1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2024 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24 /**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <linux/units.h>
61
62 #include <net/cfg80211.h>
63 #include "core.h"
64 #include "reg.h"
65 #include "rdev-ops.h"
66 #include "nl80211.h"
67
68 /*
69 * Grace period we give before making sure all current interfaces reside on
70 * channels allowed by the current regulatory domain.
71 */
72 #define REG_ENFORCE_GRACE_MS 60000
73
74 /**
75 * enum reg_request_treatment - regulatory request treatment
76 *
77 * @REG_REQ_OK: continue processing the regulatory request
78 * @REG_REQ_IGNORE: ignore the regulatory request
79 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
80 * be intersected with the current one.
81 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
82 * regulatory settings, and no further processing is required.
83 */
84 enum reg_request_treatment {
85 REG_REQ_OK,
86 REG_REQ_IGNORE,
87 REG_REQ_INTERSECT,
88 REG_REQ_ALREADY_SET,
89 };
90
91 static struct regulatory_request core_request_world = {
92 .initiator = NL80211_REGDOM_SET_BY_CORE,
93 .alpha2[0] = '0',
94 .alpha2[1] = '0',
95 .intersect = false,
96 .processed = true,
97 .country_ie_env = ENVIRON_ANY,
98 };
99
100 /*
101 * Receipt of information from last regulatory request,
102 * protected by RTNL (and can be accessed with RCU protection)
103 */
104 static struct regulatory_request __rcu *last_request =
105 (void __force __rcu *)&core_request_world;
106
107 /* To trigger userspace events and load firmware */
108 static struct platform_device *reg_pdev;
109
110 /*
111 * Central wireless core regulatory domains, we only need two,
112 * the current one and a world regulatory domain in case we have no
113 * information to give us an alpha2.
114 * (protected by RTNL, can be read under RCU)
115 */
116 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117
118 /*
119 * Number of devices that registered to the core
120 * that support cellular base station regulatory hints
121 * (protected by RTNL)
122 */
123 static int reg_num_devs_support_basehint;
124
125 /*
126 * State variable indicating if the platform on which the devices
127 * are attached is operating in an indoor environment. The state variable
128 * is relevant for all registered devices.
129 */
130 static bool reg_is_indoor;
131 static DEFINE_SPINLOCK(reg_indoor_lock);
132
133 /* Used to track the userspace process controlling the indoor setting */
134 static u32 reg_is_indoor_portid;
135
136 static void restore_regulatory_settings(bool reset_user, bool cached);
137 static void print_regdomain(const struct ieee80211_regdomain *rd);
138 static void reg_process_hint(struct regulatory_request *reg_request);
139
get_cfg80211_regdom(void)140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142 return rcu_dereference_rtnl(cfg80211_regdomain);
143 }
144
145 /*
146 * Returns the regulatory domain associated with the wiphy.
147 *
148 * Requires any of RTNL, wiphy mutex or RCU protection.
149 */
get_wiphy_regdom(struct wiphy * wiphy)150 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
151 {
152 return rcu_dereference_check(wiphy->regd,
153 lockdep_is_held(&wiphy->mtx) ||
154 lockdep_rtnl_is_held());
155 }
156 EXPORT_SYMBOL(get_wiphy_regdom);
157
reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)158 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
159 {
160 switch (dfs_region) {
161 case NL80211_DFS_UNSET:
162 return "unset";
163 case NL80211_DFS_FCC:
164 return "FCC";
165 case NL80211_DFS_ETSI:
166 return "ETSI";
167 case NL80211_DFS_JP:
168 return "JP";
169 }
170 return "Unknown";
171 }
172
reg_get_dfs_region(struct wiphy * wiphy)173 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
174 {
175 const struct ieee80211_regdomain *regd = NULL;
176 const struct ieee80211_regdomain *wiphy_regd = NULL;
177 enum nl80211_dfs_regions dfs_region;
178
179 rcu_read_lock();
180 regd = get_cfg80211_regdom();
181 dfs_region = regd->dfs_region;
182
183 if (!wiphy)
184 goto out;
185
186 wiphy_regd = get_wiphy_regdom(wiphy);
187 if (!wiphy_regd)
188 goto out;
189
190 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
191 dfs_region = wiphy_regd->dfs_region;
192 goto out;
193 }
194
195 if (wiphy_regd->dfs_region == regd->dfs_region)
196 goto out;
197
198 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
199 dev_name(&wiphy->dev),
200 reg_dfs_region_str(wiphy_regd->dfs_region),
201 reg_dfs_region_str(regd->dfs_region));
202
203 out:
204 rcu_read_unlock();
205
206 return dfs_region;
207 }
208
rcu_free_regdom(const struct ieee80211_regdomain * r)209 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
210 {
211 if (!r)
212 return;
213 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
214 }
215
get_last_request(void)216 static struct regulatory_request *get_last_request(void)
217 {
218 return rcu_dereference_rtnl(last_request);
219 }
220
221 /* Used to queue up regulatory hints */
222 static LIST_HEAD(reg_requests_list);
223 static DEFINE_SPINLOCK(reg_requests_lock);
224
225 /* Used to queue up beacon hints for review */
226 static LIST_HEAD(reg_pending_beacons);
227 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
228
229 /* Used to keep track of processed beacon hints */
230 static LIST_HEAD(reg_beacon_list);
231
232 struct reg_beacon {
233 struct list_head list;
234 struct ieee80211_channel chan;
235 };
236
237 static void reg_check_chans_work(struct work_struct *work);
238 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
239
240 static void reg_todo(struct work_struct *work);
241 static DECLARE_WORK(reg_work, reg_todo);
242
243 /* We keep a static world regulatory domain in case of the absence of CRDA */
244 static const struct ieee80211_regdomain world_regdom = {
245 .n_reg_rules = 8,
246 .alpha2 = "00",
247 .reg_rules = {
248 /* IEEE 802.11b/g, channels 1..11 */
249 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
250 /* IEEE 802.11b/g, channels 12..13. */
251 REG_RULE(2467-10, 2472+10, 20, 6, 20,
252 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
253 /* IEEE 802.11 channel 14 - Only JP enables
254 * this and for 802.11b only */
255 REG_RULE(2484-10, 2484+10, 20, 6, 20,
256 NL80211_RRF_NO_IR |
257 NL80211_RRF_NO_OFDM),
258 /* IEEE 802.11a, channel 36..48 */
259 REG_RULE(5180-10, 5240+10, 80, 6, 20,
260 NL80211_RRF_NO_IR |
261 NL80211_RRF_AUTO_BW),
262
263 /* IEEE 802.11a, channel 52..64 - DFS required */
264 REG_RULE(5260-10, 5320+10, 80, 6, 20,
265 NL80211_RRF_NO_IR |
266 NL80211_RRF_AUTO_BW |
267 NL80211_RRF_DFS),
268
269 /* IEEE 802.11a, channel 100..144 - DFS required */
270 REG_RULE(5500-10, 5720+10, 160, 6, 20,
271 NL80211_RRF_NO_IR |
272 NL80211_RRF_DFS),
273
274 /* IEEE 802.11a, channel 149..165 */
275 REG_RULE(5745-10, 5825+10, 80, 6, 20,
276 NL80211_RRF_NO_IR),
277
278 /* IEEE 802.11ad (60GHz), channels 1..3 */
279 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
280 }
281 };
282
283 /* protected by RTNL */
284 static const struct ieee80211_regdomain *cfg80211_world_regdom =
285 &world_regdom;
286
287 static char *ieee80211_regdom = "00";
288 static char user_alpha2[2];
289 static const struct ieee80211_regdomain *cfg80211_user_regdom;
290
291 module_param(ieee80211_regdom, charp, 0444);
292 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
293
reg_free_request(struct regulatory_request * request)294 static void reg_free_request(struct regulatory_request *request)
295 {
296 if (request == &core_request_world)
297 return;
298
299 if (request != get_last_request())
300 kfree(request);
301 }
302
reg_free_last_request(void)303 static void reg_free_last_request(void)
304 {
305 struct regulatory_request *lr = get_last_request();
306
307 if (lr != &core_request_world && lr)
308 kfree_rcu(lr, rcu_head);
309 }
310
reg_update_last_request(struct regulatory_request * request)311 static void reg_update_last_request(struct regulatory_request *request)
312 {
313 struct regulatory_request *lr;
314
315 lr = get_last_request();
316 if (lr == request)
317 return;
318
319 reg_free_last_request();
320 rcu_assign_pointer(last_request, request);
321 }
322
reset_regdomains(bool full_reset,const struct ieee80211_regdomain * new_regdom)323 static void reset_regdomains(bool full_reset,
324 const struct ieee80211_regdomain *new_regdom)
325 {
326 const struct ieee80211_regdomain *r;
327
328 ASSERT_RTNL();
329
330 r = get_cfg80211_regdom();
331
332 /* avoid freeing static information or freeing something twice */
333 if (r == cfg80211_world_regdom)
334 r = NULL;
335 if (cfg80211_world_regdom == &world_regdom)
336 cfg80211_world_regdom = NULL;
337 if (r == &world_regdom)
338 r = NULL;
339
340 rcu_free_regdom(r);
341 rcu_free_regdom(cfg80211_world_regdom);
342
343 cfg80211_world_regdom = &world_regdom;
344 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
345
346 if (!full_reset)
347 return;
348
349 reg_update_last_request(&core_request_world);
350 }
351
352 /*
353 * Dynamic world regulatory domain requested by the wireless
354 * core upon initialization
355 */
update_world_regdomain(const struct ieee80211_regdomain * rd)356 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
357 {
358 struct regulatory_request *lr;
359
360 lr = get_last_request();
361
362 WARN_ON(!lr);
363
364 reset_regdomains(false, rd);
365
366 cfg80211_world_regdom = rd;
367 }
368
is_world_regdom(const char * alpha2)369 bool is_world_regdom(const char *alpha2)
370 {
371 if (!alpha2)
372 return false;
373 return alpha2[0] == '0' && alpha2[1] == '0';
374 }
375
is_alpha2_set(const char * alpha2)376 static bool is_alpha2_set(const char *alpha2)
377 {
378 if (!alpha2)
379 return false;
380 return alpha2[0] && alpha2[1];
381 }
382
is_unknown_alpha2(const char * alpha2)383 static bool is_unknown_alpha2(const char *alpha2)
384 {
385 if (!alpha2)
386 return false;
387 /*
388 * Special case where regulatory domain was built by driver
389 * but a specific alpha2 cannot be determined
390 */
391 return alpha2[0] == '9' && alpha2[1] == '9';
392 }
393
is_intersected_alpha2(const char * alpha2)394 static bool is_intersected_alpha2(const char *alpha2)
395 {
396 if (!alpha2)
397 return false;
398 /*
399 * Special case where regulatory domain is the
400 * result of an intersection between two regulatory domain
401 * structures
402 */
403 return alpha2[0] == '9' && alpha2[1] == '8';
404 }
405
is_an_alpha2(const char * alpha2)406 static bool is_an_alpha2(const char *alpha2)
407 {
408 if (!alpha2)
409 return false;
410 return isascii(alpha2[0]) && isalpha(alpha2[0]) &&
411 isascii(alpha2[1]) && isalpha(alpha2[1]);
412 }
413
alpha2_equal(const char * alpha2_x,const char * alpha2_y)414 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
415 {
416 if (!alpha2_x || !alpha2_y)
417 return false;
418 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
419 }
420
regdom_changes(const char * alpha2)421 static bool regdom_changes(const char *alpha2)
422 {
423 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
424
425 if (!r)
426 return true;
427 return !alpha2_equal(r->alpha2, alpha2);
428 }
429
430 /*
431 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
432 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
433 * has ever been issued.
434 */
is_user_regdom_saved(void)435 static bool is_user_regdom_saved(void)
436 {
437 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
438 return false;
439
440 /* This would indicate a mistake on the design */
441 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
442 "Unexpected user alpha2: %c%c\n",
443 user_alpha2[0], user_alpha2[1]))
444 return false;
445
446 return true;
447 }
448
449 static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain * src_regd)450 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
451 {
452 struct ieee80211_regdomain *regd;
453 unsigned int i;
454
455 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
456 GFP_KERNEL);
457 if (!regd)
458 return ERR_PTR(-ENOMEM);
459
460 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
461
462 for (i = 0; i < src_regd->n_reg_rules; i++)
463 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
464 sizeof(struct ieee80211_reg_rule));
465
466 return regd;
467 }
468
cfg80211_save_user_regdom(const struct ieee80211_regdomain * rd)469 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
470 {
471 ASSERT_RTNL();
472
473 if (!IS_ERR(cfg80211_user_regdom))
474 kfree(cfg80211_user_regdom);
475 cfg80211_user_regdom = reg_copy_regd(rd);
476 }
477
478 struct reg_regdb_apply_request {
479 struct list_head list;
480 const struct ieee80211_regdomain *regdom;
481 };
482
483 static LIST_HEAD(reg_regdb_apply_list);
484 static DEFINE_MUTEX(reg_regdb_apply_mutex);
485
reg_regdb_apply(struct work_struct * work)486 static void reg_regdb_apply(struct work_struct *work)
487 {
488 struct reg_regdb_apply_request *request;
489
490 rtnl_lock();
491
492 mutex_lock(®_regdb_apply_mutex);
493 while (!list_empty(®_regdb_apply_list)) {
494 request = list_first_entry(®_regdb_apply_list,
495 struct reg_regdb_apply_request,
496 list);
497 list_del(&request->list);
498
499 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
500 kfree(request);
501 }
502 mutex_unlock(®_regdb_apply_mutex);
503
504 rtnl_unlock();
505 }
506
507 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
508
reg_schedule_apply(const struct ieee80211_regdomain * regdom)509 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
510 {
511 struct reg_regdb_apply_request *request;
512
513 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
514 if (!request) {
515 kfree(regdom);
516 return -ENOMEM;
517 }
518
519 request->regdom = regdom;
520
521 mutex_lock(®_regdb_apply_mutex);
522 list_add_tail(&request->list, ®_regdb_apply_list);
523 mutex_unlock(®_regdb_apply_mutex);
524
525 schedule_work(®_regdb_work);
526 return 0;
527 }
528
529 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
530 /* Max number of consecutive attempts to communicate with CRDA */
531 #define REG_MAX_CRDA_TIMEOUTS 10
532
533 static u32 reg_crda_timeouts;
534
535 static void crda_timeout_work(struct work_struct *work);
536 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
537
crda_timeout_work(struct work_struct * work)538 static void crda_timeout_work(struct work_struct *work)
539 {
540 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
541 rtnl_lock();
542 reg_crda_timeouts++;
543 restore_regulatory_settings(true, false);
544 rtnl_unlock();
545 }
546
cancel_crda_timeout(void)547 static void cancel_crda_timeout(void)
548 {
549 cancel_delayed_work(&crda_timeout);
550 }
551
cancel_crda_timeout_sync(void)552 static void cancel_crda_timeout_sync(void)
553 {
554 cancel_delayed_work_sync(&crda_timeout);
555 }
556
reset_crda_timeouts(void)557 static void reset_crda_timeouts(void)
558 {
559 reg_crda_timeouts = 0;
560 }
561
562 /*
563 * This lets us keep regulatory code which is updated on a regulatory
564 * basis in userspace.
565 */
call_crda(const char * alpha2)566 static int call_crda(const char *alpha2)
567 {
568 char country[12];
569 char *env[] = { country, NULL };
570 int ret;
571
572 snprintf(country, sizeof(country), "COUNTRY=%c%c",
573 alpha2[0], alpha2[1]);
574
575 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
576 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
577 return -EINVAL;
578 }
579
580 if (!is_world_regdom((char *) alpha2))
581 pr_debug("Calling CRDA for country: %c%c\n",
582 alpha2[0], alpha2[1]);
583 else
584 pr_debug("Calling CRDA to update world regulatory domain\n");
585
586 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
587 if (ret)
588 return ret;
589
590 queue_delayed_work(system_power_efficient_wq,
591 &crda_timeout, msecs_to_jiffies(3142));
592 return 0;
593 }
594 #else
cancel_crda_timeout(void)595 static inline void cancel_crda_timeout(void) {}
cancel_crda_timeout_sync(void)596 static inline void cancel_crda_timeout_sync(void) {}
reset_crda_timeouts(void)597 static inline void reset_crda_timeouts(void) {}
call_crda(const char * alpha2)598 static inline int call_crda(const char *alpha2)
599 {
600 return -ENODATA;
601 }
602 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
603
604 /* code to directly load a firmware database through request_firmware */
605 static const struct fwdb_header *regdb;
606
607 struct fwdb_country {
608 u8 alpha2[2];
609 __be16 coll_ptr;
610 /* this struct cannot be extended */
611 } __packed __aligned(4);
612
613 struct fwdb_collection {
614 u8 len;
615 u8 n_rules;
616 u8 dfs_region;
617 /* no optional data yet */
618 /* aligned to 2, then followed by __be16 array of rule pointers */
619 } __packed __aligned(4);
620
621 enum fwdb_flags {
622 FWDB_FLAG_NO_OFDM = BIT(0),
623 FWDB_FLAG_NO_OUTDOOR = BIT(1),
624 FWDB_FLAG_DFS = BIT(2),
625 FWDB_FLAG_NO_IR = BIT(3),
626 FWDB_FLAG_AUTO_BW = BIT(4),
627 };
628
629 struct fwdb_wmm_ac {
630 u8 ecw;
631 u8 aifsn;
632 __be16 cot;
633 } __packed;
634
635 struct fwdb_wmm_rule {
636 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
637 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
638 } __packed;
639
640 struct fwdb_rule {
641 u8 len;
642 u8 flags;
643 __be16 max_eirp;
644 __be32 start, end, max_bw;
645 /* start of optional data */
646 __be16 cac_timeout;
647 __be16 wmm_ptr;
648 } __packed __aligned(4);
649
650 #define FWDB_MAGIC 0x52474442
651 #define FWDB_VERSION 20
652
653 struct fwdb_header {
654 __be32 magic;
655 __be32 version;
656 struct fwdb_country country[];
657 } __packed __aligned(4);
658
ecw2cw(int ecw)659 static int ecw2cw(int ecw)
660 {
661 return (1 << ecw) - 1;
662 }
663
valid_wmm(struct fwdb_wmm_rule * rule)664 static bool valid_wmm(struct fwdb_wmm_rule *rule)
665 {
666 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
667 int i;
668
669 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
670 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
671 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
672 u8 aifsn = ac[i].aifsn;
673
674 if (cw_min >= cw_max)
675 return false;
676
677 if (aifsn < 1)
678 return false;
679 }
680
681 return true;
682 }
683
valid_rule(const u8 * data,unsigned int size,u16 rule_ptr)684 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
685 {
686 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
687
688 if ((u8 *)rule + sizeof(rule->len) > data + size)
689 return false;
690
691 /* mandatory fields */
692 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
693 return false;
694 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
695 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
696 struct fwdb_wmm_rule *wmm;
697
698 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
699 return false;
700
701 wmm = (void *)(data + wmm_ptr);
702
703 if (!valid_wmm(wmm))
704 return false;
705 }
706 return true;
707 }
708
valid_country(const u8 * data,unsigned int size,const struct fwdb_country * country)709 static bool valid_country(const u8 *data, unsigned int size,
710 const struct fwdb_country *country)
711 {
712 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
713 struct fwdb_collection *coll = (void *)(data + ptr);
714 __be16 *rules_ptr;
715 unsigned int i;
716
717 /* make sure we can read len/n_rules */
718 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
719 return false;
720
721 /* make sure base struct and all rules fit */
722 if ((u8 *)coll + ALIGN(coll->len, 2) +
723 (coll->n_rules * 2) > data + size)
724 return false;
725
726 /* mandatory fields must exist */
727 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
728 return false;
729
730 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
731
732 for (i = 0; i < coll->n_rules; i++) {
733 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
734
735 if (!valid_rule(data, size, rule_ptr))
736 return false;
737 }
738
739 return true;
740 }
741
742 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
743 #include <keys/asymmetric-type.h>
744
745 static struct key *builtin_regdb_keys;
746
load_builtin_regdb_keys(void)747 static int __init load_builtin_regdb_keys(void)
748 {
749 builtin_regdb_keys =
750 keyring_alloc(".builtin_regdb_keys",
751 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
752 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
753 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
754 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
755 if (IS_ERR(builtin_regdb_keys))
756 return PTR_ERR(builtin_regdb_keys);
757
758 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
759
760 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
761 x509_load_certificate_list(shipped_regdb_certs,
762 shipped_regdb_certs_len,
763 builtin_regdb_keys);
764 #endif
765 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
766 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
767 x509_load_certificate_list(extra_regdb_certs,
768 extra_regdb_certs_len,
769 builtin_regdb_keys);
770 #endif
771
772 return 0;
773 }
774
775 MODULE_FIRMWARE("regulatory.db.p7s");
776
regdb_has_valid_signature(const u8 * data,unsigned int size)777 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
778 {
779 const struct firmware *sig;
780 bool result;
781
782 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
783 return false;
784
785 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
786 builtin_regdb_keys,
787 VERIFYING_UNSPECIFIED_SIGNATURE,
788 NULL, NULL) == 0;
789
790 release_firmware(sig);
791
792 return result;
793 }
794
free_regdb_keyring(void)795 static void free_regdb_keyring(void)
796 {
797 key_put(builtin_regdb_keys);
798 }
799 #else
load_builtin_regdb_keys(void)800 static int load_builtin_regdb_keys(void)
801 {
802 return 0;
803 }
804
regdb_has_valid_signature(const u8 * data,unsigned int size)805 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
806 {
807 return true;
808 }
809
free_regdb_keyring(void)810 static void free_regdb_keyring(void)
811 {
812 }
813 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
814
valid_regdb(const u8 * data,unsigned int size)815 static bool valid_regdb(const u8 *data, unsigned int size)
816 {
817 const struct fwdb_header *hdr = (void *)data;
818 const struct fwdb_country *country;
819
820 if (size < sizeof(*hdr))
821 return false;
822
823 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
824 return false;
825
826 if (hdr->version != cpu_to_be32(FWDB_VERSION))
827 return false;
828
829 if (!regdb_has_valid_signature(data, size))
830 return false;
831
832 country = &hdr->country[0];
833 while ((u8 *)(country + 1) <= data + size) {
834 if (!country->coll_ptr)
835 break;
836 if (!valid_country(data, size, country))
837 return false;
838 country++;
839 }
840
841 return true;
842 }
843
set_wmm_rule(const struct fwdb_header * db,const struct fwdb_country * country,const struct fwdb_rule * rule,struct ieee80211_reg_rule * rrule)844 static void set_wmm_rule(const struct fwdb_header *db,
845 const struct fwdb_country *country,
846 const struct fwdb_rule *rule,
847 struct ieee80211_reg_rule *rrule)
848 {
849 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
850 struct fwdb_wmm_rule *wmm;
851 unsigned int i, wmm_ptr;
852
853 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
854 wmm = (void *)((u8 *)db + wmm_ptr);
855
856 if (!valid_wmm(wmm)) {
857 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
858 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
859 country->alpha2[0], country->alpha2[1]);
860 return;
861 }
862
863 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
864 wmm_rule->client[i].cw_min =
865 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
866 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
867 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
868 wmm_rule->client[i].cot =
869 1000 * be16_to_cpu(wmm->client[i].cot);
870 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
871 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
872 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
873 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
874 }
875
876 rrule->has_wmm = true;
877 }
878
__regdb_query_wmm(const struct fwdb_header * db,const struct fwdb_country * country,int freq,struct ieee80211_reg_rule * rrule)879 static int __regdb_query_wmm(const struct fwdb_header *db,
880 const struct fwdb_country *country, int freq,
881 struct ieee80211_reg_rule *rrule)
882 {
883 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
884 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
885 int i;
886
887 for (i = 0; i < coll->n_rules; i++) {
888 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
889 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
890 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
891
892 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
893 continue;
894
895 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
896 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
897 set_wmm_rule(db, country, rule, rrule);
898 return 0;
899 }
900 }
901
902 return -ENODATA;
903 }
904
reg_query_regdb_wmm(char * alpha2,int freq,struct ieee80211_reg_rule * rule)905 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
906 {
907 const struct fwdb_header *hdr = regdb;
908 const struct fwdb_country *country;
909
910 if (!regdb)
911 return -ENODATA;
912
913 if (IS_ERR(regdb))
914 return PTR_ERR(regdb);
915
916 country = &hdr->country[0];
917 while (country->coll_ptr) {
918 if (alpha2_equal(alpha2, country->alpha2))
919 return __regdb_query_wmm(regdb, country, freq, rule);
920
921 country++;
922 }
923
924 return -ENODATA;
925 }
926 EXPORT_SYMBOL(reg_query_regdb_wmm);
927
regdb_query_country(const struct fwdb_header * db,const struct fwdb_country * country)928 static int regdb_query_country(const struct fwdb_header *db,
929 const struct fwdb_country *country)
930 {
931 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
932 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
933 struct ieee80211_regdomain *regdom;
934 unsigned int i;
935
936 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
937 GFP_KERNEL);
938 if (!regdom)
939 return -ENOMEM;
940
941 regdom->n_reg_rules = coll->n_rules;
942 regdom->alpha2[0] = country->alpha2[0];
943 regdom->alpha2[1] = country->alpha2[1];
944 regdom->dfs_region = coll->dfs_region;
945
946 for (i = 0; i < regdom->n_reg_rules; i++) {
947 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
948 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
949 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
950 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
951
952 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
953 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
954 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
955
956 rrule->power_rule.max_antenna_gain = 0;
957 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
958
959 rrule->flags = 0;
960 if (rule->flags & FWDB_FLAG_NO_OFDM)
961 rrule->flags |= NL80211_RRF_NO_OFDM;
962 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
963 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
964 if (rule->flags & FWDB_FLAG_DFS)
965 rrule->flags |= NL80211_RRF_DFS;
966 if (rule->flags & FWDB_FLAG_NO_IR)
967 rrule->flags |= NL80211_RRF_NO_IR;
968 if (rule->flags & FWDB_FLAG_AUTO_BW)
969 rrule->flags |= NL80211_RRF_AUTO_BW;
970
971 rrule->dfs_cac_ms = 0;
972
973 /* handle optional data */
974 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
975 rrule->dfs_cac_ms =
976 1000 * be16_to_cpu(rule->cac_timeout);
977 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
978 set_wmm_rule(db, country, rule, rrule);
979 }
980
981 return reg_schedule_apply(regdom);
982 }
983
query_regdb(const char * alpha2)984 static int query_regdb(const char *alpha2)
985 {
986 const struct fwdb_header *hdr = regdb;
987 const struct fwdb_country *country;
988
989 ASSERT_RTNL();
990
991 if (IS_ERR(regdb))
992 return PTR_ERR(regdb);
993
994 country = &hdr->country[0];
995 while (country->coll_ptr) {
996 if (alpha2_equal(alpha2, country->alpha2))
997 return regdb_query_country(regdb, country);
998 country++;
999 }
1000
1001 return -ENODATA;
1002 }
1003
regdb_fw_cb(const struct firmware * fw,void * context)1004 static void regdb_fw_cb(const struct firmware *fw, void *context)
1005 {
1006 int set_error = 0;
1007 bool restore = true;
1008 void *db;
1009
1010 if (!fw) {
1011 pr_info("failed to load regulatory.db\n");
1012 set_error = -ENODATA;
1013 } else if (!valid_regdb(fw->data, fw->size)) {
1014 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1015 set_error = -EINVAL;
1016 }
1017
1018 rtnl_lock();
1019 if (regdb && !IS_ERR(regdb)) {
1020 /* negative case - a bug
1021 * positive case - can happen due to race in case of multiple cb's in
1022 * queue, due to usage of asynchronous callback
1023 *
1024 * Either case, just restore and free new db.
1025 */
1026 } else if (set_error) {
1027 regdb = ERR_PTR(set_error);
1028 } else if (fw) {
1029 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1030 if (db) {
1031 regdb = db;
1032 restore = context && query_regdb(context);
1033 } else {
1034 restore = true;
1035 }
1036 }
1037
1038 if (restore)
1039 restore_regulatory_settings(true, false);
1040
1041 rtnl_unlock();
1042
1043 kfree(context);
1044
1045 release_firmware(fw);
1046 }
1047
1048 MODULE_FIRMWARE("regulatory.db");
1049
query_regdb_file(const char * alpha2)1050 static int query_regdb_file(const char *alpha2)
1051 {
1052 int err;
1053
1054 ASSERT_RTNL();
1055
1056 if (regdb)
1057 return query_regdb(alpha2);
1058
1059 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1060 if (!alpha2)
1061 return -ENOMEM;
1062
1063 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1064 ®_pdev->dev, GFP_KERNEL,
1065 (void *)alpha2, regdb_fw_cb);
1066 if (err)
1067 kfree(alpha2);
1068
1069 return err;
1070 }
1071
reg_reload_regdb(void)1072 int reg_reload_regdb(void)
1073 {
1074 const struct firmware *fw;
1075 void *db;
1076 int err;
1077 const struct ieee80211_regdomain *current_regdomain;
1078 struct regulatory_request *request;
1079
1080 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1081 if (err)
1082 return err;
1083
1084 if (!valid_regdb(fw->data, fw->size)) {
1085 err = -ENODATA;
1086 goto out;
1087 }
1088
1089 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1090 if (!db) {
1091 err = -ENOMEM;
1092 goto out;
1093 }
1094
1095 rtnl_lock();
1096 if (!IS_ERR_OR_NULL(regdb))
1097 kfree(regdb);
1098 regdb = db;
1099
1100 /* reset regulatory domain */
1101 current_regdomain = get_cfg80211_regdom();
1102
1103 request = kzalloc(sizeof(*request), GFP_KERNEL);
1104 if (!request) {
1105 err = -ENOMEM;
1106 goto out_unlock;
1107 }
1108
1109 request->wiphy_idx = WIPHY_IDX_INVALID;
1110 request->alpha2[0] = current_regdomain->alpha2[0];
1111 request->alpha2[1] = current_regdomain->alpha2[1];
1112 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1113 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1114
1115 reg_process_hint(request);
1116
1117 out_unlock:
1118 rtnl_unlock();
1119 out:
1120 release_firmware(fw);
1121 return err;
1122 }
1123
reg_query_database(struct regulatory_request * request)1124 static bool reg_query_database(struct regulatory_request *request)
1125 {
1126 if (query_regdb_file(request->alpha2) == 0)
1127 return true;
1128
1129 if (call_crda(request->alpha2) == 0)
1130 return true;
1131
1132 return false;
1133 }
1134
reg_is_valid_request(const char * alpha2)1135 bool reg_is_valid_request(const char *alpha2)
1136 {
1137 struct regulatory_request *lr = get_last_request();
1138
1139 if (!lr || lr->processed)
1140 return false;
1141
1142 return alpha2_equal(lr->alpha2, alpha2);
1143 }
1144
reg_get_regdomain(struct wiphy * wiphy)1145 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1146 {
1147 struct regulatory_request *lr = get_last_request();
1148
1149 /*
1150 * Follow the driver's regulatory domain, if present, unless a country
1151 * IE has been processed or a user wants to help compliance further
1152 */
1153 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1154 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1155 wiphy->regd)
1156 return get_wiphy_regdom(wiphy);
1157
1158 return get_cfg80211_regdom();
1159 }
1160
1161 static unsigned int
reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1162 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1163 const struct ieee80211_reg_rule *rule)
1164 {
1165 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1166 const struct ieee80211_freq_range *freq_range_tmp;
1167 const struct ieee80211_reg_rule *tmp;
1168 u32 start_freq, end_freq, idx, no;
1169
1170 for (idx = 0; idx < rd->n_reg_rules; idx++)
1171 if (rule == &rd->reg_rules[idx])
1172 break;
1173
1174 if (idx == rd->n_reg_rules)
1175 return 0;
1176
1177 /* get start_freq */
1178 no = idx;
1179
1180 while (no) {
1181 tmp = &rd->reg_rules[--no];
1182 freq_range_tmp = &tmp->freq_range;
1183
1184 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1185 break;
1186
1187 freq_range = freq_range_tmp;
1188 }
1189
1190 start_freq = freq_range->start_freq_khz;
1191
1192 /* get end_freq */
1193 freq_range = &rule->freq_range;
1194 no = idx;
1195
1196 while (no < rd->n_reg_rules - 1) {
1197 tmp = &rd->reg_rules[++no];
1198 freq_range_tmp = &tmp->freq_range;
1199
1200 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1201 break;
1202
1203 freq_range = freq_range_tmp;
1204 }
1205
1206 end_freq = freq_range->end_freq_khz;
1207
1208 return end_freq - start_freq;
1209 }
1210
reg_get_max_bandwidth(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1211 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1212 const struct ieee80211_reg_rule *rule)
1213 {
1214 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1215
1216 if (rule->flags & NL80211_RRF_NO_320MHZ)
1217 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1218 if (rule->flags & NL80211_RRF_NO_160MHZ)
1219 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1220 if (rule->flags & NL80211_RRF_NO_80MHZ)
1221 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1222
1223 /*
1224 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1225 * are not allowed.
1226 */
1227 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1228 rule->flags & NL80211_RRF_NO_HT40PLUS)
1229 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1230
1231 return bw;
1232 }
1233
1234 /* Sanity check on a regulatory rule */
is_valid_reg_rule(const struct ieee80211_reg_rule * rule)1235 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1236 {
1237 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1238 u32 freq_diff;
1239
1240 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1241 return false;
1242
1243 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1244 return false;
1245
1246 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1247
1248 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1249 freq_range->max_bandwidth_khz > freq_diff)
1250 return false;
1251
1252 return true;
1253 }
1254
is_valid_rd(const struct ieee80211_regdomain * rd)1255 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1256 {
1257 const struct ieee80211_reg_rule *reg_rule = NULL;
1258 unsigned int i;
1259
1260 if (!rd->n_reg_rules)
1261 return false;
1262
1263 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1264 return false;
1265
1266 for (i = 0; i < rd->n_reg_rules; i++) {
1267 reg_rule = &rd->reg_rules[i];
1268 if (!is_valid_reg_rule(reg_rule))
1269 return false;
1270 }
1271
1272 return true;
1273 }
1274
1275 /**
1276 * freq_in_rule_band - tells us if a frequency is in a frequency band
1277 * @freq_range: frequency rule we want to query
1278 * @freq_khz: frequency we are inquiring about
1279 *
1280 * This lets us know if a specific frequency rule is or is not relevant to
1281 * a specific frequency's band. Bands are device specific and artificial
1282 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1283 * however it is safe for now to assume that a frequency rule should not be
1284 * part of a frequency's band if the start freq or end freq are off by more
1285 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1286 * 60 GHz band.
1287 * This resolution can be lowered and should be considered as we add
1288 * regulatory rule support for other "bands".
1289 *
1290 * Returns: whether or not the frequency is in the range
1291 */
freq_in_rule_band(const struct ieee80211_freq_range * freq_range,u32 freq_khz)1292 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1293 u32 freq_khz)
1294 {
1295 /*
1296 * From 802.11ad: directional multi-gigabit (DMG):
1297 * Pertaining to operation in a frequency band containing a channel
1298 * with the Channel starting frequency above 45 GHz.
1299 */
1300 u32 limit = freq_khz > 45 * KHZ_PER_GHZ ? 20 * KHZ_PER_GHZ : 2 * KHZ_PER_GHZ;
1301 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1302 return true;
1303 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1304 return true;
1305 return false;
1306 }
1307
1308 /*
1309 * Later on we can perhaps use the more restrictive DFS
1310 * region but we don't have information for that yet so
1311 * for now simply disallow conflicts.
1312 */
1313 static enum nl80211_dfs_regions
reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,const enum nl80211_dfs_regions dfs_region2)1314 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1315 const enum nl80211_dfs_regions dfs_region2)
1316 {
1317 if (dfs_region1 != dfs_region2)
1318 return NL80211_DFS_UNSET;
1319 return dfs_region1;
1320 }
1321
reg_wmm_rules_intersect(const struct ieee80211_wmm_ac * wmm_ac1,const struct ieee80211_wmm_ac * wmm_ac2,struct ieee80211_wmm_ac * intersect)1322 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1323 const struct ieee80211_wmm_ac *wmm_ac2,
1324 struct ieee80211_wmm_ac *intersect)
1325 {
1326 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1327 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1328 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1329 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1330 }
1331
1332 /*
1333 * Helper for regdom_intersect(), this does the real
1334 * mathematical intersection fun
1335 */
reg_rules_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2,const struct ieee80211_reg_rule * rule1,const struct ieee80211_reg_rule * rule2,struct ieee80211_reg_rule * intersected_rule)1336 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1337 const struct ieee80211_regdomain *rd2,
1338 const struct ieee80211_reg_rule *rule1,
1339 const struct ieee80211_reg_rule *rule2,
1340 struct ieee80211_reg_rule *intersected_rule)
1341 {
1342 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1343 struct ieee80211_freq_range *freq_range;
1344 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1345 struct ieee80211_power_rule *power_rule;
1346 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1347 struct ieee80211_wmm_rule *wmm_rule;
1348 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1349
1350 freq_range1 = &rule1->freq_range;
1351 freq_range2 = &rule2->freq_range;
1352 freq_range = &intersected_rule->freq_range;
1353
1354 power_rule1 = &rule1->power_rule;
1355 power_rule2 = &rule2->power_rule;
1356 power_rule = &intersected_rule->power_rule;
1357
1358 wmm_rule1 = &rule1->wmm_rule;
1359 wmm_rule2 = &rule2->wmm_rule;
1360 wmm_rule = &intersected_rule->wmm_rule;
1361
1362 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1363 freq_range2->start_freq_khz);
1364 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1365 freq_range2->end_freq_khz);
1366
1367 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1368 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1369
1370 if (rule1->flags & NL80211_RRF_AUTO_BW)
1371 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1372 if (rule2->flags & NL80211_RRF_AUTO_BW)
1373 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1374
1375 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1376
1377 intersected_rule->flags = rule1->flags | rule2->flags;
1378
1379 /*
1380 * In case NL80211_RRF_AUTO_BW requested for both rules
1381 * set AUTO_BW in intersected rule also. Next we will
1382 * calculate BW correctly in handle_channel function.
1383 * In other case remove AUTO_BW flag while we calculate
1384 * maximum bandwidth correctly and auto calculation is
1385 * not required.
1386 */
1387 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1388 (rule2->flags & NL80211_RRF_AUTO_BW))
1389 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1390 else
1391 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1392
1393 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1394 if (freq_range->max_bandwidth_khz > freq_diff)
1395 freq_range->max_bandwidth_khz = freq_diff;
1396
1397 power_rule->max_eirp = min(power_rule1->max_eirp,
1398 power_rule2->max_eirp);
1399 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1400 power_rule2->max_antenna_gain);
1401
1402 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1403 rule2->dfs_cac_ms);
1404
1405 if (rule1->has_wmm && rule2->has_wmm) {
1406 u8 ac;
1407
1408 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1409 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1410 &wmm_rule2->client[ac],
1411 &wmm_rule->client[ac]);
1412 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1413 &wmm_rule2->ap[ac],
1414 &wmm_rule->ap[ac]);
1415 }
1416
1417 intersected_rule->has_wmm = true;
1418 } else if (rule1->has_wmm) {
1419 *wmm_rule = *wmm_rule1;
1420 intersected_rule->has_wmm = true;
1421 } else if (rule2->has_wmm) {
1422 *wmm_rule = *wmm_rule2;
1423 intersected_rule->has_wmm = true;
1424 } else {
1425 intersected_rule->has_wmm = false;
1426 }
1427
1428 if (!is_valid_reg_rule(intersected_rule))
1429 return -EINVAL;
1430
1431 return 0;
1432 }
1433
1434 /* check whether old rule contains new rule */
rule_contains(struct ieee80211_reg_rule * r1,struct ieee80211_reg_rule * r2)1435 static bool rule_contains(struct ieee80211_reg_rule *r1,
1436 struct ieee80211_reg_rule *r2)
1437 {
1438 /* for simplicity, currently consider only same flags */
1439 if (r1->flags != r2->flags)
1440 return false;
1441
1442 /* verify r1 is more restrictive */
1443 if ((r1->power_rule.max_antenna_gain >
1444 r2->power_rule.max_antenna_gain) ||
1445 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1446 return false;
1447
1448 /* make sure r2's range is contained within r1 */
1449 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1450 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1451 return false;
1452
1453 /* and finally verify that r1.max_bw >= r2.max_bw */
1454 if (r1->freq_range.max_bandwidth_khz <
1455 r2->freq_range.max_bandwidth_khz)
1456 return false;
1457
1458 return true;
1459 }
1460
1461 /* add or extend current rules. do nothing if rule is already contained */
add_rule(struct ieee80211_reg_rule * rule,struct ieee80211_reg_rule * reg_rules,u32 * n_rules)1462 static void add_rule(struct ieee80211_reg_rule *rule,
1463 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1464 {
1465 struct ieee80211_reg_rule *tmp_rule;
1466 int i;
1467
1468 for (i = 0; i < *n_rules; i++) {
1469 tmp_rule = ®_rules[i];
1470 /* rule is already contained - do nothing */
1471 if (rule_contains(tmp_rule, rule))
1472 return;
1473
1474 /* extend rule if possible */
1475 if (rule_contains(rule, tmp_rule)) {
1476 memcpy(tmp_rule, rule, sizeof(*rule));
1477 return;
1478 }
1479 }
1480
1481 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1482 (*n_rules)++;
1483 }
1484
1485 /**
1486 * regdom_intersect - do the intersection between two regulatory domains
1487 * @rd1: first regulatory domain
1488 * @rd2: second regulatory domain
1489 *
1490 * Use this function to get the intersection between two regulatory domains.
1491 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1492 * as no one single alpha2 can represent this regulatory domain.
1493 *
1494 * Returns a pointer to the regulatory domain structure which will hold the
1495 * resulting intersection of rules between rd1 and rd2. We will
1496 * kzalloc() this structure for you.
1497 *
1498 * Returns: the intersected regdomain
1499 */
1500 static struct ieee80211_regdomain *
regdom_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2)1501 regdom_intersect(const struct ieee80211_regdomain *rd1,
1502 const struct ieee80211_regdomain *rd2)
1503 {
1504 int r;
1505 unsigned int x, y;
1506 unsigned int num_rules = 0;
1507 const struct ieee80211_reg_rule *rule1, *rule2;
1508 struct ieee80211_reg_rule intersected_rule;
1509 struct ieee80211_regdomain *rd;
1510
1511 if (!rd1 || !rd2)
1512 return NULL;
1513
1514 /*
1515 * First we get a count of the rules we'll need, then we actually
1516 * build them. This is to so we can malloc() and free() a
1517 * regdomain once. The reason we use reg_rules_intersect() here
1518 * is it will return -EINVAL if the rule computed makes no sense.
1519 * All rules that do check out OK are valid.
1520 */
1521
1522 for (x = 0; x < rd1->n_reg_rules; x++) {
1523 rule1 = &rd1->reg_rules[x];
1524 for (y = 0; y < rd2->n_reg_rules; y++) {
1525 rule2 = &rd2->reg_rules[y];
1526 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1527 &intersected_rule))
1528 num_rules++;
1529 }
1530 }
1531
1532 if (!num_rules)
1533 return NULL;
1534
1535 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1536 if (!rd)
1537 return NULL;
1538
1539 for (x = 0; x < rd1->n_reg_rules; x++) {
1540 rule1 = &rd1->reg_rules[x];
1541 for (y = 0; y < rd2->n_reg_rules; y++) {
1542 rule2 = &rd2->reg_rules[y];
1543 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1544 &intersected_rule);
1545 /*
1546 * No need to memset here the intersected rule here as
1547 * we're not using the stack anymore
1548 */
1549 if (r)
1550 continue;
1551
1552 add_rule(&intersected_rule, rd->reg_rules,
1553 &rd->n_reg_rules);
1554 }
1555 }
1556
1557 rd->alpha2[0] = '9';
1558 rd->alpha2[1] = '8';
1559 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1560 rd2->dfs_region);
1561
1562 return rd;
1563 }
1564
1565 /*
1566 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1567 * want to just have the channel structure use these
1568 */
map_regdom_flags(u32 rd_flags)1569 static u32 map_regdom_flags(u32 rd_flags)
1570 {
1571 u32 channel_flags = 0;
1572 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1573 channel_flags |= IEEE80211_CHAN_NO_IR;
1574 if (rd_flags & NL80211_RRF_DFS)
1575 channel_flags |= IEEE80211_CHAN_RADAR;
1576 if (rd_flags & NL80211_RRF_NO_OFDM)
1577 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1578 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1579 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1580 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1581 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1582 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1583 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1584 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1585 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1586 if (rd_flags & NL80211_RRF_NO_80MHZ)
1587 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1588 if (rd_flags & NL80211_RRF_NO_160MHZ)
1589 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1590 if (rd_flags & NL80211_RRF_NO_HE)
1591 channel_flags |= IEEE80211_CHAN_NO_HE;
1592 if (rd_flags & NL80211_RRF_NO_320MHZ)
1593 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1594 if (rd_flags & NL80211_RRF_NO_EHT)
1595 channel_flags |= IEEE80211_CHAN_NO_EHT;
1596 if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1597 channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1598 if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT)
1599 channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
1600 if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT)
1601 channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
1602 if (rd_flags & NL80211_RRF_PSD)
1603 channel_flags |= IEEE80211_CHAN_PSD;
1604 if (rd_flags & NL80211_RRF_ALLOW_6GHZ_VLP_AP)
1605 channel_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
1606 return channel_flags;
1607 }
1608
1609 static const struct ieee80211_reg_rule *
freq_reg_info_regd(u32 center_freq,const struct ieee80211_regdomain * regd,u32 bw)1610 freq_reg_info_regd(u32 center_freq,
1611 const struct ieee80211_regdomain *regd, u32 bw)
1612 {
1613 int i;
1614 bool band_rule_found = false;
1615 bool bw_fits = false;
1616
1617 if (!regd)
1618 return ERR_PTR(-EINVAL);
1619
1620 for (i = 0; i < regd->n_reg_rules; i++) {
1621 const struct ieee80211_reg_rule *rr;
1622 const struct ieee80211_freq_range *fr = NULL;
1623
1624 rr = ®d->reg_rules[i];
1625 fr = &rr->freq_range;
1626
1627 /*
1628 * We only need to know if one frequency rule was
1629 * in center_freq's band, that's enough, so let's
1630 * not overwrite it once found
1631 */
1632 if (!band_rule_found)
1633 band_rule_found = freq_in_rule_band(fr, center_freq);
1634
1635 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1636
1637 if (band_rule_found && bw_fits)
1638 return rr;
1639 }
1640
1641 if (!band_rule_found)
1642 return ERR_PTR(-ERANGE);
1643
1644 return ERR_PTR(-EINVAL);
1645 }
1646
1647 static const struct ieee80211_reg_rule *
__freq_reg_info(struct wiphy * wiphy,u32 center_freq,u32 min_bw)1648 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1649 {
1650 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1651 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1652 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1653 int i = ARRAY_SIZE(bws) - 1;
1654 u32 bw;
1655
1656 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1657 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1658 if (!IS_ERR(reg_rule))
1659 return reg_rule;
1660 }
1661
1662 return reg_rule;
1663 }
1664
freq_reg_info(struct wiphy * wiphy,u32 center_freq)1665 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1666 u32 center_freq)
1667 {
1668 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1669
1670 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1671 }
1672 EXPORT_SYMBOL(freq_reg_info);
1673
reg_initiator_name(enum nl80211_reg_initiator initiator)1674 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1675 {
1676 switch (initiator) {
1677 case NL80211_REGDOM_SET_BY_CORE:
1678 return "core";
1679 case NL80211_REGDOM_SET_BY_USER:
1680 return "user";
1681 case NL80211_REGDOM_SET_BY_DRIVER:
1682 return "driver";
1683 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1684 return "country element";
1685 default:
1686 WARN_ON(1);
1687 return "bug";
1688 }
1689 }
1690 EXPORT_SYMBOL(reg_initiator_name);
1691
reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain * regd,const struct ieee80211_reg_rule * reg_rule,const struct ieee80211_channel * chan)1692 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1693 const struct ieee80211_reg_rule *reg_rule,
1694 const struct ieee80211_channel *chan)
1695 {
1696 const struct ieee80211_freq_range *freq_range = NULL;
1697 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1698 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1699
1700 freq_range = ®_rule->freq_range;
1701
1702 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1703 center_freq_khz = ieee80211_channel_to_khz(chan);
1704 /* Check if auto calculation requested */
1705 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1706 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1707
1708 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1709 if (!cfg80211_does_bw_fit_range(freq_range,
1710 center_freq_khz,
1711 MHZ_TO_KHZ(10)))
1712 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1713 if (!cfg80211_does_bw_fit_range(freq_range,
1714 center_freq_khz,
1715 MHZ_TO_KHZ(20)))
1716 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1717
1718 if (is_s1g) {
1719 /* S1G is strict about non overlapping channels. We can
1720 * calculate which bandwidth is allowed per channel by finding
1721 * the largest bandwidth which cleanly divides the freq_range.
1722 */
1723 int edge_offset;
1724 int ch_bw = max_bandwidth_khz;
1725
1726 while (ch_bw) {
1727 edge_offset = (center_freq_khz - ch_bw / 2) -
1728 freq_range->start_freq_khz;
1729 if (edge_offset % ch_bw == 0) {
1730 switch (KHZ_TO_MHZ(ch_bw)) {
1731 case 1:
1732 bw_flags |= IEEE80211_CHAN_1MHZ;
1733 break;
1734 case 2:
1735 bw_flags |= IEEE80211_CHAN_2MHZ;
1736 break;
1737 case 4:
1738 bw_flags |= IEEE80211_CHAN_4MHZ;
1739 break;
1740 case 8:
1741 bw_flags |= IEEE80211_CHAN_8MHZ;
1742 break;
1743 case 16:
1744 bw_flags |= IEEE80211_CHAN_16MHZ;
1745 break;
1746 default:
1747 /* If we got here, no bandwidths fit on
1748 * this frequency, ie. band edge.
1749 */
1750 bw_flags |= IEEE80211_CHAN_DISABLED;
1751 break;
1752 }
1753 break;
1754 }
1755 ch_bw /= 2;
1756 }
1757 } else {
1758 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1759 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1760 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1761 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1762 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1763 bw_flags |= IEEE80211_CHAN_NO_HT40;
1764 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1765 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1766 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1767 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1768 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1769 bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1770 }
1771 return bw_flags;
1772 }
1773
handle_channel_single_rule(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * reg_rule)1774 static void handle_channel_single_rule(struct wiphy *wiphy,
1775 enum nl80211_reg_initiator initiator,
1776 struct ieee80211_channel *chan,
1777 u32 flags,
1778 struct regulatory_request *lr,
1779 struct wiphy *request_wiphy,
1780 const struct ieee80211_reg_rule *reg_rule)
1781 {
1782 u32 bw_flags = 0;
1783 const struct ieee80211_power_rule *power_rule = NULL;
1784 const struct ieee80211_regdomain *regd;
1785
1786 regd = reg_get_regdomain(wiphy);
1787
1788 power_rule = ®_rule->power_rule;
1789 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1790
1791 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1792 request_wiphy && request_wiphy == wiphy &&
1793 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1794 /*
1795 * This guarantees the driver's requested regulatory domain
1796 * will always be used as a base for further regulatory
1797 * settings
1798 */
1799 chan->flags = chan->orig_flags =
1800 map_regdom_flags(reg_rule->flags) | bw_flags;
1801 chan->max_antenna_gain = chan->orig_mag =
1802 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1803 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1804 (int) MBM_TO_DBM(power_rule->max_eirp);
1805
1806 if (chan->flags & IEEE80211_CHAN_RADAR) {
1807 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1808 if (reg_rule->dfs_cac_ms)
1809 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1810 }
1811
1812 if (chan->flags & IEEE80211_CHAN_PSD)
1813 chan->psd = reg_rule->psd;
1814
1815 return;
1816 }
1817
1818 chan->dfs_state = NL80211_DFS_USABLE;
1819 chan->dfs_state_entered = jiffies;
1820
1821 chan->beacon_found = false;
1822 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1823 chan->max_antenna_gain =
1824 min_t(int, chan->orig_mag,
1825 MBI_TO_DBI(power_rule->max_antenna_gain));
1826 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1827
1828 if (chan->flags & IEEE80211_CHAN_RADAR) {
1829 if (reg_rule->dfs_cac_ms)
1830 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1831 else
1832 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1833 }
1834
1835 if (chan->flags & IEEE80211_CHAN_PSD)
1836 chan->psd = reg_rule->psd;
1837
1838 if (chan->orig_mpwr) {
1839 /*
1840 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1841 * will always follow the passed country IE power settings.
1842 */
1843 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1844 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1845 chan->max_power = chan->max_reg_power;
1846 else
1847 chan->max_power = min(chan->orig_mpwr,
1848 chan->max_reg_power);
1849 } else
1850 chan->max_power = chan->max_reg_power;
1851 }
1852
handle_channel_adjacent_rules(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * rrule1,const struct ieee80211_reg_rule * rrule2,struct ieee80211_freq_range * comb_range)1853 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1854 enum nl80211_reg_initiator initiator,
1855 struct ieee80211_channel *chan,
1856 u32 flags,
1857 struct regulatory_request *lr,
1858 struct wiphy *request_wiphy,
1859 const struct ieee80211_reg_rule *rrule1,
1860 const struct ieee80211_reg_rule *rrule2,
1861 struct ieee80211_freq_range *comb_range)
1862 {
1863 u32 bw_flags1 = 0;
1864 u32 bw_flags2 = 0;
1865 const struct ieee80211_power_rule *power_rule1 = NULL;
1866 const struct ieee80211_power_rule *power_rule2 = NULL;
1867 const struct ieee80211_regdomain *regd;
1868
1869 regd = reg_get_regdomain(wiphy);
1870
1871 power_rule1 = &rrule1->power_rule;
1872 power_rule2 = &rrule2->power_rule;
1873 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1874 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1875
1876 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1877 request_wiphy && request_wiphy == wiphy &&
1878 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1879 /* This guarantees the driver's requested regulatory domain
1880 * will always be used as a base for further regulatory
1881 * settings
1882 */
1883 chan->flags =
1884 map_regdom_flags(rrule1->flags) |
1885 map_regdom_flags(rrule2->flags) |
1886 bw_flags1 |
1887 bw_flags2;
1888 chan->orig_flags = chan->flags;
1889 chan->max_antenna_gain =
1890 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1891 MBI_TO_DBI(power_rule2->max_antenna_gain));
1892 chan->orig_mag = chan->max_antenna_gain;
1893 chan->max_reg_power =
1894 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1895 MBM_TO_DBM(power_rule2->max_eirp));
1896 chan->max_power = chan->max_reg_power;
1897 chan->orig_mpwr = chan->max_reg_power;
1898
1899 if (chan->flags & IEEE80211_CHAN_RADAR) {
1900 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1901 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1902 chan->dfs_cac_ms = max_t(unsigned int,
1903 rrule1->dfs_cac_ms,
1904 rrule2->dfs_cac_ms);
1905 }
1906
1907 if ((rrule1->flags & NL80211_RRF_PSD) &&
1908 (rrule2->flags & NL80211_RRF_PSD))
1909 chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1910 else
1911 chan->flags &= ~NL80211_RRF_PSD;
1912
1913 return;
1914 }
1915
1916 chan->dfs_state = NL80211_DFS_USABLE;
1917 chan->dfs_state_entered = jiffies;
1918
1919 chan->beacon_found = false;
1920 chan->flags = flags | bw_flags1 | bw_flags2 |
1921 map_regdom_flags(rrule1->flags) |
1922 map_regdom_flags(rrule2->flags);
1923
1924 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1925 * (otherwise no adj. rule case), recheck therefore
1926 */
1927 if (cfg80211_does_bw_fit_range(comb_range,
1928 ieee80211_channel_to_khz(chan),
1929 MHZ_TO_KHZ(10)))
1930 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1931 if (cfg80211_does_bw_fit_range(comb_range,
1932 ieee80211_channel_to_khz(chan),
1933 MHZ_TO_KHZ(20)))
1934 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1935
1936 chan->max_antenna_gain =
1937 min_t(int, chan->orig_mag,
1938 min_t(int,
1939 MBI_TO_DBI(power_rule1->max_antenna_gain),
1940 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1941 chan->max_reg_power = min_t(int,
1942 MBM_TO_DBM(power_rule1->max_eirp),
1943 MBM_TO_DBM(power_rule2->max_eirp));
1944
1945 if (chan->flags & IEEE80211_CHAN_RADAR) {
1946 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1947 chan->dfs_cac_ms = max_t(unsigned int,
1948 rrule1->dfs_cac_ms,
1949 rrule2->dfs_cac_ms);
1950 else
1951 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1952 }
1953
1954 if (chan->orig_mpwr) {
1955 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1956 * will always follow the passed country IE power settings.
1957 */
1958 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1959 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1960 chan->max_power = chan->max_reg_power;
1961 else
1962 chan->max_power = min(chan->orig_mpwr,
1963 chan->max_reg_power);
1964 } else {
1965 chan->max_power = chan->max_reg_power;
1966 }
1967 }
1968
1969 /* Note that right now we assume the desired channel bandwidth
1970 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1971 * per channel, the primary and the extension channel).
1972 */
handle_channel(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan)1973 static void handle_channel(struct wiphy *wiphy,
1974 enum nl80211_reg_initiator initiator,
1975 struct ieee80211_channel *chan)
1976 {
1977 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1978 struct regulatory_request *lr = get_last_request();
1979 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1980 const struct ieee80211_reg_rule *rrule = NULL;
1981 const struct ieee80211_reg_rule *rrule1 = NULL;
1982 const struct ieee80211_reg_rule *rrule2 = NULL;
1983
1984 u32 flags = chan->orig_flags;
1985
1986 rrule = freq_reg_info(wiphy, orig_chan_freq);
1987 if (IS_ERR(rrule)) {
1988 /* check for adjacent match, therefore get rules for
1989 * chan - 20 MHz and chan + 20 MHz and test
1990 * if reg rules are adjacent
1991 */
1992 rrule1 = freq_reg_info(wiphy,
1993 orig_chan_freq - MHZ_TO_KHZ(20));
1994 rrule2 = freq_reg_info(wiphy,
1995 orig_chan_freq + MHZ_TO_KHZ(20));
1996 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1997 struct ieee80211_freq_range comb_range;
1998
1999 if (rrule1->freq_range.end_freq_khz !=
2000 rrule2->freq_range.start_freq_khz)
2001 goto disable_chan;
2002
2003 comb_range.start_freq_khz =
2004 rrule1->freq_range.start_freq_khz;
2005 comb_range.end_freq_khz =
2006 rrule2->freq_range.end_freq_khz;
2007 comb_range.max_bandwidth_khz =
2008 min_t(u32,
2009 rrule1->freq_range.max_bandwidth_khz,
2010 rrule2->freq_range.max_bandwidth_khz);
2011
2012 if (!cfg80211_does_bw_fit_range(&comb_range,
2013 orig_chan_freq,
2014 MHZ_TO_KHZ(20)))
2015 goto disable_chan;
2016
2017 handle_channel_adjacent_rules(wiphy, initiator, chan,
2018 flags, lr, request_wiphy,
2019 rrule1, rrule2,
2020 &comb_range);
2021 return;
2022 }
2023
2024 disable_chan:
2025 /* We will disable all channels that do not match our
2026 * received regulatory rule unless the hint is coming
2027 * from a Country IE and the Country IE had no information
2028 * about a band. The IEEE 802.11 spec allows for an AP
2029 * to send only a subset of the regulatory rules allowed,
2030 * so an AP in the US that only supports 2.4 GHz may only send
2031 * a country IE with information for the 2.4 GHz band
2032 * while 5 GHz is still supported.
2033 */
2034 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2035 PTR_ERR(rrule) == -ERANGE)
2036 return;
2037
2038 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2039 request_wiphy && request_wiphy == wiphy &&
2040 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2041 pr_debug("Disabling freq %d.%03d MHz for good\n",
2042 chan->center_freq, chan->freq_offset);
2043 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2044 chan->flags = chan->orig_flags;
2045 } else {
2046 pr_debug("Disabling freq %d.%03d MHz\n",
2047 chan->center_freq, chan->freq_offset);
2048 chan->flags |= IEEE80211_CHAN_DISABLED;
2049 }
2050 return;
2051 }
2052
2053 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2054 request_wiphy, rrule);
2055 }
2056
handle_band(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_supported_band * sband)2057 static void handle_band(struct wiphy *wiphy,
2058 enum nl80211_reg_initiator initiator,
2059 struct ieee80211_supported_band *sband)
2060 {
2061 unsigned int i;
2062
2063 if (!sband)
2064 return;
2065
2066 for (i = 0; i < sband->n_channels; i++)
2067 handle_channel(wiphy, initiator, &sband->channels[i]);
2068 }
2069
reg_request_cell_base(struct regulatory_request * request)2070 static bool reg_request_cell_base(struct regulatory_request *request)
2071 {
2072 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2073 return false;
2074 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2075 }
2076
reg_last_request_cell_base(void)2077 bool reg_last_request_cell_base(void)
2078 {
2079 return reg_request_cell_base(get_last_request());
2080 }
2081
2082 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2083 /* Core specific check */
2084 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2085 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2086 {
2087 struct regulatory_request *lr = get_last_request();
2088
2089 if (!reg_num_devs_support_basehint)
2090 return REG_REQ_IGNORE;
2091
2092 if (reg_request_cell_base(lr) &&
2093 !regdom_changes(pending_request->alpha2))
2094 return REG_REQ_ALREADY_SET;
2095
2096 return REG_REQ_OK;
2097 }
2098
2099 /* Device specific check */
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2100 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2101 {
2102 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2103 }
2104 #else
2105 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2106 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2107 {
2108 return REG_REQ_IGNORE;
2109 }
2110
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2111 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2112 {
2113 return true;
2114 }
2115 #endif
2116
wiphy_strict_alpha2_regd(struct wiphy * wiphy)2117 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2118 {
2119 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2120 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2121 return true;
2122 return false;
2123 }
2124
ignore_reg_update(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2125 static bool ignore_reg_update(struct wiphy *wiphy,
2126 enum nl80211_reg_initiator initiator)
2127 {
2128 struct regulatory_request *lr = get_last_request();
2129
2130 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2131 return true;
2132
2133 if (!lr) {
2134 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2135 reg_initiator_name(initiator));
2136 return true;
2137 }
2138
2139 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2140 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2141 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2142 reg_initiator_name(initiator));
2143 return true;
2144 }
2145
2146 /*
2147 * wiphy->regd will be set once the device has its own
2148 * desired regulatory domain set
2149 */
2150 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2151 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2152 !is_world_regdom(lr->alpha2)) {
2153 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2154 reg_initiator_name(initiator));
2155 return true;
2156 }
2157
2158 if (reg_request_cell_base(lr))
2159 return reg_dev_ignore_cell_hint(wiphy);
2160
2161 return false;
2162 }
2163
reg_is_world_roaming(struct wiphy * wiphy)2164 static bool reg_is_world_roaming(struct wiphy *wiphy)
2165 {
2166 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2167 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2168 struct regulatory_request *lr = get_last_request();
2169
2170 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2171 return true;
2172
2173 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2174 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2175 return true;
2176
2177 return false;
2178 }
2179
reg_call_notifier(struct wiphy * wiphy,struct regulatory_request * request)2180 static void reg_call_notifier(struct wiphy *wiphy,
2181 struct regulatory_request *request)
2182 {
2183 if (wiphy->reg_notifier)
2184 wiphy->reg_notifier(wiphy, request);
2185 }
2186
handle_reg_beacon(struct wiphy * wiphy,unsigned int chan_idx,struct reg_beacon * reg_beacon)2187 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2188 struct reg_beacon *reg_beacon)
2189 {
2190 struct ieee80211_supported_band *sband;
2191 struct ieee80211_channel *chan;
2192 bool channel_changed = false;
2193 struct ieee80211_channel chan_before;
2194 struct regulatory_request *lr = get_last_request();
2195
2196 sband = wiphy->bands[reg_beacon->chan.band];
2197 chan = &sband->channels[chan_idx];
2198
2199 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
2200 return;
2201
2202 if (chan->beacon_found)
2203 return;
2204
2205 chan->beacon_found = true;
2206
2207 if (!reg_is_world_roaming(wiphy))
2208 return;
2209
2210 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2211 return;
2212
2213 chan_before = *chan;
2214
2215 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2216 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2217 channel_changed = true;
2218 }
2219
2220 if (channel_changed) {
2221 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2222 if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2223 reg_call_notifier(wiphy, lr);
2224 }
2225 }
2226
2227 /*
2228 * Called when a scan on a wiphy finds a beacon on
2229 * new channel
2230 */
wiphy_update_new_beacon(struct wiphy * wiphy,struct reg_beacon * reg_beacon)2231 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2232 struct reg_beacon *reg_beacon)
2233 {
2234 unsigned int i;
2235 struct ieee80211_supported_band *sband;
2236
2237 if (!wiphy->bands[reg_beacon->chan.band])
2238 return;
2239
2240 sband = wiphy->bands[reg_beacon->chan.band];
2241
2242 for (i = 0; i < sband->n_channels; i++)
2243 handle_reg_beacon(wiphy, i, reg_beacon);
2244 }
2245
2246 /*
2247 * Called upon reg changes or a new wiphy is added
2248 */
wiphy_update_beacon_reg(struct wiphy * wiphy)2249 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2250 {
2251 unsigned int i;
2252 struct ieee80211_supported_band *sband;
2253 struct reg_beacon *reg_beacon;
2254
2255 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2256 if (!wiphy->bands[reg_beacon->chan.band])
2257 continue;
2258 sband = wiphy->bands[reg_beacon->chan.band];
2259 for (i = 0; i < sband->n_channels; i++)
2260 handle_reg_beacon(wiphy, i, reg_beacon);
2261 }
2262 }
2263
2264 /* Reap the advantages of previously found beacons */
reg_process_beacons(struct wiphy * wiphy)2265 static void reg_process_beacons(struct wiphy *wiphy)
2266 {
2267 /*
2268 * Means we are just firing up cfg80211, so no beacons would
2269 * have been processed yet.
2270 */
2271 if (!last_request)
2272 return;
2273 wiphy_update_beacon_reg(wiphy);
2274 }
2275
is_ht40_allowed(struct ieee80211_channel * chan)2276 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2277 {
2278 if (!chan)
2279 return false;
2280 if (chan->flags & IEEE80211_CHAN_DISABLED)
2281 return false;
2282 /* This would happen when regulatory rules disallow HT40 completely */
2283 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2284 return false;
2285 return true;
2286 }
2287
reg_process_ht_flags_channel(struct wiphy * wiphy,struct ieee80211_channel * channel)2288 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2289 struct ieee80211_channel *channel)
2290 {
2291 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2292 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2293 const struct ieee80211_regdomain *regd;
2294 unsigned int i;
2295 u32 flags;
2296
2297 if (!is_ht40_allowed(channel)) {
2298 channel->flags |= IEEE80211_CHAN_NO_HT40;
2299 return;
2300 }
2301
2302 /*
2303 * We need to ensure the extension channels exist to
2304 * be able to use HT40- or HT40+, this finds them (or not)
2305 */
2306 for (i = 0; i < sband->n_channels; i++) {
2307 struct ieee80211_channel *c = &sband->channels[i];
2308
2309 if (c->center_freq == (channel->center_freq - 20))
2310 channel_before = c;
2311 if (c->center_freq == (channel->center_freq + 20))
2312 channel_after = c;
2313 }
2314
2315 flags = 0;
2316 regd = get_wiphy_regdom(wiphy);
2317 if (regd) {
2318 const struct ieee80211_reg_rule *reg_rule =
2319 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2320 regd, MHZ_TO_KHZ(20));
2321
2322 if (!IS_ERR(reg_rule))
2323 flags = reg_rule->flags;
2324 }
2325
2326 /*
2327 * Please note that this assumes target bandwidth is 20 MHz,
2328 * if that ever changes we also need to change the below logic
2329 * to include that as well.
2330 */
2331 if (!is_ht40_allowed(channel_before) ||
2332 flags & NL80211_RRF_NO_HT40MINUS)
2333 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2334 else
2335 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2336
2337 if (!is_ht40_allowed(channel_after) ||
2338 flags & NL80211_RRF_NO_HT40PLUS)
2339 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2340 else
2341 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2342 }
2343
reg_process_ht_flags_band(struct wiphy * wiphy,struct ieee80211_supported_band * sband)2344 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2345 struct ieee80211_supported_band *sband)
2346 {
2347 unsigned int i;
2348
2349 if (!sband)
2350 return;
2351
2352 for (i = 0; i < sband->n_channels; i++)
2353 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2354 }
2355
reg_process_ht_flags(struct wiphy * wiphy)2356 static void reg_process_ht_flags(struct wiphy *wiphy)
2357 {
2358 enum nl80211_band band;
2359
2360 if (!wiphy)
2361 return;
2362
2363 for (band = 0; band < NUM_NL80211_BANDS; band++)
2364 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2365 }
2366
reg_wdev_chan_valid(struct wiphy * wiphy,struct wireless_dev * wdev)2367 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2368 {
2369 struct cfg80211_chan_def chandef = {};
2370 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2371 enum nl80211_iftype iftype;
2372 bool ret;
2373 int link;
2374
2375 iftype = wdev->iftype;
2376
2377 /* make sure the interface is active */
2378 if (!wdev->netdev || !netif_running(wdev->netdev))
2379 return true;
2380
2381 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2382 struct ieee80211_channel *chan;
2383
2384 if (!wdev->valid_links && link > 0)
2385 break;
2386 if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2387 continue;
2388 switch (iftype) {
2389 case NL80211_IFTYPE_AP:
2390 case NL80211_IFTYPE_P2P_GO:
2391 if (!wdev->links[link].ap.beacon_interval)
2392 continue;
2393 chandef = wdev->links[link].ap.chandef;
2394 break;
2395 case NL80211_IFTYPE_MESH_POINT:
2396 if (!wdev->u.mesh.beacon_interval)
2397 continue;
2398 chandef = wdev->u.mesh.chandef;
2399 break;
2400 case NL80211_IFTYPE_ADHOC:
2401 if (!wdev->u.ibss.ssid_len)
2402 continue;
2403 chandef = wdev->u.ibss.chandef;
2404 break;
2405 case NL80211_IFTYPE_STATION:
2406 case NL80211_IFTYPE_P2P_CLIENT:
2407 /* Maybe we could consider disabling that link only? */
2408 if (!wdev->links[link].client.current_bss)
2409 continue;
2410
2411 chan = wdev->links[link].client.current_bss->pub.channel;
2412 if (!chan)
2413 continue;
2414
2415 if (!rdev->ops->get_channel ||
2416 rdev_get_channel(rdev, wdev, link, &chandef))
2417 cfg80211_chandef_create(&chandef, chan,
2418 NL80211_CHAN_NO_HT);
2419 break;
2420 case NL80211_IFTYPE_MONITOR:
2421 case NL80211_IFTYPE_AP_VLAN:
2422 case NL80211_IFTYPE_P2P_DEVICE:
2423 /* no enforcement required */
2424 break;
2425 case NL80211_IFTYPE_OCB:
2426 if (!wdev->u.ocb.chandef.chan)
2427 continue;
2428 chandef = wdev->u.ocb.chandef;
2429 break;
2430 case NL80211_IFTYPE_NAN:
2431 /* we have no info, but NAN is also pretty universal */
2432 continue;
2433 default:
2434 /* others not implemented for now */
2435 WARN_ON_ONCE(1);
2436 break;
2437 }
2438
2439 switch (iftype) {
2440 case NL80211_IFTYPE_AP:
2441 case NL80211_IFTYPE_P2P_GO:
2442 case NL80211_IFTYPE_ADHOC:
2443 case NL80211_IFTYPE_MESH_POINT:
2444 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2445 iftype);
2446 if (!ret)
2447 return ret;
2448 break;
2449 case NL80211_IFTYPE_STATION:
2450 case NL80211_IFTYPE_P2P_CLIENT:
2451 ret = cfg80211_chandef_usable(wiphy, &chandef,
2452 IEEE80211_CHAN_DISABLED);
2453 if (!ret)
2454 return ret;
2455 break;
2456 default:
2457 break;
2458 }
2459 }
2460
2461 return true;
2462 }
2463
reg_leave_invalid_chans(struct wiphy * wiphy)2464 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2465 {
2466 struct wireless_dev *wdev;
2467 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2468
2469 guard(wiphy)(wiphy);
2470
2471 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2472 if (!reg_wdev_chan_valid(wiphy, wdev))
2473 cfg80211_leave(rdev, wdev);
2474 }
2475
reg_check_chans_work(struct work_struct * work)2476 static void reg_check_chans_work(struct work_struct *work)
2477 {
2478 struct cfg80211_registered_device *rdev;
2479
2480 pr_debug("Verifying active interfaces after reg change\n");
2481 rtnl_lock();
2482
2483 for_each_rdev(rdev)
2484 reg_leave_invalid_chans(&rdev->wiphy);
2485
2486 rtnl_unlock();
2487 }
2488
reg_check_channels(void)2489 void reg_check_channels(void)
2490 {
2491 /*
2492 * Give usermode a chance to do something nicer (move to another
2493 * channel, orderly disconnection), before forcing a disconnection.
2494 */
2495 mod_delayed_work(system_power_efficient_wq,
2496 ®_check_chans,
2497 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2498 }
2499
wiphy_update_regulatory(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2500 static void wiphy_update_regulatory(struct wiphy *wiphy,
2501 enum nl80211_reg_initiator initiator)
2502 {
2503 enum nl80211_band band;
2504 struct regulatory_request *lr = get_last_request();
2505
2506 if (ignore_reg_update(wiphy, initiator)) {
2507 /*
2508 * Regulatory updates set by CORE are ignored for custom
2509 * regulatory cards. Let us notify the changes to the driver,
2510 * as some drivers used this to restore its orig_* reg domain.
2511 */
2512 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2513 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2514 !(wiphy->regulatory_flags &
2515 REGULATORY_WIPHY_SELF_MANAGED))
2516 reg_call_notifier(wiphy, lr);
2517 return;
2518 }
2519
2520 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2521
2522 for (band = 0; band < NUM_NL80211_BANDS; band++)
2523 handle_band(wiphy, initiator, wiphy->bands[band]);
2524
2525 reg_process_beacons(wiphy);
2526 reg_process_ht_flags(wiphy);
2527 reg_call_notifier(wiphy, lr);
2528 }
2529
update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)2530 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2531 {
2532 struct cfg80211_registered_device *rdev;
2533 struct wiphy *wiphy;
2534
2535 ASSERT_RTNL();
2536
2537 for_each_rdev(rdev) {
2538 wiphy = &rdev->wiphy;
2539 wiphy_update_regulatory(wiphy, initiator);
2540 }
2541
2542 reg_check_channels();
2543 }
2544
handle_channel_custom(struct wiphy * wiphy,struct ieee80211_channel * chan,const struct ieee80211_regdomain * regd,u32 min_bw)2545 static void handle_channel_custom(struct wiphy *wiphy,
2546 struct ieee80211_channel *chan,
2547 const struct ieee80211_regdomain *regd,
2548 u32 min_bw)
2549 {
2550 u32 bw_flags = 0;
2551 const struct ieee80211_reg_rule *reg_rule = NULL;
2552 const struct ieee80211_power_rule *power_rule = NULL;
2553 u32 bw, center_freq_khz;
2554
2555 center_freq_khz = ieee80211_channel_to_khz(chan);
2556 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2557 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2558 if (!IS_ERR(reg_rule))
2559 break;
2560 }
2561
2562 if (IS_ERR_OR_NULL(reg_rule)) {
2563 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2564 chan->center_freq, chan->freq_offset);
2565 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2566 chan->flags |= IEEE80211_CHAN_DISABLED;
2567 } else {
2568 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2569 chan->flags = chan->orig_flags;
2570 }
2571 return;
2572 }
2573
2574 power_rule = ®_rule->power_rule;
2575 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2576
2577 chan->dfs_state_entered = jiffies;
2578 chan->dfs_state = NL80211_DFS_USABLE;
2579
2580 chan->beacon_found = false;
2581
2582 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2583 chan->flags = chan->orig_flags | bw_flags |
2584 map_regdom_flags(reg_rule->flags);
2585 else
2586 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2587
2588 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2589 chan->max_reg_power = chan->max_power =
2590 (int) MBM_TO_DBM(power_rule->max_eirp);
2591
2592 if (chan->flags & IEEE80211_CHAN_RADAR) {
2593 if (reg_rule->dfs_cac_ms)
2594 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2595 else
2596 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2597 }
2598
2599 if (chan->flags & IEEE80211_CHAN_PSD)
2600 chan->psd = reg_rule->psd;
2601
2602 chan->max_power = chan->max_reg_power;
2603 }
2604
handle_band_custom(struct wiphy * wiphy,struct ieee80211_supported_band * sband,const struct ieee80211_regdomain * regd)2605 static void handle_band_custom(struct wiphy *wiphy,
2606 struct ieee80211_supported_band *sband,
2607 const struct ieee80211_regdomain *regd)
2608 {
2609 unsigned int i;
2610
2611 if (!sband)
2612 return;
2613
2614 /*
2615 * We currently assume that you always want at least 20 MHz,
2616 * otherwise channel 12 might get enabled if this rule is
2617 * compatible to US, which permits 2402 - 2472 MHz.
2618 */
2619 for (i = 0; i < sband->n_channels; i++)
2620 handle_channel_custom(wiphy, &sband->channels[i], regd,
2621 MHZ_TO_KHZ(20));
2622 }
2623
2624 /* Used by drivers prior to wiphy registration */
wiphy_apply_custom_regulatory(struct wiphy * wiphy,const struct ieee80211_regdomain * regd)2625 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2626 const struct ieee80211_regdomain *regd)
2627 {
2628 const struct ieee80211_regdomain *new_regd, *tmp;
2629 enum nl80211_band band;
2630 unsigned int bands_set = 0;
2631
2632 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2633 "wiphy should have REGULATORY_CUSTOM_REG\n");
2634 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2635
2636 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2637 if (!wiphy->bands[band])
2638 continue;
2639 handle_band_custom(wiphy, wiphy->bands[band], regd);
2640 bands_set++;
2641 }
2642
2643 /*
2644 * no point in calling this if it won't have any effect
2645 * on your device's supported bands.
2646 */
2647 WARN_ON(!bands_set);
2648 new_regd = reg_copy_regd(regd);
2649 if (IS_ERR(new_regd))
2650 return;
2651
2652 rtnl_lock();
2653 scoped_guard(wiphy, wiphy) {
2654 tmp = get_wiphy_regdom(wiphy);
2655 rcu_assign_pointer(wiphy->regd, new_regd);
2656 rcu_free_regdom(tmp);
2657 }
2658 rtnl_unlock();
2659 }
2660 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2661
reg_set_request_processed(void)2662 static void reg_set_request_processed(void)
2663 {
2664 bool need_more_processing = false;
2665 struct regulatory_request *lr = get_last_request();
2666
2667 lr->processed = true;
2668
2669 spin_lock(®_requests_lock);
2670 if (!list_empty(®_requests_list))
2671 need_more_processing = true;
2672 spin_unlock(®_requests_lock);
2673
2674 cancel_crda_timeout();
2675
2676 if (need_more_processing)
2677 schedule_work(®_work);
2678 }
2679
2680 /**
2681 * reg_process_hint_core - process core regulatory requests
2682 * @core_request: a pending core regulatory request
2683 *
2684 * The wireless subsystem can use this function to process
2685 * a regulatory request issued by the regulatory core.
2686 *
2687 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2688 * hint was processed or ignored
2689 */
2690 static enum reg_request_treatment
reg_process_hint_core(struct regulatory_request * core_request)2691 reg_process_hint_core(struct regulatory_request *core_request)
2692 {
2693 if (reg_query_database(core_request)) {
2694 core_request->intersect = false;
2695 core_request->processed = false;
2696 reg_update_last_request(core_request);
2697 return REG_REQ_OK;
2698 }
2699
2700 return REG_REQ_IGNORE;
2701 }
2702
2703 static enum reg_request_treatment
__reg_process_hint_user(struct regulatory_request * user_request)2704 __reg_process_hint_user(struct regulatory_request *user_request)
2705 {
2706 struct regulatory_request *lr = get_last_request();
2707
2708 if (reg_request_cell_base(user_request))
2709 return reg_ignore_cell_hint(user_request);
2710
2711 if (reg_request_cell_base(lr))
2712 return REG_REQ_IGNORE;
2713
2714 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2715 return REG_REQ_INTERSECT;
2716 /*
2717 * If the user knows better the user should set the regdom
2718 * to their country before the IE is picked up
2719 */
2720 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2721 lr->intersect)
2722 return REG_REQ_IGNORE;
2723 /*
2724 * Process user requests only after previous user/driver/core
2725 * requests have been processed
2726 */
2727 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2728 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2729 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2730 regdom_changes(lr->alpha2))
2731 return REG_REQ_IGNORE;
2732
2733 if (!regdom_changes(user_request->alpha2))
2734 return REG_REQ_ALREADY_SET;
2735
2736 return REG_REQ_OK;
2737 }
2738
2739 /**
2740 * reg_process_hint_user - process user regulatory requests
2741 * @user_request: a pending user regulatory request
2742 *
2743 * The wireless subsystem can use this function to process
2744 * a regulatory request initiated by userspace.
2745 *
2746 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2747 * hint was processed or ignored
2748 */
2749 static enum reg_request_treatment
reg_process_hint_user(struct regulatory_request * user_request)2750 reg_process_hint_user(struct regulatory_request *user_request)
2751 {
2752 enum reg_request_treatment treatment;
2753
2754 treatment = __reg_process_hint_user(user_request);
2755 if (treatment == REG_REQ_IGNORE ||
2756 treatment == REG_REQ_ALREADY_SET)
2757 return REG_REQ_IGNORE;
2758
2759 user_request->intersect = treatment == REG_REQ_INTERSECT;
2760 user_request->processed = false;
2761
2762 if (reg_query_database(user_request)) {
2763 reg_update_last_request(user_request);
2764 user_alpha2[0] = user_request->alpha2[0];
2765 user_alpha2[1] = user_request->alpha2[1];
2766 return REG_REQ_OK;
2767 }
2768
2769 return REG_REQ_IGNORE;
2770 }
2771
2772 static enum reg_request_treatment
__reg_process_hint_driver(struct regulatory_request * driver_request)2773 __reg_process_hint_driver(struct regulatory_request *driver_request)
2774 {
2775 struct regulatory_request *lr = get_last_request();
2776
2777 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2778 if (regdom_changes(driver_request->alpha2))
2779 return REG_REQ_OK;
2780 return REG_REQ_ALREADY_SET;
2781 }
2782
2783 /*
2784 * This would happen if you unplug and plug your card
2785 * back in or if you add a new device for which the previously
2786 * loaded card also agrees on the regulatory domain.
2787 */
2788 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2789 !regdom_changes(driver_request->alpha2))
2790 return REG_REQ_ALREADY_SET;
2791
2792 return REG_REQ_INTERSECT;
2793 }
2794
2795 /**
2796 * reg_process_hint_driver - process driver regulatory requests
2797 * @wiphy: the wireless device for the regulatory request
2798 * @driver_request: a pending driver regulatory request
2799 *
2800 * The wireless subsystem can use this function to process
2801 * a regulatory request issued by an 802.11 driver.
2802 *
2803 * Returns: one of the different reg request treatment values.
2804 */
2805 static enum reg_request_treatment
reg_process_hint_driver(struct wiphy * wiphy,struct regulatory_request * driver_request)2806 reg_process_hint_driver(struct wiphy *wiphy,
2807 struct regulatory_request *driver_request)
2808 {
2809 const struct ieee80211_regdomain *regd, *tmp;
2810 enum reg_request_treatment treatment;
2811
2812 treatment = __reg_process_hint_driver(driver_request);
2813
2814 switch (treatment) {
2815 case REG_REQ_OK:
2816 break;
2817 case REG_REQ_IGNORE:
2818 return REG_REQ_IGNORE;
2819 case REG_REQ_INTERSECT:
2820 case REG_REQ_ALREADY_SET:
2821 regd = reg_copy_regd(get_cfg80211_regdom());
2822 if (IS_ERR(regd))
2823 return REG_REQ_IGNORE;
2824
2825 tmp = get_wiphy_regdom(wiphy);
2826 ASSERT_RTNL();
2827 scoped_guard(wiphy, wiphy) {
2828 rcu_assign_pointer(wiphy->regd, regd);
2829 }
2830 rcu_free_regdom(tmp);
2831 }
2832
2833
2834 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2835 driver_request->processed = false;
2836
2837 /*
2838 * Since CRDA will not be called in this case as we already
2839 * have applied the requested regulatory domain before we just
2840 * inform userspace we have processed the request
2841 */
2842 if (treatment == REG_REQ_ALREADY_SET) {
2843 nl80211_send_reg_change_event(driver_request);
2844 reg_update_last_request(driver_request);
2845 reg_set_request_processed();
2846 return REG_REQ_ALREADY_SET;
2847 }
2848
2849 if (reg_query_database(driver_request)) {
2850 reg_update_last_request(driver_request);
2851 return REG_REQ_OK;
2852 }
2853
2854 return REG_REQ_IGNORE;
2855 }
2856
2857 static enum reg_request_treatment
__reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2858 __reg_process_hint_country_ie(struct wiphy *wiphy,
2859 struct regulatory_request *country_ie_request)
2860 {
2861 struct wiphy *last_wiphy = NULL;
2862 struct regulatory_request *lr = get_last_request();
2863
2864 if (reg_request_cell_base(lr)) {
2865 /* Trust a Cell base station over the AP's country IE */
2866 if (regdom_changes(country_ie_request->alpha2))
2867 return REG_REQ_IGNORE;
2868 return REG_REQ_ALREADY_SET;
2869 } else {
2870 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2871 return REG_REQ_IGNORE;
2872 }
2873
2874 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2875 return -EINVAL;
2876
2877 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2878 return REG_REQ_OK;
2879
2880 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2881
2882 if (last_wiphy != wiphy) {
2883 /*
2884 * Two cards with two APs claiming different
2885 * Country IE alpha2s. We could
2886 * intersect them, but that seems unlikely
2887 * to be correct. Reject second one for now.
2888 */
2889 if (regdom_changes(country_ie_request->alpha2))
2890 return REG_REQ_IGNORE;
2891 return REG_REQ_ALREADY_SET;
2892 }
2893
2894 if (regdom_changes(country_ie_request->alpha2))
2895 return REG_REQ_OK;
2896 return REG_REQ_ALREADY_SET;
2897 }
2898
2899 /**
2900 * reg_process_hint_country_ie - process regulatory requests from country IEs
2901 * @wiphy: the wireless device for the regulatory request
2902 * @country_ie_request: a regulatory request from a country IE
2903 *
2904 * The wireless subsystem can use this function to process
2905 * a regulatory request issued by a country Information Element.
2906 *
2907 * Returns: one of the different reg request treatment values.
2908 */
2909 static enum reg_request_treatment
reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2910 reg_process_hint_country_ie(struct wiphy *wiphy,
2911 struct regulatory_request *country_ie_request)
2912 {
2913 enum reg_request_treatment treatment;
2914
2915 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2916
2917 switch (treatment) {
2918 case REG_REQ_OK:
2919 break;
2920 case REG_REQ_IGNORE:
2921 return REG_REQ_IGNORE;
2922 case REG_REQ_ALREADY_SET:
2923 reg_free_request(country_ie_request);
2924 return REG_REQ_ALREADY_SET;
2925 case REG_REQ_INTERSECT:
2926 /*
2927 * This doesn't happen yet, not sure we
2928 * ever want to support it for this case.
2929 */
2930 WARN_ONCE(1, "Unexpected intersection for country elements");
2931 return REG_REQ_IGNORE;
2932 }
2933
2934 country_ie_request->intersect = false;
2935 country_ie_request->processed = false;
2936
2937 if (reg_query_database(country_ie_request)) {
2938 reg_update_last_request(country_ie_request);
2939 return REG_REQ_OK;
2940 }
2941
2942 return REG_REQ_IGNORE;
2943 }
2944
reg_dfs_domain_same(struct wiphy * wiphy1,struct wiphy * wiphy2)2945 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2946 {
2947 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2948 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2949 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2950 bool dfs_domain_same;
2951
2952 rcu_read_lock();
2953
2954 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2955 wiphy1_regd = rcu_dereference(wiphy1->regd);
2956 if (!wiphy1_regd)
2957 wiphy1_regd = cfg80211_regd;
2958
2959 wiphy2_regd = rcu_dereference(wiphy2->regd);
2960 if (!wiphy2_regd)
2961 wiphy2_regd = cfg80211_regd;
2962
2963 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2964
2965 rcu_read_unlock();
2966
2967 return dfs_domain_same;
2968 }
2969
reg_copy_dfs_chan_state(struct ieee80211_channel * dst_chan,struct ieee80211_channel * src_chan)2970 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2971 struct ieee80211_channel *src_chan)
2972 {
2973 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2974 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2975 return;
2976
2977 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2978 src_chan->flags & IEEE80211_CHAN_DISABLED)
2979 return;
2980
2981 if (src_chan->center_freq == dst_chan->center_freq &&
2982 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2983 dst_chan->dfs_state = src_chan->dfs_state;
2984 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2985 }
2986 }
2987
wiphy_share_dfs_chan_state(struct wiphy * dst_wiphy,struct wiphy * src_wiphy)2988 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2989 struct wiphy *src_wiphy)
2990 {
2991 struct ieee80211_supported_band *src_sband, *dst_sband;
2992 struct ieee80211_channel *src_chan, *dst_chan;
2993 int i, j, band;
2994
2995 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2996 return;
2997
2998 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2999 dst_sband = dst_wiphy->bands[band];
3000 src_sband = src_wiphy->bands[band];
3001 if (!dst_sband || !src_sband)
3002 continue;
3003
3004 for (i = 0; i < dst_sband->n_channels; i++) {
3005 dst_chan = &dst_sband->channels[i];
3006 for (j = 0; j < src_sband->n_channels; j++) {
3007 src_chan = &src_sband->channels[j];
3008 reg_copy_dfs_chan_state(dst_chan, src_chan);
3009 }
3010 }
3011 }
3012 }
3013
wiphy_all_share_dfs_chan_state(struct wiphy * wiphy)3014 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3015 {
3016 struct cfg80211_registered_device *rdev;
3017
3018 ASSERT_RTNL();
3019
3020 for_each_rdev(rdev) {
3021 if (wiphy == &rdev->wiphy)
3022 continue;
3023 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3024 }
3025 }
3026
3027 /* This processes *all* regulatory hints */
reg_process_hint(struct regulatory_request * reg_request)3028 static void reg_process_hint(struct regulatory_request *reg_request)
3029 {
3030 struct wiphy *wiphy = NULL;
3031 enum reg_request_treatment treatment;
3032 enum nl80211_reg_initiator initiator = reg_request->initiator;
3033
3034 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3035 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3036
3037 switch (initiator) {
3038 case NL80211_REGDOM_SET_BY_CORE:
3039 treatment = reg_process_hint_core(reg_request);
3040 break;
3041 case NL80211_REGDOM_SET_BY_USER:
3042 treatment = reg_process_hint_user(reg_request);
3043 break;
3044 case NL80211_REGDOM_SET_BY_DRIVER:
3045 if (!wiphy)
3046 goto out_free;
3047 treatment = reg_process_hint_driver(wiphy, reg_request);
3048 break;
3049 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3050 if (!wiphy)
3051 goto out_free;
3052 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3053 break;
3054 default:
3055 WARN(1, "invalid initiator %d\n", initiator);
3056 goto out_free;
3057 }
3058
3059 if (treatment == REG_REQ_IGNORE)
3060 goto out_free;
3061
3062 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3063 "unexpected treatment value %d\n", treatment);
3064
3065 /* This is required so that the orig_* parameters are saved.
3066 * NOTE: treatment must be set for any case that reaches here!
3067 */
3068 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3069 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3070 wiphy_update_regulatory(wiphy, initiator);
3071 wiphy_all_share_dfs_chan_state(wiphy);
3072 reg_check_channels();
3073 }
3074
3075 return;
3076
3077 out_free:
3078 reg_free_request(reg_request);
3079 }
3080
notify_self_managed_wiphys(struct regulatory_request * request)3081 static void notify_self_managed_wiphys(struct regulatory_request *request)
3082 {
3083 struct cfg80211_registered_device *rdev;
3084 struct wiphy *wiphy;
3085
3086 for_each_rdev(rdev) {
3087 wiphy = &rdev->wiphy;
3088 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3089 request->initiator == NL80211_REGDOM_SET_BY_USER)
3090 reg_call_notifier(wiphy, request);
3091 }
3092 }
3093
3094 /*
3095 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3096 * Regulatory hints come on a first come first serve basis and we
3097 * must process each one atomically.
3098 */
reg_process_pending_hints(void)3099 static void reg_process_pending_hints(void)
3100 {
3101 struct regulatory_request *reg_request, *lr;
3102
3103 lr = get_last_request();
3104
3105 /* When last_request->processed becomes true this will be rescheduled */
3106 if (lr && !lr->processed) {
3107 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3108 return;
3109 }
3110
3111 spin_lock(®_requests_lock);
3112
3113 if (list_empty(®_requests_list)) {
3114 spin_unlock(®_requests_lock);
3115 return;
3116 }
3117
3118 reg_request = list_first_entry(®_requests_list,
3119 struct regulatory_request,
3120 list);
3121 list_del_init(®_request->list);
3122
3123 spin_unlock(®_requests_lock);
3124
3125 notify_self_managed_wiphys(reg_request);
3126
3127 reg_process_hint(reg_request);
3128
3129 lr = get_last_request();
3130
3131 spin_lock(®_requests_lock);
3132 if (!list_empty(®_requests_list) && lr && lr->processed)
3133 schedule_work(®_work);
3134 spin_unlock(®_requests_lock);
3135 }
3136
3137 /* Processes beacon hints -- this has nothing to do with country IEs */
reg_process_pending_beacon_hints(void)3138 static void reg_process_pending_beacon_hints(void)
3139 {
3140 struct cfg80211_registered_device *rdev;
3141 struct reg_beacon *pending_beacon, *tmp;
3142
3143 /* This goes through the _pending_ beacon list */
3144 spin_lock_bh(®_pending_beacons_lock);
3145
3146 list_for_each_entry_safe(pending_beacon, tmp,
3147 ®_pending_beacons, list) {
3148 list_del_init(&pending_beacon->list);
3149
3150 /* Applies the beacon hint to current wiphys */
3151 for_each_rdev(rdev)
3152 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3153
3154 /* Remembers the beacon hint for new wiphys or reg changes */
3155 list_add_tail(&pending_beacon->list, ®_beacon_list);
3156 }
3157
3158 spin_unlock_bh(®_pending_beacons_lock);
3159 }
3160
reg_process_self_managed_hint(struct wiphy * wiphy)3161 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3162 {
3163 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3164 const struct ieee80211_regdomain *tmp;
3165 const struct ieee80211_regdomain *regd;
3166 enum nl80211_band band;
3167 struct regulatory_request request = {};
3168
3169 ASSERT_RTNL();
3170 lockdep_assert_wiphy(wiphy);
3171
3172 spin_lock(®_requests_lock);
3173 regd = rdev->requested_regd;
3174 rdev->requested_regd = NULL;
3175 spin_unlock(®_requests_lock);
3176
3177 if (!regd)
3178 return;
3179
3180 tmp = get_wiphy_regdom(wiphy);
3181 rcu_assign_pointer(wiphy->regd, regd);
3182 rcu_free_regdom(tmp);
3183
3184 for (band = 0; band < NUM_NL80211_BANDS; band++)
3185 handle_band_custom(wiphy, wiphy->bands[band], regd);
3186
3187 reg_process_ht_flags(wiphy);
3188
3189 request.wiphy_idx = get_wiphy_idx(wiphy);
3190 request.alpha2[0] = regd->alpha2[0];
3191 request.alpha2[1] = regd->alpha2[1];
3192 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3193
3194 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3195 reg_call_notifier(wiphy, &request);
3196
3197 nl80211_send_wiphy_reg_change_event(&request);
3198 }
3199
reg_process_self_managed_hints(void)3200 static void reg_process_self_managed_hints(void)
3201 {
3202 struct cfg80211_registered_device *rdev;
3203
3204 ASSERT_RTNL();
3205
3206 for_each_rdev(rdev) {
3207 guard(wiphy)(&rdev->wiphy);
3208
3209 reg_process_self_managed_hint(&rdev->wiphy);
3210 }
3211
3212 reg_check_channels();
3213 }
3214
reg_todo(struct work_struct * work)3215 static void reg_todo(struct work_struct *work)
3216 {
3217 rtnl_lock();
3218 reg_process_pending_hints();
3219 reg_process_pending_beacon_hints();
3220 reg_process_self_managed_hints();
3221 rtnl_unlock();
3222 }
3223
queue_regulatory_request(struct regulatory_request * request)3224 static void queue_regulatory_request(struct regulatory_request *request)
3225 {
3226 request->alpha2[0] = toupper(request->alpha2[0]);
3227 request->alpha2[1] = toupper(request->alpha2[1]);
3228
3229 spin_lock(®_requests_lock);
3230 list_add_tail(&request->list, ®_requests_list);
3231 spin_unlock(®_requests_lock);
3232
3233 schedule_work(®_work);
3234 }
3235
3236 /*
3237 * Core regulatory hint -- happens during cfg80211_init()
3238 * and when we restore regulatory settings.
3239 */
regulatory_hint_core(const char * alpha2)3240 static int regulatory_hint_core(const char *alpha2)
3241 {
3242 struct regulatory_request *request;
3243
3244 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3245 if (!request)
3246 return -ENOMEM;
3247
3248 request->alpha2[0] = alpha2[0];
3249 request->alpha2[1] = alpha2[1];
3250 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3251 request->wiphy_idx = WIPHY_IDX_INVALID;
3252
3253 queue_regulatory_request(request);
3254
3255 return 0;
3256 }
3257
3258 /* User hints */
regulatory_hint_user(const char * alpha2,enum nl80211_user_reg_hint_type user_reg_hint_type)3259 int regulatory_hint_user(const char *alpha2,
3260 enum nl80211_user_reg_hint_type user_reg_hint_type)
3261 {
3262 struct regulatory_request *request;
3263
3264 if (WARN_ON(!alpha2))
3265 return -EINVAL;
3266
3267 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3268 return -EINVAL;
3269
3270 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3271 if (!request)
3272 return -ENOMEM;
3273
3274 request->wiphy_idx = WIPHY_IDX_INVALID;
3275 request->alpha2[0] = alpha2[0];
3276 request->alpha2[1] = alpha2[1];
3277 request->initiator = NL80211_REGDOM_SET_BY_USER;
3278 request->user_reg_hint_type = user_reg_hint_type;
3279
3280 /* Allow calling CRDA again */
3281 reset_crda_timeouts();
3282
3283 queue_regulatory_request(request);
3284
3285 return 0;
3286 }
3287
regulatory_hint_indoor(bool is_indoor,u32 portid)3288 void regulatory_hint_indoor(bool is_indoor, u32 portid)
3289 {
3290 spin_lock(®_indoor_lock);
3291
3292 /* It is possible that more than one user space process is trying to
3293 * configure the indoor setting. To handle such cases, clear the indoor
3294 * setting in case that some process does not think that the device
3295 * is operating in an indoor environment. In addition, if a user space
3296 * process indicates that it is controlling the indoor setting, save its
3297 * portid, i.e., make it the owner.
3298 */
3299 reg_is_indoor = is_indoor;
3300 if (reg_is_indoor) {
3301 if (!reg_is_indoor_portid)
3302 reg_is_indoor_portid = portid;
3303 } else {
3304 reg_is_indoor_portid = 0;
3305 }
3306
3307 spin_unlock(®_indoor_lock);
3308
3309 if (!is_indoor)
3310 reg_check_channels();
3311 }
3312
regulatory_netlink_notify(u32 portid)3313 void regulatory_netlink_notify(u32 portid)
3314 {
3315 spin_lock(®_indoor_lock);
3316
3317 if (reg_is_indoor_portid != portid) {
3318 spin_unlock(®_indoor_lock);
3319 return;
3320 }
3321
3322 reg_is_indoor = false;
3323 reg_is_indoor_portid = 0;
3324
3325 spin_unlock(®_indoor_lock);
3326
3327 reg_check_channels();
3328 }
3329
3330 /* Driver hints */
regulatory_hint(struct wiphy * wiphy,const char * alpha2)3331 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3332 {
3333 struct regulatory_request *request;
3334
3335 if (WARN_ON(!alpha2 || !wiphy))
3336 return -EINVAL;
3337
3338 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3339
3340 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3341 if (!request)
3342 return -ENOMEM;
3343
3344 request->wiphy_idx = get_wiphy_idx(wiphy);
3345
3346 request->alpha2[0] = alpha2[0];
3347 request->alpha2[1] = alpha2[1];
3348 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3349
3350 /* Allow calling CRDA again */
3351 reset_crda_timeouts();
3352
3353 queue_regulatory_request(request);
3354
3355 return 0;
3356 }
3357 EXPORT_SYMBOL(regulatory_hint);
3358
regulatory_hint_country_ie(struct wiphy * wiphy,enum nl80211_band band,const u8 * country_ie,u8 country_ie_len)3359 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3360 const u8 *country_ie, u8 country_ie_len)
3361 {
3362 char alpha2[2];
3363 enum environment_cap env = ENVIRON_ANY;
3364 struct regulatory_request *request = NULL, *lr;
3365
3366 /* IE len must be evenly divisible by 2 */
3367 if (country_ie_len & 0x01)
3368 return;
3369
3370 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3371 return;
3372
3373 request = kzalloc(sizeof(*request), GFP_KERNEL);
3374 if (!request)
3375 return;
3376
3377 alpha2[0] = country_ie[0];
3378 alpha2[1] = country_ie[1];
3379
3380 if (country_ie[2] == 'I')
3381 env = ENVIRON_INDOOR;
3382 else if (country_ie[2] == 'O')
3383 env = ENVIRON_OUTDOOR;
3384
3385 rcu_read_lock();
3386 lr = get_last_request();
3387
3388 if (unlikely(!lr))
3389 goto out;
3390
3391 /*
3392 * We will run this only upon a successful connection on cfg80211.
3393 * We leave conflict resolution to the workqueue, where can hold
3394 * the RTNL.
3395 */
3396 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3397 lr->wiphy_idx != WIPHY_IDX_INVALID)
3398 goto out;
3399
3400 request->wiphy_idx = get_wiphy_idx(wiphy);
3401 request->alpha2[0] = alpha2[0];
3402 request->alpha2[1] = alpha2[1];
3403 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3404 request->country_ie_env = env;
3405
3406 /* Allow calling CRDA again */
3407 reset_crda_timeouts();
3408
3409 queue_regulatory_request(request);
3410 request = NULL;
3411 out:
3412 kfree(request);
3413 rcu_read_unlock();
3414 }
3415
restore_alpha2(char * alpha2,bool reset_user)3416 static void restore_alpha2(char *alpha2, bool reset_user)
3417 {
3418 /* indicates there is no alpha2 to consider for restoration */
3419 alpha2[0] = '9';
3420 alpha2[1] = '7';
3421
3422 /* The user setting has precedence over the module parameter */
3423 if (is_user_regdom_saved()) {
3424 /* Unless we're asked to ignore it and reset it */
3425 if (reset_user) {
3426 pr_debug("Restoring regulatory settings including user preference\n");
3427 user_alpha2[0] = '9';
3428 user_alpha2[1] = '7';
3429
3430 /*
3431 * If we're ignoring user settings, we still need to
3432 * check the module parameter to ensure we put things
3433 * back as they were for a full restore.
3434 */
3435 if (!is_world_regdom(ieee80211_regdom)) {
3436 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3437 ieee80211_regdom[0], ieee80211_regdom[1]);
3438 alpha2[0] = ieee80211_regdom[0];
3439 alpha2[1] = ieee80211_regdom[1];
3440 }
3441 } else {
3442 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3443 user_alpha2[0], user_alpha2[1]);
3444 alpha2[0] = user_alpha2[0];
3445 alpha2[1] = user_alpha2[1];
3446 }
3447 } else if (!is_world_regdom(ieee80211_regdom)) {
3448 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3449 ieee80211_regdom[0], ieee80211_regdom[1]);
3450 alpha2[0] = ieee80211_regdom[0];
3451 alpha2[1] = ieee80211_regdom[1];
3452 } else
3453 pr_debug("Restoring regulatory settings\n");
3454 }
3455
restore_custom_reg_settings(struct wiphy * wiphy)3456 static void restore_custom_reg_settings(struct wiphy *wiphy)
3457 {
3458 struct ieee80211_supported_band *sband;
3459 enum nl80211_band band;
3460 struct ieee80211_channel *chan;
3461 int i;
3462
3463 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3464 sband = wiphy->bands[band];
3465 if (!sband)
3466 continue;
3467 for (i = 0; i < sband->n_channels; i++) {
3468 chan = &sband->channels[i];
3469 chan->flags = chan->orig_flags;
3470 chan->max_antenna_gain = chan->orig_mag;
3471 chan->max_power = chan->orig_mpwr;
3472 chan->beacon_found = false;
3473 }
3474 }
3475 }
3476
3477 /*
3478 * Restoring regulatory settings involves ignoring any
3479 * possibly stale country IE information and user regulatory
3480 * settings if so desired, this includes any beacon hints
3481 * learned as we could have traveled outside to another country
3482 * after disconnection. To restore regulatory settings we do
3483 * exactly what we did at bootup:
3484 *
3485 * - send a core regulatory hint
3486 * - send a user regulatory hint if applicable
3487 *
3488 * Device drivers that send a regulatory hint for a specific country
3489 * keep their own regulatory domain on wiphy->regd so that does
3490 * not need to be remembered.
3491 */
restore_regulatory_settings(bool reset_user,bool cached)3492 static void restore_regulatory_settings(bool reset_user, bool cached)
3493 {
3494 char alpha2[2];
3495 char world_alpha2[2];
3496 struct reg_beacon *reg_beacon, *btmp;
3497 LIST_HEAD(tmp_reg_req_list);
3498 struct cfg80211_registered_device *rdev;
3499
3500 ASSERT_RTNL();
3501
3502 /*
3503 * Clear the indoor setting in case that it is not controlled by user
3504 * space, as otherwise there is no guarantee that the device is still
3505 * operating in an indoor environment.
3506 */
3507 spin_lock(®_indoor_lock);
3508 if (reg_is_indoor && !reg_is_indoor_portid) {
3509 reg_is_indoor = false;
3510 reg_check_channels();
3511 }
3512 spin_unlock(®_indoor_lock);
3513
3514 reset_regdomains(true, &world_regdom);
3515 restore_alpha2(alpha2, reset_user);
3516
3517 /*
3518 * If there's any pending requests we simply
3519 * stash them to a temporary pending queue and
3520 * add then after we've restored regulatory
3521 * settings.
3522 */
3523 spin_lock(®_requests_lock);
3524 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3525 spin_unlock(®_requests_lock);
3526
3527 /* Clear beacon hints */
3528 spin_lock_bh(®_pending_beacons_lock);
3529 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3530 list_del(®_beacon->list);
3531 kfree(reg_beacon);
3532 }
3533 spin_unlock_bh(®_pending_beacons_lock);
3534
3535 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3536 list_del(®_beacon->list);
3537 kfree(reg_beacon);
3538 }
3539
3540 /* First restore to the basic regulatory settings */
3541 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3542 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3543
3544 for_each_rdev(rdev) {
3545 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3546 continue;
3547 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3548 restore_custom_reg_settings(&rdev->wiphy);
3549 }
3550
3551 if (cached && (!is_an_alpha2(alpha2) ||
3552 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3553 reset_regdomains(false, cfg80211_world_regdom);
3554 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3555 print_regdomain(get_cfg80211_regdom());
3556 nl80211_send_reg_change_event(&core_request_world);
3557 reg_set_request_processed();
3558
3559 if (is_an_alpha2(alpha2) &&
3560 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3561 struct regulatory_request *ureq;
3562
3563 spin_lock(®_requests_lock);
3564 ureq = list_last_entry(®_requests_list,
3565 struct regulatory_request,
3566 list);
3567 list_del(&ureq->list);
3568 spin_unlock(®_requests_lock);
3569
3570 notify_self_managed_wiphys(ureq);
3571 reg_update_last_request(ureq);
3572 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3573 REGD_SOURCE_CACHED);
3574 }
3575 } else {
3576 regulatory_hint_core(world_alpha2);
3577
3578 /*
3579 * This restores the ieee80211_regdom module parameter
3580 * preference or the last user requested regulatory
3581 * settings, user regulatory settings takes precedence.
3582 */
3583 if (is_an_alpha2(alpha2))
3584 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3585 }
3586
3587 spin_lock(®_requests_lock);
3588 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3589 spin_unlock(®_requests_lock);
3590
3591 pr_debug("Kicking the queue\n");
3592
3593 schedule_work(®_work);
3594 }
3595
is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)3596 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3597 {
3598 struct cfg80211_registered_device *rdev;
3599 struct wireless_dev *wdev;
3600
3601 for_each_rdev(rdev) {
3602 guard(wiphy)(&rdev->wiphy);
3603
3604 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3605 if (!(wdev->wiphy->regulatory_flags & flag))
3606 return false;
3607 }
3608 }
3609
3610 return true;
3611 }
3612
regulatory_hint_disconnect(void)3613 void regulatory_hint_disconnect(void)
3614 {
3615 /* Restore of regulatory settings is not required when wiphy(s)
3616 * ignore IE from connected access point but clearance of beacon hints
3617 * is required when wiphy(s) supports beacon hints.
3618 */
3619 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3620 struct reg_beacon *reg_beacon, *btmp;
3621
3622 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3623 return;
3624
3625 spin_lock_bh(®_pending_beacons_lock);
3626 list_for_each_entry_safe(reg_beacon, btmp,
3627 ®_pending_beacons, list) {
3628 list_del(®_beacon->list);
3629 kfree(reg_beacon);
3630 }
3631 spin_unlock_bh(®_pending_beacons_lock);
3632
3633 list_for_each_entry_safe(reg_beacon, btmp,
3634 ®_beacon_list, list) {
3635 list_del(®_beacon->list);
3636 kfree(reg_beacon);
3637 }
3638
3639 return;
3640 }
3641
3642 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3643 restore_regulatory_settings(false, true);
3644 }
3645
freq_is_chan_12_13_14(u32 freq)3646 static bool freq_is_chan_12_13_14(u32 freq)
3647 {
3648 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3649 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3650 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3651 return true;
3652 return false;
3653 }
3654
pending_reg_beacon(struct ieee80211_channel * beacon_chan)3655 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3656 {
3657 struct reg_beacon *pending_beacon;
3658
3659 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3660 if (ieee80211_channel_equal(beacon_chan,
3661 &pending_beacon->chan))
3662 return true;
3663 return false;
3664 }
3665
regulatory_hint_found_beacon(struct wiphy * wiphy,struct ieee80211_channel * beacon_chan,gfp_t gfp)3666 void regulatory_hint_found_beacon(struct wiphy *wiphy,
3667 struct ieee80211_channel *beacon_chan,
3668 gfp_t gfp)
3669 {
3670 struct reg_beacon *reg_beacon;
3671 bool processing;
3672
3673 if (beacon_chan->beacon_found ||
3674 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3675 (beacon_chan->band == NL80211_BAND_2GHZ &&
3676 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3677 return;
3678
3679 spin_lock_bh(®_pending_beacons_lock);
3680 processing = pending_reg_beacon(beacon_chan);
3681 spin_unlock_bh(®_pending_beacons_lock);
3682
3683 if (processing)
3684 return;
3685
3686 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3687 if (!reg_beacon)
3688 return;
3689
3690 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3691 beacon_chan->center_freq, beacon_chan->freq_offset,
3692 ieee80211_freq_khz_to_channel(
3693 ieee80211_channel_to_khz(beacon_chan)),
3694 wiphy_name(wiphy));
3695
3696 memcpy(®_beacon->chan, beacon_chan,
3697 sizeof(struct ieee80211_channel));
3698
3699 /*
3700 * Since we can be called from BH or and non-BH context
3701 * we must use spin_lock_bh()
3702 */
3703 spin_lock_bh(®_pending_beacons_lock);
3704 list_add_tail(®_beacon->list, ®_pending_beacons);
3705 spin_unlock_bh(®_pending_beacons_lock);
3706
3707 schedule_work(®_work);
3708 }
3709
print_rd_rules(const struct ieee80211_regdomain * rd)3710 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3711 {
3712 unsigned int i;
3713 const struct ieee80211_reg_rule *reg_rule = NULL;
3714 const struct ieee80211_freq_range *freq_range = NULL;
3715 const struct ieee80211_power_rule *power_rule = NULL;
3716 char bw[32], cac_time[32];
3717
3718 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3719
3720 for (i = 0; i < rd->n_reg_rules; i++) {
3721 reg_rule = &rd->reg_rules[i];
3722 freq_range = ®_rule->freq_range;
3723 power_rule = ®_rule->power_rule;
3724
3725 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3726 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3727 freq_range->max_bandwidth_khz,
3728 reg_get_max_bandwidth(rd, reg_rule));
3729 else
3730 snprintf(bw, sizeof(bw), "%d KHz",
3731 freq_range->max_bandwidth_khz);
3732
3733 if (reg_rule->flags & NL80211_RRF_DFS)
3734 scnprintf(cac_time, sizeof(cac_time), "%u s",
3735 reg_rule->dfs_cac_ms/1000);
3736 else
3737 scnprintf(cac_time, sizeof(cac_time), "N/A");
3738
3739
3740 /*
3741 * There may not be documentation for max antenna gain
3742 * in certain regions
3743 */
3744 if (power_rule->max_antenna_gain)
3745 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3746 freq_range->start_freq_khz,
3747 freq_range->end_freq_khz,
3748 bw,
3749 power_rule->max_antenna_gain,
3750 power_rule->max_eirp,
3751 cac_time);
3752 else
3753 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3754 freq_range->start_freq_khz,
3755 freq_range->end_freq_khz,
3756 bw,
3757 power_rule->max_eirp,
3758 cac_time);
3759 }
3760 }
3761
reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)3762 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3763 {
3764 switch (dfs_region) {
3765 case NL80211_DFS_UNSET:
3766 case NL80211_DFS_FCC:
3767 case NL80211_DFS_ETSI:
3768 case NL80211_DFS_JP:
3769 return true;
3770 default:
3771 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3772 return false;
3773 }
3774 }
3775
print_regdomain(const struct ieee80211_regdomain * rd)3776 static void print_regdomain(const struct ieee80211_regdomain *rd)
3777 {
3778 struct regulatory_request *lr = get_last_request();
3779
3780 if (is_intersected_alpha2(rd->alpha2)) {
3781 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3782 struct cfg80211_registered_device *rdev;
3783 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3784 if (rdev) {
3785 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3786 rdev->country_ie_alpha2[0],
3787 rdev->country_ie_alpha2[1]);
3788 } else
3789 pr_debug("Current regulatory domain intersected:\n");
3790 } else
3791 pr_debug("Current regulatory domain intersected:\n");
3792 } else if (is_world_regdom(rd->alpha2)) {
3793 pr_debug("World regulatory domain updated:\n");
3794 } else {
3795 if (is_unknown_alpha2(rd->alpha2))
3796 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3797 else {
3798 if (reg_request_cell_base(lr))
3799 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3800 rd->alpha2[0], rd->alpha2[1]);
3801 else
3802 pr_debug("Regulatory domain changed to country: %c%c\n",
3803 rd->alpha2[0], rd->alpha2[1]);
3804 }
3805 }
3806
3807 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3808 print_rd_rules(rd);
3809 }
3810
print_regdomain_info(const struct ieee80211_regdomain * rd)3811 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3812 {
3813 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3814 print_rd_rules(rd);
3815 }
3816
reg_set_rd_core(const struct ieee80211_regdomain * rd)3817 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3818 {
3819 if (!is_world_regdom(rd->alpha2))
3820 return -EINVAL;
3821 update_world_regdomain(rd);
3822 return 0;
3823 }
3824
reg_set_rd_user(const struct ieee80211_regdomain * rd,struct regulatory_request * user_request)3825 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3826 struct regulatory_request *user_request)
3827 {
3828 const struct ieee80211_regdomain *intersected_rd = NULL;
3829
3830 if (!regdom_changes(rd->alpha2))
3831 return -EALREADY;
3832
3833 if (!is_valid_rd(rd)) {
3834 pr_err("Invalid regulatory domain detected: %c%c\n",
3835 rd->alpha2[0], rd->alpha2[1]);
3836 print_regdomain_info(rd);
3837 return -EINVAL;
3838 }
3839
3840 if (!user_request->intersect) {
3841 reset_regdomains(false, rd);
3842 return 0;
3843 }
3844
3845 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3846 if (!intersected_rd)
3847 return -EINVAL;
3848
3849 kfree(rd);
3850 rd = NULL;
3851 reset_regdomains(false, intersected_rd);
3852
3853 return 0;
3854 }
3855
reg_set_rd_driver(const struct ieee80211_regdomain * rd,struct regulatory_request * driver_request)3856 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3857 struct regulatory_request *driver_request)
3858 {
3859 const struct ieee80211_regdomain *regd;
3860 const struct ieee80211_regdomain *intersected_rd = NULL;
3861 const struct ieee80211_regdomain *tmp = NULL;
3862 struct wiphy *request_wiphy;
3863
3864 if (is_world_regdom(rd->alpha2))
3865 return -EINVAL;
3866
3867 if (!regdom_changes(rd->alpha2))
3868 return -EALREADY;
3869
3870 if (!is_valid_rd(rd)) {
3871 pr_err("Invalid regulatory domain detected: %c%c\n",
3872 rd->alpha2[0], rd->alpha2[1]);
3873 print_regdomain_info(rd);
3874 return -EINVAL;
3875 }
3876
3877 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3878 if (!request_wiphy)
3879 return -ENODEV;
3880
3881 if (!driver_request->intersect) {
3882 ASSERT_RTNL();
3883 scoped_guard(wiphy, request_wiphy) {
3884 if (request_wiphy->regd)
3885 tmp = get_wiphy_regdom(request_wiphy);
3886
3887 regd = reg_copy_regd(rd);
3888 if (IS_ERR(regd))
3889 return PTR_ERR(regd);
3890
3891 rcu_assign_pointer(request_wiphy->regd, regd);
3892 rcu_free_regdom(tmp);
3893 }
3894
3895 reset_regdomains(false, rd);
3896 return 0;
3897 }
3898
3899 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3900 if (!intersected_rd)
3901 return -EINVAL;
3902
3903 /*
3904 * We can trash what CRDA provided now.
3905 * However if a driver requested this specific regulatory
3906 * domain we keep it for its private use
3907 */
3908 tmp = get_wiphy_regdom(request_wiphy);
3909 rcu_assign_pointer(request_wiphy->regd, rd);
3910 rcu_free_regdom(tmp);
3911
3912 rd = NULL;
3913
3914 reset_regdomains(false, intersected_rd);
3915
3916 return 0;
3917 }
3918
reg_set_rd_country_ie(const struct ieee80211_regdomain * rd,struct regulatory_request * country_ie_request)3919 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3920 struct regulatory_request *country_ie_request)
3921 {
3922 struct wiphy *request_wiphy;
3923
3924 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3925 !is_unknown_alpha2(rd->alpha2))
3926 return -EINVAL;
3927
3928 /*
3929 * Lets only bother proceeding on the same alpha2 if the current
3930 * rd is non static (it means CRDA was present and was used last)
3931 * and the pending request came in from a country IE
3932 */
3933
3934 if (!is_valid_rd(rd)) {
3935 pr_err("Invalid regulatory domain detected: %c%c\n",
3936 rd->alpha2[0], rd->alpha2[1]);
3937 print_regdomain_info(rd);
3938 return -EINVAL;
3939 }
3940
3941 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3942 if (!request_wiphy)
3943 return -ENODEV;
3944
3945 if (country_ie_request->intersect)
3946 return -EINVAL;
3947
3948 reset_regdomains(false, rd);
3949 return 0;
3950 }
3951
3952 /*
3953 * Use this call to set the current regulatory domain. Conflicts with
3954 * multiple drivers can be ironed out later. Caller must've already
3955 * kmalloc'd the rd structure.
3956 */
set_regdom(const struct ieee80211_regdomain * rd,enum ieee80211_regd_source regd_src)3957 int set_regdom(const struct ieee80211_regdomain *rd,
3958 enum ieee80211_regd_source regd_src)
3959 {
3960 struct regulatory_request *lr;
3961 bool user_reset = false;
3962 int r;
3963
3964 if (IS_ERR_OR_NULL(rd))
3965 return -ENODATA;
3966
3967 if (!reg_is_valid_request(rd->alpha2)) {
3968 kfree(rd);
3969 return -EINVAL;
3970 }
3971
3972 if (regd_src == REGD_SOURCE_CRDA)
3973 reset_crda_timeouts();
3974
3975 lr = get_last_request();
3976
3977 /* Note that this doesn't update the wiphys, this is done below */
3978 switch (lr->initiator) {
3979 case NL80211_REGDOM_SET_BY_CORE:
3980 r = reg_set_rd_core(rd);
3981 break;
3982 case NL80211_REGDOM_SET_BY_USER:
3983 cfg80211_save_user_regdom(rd);
3984 r = reg_set_rd_user(rd, lr);
3985 user_reset = true;
3986 break;
3987 case NL80211_REGDOM_SET_BY_DRIVER:
3988 r = reg_set_rd_driver(rd, lr);
3989 break;
3990 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3991 r = reg_set_rd_country_ie(rd, lr);
3992 break;
3993 default:
3994 WARN(1, "invalid initiator %d\n", lr->initiator);
3995 kfree(rd);
3996 return -EINVAL;
3997 }
3998
3999 if (r) {
4000 switch (r) {
4001 case -EALREADY:
4002 reg_set_request_processed();
4003 break;
4004 default:
4005 /* Back to world regulatory in case of errors */
4006 restore_regulatory_settings(user_reset, false);
4007 }
4008
4009 kfree(rd);
4010 return r;
4011 }
4012
4013 /* This would make this whole thing pointless */
4014 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4015 return -EINVAL;
4016
4017 /* update all wiphys now with the new established regulatory domain */
4018 update_all_wiphy_regulatory(lr->initiator);
4019
4020 print_regdomain(get_cfg80211_regdom());
4021
4022 nl80211_send_reg_change_event(lr);
4023
4024 reg_set_request_processed();
4025
4026 return 0;
4027 }
4028
__regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4029 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4030 struct ieee80211_regdomain *rd)
4031 {
4032 const struct ieee80211_regdomain *regd;
4033 const struct ieee80211_regdomain *prev_regd;
4034 struct cfg80211_registered_device *rdev;
4035
4036 if (WARN_ON(!wiphy || !rd))
4037 return -EINVAL;
4038
4039 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4040 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4041 return -EPERM;
4042
4043 if (WARN(!is_valid_rd(rd),
4044 "Invalid regulatory domain detected: %c%c\n",
4045 rd->alpha2[0], rd->alpha2[1])) {
4046 print_regdomain_info(rd);
4047 return -EINVAL;
4048 }
4049
4050 regd = reg_copy_regd(rd);
4051 if (IS_ERR(regd))
4052 return PTR_ERR(regd);
4053
4054 rdev = wiphy_to_rdev(wiphy);
4055
4056 spin_lock(®_requests_lock);
4057 prev_regd = rdev->requested_regd;
4058 rdev->requested_regd = regd;
4059 spin_unlock(®_requests_lock);
4060
4061 kfree(prev_regd);
4062 return 0;
4063 }
4064
regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4065 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4066 struct ieee80211_regdomain *rd)
4067 {
4068 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4069
4070 if (ret)
4071 return ret;
4072
4073 schedule_work(®_work);
4074 return 0;
4075 }
4076 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4077
regulatory_set_wiphy_regd_sync(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4078 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4079 struct ieee80211_regdomain *rd)
4080 {
4081 int ret;
4082
4083 ASSERT_RTNL();
4084
4085 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4086 if (ret)
4087 return ret;
4088
4089 /* process the request immediately */
4090 reg_process_self_managed_hint(wiphy);
4091 reg_check_channels();
4092 return 0;
4093 }
4094 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4095
wiphy_regulatory_register(struct wiphy * wiphy)4096 void wiphy_regulatory_register(struct wiphy *wiphy)
4097 {
4098 struct regulatory_request *lr = get_last_request();
4099
4100 /* self-managed devices ignore beacon hints and country IE */
4101 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4102 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4103 REGULATORY_COUNTRY_IE_IGNORE;
4104
4105 /*
4106 * The last request may have been received before this
4107 * registration call. Call the driver notifier if
4108 * initiator is USER.
4109 */
4110 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4111 reg_call_notifier(wiphy, lr);
4112 }
4113
4114 if (!reg_dev_ignore_cell_hint(wiphy))
4115 reg_num_devs_support_basehint++;
4116
4117 wiphy_update_regulatory(wiphy, lr->initiator);
4118 wiphy_all_share_dfs_chan_state(wiphy);
4119 reg_process_self_managed_hints();
4120 }
4121
wiphy_regulatory_deregister(struct wiphy * wiphy)4122 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4123 {
4124 struct wiphy *request_wiphy = NULL;
4125 struct regulatory_request *lr;
4126
4127 lr = get_last_request();
4128
4129 if (!reg_dev_ignore_cell_hint(wiphy))
4130 reg_num_devs_support_basehint--;
4131
4132 rcu_free_regdom(get_wiphy_regdom(wiphy));
4133 RCU_INIT_POINTER(wiphy->regd, NULL);
4134
4135 if (lr)
4136 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4137
4138 if (!request_wiphy || request_wiphy != wiphy)
4139 return;
4140
4141 lr->wiphy_idx = WIPHY_IDX_INVALID;
4142 lr->country_ie_env = ENVIRON_ANY;
4143 }
4144
4145 /*
4146 * See FCC notices for UNII band definitions
4147 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4148 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4149 */
cfg80211_get_unii(int freq)4150 int cfg80211_get_unii(int freq)
4151 {
4152 /* UNII-1 */
4153 if (freq >= 5150 && freq <= 5250)
4154 return 0;
4155
4156 /* UNII-2A */
4157 if (freq > 5250 && freq <= 5350)
4158 return 1;
4159
4160 /* UNII-2B */
4161 if (freq > 5350 && freq <= 5470)
4162 return 2;
4163
4164 /* UNII-2C */
4165 if (freq > 5470 && freq <= 5725)
4166 return 3;
4167
4168 /* UNII-3 */
4169 if (freq > 5725 && freq <= 5825)
4170 return 4;
4171
4172 /* UNII-5 */
4173 if (freq > 5925 && freq <= 6425)
4174 return 5;
4175
4176 /* UNII-6 */
4177 if (freq > 6425 && freq <= 6525)
4178 return 6;
4179
4180 /* UNII-7 */
4181 if (freq > 6525 && freq <= 6875)
4182 return 7;
4183
4184 /* UNII-8 */
4185 if (freq > 6875 && freq <= 7125)
4186 return 8;
4187
4188 return -EINVAL;
4189 }
4190
regulatory_indoor_allowed(void)4191 bool regulatory_indoor_allowed(void)
4192 {
4193 return reg_is_indoor;
4194 }
4195
regulatory_pre_cac_allowed(struct wiphy * wiphy)4196 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4197 {
4198 const struct ieee80211_regdomain *regd = NULL;
4199 const struct ieee80211_regdomain *wiphy_regd = NULL;
4200 bool pre_cac_allowed = false;
4201
4202 rcu_read_lock();
4203
4204 regd = rcu_dereference(cfg80211_regdomain);
4205 wiphy_regd = rcu_dereference(wiphy->regd);
4206 if (!wiphy_regd) {
4207 if (regd->dfs_region == NL80211_DFS_ETSI)
4208 pre_cac_allowed = true;
4209
4210 rcu_read_unlock();
4211
4212 return pre_cac_allowed;
4213 }
4214
4215 if (regd->dfs_region == wiphy_regd->dfs_region &&
4216 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4217 pre_cac_allowed = true;
4218
4219 rcu_read_unlock();
4220
4221 return pre_cac_allowed;
4222 }
4223 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4224
cfg80211_check_and_end_cac(struct cfg80211_registered_device * rdev)4225 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4226 {
4227 struct wireless_dev *wdev;
4228 unsigned int link_id;
4229
4230 /* If we finished CAC or received radar, we should end any
4231 * CAC running on the same channels.
4232 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4233 * either all channels are available - those the CAC_FINISHED
4234 * event has effected another wdev state, or there is a channel
4235 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4236 * event has effected another wdev state.
4237 * In both cases we should end the CAC on the wdev.
4238 */
4239 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4240 struct cfg80211_chan_def *chandef;
4241
4242 for_each_valid_link(wdev, link_id) {
4243 if (!wdev->links[link_id].cac_started)
4244 continue;
4245
4246 chandef = wdev_chandef(wdev, link_id);
4247 if (!chandef)
4248 continue;
4249
4250 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4251 rdev_end_cac(rdev, wdev->netdev, link_id);
4252 }
4253 }
4254 }
4255
regulatory_propagate_dfs_state(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_dfs_state dfs_state,enum nl80211_radar_event event)4256 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4257 struct cfg80211_chan_def *chandef,
4258 enum nl80211_dfs_state dfs_state,
4259 enum nl80211_radar_event event)
4260 {
4261 struct cfg80211_registered_device *rdev;
4262
4263 ASSERT_RTNL();
4264
4265 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4266 return;
4267
4268 for_each_rdev(rdev) {
4269 if (wiphy == &rdev->wiphy)
4270 continue;
4271
4272 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4273 continue;
4274
4275 if (!ieee80211_get_channel(&rdev->wiphy,
4276 chandef->chan->center_freq))
4277 continue;
4278
4279 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4280
4281 if (event == NL80211_RADAR_DETECTED ||
4282 event == NL80211_RADAR_CAC_FINISHED) {
4283 cfg80211_sched_dfs_chan_update(rdev);
4284 cfg80211_check_and_end_cac(rdev);
4285 }
4286
4287 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4288 }
4289 }
4290
regulatory_init_db(void)4291 static int __init regulatory_init_db(void)
4292 {
4293 int err;
4294
4295 /*
4296 * It's possible that - due to other bugs/issues - cfg80211
4297 * never called regulatory_init() below, or that it failed;
4298 * in that case, don't try to do any further work here as
4299 * it's doomed to lead to crashes.
4300 */
4301 if (IS_ERR_OR_NULL(reg_pdev))
4302 return -EINVAL;
4303
4304 err = load_builtin_regdb_keys();
4305 if (err) {
4306 platform_device_unregister(reg_pdev);
4307 return err;
4308 }
4309
4310 /* We always try to get an update for the static regdomain */
4311 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4312 if (err) {
4313 if (err == -ENOMEM) {
4314 platform_device_unregister(reg_pdev);
4315 return err;
4316 }
4317 /*
4318 * N.B. kobject_uevent_env() can fail mainly for when we're out
4319 * memory which is handled and propagated appropriately above
4320 * but it can also fail during a netlink_broadcast() or during
4321 * early boot for call_usermodehelper(). For now treat these
4322 * errors as non-fatal.
4323 */
4324 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4325 }
4326
4327 /*
4328 * Finally, if the user set the module parameter treat it
4329 * as a user hint.
4330 */
4331 if (!is_world_regdom(ieee80211_regdom))
4332 regulatory_hint_user(ieee80211_regdom,
4333 NL80211_USER_REG_HINT_USER);
4334
4335 return 0;
4336 }
4337 #ifndef MODULE
4338 late_initcall(regulatory_init_db);
4339 #endif
4340
regulatory_init(void)4341 int __init regulatory_init(void)
4342 {
4343 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4344 if (IS_ERR(reg_pdev))
4345 return PTR_ERR(reg_pdev);
4346
4347 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4348
4349 user_alpha2[0] = '9';
4350 user_alpha2[1] = '7';
4351
4352 #ifdef MODULE
4353 return regulatory_init_db();
4354 #else
4355 return 0;
4356 #endif
4357 }
4358
regulatory_exit(void)4359 void regulatory_exit(void)
4360 {
4361 struct regulatory_request *reg_request, *tmp;
4362 struct reg_beacon *reg_beacon, *btmp;
4363
4364 cancel_work_sync(®_work);
4365 cancel_crda_timeout_sync();
4366 cancel_delayed_work_sync(®_check_chans);
4367
4368 /* Lock to suppress warnings */
4369 rtnl_lock();
4370 reset_regdomains(true, NULL);
4371 rtnl_unlock();
4372
4373 dev_set_uevent_suppress(®_pdev->dev, true);
4374
4375 platform_device_unregister(reg_pdev);
4376
4377 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4378 list_del(®_beacon->list);
4379 kfree(reg_beacon);
4380 }
4381
4382 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4383 list_del(®_beacon->list);
4384 kfree(reg_beacon);
4385 }
4386
4387 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4388 list_del(®_request->list);
4389 kfree(reg_request);
4390 }
4391
4392 if (!IS_ERR_OR_NULL(regdb))
4393 kfree(regdb);
4394 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4395 kfree(cfg80211_user_regdom);
4396
4397 free_regdb_keyring();
4398 }
4399