1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/cputime.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/xxhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 #include <linux/pagewalk.h> 43 44 #include <asm/tlbflush.h> 45 #include "internal.h" 46 #include "mm_slot.h" 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/ksm.h> 50 51 #ifdef CONFIG_NUMA 52 #define NUMA(x) (x) 53 #define DO_NUMA(x) do { (x); } while (0) 54 #else 55 #define NUMA(x) (0) 56 #define DO_NUMA(x) do { } while (0) 57 #endif 58 59 typedef u8 rmap_age_t; 60 61 /** 62 * DOC: Overview 63 * 64 * A few notes about the KSM scanning process, 65 * to make it easier to understand the data structures below: 66 * 67 * In order to reduce excessive scanning, KSM sorts the memory pages by their 68 * contents into a data structure that holds pointers to the pages' locations. 69 * 70 * Since the contents of the pages may change at any moment, KSM cannot just 71 * insert the pages into a normal sorted tree and expect it to find anything. 72 * Therefore KSM uses two data structures - the stable and the unstable tree. 73 * 74 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 75 * by their contents. Because each such page is write-protected, searching on 76 * this tree is fully assured to be working (except when pages are unmapped), 77 * and therefore this tree is called the stable tree. 78 * 79 * The stable tree node includes information required for reverse 80 * mapping from a KSM page to virtual addresses that map this page. 81 * 82 * In order to avoid large latencies of the rmap walks on KSM pages, 83 * KSM maintains two types of nodes in the stable tree: 84 * 85 * * the regular nodes that keep the reverse mapping structures in a 86 * linked list 87 * * the "chains" that link nodes ("dups") that represent the same 88 * write protected memory content, but each "dup" corresponds to a 89 * different KSM page copy of that content 90 * 91 * Internally, the regular nodes, "dups" and "chains" are represented 92 * using the same struct ksm_stable_node structure. 93 * 94 * In addition to the stable tree, KSM uses a second data structure called the 95 * unstable tree: this tree holds pointers to pages which have been found to 96 * be "unchanged for a period of time". The unstable tree sorts these pages 97 * by their contents, but since they are not write-protected, KSM cannot rely 98 * upon the unstable tree to work correctly - the unstable tree is liable to 99 * be corrupted as its contents are modified, and so it is called unstable. 100 * 101 * KSM solves this problem by several techniques: 102 * 103 * 1) The unstable tree is flushed every time KSM completes scanning all 104 * memory areas, and then the tree is rebuilt again from the beginning. 105 * 2) KSM will only insert into the unstable tree, pages whose hash value 106 * has not changed since the previous scan of all memory areas. 107 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 108 * colors of the nodes and not on their contents, assuring that even when 109 * the tree gets "corrupted" it won't get out of balance, so scanning time 110 * remains the same (also, searching and inserting nodes in an rbtree uses 111 * the same algorithm, so we have no overhead when we flush and rebuild). 112 * 4) KSM never flushes the stable tree, which means that even if it were to 113 * take 10 attempts to find a page in the unstable tree, once it is found, 114 * it is secured in the stable tree. (When we scan a new page, we first 115 * compare it against the stable tree, and then against the unstable tree.) 116 * 117 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 118 * stable trees and multiple unstable trees: one of each for each NUMA node. 119 */ 120 121 /** 122 * struct ksm_mm_slot - ksm information per mm that is being scanned 123 * @slot: hash lookup from mm to mm_slot 124 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 125 */ 126 struct ksm_mm_slot { 127 struct mm_slot slot; 128 struct ksm_rmap_item *rmap_list; 129 }; 130 131 /** 132 * struct ksm_scan - cursor for scanning 133 * @mm_slot: the current mm_slot we are scanning 134 * @address: the next address inside that to be scanned 135 * @rmap_list: link to the next rmap to be scanned in the rmap_list 136 * @seqnr: count of completed full scans (needed when removing unstable node) 137 * 138 * There is only the one ksm_scan instance of this cursor structure. 139 */ 140 struct ksm_scan { 141 struct ksm_mm_slot *mm_slot; 142 unsigned long address; 143 struct ksm_rmap_item **rmap_list; 144 unsigned long seqnr; 145 }; 146 147 /** 148 * struct ksm_stable_node - node of the stable rbtree 149 * @node: rb node of this ksm page in the stable tree 150 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 151 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 152 * @list: linked into migrate_nodes, pending placement in the proper node tree 153 * @hlist: hlist head of rmap_items using this ksm page 154 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 155 * @chain_prune_time: time of the last full garbage collection 156 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 157 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 158 */ 159 struct ksm_stable_node { 160 union { 161 struct rb_node node; /* when node of stable tree */ 162 struct { /* when listed for migration */ 163 struct list_head *head; 164 struct { 165 struct hlist_node hlist_dup; 166 struct list_head list; 167 }; 168 }; 169 }; 170 struct hlist_head hlist; 171 union { 172 unsigned long kpfn; 173 unsigned long chain_prune_time; 174 }; 175 /* 176 * STABLE_NODE_CHAIN can be any negative number in 177 * rmap_hlist_len negative range, but better not -1 to be able 178 * to reliably detect underflows. 179 */ 180 #define STABLE_NODE_CHAIN -1024 181 int rmap_hlist_len; 182 #ifdef CONFIG_NUMA 183 int nid; 184 #endif 185 }; 186 187 /** 188 * struct ksm_rmap_item - reverse mapping item for virtual addresses 189 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 190 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 191 * @nid: NUMA node id of unstable tree in which linked (may not match page) 192 * @mm: the memory structure this rmap_item is pointing into 193 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 194 * @oldchecksum: previous checksum of the page at that virtual address 195 * @node: rb node of this rmap_item in the unstable tree 196 * @head: pointer to stable_node heading this list in the stable tree 197 * @hlist: link into hlist of rmap_items hanging off that stable_node 198 * @age: number of scan iterations since creation 199 * @remaining_skips: how many scans to skip 200 */ 201 struct ksm_rmap_item { 202 struct ksm_rmap_item *rmap_list; 203 union { 204 struct anon_vma *anon_vma; /* when stable */ 205 #ifdef CONFIG_NUMA 206 int nid; /* when node of unstable tree */ 207 #endif 208 }; 209 struct mm_struct *mm; 210 unsigned long address; /* + low bits used for flags below */ 211 unsigned int oldchecksum; /* when unstable */ 212 rmap_age_t age; 213 rmap_age_t remaining_skips; 214 union { 215 struct rb_node node; /* when node of unstable tree */ 216 struct { /* when listed from stable tree */ 217 struct ksm_stable_node *head; 218 struct hlist_node hlist; 219 }; 220 }; 221 }; 222 223 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 224 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 225 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 226 227 /* The stable and unstable tree heads */ 228 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 229 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 230 static struct rb_root *root_stable_tree = one_stable_tree; 231 static struct rb_root *root_unstable_tree = one_unstable_tree; 232 233 /* Recently migrated nodes of stable tree, pending proper placement */ 234 static LIST_HEAD(migrate_nodes); 235 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 236 237 #define MM_SLOTS_HASH_BITS 10 238 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 239 240 static struct ksm_mm_slot ksm_mm_head = { 241 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node), 242 }; 243 static struct ksm_scan ksm_scan = { 244 .mm_slot = &ksm_mm_head, 245 }; 246 247 static struct kmem_cache *rmap_item_cache; 248 static struct kmem_cache *stable_node_cache; 249 static struct kmem_cache *mm_slot_cache; 250 251 /* Default number of pages to scan per batch */ 252 #define DEFAULT_PAGES_TO_SCAN 100 253 254 /* The number of pages scanned */ 255 static unsigned long ksm_pages_scanned; 256 257 /* The number of nodes in the stable tree */ 258 static unsigned long ksm_pages_shared; 259 260 /* The number of page slots additionally sharing those nodes */ 261 static unsigned long ksm_pages_sharing; 262 263 /* The number of nodes in the unstable tree */ 264 static unsigned long ksm_pages_unshared; 265 266 /* The number of rmap_items in use: to calculate pages_volatile */ 267 static unsigned long ksm_rmap_items; 268 269 /* The number of stable_node chains */ 270 static unsigned long ksm_stable_node_chains; 271 272 /* The number of stable_node dups linked to the stable_node chains */ 273 static unsigned long ksm_stable_node_dups; 274 275 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 276 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 277 278 /* Maximum number of page slots sharing a stable node */ 279 static int ksm_max_page_sharing = 256; 280 281 /* Number of pages ksmd should scan in one batch */ 282 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN; 283 284 /* Milliseconds ksmd should sleep between batches */ 285 static unsigned int ksm_thread_sleep_millisecs = 20; 286 287 /* Checksum of an empty (zeroed) page */ 288 static unsigned int zero_checksum __read_mostly; 289 290 /* Whether to merge empty (zeroed) pages with actual zero pages */ 291 static bool ksm_use_zero_pages __read_mostly; 292 293 /* Skip pages that couldn't be de-duplicated previously */ 294 /* Default to true at least temporarily, for testing */ 295 static bool ksm_smart_scan = true; 296 297 /* The number of zero pages which is placed by KSM */ 298 atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0); 299 300 /* The number of pages that have been skipped due to "smart scanning" */ 301 static unsigned long ksm_pages_skipped; 302 303 /* Don't scan more than max pages per batch. */ 304 static unsigned long ksm_advisor_max_pages_to_scan = 30000; 305 306 /* Min CPU for scanning pages per scan */ 307 #define KSM_ADVISOR_MIN_CPU 10 308 309 /* Max CPU for scanning pages per scan */ 310 static unsigned int ksm_advisor_max_cpu = 70; 311 312 /* Target scan time in seconds to analyze all KSM candidate pages. */ 313 static unsigned long ksm_advisor_target_scan_time = 200; 314 315 /* Exponentially weighted moving average. */ 316 #define EWMA_WEIGHT 30 317 318 /** 319 * struct advisor_ctx - metadata for KSM advisor 320 * @start_scan: start time of the current scan 321 * @scan_time: scan time of previous scan 322 * @change: change in percent to pages_to_scan parameter 323 * @cpu_time: cpu time consumed by the ksmd thread in the previous scan 324 */ 325 struct advisor_ctx { 326 ktime_t start_scan; 327 unsigned long scan_time; 328 unsigned long change; 329 unsigned long long cpu_time; 330 }; 331 static struct advisor_ctx advisor_ctx; 332 333 /* Define different advisor's */ 334 enum ksm_advisor_type { 335 KSM_ADVISOR_NONE, 336 KSM_ADVISOR_SCAN_TIME, 337 }; 338 static enum ksm_advisor_type ksm_advisor; 339 340 #ifdef CONFIG_SYSFS 341 /* 342 * Only called through the sysfs control interface: 343 */ 344 345 /* At least scan this many pages per batch. */ 346 static unsigned long ksm_advisor_min_pages_to_scan = 500; 347 348 static void set_advisor_defaults(void) 349 { 350 if (ksm_advisor == KSM_ADVISOR_NONE) { 351 ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN; 352 } else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) { 353 advisor_ctx = (const struct advisor_ctx){ 0 }; 354 ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan; 355 } 356 } 357 #endif /* CONFIG_SYSFS */ 358 359 static inline void advisor_start_scan(void) 360 { 361 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) 362 advisor_ctx.start_scan = ktime_get(); 363 } 364 365 /* 366 * Use previous scan time if available, otherwise use current scan time as an 367 * approximation for the previous scan time. 368 */ 369 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx, 370 unsigned long scan_time) 371 { 372 return ctx->scan_time ? ctx->scan_time : scan_time; 373 } 374 375 /* Calculate exponential weighted moving average */ 376 static unsigned long ewma(unsigned long prev, unsigned long curr) 377 { 378 return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100; 379 } 380 381 /* 382 * The scan time advisor is based on the current scan rate and the target 383 * scan rate. 384 * 385 * new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time) 386 * 387 * To avoid perturbations it calculates a change factor of previous changes. 388 * A new change factor is calculated for each iteration and it uses an 389 * exponentially weighted moving average. The new pages_to_scan value is 390 * multiplied with that change factor: 391 * 392 * new_pages_to_scan *= change facor 393 * 394 * The new_pages_to_scan value is limited by the cpu min and max values. It 395 * calculates the cpu percent for the last scan and calculates the new 396 * estimated cpu percent cost for the next scan. That value is capped by the 397 * cpu min and max setting. 398 * 399 * In addition the new pages_to_scan value is capped by the max and min 400 * limits. 401 */ 402 static void scan_time_advisor(void) 403 { 404 unsigned int cpu_percent; 405 unsigned long cpu_time; 406 unsigned long cpu_time_diff; 407 unsigned long cpu_time_diff_ms; 408 unsigned long pages; 409 unsigned long per_page_cost; 410 unsigned long factor; 411 unsigned long change; 412 unsigned long last_scan_time; 413 unsigned long scan_time; 414 415 /* Convert scan time to seconds */ 416 scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan), 417 MSEC_PER_SEC); 418 scan_time = scan_time ? scan_time : 1; 419 420 /* Calculate CPU consumption of ksmd background thread */ 421 cpu_time = task_sched_runtime(current); 422 cpu_time_diff = cpu_time - advisor_ctx.cpu_time; 423 cpu_time_diff_ms = cpu_time_diff / 1000 / 1000; 424 425 cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000); 426 cpu_percent = cpu_percent ? cpu_percent : 1; 427 last_scan_time = prev_scan_time(&advisor_ctx, scan_time); 428 429 /* Calculate scan time as percentage of target scan time */ 430 factor = ksm_advisor_target_scan_time * 100 / scan_time; 431 factor = factor ? factor : 1; 432 433 /* 434 * Calculate scan time as percentage of last scan time and use 435 * exponentially weighted average to smooth it 436 */ 437 change = scan_time * 100 / last_scan_time; 438 change = change ? change : 1; 439 change = ewma(advisor_ctx.change, change); 440 441 /* Calculate new scan rate based on target scan rate. */ 442 pages = ksm_thread_pages_to_scan * 100 / factor; 443 /* Update pages_to_scan by weighted change percentage. */ 444 pages = pages * change / 100; 445 446 /* Cap new pages_to_scan value */ 447 per_page_cost = ksm_thread_pages_to_scan / cpu_percent; 448 per_page_cost = per_page_cost ? per_page_cost : 1; 449 450 pages = min(pages, per_page_cost * ksm_advisor_max_cpu); 451 pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU); 452 pages = min(pages, ksm_advisor_max_pages_to_scan); 453 454 /* Update advisor context */ 455 advisor_ctx.change = change; 456 advisor_ctx.scan_time = scan_time; 457 advisor_ctx.cpu_time = cpu_time; 458 459 ksm_thread_pages_to_scan = pages; 460 trace_ksm_advisor(scan_time, pages, cpu_percent); 461 } 462 463 static void advisor_stop_scan(void) 464 { 465 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) 466 scan_time_advisor(); 467 } 468 469 #ifdef CONFIG_NUMA 470 /* Zeroed when merging across nodes is not allowed */ 471 static unsigned int ksm_merge_across_nodes = 1; 472 static int ksm_nr_node_ids = 1; 473 #else 474 #define ksm_merge_across_nodes 1U 475 #define ksm_nr_node_ids 1 476 #endif 477 478 #define KSM_RUN_STOP 0 479 #define KSM_RUN_MERGE 1 480 #define KSM_RUN_UNMERGE 2 481 #define KSM_RUN_OFFLINE 4 482 static unsigned long ksm_run = KSM_RUN_STOP; 483 static void wait_while_offlining(void); 484 485 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 486 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 487 static DEFINE_MUTEX(ksm_thread_mutex); 488 static DEFINE_SPINLOCK(ksm_mmlist_lock); 489 490 static int __init ksm_slab_init(void) 491 { 492 rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0); 493 if (!rmap_item_cache) 494 goto out; 495 496 stable_node_cache = KMEM_CACHE(ksm_stable_node, 0); 497 if (!stable_node_cache) 498 goto out_free1; 499 500 mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0); 501 if (!mm_slot_cache) 502 goto out_free2; 503 504 return 0; 505 506 out_free2: 507 kmem_cache_destroy(stable_node_cache); 508 out_free1: 509 kmem_cache_destroy(rmap_item_cache); 510 out: 511 return -ENOMEM; 512 } 513 514 static void __init ksm_slab_free(void) 515 { 516 kmem_cache_destroy(mm_slot_cache); 517 kmem_cache_destroy(stable_node_cache); 518 kmem_cache_destroy(rmap_item_cache); 519 mm_slot_cache = NULL; 520 } 521 522 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain) 523 { 524 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 525 } 526 527 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup) 528 { 529 return dup->head == STABLE_NODE_DUP_HEAD; 530 } 531 532 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup, 533 struct ksm_stable_node *chain) 534 { 535 VM_BUG_ON(is_stable_node_dup(dup)); 536 dup->head = STABLE_NODE_DUP_HEAD; 537 VM_BUG_ON(!is_stable_node_chain(chain)); 538 hlist_add_head(&dup->hlist_dup, &chain->hlist); 539 ksm_stable_node_dups++; 540 } 541 542 static inline void __stable_node_dup_del(struct ksm_stable_node *dup) 543 { 544 VM_BUG_ON(!is_stable_node_dup(dup)); 545 hlist_del(&dup->hlist_dup); 546 ksm_stable_node_dups--; 547 } 548 549 static inline void stable_node_dup_del(struct ksm_stable_node *dup) 550 { 551 VM_BUG_ON(is_stable_node_chain(dup)); 552 if (is_stable_node_dup(dup)) 553 __stable_node_dup_del(dup); 554 else 555 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 556 #ifdef CONFIG_DEBUG_VM 557 dup->head = NULL; 558 #endif 559 } 560 561 static inline struct ksm_rmap_item *alloc_rmap_item(void) 562 { 563 struct ksm_rmap_item *rmap_item; 564 565 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 566 __GFP_NORETRY | __GFP_NOWARN); 567 if (rmap_item) 568 ksm_rmap_items++; 569 return rmap_item; 570 } 571 572 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item) 573 { 574 ksm_rmap_items--; 575 rmap_item->mm->ksm_rmap_items--; 576 rmap_item->mm = NULL; /* debug safety */ 577 kmem_cache_free(rmap_item_cache, rmap_item); 578 } 579 580 static inline struct ksm_stable_node *alloc_stable_node(void) 581 { 582 /* 583 * The allocation can take too long with GFP_KERNEL when memory is under 584 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 585 * grants access to memory reserves, helping to avoid this problem. 586 */ 587 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 588 } 589 590 static inline void free_stable_node(struct ksm_stable_node *stable_node) 591 { 592 VM_BUG_ON(stable_node->rmap_hlist_len && 593 !is_stable_node_chain(stable_node)); 594 kmem_cache_free(stable_node_cache, stable_node); 595 } 596 597 /* 598 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 599 * page tables after it has passed through ksm_exit() - which, if necessary, 600 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 601 * a special flag: they can just back out as soon as mm_users goes to zero. 602 * ksm_test_exit() is used throughout to make this test for exit: in some 603 * places for correctness, in some places just to avoid unnecessary work. 604 */ 605 static inline bool ksm_test_exit(struct mm_struct *mm) 606 { 607 return atomic_read(&mm->mm_users) == 0; 608 } 609 610 /* 611 * We use break_ksm to break COW on a ksm page by triggering unsharing, 612 * such that the ksm page will get replaced by an exclusive anonymous page. 613 * 614 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma, 615 * in case the application has unmapped and remapped mm,addr meanwhile. 616 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 617 * mmap of /dev/mem, where we would not want to touch it. 618 * 619 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context 620 * of the process that owns 'vma'. We also do not want to enforce 621 * protection keys here anyway. 622 */ 623 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma) 624 { 625 vm_fault_t ret = 0; 626 627 if (lock_vma) 628 vma_start_write(vma); 629 630 do { 631 bool ksm_page = false; 632 struct folio_walk fw; 633 struct folio *folio; 634 635 cond_resched(); 636 folio = folio_walk_start(&fw, vma, addr, 637 FW_MIGRATION | FW_ZEROPAGE); 638 if (folio) { 639 /* Small folio implies FW_LEVEL_PTE. */ 640 if (!folio_test_large(folio) && 641 (folio_test_ksm(folio) || is_ksm_zero_pte(fw.pte))) 642 ksm_page = true; 643 folio_walk_end(&fw, vma); 644 } 645 646 if (!ksm_page) 647 return 0; 648 ret = handle_mm_fault(vma, addr, 649 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE, 650 NULL); 651 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 652 /* 653 * We must loop until we no longer find a KSM page because 654 * handle_mm_fault() may back out if there's any difficulty e.g. if 655 * pte accessed bit gets updated concurrently. 656 * 657 * VM_FAULT_SIGBUS could occur if we race with truncation of the 658 * backing file, which also invalidates anonymous pages: that's 659 * okay, that truncation will have unmapped the KSM page for us. 660 * 661 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 662 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 663 * current task has TIF_MEMDIE set, and will be OOM killed on return 664 * to user; and ksmd, having no mm, would never be chosen for that. 665 * 666 * But if the mm is in a limited mem_cgroup, then the fault may fail 667 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 668 * even ksmd can fail in this way - though it's usually breaking ksm 669 * just to undo a merge it made a moment before, so unlikely to oom. 670 * 671 * That's a pity: we might therefore have more kernel pages allocated 672 * than we're counting as nodes in the stable tree; but ksm_do_scan 673 * will retry to break_cow on each pass, so should recover the page 674 * in due course. The important thing is to not let VM_MERGEABLE 675 * be cleared while any such pages might remain in the area. 676 */ 677 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 678 } 679 680 static bool vma_ksm_compatible(struct vm_area_struct *vma) 681 { 682 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP | 683 VM_IO | VM_DONTEXPAND | VM_HUGETLB | 684 VM_MIXEDMAP| VM_DROPPABLE)) 685 return false; /* just ignore the advice */ 686 687 if (vma_is_dax(vma)) 688 return false; 689 690 #ifdef VM_SAO 691 if (vma->vm_flags & VM_SAO) 692 return false; 693 #endif 694 #ifdef VM_SPARC_ADI 695 if (vma->vm_flags & VM_SPARC_ADI) 696 return false; 697 #endif 698 699 return true; 700 } 701 702 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 703 unsigned long addr) 704 { 705 struct vm_area_struct *vma; 706 if (ksm_test_exit(mm)) 707 return NULL; 708 vma = vma_lookup(mm, addr); 709 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 710 return NULL; 711 return vma; 712 } 713 714 static void break_cow(struct ksm_rmap_item *rmap_item) 715 { 716 struct mm_struct *mm = rmap_item->mm; 717 unsigned long addr = rmap_item->address; 718 struct vm_area_struct *vma; 719 720 /* 721 * It is not an accident that whenever we want to break COW 722 * to undo, we also need to drop a reference to the anon_vma. 723 */ 724 put_anon_vma(rmap_item->anon_vma); 725 726 mmap_read_lock(mm); 727 vma = find_mergeable_vma(mm, addr); 728 if (vma) 729 break_ksm(vma, addr, false); 730 mmap_read_unlock(mm); 731 } 732 733 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item) 734 { 735 struct mm_struct *mm = rmap_item->mm; 736 unsigned long addr = rmap_item->address; 737 struct vm_area_struct *vma; 738 struct page *page = NULL; 739 struct folio_walk fw; 740 struct folio *folio; 741 742 mmap_read_lock(mm); 743 vma = find_mergeable_vma(mm, addr); 744 if (!vma) 745 goto out; 746 747 folio = folio_walk_start(&fw, vma, addr, 0); 748 if (folio) { 749 if (!folio_is_zone_device(folio) && 750 folio_test_anon(folio)) { 751 folio_get(folio); 752 page = fw.page; 753 } 754 folio_walk_end(&fw, vma); 755 } 756 out: 757 if (page) { 758 flush_anon_page(vma, page, addr); 759 flush_dcache_page(page); 760 } 761 mmap_read_unlock(mm); 762 return page; 763 } 764 765 /* 766 * This helper is used for getting right index into array of tree roots. 767 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 768 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 769 * every node has its own stable and unstable tree. 770 */ 771 static inline int get_kpfn_nid(unsigned long kpfn) 772 { 773 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 774 } 775 776 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup, 777 struct rb_root *root) 778 { 779 struct ksm_stable_node *chain = alloc_stable_node(); 780 VM_BUG_ON(is_stable_node_chain(dup)); 781 if (likely(chain)) { 782 INIT_HLIST_HEAD(&chain->hlist); 783 chain->chain_prune_time = jiffies; 784 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 785 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 786 chain->nid = NUMA_NO_NODE; /* debug */ 787 #endif 788 ksm_stable_node_chains++; 789 790 /* 791 * Put the stable node chain in the first dimension of 792 * the stable tree and at the same time remove the old 793 * stable node. 794 */ 795 rb_replace_node(&dup->node, &chain->node, root); 796 797 /* 798 * Move the old stable node to the second dimension 799 * queued in the hlist_dup. The invariant is that all 800 * dup stable_nodes in the chain->hlist point to pages 801 * that are write protected and have the exact same 802 * content. 803 */ 804 stable_node_chain_add_dup(dup, chain); 805 } 806 return chain; 807 } 808 809 static inline void free_stable_node_chain(struct ksm_stable_node *chain, 810 struct rb_root *root) 811 { 812 rb_erase(&chain->node, root); 813 free_stable_node(chain); 814 ksm_stable_node_chains--; 815 } 816 817 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node) 818 { 819 struct ksm_rmap_item *rmap_item; 820 821 /* check it's not STABLE_NODE_CHAIN or negative */ 822 BUG_ON(stable_node->rmap_hlist_len < 0); 823 824 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 825 if (rmap_item->hlist.next) { 826 ksm_pages_sharing--; 827 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm); 828 } else { 829 ksm_pages_shared--; 830 } 831 832 rmap_item->mm->ksm_merging_pages--; 833 834 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 835 stable_node->rmap_hlist_len--; 836 put_anon_vma(rmap_item->anon_vma); 837 rmap_item->address &= PAGE_MASK; 838 cond_resched(); 839 } 840 841 /* 842 * We need the second aligned pointer of the migrate_nodes 843 * list_head to stay clear from the rb_parent_color union 844 * (aligned and different than any node) and also different 845 * from &migrate_nodes. This will verify that future list.h changes 846 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 847 */ 848 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 849 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 850 851 trace_ksm_remove_ksm_page(stable_node->kpfn); 852 if (stable_node->head == &migrate_nodes) 853 list_del(&stable_node->list); 854 else 855 stable_node_dup_del(stable_node); 856 free_stable_node(stable_node); 857 } 858 859 enum ksm_get_folio_flags { 860 KSM_GET_FOLIO_NOLOCK, 861 KSM_GET_FOLIO_LOCK, 862 KSM_GET_FOLIO_TRYLOCK 863 }; 864 865 /* 866 * ksm_get_folio: checks if the page indicated by the stable node 867 * is still its ksm page, despite having held no reference to it. 868 * In which case we can trust the content of the page, and it 869 * returns the gotten page; but if the page has now been zapped, 870 * remove the stale node from the stable tree and return NULL. 871 * But beware, the stable node's page might be being migrated. 872 * 873 * You would expect the stable_node to hold a reference to the ksm page. 874 * But if it increments the page's count, swapping out has to wait for 875 * ksmd to come around again before it can free the page, which may take 876 * seconds or even minutes: much too unresponsive. So instead we use a 877 * "keyhole reference": access to the ksm page from the stable node peeps 878 * out through its keyhole to see if that page still holds the right key, 879 * pointing back to this stable node. This relies on freeing a PageAnon 880 * page to reset its page->mapping to NULL, and relies on no other use of 881 * a page to put something that might look like our key in page->mapping. 882 * is on its way to being freed; but it is an anomaly to bear in mind. 883 */ 884 static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node, 885 enum ksm_get_folio_flags flags) 886 { 887 struct folio *folio; 888 void *expected_mapping; 889 unsigned long kpfn; 890 891 expected_mapping = (void *)((unsigned long)stable_node | 892 PAGE_MAPPING_KSM); 893 again: 894 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 895 folio = pfn_folio(kpfn); 896 if (READ_ONCE(folio->mapping) != expected_mapping) 897 goto stale; 898 899 /* 900 * We cannot do anything with the page while its refcount is 0. 901 * Usually 0 means free, or tail of a higher-order page: in which 902 * case this node is no longer referenced, and should be freed; 903 * however, it might mean that the page is under page_ref_freeze(). 904 * The __remove_mapping() case is easy, again the node is now stale; 905 * the same is in reuse_ksm_page() case; but if page is swapcache 906 * in folio_migrate_mapping(), it might still be our page, 907 * in which case it's essential to keep the node. 908 */ 909 while (!folio_try_get(folio)) { 910 /* 911 * Another check for folio->mapping != expected_mapping 912 * would work here too. We have chosen to test the 913 * swapcache flag to optimize the common case, when the 914 * folio is or is about to be freed: the swapcache flag 915 * is cleared (under spin_lock_irq) in the ref_freeze 916 * section of __remove_mapping(); but anon folio->mapping 917 * is reset to NULL later, in free_pages_prepare(). 918 */ 919 if (!folio_test_swapcache(folio)) 920 goto stale; 921 cpu_relax(); 922 } 923 924 if (READ_ONCE(folio->mapping) != expected_mapping) { 925 folio_put(folio); 926 goto stale; 927 } 928 929 if (flags == KSM_GET_FOLIO_TRYLOCK) { 930 if (!folio_trylock(folio)) { 931 folio_put(folio); 932 return ERR_PTR(-EBUSY); 933 } 934 } else if (flags == KSM_GET_FOLIO_LOCK) 935 folio_lock(folio); 936 937 if (flags != KSM_GET_FOLIO_NOLOCK) { 938 if (READ_ONCE(folio->mapping) != expected_mapping) { 939 folio_unlock(folio); 940 folio_put(folio); 941 goto stale; 942 } 943 } 944 return folio; 945 946 stale: 947 /* 948 * We come here from above when folio->mapping or the swapcache flag 949 * suggests that the node is stale; but it might be under migration. 950 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), 951 * before checking whether node->kpfn has been changed. 952 */ 953 smp_rmb(); 954 if (READ_ONCE(stable_node->kpfn) != kpfn) 955 goto again; 956 remove_node_from_stable_tree(stable_node); 957 return NULL; 958 } 959 960 /* 961 * Removing rmap_item from stable or unstable tree. 962 * This function will clean the information from the stable/unstable tree. 963 */ 964 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item) 965 { 966 if (rmap_item->address & STABLE_FLAG) { 967 struct ksm_stable_node *stable_node; 968 struct folio *folio; 969 970 stable_node = rmap_item->head; 971 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK); 972 if (!folio) 973 goto out; 974 975 hlist_del(&rmap_item->hlist); 976 folio_unlock(folio); 977 folio_put(folio); 978 979 if (!hlist_empty(&stable_node->hlist)) 980 ksm_pages_sharing--; 981 else 982 ksm_pages_shared--; 983 984 rmap_item->mm->ksm_merging_pages--; 985 986 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 987 stable_node->rmap_hlist_len--; 988 989 put_anon_vma(rmap_item->anon_vma); 990 rmap_item->head = NULL; 991 rmap_item->address &= PAGE_MASK; 992 993 } else if (rmap_item->address & UNSTABLE_FLAG) { 994 unsigned char age; 995 /* 996 * Usually ksmd can and must skip the rb_erase, because 997 * root_unstable_tree was already reset to RB_ROOT. 998 * But be careful when an mm is exiting: do the rb_erase 999 * if this rmap_item was inserted by this scan, rather 1000 * than left over from before. 1001 */ 1002 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 1003 BUG_ON(age > 1); 1004 if (!age) 1005 rb_erase(&rmap_item->node, 1006 root_unstable_tree + NUMA(rmap_item->nid)); 1007 ksm_pages_unshared--; 1008 rmap_item->address &= PAGE_MASK; 1009 } 1010 out: 1011 cond_resched(); /* we're called from many long loops */ 1012 } 1013 1014 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list) 1015 { 1016 while (*rmap_list) { 1017 struct ksm_rmap_item *rmap_item = *rmap_list; 1018 *rmap_list = rmap_item->rmap_list; 1019 remove_rmap_item_from_tree(rmap_item); 1020 free_rmap_item(rmap_item); 1021 } 1022 } 1023 1024 /* 1025 * Though it's very tempting to unmerge rmap_items from stable tree rather 1026 * than check every pte of a given vma, the locking doesn't quite work for 1027 * that - an rmap_item is assigned to the stable tree after inserting ksm 1028 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 1029 * rmap_items from parent to child at fork time (so as not to waste time 1030 * if exit comes before the next scan reaches it). 1031 * 1032 * Similarly, although we'd like to remove rmap_items (so updating counts 1033 * and freeing memory) when unmerging an area, it's easier to leave that 1034 * to the next pass of ksmd - consider, for example, how ksmd might be 1035 * in cmp_and_merge_page on one of the rmap_items we would be removing. 1036 */ 1037 static int unmerge_ksm_pages(struct vm_area_struct *vma, 1038 unsigned long start, unsigned long end, bool lock_vma) 1039 { 1040 unsigned long addr; 1041 int err = 0; 1042 1043 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 1044 if (ksm_test_exit(vma->vm_mm)) 1045 break; 1046 if (signal_pending(current)) 1047 err = -ERESTARTSYS; 1048 else 1049 err = break_ksm(vma, addr, lock_vma); 1050 } 1051 return err; 1052 } 1053 1054 static inline 1055 struct ksm_stable_node *folio_stable_node(const struct folio *folio) 1056 { 1057 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; 1058 } 1059 1060 static inline struct ksm_stable_node *page_stable_node(struct page *page) 1061 { 1062 return folio_stable_node(page_folio(page)); 1063 } 1064 1065 static inline void folio_set_stable_node(struct folio *folio, 1066 struct ksm_stable_node *stable_node) 1067 { 1068 VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio); 1069 folio->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 1070 } 1071 1072 #ifdef CONFIG_SYSFS 1073 /* 1074 * Only called through the sysfs control interface: 1075 */ 1076 static int remove_stable_node(struct ksm_stable_node *stable_node) 1077 { 1078 struct folio *folio; 1079 int err; 1080 1081 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK); 1082 if (!folio) { 1083 /* 1084 * ksm_get_folio did remove_node_from_stable_tree itself. 1085 */ 1086 return 0; 1087 } 1088 1089 /* 1090 * Page could be still mapped if this races with __mmput() running in 1091 * between ksm_exit() and exit_mmap(). Just refuse to let 1092 * merge_across_nodes/max_page_sharing be switched. 1093 */ 1094 err = -EBUSY; 1095 if (!folio_mapped(folio)) { 1096 /* 1097 * The stable node did not yet appear stale to ksm_get_folio(), 1098 * since that allows for an unmapped ksm folio to be recognized 1099 * right up until it is freed; but the node is safe to remove. 1100 * This folio might be in an LRU cache waiting to be freed, 1101 * or it might be in the swapcache (perhaps under writeback), 1102 * or it might have been removed from swapcache a moment ago. 1103 */ 1104 folio_set_stable_node(folio, NULL); 1105 remove_node_from_stable_tree(stable_node); 1106 err = 0; 1107 } 1108 1109 folio_unlock(folio); 1110 folio_put(folio); 1111 return err; 1112 } 1113 1114 static int remove_stable_node_chain(struct ksm_stable_node *stable_node, 1115 struct rb_root *root) 1116 { 1117 struct ksm_stable_node *dup; 1118 struct hlist_node *hlist_safe; 1119 1120 if (!is_stable_node_chain(stable_node)) { 1121 VM_BUG_ON(is_stable_node_dup(stable_node)); 1122 if (remove_stable_node(stable_node)) 1123 return true; 1124 else 1125 return false; 1126 } 1127 1128 hlist_for_each_entry_safe(dup, hlist_safe, 1129 &stable_node->hlist, hlist_dup) { 1130 VM_BUG_ON(!is_stable_node_dup(dup)); 1131 if (remove_stable_node(dup)) 1132 return true; 1133 } 1134 BUG_ON(!hlist_empty(&stable_node->hlist)); 1135 free_stable_node_chain(stable_node, root); 1136 return false; 1137 } 1138 1139 static int remove_all_stable_nodes(void) 1140 { 1141 struct ksm_stable_node *stable_node, *next; 1142 int nid; 1143 int err = 0; 1144 1145 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 1146 while (root_stable_tree[nid].rb_node) { 1147 stable_node = rb_entry(root_stable_tree[nid].rb_node, 1148 struct ksm_stable_node, node); 1149 if (remove_stable_node_chain(stable_node, 1150 root_stable_tree + nid)) { 1151 err = -EBUSY; 1152 break; /* proceed to next nid */ 1153 } 1154 cond_resched(); 1155 } 1156 } 1157 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 1158 if (remove_stable_node(stable_node)) 1159 err = -EBUSY; 1160 cond_resched(); 1161 } 1162 return err; 1163 } 1164 1165 static int unmerge_and_remove_all_rmap_items(void) 1166 { 1167 struct ksm_mm_slot *mm_slot; 1168 struct mm_slot *slot; 1169 struct mm_struct *mm; 1170 struct vm_area_struct *vma; 1171 int err = 0; 1172 1173 spin_lock(&ksm_mmlist_lock); 1174 slot = list_entry(ksm_mm_head.slot.mm_node.next, 1175 struct mm_slot, mm_node); 1176 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1177 spin_unlock(&ksm_mmlist_lock); 1178 1179 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head; 1180 mm_slot = ksm_scan.mm_slot) { 1181 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0); 1182 1183 mm = mm_slot->slot.mm; 1184 mmap_read_lock(mm); 1185 1186 /* 1187 * Exit right away if mm is exiting to avoid lockdep issue in 1188 * the maple tree 1189 */ 1190 if (ksm_test_exit(mm)) 1191 goto mm_exiting; 1192 1193 for_each_vma(vmi, vma) { 1194 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 1195 continue; 1196 err = unmerge_ksm_pages(vma, 1197 vma->vm_start, vma->vm_end, false); 1198 if (err) 1199 goto error; 1200 } 1201 1202 mm_exiting: 1203 remove_trailing_rmap_items(&mm_slot->rmap_list); 1204 mmap_read_unlock(mm); 1205 1206 spin_lock(&ksm_mmlist_lock); 1207 slot = list_entry(mm_slot->slot.mm_node.next, 1208 struct mm_slot, mm_node); 1209 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1210 if (ksm_test_exit(mm)) { 1211 hash_del(&mm_slot->slot.hash); 1212 list_del(&mm_slot->slot.mm_node); 1213 spin_unlock(&ksm_mmlist_lock); 1214 1215 mm_slot_free(mm_slot_cache, mm_slot); 1216 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1217 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 1218 mmdrop(mm); 1219 } else 1220 spin_unlock(&ksm_mmlist_lock); 1221 } 1222 1223 /* Clean up stable nodes, but don't worry if some are still busy */ 1224 remove_all_stable_nodes(); 1225 ksm_scan.seqnr = 0; 1226 return 0; 1227 1228 error: 1229 mmap_read_unlock(mm); 1230 spin_lock(&ksm_mmlist_lock); 1231 ksm_scan.mm_slot = &ksm_mm_head; 1232 spin_unlock(&ksm_mmlist_lock); 1233 return err; 1234 } 1235 #endif /* CONFIG_SYSFS */ 1236 1237 static u32 calc_checksum(struct page *page) 1238 { 1239 u32 checksum; 1240 void *addr = kmap_local_page(page); 1241 checksum = xxhash(addr, PAGE_SIZE, 0); 1242 kunmap_local(addr); 1243 return checksum; 1244 } 1245 1246 static int write_protect_page(struct vm_area_struct *vma, struct folio *folio, 1247 pte_t *orig_pte) 1248 { 1249 struct mm_struct *mm = vma->vm_mm; 1250 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0); 1251 int swapped; 1252 int err = -EFAULT; 1253 struct mmu_notifier_range range; 1254 bool anon_exclusive; 1255 pte_t entry; 1256 1257 if (WARN_ON_ONCE(folio_test_large(folio))) 1258 return err; 1259 1260 pvmw.address = page_address_in_vma(folio, folio_page(folio, 0), vma); 1261 if (pvmw.address == -EFAULT) 1262 goto out; 1263 1264 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address, 1265 pvmw.address + PAGE_SIZE); 1266 mmu_notifier_invalidate_range_start(&range); 1267 1268 if (!page_vma_mapped_walk(&pvmw)) 1269 goto out_mn; 1270 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1271 goto out_unlock; 1272 1273 anon_exclusive = PageAnonExclusive(&folio->page); 1274 entry = ptep_get(pvmw.pte); 1275 if (pte_write(entry) || pte_dirty(entry) || 1276 anon_exclusive || mm_tlb_flush_pending(mm)) { 1277 swapped = folio_test_swapcache(folio); 1278 flush_cache_page(vma, pvmw.address, folio_pfn(folio)); 1279 /* 1280 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1281 * take any lock, therefore the check that we are going to make 1282 * with the pagecount against the mapcount is racy and 1283 * O_DIRECT can happen right after the check. 1284 * So we clear the pte and flush the tlb before the check 1285 * this assure us that no O_DIRECT can happen after the check 1286 * or in the middle of the check. 1287 * 1288 * No need to notify as we are downgrading page table to read 1289 * only not changing it to point to a new page. 1290 * 1291 * See Documentation/mm/mmu_notifier.rst 1292 */ 1293 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1294 /* 1295 * Check that no O_DIRECT or similar I/O is in progress on the 1296 * page 1297 */ 1298 if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) { 1299 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1300 goto out_unlock; 1301 } 1302 1303 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */ 1304 if (anon_exclusive && 1305 folio_try_share_anon_rmap_pte(folio, &folio->page)) { 1306 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1307 goto out_unlock; 1308 } 1309 1310 if (pte_dirty(entry)) 1311 folio_mark_dirty(folio); 1312 entry = pte_mkclean(entry); 1313 1314 if (pte_write(entry)) 1315 entry = pte_wrprotect(entry); 1316 1317 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1318 } 1319 *orig_pte = entry; 1320 err = 0; 1321 1322 out_unlock: 1323 page_vma_mapped_walk_done(&pvmw); 1324 out_mn: 1325 mmu_notifier_invalidate_range_end(&range); 1326 out: 1327 return err; 1328 } 1329 1330 /** 1331 * replace_page - replace page in vma by new ksm page 1332 * @vma: vma that holds the pte pointing to page 1333 * @page: the page we are replacing by kpage 1334 * @kpage: the ksm page we replace page by 1335 * @orig_pte: the original value of the pte 1336 * 1337 * Returns 0 on success, -EFAULT on failure. 1338 */ 1339 static int replace_page(struct vm_area_struct *vma, struct page *page, 1340 struct page *kpage, pte_t orig_pte) 1341 { 1342 struct folio *kfolio = page_folio(kpage); 1343 struct mm_struct *mm = vma->vm_mm; 1344 struct folio *folio = page_folio(page); 1345 pmd_t *pmd; 1346 pmd_t pmde; 1347 pte_t *ptep; 1348 pte_t newpte; 1349 spinlock_t *ptl; 1350 unsigned long addr; 1351 int err = -EFAULT; 1352 struct mmu_notifier_range range; 1353 1354 addr = page_address_in_vma(folio, page, vma); 1355 if (addr == -EFAULT) 1356 goto out; 1357 1358 pmd = mm_find_pmd(mm, addr); 1359 if (!pmd) 1360 goto out; 1361 /* 1362 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 1363 * without holding anon_vma lock for write. So when looking for a 1364 * genuine pmde (in which to find pte), test present and !THP together. 1365 */ 1366 pmde = pmdp_get_lockless(pmd); 1367 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 1368 goto out; 1369 1370 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 1371 addr + PAGE_SIZE); 1372 mmu_notifier_invalidate_range_start(&range); 1373 1374 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1375 if (!ptep) 1376 goto out_mn; 1377 if (!pte_same(ptep_get(ptep), orig_pte)) { 1378 pte_unmap_unlock(ptep, ptl); 1379 goto out_mn; 1380 } 1381 VM_BUG_ON_PAGE(PageAnonExclusive(page), page); 1382 VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage), 1383 kfolio); 1384 1385 /* 1386 * No need to check ksm_use_zero_pages here: we can only have a 1387 * zero_page here if ksm_use_zero_pages was enabled already. 1388 */ 1389 if (!is_zero_pfn(page_to_pfn(kpage))) { 1390 folio_get(kfolio); 1391 folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE); 1392 newpte = mk_pte(kpage, vma->vm_page_prot); 1393 } else { 1394 /* 1395 * Use pte_mkdirty to mark the zero page mapped by KSM, and then 1396 * we can easily track all KSM-placed zero pages by checking if 1397 * the dirty bit in zero page's PTE is set. 1398 */ 1399 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot))); 1400 ksm_map_zero_page(mm); 1401 /* 1402 * We're replacing an anonymous page with a zero page, which is 1403 * not anonymous. We need to do proper accounting otherwise we 1404 * will get wrong values in /proc, and a BUG message in dmesg 1405 * when tearing down the mm. 1406 */ 1407 dec_mm_counter(mm, MM_ANONPAGES); 1408 } 1409 1410 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep))); 1411 /* 1412 * No need to notify as we are replacing a read only page with another 1413 * read only page with the same content. 1414 * 1415 * See Documentation/mm/mmu_notifier.rst 1416 */ 1417 ptep_clear_flush(vma, addr, ptep); 1418 set_pte_at(mm, addr, ptep, newpte); 1419 1420 folio_remove_rmap_pte(folio, page, vma); 1421 if (!folio_mapped(folio)) 1422 folio_free_swap(folio); 1423 folio_put(folio); 1424 1425 pte_unmap_unlock(ptep, ptl); 1426 err = 0; 1427 out_mn: 1428 mmu_notifier_invalidate_range_end(&range); 1429 out: 1430 return err; 1431 } 1432 1433 /* 1434 * try_to_merge_one_page - take two pages and merge them into one 1435 * @vma: the vma that holds the pte pointing to page 1436 * @page: the PageAnon page that we want to replace with kpage 1437 * @kpage: the KSM page that we want to map instead of page, 1438 * or NULL the first time when we want to use page as kpage. 1439 * 1440 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1441 */ 1442 static int try_to_merge_one_page(struct vm_area_struct *vma, 1443 struct page *page, struct page *kpage) 1444 { 1445 struct folio *folio = page_folio(page); 1446 pte_t orig_pte = __pte(0); 1447 int err = -EFAULT; 1448 1449 if (page == kpage) /* ksm page forked */ 1450 return 0; 1451 1452 if (!folio_test_anon(folio)) 1453 goto out; 1454 1455 /* 1456 * We need the folio lock to read a stable swapcache flag in 1457 * write_protect_page(). We trylock because we don't want to wait 1458 * here - we prefer to continue scanning and merging different 1459 * pages, then come back to this page when it is unlocked. 1460 */ 1461 if (!folio_trylock(folio)) 1462 goto out; 1463 1464 if (folio_test_large(folio)) { 1465 if (split_huge_page(page)) 1466 goto out_unlock; 1467 folio = page_folio(page); 1468 } 1469 1470 /* 1471 * If this anonymous page is mapped only here, its pte may need 1472 * to be write-protected. If it's mapped elsewhere, all of its 1473 * ptes are necessarily already write-protected. But in either 1474 * case, we need to lock and check page_count is not raised. 1475 */ 1476 if (write_protect_page(vma, folio, &orig_pte) == 0) { 1477 if (!kpage) { 1478 /* 1479 * While we hold folio lock, upgrade folio from 1480 * anon to a NULL stable_node with the KSM flag set: 1481 * stable_tree_insert() will update stable_node. 1482 */ 1483 folio_set_stable_node(folio, NULL); 1484 folio_mark_accessed(folio); 1485 /* 1486 * Page reclaim just frees a clean folio with no dirty 1487 * ptes: make sure that the ksm page would be swapped. 1488 */ 1489 if (!folio_test_dirty(folio)) 1490 folio_mark_dirty(folio); 1491 err = 0; 1492 } else if (pages_identical(page, kpage)) 1493 err = replace_page(vma, page, kpage, orig_pte); 1494 } 1495 1496 out_unlock: 1497 folio_unlock(folio); 1498 out: 1499 return err; 1500 } 1501 1502 /* 1503 * This function returns 0 if the pages were merged or if they are 1504 * no longer merging candidates (e.g., VMA stale), -EFAULT otherwise. 1505 */ 1506 static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item, 1507 struct page *page) 1508 { 1509 struct mm_struct *mm = rmap_item->mm; 1510 int err = -EFAULT; 1511 1512 /* 1513 * Same checksum as an empty page. We attempt to merge it with the 1514 * appropriate zero page if the user enabled this via sysfs. 1515 */ 1516 if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) { 1517 struct vm_area_struct *vma; 1518 1519 mmap_read_lock(mm); 1520 vma = find_mergeable_vma(mm, rmap_item->address); 1521 if (vma) { 1522 err = try_to_merge_one_page(vma, page, 1523 ZERO_PAGE(rmap_item->address)); 1524 trace_ksm_merge_one_page( 1525 page_to_pfn(ZERO_PAGE(rmap_item->address)), 1526 rmap_item, mm, err); 1527 } else { 1528 /* 1529 * If the vma is out of date, we do not need to 1530 * continue. 1531 */ 1532 err = 0; 1533 } 1534 mmap_read_unlock(mm); 1535 } 1536 1537 return err; 1538 } 1539 1540 /* 1541 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1542 * but no new kernel page is allocated: kpage must already be a ksm page. 1543 * 1544 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1545 */ 1546 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item, 1547 struct page *page, struct page *kpage) 1548 { 1549 struct mm_struct *mm = rmap_item->mm; 1550 struct vm_area_struct *vma; 1551 int err = -EFAULT; 1552 1553 mmap_read_lock(mm); 1554 vma = find_mergeable_vma(mm, rmap_item->address); 1555 if (!vma) 1556 goto out; 1557 1558 err = try_to_merge_one_page(vma, page, kpage); 1559 if (err) 1560 goto out; 1561 1562 /* Unstable nid is in union with stable anon_vma: remove first */ 1563 remove_rmap_item_from_tree(rmap_item); 1564 1565 /* Must get reference to anon_vma while still holding mmap_lock */ 1566 rmap_item->anon_vma = vma->anon_vma; 1567 get_anon_vma(vma->anon_vma); 1568 out: 1569 mmap_read_unlock(mm); 1570 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page), 1571 rmap_item, mm, err); 1572 return err; 1573 } 1574 1575 /* 1576 * try_to_merge_two_pages - take two identical pages and prepare them 1577 * to be merged into one page. 1578 * 1579 * This function returns the kpage if we successfully merged two identical 1580 * pages into one ksm page, NULL otherwise. 1581 * 1582 * Note that this function upgrades page to ksm page: if one of the pages 1583 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1584 */ 1585 static struct folio *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item, 1586 struct page *page, 1587 struct ksm_rmap_item *tree_rmap_item, 1588 struct page *tree_page) 1589 { 1590 int err; 1591 1592 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1593 if (!err) { 1594 err = try_to_merge_with_ksm_page(tree_rmap_item, 1595 tree_page, page); 1596 /* 1597 * If that fails, we have a ksm page with only one pte 1598 * pointing to it: so break it. 1599 */ 1600 if (err) 1601 break_cow(rmap_item); 1602 } 1603 return err ? NULL : page_folio(page); 1604 } 1605 1606 static __always_inline 1607 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset) 1608 { 1609 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1610 /* 1611 * Check that at least one mapping still exists, otherwise 1612 * there's no much point to merge and share with this 1613 * stable_node, as the underlying tree_page of the other 1614 * sharer is going to be freed soon. 1615 */ 1616 return stable_node->rmap_hlist_len && 1617 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1618 } 1619 1620 static __always_inline 1621 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node) 1622 { 1623 return __is_page_sharing_candidate(stable_node, 0); 1624 } 1625 1626 static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup, 1627 struct ksm_stable_node **_stable_node, 1628 struct rb_root *root, 1629 bool prune_stale_stable_nodes) 1630 { 1631 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1632 struct hlist_node *hlist_safe; 1633 struct folio *folio, *tree_folio = NULL; 1634 int found_rmap_hlist_len; 1635 1636 if (!prune_stale_stable_nodes || 1637 time_before(jiffies, stable_node->chain_prune_time + 1638 msecs_to_jiffies( 1639 ksm_stable_node_chains_prune_millisecs))) 1640 prune_stale_stable_nodes = false; 1641 else 1642 stable_node->chain_prune_time = jiffies; 1643 1644 hlist_for_each_entry_safe(dup, hlist_safe, 1645 &stable_node->hlist, hlist_dup) { 1646 cond_resched(); 1647 /* 1648 * We must walk all stable_node_dup to prune the stale 1649 * stable nodes during lookup. 1650 * 1651 * ksm_get_folio can drop the nodes from the 1652 * stable_node->hlist if they point to freed pages 1653 * (that's why we do a _safe walk). The "dup" 1654 * stable_node parameter itself will be freed from 1655 * under us if it returns NULL. 1656 */ 1657 folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK); 1658 if (!folio) 1659 continue; 1660 /* Pick the best candidate if possible. */ 1661 if (!found || (is_page_sharing_candidate(dup) && 1662 (!is_page_sharing_candidate(found) || 1663 dup->rmap_hlist_len > found_rmap_hlist_len))) { 1664 if (found) 1665 folio_put(tree_folio); 1666 found = dup; 1667 found_rmap_hlist_len = found->rmap_hlist_len; 1668 tree_folio = folio; 1669 /* skip put_page for found candidate */ 1670 if (!prune_stale_stable_nodes && 1671 is_page_sharing_candidate(found)) 1672 break; 1673 continue; 1674 } 1675 folio_put(folio); 1676 } 1677 1678 if (found) { 1679 if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) { 1680 /* 1681 * If there's not just one entry it would 1682 * corrupt memory, better BUG_ON. In KSM 1683 * context with no lock held it's not even 1684 * fatal. 1685 */ 1686 BUG_ON(stable_node->hlist.first->next); 1687 1688 /* 1689 * There's just one entry and it is below the 1690 * deduplication limit so drop the chain. 1691 */ 1692 rb_replace_node(&stable_node->node, &found->node, 1693 root); 1694 free_stable_node(stable_node); 1695 ksm_stable_node_chains--; 1696 ksm_stable_node_dups--; 1697 /* 1698 * NOTE: the caller depends on the stable_node 1699 * to be equal to stable_node_dup if the chain 1700 * was collapsed. 1701 */ 1702 *_stable_node = found; 1703 /* 1704 * Just for robustness, as stable_node is 1705 * otherwise left as a stable pointer, the 1706 * compiler shall optimize it away at build 1707 * time. 1708 */ 1709 stable_node = NULL; 1710 } else if (stable_node->hlist.first != &found->hlist_dup && 1711 __is_page_sharing_candidate(found, 1)) { 1712 /* 1713 * If the found stable_node dup can accept one 1714 * more future merge (in addition to the one 1715 * that is underway) and is not at the head of 1716 * the chain, put it there so next search will 1717 * be quicker in the !prune_stale_stable_nodes 1718 * case. 1719 * 1720 * NOTE: it would be inaccurate to use nr > 1 1721 * instead of checking the hlist.first pointer 1722 * directly, because in the 1723 * prune_stale_stable_nodes case "nr" isn't 1724 * the position of the found dup in the chain, 1725 * but the total number of dups in the chain. 1726 */ 1727 hlist_del(&found->hlist_dup); 1728 hlist_add_head(&found->hlist_dup, 1729 &stable_node->hlist); 1730 } 1731 } else { 1732 /* Its hlist must be empty if no one found. */ 1733 free_stable_node_chain(stable_node, root); 1734 } 1735 1736 *_stable_node_dup = found; 1737 return tree_folio; 1738 } 1739 1740 /* 1741 * Like for ksm_get_folio, this function can free the *_stable_node and 1742 * *_stable_node_dup if the returned tree_page is NULL. 1743 * 1744 * It can also free and overwrite *_stable_node with the found 1745 * stable_node_dup if the chain is collapsed (in which case 1746 * *_stable_node will be equal to *_stable_node_dup like if the chain 1747 * never existed). It's up to the caller to verify tree_page is not 1748 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1749 * 1750 * *_stable_node_dup is really a second output parameter of this 1751 * function and will be overwritten in all cases, the caller doesn't 1752 * need to initialize it. 1753 */ 1754 static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup, 1755 struct ksm_stable_node **_stable_node, 1756 struct rb_root *root, 1757 bool prune_stale_stable_nodes) 1758 { 1759 struct ksm_stable_node *stable_node = *_stable_node; 1760 1761 if (!is_stable_node_chain(stable_node)) { 1762 *_stable_node_dup = stable_node; 1763 return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK); 1764 } 1765 return stable_node_dup(_stable_node_dup, _stable_node, root, 1766 prune_stale_stable_nodes); 1767 } 1768 1769 static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d, 1770 struct ksm_stable_node **s_n, 1771 struct rb_root *root) 1772 { 1773 return __stable_node_chain(s_n_d, s_n, root, true); 1774 } 1775 1776 static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d, 1777 struct ksm_stable_node **s_n, 1778 struct rb_root *root) 1779 { 1780 return __stable_node_chain(s_n_d, s_n, root, false); 1781 } 1782 1783 /* 1784 * stable_tree_search - search for page inside the stable tree 1785 * 1786 * This function checks if there is a page inside the stable tree 1787 * with identical content to the page that we are scanning right now. 1788 * 1789 * This function returns the stable tree node of identical content if found, 1790 * -EBUSY if the stable node's page is being migrated, NULL otherwise. 1791 */ 1792 static struct folio *stable_tree_search(struct page *page) 1793 { 1794 int nid; 1795 struct rb_root *root; 1796 struct rb_node **new; 1797 struct rb_node *parent; 1798 struct ksm_stable_node *stable_node, *stable_node_dup; 1799 struct ksm_stable_node *page_node; 1800 struct folio *folio; 1801 1802 folio = page_folio(page); 1803 page_node = folio_stable_node(folio); 1804 if (page_node && page_node->head != &migrate_nodes) { 1805 /* ksm page forked */ 1806 folio_get(folio); 1807 return folio; 1808 } 1809 1810 nid = get_kpfn_nid(folio_pfn(folio)); 1811 root = root_stable_tree + nid; 1812 again: 1813 new = &root->rb_node; 1814 parent = NULL; 1815 1816 while (*new) { 1817 struct folio *tree_folio; 1818 int ret; 1819 1820 cond_resched(); 1821 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1822 tree_folio = chain_prune(&stable_node_dup, &stable_node, root); 1823 if (!tree_folio) { 1824 /* 1825 * If we walked over a stale stable_node, 1826 * ksm_get_folio() will call rb_erase() and it 1827 * may rebalance the tree from under us. So 1828 * restart the search from scratch. Returning 1829 * NULL would be safe too, but we'd generate 1830 * false negative insertions just because some 1831 * stable_node was stale. 1832 */ 1833 goto again; 1834 } 1835 1836 ret = memcmp_pages(page, &tree_folio->page); 1837 folio_put(tree_folio); 1838 1839 parent = *new; 1840 if (ret < 0) 1841 new = &parent->rb_left; 1842 else if (ret > 0) 1843 new = &parent->rb_right; 1844 else { 1845 if (page_node) { 1846 VM_BUG_ON(page_node->head != &migrate_nodes); 1847 /* 1848 * If the mapcount of our migrated KSM folio is 1849 * at most 1, we can merge it with another 1850 * KSM folio where we know that we have space 1851 * for one more mapping without exceeding the 1852 * ksm_max_page_sharing limit: see 1853 * chain_prune(). This way, we can avoid adding 1854 * this stable node to the chain. 1855 */ 1856 if (folio_mapcount(folio) > 1) 1857 goto chain_append; 1858 } 1859 1860 if (!is_page_sharing_candidate(stable_node_dup)) { 1861 /* 1862 * If the stable_node is a chain and 1863 * we got a payload match in memcmp 1864 * but we cannot merge the scanned 1865 * page in any of the existing 1866 * stable_node dups because they're 1867 * all full, we need to wait the 1868 * scanned page to find itself a match 1869 * in the unstable tree to create a 1870 * brand new KSM page to add later to 1871 * the dups of this stable_node. 1872 */ 1873 return NULL; 1874 } 1875 1876 /* 1877 * Lock and unlock the stable_node's page (which 1878 * might already have been migrated) so that page 1879 * migration is sure to notice its raised count. 1880 * It would be more elegant to return stable_node 1881 * than kpage, but that involves more changes. 1882 */ 1883 tree_folio = ksm_get_folio(stable_node_dup, 1884 KSM_GET_FOLIO_TRYLOCK); 1885 1886 if (PTR_ERR(tree_folio) == -EBUSY) 1887 return ERR_PTR(-EBUSY); 1888 1889 if (unlikely(!tree_folio)) 1890 /* 1891 * The tree may have been rebalanced, 1892 * so re-evaluate parent and new. 1893 */ 1894 goto again; 1895 folio_unlock(tree_folio); 1896 1897 if (get_kpfn_nid(stable_node_dup->kpfn) != 1898 NUMA(stable_node_dup->nid)) { 1899 folio_put(tree_folio); 1900 goto replace; 1901 } 1902 return tree_folio; 1903 } 1904 } 1905 1906 if (!page_node) 1907 return NULL; 1908 1909 list_del(&page_node->list); 1910 DO_NUMA(page_node->nid = nid); 1911 rb_link_node(&page_node->node, parent, new); 1912 rb_insert_color(&page_node->node, root); 1913 out: 1914 if (is_page_sharing_candidate(page_node)) { 1915 folio_get(folio); 1916 return folio; 1917 } else 1918 return NULL; 1919 1920 replace: 1921 /* 1922 * If stable_node was a chain and chain_prune collapsed it, 1923 * stable_node has been updated to be the new regular 1924 * stable_node. A collapse of the chain is indistinguishable 1925 * from the case there was no chain in the stable 1926 * rbtree. Otherwise stable_node is the chain and 1927 * stable_node_dup is the dup to replace. 1928 */ 1929 if (stable_node_dup == stable_node) { 1930 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1931 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1932 /* there is no chain */ 1933 if (page_node) { 1934 VM_BUG_ON(page_node->head != &migrate_nodes); 1935 list_del(&page_node->list); 1936 DO_NUMA(page_node->nid = nid); 1937 rb_replace_node(&stable_node_dup->node, 1938 &page_node->node, 1939 root); 1940 if (is_page_sharing_candidate(page_node)) 1941 folio_get(folio); 1942 else 1943 folio = NULL; 1944 } else { 1945 rb_erase(&stable_node_dup->node, root); 1946 folio = NULL; 1947 } 1948 } else { 1949 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1950 __stable_node_dup_del(stable_node_dup); 1951 if (page_node) { 1952 VM_BUG_ON(page_node->head != &migrate_nodes); 1953 list_del(&page_node->list); 1954 DO_NUMA(page_node->nid = nid); 1955 stable_node_chain_add_dup(page_node, stable_node); 1956 if (is_page_sharing_candidate(page_node)) 1957 folio_get(folio); 1958 else 1959 folio = NULL; 1960 } else { 1961 folio = NULL; 1962 } 1963 } 1964 stable_node_dup->head = &migrate_nodes; 1965 list_add(&stable_node_dup->list, stable_node_dup->head); 1966 return folio; 1967 1968 chain_append: 1969 /* 1970 * If stable_node was a chain and chain_prune collapsed it, 1971 * stable_node has been updated to be the new regular 1972 * stable_node. A collapse of the chain is indistinguishable 1973 * from the case there was no chain in the stable 1974 * rbtree. Otherwise stable_node is the chain and 1975 * stable_node_dup is the dup to replace. 1976 */ 1977 if (stable_node_dup == stable_node) { 1978 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1979 /* chain is missing so create it */ 1980 stable_node = alloc_stable_node_chain(stable_node_dup, 1981 root); 1982 if (!stable_node) 1983 return NULL; 1984 } 1985 /* 1986 * Add this stable_node dup that was 1987 * migrated to the stable_node chain 1988 * of the current nid for this page 1989 * content. 1990 */ 1991 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1992 VM_BUG_ON(page_node->head != &migrate_nodes); 1993 list_del(&page_node->list); 1994 DO_NUMA(page_node->nid = nid); 1995 stable_node_chain_add_dup(page_node, stable_node); 1996 goto out; 1997 } 1998 1999 /* 2000 * stable_tree_insert - insert stable tree node pointing to new ksm page 2001 * into the stable tree. 2002 * 2003 * This function returns the stable tree node just allocated on success, 2004 * NULL otherwise. 2005 */ 2006 static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio) 2007 { 2008 int nid; 2009 unsigned long kpfn; 2010 struct rb_root *root; 2011 struct rb_node **new; 2012 struct rb_node *parent; 2013 struct ksm_stable_node *stable_node, *stable_node_dup; 2014 bool need_chain = false; 2015 2016 kpfn = folio_pfn(kfolio); 2017 nid = get_kpfn_nid(kpfn); 2018 root = root_stable_tree + nid; 2019 again: 2020 parent = NULL; 2021 new = &root->rb_node; 2022 2023 while (*new) { 2024 struct folio *tree_folio; 2025 int ret; 2026 2027 cond_resched(); 2028 stable_node = rb_entry(*new, struct ksm_stable_node, node); 2029 tree_folio = chain(&stable_node_dup, &stable_node, root); 2030 if (!tree_folio) { 2031 /* 2032 * If we walked over a stale stable_node, 2033 * ksm_get_folio() will call rb_erase() and it 2034 * may rebalance the tree from under us. So 2035 * restart the search from scratch. Returning 2036 * NULL would be safe too, but we'd generate 2037 * false negative insertions just because some 2038 * stable_node was stale. 2039 */ 2040 goto again; 2041 } 2042 2043 ret = memcmp_pages(&kfolio->page, &tree_folio->page); 2044 folio_put(tree_folio); 2045 2046 parent = *new; 2047 if (ret < 0) 2048 new = &parent->rb_left; 2049 else if (ret > 0) 2050 new = &parent->rb_right; 2051 else { 2052 need_chain = true; 2053 break; 2054 } 2055 } 2056 2057 stable_node_dup = alloc_stable_node(); 2058 if (!stable_node_dup) 2059 return NULL; 2060 2061 INIT_HLIST_HEAD(&stable_node_dup->hlist); 2062 stable_node_dup->kpfn = kpfn; 2063 stable_node_dup->rmap_hlist_len = 0; 2064 DO_NUMA(stable_node_dup->nid = nid); 2065 if (!need_chain) { 2066 rb_link_node(&stable_node_dup->node, parent, new); 2067 rb_insert_color(&stable_node_dup->node, root); 2068 } else { 2069 if (!is_stable_node_chain(stable_node)) { 2070 struct ksm_stable_node *orig = stable_node; 2071 /* chain is missing so create it */ 2072 stable_node = alloc_stable_node_chain(orig, root); 2073 if (!stable_node) { 2074 free_stable_node(stable_node_dup); 2075 return NULL; 2076 } 2077 } 2078 stable_node_chain_add_dup(stable_node_dup, stable_node); 2079 } 2080 2081 folio_set_stable_node(kfolio, stable_node_dup); 2082 2083 return stable_node_dup; 2084 } 2085 2086 /* 2087 * unstable_tree_search_insert - search for identical page, 2088 * else insert rmap_item into the unstable tree. 2089 * 2090 * This function searches for a page in the unstable tree identical to the 2091 * page currently being scanned; and if no identical page is found in the 2092 * tree, we insert rmap_item as a new object into the unstable tree. 2093 * 2094 * This function returns pointer to rmap_item found to be identical 2095 * to the currently scanned page, NULL otherwise. 2096 * 2097 * This function does both searching and inserting, because they share 2098 * the same walking algorithm in an rbtree. 2099 */ 2100 static 2101 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item, 2102 struct page *page, 2103 struct page **tree_pagep) 2104 { 2105 struct rb_node **new; 2106 struct rb_root *root; 2107 struct rb_node *parent = NULL; 2108 int nid; 2109 2110 nid = get_kpfn_nid(page_to_pfn(page)); 2111 root = root_unstable_tree + nid; 2112 new = &root->rb_node; 2113 2114 while (*new) { 2115 struct ksm_rmap_item *tree_rmap_item; 2116 struct page *tree_page; 2117 int ret; 2118 2119 cond_resched(); 2120 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node); 2121 tree_page = get_mergeable_page(tree_rmap_item); 2122 if (!tree_page) 2123 return NULL; 2124 2125 /* 2126 * Don't substitute a ksm page for a forked page. 2127 */ 2128 if (page == tree_page) { 2129 put_page(tree_page); 2130 return NULL; 2131 } 2132 2133 ret = memcmp_pages(page, tree_page); 2134 2135 parent = *new; 2136 if (ret < 0) { 2137 put_page(tree_page); 2138 new = &parent->rb_left; 2139 } else if (ret > 0) { 2140 put_page(tree_page); 2141 new = &parent->rb_right; 2142 } else if (!ksm_merge_across_nodes && 2143 page_to_nid(tree_page) != nid) { 2144 /* 2145 * If tree_page has been migrated to another NUMA node, 2146 * it will be flushed out and put in the right unstable 2147 * tree next time: only merge with it when across_nodes. 2148 */ 2149 put_page(tree_page); 2150 return NULL; 2151 } else { 2152 *tree_pagep = tree_page; 2153 return tree_rmap_item; 2154 } 2155 } 2156 2157 rmap_item->address |= UNSTABLE_FLAG; 2158 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 2159 DO_NUMA(rmap_item->nid = nid); 2160 rb_link_node(&rmap_item->node, parent, new); 2161 rb_insert_color(&rmap_item->node, root); 2162 2163 ksm_pages_unshared++; 2164 return NULL; 2165 } 2166 2167 /* 2168 * stable_tree_append - add another rmap_item to the linked list of 2169 * rmap_items hanging off a given node of the stable tree, all sharing 2170 * the same ksm page. 2171 */ 2172 static void stable_tree_append(struct ksm_rmap_item *rmap_item, 2173 struct ksm_stable_node *stable_node, 2174 bool max_page_sharing_bypass) 2175 { 2176 /* 2177 * rmap won't find this mapping if we don't insert the 2178 * rmap_item in the right stable_node 2179 * duplicate. page_migration could break later if rmap breaks, 2180 * so we can as well crash here. We really need to check for 2181 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2182 * for other negative values as an underflow if detected here 2183 * for the first time (and not when decreasing rmap_hlist_len) 2184 * would be sign of memory corruption in the stable_node. 2185 */ 2186 BUG_ON(stable_node->rmap_hlist_len < 0); 2187 2188 stable_node->rmap_hlist_len++; 2189 if (!max_page_sharing_bypass) 2190 /* possibly non fatal but unexpected overflow, only warn */ 2191 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2192 ksm_max_page_sharing); 2193 2194 rmap_item->head = stable_node; 2195 rmap_item->address |= STABLE_FLAG; 2196 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2197 2198 if (rmap_item->hlist.next) 2199 ksm_pages_sharing++; 2200 else 2201 ksm_pages_shared++; 2202 2203 rmap_item->mm->ksm_merging_pages++; 2204 } 2205 2206 /* 2207 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2208 * if not, compare checksum to previous and if it's the same, see if page can 2209 * be inserted into the unstable tree, or merged with a page already there and 2210 * both transferred to the stable tree. 2211 * 2212 * @page: the page that we are searching identical page to. 2213 * @rmap_item: the reverse mapping into the virtual address of this page 2214 */ 2215 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item) 2216 { 2217 struct ksm_rmap_item *tree_rmap_item; 2218 struct page *tree_page = NULL; 2219 struct ksm_stable_node *stable_node; 2220 struct folio *kfolio; 2221 unsigned int checksum; 2222 int err; 2223 bool max_page_sharing_bypass = false; 2224 2225 stable_node = page_stable_node(page); 2226 if (stable_node) { 2227 if (stable_node->head != &migrate_nodes && 2228 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2229 NUMA(stable_node->nid)) { 2230 stable_node_dup_del(stable_node); 2231 stable_node->head = &migrate_nodes; 2232 list_add(&stable_node->list, stable_node->head); 2233 } 2234 if (stable_node->head != &migrate_nodes && 2235 rmap_item->head == stable_node) 2236 return; 2237 /* 2238 * If it's a KSM fork, allow it to go over the sharing limit 2239 * without warnings. 2240 */ 2241 if (!is_page_sharing_candidate(stable_node)) 2242 max_page_sharing_bypass = true; 2243 } else { 2244 remove_rmap_item_from_tree(rmap_item); 2245 2246 /* 2247 * If the hash value of the page has changed from the last time 2248 * we calculated it, this page is changing frequently: therefore we 2249 * don't want to insert it in the unstable tree, and we don't want 2250 * to waste our time searching for something identical to it there. 2251 */ 2252 checksum = calc_checksum(page); 2253 if (rmap_item->oldchecksum != checksum) { 2254 rmap_item->oldchecksum = checksum; 2255 return; 2256 } 2257 2258 if (!try_to_merge_with_zero_page(rmap_item, page)) 2259 return; 2260 } 2261 2262 /* Start by searching for the folio in the stable tree */ 2263 kfolio = stable_tree_search(page); 2264 if (&kfolio->page == page && rmap_item->head == stable_node) { 2265 folio_put(kfolio); 2266 return; 2267 } 2268 2269 remove_rmap_item_from_tree(rmap_item); 2270 2271 if (kfolio) { 2272 if (kfolio == ERR_PTR(-EBUSY)) 2273 return; 2274 2275 err = try_to_merge_with_ksm_page(rmap_item, page, &kfolio->page); 2276 if (!err) { 2277 /* 2278 * The page was successfully merged: 2279 * add its rmap_item to the stable tree. 2280 */ 2281 folio_lock(kfolio); 2282 stable_tree_append(rmap_item, folio_stable_node(kfolio), 2283 max_page_sharing_bypass); 2284 folio_unlock(kfolio); 2285 } 2286 folio_put(kfolio); 2287 return; 2288 } 2289 2290 tree_rmap_item = 2291 unstable_tree_search_insert(rmap_item, page, &tree_page); 2292 if (tree_rmap_item) { 2293 bool split; 2294 2295 kfolio = try_to_merge_two_pages(rmap_item, page, 2296 tree_rmap_item, tree_page); 2297 /* 2298 * If both pages we tried to merge belong to the same compound 2299 * page, then we actually ended up increasing the reference 2300 * count of the same compound page twice, and split_huge_page 2301 * failed. 2302 * Here we set a flag if that happened, and we use it later to 2303 * try split_huge_page again. Since we call put_page right 2304 * afterwards, the reference count will be correct and 2305 * split_huge_page should succeed. 2306 */ 2307 split = PageTransCompound(page) 2308 && compound_head(page) == compound_head(tree_page); 2309 put_page(tree_page); 2310 if (kfolio) { 2311 /* 2312 * The pages were successfully merged: insert new 2313 * node in the stable tree and add both rmap_items. 2314 */ 2315 folio_lock(kfolio); 2316 stable_node = stable_tree_insert(kfolio); 2317 if (stable_node) { 2318 stable_tree_append(tree_rmap_item, stable_node, 2319 false); 2320 stable_tree_append(rmap_item, stable_node, 2321 false); 2322 } 2323 folio_unlock(kfolio); 2324 2325 /* 2326 * If we fail to insert the page into the stable tree, 2327 * we will have 2 virtual addresses that are pointing 2328 * to a ksm page left outside the stable tree, 2329 * in which case we need to break_cow on both. 2330 */ 2331 if (!stable_node) { 2332 break_cow(tree_rmap_item); 2333 break_cow(rmap_item); 2334 } 2335 } else if (split) { 2336 /* 2337 * We are here if we tried to merge two pages and 2338 * failed because they both belonged to the same 2339 * compound page. We will split the page now, but no 2340 * merging will take place. 2341 * We do not want to add the cost of a full lock; if 2342 * the page is locked, it is better to skip it and 2343 * perhaps try again later. 2344 */ 2345 if (!trylock_page(page)) 2346 return; 2347 split_huge_page(page); 2348 unlock_page(page); 2349 } 2350 } 2351 } 2352 2353 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot, 2354 struct ksm_rmap_item **rmap_list, 2355 unsigned long addr) 2356 { 2357 struct ksm_rmap_item *rmap_item; 2358 2359 while (*rmap_list) { 2360 rmap_item = *rmap_list; 2361 if ((rmap_item->address & PAGE_MASK) == addr) 2362 return rmap_item; 2363 if (rmap_item->address > addr) 2364 break; 2365 *rmap_list = rmap_item->rmap_list; 2366 remove_rmap_item_from_tree(rmap_item); 2367 free_rmap_item(rmap_item); 2368 } 2369 2370 rmap_item = alloc_rmap_item(); 2371 if (rmap_item) { 2372 /* It has already been zeroed */ 2373 rmap_item->mm = mm_slot->slot.mm; 2374 rmap_item->mm->ksm_rmap_items++; 2375 rmap_item->address = addr; 2376 rmap_item->rmap_list = *rmap_list; 2377 *rmap_list = rmap_item; 2378 } 2379 return rmap_item; 2380 } 2381 2382 /* 2383 * Calculate skip age for the ksm page age. The age determines how often 2384 * de-duplicating has already been tried unsuccessfully. If the age is 2385 * smaller, the scanning of this page is skipped for less scans. 2386 * 2387 * @age: rmap_item age of page 2388 */ 2389 static unsigned int skip_age(rmap_age_t age) 2390 { 2391 if (age <= 3) 2392 return 1; 2393 if (age <= 5) 2394 return 2; 2395 if (age <= 8) 2396 return 4; 2397 2398 return 8; 2399 } 2400 2401 /* 2402 * Determines if a page should be skipped for the current scan. 2403 * 2404 * @folio: folio containing the page to check 2405 * @rmap_item: associated rmap_item of page 2406 */ 2407 static bool should_skip_rmap_item(struct folio *folio, 2408 struct ksm_rmap_item *rmap_item) 2409 { 2410 rmap_age_t age; 2411 2412 if (!ksm_smart_scan) 2413 return false; 2414 2415 /* 2416 * Never skip pages that are already KSM; pages cmp_and_merge_page() 2417 * will essentially ignore them, but we still have to process them 2418 * properly. 2419 */ 2420 if (folio_test_ksm(folio)) 2421 return false; 2422 2423 age = rmap_item->age; 2424 if (age != U8_MAX) 2425 rmap_item->age++; 2426 2427 /* 2428 * Smaller ages are not skipped, they need to get a chance to go 2429 * through the different phases of the KSM merging. 2430 */ 2431 if (age < 3) 2432 return false; 2433 2434 /* 2435 * Are we still allowed to skip? If not, then don't skip it 2436 * and determine how much more often we are allowed to skip next. 2437 */ 2438 if (!rmap_item->remaining_skips) { 2439 rmap_item->remaining_skips = skip_age(age); 2440 return false; 2441 } 2442 2443 /* Skip this page */ 2444 ksm_pages_skipped++; 2445 rmap_item->remaining_skips--; 2446 remove_rmap_item_from_tree(rmap_item); 2447 return true; 2448 } 2449 2450 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page) 2451 { 2452 struct mm_struct *mm; 2453 struct ksm_mm_slot *mm_slot; 2454 struct mm_slot *slot; 2455 struct vm_area_struct *vma; 2456 struct ksm_rmap_item *rmap_item; 2457 struct vma_iterator vmi; 2458 int nid; 2459 2460 if (list_empty(&ksm_mm_head.slot.mm_node)) 2461 return NULL; 2462 2463 mm_slot = ksm_scan.mm_slot; 2464 if (mm_slot == &ksm_mm_head) { 2465 advisor_start_scan(); 2466 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items); 2467 2468 /* 2469 * A number of pages can hang around indefinitely in per-cpu 2470 * LRU cache, raised page count preventing write_protect_page 2471 * from merging them. Though it doesn't really matter much, 2472 * it is puzzling to see some stuck in pages_volatile until 2473 * other activity jostles them out, and they also prevented 2474 * LTP's KSM test from succeeding deterministically; so drain 2475 * them here (here rather than on entry to ksm_do_scan(), 2476 * so we don't IPI too often when pages_to_scan is set low). 2477 */ 2478 lru_add_drain_all(); 2479 2480 /* 2481 * Whereas stale stable_nodes on the stable_tree itself 2482 * get pruned in the regular course of stable_tree_search(), 2483 * those moved out to the migrate_nodes list can accumulate: 2484 * so prune them once before each full scan. 2485 */ 2486 if (!ksm_merge_across_nodes) { 2487 struct ksm_stable_node *stable_node, *next; 2488 struct folio *folio; 2489 2490 list_for_each_entry_safe(stable_node, next, 2491 &migrate_nodes, list) { 2492 folio = ksm_get_folio(stable_node, 2493 KSM_GET_FOLIO_NOLOCK); 2494 if (folio) 2495 folio_put(folio); 2496 cond_resched(); 2497 } 2498 } 2499 2500 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2501 root_unstable_tree[nid] = RB_ROOT; 2502 2503 spin_lock(&ksm_mmlist_lock); 2504 slot = list_entry(mm_slot->slot.mm_node.next, 2505 struct mm_slot, mm_node); 2506 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2507 ksm_scan.mm_slot = mm_slot; 2508 spin_unlock(&ksm_mmlist_lock); 2509 /* 2510 * Although we tested list_empty() above, a racing __ksm_exit 2511 * of the last mm on the list may have removed it since then. 2512 */ 2513 if (mm_slot == &ksm_mm_head) 2514 return NULL; 2515 next_mm: 2516 ksm_scan.address = 0; 2517 ksm_scan.rmap_list = &mm_slot->rmap_list; 2518 } 2519 2520 slot = &mm_slot->slot; 2521 mm = slot->mm; 2522 vma_iter_init(&vmi, mm, ksm_scan.address); 2523 2524 mmap_read_lock(mm); 2525 if (ksm_test_exit(mm)) 2526 goto no_vmas; 2527 2528 for_each_vma(vmi, vma) { 2529 if (!(vma->vm_flags & VM_MERGEABLE)) 2530 continue; 2531 if (ksm_scan.address < vma->vm_start) 2532 ksm_scan.address = vma->vm_start; 2533 if (!vma->anon_vma) 2534 ksm_scan.address = vma->vm_end; 2535 2536 while (ksm_scan.address < vma->vm_end) { 2537 struct page *tmp_page = NULL; 2538 struct folio_walk fw; 2539 struct folio *folio; 2540 2541 if (ksm_test_exit(mm)) 2542 break; 2543 2544 folio = folio_walk_start(&fw, vma, ksm_scan.address, 0); 2545 if (folio) { 2546 if (!folio_is_zone_device(folio) && 2547 folio_test_anon(folio)) { 2548 folio_get(folio); 2549 tmp_page = fw.page; 2550 } 2551 folio_walk_end(&fw, vma); 2552 } 2553 2554 if (tmp_page) { 2555 flush_anon_page(vma, tmp_page, ksm_scan.address); 2556 flush_dcache_page(tmp_page); 2557 rmap_item = get_next_rmap_item(mm_slot, 2558 ksm_scan.rmap_list, ksm_scan.address); 2559 if (rmap_item) { 2560 ksm_scan.rmap_list = 2561 &rmap_item->rmap_list; 2562 2563 if (should_skip_rmap_item(folio, rmap_item)) { 2564 folio_put(folio); 2565 goto next_page; 2566 } 2567 2568 ksm_scan.address += PAGE_SIZE; 2569 *page = tmp_page; 2570 } else { 2571 folio_put(folio); 2572 } 2573 mmap_read_unlock(mm); 2574 return rmap_item; 2575 } 2576 next_page: 2577 ksm_scan.address += PAGE_SIZE; 2578 cond_resched(); 2579 } 2580 } 2581 2582 if (ksm_test_exit(mm)) { 2583 no_vmas: 2584 ksm_scan.address = 0; 2585 ksm_scan.rmap_list = &mm_slot->rmap_list; 2586 } 2587 /* 2588 * Nuke all the rmap_items that are above this current rmap: 2589 * because there were no VM_MERGEABLE vmas with such addresses. 2590 */ 2591 remove_trailing_rmap_items(ksm_scan.rmap_list); 2592 2593 spin_lock(&ksm_mmlist_lock); 2594 slot = list_entry(mm_slot->slot.mm_node.next, 2595 struct mm_slot, mm_node); 2596 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2597 if (ksm_scan.address == 0) { 2598 /* 2599 * We've completed a full scan of all vmas, holding mmap_lock 2600 * throughout, and found no VM_MERGEABLE: so do the same as 2601 * __ksm_exit does to remove this mm from all our lists now. 2602 * This applies either when cleaning up after __ksm_exit 2603 * (but beware: we can reach here even before __ksm_exit), 2604 * or when all VM_MERGEABLE areas have been unmapped (and 2605 * mmap_lock then protects against race with MADV_MERGEABLE). 2606 */ 2607 hash_del(&mm_slot->slot.hash); 2608 list_del(&mm_slot->slot.mm_node); 2609 spin_unlock(&ksm_mmlist_lock); 2610 2611 mm_slot_free(mm_slot_cache, mm_slot); 2612 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2613 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2614 mmap_read_unlock(mm); 2615 mmdrop(mm); 2616 } else { 2617 mmap_read_unlock(mm); 2618 /* 2619 * mmap_read_unlock(mm) first because after 2620 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2621 * already have been freed under us by __ksm_exit() 2622 * because the "mm_slot" is still hashed and 2623 * ksm_scan.mm_slot doesn't point to it anymore. 2624 */ 2625 spin_unlock(&ksm_mmlist_lock); 2626 } 2627 2628 /* Repeat until we've completed scanning the whole list */ 2629 mm_slot = ksm_scan.mm_slot; 2630 if (mm_slot != &ksm_mm_head) 2631 goto next_mm; 2632 2633 advisor_stop_scan(); 2634 2635 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items); 2636 ksm_scan.seqnr++; 2637 return NULL; 2638 } 2639 2640 /** 2641 * ksm_do_scan - the ksm scanner main worker function. 2642 * @scan_npages: number of pages we want to scan before we return. 2643 */ 2644 static void ksm_do_scan(unsigned int scan_npages) 2645 { 2646 struct ksm_rmap_item *rmap_item; 2647 struct page *page; 2648 2649 while (scan_npages-- && likely(!freezing(current))) { 2650 cond_resched(); 2651 rmap_item = scan_get_next_rmap_item(&page); 2652 if (!rmap_item) 2653 return; 2654 cmp_and_merge_page(page, rmap_item); 2655 put_page(page); 2656 ksm_pages_scanned++; 2657 } 2658 } 2659 2660 static int ksmd_should_run(void) 2661 { 2662 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node); 2663 } 2664 2665 static int ksm_scan_thread(void *nothing) 2666 { 2667 unsigned int sleep_ms; 2668 2669 set_freezable(); 2670 set_user_nice(current, 5); 2671 2672 while (!kthread_should_stop()) { 2673 mutex_lock(&ksm_thread_mutex); 2674 wait_while_offlining(); 2675 if (ksmd_should_run()) 2676 ksm_do_scan(ksm_thread_pages_to_scan); 2677 mutex_unlock(&ksm_thread_mutex); 2678 2679 if (ksmd_should_run()) { 2680 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2681 wait_event_freezable_timeout(ksm_iter_wait, 2682 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2683 msecs_to_jiffies(sleep_ms)); 2684 } else { 2685 wait_event_freezable(ksm_thread_wait, 2686 ksmd_should_run() || kthread_should_stop()); 2687 } 2688 } 2689 return 0; 2690 } 2691 2692 static void __ksm_add_vma(struct vm_area_struct *vma) 2693 { 2694 unsigned long vm_flags = vma->vm_flags; 2695 2696 if (vm_flags & VM_MERGEABLE) 2697 return; 2698 2699 if (vma_ksm_compatible(vma)) 2700 vm_flags_set(vma, VM_MERGEABLE); 2701 } 2702 2703 static int __ksm_del_vma(struct vm_area_struct *vma) 2704 { 2705 int err; 2706 2707 if (!(vma->vm_flags & VM_MERGEABLE)) 2708 return 0; 2709 2710 if (vma->anon_vma) { 2711 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true); 2712 if (err) 2713 return err; 2714 } 2715 2716 vm_flags_clear(vma, VM_MERGEABLE); 2717 return 0; 2718 } 2719 /** 2720 * ksm_add_vma - Mark vma as mergeable if compatible 2721 * 2722 * @vma: Pointer to vma 2723 */ 2724 void ksm_add_vma(struct vm_area_struct *vma) 2725 { 2726 struct mm_struct *mm = vma->vm_mm; 2727 2728 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2729 __ksm_add_vma(vma); 2730 } 2731 2732 static void ksm_add_vmas(struct mm_struct *mm) 2733 { 2734 struct vm_area_struct *vma; 2735 2736 VMA_ITERATOR(vmi, mm, 0); 2737 for_each_vma(vmi, vma) 2738 __ksm_add_vma(vma); 2739 } 2740 2741 static int ksm_del_vmas(struct mm_struct *mm) 2742 { 2743 struct vm_area_struct *vma; 2744 int err; 2745 2746 VMA_ITERATOR(vmi, mm, 0); 2747 for_each_vma(vmi, vma) { 2748 err = __ksm_del_vma(vma); 2749 if (err) 2750 return err; 2751 } 2752 return 0; 2753 } 2754 2755 /** 2756 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all 2757 * compatible VMA's 2758 * 2759 * @mm: Pointer to mm 2760 * 2761 * Returns 0 on success, otherwise error code 2762 */ 2763 int ksm_enable_merge_any(struct mm_struct *mm) 2764 { 2765 int err; 2766 2767 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2768 return 0; 2769 2770 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2771 err = __ksm_enter(mm); 2772 if (err) 2773 return err; 2774 } 2775 2776 set_bit(MMF_VM_MERGE_ANY, &mm->flags); 2777 ksm_add_vmas(mm); 2778 2779 return 0; 2780 } 2781 2782 /** 2783 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm, 2784 * previously enabled via ksm_enable_merge_any(). 2785 * 2786 * Disabling merging implies unmerging any merged pages, like setting 2787 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and 2788 * merging on all compatible VMA's remains enabled. 2789 * 2790 * @mm: Pointer to mm 2791 * 2792 * Returns 0 on success, otherwise error code 2793 */ 2794 int ksm_disable_merge_any(struct mm_struct *mm) 2795 { 2796 int err; 2797 2798 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2799 return 0; 2800 2801 err = ksm_del_vmas(mm); 2802 if (err) { 2803 ksm_add_vmas(mm); 2804 return err; 2805 } 2806 2807 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2808 return 0; 2809 } 2810 2811 int ksm_disable(struct mm_struct *mm) 2812 { 2813 mmap_assert_write_locked(mm); 2814 2815 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) 2816 return 0; 2817 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2818 return ksm_disable_merge_any(mm); 2819 return ksm_del_vmas(mm); 2820 } 2821 2822 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2823 unsigned long end, int advice, unsigned long *vm_flags) 2824 { 2825 struct mm_struct *mm = vma->vm_mm; 2826 int err; 2827 2828 switch (advice) { 2829 case MADV_MERGEABLE: 2830 if (vma->vm_flags & VM_MERGEABLE) 2831 return 0; 2832 if (!vma_ksm_compatible(vma)) 2833 return 0; 2834 2835 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2836 err = __ksm_enter(mm); 2837 if (err) 2838 return err; 2839 } 2840 2841 *vm_flags |= VM_MERGEABLE; 2842 break; 2843 2844 case MADV_UNMERGEABLE: 2845 if (!(*vm_flags & VM_MERGEABLE)) 2846 return 0; /* just ignore the advice */ 2847 2848 if (vma->anon_vma) { 2849 err = unmerge_ksm_pages(vma, start, end, true); 2850 if (err) 2851 return err; 2852 } 2853 2854 *vm_flags &= ~VM_MERGEABLE; 2855 break; 2856 } 2857 2858 return 0; 2859 } 2860 EXPORT_SYMBOL_GPL(ksm_madvise); 2861 2862 int __ksm_enter(struct mm_struct *mm) 2863 { 2864 struct ksm_mm_slot *mm_slot; 2865 struct mm_slot *slot; 2866 int needs_wakeup; 2867 2868 mm_slot = mm_slot_alloc(mm_slot_cache); 2869 if (!mm_slot) 2870 return -ENOMEM; 2871 2872 slot = &mm_slot->slot; 2873 2874 /* Check ksm_run too? Would need tighter locking */ 2875 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node); 2876 2877 spin_lock(&ksm_mmlist_lock); 2878 mm_slot_insert(mm_slots_hash, mm, slot); 2879 /* 2880 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2881 * insert just behind the scanning cursor, to let the area settle 2882 * down a little; when fork is followed by immediate exec, we don't 2883 * want ksmd to waste time setting up and tearing down an rmap_list. 2884 * 2885 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2886 * scanning cursor, otherwise KSM pages in newly forked mms will be 2887 * missed: then we might as well insert at the end of the list. 2888 */ 2889 if (ksm_run & KSM_RUN_UNMERGE) 2890 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node); 2891 else 2892 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node); 2893 spin_unlock(&ksm_mmlist_lock); 2894 2895 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2896 mmgrab(mm); 2897 2898 if (needs_wakeup) 2899 wake_up_interruptible(&ksm_thread_wait); 2900 2901 trace_ksm_enter(mm); 2902 return 0; 2903 } 2904 2905 void __ksm_exit(struct mm_struct *mm) 2906 { 2907 struct ksm_mm_slot *mm_slot; 2908 struct mm_slot *slot; 2909 int easy_to_free = 0; 2910 2911 /* 2912 * This process is exiting: if it's straightforward (as is the 2913 * case when ksmd was never running), free mm_slot immediately. 2914 * But if it's at the cursor or has rmap_items linked to it, use 2915 * mmap_lock to synchronize with any break_cows before pagetables 2916 * are freed, and leave the mm_slot on the list for ksmd to free. 2917 * Beware: ksm may already have noticed it exiting and freed the slot. 2918 */ 2919 2920 spin_lock(&ksm_mmlist_lock); 2921 slot = mm_slot_lookup(mm_slots_hash, mm); 2922 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2923 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2924 if (!mm_slot->rmap_list) { 2925 hash_del(&slot->hash); 2926 list_del(&slot->mm_node); 2927 easy_to_free = 1; 2928 } else { 2929 list_move(&slot->mm_node, 2930 &ksm_scan.mm_slot->slot.mm_node); 2931 } 2932 } 2933 spin_unlock(&ksm_mmlist_lock); 2934 2935 if (easy_to_free) { 2936 mm_slot_free(mm_slot_cache, mm_slot); 2937 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2938 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2939 mmdrop(mm); 2940 } else if (mm_slot) { 2941 mmap_write_lock(mm); 2942 mmap_write_unlock(mm); 2943 } 2944 2945 trace_ksm_exit(mm); 2946 } 2947 2948 struct folio *ksm_might_need_to_copy(struct folio *folio, 2949 struct vm_area_struct *vma, unsigned long addr) 2950 { 2951 struct page *page = folio_page(folio, 0); 2952 struct anon_vma *anon_vma = folio_anon_vma(folio); 2953 struct folio *new_folio; 2954 2955 if (folio_test_large(folio)) 2956 return folio; 2957 2958 if (folio_test_ksm(folio)) { 2959 if (folio_stable_node(folio) && 2960 !(ksm_run & KSM_RUN_UNMERGE)) 2961 return folio; /* no need to copy it */ 2962 } else if (!anon_vma) { 2963 return folio; /* no need to copy it */ 2964 } else if (folio->index == linear_page_index(vma, addr) && 2965 anon_vma->root == vma->anon_vma->root) { 2966 return folio; /* still no need to copy it */ 2967 } 2968 if (PageHWPoison(page)) 2969 return ERR_PTR(-EHWPOISON); 2970 if (!folio_test_uptodate(folio)) 2971 return folio; /* let do_swap_page report the error */ 2972 2973 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 2974 if (new_folio && 2975 mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) { 2976 folio_put(new_folio); 2977 new_folio = NULL; 2978 } 2979 if (new_folio) { 2980 if (copy_mc_user_highpage(folio_page(new_folio, 0), page, 2981 addr, vma)) { 2982 folio_put(new_folio); 2983 return ERR_PTR(-EHWPOISON); 2984 } 2985 folio_set_dirty(new_folio); 2986 __folio_mark_uptodate(new_folio); 2987 __folio_set_locked(new_folio); 2988 #ifdef CONFIG_SWAP 2989 count_vm_event(KSM_SWPIN_COPY); 2990 #endif 2991 } 2992 2993 return new_folio; 2994 } 2995 2996 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc) 2997 { 2998 struct ksm_stable_node *stable_node; 2999 struct ksm_rmap_item *rmap_item; 3000 int search_new_forks = 0; 3001 3002 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio); 3003 3004 /* 3005 * Rely on the page lock to protect against concurrent modifications 3006 * to that page's node of the stable tree. 3007 */ 3008 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3009 3010 stable_node = folio_stable_node(folio); 3011 if (!stable_node) 3012 return; 3013 again: 3014 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 3015 struct anon_vma *anon_vma = rmap_item->anon_vma; 3016 struct anon_vma_chain *vmac; 3017 struct vm_area_struct *vma; 3018 3019 cond_resched(); 3020 if (!anon_vma_trylock_read(anon_vma)) { 3021 if (rwc->try_lock) { 3022 rwc->contended = true; 3023 return; 3024 } 3025 anon_vma_lock_read(anon_vma); 3026 } 3027 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 3028 0, ULONG_MAX) { 3029 unsigned long addr; 3030 3031 cond_resched(); 3032 vma = vmac->vma; 3033 3034 /* Ignore the stable/unstable/sqnr flags */ 3035 addr = rmap_item->address & PAGE_MASK; 3036 3037 if (addr < vma->vm_start || addr >= vma->vm_end) 3038 continue; 3039 /* 3040 * Initially we examine only the vma which covers this 3041 * rmap_item; but later, if there is still work to do, 3042 * we examine covering vmas in other mms: in case they 3043 * were forked from the original since ksmd passed. 3044 */ 3045 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 3046 continue; 3047 3048 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 3049 continue; 3050 3051 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) { 3052 anon_vma_unlock_read(anon_vma); 3053 return; 3054 } 3055 if (rwc->done && rwc->done(folio)) { 3056 anon_vma_unlock_read(anon_vma); 3057 return; 3058 } 3059 } 3060 anon_vma_unlock_read(anon_vma); 3061 } 3062 if (!search_new_forks++) 3063 goto again; 3064 } 3065 3066 #ifdef CONFIG_MEMORY_FAILURE 3067 /* 3068 * Collect processes when the error hit an ksm page. 3069 */ 3070 void collect_procs_ksm(const struct folio *folio, const struct page *page, 3071 struct list_head *to_kill, int force_early) 3072 { 3073 struct ksm_stable_node *stable_node; 3074 struct ksm_rmap_item *rmap_item; 3075 struct vm_area_struct *vma; 3076 struct task_struct *tsk; 3077 3078 stable_node = folio_stable_node(folio); 3079 if (!stable_node) 3080 return; 3081 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 3082 struct anon_vma *av = rmap_item->anon_vma; 3083 3084 anon_vma_lock_read(av); 3085 rcu_read_lock(); 3086 for_each_process(tsk) { 3087 struct anon_vma_chain *vmac; 3088 unsigned long addr; 3089 struct task_struct *t = 3090 task_early_kill(tsk, force_early); 3091 if (!t) 3092 continue; 3093 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0, 3094 ULONG_MAX) 3095 { 3096 vma = vmac->vma; 3097 if (vma->vm_mm == t->mm) { 3098 addr = rmap_item->address & PAGE_MASK; 3099 add_to_kill_ksm(t, page, vma, to_kill, 3100 addr); 3101 } 3102 } 3103 } 3104 rcu_read_unlock(); 3105 anon_vma_unlock_read(av); 3106 } 3107 } 3108 #endif 3109 3110 #ifdef CONFIG_MIGRATION 3111 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) 3112 { 3113 struct ksm_stable_node *stable_node; 3114 3115 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3116 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); 3117 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); 3118 3119 stable_node = folio_stable_node(folio); 3120 if (stable_node) { 3121 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); 3122 stable_node->kpfn = folio_pfn(newfolio); 3123 /* 3124 * newfolio->mapping was set in advance; now we need smp_wmb() 3125 * to make sure that the new stable_node->kpfn is visible 3126 * to ksm_get_folio() before it can see that folio->mapping 3127 * has gone stale (or that the swapcache flag has been cleared). 3128 */ 3129 smp_wmb(); 3130 folio_set_stable_node(folio, NULL); 3131 } 3132 } 3133 #endif /* CONFIG_MIGRATION */ 3134 3135 #ifdef CONFIG_MEMORY_HOTREMOVE 3136 static void wait_while_offlining(void) 3137 { 3138 while (ksm_run & KSM_RUN_OFFLINE) { 3139 mutex_unlock(&ksm_thread_mutex); 3140 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 3141 TASK_UNINTERRUPTIBLE); 3142 mutex_lock(&ksm_thread_mutex); 3143 } 3144 } 3145 3146 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node, 3147 unsigned long start_pfn, 3148 unsigned long end_pfn) 3149 { 3150 if (stable_node->kpfn >= start_pfn && 3151 stable_node->kpfn < end_pfn) { 3152 /* 3153 * Don't ksm_get_folio, page has already gone: 3154 * which is why we keep kpfn instead of page* 3155 */ 3156 remove_node_from_stable_tree(stable_node); 3157 return true; 3158 } 3159 return false; 3160 } 3161 3162 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node, 3163 unsigned long start_pfn, 3164 unsigned long end_pfn, 3165 struct rb_root *root) 3166 { 3167 struct ksm_stable_node *dup; 3168 struct hlist_node *hlist_safe; 3169 3170 if (!is_stable_node_chain(stable_node)) { 3171 VM_BUG_ON(is_stable_node_dup(stable_node)); 3172 return stable_node_dup_remove_range(stable_node, start_pfn, 3173 end_pfn); 3174 } 3175 3176 hlist_for_each_entry_safe(dup, hlist_safe, 3177 &stable_node->hlist, hlist_dup) { 3178 VM_BUG_ON(!is_stable_node_dup(dup)); 3179 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 3180 } 3181 if (hlist_empty(&stable_node->hlist)) { 3182 free_stable_node_chain(stable_node, root); 3183 return true; /* notify caller that tree was rebalanced */ 3184 } else 3185 return false; 3186 } 3187 3188 static void ksm_check_stable_tree(unsigned long start_pfn, 3189 unsigned long end_pfn) 3190 { 3191 struct ksm_stable_node *stable_node, *next; 3192 struct rb_node *node; 3193 int nid; 3194 3195 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 3196 node = rb_first(root_stable_tree + nid); 3197 while (node) { 3198 stable_node = rb_entry(node, struct ksm_stable_node, node); 3199 if (stable_node_chain_remove_range(stable_node, 3200 start_pfn, end_pfn, 3201 root_stable_tree + 3202 nid)) 3203 node = rb_first(root_stable_tree + nid); 3204 else 3205 node = rb_next(node); 3206 cond_resched(); 3207 } 3208 } 3209 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 3210 if (stable_node->kpfn >= start_pfn && 3211 stable_node->kpfn < end_pfn) 3212 remove_node_from_stable_tree(stable_node); 3213 cond_resched(); 3214 } 3215 } 3216 3217 static int ksm_memory_callback(struct notifier_block *self, 3218 unsigned long action, void *arg) 3219 { 3220 struct memory_notify *mn = arg; 3221 3222 switch (action) { 3223 case MEM_GOING_OFFLINE: 3224 /* 3225 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 3226 * and remove_all_stable_nodes() while memory is going offline: 3227 * it is unsafe for them to touch the stable tree at this time. 3228 * But unmerge_ksm_pages(), rmap lookups and other entry points 3229 * which do not need the ksm_thread_mutex are all safe. 3230 */ 3231 mutex_lock(&ksm_thread_mutex); 3232 ksm_run |= KSM_RUN_OFFLINE; 3233 mutex_unlock(&ksm_thread_mutex); 3234 break; 3235 3236 case MEM_OFFLINE: 3237 /* 3238 * Most of the work is done by page migration; but there might 3239 * be a few stable_nodes left over, still pointing to struct 3240 * pages which have been offlined: prune those from the tree, 3241 * otherwise ksm_get_folio() might later try to access a 3242 * non-existent struct page. 3243 */ 3244 ksm_check_stable_tree(mn->start_pfn, 3245 mn->start_pfn + mn->nr_pages); 3246 fallthrough; 3247 case MEM_CANCEL_OFFLINE: 3248 mutex_lock(&ksm_thread_mutex); 3249 ksm_run &= ~KSM_RUN_OFFLINE; 3250 mutex_unlock(&ksm_thread_mutex); 3251 3252 smp_mb(); /* wake_up_bit advises this */ 3253 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 3254 break; 3255 } 3256 return NOTIFY_OK; 3257 } 3258 #else 3259 static void wait_while_offlining(void) 3260 { 3261 } 3262 #endif /* CONFIG_MEMORY_HOTREMOVE */ 3263 3264 #ifdef CONFIG_PROC_FS 3265 long ksm_process_profit(struct mm_struct *mm) 3266 { 3267 return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE - 3268 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item); 3269 } 3270 #endif /* CONFIG_PROC_FS */ 3271 3272 #ifdef CONFIG_SYSFS 3273 /* 3274 * This all compiles without CONFIG_SYSFS, but is a waste of space. 3275 */ 3276 3277 #define KSM_ATTR_RO(_name) \ 3278 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3279 #define KSM_ATTR(_name) \ 3280 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3281 3282 static ssize_t sleep_millisecs_show(struct kobject *kobj, 3283 struct kobj_attribute *attr, char *buf) 3284 { 3285 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 3286 } 3287 3288 static ssize_t sleep_millisecs_store(struct kobject *kobj, 3289 struct kobj_attribute *attr, 3290 const char *buf, size_t count) 3291 { 3292 unsigned int msecs; 3293 int err; 3294 3295 err = kstrtouint(buf, 10, &msecs); 3296 if (err) 3297 return -EINVAL; 3298 3299 ksm_thread_sleep_millisecs = msecs; 3300 wake_up_interruptible(&ksm_iter_wait); 3301 3302 return count; 3303 } 3304 KSM_ATTR(sleep_millisecs); 3305 3306 static ssize_t pages_to_scan_show(struct kobject *kobj, 3307 struct kobj_attribute *attr, char *buf) 3308 { 3309 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 3310 } 3311 3312 static ssize_t pages_to_scan_store(struct kobject *kobj, 3313 struct kobj_attribute *attr, 3314 const char *buf, size_t count) 3315 { 3316 unsigned int nr_pages; 3317 int err; 3318 3319 if (ksm_advisor != KSM_ADVISOR_NONE) 3320 return -EINVAL; 3321 3322 err = kstrtouint(buf, 10, &nr_pages); 3323 if (err) 3324 return -EINVAL; 3325 3326 ksm_thread_pages_to_scan = nr_pages; 3327 3328 return count; 3329 } 3330 KSM_ATTR(pages_to_scan); 3331 3332 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 3333 char *buf) 3334 { 3335 return sysfs_emit(buf, "%lu\n", ksm_run); 3336 } 3337 3338 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 3339 const char *buf, size_t count) 3340 { 3341 unsigned int flags; 3342 int err; 3343 3344 err = kstrtouint(buf, 10, &flags); 3345 if (err) 3346 return -EINVAL; 3347 if (flags > KSM_RUN_UNMERGE) 3348 return -EINVAL; 3349 3350 /* 3351 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 3352 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 3353 * breaking COW to free the pages_shared (but leaves mm_slots 3354 * on the list for when ksmd may be set running again). 3355 */ 3356 3357 mutex_lock(&ksm_thread_mutex); 3358 wait_while_offlining(); 3359 if (ksm_run != flags) { 3360 ksm_run = flags; 3361 if (flags & KSM_RUN_UNMERGE) { 3362 set_current_oom_origin(); 3363 err = unmerge_and_remove_all_rmap_items(); 3364 clear_current_oom_origin(); 3365 if (err) { 3366 ksm_run = KSM_RUN_STOP; 3367 count = err; 3368 } 3369 } 3370 } 3371 mutex_unlock(&ksm_thread_mutex); 3372 3373 if (flags & KSM_RUN_MERGE) 3374 wake_up_interruptible(&ksm_thread_wait); 3375 3376 return count; 3377 } 3378 KSM_ATTR(run); 3379 3380 #ifdef CONFIG_NUMA 3381 static ssize_t merge_across_nodes_show(struct kobject *kobj, 3382 struct kobj_attribute *attr, char *buf) 3383 { 3384 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 3385 } 3386 3387 static ssize_t merge_across_nodes_store(struct kobject *kobj, 3388 struct kobj_attribute *attr, 3389 const char *buf, size_t count) 3390 { 3391 int err; 3392 unsigned long knob; 3393 3394 err = kstrtoul(buf, 10, &knob); 3395 if (err) 3396 return err; 3397 if (knob > 1) 3398 return -EINVAL; 3399 3400 mutex_lock(&ksm_thread_mutex); 3401 wait_while_offlining(); 3402 if (ksm_merge_across_nodes != knob) { 3403 if (ksm_pages_shared || remove_all_stable_nodes()) 3404 err = -EBUSY; 3405 else if (root_stable_tree == one_stable_tree) { 3406 struct rb_root *buf; 3407 /* 3408 * This is the first time that we switch away from the 3409 * default of merging across nodes: must now allocate 3410 * a buffer to hold as many roots as may be needed. 3411 * Allocate stable and unstable together: 3412 * MAXSMP NODES_SHIFT 10 will use 16kB. 3413 */ 3414 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 3415 GFP_KERNEL); 3416 /* Let us assume that RB_ROOT is NULL is zero */ 3417 if (!buf) 3418 err = -ENOMEM; 3419 else { 3420 root_stable_tree = buf; 3421 root_unstable_tree = buf + nr_node_ids; 3422 /* Stable tree is empty but not the unstable */ 3423 root_unstable_tree[0] = one_unstable_tree[0]; 3424 } 3425 } 3426 if (!err) { 3427 ksm_merge_across_nodes = knob; 3428 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 3429 } 3430 } 3431 mutex_unlock(&ksm_thread_mutex); 3432 3433 return err ? err : count; 3434 } 3435 KSM_ATTR(merge_across_nodes); 3436 #endif 3437 3438 static ssize_t use_zero_pages_show(struct kobject *kobj, 3439 struct kobj_attribute *attr, char *buf) 3440 { 3441 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 3442 } 3443 static ssize_t use_zero_pages_store(struct kobject *kobj, 3444 struct kobj_attribute *attr, 3445 const char *buf, size_t count) 3446 { 3447 int err; 3448 bool value; 3449 3450 err = kstrtobool(buf, &value); 3451 if (err) 3452 return -EINVAL; 3453 3454 ksm_use_zero_pages = value; 3455 3456 return count; 3457 } 3458 KSM_ATTR(use_zero_pages); 3459 3460 static ssize_t max_page_sharing_show(struct kobject *kobj, 3461 struct kobj_attribute *attr, char *buf) 3462 { 3463 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3464 } 3465 3466 static ssize_t max_page_sharing_store(struct kobject *kobj, 3467 struct kobj_attribute *attr, 3468 const char *buf, size_t count) 3469 { 3470 int err; 3471 int knob; 3472 3473 err = kstrtoint(buf, 10, &knob); 3474 if (err) 3475 return err; 3476 /* 3477 * When a KSM page is created it is shared by 2 mappings. This 3478 * being a signed comparison, it implicitly verifies it's not 3479 * negative. 3480 */ 3481 if (knob < 2) 3482 return -EINVAL; 3483 3484 if (READ_ONCE(ksm_max_page_sharing) == knob) 3485 return count; 3486 3487 mutex_lock(&ksm_thread_mutex); 3488 wait_while_offlining(); 3489 if (ksm_max_page_sharing != knob) { 3490 if (ksm_pages_shared || remove_all_stable_nodes()) 3491 err = -EBUSY; 3492 else 3493 ksm_max_page_sharing = knob; 3494 } 3495 mutex_unlock(&ksm_thread_mutex); 3496 3497 return err ? err : count; 3498 } 3499 KSM_ATTR(max_page_sharing); 3500 3501 static ssize_t pages_scanned_show(struct kobject *kobj, 3502 struct kobj_attribute *attr, char *buf) 3503 { 3504 return sysfs_emit(buf, "%lu\n", ksm_pages_scanned); 3505 } 3506 KSM_ATTR_RO(pages_scanned); 3507 3508 static ssize_t pages_shared_show(struct kobject *kobj, 3509 struct kobj_attribute *attr, char *buf) 3510 { 3511 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3512 } 3513 KSM_ATTR_RO(pages_shared); 3514 3515 static ssize_t pages_sharing_show(struct kobject *kobj, 3516 struct kobj_attribute *attr, char *buf) 3517 { 3518 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3519 } 3520 KSM_ATTR_RO(pages_sharing); 3521 3522 static ssize_t pages_unshared_show(struct kobject *kobj, 3523 struct kobj_attribute *attr, char *buf) 3524 { 3525 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3526 } 3527 KSM_ATTR_RO(pages_unshared); 3528 3529 static ssize_t pages_volatile_show(struct kobject *kobj, 3530 struct kobj_attribute *attr, char *buf) 3531 { 3532 long ksm_pages_volatile; 3533 3534 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3535 - ksm_pages_sharing - ksm_pages_unshared; 3536 /* 3537 * It was not worth any locking to calculate that statistic, 3538 * but it might therefore sometimes be negative: conceal that. 3539 */ 3540 if (ksm_pages_volatile < 0) 3541 ksm_pages_volatile = 0; 3542 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3543 } 3544 KSM_ATTR_RO(pages_volatile); 3545 3546 static ssize_t pages_skipped_show(struct kobject *kobj, 3547 struct kobj_attribute *attr, char *buf) 3548 { 3549 return sysfs_emit(buf, "%lu\n", ksm_pages_skipped); 3550 } 3551 KSM_ATTR_RO(pages_skipped); 3552 3553 static ssize_t ksm_zero_pages_show(struct kobject *kobj, 3554 struct kobj_attribute *attr, char *buf) 3555 { 3556 return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages)); 3557 } 3558 KSM_ATTR_RO(ksm_zero_pages); 3559 3560 static ssize_t general_profit_show(struct kobject *kobj, 3561 struct kobj_attribute *attr, char *buf) 3562 { 3563 long general_profit; 3564 3565 general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE - 3566 ksm_rmap_items * sizeof(struct ksm_rmap_item); 3567 3568 return sysfs_emit(buf, "%ld\n", general_profit); 3569 } 3570 KSM_ATTR_RO(general_profit); 3571 3572 static ssize_t stable_node_dups_show(struct kobject *kobj, 3573 struct kobj_attribute *attr, char *buf) 3574 { 3575 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3576 } 3577 KSM_ATTR_RO(stable_node_dups); 3578 3579 static ssize_t stable_node_chains_show(struct kobject *kobj, 3580 struct kobj_attribute *attr, char *buf) 3581 { 3582 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3583 } 3584 KSM_ATTR_RO(stable_node_chains); 3585 3586 static ssize_t 3587 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3588 struct kobj_attribute *attr, 3589 char *buf) 3590 { 3591 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3592 } 3593 3594 static ssize_t 3595 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3596 struct kobj_attribute *attr, 3597 const char *buf, size_t count) 3598 { 3599 unsigned int msecs; 3600 int err; 3601 3602 err = kstrtouint(buf, 10, &msecs); 3603 if (err) 3604 return -EINVAL; 3605 3606 ksm_stable_node_chains_prune_millisecs = msecs; 3607 3608 return count; 3609 } 3610 KSM_ATTR(stable_node_chains_prune_millisecs); 3611 3612 static ssize_t full_scans_show(struct kobject *kobj, 3613 struct kobj_attribute *attr, char *buf) 3614 { 3615 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3616 } 3617 KSM_ATTR_RO(full_scans); 3618 3619 static ssize_t smart_scan_show(struct kobject *kobj, 3620 struct kobj_attribute *attr, char *buf) 3621 { 3622 return sysfs_emit(buf, "%u\n", ksm_smart_scan); 3623 } 3624 3625 static ssize_t smart_scan_store(struct kobject *kobj, 3626 struct kobj_attribute *attr, 3627 const char *buf, size_t count) 3628 { 3629 int err; 3630 bool value; 3631 3632 err = kstrtobool(buf, &value); 3633 if (err) 3634 return -EINVAL; 3635 3636 ksm_smart_scan = value; 3637 return count; 3638 } 3639 KSM_ATTR(smart_scan); 3640 3641 static ssize_t advisor_mode_show(struct kobject *kobj, 3642 struct kobj_attribute *attr, char *buf) 3643 { 3644 const char *output; 3645 3646 if (ksm_advisor == KSM_ADVISOR_NONE) 3647 output = "[none] scan-time"; 3648 else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) 3649 output = "none [scan-time]"; 3650 3651 return sysfs_emit(buf, "%s\n", output); 3652 } 3653 3654 static ssize_t advisor_mode_store(struct kobject *kobj, 3655 struct kobj_attribute *attr, const char *buf, 3656 size_t count) 3657 { 3658 enum ksm_advisor_type curr_advisor = ksm_advisor; 3659 3660 if (sysfs_streq("scan-time", buf)) 3661 ksm_advisor = KSM_ADVISOR_SCAN_TIME; 3662 else if (sysfs_streq("none", buf)) 3663 ksm_advisor = KSM_ADVISOR_NONE; 3664 else 3665 return -EINVAL; 3666 3667 /* Set advisor default values */ 3668 if (curr_advisor != ksm_advisor) 3669 set_advisor_defaults(); 3670 3671 return count; 3672 } 3673 KSM_ATTR(advisor_mode); 3674 3675 static ssize_t advisor_max_cpu_show(struct kobject *kobj, 3676 struct kobj_attribute *attr, char *buf) 3677 { 3678 return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu); 3679 } 3680 3681 static ssize_t advisor_max_cpu_store(struct kobject *kobj, 3682 struct kobj_attribute *attr, 3683 const char *buf, size_t count) 3684 { 3685 int err; 3686 unsigned long value; 3687 3688 err = kstrtoul(buf, 10, &value); 3689 if (err) 3690 return -EINVAL; 3691 3692 ksm_advisor_max_cpu = value; 3693 return count; 3694 } 3695 KSM_ATTR(advisor_max_cpu); 3696 3697 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj, 3698 struct kobj_attribute *attr, char *buf) 3699 { 3700 return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan); 3701 } 3702 3703 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj, 3704 struct kobj_attribute *attr, 3705 const char *buf, size_t count) 3706 { 3707 int err; 3708 unsigned long value; 3709 3710 err = kstrtoul(buf, 10, &value); 3711 if (err) 3712 return -EINVAL; 3713 3714 ksm_advisor_min_pages_to_scan = value; 3715 return count; 3716 } 3717 KSM_ATTR(advisor_min_pages_to_scan); 3718 3719 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj, 3720 struct kobj_attribute *attr, char *buf) 3721 { 3722 return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan); 3723 } 3724 3725 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj, 3726 struct kobj_attribute *attr, 3727 const char *buf, size_t count) 3728 { 3729 int err; 3730 unsigned long value; 3731 3732 err = kstrtoul(buf, 10, &value); 3733 if (err) 3734 return -EINVAL; 3735 3736 ksm_advisor_max_pages_to_scan = value; 3737 return count; 3738 } 3739 KSM_ATTR(advisor_max_pages_to_scan); 3740 3741 static ssize_t advisor_target_scan_time_show(struct kobject *kobj, 3742 struct kobj_attribute *attr, char *buf) 3743 { 3744 return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time); 3745 } 3746 3747 static ssize_t advisor_target_scan_time_store(struct kobject *kobj, 3748 struct kobj_attribute *attr, 3749 const char *buf, size_t count) 3750 { 3751 int err; 3752 unsigned long value; 3753 3754 err = kstrtoul(buf, 10, &value); 3755 if (err) 3756 return -EINVAL; 3757 if (value < 1) 3758 return -EINVAL; 3759 3760 ksm_advisor_target_scan_time = value; 3761 return count; 3762 } 3763 KSM_ATTR(advisor_target_scan_time); 3764 3765 static struct attribute *ksm_attrs[] = { 3766 &sleep_millisecs_attr.attr, 3767 &pages_to_scan_attr.attr, 3768 &run_attr.attr, 3769 &pages_scanned_attr.attr, 3770 &pages_shared_attr.attr, 3771 &pages_sharing_attr.attr, 3772 &pages_unshared_attr.attr, 3773 &pages_volatile_attr.attr, 3774 &pages_skipped_attr.attr, 3775 &ksm_zero_pages_attr.attr, 3776 &full_scans_attr.attr, 3777 #ifdef CONFIG_NUMA 3778 &merge_across_nodes_attr.attr, 3779 #endif 3780 &max_page_sharing_attr.attr, 3781 &stable_node_chains_attr.attr, 3782 &stable_node_dups_attr.attr, 3783 &stable_node_chains_prune_millisecs_attr.attr, 3784 &use_zero_pages_attr.attr, 3785 &general_profit_attr.attr, 3786 &smart_scan_attr.attr, 3787 &advisor_mode_attr.attr, 3788 &advisor_max_cpu_attr.attr, 3789 &advisor_min_pages_to_scan_attr.attr, 3790 &advisor_max_pages_to_scan_attr.attr, 3791 &advisor_target_scan_time_attr.attr, 3792 NULL, 3793 }; 3794 3795 static const struct attribute_group ksm_attr_group = { 3796 .attrs = ksm_attrs, 3797 .name = "ksm", 3798 }; 3799 #endif /* CONFIG_SYSFS */ 3800 3801 static int __init ksm_init(void) 3802 { 3803 struct task_struct *ksm_thread; 3804 int err; 3805 3806 /* The correct value depends on page size and endianness */ 3807 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3808 /* Default to false for backwards compatibility */ 3809 ksm_use_zero_pages = false; 3810 3811 err = ksm_slab_init(); 3812 if (err) 3813 goto out; 3814 3815 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3816 if (IS_ERR(ksm_thread)) { 3817 pr_err("ksm: creating kthread failed\n"); 3818 err = PTR_ERR(ksm_thread); 3819 goto out_free; 3820 } 3821 3822 #ifdef CONFIG_SYSFS 3823 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3824 if (err) { 3825 pr_err("ksm: register sysfs failed\n"); 3826 kthread_stop(ksm_thread); 3827 goto out_free; 3828 } 3829 #else 3830 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3831 3832 #endif /* CONFIG_SYSFS */ 3833 3834 #ifdef CONFIG_MEMORY_HOTREMOVE 3835 /* There is no significance to this priority 100 */ 3836 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI); 3837 #endif 3838 return 0; 3839 3840 out_free: 3841 ksm_slab_free(); 3842 out: 3843 return err; 3844 } 3845 subsys_initcall(ksm_init); 3846