If window has been shrunk, what should we make? It is not clear at all.
93  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95  * invalid. OK, let's make this for now:
96  */
tcp_acceptable_seq(const struct sock * sk)97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 	const struct tcp_sock *tp = tcp_sk(sk);
100 
101 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
102 	    (tp->rx_opt.wscale_ok &&
103 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
104 		return tp->snd_nxt;
105 	else
106 		return tcp_wnd_end(tp);
107 }
108 
109 /* Calculate mss to advertise in SYN segment.
110  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
111  *
112  * 1. It is independent of path mtu.
113  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
114  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
115  *    attached devices, because some buggy hosts are confused by
116  *    large MSS.
117  * 4. We do not make 3, we advertise MSS, calculated from first
118  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
119  *    This may be overridden via information stored in routing table.
120  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
121  *    probably even Jumbo".
122  */
tcp_advertise_mss(struct sock * sk)123 static __u16 tcp_advertise_mss(struct sock *sk)
124 {
125 	struct tcp_sock *tp = tcp_sk(sk);
126 	const struct dst_entry *dst = __sk_dst_get(sk);
127 	int mss = tp->advmss;
128 
129 	if (dst) {
130 		unsigned int metric = dst_metric_advmss(dst);
131 
132 		if (metric < mss) {
133 			mss = metric;
134 			tp->advmss = mss;
135 		}
136 	}
137 
138 	return (__u16)mss;
139 }
140 
141 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
142  * This is the first part of cwnd validation mechanism.
143  */
tcp_cwnd_restart(struct sock * sk,s32 delta)144 void tcp_cwnd_restart(struct sock *sk, s32 delta)
145 {
146 	struct tcp_sock *tp = tcp_sk(sk);
147 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
148 	u32 cwnd = tcp_snd_cwnd(tp);
149 
150 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
151 
152 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
153 	restart_cwnd = min(restart_cwnd, cwnd);
154 
155 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
156 		cwnd >>= 1;
157 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
158 	tp->snd_cwnd_stamp = tcp_jiffies32;
159 	tp->snd_cwnd_used = 0;
160 }
161 
162 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)163 static void tcp_event_data_sent(struct tcp_sock *tp,
164 				struct sock *sk)
165 {
166 	struct inet_connection_sock *icsk = inet_csk(sk);
167 	const u32 now = tcp_jiffies32;
168 
169 	if (tcp_packets_in_flight(tp) == 0)
170 		tcp_ca_event(sk, CA_EVENT_TX_START);
171 
172 	tp->lsndtime = now;
173 
174 	/* If it is a reply for ato after last received
175 	 * packet, increase pingpong count.
176 	 */
177 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
178 		inet_csk_inc_pingpong_cnt(sk);
179 }
180 
181 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,u32 rcv_nxt)182 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
183 {
184 	struct tcp_sock *tp = tcp_sk(sk);
185 
186 	if (unlikely(tp->compressed_ack)) {
187 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
188 			      tp->compressed_ack);
189 		tp->compressed_ack = 0;
190 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
191 			__sock_put(sk);
192 	}
193 
194 	if (unlikely(rcv_nxt != tp->rcv_nxt))
195 		return;  /* Special ACK sent by DCTCP to reflect ECN */
196 	tcp_dec_quickack_mode(sk);
197 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
198 }
199 
200 /* Determine a window scaling and initial window to offer.
201  * Based on the assumption that the given amount of space
202  * will be offered. Store the results in the tp structure.
203  * NOTE: for smooth operation initial space offering should
204  * be a multiple of mss if possible. We assume here that mss >= 1.
205  * This MUST be enforced by all callers.
206  */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * __window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)207 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
208 			       __u32 *rcv_wnd, __u32 *__window_clamp,
209 			       int wscale_ok, __u8 *rcv_wscale,
210 			       __u32 init_rcv_wnd)
211 {
212 	unsigned int space = (__space < 0 ? 0 : __space);
213 	u32 window_clamp = READ_ONCE(*__window_clamp);
214 
215 	/* If no clamp set the clamp to the max possible scaled window */
216 	if (window_clamp == 0)
217 		window_clamp = (U16_MAX << TCP_MAX_WSCALE);
218 	space = min(window_clamp, space);
219 
220 	/* Quantize space offering to a multiple of mss if possible. */
221 	if (space > mss)
222 		space = rounddown(space, mss);
223 
224 	/* NOTE: offering an initial window larger than 32767
225 	 * will break some buggy TCP stacks. If the admin tells us
226 	 * it is likely we could be speaking with such a buggy stack
227 	 * we will truncate our initial window offering to 32K-1
228 	 * unless the remote has sent us a window scaling option,
229 	 * which we interpret as a sign the remote TCP is not
230 	 * misinterpreting the window field as a signed quantity.
231 	 */
232 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
233 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
234 	else
235 		(*rcv_wnd) = space;
236 
237 	if (init_rcv_wnd)
238 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
239 
240 	*rcv_wscale = 0;
241 	if (wscale_ok) {
242 		/* Set window scaling on max possible window */
243 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
244 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
245 		space = min_t(u32, space, window_clamp);
246 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
247 				      0, TCP_MAX_WSCALE);
248 	}
249 	/* Set the clamp no higher than max representable value */
250 	WRITE_ONCE(*__window_clamp,
251 		   min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp));
252 }
253 EXPORT_SYMBOL(tcp_select_initial_window);
254 
255 /* Chose a new window to advertise, update state in tcp_sock for the
256  * socket, and return result with RFC1323 scaling applied.  The return
257  * value can be stuffed directly into th->window for an outgoing
258  * frame.
259  */
tcp_select_window(struct sock * sk)260 static u16 tcp_select_window(struct sock *sk)
261 {
262 	struct tcp_sock *tp = tcp_sk(sk);
263 	struct net *net = sock_net(sk);
264 	u32 old_win = tp->rcv_wnd;
265 	u32 cur_win, new_win;
266 
267 	/* Make the window 0 if we failed to queue the data because we
268 	 * are out of memory.
269 	 */
270 	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) {
271 		tp->pred_flags = 0;
272 		tp->rcv_wnd = 0;
273 		tp->rcv_wup = tp->rcv_nxt;
274 		return 0;
275 	}
276 
277 	cur_win = tcp_receive_window(tp);
278 	new_win = __tcp_select_window(sk);
279 	if (new_win < cur_win) {
280 		/* Danger Will Robinson!
281 		 * Don't update rcv_wup/rcv_wnd here or else
282 		 * we will not be able to advertise a zero
283 		 * window in time.  --DaveM
284 		 *
285 		 * Relax Will Robinson.
286 		 */
287 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
288 			/* Never shrink the offered window */
289 			if (new_win == 0)
290 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
291 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
292 		}
293 	}
294 
295 	tp->rcv_wnd = new_win;
296 	tp->rcv_wup = tp->rcv_nxt;
297 
298 	/* Make sure we do not exceed the maximum possible
299 	 * scaled window.
300 	 */
301 	if (!tp->rx_opt.rcv_wscale &&
302 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
303 		new_win = min(new_win, MAX_TCP_WINDOW);
304 	else
305 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
306 
307 	/* RFC1323 scaling applied */
308 	new_win >>= tp->rx_opt.rcv_wscale;
309 
310 	/* If we advertise zero window, disable fast path. */
311 	if (new_win == 0) {
312 		tp->pred_flags = 0;
313 		if (old_win)
314 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
315 	} else if (old_win == 0) {
316 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
317 	}
318 
319 	return new_win;
320 }
321 
322 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)323 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
324 {
325 	const struct tcp_sock *tp = tcp_sk(sk);
326 
327 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
328 	if (!(tp->ecn_flags & TCP_ECN_OK))
329 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
330 	else if (tcp_ca_needs_ecn(sk) ||
331 		 tcp_bpf_ca_needs_ecn(sk))
332 		INET_ECN_xmit(sk);
333 }
334 
335 /* Packet ECN state for a SYN.  */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)336 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
337 {
338 	struct tcp_sock *tp = tcp_sk(sk);
339 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
340 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
341 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
342 
343 	if (!use_ecn) {
344 		const struct dst_entry *dst = __sk_dst_get(sk);
345 
346 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
347 			use_ecn = true;
348 	}
349 
350 	tp->ecn_flags = 0;
351 
352 	if (use_ecn) {
353 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
354 		tp->ecn_flags = TCP_ECN_OK;
355 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
356 			INET_ECN_xmit(sk);
357 	}
358 }
359 
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)360 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
361 {
362 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
363 		/* tp->ecn_flags are cleared at a later point in time when
364 		 * SYN ACK is ultimatively being received.
365 		 */
366 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
367 }
368 
369 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)370 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
371 {
372 	if (inet_rsk(req)->ecn_ok)
373 		th->ece = 1;
374 }
375 
376 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
377  * be sent.
378  */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)379 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
380 			 struct tcphdr *th, int tcp_header_len)
381 {
382 	struct tcp_sock *tp = tcp_sk(sk);
383 
384 	if (tp->ecn_flags & TCP_ECN_OK) {
385 		/* Not-retransmitted data segment: set ECT and inject CWR. */
386 		if (skb->len != tcp_header_len &&
387 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
388 			INET_ECN_xmit(sk);
389 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
390 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
391 				th->cwr = 1;
392 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
393 			}
394 		} else if (!tcp_ca_needs_ecn(sk)) {
395 			/* ACK or retransmitted segment: clear ECT|CE */
396 			INET_ECN_dontxmit(sk);
397 		}
398 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
399 			th->ece = 1;
400 	}
401 }
402 
403 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
404  * auto increment end seqno.
405  */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)406 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
407 {
408 	skb->ip_summed = CHECKSUM_PARTIAL;
409 
410 	TCP_SKB_CB(skb)->tcp_flags = flags;
411 
412 	tcp_skb_pcount_set(skb, 1);
413 
414 	TCP_SKB_CB(skb)->seq = seq;
415 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
416 		seq++;
417 	TCP_SKB_CB(skb)->end_seq = seq;
418 }
419 
tcp_urg_mode(const struct tcp_sock * tp)420 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
421 {
422 	return tp->snd_una != tp->snd_up;
423 }
424 
425 #define OPTION_SACK_ADVERTISE	BIT(0)
426 #define OPTION_TS		BIT(1)
427 #define OPTION_MD5		BIT(2)
428 #define OPTION_WSCALE		BIT(3)
429 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
430 #define OPTION_SMC		BIT(9)
431 #define OPTION_MPTCP		BIT(10)
432 #define OPTION_AO		BIT(11)
433 
smc_options_write(__be32 * ptr,u16 * options)434 static void smc_options_write(__be32 *ptr, u16 *options)
435 {
436 #if IS_ENABLED(CONFIG_SMC)
437 	if (static_branch_unlikely(&tcp_have_smc)) {
438 		if (unlikely(OPTION_SMC & *options)) {
439 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
440 				       (TCPOPT_NOP  << 16) |
441 				       (TCPOPT_EXP <<  8) |
442 				       (TCPOLEN_EXP_SMC_BASE));
443 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
444 		}
445 	}
446 #endif
447 }
448 
449 struct tcp_out_options {
450 	u16 options;		/* bit field of OPTION_* */
451 	u16 mss;		/* 0 to disable */
452 	u8 ws;			/* window scale, 0 to disable */
453 	u8 num_sack_blocks;	/* number of SACK blocks to include */
454 	u8 hash_size;		/* bytes in hash_location */
455 	u8 bpf_opt_len;		/* length of BPF hdr option */
456 	__u8 *hash_location;	/* temporary pointer, overloaded */
457 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
458 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
459 	struct mptcp_out_options mptcp;
460 };
461 
mptcp_options_write(struct tcphdr * th,__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)462 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
463 				struct tcp_sock *tp,
464 				struct tcp_out_options *opts)
465 {
466 #if IS_ENABLED(CONFIG_MPTCP)
467 	if (unlikely(OPTION_MPTCP & opts->options))
468 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
469 #endif
470 }
471 
472 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)473 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
474 					enum tcp_synack_type synack_type)
475 {
476 	if (unlikely(!skb))
477 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
478 
479 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
480 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
481 
482 	return 0;
483 }
484 
485 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)486 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
487 				  struct request_sock *req,
488 				  struct sk_buff *syn_skb,
489 				  enum tcp_synack_type synack_type,
490 				  struct tcp_out_options *opts,
491 				  unsigned int *remaining)
492 {
493 	struct bpf_sock_ops_kern sock_ops;
494 	int err;
495 
496 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
497 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
498 	    !*remaining)
499 		return;
500 
501 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
502 
503 	/* init sock_ops */
504 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
505 
506 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
507 
508 	if (req) {
509 		/* The listen "sk" cannot be passed here because
510 		 * it is not locked.  It would not make too much
511 		 * sense to do bpf_setsockopt(listen_sk) based
512 		 * on individual connection request also.
513 		 *
514 		 * Thus, "req" is passed here and the cgroup-bpf-progs
515 		 * of the listen "sk" will be run.
516 		 *
517 		 * "req" is also used here for fastopen even the "sk" here is
518 		 * a fullsock "child" sk.  It is to keep the behavior
519 		 * consistent between fastopen and non-fastopen on
520 		 * the bpf programming side.
521 		 */
522 		sock_ops.sk = (struct sock *)req;
523 		sock_ops.syn_skb = syn_skb;
524 	} else {
525 		sock_owned_by_me(sk);
526 
527 		sock_ops.is_fullsock = 1;
528 		sock_ops.sk = sk;
529 	}
530 
531 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
532 	sock_ops.remaining_opt_len = *remaining;
533 	/* tcp_current_mss() does not pass a skb */
534 	if (skb)
535 		bpf_skops_init_skb(&sock_ops, skb, 0);
536 
537 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
538 
539 	if (err || sock_ops.remaining_opt_len == *remaining)
540 		return;
541 
542 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
543 	/* round up to 4 bytes */
544 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
545 
546 	*remaining -= opts->bpf_opt_len;
547 }
548 
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)549 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
550 				    struct request_sock *req,
551 				    struct sk_buff *syn_skb,
552 				    enum tcp_synack_type synack_type,
553 				    struct tcp_out_options *opts)
554 {
555 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
556 	struct bpf_sock_ops_kern sock_ops;
557 	int err;
558 
559 	if (likely(!max_opt_len))
560 		return;
561 
562 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
563 
564 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
565 
566 	if (req) {
567 		sock_ops.sk = (struct sock *)req;
568 		sock_ops.syn_skb = syn_skb;
569 	} else {
570 		sock_owned_by_me(sk);
571 
572 		sock_ops.is_fullsock = 1;
573 		sock_ops.sk = sk;
574 	}
575 
576 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
577 	sock_ops.remaining_opt_len = max_opt_len;
578 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
579 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
580 
581 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
582 
583 	if (err)
584 		nr_written = 0;
585 	else
586 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
587 
588 	if (nr_written < max_opt_len)
589 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
590 		       max_opt_len - nr_written);
591 }
592 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)593 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
594 				  struct request_sock *req,
595 				  struct sk_buff *syn_skb,
596 				  enum tcp_synack_type synack_type,
597 				  struct tcp_out_options *opts,
598 				  unsigned int *remaining)
599 {
600 }
601 
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)602 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
603 				    struct request_sock *req,
604 				    struct sk_buff *syn_skb,
605 				    enum tcp_synack_type synack_type,
606 				    struct tcp_out_options *opts)
607 {
608 }
609 #endif
610 
process_tcp_ao_options(struct tcp_sock * tp,const struct tcp_request_sock * tcprsk,struct tcp_out_options * opts,struct tcp_key * key,__be32 * ptr)611 static __be32 *process_tcp_ao_options(struct tcp_sock *tp,
612 				      const struct tcp_request_sock *tcprsk,
613 				      struct tcp_out_options *opts,
614 				      struct tcp_key *key, __be32 *ptr)
615 {
616 #ifdef CONFIG_TCP_AO
617 	u8 maclen = tcp_ao_maclen(key->ao_key);
618 
619 	if (tcprsk) {
620 		u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
621 
622 		*ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
623 			       (tcprsk->ao_keyid << 8) |
624 			       (tcprsk->ao_rcv_next));
625 	} else {
626 		struct tcp_ao_key *rnext_key;
627 		struct tcp_ao_info *ao_info;
628 
629 		ao_info = rcu_dereference_check(tp->ao_info,
630 			lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
631 		rnext_key = READ_ONCE(ao_info->rnext_key);
632 		if (WARN_ON_ONCE(!rnext_key))
633 			return ptr;
634 		*ptr++ = htonl((TCPOPT_AO << 24) |
635 			       (tcp_ao_len(key->ao_key) << 16) |
636 			       (key->ao_key->sndid << 8) |
637 			       (rnext_key->rcvid));
638 	}
639 	opts->hash_location = (__u8 *)ptr;
640 	ptr += maclen / sizeof(*ptr);
641 	if (unlikely(maclen % sizeof(*ptr))) {
642 		memset(ptr, TCPOPT_NOP, sizeof(*ptr));
643 		ptr++;
644 	}
645 #endif
646 	return ptr;
647 }
648 
649 /* Write previously computed TCP options to the packet.
650  *
651  * Beware: Something in the Internet is very sensitive to the ordering of
652  * TCP options, we learned this through the hard way, so be careful here.
653  * Luckily we can at least blame others for their non-compliance but from
654  * inter-operability perspective it seems that we're somewhat stuck with
655  * the ordering which we have been using if we want to keep working with
656  * those broken things (not that it currently hurts anybody as there isn't
657  * particular reason why the ordering would need to be changed).
658  *
659  * At least SACK_PERM as the first option is known to lead to a disaster
660  * (but it may well be that other scenarios fail similarly).
661  */
tcp_options_write(struct tcphdr * th,struct tcp_sock * tp,const struct tcp_request_sock * tcprsk,struct tcp_out_options * opts,struct tcp_key * key)662 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
663 			      const struct tcp_request_sock *tcprsk,
664 			      struct tcp_out_options *opts,
665 			      struct tcp_key *key)
666 {
667 	__be32 *ptr = (__be32 *)(th + 1);
668 	u16 options = opts->options;	/* mungable copy */
669 
670 	if (tcp_key_is_md5(key)) {
671 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
672 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
673 		/* overload cookie hash location */
674 		opts->hash_location = (__u8 *)ptr;
675 		ptr += 4;
676 	} else if (tcp_key_is_ao(key)) {
677 		ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr);
678 	}
679 	if (unlikely(opts->mss)) {
680 		*ptr++ = htonl((TCPOPT_MSS << 24) |
681 			       (TCPOLEN_MSS << 16) |
682 			       opts->mss);
683 	}
684 
685 	if (likely(OPTION_TS & options)) {
686 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
687 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
688 				       (TCPOLEN_SACK_PERM << 16) |
689 				       (TCPOPT_TIMESTAMP << 8) |
690 				       TCPOLEN_TIMESTAMP);
691 			options &= ~OPTION_SACK_ADVERTISE;
692 		} else {
693 			*ptr++ = htonl((TCPOPT_NOP << 24) |
694 				       (TCPOPT_NOP << 16) |
695 				       (TCPOPT_TIMESTAMP << 8) |
696 				       TCPOLEN_TIMESTAMP);
697 		}
698 		*ptr++ = htonl(opts->tsval);
699 		*ptr++ = htonl(opts->tsecr);
700 	}
701 
702 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
703 		*ptr++ = htonl((TCPOPT_NOP << 24) |
704 			       (TCPOPT_NOP << 16) |
705 			       (TCPOPT_SACK_PERM << 8) |
706 			       TCPOLEN_SACK_PERM);
707 	}
708 
709 	if (unlikely(OPTION_WSCALE & options)) {
710 		*ptr++ = htonl((TCPOPT_NOP << 24) |
711 			       (TCPOPT_WINDOW << 16) |
712 			       (TCPOLEN_WINDOW << 8) |
713 			       opts->ws);
714 	}
715 
716 	if (unlikely(opts->num_sack_blocks)) {
717 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
718 			tp->duplicate_sack : tp->selective_acks;
719 		int this_sack;
720 
721 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
722 			       (TCPOPT_NOP  << 16) |
723 			       (TCPOPT_SACK <<  8) |
724 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
725 						     TCPOLEN_SACK_PERBLOCK)));
726 
727 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
728 		     ++this_sack) {
729 			*ptr++ = htonl(sp[this_sack].start_seq);
730 			*ptr++ = htonl(sp[this_sack].end_seq);
731 		}
732 
733 		tp->rx_opt.dsack = 0;
734 	}
735 
736 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
737 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
738 		u8 *p = (u8 *)ptr;
739 		u32 len; /* Fast Open option length */
740 
741 		if (foc->exp) {
742 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
743 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
744 				     TCPOPT_FASTOPEN_MAGIC);
745 			p += TCPOLEN_EXP_FASTOPEN_BASE;
746 		} else {
747 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
748 			*p++ = TCPOPT_FASTOPEN;
749 			*p++ = len;
750 		}
751 
752 		memcpy(p, foc->val, foc->len);
753 		if ((len & 3) == 2) {
754 			p[foc->len] = TCPOPT_NOP;
755 			p[foc->len + 1] = TCPOPT_NOP;
756 		}
757 		ptr += (len + 3) >> 2;
758 	}
759 
760 	smc_options_write(ptr, &options);
761 
762 	mptcp_options_write(th, ptr, tp, opts);
763 }
764 
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)765 static void smc_set_option(const struct tcp_sock *tp,
766 			   struct tcp_out_options *opts,
767 			   unsigned int *remaining)
768 {
769 #if IS_ENABLED(CONFIG_SMC)
770 	if (static_branch_unlikely(&tcp_have_smc)) {
771 		if (tp->syn_smc) {
772 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
773 				opts->options |= OPTION_SMC;
774 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
775 			}
776 		}
777 	}
778 #endif
779 }
780 
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)781 static void smc_set_option_cond(const struct tcp_sock *tp,
782 				const struct inet_request_sock *ireq,
783 				struct tcp_out_options *opts,
784 				unsigned int *remaining)
785 {
786 #if IS_ENABLED(CONFIG_SMC)
787 	if (static_branch_unlikely(&tcp_have_smc)) {
788 		if (tp->syn_smc && ireq->smc_ok) {
789 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
790 				opts->options |= OPTION_SMC;
791 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
792 			}
793 		}
794 	}
795 #endif
796 }
797 
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)798 static void mptcp_set_option_cond(const struct request_sock *req,
799 				  struct tcp_out_options *opts,
800 				  unsigned int *remaining)
801 {
802 	if (rsk_is_mptcp(req)) {
803 		unsigned int size;
804 
805 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
806 			if (*remaining >= size) {
807 				opts->options |= OPTION_MPTCP;
808 				*remaining -= size;
809 			}
810 		}
811 	}
812 }
813 
814 /* Compute TCP options for SYN packets. This is not the final
815  * network wire format yet.
816  */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_key * key)817 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
818 				struct tcp_out_options *opts,
819 				struct tcp_key *key)
820 {
821 	struct tcp_sock *tp = tcp_sk(sk);
822 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
823 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
824 	bool timestamps;
825 
826 	/* Better than switch (key.type) as it has static branches */
827 	if (tcp_key_is_md5(key)) {
828 		timestamps = false;
829 		opts->options |= OPTION_MD5;
830 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
831 	} else {
832 		timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
833 		if (tcp_key_is_ao(key)) {
834 			opts->options |= OPTION_AO;
835 			remaining -= tcp_ao_len_aligned(key->ao_key);
836 		}
837 	}
838 
839 	/* We always get an MSS option.  The option bytes which will be seen in
840 	 * normal data packets should timestamps be used, must be in the MSS
841 	 * advertised.  But we subtract them from tp->mss_cache so that
842 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
843 	 * fact here if necessary.  If we don't do this correctly, as a
844 	 * receiver we won't recognize data packets as being full sized when we
845 	 * should, and thus we won't abide by the delayed ACK rules correctly.
846 	 * SACKs don't matter, we never delay an ACK when we have any of those
847 	 * going out.  */
848 	opts->mss = tcp_advertise_mss(sk);
849 	remaining -= TCPOLEN_MSS_ALIGNED;
850 
851 	if (likely(timestamps)) {
852 		opts->options |= OPTION_TS;
853 		opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
854 		opts->tsecr = tp->rx_opt.ts_recent;
855 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
856 	}
857 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
858 		opts->ws = tp->rx_opt.rcv_wscale;
859 		opts->options |= OPTION_WSCALE;
860 		remaining -= TCPOLEN_WSCALE_ALIGNED;
861 	}
862 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
863 		opts->options |= OPTION_SACK_ADVERTISE;
864 		if (unlikely(!(OPTION_TS & opts->options)))
865 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
866 	}
867 
868 	if (fastopen && fastopen->cookie.len >= 0) {
869 		u32 need = fastopen->cookie.len;
870 
871 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
872 					       TCPOLEN_FASTOPEN_BASE;
873 		need = (need + 3) & ~3U;  /* Align to 32 bits */
874 		if (remaining >= need) {
875 			opts->options |= OPTION_FAST_OPEN_COOKIE;
876 			opts->fastopen_cookie = &fastopen->cookie;
877 			remaining -= need;
878 			tp->syn_fastopen = 1;
879 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
880 		}
881 	}
882 
883 	smc_set_option(tp, opts, &remaining);
884 
885 	if (sk_is_mptcp(sk)) {
886 		unsigned int size;
887 
888 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
889 			if (remaining >= size) {
890 				opts->options |= OPTION_MPTCP;
891 				remaining -= size;
892 			}
893 		}
894 	}
895 
896 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
897 
898 	return MAX_TCP_OPTION_SPACE - remaining;
899 }
900 
901 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_key * key,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)902 static unsigned int tcp_synack_options(const struct sock *sk,
903 				       struct request_sock *req,
904 				       unsigned int mss, struct sk_buff *skb,
905 				       struct tcp_out_options *opts,
906 				       const struct tcp_key *key,
907 				       struct tcp_fastopen_cookie *foc,
908 				       enum tcp_synack_type synack_type,
909 				       struct sk_buff *syn_skb)
910 {
911 	struct inet_request_sock *ireq = inet_rsk(req);
912 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
913 
914 	if (tcp_key_is_md5(key)) {
915 		opts->options |= OPTION_MD5;
916 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
917 
918 		/* We can't fit any SACK blocks in a packet with MD5 + TS
919 		 * options. There was discussion about disabling SACK
920 		 * rather than TS in order to fit in better with old,
921 		 * buggy kernels, but that was deemed to be unnecessary.
922 		 */
923 		if (synack_type != TCP_SYNACK_COOKIE)
924 			ireq->tstamp_ok &= !ireq->sack_ok;
925 	} else if (tcp_key_is_ao(key)) {
926 		opts->options |= OPTION_AO;
927 		remaining -= tcp_ao_len_aligned(key->ao_key);
928 		ireq->tstamp_ok &= !ireq->sack_ok;
929 	}
930 
931 	/* We always send an MSS option. */
932 	opts->mss = mss;
933 	remaining -= TCPOLEN_MSS_ALIGNED;
934 
935 	if (likely(ireq->wscale_ok)) {
936 		opts->ws = ireq->rcv_wscale;
937 		opts->options |= OPTION_WSCALE;
938 		remaining -= TCPOLEN_WSCALE_ALIGNED;
939 	}
940 	if (likely(ireq->tstamp_ok)) {
941 		opts->options |= OPTION_TS;
942 		opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
943 			      tcp_rsk(req)->ts_off;
944 		opts->tsecr = READ_ONCE(req->ts_recent);
945 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
946 	}
947 	if (likely(ireq->sack_ok)) {
948 		opts->options |= OPTION_SACK_ADVERTISE;
949 		if (unlikely(!ireq->tstamp_ok))
950 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
951 	}
952 	if (foc != NULL && foc->len >= 0) {
953 		u32 need = foc->len;
954 
955 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
956 				   TCPOLEN_FASTOPEN_BASE;
957 		need = (need + 3) & ~3U;  /* Align to 32 bits */
958 		if (remaining >= need) {
959 			opts->options |= OPTION_FAST_OPEN_COOKIE;
960 			opts->fastopen_cookie = foc;
961 			remaining -= need;
962 		}
963 	}
964 
965 	mptcp_set_option_cond(req, opts, &remaining);
966 
967 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
968 
969 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
970 			      synack_type, opts, &remaining);
971 
972 	return MAX_TCP_OPTION_SPACE - remaining;
973 }
974 
975 /* Compute TCP options for ESTABLISHED sockets. This is not the
976  * final wire format yet.
977  */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_key * key)978 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
979 					struct tcp_out_options *opts,
980 					struct tcp_key *key)
981 {
982 	struct tcp_sock *tp = tcp_sk(sk);
983 	unsigned int size = 0;
984 	unsigned int eff_sacks;
985 
986 	opts->options = 0;
987 
988 	/* Better than switch (key.type) as it has static branches */
989 	if (tcp_key_is_md5(key)) {
990 		opts->options |= OPTION_MD5;
991 		size += TCPOLEN_MD5SIG_ALIGNED;
992 	} else if (tcp_key_is_ao(key)) {
993 		opts->options |= OPTION_AO;
994 		size += tcp_ao_len_aligned(key->ao_key);
995 	}
996 
997 	if (likely(tp->rx_opt.tstamp_ok)) {
998 		opts->options |= OPTION_TS;
999 		opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
1000 				tp->tsoffset : 0;
1001 		opts->tsecr = tp->rx_opt.ts_recent;
1002 		size += TCPOLEN_TSTAMP_ALIGNED;
1003 	}
1004 
1005 	/* MPTCP options have precedence over SACK for the limited TCP
1006 	 * option space because a MPTCP connection would be forced to
1007 	 * fall back to regular TCP if a required multipath option is
1008 	 * missing. SACK still gets a chance to use whatever space is
1009 	 * left.
1010 	 */
1011 	if (sk_is_mptcp(sk)) {
1012 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1013 		unsigned int opt_size = 0;
1014 
1015 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
1016 					      &opts->mptcp)) {
1017 			opts->options |= OPTION_MPTCP;
1018 			size += opt_size;
1019 		}
1020 	}
1021 
1022 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1023 	if (unlikely(eff_sacks)) {
1024 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1025 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
1026 					 TCPOLEN_SACK_PERBLOCK))
1027 			return size;
1028 
1029 		opts->num_sack_blocks =
1030 			min_t(unsigned int, eff_sacks,
1031 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1032 			      TCPOLEN_SACK_PERBLOCK);
1033 
1034 		size += TCPOLEN_SACK_BASE_ALIGNED +
1035 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1036 	}
1037 
1038 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1039 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1040 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1041 
1042 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1043 
1044 		size = MAX_TCP_OPTION_SPACE - remaining;
1045 	}
1046 
1047 	return size;
1048 }
1049 
1050 
1051 /* TCP SMALL QUEUES (TSQ)
1052  *
1053  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1054  * to reduce RTT and bufferbloat.
1055  * We do this using a special skb destructor (tcp_wfree).
1056  *
1057  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1058  * needs to be reallocated in a driver.
1059  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1060  *
1061  * Since transmit from skb destructor is forbidden, we use a tasklet
1062  * to process all sockets that eventually need to send more skbs.
1063  * We use one tasklet per cpu, with its own queue of sockets.
1064  */
1065 struct tsq_tasklet {
1066 	struct tasklet_struct	tasklet;
1067 	struct list_head	head; /* queue of tcp sockets */
1068 };
1069 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1070 
tcp_tsq_write(struct sock * sk)1071 static void tcp_tsq_write(struct sock *sk)
1072 {
1073 	if ((1 << sk->sk_state) &
1074 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1075 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1076 		struct tcp_sock *tp = tcp_sk(sk);
1077 
1078 		if (tp->lost_out > tp->retrans_out &&
1079 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1080 			tcp_mstamp_refresh(tp);
1081 			tcp_xmit_retransmit_queue(sk);
1082 		}
1083 
1084 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1085 			       0, GFP_ATOMIC);
1086 	}
1087 }
1088 
tcp_tsq_handler(struct sock * sk)1089 static void tcp_tsq_handler(struct sock *sk)
1090 {
1091 	bh_lock_sock(sk);
1092 	if (!sock_owned_by_user(sk))
1093 		tcp_tsq_write(sk);
1094 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1095 		sock_hold(sk);
1096 	bh_unlock_sock(sk);
1097 }
1098 /*
1099  * One tasklet per cpu tries to send more skbs.
1100  * We run in tasklet context but need to disable irqs when
1101  * transferring tsq->head because tcp_wfree() might
1102  * interrupt us (non NAPI drivers)
1103  */
tcp_tasklet_func(struct tasklet_struct * t)1104 static void tcp_tasklet_func(struct tasklet_struct *t)
1105 {
1106 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1107 	LIST_HEAD(list);
1108 	unsigned long flags;
1109 	struct list_head *q, *n;
1110 	struct tcp_sock *tp;
1111 	struct sock *sk;
1112 
1113 	local_irq_save(flags);
1114 	list_splice_init(&tsq->head, &list);
1115 	local_irq_restore(flags);
1116 
1117 	list_for_each_safe(q, n, &list) {
1118 		tp = list_entry(q, struct tcp_sock, tsq_node);
1119 		list_del(&tp->tsq_node);
1120 
1121 		sk = (struct sock *)tp;
1122 		smp_mb__before_atomic();
1123 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1124 
1125 		tcp_tsq_handler(sk);
1126 		sk_free(sk);
1127 	}
1128 }
1129 
1130 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1131 			  TCPF_WRITE_TIMER_DEFERRED |	\
1132 			  TCPF_DELACK_TIMER_DEFERRED |	\
1133 			  TCPF_MTU_REDUCED_DEFERRED |	\
1134 			  TCPF_ACK_DEFERRED)
1135 /**
1136  * tcp_release_cb - tcp release_sock() callback
1137  * @sk: socket
1138  *
1139  * called from release_sock() to perform protocol dependent
1140  * actions before socket release.
1141  */
tcp_release_cb(struct sock * sk)1142 void tcp_release_cb(struct sock *sk)
1143 {
1144 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1145 	unsigned long nflags;
1146 
1147 	/* perform an atomic operation only if at least one flag is set */
1148 	do {
1149 		if (!(flags & TCP_DEFERRED_ALL))
1150 			return;
1151 		nflags = flags & ~TCP_DEFERRED_ALL;
1152 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1153 
1154 	if (flags & TCPF_TSQ_DEFERRED) {
1155 		tcp_tsq_write(sk);
1156 		__sock_put(sk);
1157 	}
1158 
1159 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1160 		tcp_write_timer_handler(sk);
1161 		__sock_put(sk);
1162 	}
1163 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1164 		tcp_delack_timer_handler(sk);
1165 		__sock_put(sk);
1166 	}
1167 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1168 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1169 		__sock_put(sk);
1170 	}
1171 	if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1172 		tcp_send_ack(sk);
1173 }
1174 EXPORT_SYMBOL(tcp_release_cb);
1175 
tcp_tasklet_init(void)1176 void __init tcp_tasklet_init(void)
1177 {
1178 	int i;
1179 
1180 	for_each_possible_cpu(i) {
1181 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1182 
1183 		INIT_LIST_HEAD(&tsq->head);
1184 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1185 	}
1186 }
1187 
1188 /*
1189  * Write buffer destructor automatically called from kfree_skb.
1190  * We can't xmit new skbs from this context, as we might already
1191  * hold qdisc lock.
1192  */
tcp_wfree(struct sk_buff * skb)1193 void tcp_wfree(struct sk_buff *skb)
1194 {
1195 	struct sock *sk = skb->sk;
1196 	struct tcp_sock *tp = tcp_sk(sk);
1197 	unsigned long flags, nval, oval;
1198 	struct tsq_tasklet *tsq;
1199 	bool empty;
1200 
1201 	/* Keep one reference on sk_wmem_alloc.
1202 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1203 	 */
1204 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1205 
1206 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1207 	 * Wait until our queues (qdisc + devices) are drained.
1208 	 * This gives :
1209 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1210 	 * - chance for incoming ACK (processed by another cpu maybe)
1211 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1212 	 */
1213 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1214 		goto out;
1215 
1216 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1217 	do {
1218 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1219 			goto out;
1220 
1221 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1222 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1223 
1224 	/* queue this socket to tasklet queue */
1225 	local_irq_save(flags);
1226 	tsq = this_cpu_ptr(&tsq_tasklet);
1227 	empty = list_empty(&tsq->head);
1228 	list_add(&tp->tsq_node, &tsq->head);
1229 	if (empty)
1230 		tasklet_schedule(&tsq->tasklet);
1231 	local_irq_restore(flags);
1232 	return;
1233 out:
1234 	sk_free(sk);
1235 }
1236 
1237 /* Note: Called under soft irq.
1238  * We can call TCP stack right away, unless socket is owned by user.
1239  */
tcp_pace_kick(struct hrtimer * timer)1240 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1241 {
1242 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1243 	struct sock *sk = (struct sock *)tp;
1244 
1245 	tcp_tsq_handler(sk);
1246 	sock_put(sk);
1247 
1248 	return HRTIMER_NORESTART;
1249 }
1250 
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1251 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1252 				      u64 prior_wstamp)
1253 {
1254 	struct tcp_sock *tp = tcp_sk(sk);
1255 
1256 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1257 		unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1258 
1259 		/* Original sch_fq does not pace first 10 MSS
1260 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1261 		 * this is a minor annoyance.
1262 		 */
1263 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1264 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1265 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1266 
1267 			/* take into account OS jitter */
1268 			len_ns -= min_t(u64, len_ns / 2, credit);
1269 			tp->tcp_wstamp_ns += len_ns;
1270 		}
1271 	}
1272 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1273 }
1274 
1275 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1276 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1277 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1278 
1279 /* This routine actually transmits TCP packets queued in by
1280  * tcp_do_sendmsg().  This is used by both the initial
1281  * transmission and possible later retransmissions.
1282  * All SKB's seen here are completely headerless.  It is our
1283  * job to build the TCP header, and pass the packet down to
1284  * IP so it can do the same plus pass the packet off to the
1285  * device.
1286  *
1287  * We are working here with either a clone of the original
1288  * SKB, or a fresh unique copy made by the retransmit engine.
1289  */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1290 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1291 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1292 {
1293 	const struct inet_connection_sock *icsk = inet_csk(sk);
1294 	struct inet_sock *inet;
1295 	struct tcp_sock *tp;
1296 	struct tcp_skb_cb *tcb;
1297 	struct tcp_out_options opts;
1298 	unsigned int tcp_options_size, tcp_header_size;
1299 	struct sk_buff *oskb = NULL;
1300 	struct tcp_key key;
1301 	struct tcphdr *th;
1302 	u64 prior_wstamp;
1303 	int err;
1304 
1305 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1306 	tp = tcp_sk(sk);
1307 	prior_wstamp = tp->tcp_wstamp_ns;
1308 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1309 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
1310 	if (clone_it) {
1311 		oskb = skb;
1312 
1313 		tcp_skb_tsorted_save(oskb) {
1314 			if (unlikely(skb_cloned(oskb)))
1315 				skb = pskb_copy(oskb, gfp_mask);
1316 			else
1317 				skb = skb_clone(oskb, gfp_mask);
1318 		} tcp_skb_tsorted_restore(oskb);
1319 
1320 		if (unlikely(!skb))
1321 			return -ENOBUFS;
1322 		/* retransmit skbs might have a non zero value in skb->dev
1323 		 * because skb->dev is aliased with skb->rbnode.rb_left
1324 		 */
1325 		skb->dev = NULL;
1326 	}
1327 
1328 	inet = inet_sk(sk);
1329 	tcb = TCP_SKB_CB(skb);
1330 	memset(&opts, 0, sizeof(opts));
1331 
1332 	tcp_get_current_key(sk, &key);
1333 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1334 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1335 	} else {
1336 		tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
1337 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1338 		 * at receiver : This slightly improve GRO performance.
1339 		 * Note that we do not force the PSH flag for non GSO packets,
1340 		 * because they might be sent under high congestion events,
1341 		 * and in this case it is better to delay the delivery of 1-MSS
1342 		 * packets and thus the corresponding ACK packet that would
1343 		 * release the following packet.
1344 		 */
1345 		if (tcp_skb_pcount(skb) > 1)
1346 			tcb->tcp_flags |= TCPHDR_PSH;
1347 	}
1348 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1349 
1350 	/* We set skb->ooo_okay to one if this packet can select
1351 	 * a different TX queue than prior packets of this flow,
1352 	 * to avoid self inflicted reorders.
1353 	 * The 'other' queue decision is based on current cpu number
1354 	 * if XPS is enabled, or sk->sk_txhash otherwise.
1355 	 * We can switch to another (and better) queue if:
1356 	 * 1) No packet with payload is in qdisc/device queues.
1357 	 *    Delays in TX completion can defeat the test
1358 	 *    even if packets were already sent.
1359 	 * 2) Or rtx queue is empty.
1360 	 *    This mitigates above case if ACK packets for
1361 	 *    all prior packets were already processed.
1362 	 */
1363 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1364 			tcp_rtx_queue_empty(sk);
1365 
1366 	/* If we had to use memory reserve to allocate this skb,
1367 	 * this might cause drops if packet is looped back :
1368 	 * Other socket might not have SOCK_MEMALLOC.
1369 	 * Packets not looped back do not care about pfmemalloc.
1370 	 */
1371 	skb->pfmemalloc = 0;
1372 
1373 	skb_push(skb, tcp_header_size);
1374 	skb_reset_transport_header(skb);
1375 
1376 	skb_orphan(skb);
1377 	skb->sk = sk;
1378 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1379 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1380 
1381 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1382 
1383 	/* Build TCP header and checksum it. */
1384 	th = (struct tcphdr *)skb->data;
1385 	th->source		= inet->inet_sport;
1386 	th->dest		= inet->inet_dport;
1387 	th->seq			= htonl(tcb->seq);
1388 	th->ack_seq		= htonl(rcv_nxt);
1389 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1390 					tcb->tcp_flags);
1391 
1392 	th->check		= 0;
1393 	th->urg_ptr		= 0;
1394 
1395 	/* The urg_mode check is necessary during a below snd_una win probe */
1396 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1397 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1398 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1399 			th->urg = 1;
1400 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1401 			th->urg_ptr = htons(0xFFFF);
1402 			th->urg = 1;
1403 		}
1404 	}
1405 
1406 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1407 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1408 		th->window      = htons(tcp_select_window(sk));
1409 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1410 	} else {
1411 		/* RFC1323: The window in SYN & SYN/ACK segments
1412 		 * is never scaled.
1413 		 */
1414 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1415 	}
1416 
1417 	tcp_options_write(th, tp, NULL, &opts, &key);
1418 
1419 	if (tcp_key_is_md5(&key)) {
1420 #ifdef CONFIG_TCP_MD5SIG
1421 		/* Calculate the MD5 hash, as we have all we need now */
1422 		sk_gso_disable(sk);
1423 		tp->af_specific->calc_md5_hash(opts.hash_location,
1424 					       key.md5_key, sk, skb);
1425 #endif
1426 	} else if (tcp_key_is_ao(&key)) {
1427 		int err;
1428 
1429 		err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1430 					  opts.hash_location);
1431 		if (err) {
1432 			kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1433 			return -ENOMEM;
1434 		}
1435 	}
1436 
1437 	/* BPF prog is the last one writing header option */
1438 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1439 
1440 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1441 			   tcp_v6_send_check, tcp_v4_send_check,
1442 			   sk, skb);
1443 
1444 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1445 		tcp_event_ack_sent(sk, rcv_nxt);
1446 
1447 	if (skb->len != tcp_header_size) {
1448 		tcp_event_data_sent(tp, sk);
1449 		tp->data_segs_out += tcp_skb_pcount(skb);
1450 		tp->bytes_sent += skb->len - tcp_header_size;
1451 	}
1452 
1453 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1454 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1455 			      tcp_skb_pcount(skb));
1456 
1457 	tp->segs_out += tcp_skb_pcount(skb);
1458 	skb_set_hash_from_sk(skb, sk);
1459 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1460 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1461 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1462 
1463 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1464 
1465 	/* Cleanup our debris for IP stacks */
1466 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1467 			       sizeof(struct inet6_skb_parm)));
1468 
1469 	tcp_add_tx_delay(skb, tp);
1470 
1471 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1472 				 inet6_csk_xmit, ip_queue_xmit,
1473 				 sk, skb, &inet->cork.fl);
1474 
1475 	if (unlikely(err > 0)) {
1476 		tcp_enter_cwr(sk);
1477 		err = net_xmit_eval(err);
1478 	}
1479 	if (!err && oskb) {
1480 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1481 		tcp_rate_skb_sent(sk, oskb);
1482 	}
1483 	return err;
1484 }
1485 
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1486 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1487 			    gfp_t gfp_mask)
1488 {
1489 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1490 				  tcp_sk(sk)->rcv_nxt);
1491 }
1492 
1493 /* This routine just queues the buffer for sending.
1494  *
1495  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1496  * otherwise socket can stall.
1497  */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1498 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1499 {
1500 	struct tcp_sock *tp = tcp_sk(sk);
1501 
1502 	/* Advance write_seq and place onto the write_queue. */
1503 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1504 	__skb_header_release(skb);
1505 	tcp_add_write_queue_tail(sk, skb);
1506 	sk_wmem_queued_add(sk, skb->truesize);
1507 	sk_mem_charge(sk, skb->truesize);
1508 }
1509 
1510 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1511 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1512 {
1513 	int tso_segs;
1514 
1515 	if (skb->len <= mss_now) {
1516 		/* Avoid the costly divide in the normal
1517 		 * non-TSO case.
1518 		 */
1519 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1520 		tcp_skb_pcount_set(skb, 1);
1521 		return 1;
1522 	}
1523 	TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1524 	tso_segs = DIV_ROUND_UP(skb->len, mss_now);
1525 	tcp_skb_pcount_set(skb, tso_segs);
1526 	return tso_segs;
1527 }
1528 
1529 /* Pcount in the middle of the write queue got changed, we need to do various
1530  * tweaks to fix counters
1531  */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1532 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1533 {
1534 	struct tcp_sock *tp = tcp_sk(sk);
1535 
1536 	tp->packets_out -= decr;
1537 
1538 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1539 		tp->sacked_out -= decr;
1540 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1541 		tp->retrans_out -= decr;
1542 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1543 		tp->lost_out -= decr;
1544 
1545 	/* Reno case is special. Sigh... */
1546 	if (tcp_is_reno(tp) && decr > 0)
1547 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1548 
1549 	if (tp->lost_skb_hint &&
1550 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1551 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1552 		tp->lost_cnt_hint -= decr;
1553 
1554 	tcp_verify_left_out(tp);
1555 }
1556 
tcp_has_tx_tstamp(const struct sk_buff * skb)1557 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1558 {
1559 	return TCP_SKB_CB(skb)->txstamp_ack ||
1560 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1561 }
1562 
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1563 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1564 {
1565 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1566 
1567 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1568 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1569 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1570 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1571 
1572 		shinfo->tx_flags &= ~tsflags;
1573 		shinfo2->tx_flags |= tsflags;
1574 		swap(shinfo->tskey, shinfo2->tskey);
1575 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1576 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1577 	}
1578 }
1579 
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1580 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1581 {
1582 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1583 	TCP_SKB_CB(skb)->eor = 0;
1584 }
1585 
1586 /* Insert buff after skb on the write or rtx queue of sk.  */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1587 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1588 					 struct sk_buff *buff,
1589 					 struct sock *sk,
1590 					 enum tcp_queue tcp_queue)
1591 {
1592 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1593 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1594 	else
1595 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1596 }
1597 
1598 /* Function to create two new TCP segments.  Shrinks the given segment
1599  * to the specified size and appends a new segment with the rest of the
1600  * packet to the list.  This won't be called frequently, I hope.
1601  * Remember, these are still headerless SKBs at this point.
1602  */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1603 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1604 		 struct sk_buff *skb, u32 len,
1605 		 unsigned int mss_now, gfp_t gfp)
1606 {
1607 	struct tcp_sock *tp = tcp_sk(sk);
1608 	struct sk_buff *buff;
1609 	int old_factor;
1610 	long limit;
1611 	int nlen;
1612 	u8 flags;
1613 
1614 	if (WARN_ON(len > skb->len))
1615 		return -EINVAL;
1616 
1617 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1618 
1619 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1620 	 * We need some allowance to not penalize applications setting small
1621 	 * SO_SNDBUF values.
1622 	 * Also allow first and last skb in retransmit queue to be split.
1623 	 */
1624 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1625 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1626 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1627 		     skb != tcp_rtx_queue_head(sk) &&
1628 		     skb != tcp_rtx_queue_tail(sk))) {
1629 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1630 		return -ENOMEM;
1631 	}
1632 
1633 	if (skb_unclone_keeptruesize(skb, gfp))
1634 		return -ENOMEM;
1635 
1636 	/* Get a new skb... force flag on. */
1637 	buff = tcp_stream_alloc_skb(sk, gfp, true);
1638 	if (!buff)
1639 		return -ENOMEM; /* We'll just try again later. */
1640 	skb_copy_decrypted(buff, skb);
1641 	mptcp_skb_ext_copy(buff, skb);
1642 
1643 	sk_wmem_queued_add(sk, buff->truesize);
1644 	sk_mem_charge(sk, buff->truesize);
1645 	nlen = skb->len - len;
1646 	buff->truesize += nlen;
1647 	skb->truesize -= nlen;
1648 
1649 	/* Correct the sequence numbers. */
1650 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1651 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1652 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1653 
1654 	/* PSH and FIN should only be set in the second packet. */
1655 	flags = TCP_SKB_CB(skb)->tcp_flags;
1656 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1657 	TCP_SKB_CB(buff)->tcp_flags = flags;
1658 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1659 	tcp_skb_fragment_eor(skb, buff);
1660 
1661 	skb_split(skb, buff, len);
1662 
1663 	skb_set_delivery_time(buff, skb->tstamp, SKB_CLOCK_MONOTONIC);
1664 	tcp_fragment_tstamp(skb, buff);
1665 
1666 	old_factor = tcp_skb_pcount(skb);
1667 
1668 	/* Fix up tso_factor for both original and new SKB.  */
1669 	tcp_set_skb_tso_segs(skb, mss_now);
1670 	tcp_set_skb_tso_segs(buff, mss_now);
1671 
1672 	/* Update delivered info for the new segment */
1673 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1674 
1675 	/* If this packet has been sent out already, we must
1676 	 * adjust the various packet counters.
1677 	 */
1678 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1679 		int diff = old_factor - tcp_skb_pcount(skb) -
1680 			tcp_skb_pcount(buff);
1681 
1682 		if (diff)
1683 			tcp_adjust_pcount(sk, skb, diff);
1684 	}
1685 
1686 	/* Link BUFF into the send queue. */
1687 	__skb_header_release(buff);
1688 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1689 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1690 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1691 
1692 	return 0;
1693 }
1694 
1695 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1696  * data is not copied, but immediately discarded.
1697  */
__pskb_trim_head(struct sk_buff * skb,int len)1698 static int __pskb_trim_head(struct sk_buff *skb, int len)
1699 {
1700 	struct skb_shared_info *shinfo;
1701 	int i, k, eat;
1702 
1703 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1704 	eat = len;
1705 	k = 0;
1706 	shinfo = skb_shinfo(skb);
1707 	for (i = 0; i < shinfo->nr_frags; i++) {
1708 		int size = skb_frag_size(&shinfo->frags[i]);
1709 
1710 		if (size <= eat) {
1711 			skb_frag_unref(skb, i);
1712 			eat -= size;
1713 		} else {
1714 			shinfo->frags[k] = shinfo->frags[i];
1715 			if (eat) {
1716 				skb_frag_off_add(&shinfo->frags[k], eat);
1717 				skb_frag_size_sub(&shinfo->frags[k], eat);
1718 				eat = 0;
1719 			}
1720 			k++;
1721 		}
1722 	}
1723 	shinfo->nr_frags = k;
1724 
1725 	skb->data_len -= len;
1726 	skb->len = skb->data_len;
1727 	return len;
1728 }
1729 
1730 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1731 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1732 {
1733 	u32 delta_truesize;
1734 
1735 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1736 		return -ENOMEM;
1737 
1738 	delta_truesize = __pskb_trim_head(skb, len);
1739 
1740 	TCP_SKB_CB(skb)->seq += len;
1741 
1742 	skb->truesize	   -= delta_truesize;
1743 	sk_wmem_queued_add(sk, -delta_truesize);
1744 	if (!skb_zcopy_pure(skb))
1745 		sk_mem_uncharge(sk, delta_truesize);
1746 
1747 	/* Any change of skb->len requires recalculation of tso factor. */
1748 	if (tcp_skb_pcount(skb) > 1)
1749 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1750 
1751 	return 0;
1752 }
1753 
1754 /* Calculate MSS not accounting any TCP options.  */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1755 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1756 {
1757 	const struct tcp_sock *tp = tcp_sk(sk);
1758 	const struct inet_connection_sock *icsk = inet_csk(sk);
1759 	int mss_now;
1760 
1761 	/* Calculate base mss without TCP options:
1762 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1763 	 */
1764 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1765 
1766 	/* Clamp it (mss_clamp does not include tcp options) */
1767 	if (mss_now > tp->rx_opt.mss_clamp)
1768 		mss_now = tp->rx_opt.mss_clamp;
1769 
1770 	/* Now subtract optional transport overhead */
1771 	mss_now -= icsk->icsk_ext_hdr_len;
1772 
1773 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1774 	mss_now = max(mss_now,
1775 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1776 	return mss_now;
1777 }
1778 
1779 /* Calculate MSS. Not accounting for SACKs here.  */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1780 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1781 {
1782 	/* Subtract TCP options size, not including SACKs */
1783 	return __tcp_mtu_to_mss(sk, pmtu) -
1784 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1785 }
1786 EXPORT_SYMBOL(tcp_mtu_to_mss);
1787 
1788 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1789 int tcp_mss_to_mtu(struct sock *sk, int mss)
1790 {
1791 	const struct tcp_sock *tp = tcp_sk(sk);
1792 	const struct inet_connection_sock *icsk = inet_csk(sk);
1793 
1794 	return mss +
1795 	      tp->tcp_header_len +
1796 	      icsk->icsk_ext_hdr_len +
1797 	      icsk->icsk_af_ops->net_header_len;
1798 }
1799 EXPORT_SYMBOL(tcp_mss_to_mtu);
1800 
1801 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1802 void tcp_mtup_init(struct sock *sk)
1803 {
1804 	struct tcp_sock *tp = tcp_sk(sk);
1805 	struct inet_connection_sock *icsk = inet_csk(sk);
1806 	struct net *net = sock_net(sk);
1807 
1808 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1809 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1810 			       icsk->icsk_af_ops->net_header_len;
1811 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1812 	icsk->icsk_mtup.probe_size = 0;
1813 	if (icsk->icsk_mtup.enabled)
1814 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1815 }
1816 EXPORT_SYMBOL(tcp_mtup_init);
1817 
1818 /* This function synchronize snd mss to current pmtu/exthdr set.
1819 
1820    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1821    for TCP options, but includes only bare TCP header.
1822 
1823    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1824    It is minimum of user_mss and mss received with SYN.
1825    It also does not include TCP options.
1826 
1827    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1828 
1829    tp->mss_cache is current effective sending mss, including
1830    all tcp options except for SACKs. It is evaluated,
1831    taking into account current pmtu, but never exceeds
1832    tp->rx_opt.mss_clamp.
1833 
1834    NOTE1. rfc1122 clearly states that advertised MSS
1835    DOES NOT include either tcp or ip options.
1836 
1837    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1838    are READ ONLY outside this function.		--ANK (980731)
1839  */
tcp_sync_mss(struct sock * sk,u32 pmtu)1840 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1841 {
1842 	struct tcp_sock *tp = tcp_sk(sk);
1843 	struct inet_connection_sock *icsk = inet_csk(sk);
1844 	int mss_now;
1845 
1846 	if (icsk->icsk_mtup.search_high > pmtu)
1847 		icsk->icsk_mtup.search_high = pmtu;
1848 
1849 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1850 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1851 
1852 	/* And store cached results */
1853 	icsk->icsk_pmtu_cookie = pmtu;
1854 	if (icsk->icsk_mtup.enabled)
1855 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1856 	tp->mss_cache = mss_now;
1857 
1858 	return mss_now;
1859 }
1860 EXPORT_SYMBOL(tcp_sync_mss);
1861 
1862 /* Compute the current effective MSS, taking SACKs and IP options,
1863  * and even PMTU discovery events into account.
1864  */
tcp_current_mss(struct sock * sk)1865 unsigned int tcp_current_mss(struct sock *sk)
1866 {
1867 	const struct tcp_sock *tp = tcp_sk(sk);
1868 	const struct dst_entry *dst = __sk_dst_get(sk);
1869 	u32 mss_now;
1870 	unsigned int header_len;
1871 	struct tcp_out_options opts;
1872 	struct tcp_key key;
1873 
1874 	mss_now = tp->mss_cache;
1875 
1876 	if (dst) {
1877 		u32 mtu = dst_mtu(dst);
1878 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1879 			mss_now = tcp_sync_mss(sk, mtu);
1880 	}
1881 	tcp_get_current_key(sk, &key);
1882 	header_len = tcp_established_options(sk, NULL, &opts, &key) +
1883 		     sizeof(struct tcphdr);
1884 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1885 	 * some common options. If this is an odd packet (because we have SACK
1886 	 * blocks etc) then our calculated header_len will be different, and
1887 	 * we have to adjust mss_now correspondingly */
1888 	if (header_len != tp->tcp_header_len) {
1889 		int delta = (int) header_len - tp->tcp_header_len;
1890 		mss_now -= delta;
1891 	}
1892 
1893 	return mss_now;
1894 }
1895 
1896 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1897  * As additional protections, we do not touch cwnd in retransmission phases,
1898  * and if application hit its sndbuf limit recently.
1899  */
tcp_cwnd_application_limited(struct sock * sk)1900 static void tcp_cwnd_application_limited(struct sock *sk)
1901 {
1902 	struct tcp_sock *tp = tcp_sk(sk);
1903 
1904 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1905 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1906 		/* Limited by application or receiver window. */
1907 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1908 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1909 		if (win_used < tcp_snd_cwnd(tp)) {
1910 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1911 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1912 		}
1913 		tp->snd_cwnd_used = 0;
1914 	}
1915 	tp->snd_cwnd_stamp = tcp_jiffies32;
1916 }
1917 
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1918 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1919 {
1920 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1921 	struct tcp_sock *tp = tcp_sk(sk);
1922 
1923 	/* Track the strongest available signal of the degree to which the cwnd
1924 	 * is fully utilized. If cwnd-limited then remember that fact for the
1925 	 * current window. If not cwnd-limited then track the maximum number of
1926 	 * outstanding packets in the current window. (If cwnd-limited then we
1927 	 * chose to not update tp->max_packets_out to avoid an extra else
1928 	 * clause with no functional impact.)
1929 	 */
1930 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1931 	    is_cwnd_limited ||
1932 	    (!tp->is_cwnd_limited &&
1933 	     tp->packets_out > tp->max_packets_out)) {
1934 		tp->is_cwnd_limited = is_cwnd_limited;
1935 		tp->max_packets_out = tp->packets_out;
1936 		tp->cwnd_usage_seq = tp->snd_nxt;
1937 	}
1938 
1939 	if (tcp_is_cwnd_limited(sk)) {
1940 		/* Network is feed fully. */
1941 		tp->snd_cwnd_used = 0;
1942 		tp->snd_cwnd_stamp = tcp_jiffies32;
1943 	} else {
1944 		/* Network starves. */
1945 		if (tp->packets_out > tp->snd_cwnd_used)
1946 			tp->snd_cwnd_used = tp->packets_out;
1947 
1948 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1949 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1950 		    !ca_ops->cong_control)
1951 			tcp_cwnd_application_limited(sk);
1952 
1953 		/* The following conditions together indicate the starvation
1954 		 * is caused by insufficient sender buffer:
1955 		 * 1) just sent some data (see tcp_write_xmit)
1956 		 * 2) not cwnd limited (this else condition)
1957 		 * 3) no more data to send (tcp_write_queue_empty())
1958 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1959 		 */
1960 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1961 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1962 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1963 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1964 	}
1965 }
1966 
1967 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1968 static bool tcp_minshall_check(const struct tcp_sock *tp)
1969 {
1970 	return after(tp->snd_sml, tp->snd_una) &&
1971 		!after(tp->snd_sml, tp->snd_nxt);
1972 }
1973 
1974 /* Update snd_sml if this skb is under mss
1975  * Note that a TSO packet might end with a sub-mss segment
1976  * The test is really :
1977  * if ((skb->len % mss) != 0)
1978  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1979  * But we can avoid doing the divide again given we already have
1980  *  skb_pcount = skb->len / mss_now
1981  */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1982 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1983 				const struct sk_buff *skb)
1984 {
1985 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1986 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1987 }
1988 
1989 /* Return false, if packet can be sent now without violation Nagle's rules:
1990  * 1. It is full sized. (provided by caller in %partial bool)
1991  * 2. Or it contains FIN. (already checked by caller)
1992  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1993  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1994  *    With Minshall's modification: all sent small packets are ACKed.
1995  */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1996 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1997 			    int nonagle)
1998 {
1999 	return partial &&
2000 		((nonagle & TCP_NAGLE_CORK) ||
2001 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
2002 }
2003 
2004 /* Return how many segs we'd like on a TSO packet,
2005  * depending on current pacing rate, and how close the peer is.
2006  *
2007  * Rationale is:
2008  * - For close peers, we rather send bigger packets to reduce
2009  *   cpu costs, because occasional losses will be repaired fast.
2010  * - For long distance/rtt flows, we would like to get ACK clocking
2011  *   with 1 ACK per ms.
2012  *
2013  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
2014  * in bigger TSO bursts. We we cut the RTT-based allowance in half
2015  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
2016  * is below 1500 bytes after 6 * ~500 usec = 3ms.
2017  */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)2018 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
2019 			    int min_tso_segs)
2020 {
2021 	unsigned long bytes;
2022 	u32 r;
2023 
2024 	bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
2025 
2026 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2027 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2028 		bytes += sk->sk_gso_max_size >> r;
2029 
2030 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
2031 
2032 	return max_t(u32, bytes / mss_now, min_tso_segs);
2033 }
2034 
2035 /* Return the number of segments we want in the skb we are transmitting.
2036  * See if congestion control module wants to decide; otherwise, autosize.
2037  */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)2038 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2039 {
2040 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2041 	u32 min_tso, tso_segs;
2042 
2043 	min_tso = ca_ops->min_tso_segs ?
2044 			ca_ops->min_tso_segs(sk) :
2045 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2046 
2047 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2048 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2049 }
2050 
2051 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)2052 static unsigned int tcp_mss_split_point(const struct sock *sk,
2053 					const struct sk_buff *skb,
2054 					unsigned int mss_now,
2055 					unsigned int max_segs,
2056 					int nonagle)
2057 {
2058 	const struct tcp_sock *tp = tcp_sk(sk);
2059 	u32 partial, needed, window, max_len;
2060 
2061 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2062 	max_len = mss_now * max_segs;
2063 
2064 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2065 		return max_len;
2066 
2067 	needed = min(skb->len, window);
2068 
2069 	if (max_len <= needed)
2070 		return max_len;
2071 
2072 	partial = needed % mss_now;
2073 	/* If last segment is not a full MSS, check if Nagle rules allow us
2074 	 * to include this last segment in this skb.
2075 	 * Otherwise, we'll split the skb at last MSS boundary
2076 	 */
2077 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2078 		return needed - partial;
2079 
2080 	return needed;
2081 }
2082 
2083 /* Can at least one segment of SKB be sent right now, according to the
2084  * congestion window rules?  If so, return how many segments are allowed.
2085  */
tcp_cwnd_test(const struct tcp_sock * tp)2086 static u32 tcp_cwnd_test(const struct tcp_sock *tp)
2087 {
2088 	u32 in_flight, cwnd, halfcwnd;
2089 
2090 	in_flight = tcp_packets_in_flight(tp);
2091 	cwnd = tcp_snd_cwnd(tp);
2092 	if (in_flight >= cwnd)
2093 		return 0;
2094 
2095 	/* For better scheduling, ensure we have at least
2096 	 * 2 GSO packets in flight.
2097 	 */
2098 	halfcwnd = max(cwnd >> 1, 1U);
2099 	return min(halfcwnd, cwnd - in_flight);
2100 }
2101 
2102 /* Initialize TSO state of a skb.
2103  * This must be invoked the first time we consider transmitting
2104  * SKB onto the wire.
2105  */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2106 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2107 {
2108 	int tso_segs = tcp_skb_pcount(skb);
2109 
2110 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now))
2111 		return tcp_set_skb_tso_segs(skb, mss_now);
2112 
2113 	return tso_segs;
2114 }
2115 
2116 
2117 /* Return true if the Nagle test allows this packet to be
2118  * sent now.
2119  */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2120 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2121 				  unsigned int cur_mss, int nonagle)
2122 {
2123 	/* Nagle rule does not apply to frames, which sit in the middle of the
2124 	 * write_queue (they have no chances to get new data).
2125 	 *
2126 	 * This is implemented in the callers, where they modify the 'nonagle'
2127 	 * argument based upon the location of SKB in the send queue.
2128 	 */
2129 	if (nonagle & TCP_NAGLE_PUSH)
2130 		return true;
2131 
2132 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2133 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2134 		return true;
2135 
2136 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2137 		return true;
2138 
2139 	return false;
2140 }
2141 
2142 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2143 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2144 			     const struct sk_buff *skb,
2145 			     unsigned int cur_mss)
2146 {
2147 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2148 
2149 	if (skb->len > cur_mss)
2150 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2151 
2152 	return !after(end_seq, tcp_wnd_end(tp));
2153 }
2154 
2155 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2156  * which is put after SKB on the list.  It is very much like
2157  * tcp_fragment() except that it may make several kinds of assumptions
2158  * in order to speed up the splitting operation.  In particular, we
2159  * know that all the data is in scatter-gather pages, and that the
2160  * packet has never been sent out before (and thus is not cloned).
2161  */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2162 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2163 			unsigned int mss_now, gfp_t gfp)
2164 {
2165 	int nlen = skb->len - len;
2166 	struct sk_buff *buff;
2167 	u8 flags;
2168 
2169 	/* All of a TSO frame must be composed of paged data.  */
2170 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2171 
2172 	buff = tcp_stream_alloc_skb(sk, gfp, true);
2173 	if (unlikely(!buff))
2174 		return -ENOMEM;
2175 	skb_copy_decrypted(buff, skb);
2176 	mptcp_skb_ext_copy(buff, skb);
2177 
2178 	sk_wmem_queued_add(sk, buff->truesize);
2179 	sk_mem_charge(sk, buff->truesize);
2180 	buff->truesize += nlen;
2181 	skb->truesize -= nlen;
2182 
2183 	/* Correct the sequence numbers. */
2184 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2185 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2186 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2187 
2188 	/* PSH and FIN should only be set in the second packet. */
2189 	flags = TCP_SKB_CB(skb)->tcp_flags;
2190 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2191 	TCP_SKB_CB(buff)->tcp_flags = flags;
2192 
2193 	tcp_skb_fragment_eor(skb, buff);
2194 
2195 	skb_split(skb, buff, len);
2196 	tcp_fragment_tstamp(skb, buff);
2197 
2198 	/* Fix up tso_factor for both original and new SKB.  */
2199 	tcp_set_skb_tso_segs(skb, mss_now);
2200 	tcp_set_skb_tso_segs(buff, mss_now);
2201 
2202 	/* Link BUFF into the send queue. */
2203 	__skb_header_release(buff);
2204 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2205 
2206 	return 0;
2207 }
2208 
2209 /* Try to defer sending, if possible, in order to minimize the amount
2210  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2211  *
2212  * This algorithm is from John Heffner.
2213  */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2214 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2215 				 bool *is_cwnd_limited,
2216 				 bool *is_rwnd_limited,
2217 				 u32 max_segs)
2218 {
2219 	const struct inet_connection_sock *icsk = inet_csk(sk);
2220 	u32 send_win, cong_win, limit, in_flight;
2221 	struct tcp_sock *tp = tcp_sk(sk);
2222 	struct sk_buff *head;
2223 	int win_divisor;
2224 	s64 delta;
2225 
2226 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2227 		goto send_now;
2228 
2229 	/* Avoid bursty behavior by allowing defer
2230 	 * only if the last write was recent (1 ms).
2231 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2232 	 * packets waiting in a qdisc or device for EDT delivery.
2233 	 */
2234 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2235 	if (delta > 0)
2236 		goto send_now;
2237 
2238 	in_flight = tcp_packets_in_flight(tp);
2239 
2240 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2241 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2242 
2243 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2244 
2245 	/* From in_flight test above, we know that cwnd > in_flight.  */
2246 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2247 
2248 	limit = min(send_win, cong_win);
2249 
2250 	/* If a full-sized TSO skb can be sent, do it. */
2251 	if (limit >= max_segs * tp->mss_cache)
2252 		goto send_now;
2253 
2254 	/* Middle in queue won't get any more data, full sendable already? */
2255 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2256 		goto send_now;
2257 
2258 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2259 	if (win_divisor) {
2260 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2261 
2262 		/* If at least some fraction of a window is available,
2263 		 * just use it.
2264 		 */
2265 		chunk /= win_divisor;
2266 		if (limit >= chunk)
2267 			goto send_now;
2268 	} else {
2269 		/* Different approach, try not to defer past a single
2270 		 * ACK.  Receiver should ACK every other full sized
2271 		 * frame, so if we have space for more than 3 frames
2272 		 * then send now.
2273 		 */
2274 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2275 			goto send_now;
2276 	}
2277 
2278 	/* TODO : use tsorted_sent_queue ? */
2279 	head = tcp_rtx_queue_head(sk);
2280 	if (!head)
2281 		goto send_now;
2282 	delta = tp->tcp_clock_cache - head->tstamp;
2283 	/* If next ACK is likely to come too late (half srtt), do not defer */
2284 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2285 		goto send_now;
2286 
2287 	/* Ok, it looks like it is advisable to defer.
2288 	 * Three cases are tracked :
2289 	 * 1) We are cwnd-limited
2290 	 * 2) We are rwnd-limited
2291 	 * 3) We are application limited.
2292 	 */
2293 	if (cong_win < send_win) {
2294 		if (cong_win <= skb->len) {
2295 			*is_cwnd_limited = true;
2296 			return true;
2297 		}
2298 	} else {
2299 		if (send_win <= skb->len) {
2300 			*is_rwnd_limited = true;
2301 			return true;
2302 		}
2303 	}
2304 
2305 	/* If this packet won't get more data, do not wait. */
2306 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2307 	    TCP_SKB_CB(skb)->eor)
2308 		goto send_now;
2309 
2310 	return true;
2311 
2312 send_now:
2313 	return false;
2314 }
2315 
tcp_mtu_check_reprobe(struct sock * sk)2316 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2317 {
2318 	struct inet_connection_sock *icsk = inet_csk(sk);
2319 	struct tcp_sock *tp = tcp_sk(sk);
2320 	struct net *net = sock_net(sk);
2321 	u32 interval;
2322 	s32 delta;
2323 
2324 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2325 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2326 	if (unlikely(delta >= interval * HZ)) {
2327 		int mss = tcp_current_mss(sk);
2328 
2329 		/* Update current search range */
2330 		icsk->icsk_mtup.probe_size = 0;
2331 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2332 			sizeof(struct tcphdr) +
2333 			icsk->icsk_af_ops->net_header_len;
2334 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2335 
2336 		/* Update probe time stamp */
2337 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2338 	}
2339 }
2340 
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2341 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2342 {
2343 	struct sk_buff *skb, *next;
2344 
2345 	skb = tcp_send_head(sk);
2346 	tcp_for_write_queue_from_safe(skb, next, sk) {
2347 		if (len <= skb->len)
2348 			break;
2349 
2350 		if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next))
2351 			return false;
2352 
2353 		len -= skb->len;
2354 	}
2355 
2356 	return true;
2357 }
2358 
tcp_clone_payload(struct sock * sk,struct sk_buff * to,int probe_size)2359 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2360 			     int probe_size)
2361 {
2362 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2363 	int i, todo, len = 0, nr_frags = 0;
2364 	const struct sk_buff *skb;
2365 
2366 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2367 		return -ENOMEM;
2368 
2369 	skb_queue_walk(&sk->sk_write_queue, skb) {
2370 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2371 
2372 		if (skb_headlen(skb))
2373 			return -EINVAL;
2374 
2375 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2376 			if (len >= probe_size)
2377 				goto commit;
2378 			todo = min_t(int, skb_frag_size(fragfrom),
2379 				     probe_size - len);
2380 			len += todo;
2381 			if (lastfrag &&
2382 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2383 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2384 						      skb_frag_size(lastfrag)) {
2385 				skb_frag_size_add(lastfrag, todo);
2386 				continue;
2387 			}
2388 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2389 				return -E2BIG;
2390 			skb_frag_page_copy(fragto, fragfrom);
2391 			skb_frag_off_copy(fragto, fragfrom);
2392 			skb_frag_size_set(fragto, todo);
2393 			nr_frags++;
2394 			lastfrag = fragto++;
2395 		}
2396 	}
2397 commit:
2398 	WARN_ON_ONCE(len != probe_size);
2399 	for (i = 0; i < nr_frags; i++)
2400 		skb_frag_ref(to, i);
2401 
2402 	skb_shinfo(to)->nr_frags = nr_frags;
2403 	to->truesize += probe_size;
2404 	to->len += probe_size;
2405 	to->data_len += probe_size;
2406 	__skb_header_release(to);
2407 	return 0;
2408 }
2409 
2410 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if
2411  * all its payload was moved to another one (dst).
2412  * Make sure to transfer tcp_flags, eor, and tstamp.
2413  */
tcp_eat_one_skb(struct sock * sk,struct sk_buff * dst,struct sk_buff * src)2414 static void tcp_eat_one_skb(struct sock *sk,
2415 			    struct sk_buff *dst,
2416 			    struct sk_buff *src)
2417 {
2418 	TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags;
2419 	TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor;
2420 	tcp_skb_collapse_tstamp(dst, src);
2421 	tcp_unlink_write_queue(src, sk);
2422 	tcp_wmem_free_skb(sk, src);
2423 }
2424 
2425 /* Create a new MTU probe if we are ready.
2426  * MTU probe is regularly attempting to increase the path MTU by
2427  * deliberately sending larger packets.  This discovers routing
2428  * changes resulting in larger path MTUs.
2429  *
2430  * Returns 0 if we should wait to probe (no cwnd available),
2431  *         1 if a probe was sent,
2432  *         -1 otherwise
2433  */
tcp_mtu_probe(struct sock * sk)2434 static int tcp_mtu_probe(struct sock *sk)
2435 {
2436 	struct inet_connection_sock *icsk = inet_csk(sk);
2437 	struct tcp_sock *tp = tcp_sk(sk);
2438 	struct sk_buff *skb, *nskb, *next;
2439 	struct net *net = sock_net(sk);
2440 	int probe_size;
2441 	int size_needed;
2442 	int copy, len;
2443 	int mss_now;
2444 	int interval;
2445 
2446 	/* Not currently probing/verifying,
2447 	 * not in recovery,
2448 	 * have enough cwnd, and
2449 	 * not SACKing (the variable headers throw things off)
2450 	 */
2451 	if (likely(!icsk->icsk_mtup.enabled ||
2452 		   icsk->icsk_mtup.probe_size ||
2453 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2454 		   tcp_snd_cwnd(tp) < 11 ||
2455 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2456 		return -1;
2457 
2458 	/* Use binary search for probe_size between tcp_mss_base,
2459 	 * and current mss_clamp. if (search_high - search_low)
2460 	 * smaller than a threshold, backoff from probing.
2461 	 */
2462 	mss_now = tcp_current_mss(sk);
2463 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2464 				    icsk->icsk_mtup.search_low) >> 1);
2465 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2466 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2467 	/* When misfortune happens, we are reprobing actively,
2468 	 * and then reprobe timer has expired. We stick with current
2469 	 * probing process by not resetting search range to its orignal.
2470 	 */
2471 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2472 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2473 		/* Check whether enough time has elaplased for
2474 		 * another round of probing.
2475 		 */
2476 		tcp_mtu_check_reprobe(sk);
2477 		return -1;
2478 	}
2479 
2480 	/* Have enough data in the send queue to probe? */
2481 	if (tp->write_seq - tp->snd_nxt < size_needed)
2482 		return -1;
2483 
2484 	if (tp->snd_wnd < size_needed)
2485 		return -1;
2486 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2487 		return 0;
2488 
2489 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2490 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2491 		if (!tcp_packets_in_flight(tp))
2492 			return -1;
2493 		else
2494 			return 0;
2495 	}
2496 
2497 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2498 		return -1;
2499 
2500 	/* We're allowed to probe.  Build it now. */
2501 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2502 	if (!nskb)
2503 		return -1;
2504 
2505 	/* build the payload, and be prepared to abort if this fails. */
2506 	if (tcp_clone_payload(sk, nskb, probe_size)) {
2507 		tcp_skb_tsorted_anchor_cleanup(nskb);
2508 		consume_skb(nskb);
2509 		return -1;
2510 	}
2511 	sk_wmem_queued_add(sk, nskb->truesize);
2512 	sk_mem_charge(sk, nskb->truesize);
2513 
2514 	skb = tcp_send_head(sk);
2515 	skb_copy_decrypted(nskb, skb);
2516 	mptcp_skb_ext_copy(nskb, skb);
2517 
2518 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2519 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2520 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2521 
2522 	tcp_insert_write_queue_before(nskb, skb, sk);
2523 	tcp_highest_sack_replace(sk, skb, nskb);
2524 
2525 	len = 0;
2526 	tcp_for_write_queue_from_safe(skb, next, sk) {
2527 		copy = min_t(int, skb->len, probe_size - len);
2528 
2529 		if (skb->len <= copy) {
2530 			tcp_eat_one_skb(sk, nskb, skb);
2531 		} else {
2532 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2533 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2534 			__pskb_trim_head(skb, copy);
2535 			tcp_set_skb_tso_segs(skb, mss_now);
2536 			TCP_SKB_CB(skb)->seq += copy;
2537 		}
2538 
2539 		len += copy;
2540 
2541 		if (len >= probe_size)
2542 			break;
2543 	}
2544 	tcp_init_tso_segs(nskb, nskb->len);
2545 
2546 	/* We're ready to send.  If this fails, the probe will
2547 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2548 	 */
2549 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2550 		/* Decrement cwnd here because we are sending
2551 		 * effectively two packets. */
2552 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2553 		tcp_event_new_data_sent(sk, nskb);
2554 
2555 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2556 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2557 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2558 
2559 		return 1;
2560 	}
2561 
2562 	return -1;
2563 }
2564 
tcp_pacing_check(struct sock * sk)2565 static bool tcp_pacing_check(struct sock *sk)
2566 {
2567 	struct tcp_sock *tp = tcp_sk(sk);
2568 
2569 	if (!tcp_needs_internal_pacing(sk))
2570 		return false;
2571 
2572 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2573 		return false;
2574 
2575 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2576 		hrtimer_start(&tp->pacing_timer,
2577 			      ns_to_ktime(tp->tcp_wstamp_ns),
2578 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2579 		sock_hold(sk);
2580 	}
2581 	return true;
2582 }
2583 
tcp_rtx_queue_empty_or_single_skb(const struct sock * sk)2584 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2585 {
2586 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2587 
2588 	/* No skb in the rtx queue. */
2589 	if (!node)
2590 		return true;
2591 
2592 	/* Only one skb in rtx queue. */
2593 	return !node->rb_left && !node->rb_right;
2594 }
2595 
2596 /* TCP Small Queues :
2597  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2598  * (These limits are doubled for retransmits)
2599  * This allows for :
2600  *  - better RTT estimation and ACK scheduling
2601  *  - faster recovery
2602  *  - high rates
2603  * Alas, some drivers / subsystems require a fair amount
2604  * of queued bytes to ensure line rate.
2605  * One example is wifi aggregation (802.11 AMPDU)
2606  */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2607 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2608 				  unsigned int factor)
2609 {
2610 	unsigned long limit;
2611 
2612 	limit = max_t(unsigned long,
2613 		      2 * skb->truesize,
2614 		      READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2615 	if (sk->sk_pacing_status == SK_PACING_NONE)
2616 		limit = min_t(unsigned long, limit,
2617 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2618 	limit <<= factor;
2619 
2620 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2621 	    tcp_sk(sk)->tcp_tx_delay) {
2622 		u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2623 				  tcp_sk(sk)->tcp_tx_delay;
2624 
2625 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2626 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2627 		 * USEC_PER_SEC is approximated by 2^20.
2628 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2629 		 */
2630 		extra_bytes >>= (20 - 1);
2631 		limit += extra_bytes;
2632 	}
2633 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2634 		/* Always send skb if rtx queue is empty or has one skb.
2635 		 * No need to wait for TX completion to call us back,
2636 		 * after softirq/tasklet schedule.
2637 		 * This helps when TX completions are delayed too much.
2638 		 */
2639 		if (tcp_rtx_queue_empty_or_single_skb(sk))
2640 			return false;
2641 
2642 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2643 		/* It is possible TX completion already happened
2644 		 * before we set TSQ_THROTTLED, so we must
2645 		 * test again the condition.
2646 		 */
2647 		smp_mb__after_atomic();
2648 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2649 			return true;
2650 	}
2651 	return false;
2652 }
2653 
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2654 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2655 {
2656 	const u32 now = tcp_jiffies32;
2657 	enum tcp_chrono old = tp->chrono_type;
2658 
2659 	if (old > TCP_CHRONO_UNSPEC)
2660 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2661 	tp->chrono_start = now;
2662 	tp->chrono_type = new;
2663 }
2664 
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2665 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2666 {
2667 	struct tcp_sock *tp = tcp_sk(sk);
2668 
2669 	/* If there are multiple conditions worthy of tracking in a
2670 	 * chronograph then the highest priority enum takes precedence
2671 	 * over the other conditions. So that if something "more interesting"
2672 	 * starts happening, stop the previous chrono and start a new one.
2673 	 */
2674 	if (type > tp->chrono_type)
2675 		tcp_chrono_set(tp, type);
2676 }
2677 
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2678 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2679 {
2680 	struct tcp_sock *tp = tcp_sk(sk);
2681 
2682 
2683 	/* There are multiple conditions worthy of tracking in a
2684 	 * chronograph, so that the highest priority enum takes
2685 	 * precedence over the other conditions (see tcp_chrono_start).
2686 	 * If a condition stops, we only stop chrono tracking if
2687 	 * it's the "most interesting" or current chrono we are
2688 	 * tracking and starts busy chrono if we have pending data.
2689 	 */
2690 	if (tcp_rtx_and_write_queues_empty(sk))
2691 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2692 	else if (type == tp->chrono_type)
2693 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2694 }
2695 
2696 /* First skb in the write queue is smaller than ideal packet size.
2697  * Check if we can move payload from the second skb in the queue.
2698  */
tcp_grow_skb(struct sock * sk,struct sk_buff * skb,int amount)2699 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount)
2700 {
2701 	struct sk_buff *next_skb = skb->next;
2702 	unsigned int nlen;
2703 
2704 	if (tcp_skb_is_last(sk, skb))
2705 		return;
2706 
2707 	if (!tcp_skb_can_collapse(skb, next_skb))
2708 		return;
2709 
2710 	nlen = min_t(u32, amount, next_skb->len);
2711 	if (!nlen || !skb_shift(skb, next_skb, nlen))
2712 		return;
2713 
2714 	TCP_SKB_CB(skb)->end_seq += nlen;
2715 	TCP_SKB_CB(next_skb)->seq += nlen;
2716 
2717 	if (!next_skb->len) {
2718 		/* In case FIN is set, we need to update end_seq */
2719 		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2720 
2721 		tcp_eat_one_skb(sk, skb, next_skb);
2722 	}
2723 }
2724 
2725 /* This routine writes packets to the network.  It advances the
2726  * send_head.  This happens as incoming acks open up the remote
2727  * window for us.
2728  *
2729  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2730  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2731  * account rare use of URG, this is not a big flaw.
2732  *
2733  * Send at most one packet when push_one > 0. Temporarily ignore
2734  * cwnd limit to force at most one packet out when push_one == 2.
2735 
2736  * Returns true, if no segments are in flight and we have queued segments,
2737  * but cannot send anything now because of SWS or another problem.
2738  */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2739 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2740 			   int push_one, gfp_t gfp)
2741 {
2742 	struct tcp_sock *tp = tcp_sk(sk);
2743 	struct sk_buff *skb;
2744 	unsigned int tso_segs, sent_pkts;
2745 	u32 cwnd_quota, max_segs;
2746 	int result;
2747 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2748 
2749 	sent_pkts = 0;
2750 
2751 	tcp_mstamp_refresh(tp);
2752 	if (!push_one) {
2753 		/* Do MTU probing. */
2754 		result = tcp_mtu_probe(sk);
2755 		if (!result) {
2756 			return false;
2757 		} else if (result > 0) {
2758 			sent_pkts = 1;
2759 		}
2760 	}
2761 
2762 	max_segs = tcp_tso_segs(sk, mss_now);
2763 	while ((skb = tcp_send_head(sk))) {
2764 		unsigned int limit;
2765 		int missing_bytes;
2766 
2767 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2768 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2769 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2770 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
2771 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2772 			tcp_init_tso_segs(skb, mss_now);
2773 			goto repair; /* Skip network transmission */
2774 		}
2775 
2776 		if (tcp_pacing_check(sk))
2777 			break;
2778 
2779 		cwnd_quota = tcp_cwnd_test(tp);
2780 		if (!cwnd_quota) {
2781 			if (push_one == 2)
2782 				/* Force out a loss probe pkt. */
2783 				cwnd_quota = 1;
2784 			else
2785 				break;
2786 		}
2787 		cwnd_quota = min(cwnd_quota, max_segs);
2788 		missing_bytes = cwnd_quota * mss_now - skb->len;
2789 		if (missing_bytes > 0)
2790 			tcp_grow_skb(sk, skb, missing_bytes);
2791 
2792 		tso_segs = tcp_set_skb_tso_segs(skb, mss_now);
2793 
2794 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2795 			is_rwnd_limited = true;
2796 			break;
2797 		}
2798 
2799 		if (tso_segs == 1) {
2800 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2801 						     (tcp_skb_is_last(sk, skb) ?
2802 						      nonagle : TCP_NAGLE_PUSH))))
2803 				break;
2804 		} else {
2805 			if (!push_one &&
2806 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2807 						 &is_rwnd_limited, max_segs))
2808 				break;
2809 		}
2810 
2811 		limit = mss_now;
2812 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2813 			limit = tcp_mss_split_point(sk, skb, mss_now,
2814 						    cwnd_quota,
2815 						    nonagle);
2816 
2817 		if (skb->len > limit &&
2818 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2819 			break;
2820 
2821 		if (tcp_small_queue_check(sk, skb, 0))
2822 			break;
2823 
2824 		/* Argh, we hit an empty skb(), presumably a thread
2825 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2826 		 * We do not want to send a pure-ack packet and have
2827 		 * a strange looking rtx queue with empty packet(s).
2828 		 */
2829 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2830 			break;
2831 
2832 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2833 			break;
2834 
2835 repair:
2836 		/* Advance the send_head.  This one is sent out.
2837 		 * This call will increment packets_out.
2838 		 */
2839 		tcp_event_new_data_sent(sk, skb);
2840 
2841 		tcp_minshall_update(tp, mss_now, skb);
2842 		sent_pkts += tcp_skb_pcount(skb);
2843 
2844 		if (push_one)
2845 			break;
2846 	}
2847 
2848 	if (is_rwnd_limited)
2849 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2850 	else
2851 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2852 
2853 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2854 	if (likely(sent_pkts || is_cwnd_limited))
2855 		tcp_cwnd_validate(sk, is_cwnd_limited);
2856 
2857 	if (likely(sent_pkts)) {
2858 		if (tcp_in_cwnd_reduction(sk))
2859 			tp->prr_out += sent_pkts;
2860 
2861 		/* Send one loss probe per tail loss episode. */
2862 		if (push_one != 2)
2863 			tcp_schedule_loss_probe(sk, false);
2864 		return false;
2865 	}
2866 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2867 }
2868 
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2869 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2870 {
2871 	struct inet_connection_sock *icsk = inet_csk(sk);
2872 	struct tcp_sock *tp = tcp_sk(sk);
2873 	u32 timeout, timeout_us, rto_delta_us;
2874 	int early_retrans;
2875 
2876 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2877 	 * finishes.
2878 	 */
2879 	if (rcu_access_pointer(tp->fastopen_rsk))
2880 		return false;
2881 
2882 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2883 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2884 	 * not in loss recovery, that are either limited by cwnd or application.
2885 	 */
2886 	if ((early_retrans != 3 && early_retrans != 4) ||
2887 	    !tp->packets_out || !tcp_is_sack(tp) ||
2888 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2889 	     icsk->icsk_ca_state != TCP_CA_CWR))
2890 		return false;
2891 
2892 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2893 	 * for delayed ack when there's one outstanding packet. If no RTT
2894 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2895 	 */
2896 	if (tp->srtt_us) {
2897 		timeout_us = tp->srtt_us >> 2;
2898 		if (tp->packets_out == 1)
2899 			timeout_us += tcp_rto_min_us(sk);
2900 		else
2901 			timeout_us += TCP_TIMEOUT_MIN_US;
2902 		timeout = usecs_to_jiffies(timeout_us);
2903 	} else {
2904 		timeout = TCP_TIMEOUT_INIT;
2905 	}
2906 
2907 	/* If the RTO formula yields an earlier time, then use that time. */
2908 	rto_delta_us = advancing_rto ?
2909 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2910 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2911 	if (rto_delta_us > 0)
2912 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2913 
2914 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2915 	return true;
2916 }
2917 
2918 /* Thanks to skb fast clones, we can detect if a prior transmit of
2919  * a packet is still in a qdisc or driver queue.
2920  * In this case, there is very little point doing a retransmit !
2921  */
skb_still_in_host_queue(struct sock * sk,const struct sk_buff * skb)2922 static bool skb_still_in_host_queue(struct sock *sk,
2923 				    const struct sk_buff *skb)
2924 {
2925 	if (unlikely(skb_fclone_busy(sk, skb))) {
2926 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2927 		smp_mb__after_atomic();
2928 		if (skb_fclone_busy(sk, skb)) {
2929 			NET_INC_STATS(sock_net(sk),
2930 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2931 			return true;
2932 		}
2933 	}
2934 	return false;
2935 }
2936 
2937 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2938  * retransmit the last segment.
2939  */
tcp_send_loss_probe(struct sock * sk)2940 void tcp_send_loss_probe(struct sock *sk)
2941 {
2942 	struct tcp_sock *tp = tcp_sk(sk);
2943 	struct sk_buff *skb;
2944 	int pcount;
2945 	int mss = tcp_current_mss(sk);
2946 
2947 	/* At most one outstanding TLP */
2948 	if (tp->tlp_high_seq)
2949 		goto rearm_timer;
2950 
2951 	tp->tlp_retrans = 0;
2952 	skb = tcp_send_head(sk);
2953 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2954 		pcount = tp->packets_out;
2955 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2956 		if (tp->packets_out > pcount)
2957 			goto probe_sent;
2958 		goto rearm_timer;
2959 	}
2960 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2961 	if (unlikely(!skb)) {
2962 		tcp_warn_once(sk, tp->packets_out, "invalid inflight: ");
2963 		smp_store_release(&inet_csk(sk)->icsk_pending, 0);
2964 		return;
2965 	}
2966 
2967 	if (skb_still_in_host_queue(sk, skb))
2968 		goto rearm_timer;
2969 
2970 	pcount = tcp_skb_pcount(skb);
2971 	if (WARN_ON(!pcount))
2972 		goto rearm_timer;
2973 
2974 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2975 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2976 					  (pcount - 1) * mss, mss,
2977 					  GFP_ATOMIC)))
2978 			goto rearm_timer;
2979 		skb = skb_rb_next(skb);
2980 	}
2981 
2982 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2983 		goto rearm_timer;
2984 
2985 	if (__tcp_retransmit_skb(sk, skb, 1))
2986 		goto rearm_timer;
2987 
2988 	tp->tlp_retrans = 1;
2989 
2990 probe_sent:
2991 	/* Record snd_nxt for loss detection. */
2992 	tp->tlp_high_seq = tp->snd_nxt;
2993 
2994 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2995 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2996 	smp_store_release(&inet_csk(sk)->icsk_pending, 0);
2997 rearm_timer:
2998 	tcp_rearm_rto(sk);
2999 }
3000 
3001 /* Push out any pending frames which were held back due to
3002  * TCP_CORK or attempt at coalescing tiny packets.
3003  * The socket must be locked by the caller.
3004  */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)3005 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
3006 			       int nonagle)
3007 {
3008 	/* If we are closed, the bytes will have to remain here.
3009 	 * In time closedown will finish, we empty the write queue and
3010 	 * all will be happy.
3011 	 */
3012 	if (unlikely(sk->sk_state == TCP_CLOSE))
3013 		return;
3014 
3015 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
3016 			   sk_gfp_mask(sk, GFP_ATOMIC)))
3017 		tcp_check_probe_timer(sk);
3018 }
3019 
3020 /* Send _single_ skb sitting at the send head. This function requires
3021  * true push pending frames to setup probe timer etc.
3022  */
tcp_push_one(struct sock * sk,unsigned int mss_now)3023 void tcp_push_one(struct sock *sk, unsigned int mss_now)
3024 {
3025 	struct sk_buff *skb = tcp_send_head(sk);
3026 
3027 	BUG_ON(!skb || skb->len < mss_now);
3028 
3029 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
3030 }
3031 
3032 /* This function returns the amount that we can raise the
3033  * usable window based on the following constraints
3034  *
3035  * 1. The window can never be shrunk once it is offered (RFC 793)
3036  * 2. We limit memory per socket
3037  *
3038  * RFC 1122:
3039  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
3040  *  RECV.NEXT + RCV.WIN fixed until:
3041  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
3042  *
3043  * i.e. don't raise the right edge of the window until you can raise
3044  * it at least MSS bytes.
3045  *
3046  * Unfortunately, the recommended algorithm breaks header prediction,
3047  * since header prediction assumes th->window stays fixed.
3048  *
3049  * Strictly speaking, keeping th->window fixed violates the receiver
3050  * side SWS prevention criteria. The problem is that under this rule
3051  * a stream of single byte packets will cause the right side of the
3052  * window to always advance by a single byte.
3053  *
3054  * Of course, if the sender implements sender side SWS prevention
3055  * then this will not be a problem.
3056  *
3057  * BSD seems to make the following compromise:
3058  *
3059  *	If the free space is less than the 1/4 of the maximum
3060  *	space available and the free space is less than 1/2 mss,
3061  *	then set the window to 0.
3062  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3063  *	Otherwise, just prevent the window from shrinking
3064  *	and from being larger than the largest representable value.
3065  *
3066  * This prevents incremental opening of the window in the regime
3067  * where TCP is limited by the speed of the reader side taking
3068  * data out of the TCP receive queue. It does nothing about
3069  * those cases where the window is constrained on the sender side
3070  * because the pipeline is full.
3071  *
3072  * BSD also seems to "accidentally" limit itself to windows that are a
3073  * multiple of MSS, at least until the free space gets quite small.
3074  * This would appear to be a side effect of the mbuf implementation.
3075  * Combining these two algorithms results in the observed behavior
3076  * of having a fixed window size at almost all times.
3077  *
3078  * Below we obtain similar behavior by forcing the offered window to
3079  * a multiple of the mss when it is feasible to do so.
3080  *
3081  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3082  * Regular options like TIMESTAMP are taken into account.
3083  */
__tcp_select_window(struct sock * sk)3084 u32 __tcp_select_window(struct sock *sk)
3085 {
3086 	struct inet_connection_sock *icsk = inet_csk(sk);
3087 	struct tcp_sock *tp = tcp_sk(sk);
3088 	struct net *net = sock_net(sk);
3089 	/* MSS for the peer's data.  Previous versions used mss_clamp
3090 	 * here.  I don't know if the value based on our guesses
3091 	 * of peer's MSS is better for the performance.  It's more correct
3092 	 * but may be worse for the performance because of rcv_mss
3093 	 * fluctuations.  --SAW  1998/11/1
3094 	 */
3095 	int mss = icsk->icsk_ack.rcv_mss;
3096 	int free_space = tcp_space(sk);
3097 	int allowed_space = tcp_full_space(sk);
3098 	int full_space, window;
3099 
3100 	if (sk_is_mptcp(sk))
3101 		mptcp_space(sk, &free_space, &allowed_space);
3102 
3103 	full_space = min_t(int, tp->window_clamp, allowed_space);
3104 
3105 	if (unlikely(mss > full_space)) {
3106 		mss = full_space;
3107 		if (mss <= 0)
3108 			return 0;
3109 	}
3110 
3111 	/* Only allow window shrink if the sysctl is enabled and we have
3112 	 * a non-zero scaling factor in effect.
3113 	 */
3114 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3115 		goto shrink_window_allowed;
3116 
3117 	/* do not allow window to shrink */
3118 
3119 	if (free_space < (full_space >> 1)) {
3120 		icsk->icsk_ack.quick = 0;
3121 
3122 		if (tcp_under_memory_pressure(sk))
3123 			tcp_adjust_rcv_ssthresh(sk);
3124 
3125 		/* free_space might become our new window, make sure we don't
3126 		 * increase it due to wscale.
3127 		 */
3128 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3129 
3130 		/* if free space is less than mss estimate, or is below 1/16th
3131 		 * of the maximum allowed, try to move to zero-window, else
3132 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3133 		 * new incoming data is dropped due to memory limits.
3134 		 * With large window, mss test triggers way too late in order
3135 		 * to announce zero window in time before rmem limit kicks in.
3136 		 */
3137 		if (free_space < (allowed_space >> 4) || free_space < mss)
3138 			return 0;
3139 	}
3140 
3141 	if (free_space > tp->rcv_ssthresh)
3142 		free_space = tp->rcv_ssthresh;
3143 
3144 	/* Don't do rounding if we are using window scaling, since the
3145 	 * scaled window will not line up with the MSS boundary anyway.
3146 	 */
3147 	if (tp->rx_opt.rcv_wscale) {
3148 		window = free_space;
3149 
3150 		/* Advertise enough space so that it won't get scaled away.
3151 		 * Import case: prevent zero window announcement if
3152 		 * 1<<rcv_wscale > mss.
3153 		 */
3154 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3155 	} else {
3156 		window = tp->rcv_wnd;
3157 		/* Get the largest window that is a nice multiple of mss.
3158 		 * Window clamp already applied above.
3159 		 * If our current window offering is within 1 mss of the
3160 		 * free space we just keep it. This prevents the divide
3161 		 * and multiply from happening most of the time.
3162 		 * We also don't do any window rounding when the free space
3163 		 * is too small.
3164 		 */
3165 		if (window <= free_space - mss || window > free_space)
3166 			window = rounddown(free_space, mss);
3167 		else if (mss == full_space &&
3168 			 free_space > window + (full_space >> 1))
3169 			window = free_space;
3170 	}
3171 
3172 	return window;
3173 
3174 shrink_window_allowed:
3175 	/* new window should always be an exact multiple of scaling factor */
3176 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3177 
3178 	if (free_space < (full_space >> 1)) {
3179 		icsk->icsk_ack.quick = 0;
3180 
3181 		if (tcp_under_memory_pressure(sk))
3182 			tcp_adjust_rcv_ssthresh(sk);
3183 
3184 		/* if free space is too low, return a zero window */
3185 		if (free_space < (allowed_space >> 4) || free_space < mss ||
3186 			free_space < (1 << tp->rx_opt.rcv_wscale))
3187 			return 0;
3188 	}
3189 
3190 	if (free_space > tp->rcv_ssthresh) {
3191 		free_space = tp->rcv_ssthresh;
3192 		/* new window should always be an exact multiple of scaling factor
3193 		 *
3194 		 * For this case, we ALIGN "up" (increase free_space) because
3195 		 * we know free_space is not zero here, it has been reduced from
3196 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3197 		 * (unlike sk_rcvbuf).
3198 		 */
3199 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3200 	}
3201 
3202 	return free_space;
3203 }
3204 
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3205 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3206 			     const struct sk_buff *next_skb)
3207 {
3208 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3209 		const struct skb_shared_info *next_shinfo =
3210 			skb_shinfo(next_skb);
3211 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3212 
3213 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3214 		shinfo->tskey = next_shinfo->tskey;
3215 		TCP_SKB_CB(skb)->txstamp_ack |=
3216 			TCP_SKB_CB(next_skb)->txstamp_ack;
3217 	}
3218 }
3219 
3220 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3221 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3222 {
3223 	struct tcp_sock *tp = tcp_sk(sk);
3224 	struct sk_buff *next_skb = skb_rb_next(skb);
3225 	int next_skb_size;
3226 
3227 	next_skb_size = next_skb->len;
3228 
3229 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3230 
3231 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3232 		return false;
3233 
3234 	tcp_highest_sack_replace(sk, next_skb, skb);
3235 
3236 	/* Update sequence range on original skb. */
3237 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3238 
3239 	/* Merge over control information. This moves PSH/FIN etc. over */
3240 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3241 
3242 	/* All done, get rid of second SKB and account for it so
3243 	 * packet counting does not break.
3244 	 */
3245 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3246 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3247 
3248 	/* changed transmit queue under us so clear hints */
3249 	tcp_clear_retrans_hints_partial(tp);
3250 	if (next_skb == tp->retransmit_skb_hint)
3251 		tp->retransmit_skb_hint = skb;
3252 
3253 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3254 
3255 	tcp_skb_collapse_tstamp(skb, next_skb);
3256 
3257 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3258 	return true;
3259 }
3260 
3261 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3262 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3263 {
3264 	if (tcp_skb_pcount(skb) > 1)
3265 		return false;
3266 	if (skb_cloned(skb))
3267 		return false;
3268 	if (!skb_frags_readable(skb))
3269 		return false;
3270 	/* Some heuristics for collapsing over SACK'd could be invented */
3271 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3272 		return false;
3273 
3274 	return true;
3275 }
3276 
3277 /* Collapse packets in the retransmit queue to make to create
3278  * less packets on the wire. This is only done on retransmission.
3279  */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3280 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3281 				     int space)
3282 {
3283 	struct tcp_sock *tp = tcp_sk(sk);
3284 	struct sk_buff *skb = to, *tmp;
3285 	bool first = true;
3286 
3287 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3288 		return;
3289 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3290 		return;
3291 
3292 	skb_rbtree_walk_from_safe(skb, tmp) {
3293 		if (!tcp_can_collapse(sk, skb))
3294 			break;
3295 
3296 		if (!tcp_skb_can_collapse(to, skb))
3297 			break;
3298 
3299 		space -= skb->len;
3300 
3301 		if (first) {
3302 			first = false;
3303 			continue;
3304 		}
3305 
3306 		if (space < 0)
3307 			break;
3308 
3309 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3310 			break;
3311 
3312 		if (!tcp_collapse_retrans(sk, to))
3313 			break;
3314 	}
3315 }
3316 
3317 /* This retransmits one SKB.  Policy decisions and retransmit queue
3318  * state updates are done by the caller.  Returns non-zero if an
3319  * error occurred which prevented the send.
3320  */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3321 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3322 {
3323 	struct inet_connection_sock *icsk = inet_csk(sk);
3324 	struct tcp_sock *tp = tcp_sk(sk);
3325 	unsigned int cur_mss;
3326 	int diff, len, err;
3327 	int avail_wnd;
3328 
3329 	/* Inconclusive MTU probe */
3330 	if (icsk->icsk_mtup.probe_size)
3331 		icsk->icsk_mtup.probe_size = 0;
3332 
3333 	if (skb_still_in_host_queue(sk, skb))
3334 		return -EBUSY;
3335 
3336 start:
3337 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3338 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3339 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3340 			TCP_SKB_CB(skb)->seq++;
3341 			goto start;
3342 		}
3343 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3344 			WARN_ON_ONCE(1);
3345 			return -EINVAL;
3346 		}
3347 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3348 			return -ENOMEM;
3349 	}
3350 
3351 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3352 		return -EHOSTUNREACH; /* Routing failure or similar. */
3353 
3354 	cur_mss = tcp_current_mss(sk);
3355 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3356 
3357 	/* If receiver has shrunk his window, and skb is out of
3358 	 * new window, do not retransmit it. The exception is the
3359 	 * case, when window is shrunk to zero. In this case
3360 	 * our retransmit of one segment serves as a zero window probe.
3361 	 */
3362 	if (avail_wnd <= 0) {
3363 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3364 			return -EAGAIN;
3365 		avail_wnd = cur_mss;
3366 	}
3367 
3368 	len = cur_mss * segs;
3369 	if (len > avail_wnd) {
3370 		len = rounddown(avail_wnd, cur_mss);
3371 		if (!len)
3372 			len = avail_wnd;
3373 	}
3374 	if (skb->len > len) {
3375 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3376 				 cur_mss, GFP_ATOMIC))
3377 			return -ENOMEM; /* We'll try again later. */
3378 	} else {
3379 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3380 			return -ENOMEM;
3381 
3382 		diff = tcp_skb_pcount(skb);
3383 		tcp_set_skb_tso_segs(skb, cur_mss);
3384 		diff -= tcp_skb_pcount(skb);
3385 		if (diff)
3386 			tcp_adjust_pcount(sk, skb, diff);
3387 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3388 		if (skb->len < avail_wnd)
3389 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3390 	}
3391 
3392 	/* RFC3168, section 6.1.1.1. ECN fallback */
3393 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3394 		tcp_ecn_clear_syn(sk, skb);
3395 
3396 	/* Update global and local TCP statistics. */
3397 	segs = tcp_skb_pcount(skb);
3398 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3399 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3400 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3401 	tp->total_retrans += segs;
3402 	tp->bytes_retrans += skb->len;
3403 
3404 	/* make sure skb->data is aligned on arches that require it
3405 	 * and check if ack-trimming & collapsing extended the headroom
3406 	 * beyond what csum_start can cover.
3407 	 */
3408 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3409 		     skb_headroom(skb) >= 0xFFFF)) {
3410 		struct sk_buff *nskb;
3411 
3412 		tcp_skb_tsorted_save(skb) {
3413 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3414 			if (nskb) {
3415 				nskb->dev = NULL;
3416 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3417 			} else {
3418 				err = -ENOBUFS;
3419 			}
3420 		} tcp_skb_tsorted_restore(skb);
3421 
3422 		if (!err) {
3423 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3424 			tcp_rate_skb_sent(sk, skb);
3425 		}
3426 	} else {
3427 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3428 	}
3429 
3430 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3431 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3432 				  TCP_SKB_CB(skb)->seq, segs, err);
3433 
3434 	if (likely(!err)) {
3435 		trace_tcp_retransmit_skb(sk, skb);
3436 	} else if (err != -EBUSY) {
3437 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3438 	}
3439 
3440 	/* To avoid taking spuriously low RTT samples based on a timestamp
3441 	 * for a transmit that never happened, always mark EVER_RETRANS
3442 	 */
3443 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3444 
3445 	return err;
3446 }
3447 
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3448 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3449 {
3450 	struct tcp_sock *tp = tcp_sk(sk);
3451 	int err = __tcp_retransmit_skb(sk, skb, segs);
3452 
3453 	if (err == 0) {
3454 #if FASTRETRANS_DEBUG > 0
3455 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3456 			net_dbg_ratelimited("retrans_out leaked\n");
3457 		}
3458 #endif
3459 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3460 		tp->retrans_out += tcp_skb_pcount(skb);
3461 	}
3462 
3463 	/* Save stamp of the first (attempted) retransmit. */
3464 	if (!tp->retrans_stamp)
3465 		tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3466 
3467 	if (tp->undo_retrans < 0)
3468 		tp->undo_retrans = 0;
3469 	tp->undo_retrans += tcp_skb_pcount(skb);
3470 	return err;
3471 }
3472 
3473 /* This gets called after a retransmit timeout, and the initially
3474  * retransmitted data is acknowledged.  It tries to continue
3475  * resending the rest of the retransmit queue, until either
3476  * we've sent it all or the congestion window limit is reached.
3477  */
tcp_xmit_retransmit_queue(struct sock * sk)3478 void tcp_xmit_retransmit_queue(struct sock *sk)
3479 {
3480 	const struct inet_connection_sock *icsk = inet_csk(sk);
3481 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3482 	struct tcp_sock *tp = tcp_sk(sk);
3483 	bool rearm_timer = false;
3484 	u32 max_segs;
3485 	int mib_idx;
3486 
3487 	if (!tp->packets_out)
3488 		return;
3489 
3490 	rtx_head = tcp_rtx_queue_head(sk);
3491 	skb = tp->retransmit_skb_hint ?: rtx_head;
3492 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3493 	skb_rbtree_walk_from(skb) {
3494 		__u8 sacked;
3495 		int segs;
3496 
3497 		if (tcp_pacing_check(sk))
3498 			break;
3499 
3500 		/* we could do better than to assign each time */
3501 		if (!hole)
3502 			tp->retransmit_skb_hint = skb;
3503 
3504 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3505 		if (segs <= 0)
3506 			break;
3507 		sacked = TCP_SKB_CB(skb)->sacked;
3508 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3509 		 * we need to make sure not sending too bigs TSO packets
3510 		 */
3511 		segs = min_t(int, segs, max_segs);
3512 
3513 		if (tp->retrans_out >= tp->lost_out) {
3514 			break;
3515 		} else if (!(sacked & TCPCB_LOST)) {
3516 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3517 				hole = skb;
3518 			continue;
3519 
3520 		} else {
3521 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3522 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3523 			else
3524 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3525 		}
3526 
3527 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3528 			continue;
3529 
3530 		if (tcp_small_queue_check(sk, skb, 1))
3531 			break;
3532 
3533 		if (tcp_retransmit_skb(sk, skb, segs))
3534 			break;
3535 
3536 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3537 
3538 		if (tcp_in_cwnd_reduction(sk))
3539 			tp->prr_out += tcp_skb_pcount(skb);
3540 
3541 		if (skb == rtx_head &&
3542 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3543 			rearm_timer = true;
3544 
3545 	}
3546 	if (rearm_timer)
3547 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3548 				     inet_csk(sk)->icsk_rto,
3549 				     TCP_RTO_MAX);
3550 }
3551 
3552 /* We allow to exceed memory limits for FIN packets to expedite
3553  * connection tear down and (memory) recovery.
3554  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3555  * or even be forced to close flow without any FIN.
3556  * In general, we want to allow one skb per socket to avoid hangs
3557  * with edge trigger epoll()
3558  */
sk_forced_mem_schedule(struct sock * sk,int size)3559 void sk_forced_mem_schedule(struct sock *sk, int size)
3560 {
3561 	int delta, amt;
3562 
3563 	delta = size - sk->sk_forward_alloc;
3564 	if (delta <= 0)
3565 		return;
3566 	amt = sk_mem_pages(delta);
3567 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3568 	sk_memory_allocated_add(sk, amt);
3569 
3570 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3571 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3572 					gfp_memcg_charge() | __GFP_NOFAIL);
3573 }
3574 
3575 /* Send a FIN. The caller locks the socket for us.
3576  * We should try to send a FIN packet really hard, but eventually give up.
3577  */
tcp_send_fin(struct sock * sk)3578 void tcp_send_fin(struct sock *sk)
3579 {
3580 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3581 	struct tcp_sock *tp = tcp_sk(sk);
3582 
3583 	/* Optimization, tack on the FIN if we have one skb in write queue and
3584 	 * this skb was not yet sent, or we are under memory pressure.
3585 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3586 	 * as TCP stack thinks it has already been transmitted.
3587 	 */
3588 	tskb = tail;
3589 	if (!tskb && tcp_under_memory_pressure(sk))
3590 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3591 
3592 	if (tskb) {
3593 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3594 		TCP_SKB_CB(tskb)->end_seq++;
3595 		tp->write_seq++;
3596 		if (!tail) {
3597 			/* This means tskb was already sent.
3598 			 * Pretend we included the FIN on previous transmit.
3599 			 * We need to set tp->snd_nxt to the value it would have
3600 			 * if FIN had been sent. This is because retransmit path
3601 			 * does not change tp->snd_nxt.
3602 			 */
3603 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3604 			return;
3605 		}
3606 	} else {
3607 		skb = alloc_skb_fclone(MAX_TCP_HEADER,
3608 				       sk_gfp_mask(sk, GFP_ATOMIC |
3609 						       __GFP_NOWARN));
3610 		if (unlikely(!skb))
3611 			return;
3612 
3613 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3614 		skb_reserve(skb, MAX_TCP_HEADER);
3615 		sk_forced_mem_schedule(sk, skb->truesize);
3616 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3617 		tcp_init_nondata_skb(skb, tp->write_seq,
3618 				     TCPHDR_ACK | TCPHDR_FIN);
3619 		tcp_queue_skb(sk, skb);
3620 	}
3621 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3622 }
3623 
3624 /* We get here when a process closes a file descriptor (either due to
3625  * an explicit close() or as a byproduct of exit()'ing) and there
3626  * was unread data in the receive queue.  This behavior is recommended
3627  * by RFC 2525, section 2.17.  -DaveM
3628  */
tcp_send_active_reset(struct sock * sk,gfp_t priority,enum sk_rst_reason reason)3629 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
3630 			   enum sk_rst_reason reason)
3631 {
3632 	struct sk_buff *skb;
3633 
3634 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3635 
3636 	/* NOTE: No TCP options attached and we never retransmit this. */
3637 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3638 	if (!skb) {
3639 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3640 		return;
3641 	}
3642 
3643 	/* Reserve space for headers and prepare control bits. */
3644 	skb_reserve(skb, MAX_TCP_HEADER);
3645 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3646 			     TCPHDR_ACK | TCPHDR_RST);
3647 	tcp_mstamp_refresh(tcp_sk(sk));
3648 	/* Send it off. */
3649 	if (tcp_transmit_skb(sk, skb, 0, priority))
3650 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3651 
3652 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3653 	 * skb here is different to the troublesome skb, so use NULL
3654 	 */
3655 	trace_tcp_send_reset(sk, NULL, reason);
3656 }
3657 
3658 /* Send a crossed SYN-ACK during socket establishment.
3659  * WARNING: This routine must only be called when we have already sent
3660  * a SYN packet that crossed the incoming SYN that caused this routine
3661  * to get called. If this assumption fails then the initial rcv_wnd
3662  * and rcv_wscale values will not be correct.
3663  */
tcp_send_synack(struct sock * sk)3664 int tcp_send_synack(struct sock *sk)
3665 {
3666 	struct sk_buff *skb;
3667 
3668 	skb = tcp_rtx_queue_head(sk);
3669 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3670 		pr_err("%s: wrong queue state\n", __func__);
3671 		return -EFAULT;
3672 	}
3673 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3674 		if (skb_cloned(skb)) {
3675 			struct sk_buff *nskb;
3676 
3677 			tcp_skb_tsorted_save(skb) {
3678 				nskb = skb_copy(skb, GFP_ATOMIC);
3679 			} tcp_skb_tsorted_restore(skb);
3680 			if (!nskb)
3681 				return -ENOMEM;
3682 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3683 			tcp_highest_sack_replace(sk, skb, nskb);
3684 			tcp_rtx_queue_unlink_and_free(skb, sk);
3685 			__skb_header_release(nskb);
3686 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3687 			sk_wmem_queued_add(sk, nskb->truesize);
3688 			sk_mem_charge(sk, nskb->truesize);
3689 			skb = nskb;
3690 		}
3691 
3692 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3693 		tcp_ecn_send_synack(sk, skb);
3694 	}
3695 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3696 }
3697 
3698 /**
3699  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3700  * @sk: listener socket
3701  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3702  *       should not use it again.
3703  * @req: request_sock pointer
3704  * @foc: cookie for tcp fast open
3705  * @synack_type: Type of synack to prepare
3706  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3707  */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3708 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3709 				struct request_sock *req,
3710 				struct tcp_fastopen_cookie *foc,
3711 				enum tcp_synack_type synack_type,
3712 				struct sk_buff *syn_skb)
3713 {
3714 	struct inet_request_sock *ireq = inet_rsk(req);
3715 	const struct tcp_sock *tp = tcp_sk(sk);
3716 	struct tcp_out_options opts;
3717 	struct tcp_key key = {};
3718 	struct sk_buff *skb;
3719 	int tcp_header_size;
3720 	struct tcphdr *th;
3721 	int mss;
3722 	u64 now;
3723 
3724 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3725 	if (unlikely(!skb)) {
3726 		dst_release(dst);
3727 		return NULL;
3728 	}
3729 	/* Reserve space for headers. */
3730 	skb_reserve(skb, MAX_TCP_HEADER);
3731 
3732 	switch (synack_type) {
3733 	case TCP_SYNACK_NORMAL:
3734 		skb_set_owner_edemux(skb, req_to_sk(req));
3735 		break;
3736 	case TCP_SYNACK_COOKIE:
3737 		/* Under synflood, we do not attach skb to a socket,
3738 		 * to avoid false sharing.
3739 		 */
3740 		break;
3741 	case TCP_SYNACK_FASTOPEN:
3742 		/* sk is a const pointer, because we want to express multiple
3743 		 * cpu might call us concurrently.
3744 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3745 		 */
3746 		skb_set_owner_w(skb, (struct sock *)sk);
3747 		break;
3748 	}
3749 	skb_dst_set(skb, dst);
3750 
3751 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3752 
3753 	memset(&opts, 0, sizeof(opts));
3754 	now = tcp_clock_ns();
3755 #ifdef CONFIG_SYN_COOKIES
3756 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3757 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3758 				      SKB_CLOCK_MONOTONIC);
3759 	else
3760 #endif
3761 	{
3762 		skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3763 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3764 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3765 	}
3766 
3767 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3768 	rcu_read_lock();
3769 #endif
3770 	if (tcp_rsk_used_ao(req)) {
3771 #ifdef CONFIG_TCP_AO
3772 		struct tcp_ao_key *ao_key = NULL;
3773 		u8 keyid = tcp_rsk(req)->ao_keyid;
3774 		u8 rnext = tcp_rsk(req)->ao_rcv_next;
3775 
3776 		ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3777 							    keyid, -1);
3778 		/* If there is no matching key - avoid sending anything,
3779 		 * especially usigned segments. It could try harder and lookup
3780 		 * for another peer-matching key, but the peer has requested
3781 		 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3782 		 */
3783 		if (unlikely(!ao_key)) {
3784 			trace_tcp_ao_synack_no_key(sk, keyid, rnext);
3785 			rcu_read_unlock();
3786 			kfree_skb(skb);
3787 			net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n",
3788 					     keyid);
3789 			return NULL;
3790 		}
3791 		key.ao_key = ao_key;
3792 		key.type = TCP_KEY_AO;
3793 #endif
3794 	} else {
3795 #ifdef CONFIG_TCP_MD5SIG
3796 		key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3797 					req_to_sk(req));
3798 		if (key.md5_key)
3799 			key.type = TCP_KEY_MD5;
3800 #endif
3801 	}
3802 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3803 	/* bpf program will be interested in the tcp_flags */
3804 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3805 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
3806 					     &key, foc, synack_type, syn_skb)
3807 					+ sizeof(*th);
3808 
3809 	skb_push(skb, tcp_header_size);
3810 	skb_reset_transport_header(skb);
3811 
3812 	th = (struct tcphdr *)skb->data;
3813 	memset(th, 0, sizeof(struct tcphdr));
3814 	th->syn = 1;
3815 	th->ack = 1;
3816 	tcp_ecn_make_synack(req, th);
3817 	th->source = htons(ireq->ir_num);
3818 	th->dest = ireq->ir_rmt_port;
3819 	skb->mark = ireq->ir_mark;
3820 	skb->ip_summed = CHECKSUM_PARTIAL;
3821 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3822 	/* XXX data is queued and acked as is. No buffer/window check */
3823 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3824 
3825 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3826 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3827 	tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
3828 	th->doff = (tcp_header_size >> 2);
3829 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3830 
3831 	/* Okay, we have all we need - do the md5 hash if needed */
3832 	if (tcp_key_is_md5(&key)) {
3833 #ifdef CONFIG_TCP_MD5SIG
3834 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3835 					key.md5_key, req_to_sk(req), skb);
3836 #endif
3837 	} else if (tcp_key_is_ao(&key)) {
3838 #ifdef CONFIG_TCP_AO
3839 		tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
3840 					key.ao_key, req, skb,
3841 					opts.hash_location - (u8 *)th, 0);
3842 #endif
3843 	}
3844 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3845 	rcu_read_unlock();
3846 #endif
3847 
3848 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3849 				synack_type, &opts);
3850 
3851 	skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3852 	tcp_add_tx_delay(skb, tp);
3853 
3854 	return skb;
3855 }
3856 EXPORT_SYMBOL(tcp_make_synack);
3857 
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3858 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3859 {
3860 	struct inet_connection_sock *icsk = inet_csk(sk);
3861 	const struct tcp_congestion_ops *ca;
3862 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3863 
3864 	if (ca_key == TCP_CA_UNSPEC)
3865 		return;
3866 
3867 	rcu_read_lock();
3868 	ca = tcp_ca_find_key(ca_key);
3869 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3870 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3871 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3872 		icsk->icsk_ca_ops = ca;
3873 	}
3874 	rcu_read_unlock();
3875 }
3876 
3877 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3878 static void tcp_connect_init(struct sock *sk)
3879 {
3880 	const struct dst_entry *dst = __sk_dst_get(sk);
3881 	struct tcp_sock *tp = tcp_sk(sk);
3882 	__u8 rcv_wscale;
3883 	u32 rcv_wnd;
3884 
3885 	/* We'll fix this up when we get a response from the other end.
3886 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3887 	 */
3888 	tp->tcp_header_len = sizeof(struct tcphdr);
3889 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3890 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3891 
3892 	tcp_ao_connect_init(sk);
3893 
3894 	/* If user gave his TCP_MAXSEG, record it to clamp */
3895 	if (tp->rx_opt.user_mss)
3896 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3897 	tp->max_window = 0;
3898 	tcp_mtup_init(sk);
3899 	tcp_sync_mss(sk, dst_mtu(dst));
3900 
3901 	tcp_ca_dst_init(sk, dst);
3902 
3903 	if (!tp->window_clamp)
3904 		WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW));
3905 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3906 
3907 	tcp_initialize_rcv_mss(sk);
3908 
3909 	/* limit the window selection if the user enforce a smaller rx buffer */
3910 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3911 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3912 		WRITE_ONCE(tp->window_clamp, tcp_full_space(sk));
3913 
3914 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3915 	if (rcv_wnd == 0)
3916 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3917 
3918 	tcp_select_initial_window(sk, tcp_full_space(sk),
3919 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3920 				  &tp->rcv_wnd,
3921 				  &tp->window_clamp,
3922 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3923 				  &rcv_wscale,
3924 				  rcv_wnd);
3925 
3926 	tp->rx_opt.rcv_wscale = rcv_wscale;
3927 	tp->rcv_ssthresh = tp->rcv_wnd;
3928 
3929 	WRITE_ONCE(sk->sk_err, 0);
3930 	sock_reset_flag(sk, SOCK_DONE);
3931 	tp->snd_wnd = 0;
3932 	tcp_init_wl(tp, 0);
3933 	tcp_write_queue_purge(sk);
3934 	tp->snd_una = tp->write_seq;
3935 	tp->snd_sml = tp->write_seq;
3936 	tp->snd_up = tp->write_seq;
3937 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3938 
3939 	if (likely(!tp->repair))
3940 		tp->rcv_nxt = 0;
3941 	else
3942 		tp->rcv_tstamp = tcp_jiffies32;
3943 	tp->rcv_wup = tp->rcv_nxt;
3944 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3945 
3946 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3947 	inet_csk(sk)->icsk_retransmits = 0;
3948 	tcp_clear_retrans(tp);
3949 }
3950 
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3951 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3952 {
3953 	struct tcp_sock *tp = tcp_sk(sk);
3954 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3955 
3956 	tcb->end_seq += skb->len;
3957 	__skb_header_release(skb);
3958 	sk_wmem_queued_add(sk, skb->truesize);
3959 	sk_mem_charge(sk, skb->truesize);
3960 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3961 	tp->packets_out += tcp_skb_pcount(skb);
3962 }
3963 
3964 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3965  * queue a data-only packet after the regular SYN, such that regular SYNs
3966  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3967  * only the SYN sequence, the data are retransmitted in the first ACK.
3968  * If cookie is not cached or other error occurs, falls back to send a
3969  * regular SYN with Fast Open cookie request option.
3970  */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3971 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3972 {
3973 	struct inet_connection_sock *icsk = inet_csk(sk);
3974 	struct tcp_sock *tp = tcp_sk(sk);
3975 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3976 	struct page_frag *pfrag = sk_page_frag(sk);
3977 	struct sk_buff *syn_data;
3978 	int space, err = 0;
3979 
3980 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3981 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3982 		goto fallback;
3983 
3984 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3985 	 * user-MSS. Reserve maximum option space for middleboxes that add
3986 	 * private TCP options. The cost is reduced data space in SYN :(
3987 	 */
3988 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3989 	/* Sync mss_cache after updating the mss_clamp */
3990 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3991 
3992 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3993 		MAX_TCP_OPTION_SPACE;
3994 
3995 	space = min_t(size_t, space, fo->size);
3996 
3997 	if (space &&
3998 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3999 				  pfrag, sk->sk_allocation))
4000 		goto fallback;
4001 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
4002 	if (!syn_data)
4003 		goto fallback;
4004 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
4005 	if (space) {
4006 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
4007 		space = tcp_wmem_schedule(sk, space);
4008 	}
4009 	if (space) {
4010 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
4011 					    space, &fo->data->msg_iter);
4012 		if (unlikely(!space)) {
4013 			tcp_skb_tsorted_anchor_cleanup(syn_data);
4014 			kfree_skb(syn_data);
4015 			goto fallback;
4016 		}
4017 		skb_fill_page_desc(syn_data, 0, pfrag->page,
4018 				   pfrag->offset, space);
4019 		page_ref_inc(pfrag->page);
4020 		pfrag->offset += space;
4021 		skb_len_add(syn_data, space);
4022 		skb_zcopy_set(syn_data, fo->uarg, NULL);
4023 	}
4024 	/* No more data pending in inet_wait_for_connect() */
4025 	if (space == fo->size)
4026 		fo->data = NULL;
4027 	fo->copied = space;
4028 
4029 	tcp_connect_queue_skb(sk, syn_data);
4030 	if (syn_data->len)
4031 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
4032 
4033 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
4034 
4035 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, SKB_CLOCK_MONOTONIC);
4036 
4037 	/* Now full SYN+DATA was cloned and sent (or not),
4038 	 * remove the SYN from the original skb (syn_data)
4039 	 * we keep in write queue in case of a retransmit, as we
4040 	 * also have the SYN packet (with no data) in the same queue.
4041 	 */
4042 	TCP_SKB_CB(syn_data)->seq++;
4043 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
4044 	if (!err) {
4045 		tp->syn_data = (fo->copied > 0);
4046 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
4047 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
4048 		goto done;
4049 	}
4050 
4051 	/* data was not sent, put it in write_queue */
4052 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
4053 	tp->packets_out -= tcp_skb_pcount(syn_data);
4054 
4055 fallback:
4056 	/* Send a regular SYN with Fast Open cookie request option */
4057 	if (fo->cookie.len > 0)
4058 		fo->cookie.len = 0;
4059 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4060 	if (err)
4061 		tp->syn_fastopen = 0;
4062 done:
4063 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
4064 	return err;
4065 }
4066 
4067 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)4068 int tcp_connect(struct sock *sk)
4069 {
4070 	struct tcp_sock *tp = tcp_sk(sk);
4071 	struct sk_buff *buff;
4072 	int err;
4073 
4074 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4075 
4076 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4077 	/* Has to be checked late, after setting daddr/saddr/ops.
4078 	 * Return error if the peer has both a md5 and a tcp-ao key
4079 	 * configured as this is ambiguous.
4080 	 */
4081 	if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4082 					       lockdep_sock_is_held(sk)))) {
4083 		bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4084 		bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4085 		struct tcp_ao_info *ao_info;
4086 
4087 		ao_info = rcu_dereference_check(tp->ao_info,
4088 						lockdep_sock_is_held(sk));
4089 		if (ao_info) {
4090 			/* This is an extra check: tcp_ao_required() in
4091 			 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4092 			 * md5 keys on ao_required socket.
4093 			 */
4094 			needs_ao |= ao_info->ao_required;
4095 			WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4096 		}
4097 		if (needs_md5 && needs_ao)
4098 			return -EKEYREJECTED;
4099 
4100 		/* If we have a matching md5 key and no matching tcp-ao key
4101 		 * then free up ao_info if allocated.
4102 		 */
4103 		if (needs_md5) {
4104 			tcp_ao_destroy_sock(sk, false);
4105 		} else if (needs_ao) {
4106 			tcp_clear_md5_list(sk);
4107 			kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4108 						  lockdep_sock_is_held(sk)));
4109 		}
4110 	}
4111 #endif
4112 #ifdef CONFIG_TCP_AO
4113 	if (unlikely(rcu_dereference_protected(tp->ao_info,
4114 					       lockdep_sock_is_held(sk)))) {
4115 		/* Don't allow connecting if ao is configured but no
4116 		 * matching key is found.
4117 		 */
4118 		if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4119 			return -EKEYREJECTED;
4120 	}
4121 #endif
4122 
4123 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4124 		return -EHOSTUNREACH; /* Routing failure or similar. */
4125 
4126 	tcp_connect_init(sk);
4127 
4128 	if (unlikely(tp->repair)) {
4129 		tcp_finish_connect(sk, NULL);
4130 		return 0;
4131 	}
4132 
4133 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4134 	if (unlikely(!buff))
4135 		return -ENOBUFS;
4136 
4137 	/* SYN eats a sequence byte, write_seq updated by
4138 	 * tcp_connect_queue_skb().
4139 	 */
4140 	tcp_init_nondata_skb(buff, tp->write_seq, TCPHDR_SYN);
4141 	tcp_mstamp_refresh(tp);
4142 	tp->retrans_stamp = tcp_time_stamp_ts(tp);
4143 	tcp_connect_queue_skb(sk, buff);
4144 	tcp_ecn_send_syn(sk, buff);
4145 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4146 
4147 	/* Send off SYN; include data in Fast Open. */
4148 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4149 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4150 	if (err == -ECONNREFUSED)
4151 		return err;
4152 
4153 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
4154 	 * in order to make this packet get counted in tcpOutSegs.
4155 	 */
4156 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4157 	tp->pushed_seq = tp->write_seq;
4158 	buff = tcp_send_head(sk);
4159 	if (unlikely(buff)) {
4160 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4161 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
4162 	}
4163 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4164 
4165 	/* Timer for repeating the SYN until an answer. */
4166 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4167 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
4168 	return 0;
4169 }
4170 EXPORT_SYMBOL(tcp_connect);
4171 
tcp_delack_max(const struct sock * sk)4172 u32 tcp_delack_max(const struct sock *sk)
4173 {
4174 	u32 delack_from_rto_min = max(tcp_rto_min(sk), 2) - 1;
4175 
4176 	return min(inet_csk(sk)->icsk_delack_max, delack_from_rto_min);
4177 }
4178 
4179 /* Send out a delayed ack, the caller does the policy checking
4180  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4181  * for details.
4182  */
tcp_send_delayed_ack(struct sock * sk)4183 void tcp_send_delayed_ack(struct sock *sk)
4184 {
4185 	struct inet_connection_sock *icsk = inet_csk(sk);
4186 	int ato = icsk->icsk_ack.ato;
4187 	unsigned long timeout;
4188 
4189 	if (ato > TCP_DELACK_MIN) {
4190 		const struct tcp_sock *tp = tcp_sk(sk);
4191 		int max_ato = HZ / 2;
4192 
4193 		if (inet_csk_in_pingpong_mode(sk) ||
4194 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4195 			max_ato = TCP_DELACK_MAX;
4196 
4197 		/* Slow path, intersegment interval is "high". */
4198 
4199 		/* If some rtt estimate is known, use it to bound delayed ack.
4200 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4201 		 * directly.
4202 		 */
4203 		if (tp->srtt_us) {
4204 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4205 					TCP_DELACK_MIN);
4206 
4207 			if (rtt < max_ato)
4208 				max_ato = rtt;
4209 		}
4210 
4211 		ato = min(ato, max_ato);
4212 	}
4213 
4214 	ato = min_t(u32, ato, tcp_delack_max(sk));
4215 
4216 	/* Stay within the limit we were given */
4217 	timeout = jiffies + ato;
4218 
4219 	/* Use new timeout only if there wasn't a older one earlier. */
4220 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4221 		/* If delack timer is about to expire, send ACK now. */
4222 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4223 			tcp_send_ack(sk);
4224 			return;
4225 		}
4226 
4227 		if (!time_before(timeout, icsk->icsk_ack.timeout))
4228 			timeout = icsk->icsk_ack.timeout;
4229 	}
4230 	smp_store_release(&icsk->icsk_ack.pending,
4231 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
4232 	icsk->icsk_ack.timeout = timeout;
4233 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4234 }
4235 
4236 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)4237 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4238 {
4239 	struct sk_buff *buff;
4240 
4241 	/* If we have been reset, we may not send again. */
4242 	if (sk->sk_state == TCP_CLOSE)
4243 		return;
4244 
4245 	/* We are not putting this on the write queue, so
4246 	 * tcp_transmit_skb() will set the ownership to this
4247 	 * sock.
4248 	 */
4249 	buff = alloc_skb(MAX_TCP_HEADER,
4250 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4251 	if (unlikely(!buff)) {
4252 		struct inet_connection_sock *icsk = inet_csk(sk);
4253 		unsigned long delay;
4254 
4255 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4256 		if (delay < TCP_RTO_MAX)
4257 			icsk->icsk_ack.retry++;
4258 		inet_csk_schedule_ack(sk);
4259 		icsk->icsk_ack.ato = TCP_ATO_MIN;
4260 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4261 		return;
4262 	}
4263 
4264 	/* Reserve space for headers and prepare control bits. */
4265 	skb_reserve(buff, MAX_TCP_HEADER);
4266 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4267 
4268 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4269 	 * too much.
4270 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4271 	 */
4272 	skb_set_tcp_pure_ack(buff);
4273 
4274 	/* Send it off, this clears delayed acks for us. */
4275 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4276 }
4277 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4278 
tcp_send_ack(struct sock * sk)4279 void tcp_send_ack(struct sock *sk)
4280 {
4281 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4282 }
4283 
4284 /* This routine sends a packet with an out of date sequence
4285  * number. It assumes the other end will try to ack it.
4286  *
4287  * Question: what should we make while urgent mode?
4288  * 4.4BSD forces sending single byte of data. We cannot send
4289  * out of window data, because we have SND.NXT==SND.MAX...
4290  *
4291  * Current solution: to send TWO zero-length segments in urgent mode:
4292  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4293  * out-of-date with SND.UNA-1 to probe window.
4294  */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)4295 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4296 {
4297 	struct tcp_sock *tp = tcp_sk(sk);
4298 	struct sk_buff *skb;
4299 
4300 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4301 	skb = alloc_skb(MAX_TCP_HEADER,
4302 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4303 	if (!skb)
4304 		return -1;
4305 
4306 	/* Reserve space for headers and set control bits. */
4307 	skb_reserve(skb, MAX_TCP_HEADER);
4308 	/* Use a previous sequence.  This should cause the other
4309 	 * end to send an ack.  Don't queue or clone SKB, just
4310 	 * send it.
4311 	 */
4312 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4313 	NET_INC_STATS(sock_net(sk), mib);
4314 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4315 }
4316 
4317 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4318 void tcp_send_window_probe(struct sock *sk)
4319 {
4320 	if (sk->sk_state == TCP_ESTABLISHED) {
4321 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4322 		tcp_mstamp_refresh(tcp_sk(sk));
4323 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4324 	}
4325 }
4326 
4327 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4328 int tcp_write_wakeup(struct sock *sk, int mib)
4329 {
4330 	struct tcp_sock *tp = tcp_sk(sk);
4331 	struct sk_buff *skb;
4332 
4333 	if (sk->sk_state == TCP_CLOSE)
4334 		return -1;
4335 
4336 	skb = tcp_send_head(sk);
4337 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4338 		int err;
4339 		unsigned int mss = tcp_current_mss(sk);
4340 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4341 
4342 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4343 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4344 
4345 		/* We are probing the opening of a window
4346 		 * but the window size is != 0
4347 		 * must have been a result SWS avoidance ( sender )
4348 		 */
4349 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4350 		    skb->len > mss) {
4351 			seg_size = min(seg_size, mss);
4352 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4353 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4354 					 skb, seg_size, mss, GFP_ATOMIC))
4355 				return -1;
4356 		} else if (!tcp_skb_pcount(skb))
4357 			tcp_set_skb_tso_segs(skb, mss);
4358 
4359 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4360 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4361 		if (!err)
4362 			tcp_event_new_data_sent(sk, skb);
4363 		return err;
4364 	} else {
4365 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4366 			tcp_xmit_probe_skb(sk, 1, mib);
4367 		return tcp_xmit_probe_skb(sk, 0, mib);
4368 	}
4369 }
4370 
4371 /* A window probe timeout has occurred.  If window is not closed send
4372  * a partial packet else a zero probe.
4373  */
tcp_send_probe0(struct sock * sk)4374 void tcp_send_probe0(struct sock *sk)
4375 {
4376 	struct inet_connection_sock *icsk = inet_csk(sk);
4377 	struct tcp_sock *tp = tcp_sk(sk);
4378 	struct net *net = sock_net(sk);
4379 	unsigned long timeout;
4380 	int err;
4381 
4382 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4383 
4384 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4385 		/* Cancel probe timer, if it is not required. */
4386 		icsk->icsk_probes_out = 0;
4387 		icsk->icsk_backoff = 0;
4388 		icsk->icsk_probes_tstamp = 0;
4389 		return;
4390 	}
4391 
4392 	icsk->icsk_probes_out++;
4393 	if (err <= 0) {
4394 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4395 			icsk->icsk_backoff++;
4396 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4397 	} else {
4398 		/* If packet was not sent due to local congestion,
4399 		 * Let senders fight for local resources conservatively.
4400 		 */
4401 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4402 	}
4403 
4404 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4405 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4406 }
4407 
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4408 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4409 {
4410 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4411 	struct flowi fl;
4412 	int res;
4413 
4414 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4415 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4416 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4417 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4418 				  NULL);
4419 	if (!res) {
4420 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4421 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4422 		if (unlikely(tcp_passive_fastopen(sk))) {
4423 			/* sk has const attribute because listeners are lockless.
4424 			 * However in this case, we are dealing with a passive fastopen
4425 			 * socket thus we can change total_retrans value.
4426 			 */
4427 			tcp_sk_rw(sk)->total_retrans++;
4428 		}
4429 		trace_tcp_retransmit_synack(sk, req);
4430 	}
4431 	return res;
4432 }
4433 EXPORT_SYMBOL(tcp_rtx_synack);
4434