xref: /linux/fs/xfs/xfs_bmap_util.c (revision 8751b21ad9dc33f31dff20297dcae2063cbbcfc9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * Copyright (c) 2012 Red Hat, Inc.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_bit.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_btree.h"
18 #include "xfs_trans.h"
19 #include "xfs_alloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_bmap_util.h"
22 #include "xfs_bmap_btree.h"
23 #include "xfs_rtalloc.h"
24 #include "xfs_error.h"
25 #include "xfs_quota.h"
26 #include "xfs_trans_space.h"
27 #include "xfs_trace.h"
28 #include "xfs_icache.h"
29 #include "xfs_iomap.h"
30 #include "xfs_reflink.h"
31 #include "xfs_rtbitmap.h"
32 
33 /* Kernel only BMAP related definitions and functions */
34 
35 /*
36  * Convert the given file system block to a disk block.  We have to treat it
37  * differently based on whether the file is a real time file or not, because the
38  * bmap code does.
39  */
40 xfs_daddr_t
41 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb)
42 {
43 	if (XFS_IS_REALTIME_INODE(ip))
44 		return XFS_FSB_TO_BB(ip->i_mount, fsb);
45 	return XFS_FSB_TO_DADDR(ip->i_mount, fsb);
46 }
47 
48 /*
49  * Routine to zero an extent on disk allocated to the specific inode.
50  *
51  * The VFS functions take a linearised filesystem block offset, so we have to
52  * convert the sparse xfs fsb to the right format first.
53  * VFS types are real funky, too.
54  */
55 int
56 xfs_zero_extent(
57 	struct xfs_inode	*ip,
58 	xfs_fsblock_t		start_fsb,
59 	xfs_off_t		count_fsb)
60 {
61 	struct xfs_mount	*mp = ip->i_mount;
62 	struct xfs_buftarg	*target = xfs_inode_buftarg(ip);
63 	xfs_daddr_t		sector = xfs_fsb_to_db(ip, start_fsb);
64 	sector_t		block = XFS_BB_TO_FSBT(mp, sector);
65 
66 	return blkdev_issue_zeroout(target->bt_bdev,
67 		block << (mp->m_super->s_blocksize_bits - 9),
68 		count_fsb << (mp->m_super->s_blocksize_bits - 9),
69 		GFP_KERNEL, 0);
70 }
71 
72 /*
73  * Extent tree block counting routines.
74  */
75 
76 /*
77  * Count leaf blocks given a range of extent records.  Delayed allocation
78  * extents are not counted towards the totals.
79  */
80 xfs_extnum_t
81 xfs_bmap_count_leaves(
82 	struct xfs_ifork	*ifp,
83 	xfs_filblks_t		*count)
84 {
85 	struct xfs_iext_cursor	icur;
86 	struct xfs_bmbt_irec	got;
87 	xfs_extnum_t		numrecs = 0;
88 
89 	for_each_xfs_iext(ifp, &icur, &got) {
90 		if (!isnullstartblock(got.br_startblock)) {
91 			*count += got.br_blockcount;
92 			numrecs++;
93 		}
94 	}
95 
96 	return numrecs;
97 }
98 
99 /*
100  * Count fsblocks of the given fork.  Delayed allocation extents are
101  * not counted towards the totals.
102  */
103 int
104 xfs_bmap_count_blocks(
105 	struct xfs_trans	*tp,
106 	struct xfs_inode	*ip,
107 	int			whichfork,
108 	xfs_extnum_t		*nextents,
109 	xfs_filblks_t		*count)
110 {
111 	struct xfs_mount	*mp = ip->i_mount;
112 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
113 	struct xfs_btree_cur	*cur;
114 	xfs_extlen_t		btblocks = 0;
115 	int			error;
116 
117 	*nextents = 0;
118 	*count = 0;
119 
120 	if (!ifp)
121 		return 0;
122 
123 	switch (ifp->if_format) {
124 	case XFS_DINODE_FMT_BTREE:
125 		error = xfs_iread_extents(tp, ip, whichfork);
126 		if (error)
127 			return error;
128 
129 		cur = xfs_bmbt_init_cursor(mp, tp, ip, whichfork);
130 		error = xfs_btree_count_blocks(cur, &btblocks);
131 		xfs_btree_del_cursor(cur, error);
132 		if (error)
133 			return error;
134 
135 		/*
136 		 * xfs_btree_count_blocks includes the root block contained in
137 		 * the inode fork in @btblocks, so subtract one because we're
138 		 * only interested in allocated disk blocks.
139 		 */
140 		*count += btblocks - 1;
141 
142 		fallthrough;
143 	case XFS_DINODE_FMT_EXTENTS:
144 		*nextents = xfs_bmap_count_leaves(ifp, count);
145 		break;
146 	}
147 
148 	return 0;
149 }
150 
151 static int
152 xfs_getbmap_report_one(
153 	struct xfs_inode	*ip,
154 	struct getbmapx		*bmv,
155 	struct kgetbmap		*out,
156 	int64_t			bmv_end,
157 	struct xfs_bmbt_irec	*got)
158 {
159 	struct kgetbmap		*p = out + bmv->bmv_entries;
160 	bool			shared = false;
161 	int			error;
162 
163 	error = xfs_reflink_trim_around_shared(ip, got, &shared);
164 	if (error)
165 		return error;
166 
167 	if (isnullstartblock(got->br_startblock) ||
168 	    got->br_startblock == DELAYSTARTBLOCK) {
169 		/*
170 		 * Take the flush completion as being a point-in-time snapshot
171 		 * where there are no delalloc extents, and if any new ones
172 		 * have been created racily, just skip them as being 'after'
173 		 * the flush and so don't get reported.
174 		 */
175 		if (!(bmv->bmv_iflags & BMV_IF_DELALLOC))
176 			return 0;
177 
178 		p->bmv_oflags |= BMV_OF_DELALLOC;
179 		p->bmv_block = -2;
180 	} else {
181 		p->bmv_block = xfs_fsb_to_db(ip, got->br_startblock);
182 	}
183 
184 	if (got->br_state == XFS_EXT_UNWRITTEN &&
185 	    (bmv->bmv_iflags & BMV_IF_PREALLOC))
186 		p->bmv_oflags |= BMV_OF_PREALLOC;
187 
188 	if (shared)
189 		p->bmv_oflags |= BMV_OF_SHARED;
190 
191 	p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, got->br_startoff);
192 	p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, got->br_blockcount);
193 
194 	bmv->bmv_offset = p->bmv_offset + p->bmv_length;
195 	bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset);
196 	bmv->bmv_entries++;
197 	return 0;
198 }
199 
200 static void
201 xfs_getbmap_report_hole(
202 	struct xfs_inode	*ip,
203 	struct getbmapx		*bmv,
204 	struct kgetbmap		*out,
205 	int64_t			bmv_end,
206 	xfs_fileoff_t		bno,
207 	xfs_fileoff_t		end)
208 {
209 	struct kgetbmap		*p = out + bmv->bmv_entries;
210 
211 	if (bmv->bmv_iflags & BMV_IF_NO_HOLES)
212 		return;
213 
214 	p->bmv_block = -1;
215 	p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, bno);
216 	p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, end - bno);
217 
218 	bmv->bmv_offset = p->bmv_offset + p->bmv_length;
219 	bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset);
220 	bmv->bmv_entries++;
221 }
222 
223 static inline bool
224 xfs_getbmap_full(
225 	struct getbmapx		*bmv)
226 {
227 	return bmv->bmv_length == 0 || bmv->bmv_entries >= bmv->bmv_count - 1;
228 }
229 
230 static bool
231 xfs_getbmap_next_rec(
232 	struct xfs_bmbt_irec	*rec,
233 	xfs_fileoff_t		total_end)
234 {
235 	xfs_fileoff_t		end = rec->br_startoff + rec->br_blockcount;
236 
237 	if (end == total_end)
238 		return false;
239 
240 	rec->br_startoff += rec->br_blockcount;
241 	if (!isnullstartblock(rec->br_startblock) &&
242 	    rec->br_startblock != DELAYSTARTBLOCK)
243 		rec->br_startblock += rec->br_blockcount;
244 	rec->br_blockcount = total_end - end;
245 	return true;
246 }
247 
248 /*
249  * Get inode's extents as described in bmv, and format for output.
250  * Calls formatter to fill the user's buffer until all extents
251  * are mapped, until the passed-in bmv->bmv_count slots have
252  * been filled, or until the formatter short-circuits the loop,
253  * if it is tracking filled-in extents on its own.
254  */
255 int						/* error code */
256 xfs_getbmap(
257 	struct xfs_inode	*ip,
258 	struct getbmapx		*bmv,		/* user bmap structure */
259 	struct kgetbmap		*out)
260 {
261 	struct xfs_mount	*mp = ip->i_mount;
262 	int			iflags = bmv->bmv_iflags;
263 	int			whichfork, lock, error = 0;
264 	int64_t			bmv_end, max_len;
265 	xfs_fileoff_t		bno, first_bno;
266 	struct xfs_ifork	*ifp;
267 	struct xfs_bmbt_irec	got, rec;
268 	xfs_filblks_t		len;
269 	struct xfs_iext_cursor	icur;
270 
271 	if (bmv->bmv_iflags & ~BMV_IF_VALID)
272 		return -EINVAL;
273 #ifndef DEBUG
274 	/* Only allow CoW fork queries if we're debugging. */
275 	if (iflags & BMV_IF_COWFORK)
276 		return -EINVAL;
277 #endif
278 	if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK))
279 		return -EINVAL;
280 
281 	if (bmv->bmv_length < -1)
282 		return -EINVAL;
283 	bmv->bmv_entries = 0;
284 	if (bmv->bmv_length == 0)
285 		return 0;
286 
287 	if (iflags & BMV_IF_ATTRFORK)
288 		whichfork = XFS_ATTR_FORK;
289 	else if (iflags & BMV_IF_COWFORK)
290 		whichfork = XFS_COW_FORK;
291 	else
292 		whichfork = XFS_DATA_FORK;
293 
294 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
295 	switch (whichfork) {
296 	case XFS_ATTR_FORK:
297 		lock = xfs_ilock_attr_map_shared(ip);
298 		if (!xfs_inode_has_attr_fork(ip))
299 			goto out_unlock_ilock;
300 
301 		max_len = 1LL << 32;
302 		break;
303 	case XFS_COW_FORK:
304 		lock = XFS_ILOCK_SHARED;
305 		xfs_ilock(ip, lock);
306 
307 		/* No CoW fork? Just return */
308 		if (!xfs_ifork_ptr(ip, whichfork))
309 			goto out_unlock_ilock;
310 
311 		if (xfs_get_cowextsz_hint(ip))
312 			max_len = mp->m_super->s_maxbytes;
313 		else
314 			max_len = XFS_ISIZE(ip);
315 		break;
316 	case XFS_DATA_FORK:
317 		if (!(iflags & BMV_IF_DELALLOC) &&
318 		    (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_disk_size)) {
319 			error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
320 			if (error)
321 				goto out_unlock_iolock;
322 
323 			/*
324 			 * Even after flushing the inode, there can still be
325 			 * delalloc blocks on the inode beyond EOF due to
326 			 * speculative preallocation.  These are not removed
327 			 * until the release function is called or the inode
328 			 * is inactivated.  Hence we cannot assert here that
329 			 * ip->i_delayed_blks == 0.
330 			 */
331 		}
332 
333 		if (xfs_get_extsz_hint(ip) ||
334 		    (ip->i_diflags & XFS_DIFLAG_PREALLOC))
335 			max_len = mp->m_super->s_maxbytes;
336 		else
337 			max_len = XFS_ISIZE(ip);
338 
339 		lock = xfs_ilock_data_map_shared(ip);
340 		break;
341 	}
342 
343 	ifp = xfs_ifork_ptr(ip, whichfork);
344 
345 	switch (ifp->if_format) {
346 	case XFS_DINODE_FMT_EXTENTS:
347 	case XFS_DINODE_FMT_BTREE:
348 		break;
349 	case XFS_DINODE_FMT_LOCAL:
350 		/* Local format inode forks report no extents. */
351 		goto out_unlock_ilock;
352 	default:
353 		error = -EINVAL;
354 		goto out_unlock_ilock;
355 	}
356 
357 	if (bmv->bmv_length == -1) {
358 		max_len = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, max_len));
359 		bmv->bmv_length = max(0LL, max_len - bmv->bmv_offset);
360 	}
361 
362 	bmv_end = bmv->bmv_offset + bmv->bmv_length;
363 
364 	first_bno = bno = XFS_BB_TO_FSBT(mp, bmv->bmv_offset);
365 	len = XFS_BB_TO_FSB(mp, bmv->bmv_length);
366 
367 	error = xfs_iread_extents(NULL, ip, whichfork);
368 	if (error)
369 		goto out_unlock_ilock;
370 
371 	if (!xfs_iext_lookup_extent(ip, ifp, bno, &icur, &got)) {
372 		/*
373 		 * Report a whole-file hole if the delalloc flag is set to
374 		 * stay compatible with the old implementation.
375 		 */
376 		if (iflags & BMV_IF_DELALLOC)
377 			xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno,
378 					XFS_B_TO_FSB(mp, XFS_ISIZE(ip)));
379 		goto out_unlock_ilock;
380 	}
381 
382 	while (!xfs_getbmap_full(bmv)) {
383 		xfs_trim_extent(&got, first_bno, len);
384 
385 		/*
386 		 * Report an entry for a hole if this extent doesn't directly
387 		 * follow the previous one.
388 		 */
389 		if (got.br_startoff > bno) {
390 			xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno,
391 					got.br_startoff);
392 			if (xfs_getbmap_full(bmv))
393 				break;
394 		}
395 
396 		/*
397 		 * In order to report shared extents accurately, we report each
398 		 * distinct shared / unshared part of a single bmbt record with
399 		 * an individual getbmapx record.
400 		 */
401 		bno = got.br_startoff + got.br_blockcount;
402 		rec = got;
403 		do {
404 			error = xfs_getbmap_report_one(ip, bmv, out, bmv_end,
405 					&rec);
406 			if (error || xfs_getbmap_full(bmv))
407 				goto out_unlock_ilock;
408 		} while (xfs_getbmap_next_rec(&rec, bno));
409 
410 		if (!xfs_iext_next_extent(ifp, &icur, &got)) {
411 			xfs_fileoff_t	end = XFS_B_TO_FSB(mp, XFS_ISIZE(ip));
412 
413 			if (bmv->bmv_entries > 0)
414 				out[bmv->bmv_entries - 1].bmv_oflags |=
415 								BMV_OF_LAST;
416 
417 			if (whichfork != XFS_ATTR_FORK && bno < end &&
418 			    !xfs_getbmap_full(bmv)) {
419 				xfs_getbmap_report_hole(ip, bmv, out, bmv_end,
420 						bno, end);
421 			}
422 			break;
423 		}
424 
425 		if (bno >= first_bno + len)
426 			break;
427 	}
428 
429 out_unlock_ilock:
430 	xfs_iunlock(ip, lock);
431 out_unlock_iolock:
432 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
433 	return error;
434 }
435 
436 /*
437  * Dead simple method of punching delalyed allocation blocks from a range in
438  * the inode.  This will always punch out both the start and end blocks, even
439  * if the ranges only partially overlap them, so it is up to the caller to
440  * ensure that partial blocks are not passed in.
441  */
442 void
443 xfs_bmap_punch_delalloc_range(
444 	struct xfs_inode	*ip,
445 	xfs_off_t		start_byte,
446 	xfs_off_t		end_byte)
447 {
448 	struct xfs_mount	*mp = ip->i_mount;
449 	struct xfs_ifork	*ifp = &ip->i_df;
450 	xfs_fileoff_t		start_fsb = XFS_B_TO_FSBT(mp, start_byte);
451 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, end_byte);
452 	struct xfs_bmbt_irec	got, del;
453 	struct xfs_iext_cursor	icur;
454 
455 	ASSERT(!xfs_need_iread_extents(ifp));
456 
457 	xfs_ilock(ip, XFS_ILOCK_EXCL);
458 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
459 		goto out_unlock;
460 
461 	while (got.br_startoff + got.br_blockcount > start_fsb) {
462 		del = got;
463 		xfs_trim_extent(&del, start_fsb, end_fsb - start_fsb);
464 
465 		/*
466 		 * A delete can push the cursor forward. Step back to the
467 		 * previous extent on non-delalloc or extents outside the
468 		 * target range.
469 		 */
470 		if (!del.br_blockcount ||
471 		    !isnullstartblock(del.br_startblock)) {
472 			if (!xfs_iext_prev_extent(ifp, &icur, &got))
473 				break;
474 			continue;
475 		}
476 
477 		xfs_bmap_del_extent_delay(ip, XFS_DATA_FORK, &icur, &got, &del);
478 		if (!xfs_iext_get_extent(ifp, &icur, &got))
479 			break;
480 	}
481 
482 out_unlock:
483 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
484 }
485 
486 /*
487  * Test whether it is appropriate to check an inode for and free post EOF
488  * blocks.
489  */
490 bool
491 xfs_can_free_eofblocks(
492 	struct xfs_inode	*ip)
493 {
494 	struct xfs_mount	*mp = ip->i_mount;
495 	bool			found_blocks = false;
496 	xfs_fileoff_t		end_fsb;
497 	xfs_fileoff_t		last_fsb;
498 	struct xfs_bmbt_irec	imap;
499 	struct xfs_iext_cursor	icur;
500 
501 	/*
502 	 * Caller must either hold the exclusive io lock; or be inactivating
503 	 * the inode, which guarantees there are no other users of the inode.
504 	 */
505 	if (!(VFS_I(ip)->i_state & I_FREEING))
506 		xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
507 
508 	/* prealloc/delalloc exists only on regular files */
509 	if (!S_ISREG(VFS_I(ip)->i_mode))
510 		return false;
511 
512 	/*
513 	 * Zero sized files with no cached pages and delalloc blocks will not
514 	 * have speculative prealloc/delalloc blocks to remove.
515 	 */
516 	if (VFS_I(ip)->i_size == 0 &&
517 	    VFS_I(ip)->i_mapping->nrpages == 0 &&
518 	    ip->i_delayed_blks == 0)
519 		return false;
520 
521 	/* If we haven't read in the extent list, then don't do it now. */
522 	if (xfs_need_iread_extents(&ip->i_df))
523 		return false;
524 
525 	/*
526 	 * Do not free real extents in preallocated files unless the file has
527 	 * delalloc blocks and we are forced to remove them.
528 	 */
529 	if ((ip->i_diflags & XFS_DIFLAG_PREALLOC) && !ip->i_delayed_blks)
530 		return false;
531 
532 	/*
533 	 * Do not try to free post-EOF blocks if EOF is beyond the end of the
534 	 * range supported by the page cache, because the truncation will loop
535 	 * forever.
536 	 */
537 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip));
538 	if (xfs_inode_has_bigrtalloc(ip))
539 		end_fsb = xfs_rtb_roundup_rtx(mp, end_fsb);
540 	last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
541 	if (last_fsb <= end_fsb)
542 		return false;
543 
544 	/*
545 	 * Check if there is an post-EOF extent to free.
546 	 */
547 	xfs_ilock(ip, XFS_ILOCK_SHARED);
548 	if (xfs_iext_lookup_extent(ip, &ip->i_df, end_fsb, &icur, &imap))
549 		found_blocks = true;
550 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
551 	return found_blocks;
552 }
553 
554 /*
555  * This is called to free any blocks beyond eof. The caller must hold
556  * IOLOCK_EXCL unless we are in the inode reclaim path and have the only
557  * reference to the inode.
558  */
559 int
560 xfs_free_eofblocks(
561 	struct xfs_inode	*ip)
562 {
563 	struct xfs_trans	*tp;
564 	struct xfs_mount	*mp = ip->i_mount;
565 	int			error;
566 
567 	/* Attach the dquots to the inode up front. */
568 	error = xfs_qm_dqattach(ip);
569 	if (error)
570 		return error;
571 
572 	/* Wait on dio to ensure i_size has settled. */
573 	inode_dio_wait(VFS_I(ip));
574 
575 	/*
576 	 * For preallocated files only free delayed allocations.
577 	 *
578 	 * Note that this means we also leave speculative preallocations in
579 	 * place for preallocated files.
580 	 */
581 	if (ip->i_diflags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)) {
582 		if (ip->i_delayed_blks) {
583 			xfs_bmap_punch_delalloc_range(ip,
584 				round_up(XFS_ISIZE(ip), mp->m_sb.sb_blocksize),
585 				LLONG_MAX);
586 		}
587 		xfs_inode_clear_eofblocks_tag(ip);
588 		return 0;
589 	}
590 
591 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
592 	if (error) {
593 		ASSERT(xfs_is_shutdown(mp));
594 		return error;
595 	}
596 
597 	xfs_ilock(ip, XFS_ILOCK_EXCL);
598 	xfs_trans_ijoin(tp, ip, 0);
599 
600 	/*
601 	 * Do not update the on-disk file size.  If we update the on-disk file
602 	 * size and then the system crashes before the contents of the file are
603 	 * flushed to disk then the files may be full of holes (ie NULL files
604 	 * bug).
605 	 */
606 	error = xfs_itruncate_extents_flags(&tp, ip, XFS_DATA_FORK,
607 				XFS_ISIZE(ip), XFS_BMAPI_NODISCARD);
608 	if (error)
609 		goto err_cancel;
610 
611 	error = xfs_trans_commit(tp);
612 	if (error)
613 		goto out_unlock;
614 
615 	xfs_inode_clear_eofblocks_tag(ip);
616 	goto out_unlock;
617 
618 err_cancel:
619 	/*
620 	 * If we get an error at this point we simply don't
621 	 * bother truncating the file.
622 	 */
623 	xfs_trans_cancel(tp);
624 out_unlock:
625 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
626 	return error;
627 }
628 
629 int
630 xfs_alloc_file_space(
631 	struct xfs_inode	*ip,
632 	xfs_off_t		offset,
633 	xfs_off_t		len)
634 {
635 	xfs_mount_t		*mp = ip->i_mount;
636 	xfs_off_t		count;
637 	xfs_filblks_t		allocatesize_fsb;
638 	xfs_extlen_t		extsz, temp;
639 	xfs_fileoff_t		startoffset_fsb;
640 	xfs_fileoff_t		endoffset_fsb;
641 	int			rt;
642 	xfs_trans_t		*tp;
643 	xfs_bmbt_irec_t		imaps[1], *imapp;
644 	int			error;
645 
646 	if (xfs_is_always_cow_inode(ip))
647 		return 0;
648 
649 	trace_xfs_alloc_file_space(ip);
650 
651 	if (xfs_is_shutdown(mp))
652 		return -EIO;
653 
654 	error = xfs_qm_dqattach(ip);
655 	if (error)
656 		return error;
657 
658 	if (len <= 0)
659 		return -EINVAL;
660 
661 	rt = XFS_IS_REALTIME_INODE(ip);
662 	extsz = xfs_get_extsz_hint(ip);
663 
664 	count = len;
665 	imapp = &imaps[0];
666 	startoffset_fsb	= XFS_B_TO_FSBT(mp, offset);
667 	endoffset_fsb = XFS_B_TO_FSB(mp, offset + count);
668 	allocatesize_fsb = endoffset_fsb - startoffset_fsb;
669 
670 	/*
671 	 * Allocate file space until done or until there is an error
672 	 */
673 	while (allocatesize_fsb && !error) {
674 		xfs_fileoff_t	s, e;
675 		unsigned int	dblocks, rblocks, resblks;
676 		int		nimaps = 1;
677 
678 		/*
679 		 * Determine space reservations for data/realtime.
680 		 */
681 		if (unlikely(extsz)) {
682 			s = startoffset_fsb;
683 			do_div(s, extsz);
684 			s *= extsz;
685 			e = startoffset_fsb + allocatesize_fsb;
686 			div_u64_rem(startoffset_fsb, extsz, &temp);
687 			if (temp)
688 				e += temp;
689 			div_u64_rem(e, extsz, &temp);
690 			if (temp)
691 				e += extsz - temp;
692 		} else {
693 			s = 0;
694 			e = allocatesize_fsb;
695 		}
696 
697 		/*
698 		 * The transaction reservation is limited to a 32-bit block
699 		 * count, hence we need to limit the number of blocks we are
700 		 * trying to reserve to avoid an overflow. We can't allocate
701 		 * more than @nimaps extents, and an extent is limited on disk
702 		 * to XFS_BMBT_MAX_EXTLEN (21 bits), so use that to enforce the
703 		 * limit.
704 		 */
705 		resblks = min_t(xfs_fileoff_t, (e - s),
706 				(XFS_MAX_BMBT_EXTLEN * nimaps));
707 		if (unlikely(rt)) {
708 			dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
709 			rblocks = resblks;
710 		} else {
711 			dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks);
712 			rblocks = 0;
713 		}
714 
715 		error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
716 				dblocks, rblocks, false, &tp);
717 		if (error)
718 			break;
719 
720 		error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK,
721 				XFS_IEXT_ADD_NOSPLIT_CNT);
722 		if (error)
723 			goto error;
724 
725 		/*
726 		 * If the allocator cannot find a single free extent large
727 		 * enough to cover the start block of the requested range,
728 		 * xfs_bmapi_write will return -ENOSR.
729 		 *
730 		 * In that case we simply need to keep looping with the same
731 		 * startoffset_fsb so that one of the following allocations
732 		 * will eventually reach the requested range.
733 		 */
734 		error = xfs_bmapi_write(tp, ip, startoffset_fsb,
735 				allocatesize_fsb, XFS_BMAPI_PREALLOC, 0, imapp,
736 				&nimaps);
737 		if (error) {
738 			if (error != -ENOSR)
739 				goto error;
740 			error = 0;
741 		} else {
742 			startoffset_fsb += imapp->br_blockcount;
743 			allocatesize_fsb -= imapp->br_blockcount;
744 		}
745 
746 		ip->i_diflags |= XFS_DIFLAG_PREALLOC;
747 		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
748 
749 		error = xfs_trans_commit(tp);
750 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
751 	}
752 
753 	return error;
754 
755 error:
756 	xfs_trans_cancel(tp);
757 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
758 	return error;
759 }
760 
761 static int
762 xfs_unmap_extent(
763 	struct xfs_inode	*ip,
764 	xfs_fileoff_t		startoffset_fsb,
765 	xfs_filblks_t		len_fsb,
766 	int			*done)
767 {
768 	struct xfs_mount	*mp = ip->i_mount;
769 	struct xfs_trans	*tp;
770 	uint			resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
771 	int			error;
772 
773 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
774 			false, &tp);
775 	if (error)
776 		return error;
777 
778 	error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK,
779 			XFS_IEXT_PUNCH_HOLE_CNT);
780 	if (error)
781 		goto out_trans_cancel;
782 
783 	error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, done);
784 	if (error)
785 		goto out_trans_cancel;
786 
787 	error = xfs_trans_commit(tp);
788 out_unlock:
789 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
790 	return error;
791 
792 out_trans_cancel:
793 	xfs_trans_cancel(tp);
794 	goto out_unlock;
795 }
796 
797 /* Caller must first wait for the completion of any pending DIOs if required. */
798 int
799 xfs_flush_unmap_range(
800 	struct xfs_inode	*ip,
801 	xfs_off_t		offset,
802 	xfs_off_t		len)
803 {
804 	struct inode		*inode = VFS_I(ip);
805 	xfs_off_t		rounding, start, end;
806 	int			error;
807 
808 	/*
809 	 * Make sure we extend the flush out to extent alignment
810 	 * boundaries so any extent range overlapping the start/end
811 	 * of the modification we are about to do is clean and idle.
812 	 */
813 	rounding = max_t(xfs_off_t, xfs_inode_alloc_unitsize(ip), PAGE_SIZE);
814 	start = rounddown_64(offset, rounding);
815 	end = roundup_64(offset + len, rounding) - 1;
816 
817 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
818 	if (error)
819 		return error;
820 	truncate_pagecache_range(inode, start, end);
821 	return 0;
822 }
823 
824 int
825 xfs_free_file_space(
826 	struct xfs_inode	*ip,
827 	xfs_off_t		offset,
828 	xfs_off_t		len)
829 {
830 	struct xfs_mount	*mp = ip->i_mount;
831 	xfs_fileoff_t		startoffset_fsb;
832 	xfs_fileoff_t		endoffset_fsb;
833 	int			done = 0, error;
834 
835 	trace_xfs_free_file_space(ip);
836 
837 	error = xfs_qm_dqattach(ip);
838 	if (error)
839 		return error;
840 
841 	if (len <= 0)	/* if nothing being freed */
842 		return 0;
843 
844 	/*
845 	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
846 	 * the cached range over the first operation we are about to run.
847 	 */
848 	error = xfs_flush_unmap_range(ip, offset, len);
849 	if (error)
850 		return error;
851 
852 	startoffset_fsb = XFS_B_TO_FSB(mp, offset);
853 	endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len);
854 
855 	/* We can only free complete realtime extents. */
856 	if (xfs_inode_has_bigrtalloc(ip)) {
857 		startoffset_fsb = xfs_rtb_roundup_rtx(mp, startoffset_fsb);
858 		endoffset_fsb = xfs_rtb_rounddown_rtx(mp, endoffset_fsb);
859 	}
860 
861 	/*
862 	 * Need to zero the stuff we're not freeing, on disk.
863 	 */
864 	if (endoffset_fsb > startoffset_fsb) {
865 		while (!done) {
866 			error = xfs_unmap_extent(ip, startoffset_fsb,
867 					endoffset_fsb - startoffset_fsb, &done);
868 			if (error)
869 				return error;
870 		}
871 	}
872 
873 	/*
874 	 * Now that we've unmap all full blocks we'll have to zero out any
875 	 * partial block at the beginning and/or end.  xfs_zero_range is smart
876 	 * enough to skip any holes, including those we just created, but we
877 	 * must take care not to zero beyond EOF and enlarge i_size.
878 	 */
879 	if (offset >= XFS_ISIZE(ip))
880 		return 0;
881 	if (offset + len > XFS_ISIZE(ip))
882 		len = XFS_ISIZE(ip) - offset;
883 	error = xfs_zero_range(ip, offset, len, NULL);
884 	if (error)
885 		return error;
886 
887 	/*
888 	 * If we zeroed right up to EOF and EOF straddles a page boundary we
889 	 * must make sure that the post-EOF area is also zeroed because the
890 	 * page could be mmap'd and xfs_zero_range doesn't do that for us.
891 	 * Writeback of the eof page will do this, albeit clumsily.
892 	 */
893 	if (offset + len >= XFS_ISIZE(ip) && offset_in_page(offset + len) > 0) {
894 		error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
895 				round_down(offset + len, PAGE_SIZE), LLONG_MAX);
896 	}
897 
898 	return error;
899 }
900 
901 static int
902 xfs_prepare_shift(
903 	struct xfs_inode	*ip,
904 	loff_t			offset)
905 {
906 	unsigned int		rounding;
907 	int			error;
908 
909 	/*
910 	 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation
911 	 * into the accessible region of the file.
912 	 */
913 	if (xfs_can_free_eofblocks(ip)) {
914 		error = xfs_free_eofblocks(ip);
915 		if (error)
916 			return error;
917 	}
918 
919 	/*
920 	 * Shift operations must stabilize the start block offset boundary along
921 	 * with the full range of the operation. If we don't, a COW writeback
922 	 * completion could race with an insert, front merge with the start
923 	 * extent (after split) during the shift and corrupt the file. Start
924 	 * with the allocation unit just prior to the start to stabilize the
925 	 * boundary.
926 	 */
927 	rounding = xfs_inode_alloc_unitsize(ip);
928 	offset = rounddown_64(offset, rounding);
929 	if (offset)
930 		offset -= rounding;
931 
932 	/*
933 	 * Writeback and invalidate cache for the remainder of the file as we're
934 	 * about to shift down every extent from offset to EOF.
935 	 */
936 	error = xfs_flush_unmap_range(ip, offset, XFS_ISIZE(ip));
937 	if (error)
938 		return error;
939 
940 	/*
941 	 * Clean out anything hanging around in the cow fork now that
942 	 * we've flushed all the dirty data out to disk to avoid having
943 	 * CoW extents at the wrong offsets.
944 	 */
945 	if (xfs_inode_has_cow_data(ip)) {
946 		error = xfs_reflink_cancel_cow_range(ip, offset, NULLFILEOFF,
947 				true);
948 		if (error)
949 			return error;
950 	}
951 
952 	return 0;
953 }
954 
955 /*
956  * xfs_collapse_file_space()
957  *	This routine frees disk space and shift extent for the given file.
958  *	The first thing we do is to free data blocks in the specified range
959  *	by calling xfs_free_file_space(). It would also sync dirty data
960  *	and invalidate page cache over the region on which collapse range
961  *	is working. And Shift extent records to the left to cover a hole.
962  * RETURNS:
963  *	0 on success
964  *	errno on error
965  *
966  */
967 int
968 xfs_collapse_file_space(
969 	struct xfs_inode	*ip,
970 	xfs_off_t		offset,
971 	xfs_off_t		len)
972 {
973 	struct xfs_mount	*mp = ip->i_mount;
974 	struct xfs_trans	*tp;
975 	int			error;
976 	xfs_fileoff_t		next_fsb = XFS_B_TO_FSB(mp, offset + len);
977 	xfs_fileoff_t		shift_fsb = XFS_B_TO_FSB(mp, len);
978 	bool			done = false;
979 
980 	xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
981 
982 	trace_xfs_collapse_file_space(ip);
983 
984 	error = xfs_free_file_space(ip, offset, len);
985 	if (error)
986 		return error;
987 
988 	error = xfs_prepare_shift(ip, offset);
989 	if (error)
990 		return error;
991 
992 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
993 	if (error)
994 		return error;
995 
996 	xfs_ilock(ip, XFS_ILOCK_EXCL);
997 	xfs_trans_ijoin(tp, ip, 0);
998 
999 	while (!done) {
1000 		error = xfs_bmap_collapse_extents(tp, ip, &next_fsb, shift_fsb,
1001 				&done);
1002 		if (error)
1003 			goto out_trans_cancel;
1004 		if (done)
1005 			break;
1006 
1007 		/* finish any deferred frees and roll the transaction */
1008 		error = xfs_defer_finish(&tp);
1009 		if (error)
1010 			goto out_trans_cancel;
1011 	}
1012 
1013 	error = xfs_trans_commit(tp);
1014 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1015 	return error;
1016 
1017 out_trans_cancel:
1018 	xfs_trans_cancel(tp);
1019 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1020 	return error;
1021 }
1022 
1023 /*
1024  * xfs_insert_file_space()
1025  *	This routine create hole space by shifting extents for the given file.
1026  *	The first thing we do is to sync dirty data and invalidate page cache
1027  *	over the region on which insert range is working. And split an extent
1028  *	to two extents at given offset by calling xfs_bmap_split_extent.
1029  *	And shift all extent records which are laying between [offset,
1030  *	last allocated extent] to the right to reserve hole range.
1031  * RETURNS:
1032  *	0 on success
1033  *	errno on error
1034  */
1035 int
1036 xfs_insert_file_space(
1037 	struct xfs_inode	*ip,
1038 	loff_t			offset,
1039 	loff_t			len)
1040 {
1041 	struct xfs_mount	*mp = ip->i_mount;
1042 	struct xfs_trans	*tp;
1043 	int			error;
1044 	xfs_fileoff_t		stop_fsb = XFS_B_TO_FSB(mp, offset);
1045 	xfs_fileoff_t		next_fsb = NULLFSBLOCK;
1046 	xfs_fileoff_t		shift_fsb = XFS_B_TO_FSB(mp, len);
1047 	bool			done = false;
1048 
1049 	xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
1050 
1051 	trace_xfs_insert_file_space(ip);
1052 
1053 	error = xfs_bmap_can_insert_extents(ip, stop_fsb, shift_fsb);
1054 	if (error)
1055 		return error;
1056 
1057 	error = xfs_prepare_shift(ip, offset);
1058 	if (error)
1059 		return error;
1060 
1061 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write,
1062 			XFS_DIOSTRAT_SPACE_RES(mp, 0), 0, 0, &tp);
1063 	if (error)
1064 		return error;
1065 
1066 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1067 	xfs_trans_ijoin(tp, ip, 0);
1068 
1069 	error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK,
1070 			XFS_IEXT_PUNCH_HOLE_CNT);
1071 	if (error)
1072 		goto out_trans_cancel;
1073 
1074 	/*
1075 	 * The extent shifting code works on extent granularity. So, if stop_fsb
1076 	 * is not the starting block of extent, we need to split the extent at
1077 	 * stop_fsb.
1078 	 */
1079 	error = xfs_bmap_split_extent(tp, ip, stop_fsb);
1080 	if (error)
1081 		goto out_trans_cancel;
1082 
1083 	do {
1084 		error = xfs_defer_finish(&tp);
1085 		if (error)
1086 			goto out_trans_cancel;
1087 
1088 		error = xfs_bmap_insert_extents(tp, ip, &next_fsb, shift_fsb,
1089 				&done, stop_fsb);
1090 		if (error)
1091 			goto out_trans_cancel;
1092 	} while (!done);
1093 
1094 	error = xfs_trans_commit(tp);
1095 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1096 	return error;
1097 
1098 out_trans_cancel:
1099 	xfs_trans_cancel(tp);
1100 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1101 	return error;
1102 }
1103 
1104 /*
1105  * We need to check that the format of the data fork in the temporary inode is
1106  * valid for the target inode before doing the swap. This is not a problem with
1107  * attr1 because of the fixed fork offset, but attr2 has a dynamically sized
1108  * data fork depending on the space the attribute fork is taking so we can get
1109  * invalid formats on the target inode.
1110  *
1111  * E.g. target has space for 7 extents in extent format, temp inode only has
1112  * space for 6.  If we defragment down to 7 extents, then the tmp format is a
1113  * btree, but when swapped it needs to be in extent format. Hence we can't just
1114  * blindly swap data forks on attr2 filesystems.
1115  *
1116  * Note that we check the swap in both directions so that we don't end up with
1117  * a corrupt temporary inode, either.
1118  *
1119  * Note that fixing the way xfs_fsr sets up the attribute fork in the source
1120  * inode will prevent this situation from occurring, so all we do here is
1121  * reject and log the attempt. basically we are putting the responsibility on
1122  * userspace to get this right.
1123  */
1124 static int
1125 xfs_swap_extents_check_format(
1126 	struct xfs_inode	*ip,	/* target inode */
1127 	struct xfs_inode	*tip)	/* tmp inode */
1128 {
1129 	struct xfs_ifork	*ifp = &ip->i_df;
1130 	struct xfs_ifork	*tifp = &tip->i_df;
1131 
1132 	/* User/group/project quota ids must match if quotas are enforced. */
1133 	if (XFS_IS_QUOTA_ON(ip->i_mount) &&
1134 	    (!uid_eq(VFS_I(ip)->i_uid, VFS_I(tip)->i_uid) ||
1135 	     !gid_eq(VFS_I(ip)->i_gid, VFS_I(tip)->i_gid) ||
1136 	     ip->i_projid != tip->i_projid))
1137 		return -EINVAL;
1138 
1139 	/* Should never get a local format */
1140 	if (ifp->if_format == XFS_DINODE_FMT_LOCAL ||
1141 	    tifp->if_format == XFS_DINODE_FMT_LOCAL)
1142 		return -EINVAL;
1143 
1144 	/*
1145 	 * if the target inode has less extents that then temporary inode then
1146 	 * why did userspace call us?
1147 	 */
1148 	if (ifp->if_nextents < tifp->if_nextents)
1149 		return -EINVAL;
1150 
1151 	/*
1152 	 * If we have to use the (expensive) rmap swap method, we can
1153 	 * handle any number of extents and any format.
1154 	 */
1155 	if (xfs_has_rmapbt(ip->i_mount))
1156 		return 0;
1157 
1158 	/*
1159 	 * if the target inode is in extent form and the temp inode is in btree
1160 	 * form then we will end up with the target inode in the wrong format
1161 	 * as we already know there are less extents in the temp inode.
1162 	 */
1163 	if (ifp->if_format == XFS_DINODE_FMT_EXTENTS &&
1164 	    tifp->if_format == XFS_DINODE_FMT_BTREE)
1165 		return -EINVAL;
1166 
1167 	/* Check temp in extent form to max in target */
1168 	if (tifp->if_format == XFS_DINODE_FMT_EXTENTS &&
1169 	    tifp->if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1170 		return -EINVAL;
1171 
1172 	/* Check target in extent form to max in temp */
1173 	if (ifp->if_format == XFS_DINODE_FMT_EXTENTS &&
1174 	    ifp->if_nextents > XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1175 		return -EINVAL;
1176 
1177 	/*
1178 	 * If we are in a btree format, check that the temp root block will fit
1179 	 * in the target and that it has enough extents to be in btree format
1180 	 * in the target.
1181 	 *
1182 	 * Note that we have to be careful to allow btree->extent conversions
1183 	 * (a common defrag case) which will occur when the temp inode is in
1184 	 * extent format...
1185 	 */
1186 	if (tifp->if_format == XFS_DINODE_FMT_BTREE) {
1187 		if (xfs_inode_has_attr_fork(ip) &&
1188 		    xfs_bmap_bmdr_space(tifp->if_broot) > xfs_inode_fork_boff(ip))
1189 			return -EINVAL;
1190 		if (tifp->if_nextents <= XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1191 			return -EINVAL;
1192 	}
1193 
1194 	/* Reciprocal target->temp btree format checks */
1195 	if (ifp->if_format == XFS_DINODE_FMT_BTREE) {
1196 		if (xfs_inode_has_attr_fork(tip) &&
1197 		    xfs_bmap_bmdr_space(ip->i_df.if_broot) > xfs_inode_fork_boff(tip))
1198 			return -EINVAL;
1199 		if (ifp->if_nextents <= XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1200 			return -EINVAL;
1201 	}
1202 
1203 	return 0;
1204 }
1205 
1206 static int
1207 xfs_swap_extent_flush(
1208 	struct xfs_inode	*ip)
1209 {
1210 	int	error;
1211 
1212 	error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1213 	if (error)
1214 		return error;
1215 	truncate_pagecache_range(VFS_I(ip), 0, -1);
1216 
1217 	/* Verify O_DIRECT for ftmp */
1218 	if (VFS_I(ip)->i_mapping->nrpages)
1219 		return -EINVAL;
1220 	return 0;
1221 }
1222 
1223 /*
1224  * Move extents from one file to another, when rmap is enabled.
1225  */
1226 STATIC int
1227 xfs_swap_extent_rmap(
1228 	struct xfs_trans		**tpp,
1229 	struct xfs_inode		*ip,
1230 	struct xfs_inode		*tip)
1231 {
1232 	struct xfs_trans		*tp = *tpp;
1233 	struct xfs_bmbt_irec		irec;
1234 	struct xfs_bmbt_irec		uirec;
1235 	struct xfs_bmbt_irec		tirec;
1236 	xfs_fileoff_t			offset_fsb;
1237 	xfs_fileoff_t			end_fsb;
1238 	xfs_filblks_t			count_fsb;
1239 	int				error;
1240 	xfs_filblks_t			ilen;
1241 	xfs_filblks_t			rlen;
1242 	int				nimaps;
1243 	uint64_t			tip_flags2;
1244 
1245 	/*
1246 	 * If the source file has shared blocks, we must flag the donor
1247 	 * file as having shared blocks so that we get the shared-block
1248 	 * rmap functions when we go to fix up the rmaps.  The flags
1249 	 * will be switch for reals later.
1250 	 */
1251 	tip_flags2 = tip->i_diflags2;
1252 	if (ip->i_diflags2 & XFS_DIFLAG2_REFLINK)
1253 		tip->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1254 
1255 	offset_fsb = 0;
1256 	end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip)));
1257 	count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb);
1258 
1259 	while (count_fsb) {
1260 		/* Read extent from the donor file */
1261 		nimaps = 1;
1262 		error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec,
1263 				&nimaps, 0);
1264 		if (error)
1265 			goto out;
1266 		ASSERT(nimaps == 1);
1267 		ASSERT(tirec.br_startblock != DELAYSTARTBLOCK);
1268 
1269 		trace_xfs_swap_extent_rmap_remap(tip, &tirec);
1270 		ilen = tirec.br_blockcount;
1271 
1272 		/* Unmap the old blocks in the source file. */
1273 		while (tirec.br_blockcount) {
1274 			ASSERT(tp->t_highest_agno == NULLAGNUMBER);
1275 			trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec);
1276 
1277 			/* Read extent from the source file */
1278 			nimaps = 1;
1279 			error = xfs_bmapi_read(ip, tirec.br_startoff,
1280 					tirec.br_blockcount, &irec,
1281 					&nimaps, 0);
1282 			if (error)
1283 				goto out;
1284 			ASSERT(nimaps == 1);
1285 			ASSERT(tirec.br_startoff == irec.br_startoff);
1286 			trace_xfs_swap_extent_rmap_remap_piece(ip, &irec);
1287 
1288 			/* Trim the extent. */
1289 			uirec = tirec;
1290 			uirec.br_blockcount = rlen = min_t(xfs_filblks_t,
1291 					tirec.br_blockcount,
1292 					irec.br_blockcount);
1293 			trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec);
1294 
1295 			if (xfs_bmap_is_real_extent(&uirec)) {
1296 				error = xfs_iext_count_extend(tp, ip,
1297 						XFS_DATA_FORK,
1298 						XFS_IEXT_SWAP_RMAP_CNT);
1299 				if (error)
1300 					goto out;
1301 			}
1302 
1303 			if (xfs_bmap_is_real_extent(&irec)) {
1304 				error = xfs_iext_count_extend(tp, tip,
1305 						XFS_DATA_FORK,
1306 						XFS_IEXT_SWAP_RMAP_CNT);
1307 				if (error)
1308 					goto out;
1309 			}
1310 
1311 			/* Remove the mapping from the donor file. */
1312 			xfs_bmap_unmap_extent(tp, tip, XFS_DATA_FORK, &uirec);
1313 
1314 			/* Remove the mapping from the source file. */
1315 			xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &irec);
1316 
1317 			/* Map the donor file's blocks into the source file. */
1318 			xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, &uirec);
1319 
1320 			/* Map the source file's blocks into the donor file. */
1321 			xfs_bmap_map_extent(tp, tip, XFS_DATA_FORK, &irec);
1322 
1323 			error = xfs_defer_finish(tpp);
1324 			tp = *tpp;
1325 			if (error)
1326 				goto out;
1327 
1328 			tirec.br_startoff += rlen;
1329 			if (tirec.br_startblock != HOLESTARTBLOCK &&
1330 			    tirec.br_startblock != DELAYSTARTBLOCK)
1331 				tirec.br_startblock += rlen;
1332 			tirec.br_blockcount -= rlen;
1333 		}
1334 
1335 		/* Roll on... */
1336 		count_fsb -= ilen;
1337 		offset_fsb += ilen;
1338 	}
1339 
1340 	tip->i_diflags2 = tip_flags2;
1341 	return 0;
1342 
1343 out:
1344 	trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_);
1345 	tip->i_diflags2 = tip_flags2;
1346 	return error;
1347 }
1348 
1349 /* Swap the extents of two files by swapping data forks. */
1350 STATIC int
1351 xfs_swap_extent_forks(
1352 	struct xfs_trans	*tp,
1353 	struct xfs_inode	*ip,
1354 	struct xfs_inode	*tip,
1355 	int			*src_log_flags,
1356 	int			*target_log_flags)
1357 {
1358 	xfs_filblks_t		aforkblks = 0;
1359 	xfs_filblks_t		taforkblks = 0;
1360 	xfs_extnum_t		junk;
1361 	uint64_t		tmp;
1362 	int			error;
1363 
1364 	/*
1365 	 * Count the number of extended attribute blocks
1366 	 */
1367 	if (xfs_inode_has_attr_fork(ip) && ip->i_af.if_nextents > 0 &&
1368 	    ip->i_af.if_format != XFS_DINODE_FMT_LOCAL) {
1369 		error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &junk,
1370 				&aforkblks);
1371 		if (error)
1372 			return error;
1373 	}
1374 	if (xfs_inode_has_attr_fork(tip) && tip->i_af.if_nextents > 0 &&
1375 	    tip->i_af.if_format != XFS_DINODE_FMT_LOCAL) {
1376 		error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, &junk,
1377 				&taforkblks);
1378 		if (error)
1379 			return error;
1380 	}
1381 
1382 	/*
1383 	 * Btree format (v3) inodes have the inode number stamped in the bmbt
1384 	 * block headers. We can't start changing the bmbt blocks until the
1385 	 * inode owner change is logged so recovery does the right thing in the
1386 	 * event of a crash. Set the owner change log flags now and leave the
1387 	 * bmbt scan as the last step.
1388 	 */
1389 	if (xfs_has_v3inodes(ip->i_mount)) {
1390 		if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE)
1391 			(*target_log_flags) |= XFS_ILOG_DOWNER;
1392 		if (tip->i_df.if_format == XFS_DINODE_FMT_BTREE)
1393 			(*src_log_flags) |= XFS_ILOG_DOWNER;
1394 	}
1395 
1396 	/*
1397 	 * Swap the data forks of the inodes
1398 	 */
1399 	swap(ip->i_df, tip->i_df);
1400 
1401 	/*
1402 	 * Fix the on-disk inode values
1403 	 */
1404 	tmp = (uint64_t)ip->i_nblocks;
1405 	ip->i_nblocks = tip->i_nblocks - taforkblks + aforkblks;
1406 	tip->i_nblocks = tmp + taforkblks - aforkblks;
1407 
1408 	/*
1409 	 * The extents in the source inode could still contain speculative
1410 	 * preallocation beyond EOF (e.g. the file is open but not modified
1411 	 * while defrag is in progress). In that case, we need to copy over the
1412 	 * number of delalloc blocks the data fork in the source inode is
1413 	 * tracking beyond EOF so that when the fork is truncated away when the
1414 	 * temporary inode is unlinked we don't underrun the i_delayed_blks
1415 	 * counter on that inode.
1416 	 */
1417 	ASSERT(tip->i_delayed_blks == 0);
1418 	tip->i_delayed_blks = ip->i_delayed_blks;
1419 	ip->i_delayed_blks = 0;
1420 
1421 	switch (ip->i_df.if_format) {
1422 	case XFS_DINODE_FMT_EXTENTS:
1423 		(*src_log_flags) |= XFS_ILOG_DEXT;
1424 		break;
1425 	case XFS_DINODE_FMT_BTREE:
1426 		ASSERT(!xfs_has_v3inodes(ip->i_mount) ||
1427 		       (*src_log_flags & XFS_ILOG_DOWNER));
1428 		(*src_log_flags) |= XFS_ILOG_DBROOT;
1429 		break;
1430 	}
1431 
1432 	switch (tip->i_df.if_format) {
1433 	case XFS_DINODE_FMT_EXTENTS:
1434 		(*target_log_flags) |= XFS_ILOG_DEXT;
1435 		break;
1436 	case XFS_DINODE_FMT_BTREE:
1437 		(*target_log_flags) |= XFS_ILOG_DBROOT;
1438 		ASSERT(!xfs_has_v3inodes(ip->i_mount) ||
1439 		       (*target_log_flags & XFS_ILOG_DOWNER));
1440 		break;
1441 	}
1442 
1443 	return 0;
1444 }
1445 
1446 /*
1447  * Fix up the owners of the bmbt blocks to refer to the current inode. The
1448  * change owner scan attempts to order all modified buffers in the current
1449  * transaction. In the event of ordered buffer failure, the offending buffer is
1450  * physically logged as a fallback and the scan returns -EAGAIN. We must roll
1451  * the transaction in this case to replenish the fallback log reservation and
1452  * restart the scan. This process repeats until the scan completes.
1453  */
1454 static int
1455 xfs_swap_change_owner(
1456 	struct xfs_trans	**tpp,
1457 	struct xfs_inode	*ip,
1458 	struct xfs_inode	*tmpip)
1459 {
1460 	int			error;
1461 	struct xfs_trans	*tp = *tpp;
1462 
1463 	do {
1464 		error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, ip->i_ino,
1465 					      NULL);
1466 		/* success or fatal error */
1467 		if (error != -EAGAIN)
1468 			break;
1469 
1470 		error = xfs_trans_roll(tpp);
1471 		if (error)
1472 			break;
1473 		tp = *tpp;
1474 
1475 		/*
1476 		 * Redirty both inodes so they can relog and keep the log tail
1477 		 * moving forward.
1478 		 */
1479 		xfs_trans_ijoin(tp, ip, 0);
1480 		xfs_trans_ijoin(tp, tmpip, 0);
1481 		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1482 		xfs_trans_log_inode(tp, tmpip, XFS_ILOG_CORE);
1483 	} while (true);
1484 
1485 	return error;
1486 }
1487 
1488 int
1489 xfs_swap_extents(
1490 	struct xfs_inode	*ip,	/* target inode */
1491 	struct xfs_inode	*tip,	/* tmp inode */
1492 	struct xfs_swapext	*sxp)
1493 {
1494 	struct xfs_mount	*mp = ip->i_mount;
1495 	struct xfs_trans	*tp;
1496 	struct xfs_bstat	*sbp = &sxp->sx_stat;
1497 	int			src_log_flags, target_log_flags;
1498 	int			error = 0;
1499 	uint64_t		f;
1500 	int			resblks = 0;
1501 	unsigned int		flags = 0;
1502 	struct timespec64	ctime, mtime;
1503 
1504 	/*
1505 	 * Lock the inodes against other IO, page faults and truncate to
1506 	 * begin with.  Then we can ensure the inodes are flushed and have no
1507 	 * page cache safely. Once we have done this we can take the ilocks and
1508 	 * do the rest of the checks.
1509 	 */
1510 	lock_two_nondirectories(VFS_I(ip), VFS_I(tip));
1511 	filemap_invalidate_lock_two(VFS_I(ip)->i_mapping,
1512 				    VFS_I(tip)->i_mapping);
1513 
1514 	/* Verify that both files have the same format */
1515 	if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) {
1516 		error = -EINVAL;
1517 		goto out_unlock;
1518 	}
1519 
1520 	/* Verify both files are either real-time or non-realtime */
1521 	if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) {
1522 		error = -EINVAL;
1523 		goto out_unlock;
1524 	}
1525 
1526 	error = xfs_qm_dqattach(ip);
1527 	if (error)
1528 		goto out_unlock;
1529 
1530 	error = xfs_qm_dqattach(tip);
1531 	if (error)
1532 		goto out_unlock;
1533 
1534 	error = xfs_swap_extent_flush(ip);
1535 	if (error)
1536 		goto out_unlock;
1537 	error = xfs_swap_extent_flush(tip);
1538 	if (error)
1539 		goto out_unlock;
1540 
1541 	if (xfs_inode_has_cow_data(tip)) {
1542 		error = xfs_reflink_cancel_cow_range(tip, 0, NULLFILEOFF, true);
1543 		if (error)
1544 			goto out_unlock;
1545 	}
1546 
1547 	/*
1548 	 * Extent "swapping" with rmap requires a permanent reservation and
1549 	 * a block reservation because it's really just a remap operation
1550 	 * performed with log redo items!
1551 	 */
1552 	if (xfs_has_rmapbt(mp)) {
1553 		int		w = XFS_DATA_FORK;
1554 		uint32_t	ipnext = ip->i_df.if_nextents;
1555 		uint32_t	tipnext	= tip->i_df.if_nextents;
1556 
1557 		/*
1558 		 * Conceptually this shouldn't affect the shape of either bmbt,
1559 		 * but since we atomically move extents one by one, we reserve
1560 		 * enough space to rebuild both trees.
1561 		 */
1562 		resblks = XFS_SWAP_RMAP_SPACE_RES(mp, ipnext, w);
1563 		resblks +=  XFS_SWAP_RMAP_SPACE_RES(mp, tipnext, w);
1564 
1565 		/*
1566 		 * If either inode straddles a bmapbt block allocation boundary,
1567 		 * the rmapbt algorithm triggers repeated allocs and frees as
1568 		 * extents are remapped. This can exhaust the block reservation
1569 		 * prematurely and cause shutdown. Return freed blocks to the
1570 		 * transaction reservation to counter this behavior.
1571 		 */
1572 		flags |= XFS_TRANS_RES_FDBLKS;
1573 	}
1574 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, flags,
1575 				&tp);
1576 	if (error)
1577 		goto out_unlock;
1578 
1579 	/*
1580 	 * Lock and join the inodes to the tansaction so that transaction commit
1581 	 * or cancel will unlock the inodes from this point onwards.
1582 	 */
1583 	xfs_lock_two_inodes(ip, XFS_ILOCK_EXCL, tip, XFS_ILOCK_EXCL);
1584 	xfs_trans_ijoin(tp, ip, 0);
1585 	xfs_trans_ijoin(tp, tip, 0);
1586 
1587 
1588 	/* Verify all data are being swapped */
1589 	if (sxp->sx_offset != 0 ||
1590 	    sxp->sx_length != ip->i_disk_size ||
1591 	    sxp->sx_length != tip->i_disk_size) {
1592 		error = -EFAULT;
1593 		goto out_trans_cancel;
1594 	}
1595 
1596 	trace_xfs_swap_extent_before(ip, 0);
1597 	trace_xfs_swap_extent_before(tip, 1);
1598 
1599 	/* check inode formats now that data is flushed */
1600 	error = xfs_swap_extents_check_format(ip, tip);
1601 	if (error) {
1602 		xfs_notice(mp,
1603 		    "%s: inode 0x%llx format is incompatible for exchanging.",
1604 				__func__, ip->i_ino);
1605 		goto out_trans_cancel;
1606 	}
1607 
1608 	/*
1609 	 * Compare the current change & modify times with that
1610 	 * passed in.  If they differ, we abort this swap.
1611 	 * This is the mechanism used to ensure the calling
1612 	 * process that the file was not changed out from
1613 	 * under it.
1614 	 */
1615 	ctime = inode_get_ctime(VFS_I(ip));
1616 	mtime = inode_get_mtime(VFS_I(ip));
1617 	if ((sbp->bs_ctime.tv_sec != ctime.tv_sec) ||
1618 	    (sbp->bs_ctime.tv_nsec != ctime.tv_nsec) ||
1619 	    (sbp->bs_mtime.tv_sec != mtime.tv_sec) ||
1620 	    (sbp->bs_mtime.tv_nsec != mtime.tv_nsec)) {
1621 		error = -EBUSY;
1622 		goto out_trans_cancel;
1623 	}
1624 
1625 	/*
1626 	 * Note the trickiness in setting the log flags - we set the owner log
1627 	 * flag on the opposite inode (i.e. the inode we are setting the new
1628 	 * owner to be) because once we swap the forks and log that, log
1629 	 * recovery is going to see the fork as owned by the swapped inode,
1630 	 * not the pre-swapped inodes.
1631 	 */
1632 	src_log_flags = XFS_ILOG_CORE;
1633 	target_log_flags = XFS_ILOG_CORE;
1634 
1635 	if (xfs_has_rmapbt(mp))
1636 		error = xfs_swap_extent_rmap(&tp, ip, tip);
1637 	else
1638 		error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags,
1639 				&target_log_flags);
1640 	if (error)
1641 		goto out_trans_cancel;
1642 
1643 	/* Do we have to swap reflink flags? */
1644 	if ((ip->i_diflags2 & XFS_DIFLAG2_REFLINK) ^
1645 	    (tip->i_diflags2 & XFS_DIFLAG2_REFLINK)) {
1646 		f = ip->i_diflags2 & XFS_DIFLAG2_REFLINK;
1647 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1648 		ip->i_diflags2 |= tip->i_diflags2 & XFS_DIFLAG2_REFLINK;
1649 		tip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1650 		tip->i_diflags2 |= f & XFS_DIFLAG2_REFLINK;
1651 	}
1652 
1653 	/* Swap the cow forks. */
1654 	if (xfs_has_reflink(mp)) {
1655 		ASSERT(!ip->i_cowfp ||
1656 		       ip->i_cowfp->if_format == XFS_DINODE_FMT_EXTENTS);
1657 		ASSERT(!tip->i_cowfp ||
1658 		       tip->i_cowfp->if_format == XFS_DINODE_FMT_EXTENTS);
1659 
1660 		swap(ip->i_cowfp, tip->i_cowfp);
1661 
1662 		if (ip->i_cowfp && ip->i_cowfp->if_bytes)
1663 			xfs_inode_set_cowblocks_tag(ip);
1664 		else
1665 			xfs_inode_clear_cowblocks_tag(ip);
1666 		if (tip->i_cowfp && tip->i_cowfp->if_bytes)
1667 			xfs_inode_set_cowblocks_tag(tip);
1668 		else
1669 			xfs_inode_clear_cowblocks_tag(tip);
1670 	}
1671 
1672 	xfs_trans_log_inode(tp, ip,  src_log_flags);
1673 	xfs_trans_log_inode(tp, tip, target_log_flags);
1674 
1675 	/*
1676 	 * The extent forks have been swapped, but crc=1,rmapbt=0 filesystems
1677 	 * have inode number owner values in the bmbt blocks that still refer to
1678 	 * the old inode. Scan each bmbt to fix up the owner values with the
1679 	 * inode number of the current inode.
1680 	 */
1681 	if (src_log_flags & XFS_ILOG_DOWNER) {
1682 		error = xfs_swap_change_owner(&tp, ip, tip);
1683 		if (error)
1684 			goto out_trans_cancel;
1685 	}
1686 	if (target_log_flags & XFS_ILOG_DOWNER) {
1687 		error = xfs_swap_change_owner(&tp, tip, ip);
1688 		if (error)
1689 			goto out_trans_cancel;
1690 	}
1691 
1692 	/*
1693 	 * If this is a synchronous mount, make sure that the
1694 	 * transaction goes to disk before returning to the user.
1695 	 */
1696 	if (xfs_has_wsync(mp))
1697 		xfs_trans_set_sync(tp);
1698 
1699 	error = xfs_trans_commit(tp);
1700 
1701 	trace_xfs_swap_extent_after(ip, 0);
1702 	trace_xfs_swap_extent_after(tip, 1);
1703 
1704 out_unlock_ilock:
1705 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1706 	xfs_iunlock(tip, XFS_ILOCK_EXCL);
1707 out_unlock:
1708 	filemap_invalidate_unlock_two(VFS_I(ip)->i_mapping,
1709 				      VFS_I(tip)->i_mapping);
1710 	unlock_two_nondirectories(VFS_I(ip), VFS_I(tip));
1711 	return error;
1712 
1713 out_trans_cancel:
1714 	xfs_trans_cancel(tp);
1715 	goto out_unlock_ilock;
1716 }
1717