1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_lib.h"
6 #include "ice_trace.h"
7 #include "ice_cgu_regs.h"
8
9 static const char ice_pin_names[][64] = {
10 "SDP0",
11 "SDP1",
12 "SDP2",
13 "SDP3",
14 "TIME_SYNC",
15 "1PPS"
16 };
17
18 static const struct ice_ptp_pin_desc ice_pin_desc_e82x[] = {
19 /* name, gpio */
20 { TIME_SYNC, { 4, -1 }},
21 { ONE_PPS, { -1, 5 }},
22 };
23
24 static const struct ice_ptp_pin_desc ice_pin_desc_e825c[] = {
25 /* name, gpio */
26 { SDP0, { 0, 0 }},
27 { SDP1, { 1, 1 }},
28 { SDP2, { 2, 2 }},
29 { SDP3, { 3, 3 }},
30 { TIME_SYNC, { 4, -1 }},
31 { ONE_PPS, { -1, 5 }},
32 };
33
34 static const struct ice_ptp_pin_desc ice_pin_desc_e810[] = {
35 /* name, gpio */
36 { SDP0, { 0, 0 }},
37 { SDP1, { 1, 1 }},
38 { SDP2, { 2, 2 }},
39 { SDP3, { 3, 3 }},
40 { ONE_PPS, { -1, 5 }},
41 };
42
43 static const char ice_pin_names_nvm[][64] = {
44 "GNSS",
45 "SMA1",
46 "U.FL1",
47 "SMA2",
48 "U.FL2",
49 };
50
51 static const struct ice_ptp_pin_desc ice_pin_desc_e810_sma[] = {
52 /* name, gpio */
53 { GNSS, { 1, -1 }},
54 { SMA1, { 1, 0 }},
55 { UFL1, { -1, 0 }},
56 { SMA2, { 3, 2 }},
57 { UFL2, { 3, -1 }},
58 };
59
ice_get_ctrl_pf(struct ice_pf * pf)60 static struct ice_pf *ice_get_ctrl_pf(struct ice_pf *pf)
61 {
62 return !pf->adapter ? NULL : pf->adapter->ctrl_pf;
63 }
64
ice_get_ctrl_ptp(struct ice_pf * pf)65 static struct ice_ptp *ice_get_ctrl_ptp(struct ice_pf *pf)
66 {
67 struct ice_pf *ctrl_pf = ice_get_ctrl_pf(pf);
68
69 return !ctrl_pf ? NULL : &ctrl_pf->ptp;
70 }
71
72 /**
73 * ice_ptp_find_pin_idx - Find pin index in ptp_pin_desc
74 * @pf: Board private structure
75 * @func: Pin function
76 * @chan: GPIO channel
77 *
78 * Return: positive pin number when pin is present, -1 otherwise
79 */
ice_ptp_find_pin_idx(struct ice_pf * pf,enum ptp_pin_function func,unsigned int chan)80 static int ice_ptp_find_pin_idx(struct ice_pf *pf, enum ptp_pin_function func,
81 unsigned int chan)
82 {
83 const struct ptp_clock_info *info = &pf->ptp.info;
84 int i;
85
86 for (i = 0; i < info->n_pins; i++) {
87 if (info->pin_config[i].func == func &&
88 info->pin_config[i].chan == chan)
89 return i;
90 }
91
92 return -1;
93 }
94
95 /**
96 * ice_ptp_update_sma_data - update SMA pins data according to pins setup
97 * @pf: Board private structure
98 * @sma_pins: parsed SMA pins status
99 * @data: SMA data to update
100 */
ice_ptp_update_sma_data(struct ice_pf * pf,unsigned int sma_pins[],u8 * data)101 static void ice_ptp_update_sma_data(struct ice_pf *pf, unsigned int sma_pins[],
102 u8 *data)
103 {
104 const char *state1, *state2;
105
106 /* Set the right state based on the desired configuration.
107 * When bit is set, functionality is disabled.
108 */
109 *data &= ~ICE_ALL_SMA_MASK;
110 if (!sma_pins[UFL1 - 1]) {
111 if (sma_pins[SMA1 - 1] == PTP_PF_EXTTS) {
112 state1 = "SMA1 Rx, U.FL1 disabled";
113 *data |= ICE_SMA1_TX_EN;
114 } else if (sma_pins[SMA1 - 1] == PTP_PF_PEROUT) {
115 state1 = "SMA1 Tx U.FL1 disabled";
116 *data |= ICE_SMA1_DIR_EN;
117 } else {
118 state1 = "SMA1 disabled, U.FL1 disabled";
119 *data |= ICE_SMA1_MASK;
120 }
121 } else {
122 /* U.FL1 Tx will always enable SMA1 Rx */
123 state1 = "SMA1 Rx, U.FL1 Tx";
124 }
125
126 if (!sma_pins[UFL2 - 1]) {
127 if (sma_pins[SMA2 - 1] == PTP_PF_EXTTS) {
128 state2 = "SMA2 Rx, U.FL2 disabled";
129 *data |= ICE_SMA2_TX_EN | ICE_SMA2_UFL2_RX_DIS;
130 } else if (sma_pins[SMA2 - 1] == PTP_PF_PEROUT) {
131 state2 = "SMA2 Tx, U.FL2 disabled";
132 *data |= ICE_SMA2_DIR_EN | ICE_SMA2_UFL2_RX_DIS;
133 } else {
134 state2 = "SMA2 disabled, U.FL2 disabled";
135 *data |= ICE_SMA2_MASK;
136 }
137 } else {
138 if (!sma_pins[SMA2 - 1]) {
139 state2 = "SMA2 disabled, U.FL2 Rx";
140 *data |= ICE_SMA2_DIR_EN | ICE_SMA2_TX_EN;
141 } else {
142 state2 = "SMA2 Tx, U.FL2 Rx";
143 *data |= ICE_SMA2_DIR_EN;
144 }
145 }
146
147 dev_dbg(ice_pf_to_dev(pf), "%s, %s\n", state1, state2);
148 }
149
150 /**
151 * ice_ptp_set_sma_cfg - set the configuration of the SMA control logic
152 * @pf: Board private structure
153 *
154 * Return: 0 on success, negative error code otherwise
155 */
ice_ptp_set_sma_cfg(struct ice_pf * pf)156 static int ice_ptp_set_sma_cfg(struct ice_pf *pf)
157 {
158 const struct ice_ptp_pin_desc *ice_pins = pf->ptp.ice_pin_desc;
159 struct ptp_pin_desc *pins = pf->ptp.pin_desc;
160 unsigned int sma_pins[ICE_SMA_PINS_NUM] = {};
161 int err;
162 u8 data;
163
164 /* Read initial pin state value */
165 err = ice_read_sma_ctrl(&pf->hw, &data);
166 if (err)
167 return err;
168
169 /* Get SMA/U.FL pins states */
170 for (int i = 0; i < pf->ptp.info.n_pins; i++)
171 if (pins[i].func) {
172 int name_idx = ice_pins[i].name_idx;
173
174 switch (name_idx) {
175 case SMA1:
176 case UFL1:
177 case SMA2:
178 case UFL2:
179 sma_pins[name_idx - 1] = pins[i].func;
180 break;
181 default:
182 continue;
183 }
184 }
185
186 ice_ptp_update_sma_data(pf, sma_pins, &data);
187 return ice_write_sma_ctrl(&pf->hw, data);
188 }
189
190 /**
191 * ice_ptp_cfg_tx_interrupt - Configure Tx timestamp interrupt for the device
192 * @pf: Board private structure
193 *
194 * Program the device to respond appropriately to the Tx timestamp interrupt
195 * cause.
196 */
ice_ptp_cfg_tx_interrupt(struct ice_pf * pf)197 static void ice_ptp_cfg_tx_interrupt(struct ice_pf *pf)
198 {
199 struct ice_hw *hw = &pf->hw;
200 bool enable;
201 u32 val;
202
203 switch (pf->ptp.tx_interrupt_mode) {
204 case ICE_PTP_TX_INTERRUPT_ALL:
205 /* React to interrupts across all quads. */
206 wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x1f);
207 enable = true;
208 break;
209 case ICE_PTP_TX_INTERRUPT_NONE:
210 /* Do not react to interrupts on any quad. */
211 wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x0);
212 enable = false;
213 break;
214 case ICE_PTP_TX_INTERRUPT_SELF:
215 default:
216 enable = pf->ptp.tstamp_config.tx_type == HWTSTAMP_TX_ON;
217 break;
218 }
219
220 /* Configure the Tx timestamp interrupt */
221 val = rd32(hw, PFINT_OICR_ENA);
222 if (enable)
223 val |= PFINT_OICR_TSYN_TX_M;
224 else
225 val &= ~PFINT_OICR_TSYN_TX_M;
226 wr32(hw, PFINT_OICR_ENA, val);
227 }
228
229 /**
230 * ice_set_rx_tstamp - Enable or disable Rx timestamping
231 * @pf: The PF pointer to search in
232 * @on: bool value for whether timestamps are enabled or disabled
233 */
ice_set_rx_tstamp(struct ice_pf * pf,bool on)234 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
235 {
236 struct ice_vsi *vsi;
237 u16 i;
238
239 vsi = ice_get_main_vsi(pf);
240 if (!vsi || !vsi->rx_rings)
241 return;
242
243 /* Set the timestamp flag for all the Rx rings */
244 ice_for_each_rxq(vsi, i) {
245 if (!vsi->rx_rings[i])
246 continue;
247 vsi->rx_rings[i]->ptp_rx = on;
248 }
249 }
250
251 /**
252 * ice_ptp_disable_timestamp_mode - Disable current timestamp mode
253 * @pf: Board private structure
254 *
255 * Called during preparation for reset to temporarily disable timestamping on
256 * the device. Called during remove to disable timestamping while cleaning up
257 * driver resources.
258 */
ice_ptp_disable_timestamp_mode(struct ice_pf * pf)259 static void ice_ptp_disable_timestamp_mode(struct ice_pf *pf)
260 {
261 struct ice_hw *hw = &pf->hw;
262 u32 val;
263
264 val = rd32(hw, PFINT_OICR_ENA);
265 val &= ~PFINT_OICR_TSYN_TX_M;
266 wr32(hw, PFINT_OICR_ENA, val);
267
268 ice_set_rx_tstamp(pf, false);
269 }
270
271 /**
272 * ice_ptp_restore_timestamp_mode - Restore timestamp configuration
273 * @pf: Board private structure
274 *
275 * Called at the end of rebuild to restore timestamp configuration after
276 * a device reset.
277 */
ice_ptp_restore_timestamp_mode(struct ice_pf * pf)278 void ice_ptp_restore_timestamp_mode(struct ice_pf *pf)
279 {
280 struct ice_hw *hw = &pf->hw;
281 bool enable_rx;
282
283 ice_ptp_cfg_tx_interrupt(pf);
284
285 enable_rx = pf->ptp.tstamp_config.rx_filter == HWTSTAMP_FILTER_ALL;
286 ice_set_rx_tstamp(pf, enable_rx);
287
288 /* Trigger an immediate software interrupt to ensure that timestamps
289 * which occurred during reset are handled now.
290 */
291 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
292 ice_flush(hw);
293 }
294
295 /**
296 * ice_ptp_read_src_clk_reg - Read the source clock register
297 * @pf: Board private structure
298 * @sts: Optional parameter for holding a pair of system timestamps from
299 * the system clock. Will be ignored if NULL is given.
300 */
301 static u64
ice_ptp_read_src_clk_reg(struct ice_pf * pf,struct ptp_system_timestamp * sts)302 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
303 {
304 struct ice_hw *hw = &pf->hw;
305 u32 hi, lo, lo2;
306 u8 tmr_idx;
307
308 tmr_idx = ice_get_ptp_src_clock_index(hw);
309 guard(spinlock)(&pf->adapter->ptp_gltsyn_time_lock);
310 /* Read the system timestamp pre PHC read */
311 ptp_read_system_prets(sts);
312
313 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
314
315 /* Read the system timestamp post PHC read */
316 ptp_read_system_postts(sts);
317
318 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
319 lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
320
321 if (lo2 < lo) {
322 /* if TIME_L rolled over read TIME_L again and update
323 * system timestamps
324 */
325 ptp_read_system_prets(sts);
326 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
327 ptp_read_system_postts(sts);
328 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
329 }
330
331 return ((u64)hi << 32) | lo;
332 }
333
334 /**
335 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
336 * @cached_phc_time: recently cached copy of PHC time
337 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
338 *
339 * Hardware captures timestamps which contain only 32 bits of nominal
340 * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
341 * Note that the captured timestamp values may be 40 bits, but the lower
342 * 8 bits are sub-nanoseconds and generally discarded.
343 *
344 * Extend the 32bit nanosecond timestamp using the following algorithm and
345 * assumptions:
346 *
347 * 1) have a recently cached copy of the PHC time
348 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
349 * seconds) before or after the PHC time was captured.
350 * 3) calculate the delta between the cached time and the timestamp
351 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
352 * captured after the PHC time. In this case, the full timestamp is just
353 * the cached PHC time plus the delta.
354 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
355 * timestamp was captured *before* the PHC time, i.e. because the PHC
356 * cache was updated after the timestamp was captured by hardware. In this
357 * case, the full timestamp is the cached time minus the inverse delta.
358 *
359 * This algorithm works even if the PHC time was updated after a Tx timestamp
360 * was requested, but before the Tx timestamp event was reported from
361 * hardware.
362 *
363 * This calculation primarily relies on keeping the cached PHC time up to
364 * date. If the timestamp was captured more than 2^31 nanoseconds after the
365 * PHC time, it is possible that the lower 32bits of PHC time have
366 * overflowed more than once, and we might generate an incorrect timestamp.
367 *
368 * This is prevented by (a) periodically updating the cached PHC time once
369 * a second, and (b) discarding any Tx timestamp packet if it has waited for
370 * a timestamp for more than one second.
371 */
ice_ptp_extend_32b_ts(u64 cached_phc_time,u32 in_tstamp)372 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
373 {
374 u32 delta, phc_time_lo;
375 u64 ns;
376
377 /* Extract the lower 32 bits of the PHC time */
378 phc_time_lo = (u32)cached_phc_time;
379
380 /* Calculate the delta between the lower 32bits of the cached PHC
381 * time and the in_tstamp value
382 */
383 delta = (in_tstamp - phc_time_lo);
384
385 /* Do not assume that the in_tstamp is always more recent than the
386 * cached PHC time. If the delta is large, it indicates that the
387 * in_tstamp was taken in the past, and should be converted
388 * forward.
389 */
390 if (delta > (U32_MAX / 2)) {
391 /* reverse the delta calculation here */
392 delta = (phc_time_lo - in_tstamp);
393 ns = cached_phc_time - delta;
394 } else {
395 ns = cached_phc_time + delta;
396 }
397
398 return ns;
399 }
400
401 /**
402 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
403 * @pf: Board private structure
404 * @in_tstamp: Ingress/egress 40b timestamp value
405 *
406 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
407 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
408 *
409 * *--------------------------------------------------------------*
410 * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
411 * *--------------------------------------------------------------*
412 *
413 * The low bit is an indicator of whether the timestamp is valid. The next
414 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
415 * and the remaining 32 bits are the lower 32 bits of the PHC timer.
416 *
417 * It is assumed that the caller verifies the timestamp is valid prior to
418 * calling this function.
419 *
420 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
421 * time stored in the device private PTP structure as the basis for timestamp
422 * extension.
423 *
424 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
425 * algorithm.
426 */
ice_ptp_extend_40b_ts(struct ice_pf * pf,u64 in_tstamp)427 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
428 {
429 const u64 mask = GENMASK_ULL(31, 0);
430 unsigned long discard_time;
431
432 /* Discard the hardware timestamp if the cached PHC time is too old */
433 discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
434 if (time_is_before_jiffies(discard_time)) {
435 pf->ptp.tx_hwtstamp_discarded++;
436 return 0;
437 }
438
439 return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
440 (in_tstamp >> 8) & mask);
441 }
442
443 /**
444 * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps
445 * @tx: the PTP Tx timestamp tracker to check
446 *
447 * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready
448 * to accept new timestamp requests.
449 *
450 * Assumes the tx->lock spinlock is already held.
451 */
452 static bool
ice_ptp_is_tx_tracker_up(struct ice_ptp_tx * tx)453 ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx)
454 {
455 lockdep_assert_held(&tx->lock);
456
457 return tx->init && !tx->calibrating;
458 }
459
460 /**
461 * ice_ptp_req_tx_single_tstamp - Request Tx timestamp for a port from FW
462 * @tx: the PTP Tx timestamp tracker
463 * @idx: index of the timestamp to request
464 */
ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx * tx,u8 idx)465 void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx)
466 {
467 struct ice_ptp_port *ptp_port;
468 struct sk_buff *skb;
469 struct ice_pf *pf;
470
471 if (!tx->init)
472 return;
473
474 ptp_port = container_of(tx, struct ice_ptp_port, tx);
475 pf = ptp_port_to_pf(ptp_port);
476
477 /* Drop packets which have waited for more than 2 seconds */
478 if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
479 /* Count the number of Tx timestamps that timed out */
480 pf->ptp.tx_hwtstamp_timeouts++;
481
482 skb = tx->tstamps[idx].skb;
483 tx->tstamps[idx].skb = NULL;
484 clear_bit(idx, tx->in_use);
485
486 dev_kfree_skb_any(skb);
487 return;
488 }
489
490 ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
491
492 /* Write TS index to read to the PF register so the FW can read it */
493 wr32(&pf->hw, PF_SB_ATQBAL,
494 TS_LL_READ_TS_INTR | FIELD_PREP(TS_LL_READ_TS_IDX, idx) |
495 TS_LL_READ_TS);
496 tx->last_ll_ts_idx_read = idx;
497 }
498
499 /**
500 * ice_ptp_complete_tx_single_tstamp - Complete Tx timestamp for a port
501 * @tx: the PTP Tx timestamp tracker
502 */
ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx * tx)503 void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx)
504 {
505 struct skb_shared_hwtstamps shhwtstamps = {};
506 u8 idx = tx->last_ll_ts_idx_read;
507 struct ice_ptp_port *ptp_port;
508 u64 raw_tstamp, tstamp;
509 bool drop_ts = false;
510 struct sk_buff *skb;
511 struct ice_pf *pf;
512 u32 val;
513
514 if (!tx->init || tx->last_ll_ts_idx_read < 0)
515 return;
516
517 ptp_port = container_of(tx, struct ice_ptp_port, tx);
518 pf = ptp_port_to_pf(ptp_port);
519
520 ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
521
522 val = rd32(&pf->hw, PF_SB_ATQBAL);
523
524 /* When the bit is cleared, the TS is ready in the register */
525 if (val & TS_LL_READ_TS) {
526 dev_err(ice_pf_to_dev(pf), "Failed to get the Tx tstamp - FW not ready");
527 return;
528 }
529
530 /* High 8 bit value of the TS is on the bits 16:23 */
531 raw_tstamp = FIELD_GET(TS_LL_READ_TS_HIGH, val);
532 raw_tstamp <<= 32;
533
534 /* Read the low 32 bit value */
535 raw_tstamp |= (u64)rd32(&pf->hw, PF_SB_ATQBAH);
536
537 /* Devices using this interface always verify the timestamp differs
538 * relative to the last cached timestamp value.
539 */
540 if (raw_tstamp == tx->tstamps[idx].cached_tstamp)
541 return;
542
543 tx->tstamps[idx].cached_tstamp = raw_tstamp;
544 clear_bit(idx, tx->in_use);
545 skb = tx->tstamps[idx].skb;
546 tx->tstamps[idx].skb = NULL;
547 if (test_and_clear_bit(idx, tx->stale))
548 drop_ts = true;
549
550 if (!skb)
551 return;
552
553 if (drop_ts) {
554 dev_kfree_skb_any(skb);
555 return;
556 }
557
558 /* Extend the timestamp using cached PHC time */
559 tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
560 if (tstamp) {
561 shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
562 ice_trace(tx_tstamp_complete, skb, idx);
563 }
564
565 skb_tstamp_tx(skb, &shhwtstamps);
566 dev_kfree_skb_any(skb);
567 }
568
569 /**
570 * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port
571 * @tx: the PTP Tx timestamp tracker
572 *
573 * Process timestamps captured by the PHY associated with this port. To do
574 * this, loop over each index with a waiting skb.
575 *
576 * If a given index has a valid timestamp, perform the following steps:
577 *
578 * 1) check that the timestamp request is not stale
579 * 2) check that a timestamp is ready and available in the PHY memory bank
580 * 3) read and copy the timestamp out of the PHY register
581 * 4) unlock the index by clearing the associated in_use bit
582 * 5) check if the timestamp is stale, and discard if so
583 * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value
584 * 7) send this 64 bit timestamp to the stack
585 *
586 * Note that we do not hold the tracking lock while reading the Tx timestamp.
587 * This is because reading the timestamp requires taking a mutex that might
588 * sleep.
589 *
590 * The only place where we set in_use is when a new timestamp is initiated
591 * with a slot index. This is only called in the hard xmit routine where an
592 * SKB has a request flag set. The only places where we clear this bit is this
593 * function, or during teardown when the Tx timestamp tracker is being
594 * removed. A timestamp index will never be re-used until the in_use bit for
595 * that index is cleared.
596 *
597 * If a Tx thread starts a new timestamp, we might not begin processing it
598 * right away but we will notice it at the end when we re-queue the task.
599 *
600 * If a Tx thread starts a new timestamp just after this function exits, the
601 * interrupt for that timestamp should re-trigger this function once
602 * a timestamp is ready.
603 *
604 * In cases where the PTP hardware clock was directly adjusted, some
605 * timestamps may not be able to safely use the timestamp extension math. In
606 * this case, software will set the stale bit for any outstanding Tx
607 * timestamps when the clock is adjusted. Then this function will discard
608 * those captured timestamps instead of sending them to the stack.
609 *
610 * If a Tx packet has been waiting for more than 2 seconds, it is not possible
611 * to correctly extend the timestamp using the cached PHC time. It is
612 * extremely unlikely that a packet will ever take this long to timestamp. If
613 * we detect a Tx timestamp request that has waited for this long we assume
614 * the packet will never be sent by hardware and discard it without reading
615 * the timestamp register.
616 */
ice_ptp_process_tx_tstamp(struct ice_ptp_tx * tx)617 static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx)
618 {
619 struct ice_ptp_port *ptp_port;
620 unsigned long flags;
621 struct ice_pf *pf;
622 struct ice_hw *hw;
623 u64 tstamp_ready;
624 bool link_up;
625 int err;
626 u8 idx;
627
628 ptp_port = container_of(tx, struct ice_ptp_port, tx);
629 pf = ptp_port_to_pf(ptp_port);
630 hw = &pf->hw;
631
632 /* Read the Tx ready status first */
633 if (tx->has_ready_bitmap) {
634 err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
635 if (err)
636 return;
637 }
638
639 /* Drop packets if the link went down */
640 link_up = ptp_port->link_up;
641
642 for_each_set_bit(idx, tx->in_use, tx->len) {
643 struct skb_shared_hwtstamps shhwtstamps = {};
644 u8 phy_idx = idx + tx->offset;
645 u64 raw_tstamp = 0, tstamp;
646 bool drop_ts = !link_up;
647 struct sk_buff *skb;
648
649 /* Drop packets which have waited for more than 2 seconds */
650 if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
651 drop_ts = true;
652
653 /* Count the number of Tx timestamps that timed out */
654 pf->ptp.tx_hwtstamp_timeouts++;
655 }
656
657 /* Only read a timestamp from the PHY if its marked as ready
658 * by the tstamp_ready register. This avoids unnecessary
659 * reading of timestamps which are not yet valid. This is
660 * important as we must read all timestamps which are valid
661 * and only timestamps which are valid during each interrupt.
662 * If we do not, the hardware logic for generating a new
663 * interrupt can get stuck on some devices.
664 */
665 if (tx->has_ready_bitmap &&
666 !(tstamp_ready & BIT_ULL(phy_idx))) {
667 if (drop_ts)
668 goto skip_ts_read;
669
670 continue;
671 }
672
673 ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
674
675 err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp);
676 if (err && !drop_ts)
677 continue;
678
679 ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
680
681 /* For PHYs which don't implement a proper timestamp ready
682 * bitmap, verify that the timestamp value is different
683 * from the last cached timestamp. If it is not, skip this for
684 * now assuming it hasn't yet been captured by hardware.
685 */
686 if (!drop_ts && !tx->has_ready_bitmap &&
687 raw_tstamp == tx->tstamps[idx].cached_tstamp)
688 continue;
689
690 /* Discard any timestamp value without the valid bit set */
691 if (!(raw_tstamp & ICE_PTP_TS_VALID))
692 drop_ts = true;
693
694 skip_ts_read:
695 spin_lock_irqsave(&tx->lock, flags);
696 if (!tx->has_ready_bitmap && raw_tstamp)
697 tx->tstamps[idx].cached_tstamp = raw_tstamp;
698 clear_bit(idx, tx->in_use);
699 skb = tx->tstamps[idx].skb;
700 tx->tstamps[idx].skb = NULL;
701 if (test_and_clear_bit(idx, tx->stale))
702 drop_ts = true;
703 spin_unlock_irqrestore(&tx->lock, flags);
704
705 /* It is unlikely but possible that the SKB will have been
706 * flushed at this point due to link change or teardown.
707 */
708 if (!skb)
709 continue;
710
711 if (drop_ts) {
712 dev_kfree_skb_any(skb);
713 continue;
714 }
715
716 /* Extend the timestamp using cached PHC time */
717 tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
718 if (tstamp) {
719 shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
720 ice_trace(tx_tstamp_complete, skb, idx);
721 }
722
723 skb_tstamp_tx(skb, &shhwtstamps);
724 dev_kfree_skb_any(skb);
725 }
726 }
727
728 /**
729 * ice_ptp_tx_tstamp_owner - Process Tx timestamps for all ports on the device
730 * @pf: Board private structure
731 */
ice_ptp_tx_tstamp_owner(struct ice_pf * pf)732 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp_owner(struct ice_pf *pf)
733 {
734 struct ice_ptp_port *port;
735 unsigned int i;
736
737 mutex_lock(&pf->adapter->ports.lock);
738 list_for_each_entry(port, &pf->adapter->ports.ports, list_node) {
739 struct ice_ptp_tx *tx = &port->tx;
740
741 if (!tx || !tx->init)
742 continue;
743
744 ice_ptp_process_tx_tstamp(tx);
745 }
746 mutex_unlock(&pf->adapter->ports.lock);
747
748 for (i = 0; i < ICE_GET_QUAD_NUM(pf->hw.ptp.num_lports); i++) {
749 u64 tstamp_ready;
750 int err;
751
752 /* Read the Tx ready status first */
753 err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
754 if (err)
755 break;
756 else if (tstamp_ready)
757 return ICE_TX_TSTAMP_WORK_PENDING;
758 }
759
760 return ICE_TX_TSTAMP_WORK_DONE;
761 }
762
763 /**
764 * ice_ptp_tx_tstamp - Process Tx timestamps for this function.
765 * @tx: Tx tracking structure to initialize
766 *
767 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete
768 * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise.
769 */
ice_ptp_tx_tstamp(struct ice_ptp_tx * tx)770 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
771 {
772 bool more_timestamps;
773 unsigned long flags;
774
775 if (!tx->init)
776 return ICE_TX_TSTAMP_WORK_DONE;
777
778 /* Process the Tx timestamp tracker */
779 ice_ptp_process_tx_tstamp(tx);
780
781 /* Check if there are outstanding Tx timestamps */
782 spin_lock_irqsave(&tx->lock, flags);
783 more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
784 spin_unlock_irqrestore(&tx->lock, flags);
785
786 if (more_timestamps)
787 return ICE_TX_TSTAMP_WORK_PENDING;
788
789 return ICE_TX_TSTAMP_WORK_DONE;
790 }
791
792 /**
793 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
794 * @tx: Tx tracking structure to initialize
795 *
796 * Assumes that the length has already been initialized. Do not call directly,
797 * use the ice_ptp_init_tx_* instead.
798 */
799 static int
ice_ptp_alloc_tx_tracker(struct ice_ptp_tx * tx)800 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
801 {
802 unsigned long *in_use, *stale;
803 struct ice_tx_tstamp *tstamps;
804
805 tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL);
806 in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
807 stale = bitmap_zalloc(tx->len, GFP_KERNEL);
808
809 if (!tstamps || !in_use || !stale) {
810 kfree(tstamps);
811 bitmap_free(in_use);
812 bitmap_free(stale);
813
814 return -ENOMEM;
815 }
816
817 tx->tstamps = tstamps;
818 tx->in_use = in_use;
819 tx->stale = stale;
820 tx->init = 1;
821 tx->last_ll_ts_idx_read = -1;
822
823 spin_lock_init(&tx->lock);
824
825 return 0;
826 }
827
828 /**
829 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
830 * @pf: Board private structure
831 * @tx: the tracker to flush
832 *
833 * Called during teardown when a Tx tracker is being removed.
834 */
835 static void
ice_ptp_flush_tx_tracker(struct ice_pf * pf,struct ice_ptp_tx * tx)836 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
837 {
838 struct ice_hw *hw = &pf->hw;
839 unsigned long flags;
840 u64 tstamp_ready;
841 int err;
842 u8 idx;
843
844 err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
845 if (err) {
846 dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n",
847 tx->block, err);
848
849 /* If we fail to read the Tx timestamp ready bitmap just
850 * skip clearing the PHY timestamps.
851 */
852 tstamp_ready = 0;
853 }
854
855 for_each_set_bit(idx, tx->in_use, tx->len) {
856 u8 phy_idx = idx + tx->offset;
857 struct sk_buff *skb;
858
859 /* In case this timestamp is ready, we need to clear it. */
860 if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx)))
861 ice_clear_phy_tstamp(hw, tx->block, phy_idx);
862
863 spin_lock_irqsave(&tx->lock, flags);
864 skb = tx->tstamps[idx].skb;
865 tx->tstamps[idx].skb = NULL;
866 clear_bit(idx, tx->in_use);
867 clear_bit(idx, tx->stale);
868 spin_unlock_irqrestore(&tx->lock, flags);
869
870 /* Count the number of Tx timestamps flushed */
871 pf->ptp.tx_hwtstamp_flushed++;
872
873 /* Free the SKB after we've cleared the bit */
874 dev_kfree_skb_any(skb);
875 }
876 }
877
878 /**
879 * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale
880 * @tx: the tracker to mark
881 *
882 * Mark currently outstanding Tx timestamps as stale. This prevents sending
883 * their timestamp value to the stack. This is required to prevent extending
884 * the 40bit hardware timestamp incorrectly.
885 *
886 * This should be called when the PTP clock is modified such as after a set
887 * time request.
888 */
889 static void
ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx * tx)890 ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx)
891 {
892 unsigned long flags;
893
894 spin_lock_irqsave(&tx->lock, flags);
895 bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len);
896 spin_unlock_irqrestore(&tx->lock, flags);
897 }
898
899 /**
900 * ice_ptp_flush_all_tx_tracker - Flush all timestamp trackers on this clock
901 * @pf: Board private structure
902 *
903 * Called by the clock owner to flush all the Tx timestamp trackers associated
904 * with the clock.
905 */
906 static void
ice_ptp_flush_all_tx_tracker(struct ice_pf * pf)907 ice_ptp_flush_all_tx_tracker(struct ice_pf *pf)
908 {
909 struct ice_ptp_port *port;
910
911 list_for_each_entry(port, &pf->adapter->ports.ports, list_node)
912 ice_ptp_flush_tx_tracker(ptp_port_to_pf(port), &port->tx);
913 }
914
915 /**
916 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
917 * @pf: Board private structure
918 * @tx: Tx tracking structure to release
919 *
920 * Free memory associated with the Tx timestamp tracker.
921 */
922 static void
ice_ptp_release_tx_tracker(struct ice_pf * pf,struct ice_ptp_tx * tx)923 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
924 {
925 unsigned long flags;
926
927 spin_lock_irqsave(&tx->lock, flags);
928 tx->init = 0;
929 spin_unlock_irqrestore(&tx->lock, flags);
930
931 /* wait for potentially outstanding interrupt to complete */
932 synchronize_irq(pf->oicr_irq.virq);
933
934 ice_ptp_flush_tx_tracker(pf, tx);
935
936 kfree(tx->tstamps);
937 tx->tstamps = NULL;
938
939 bitmap_free(tx->in_use);
940 tx->in_use = NULL;
941
942 bitmap_free(tx->stale);
943 tx->stale = NULL;
944
945 tx->len = 0;
946 }
947
948 /**
949 * ice_ptp_init_tx_eth56g - Initialize tracking for Tx timestamps
950 * @pf: Board private structure
951 * @tx: the Tx tracking structure to initialize
952 * @port: the port this structure tracks
953 *
954 * Initialize the Tx timestamp tracker for this port. ETH56G PHYs
955 * have independent memory blocks for all ports.
956 *
957 * Return: 0 for success, -ENOMEM when failed to allocate Tx tracker
958 */
ice_ptp_init_tx_eth56g(struct ice_pf * pf,struct ice_ptp_tx * tx,u8 port)959 static int ice_ptp_init_tx_eth56g(struct ice_pf *pf, struct ice_ptp_tx *tx,
960 u8 port)
961 {
962 tx->block = port;
963 tx->offset = 0;
964 tx->len = INDEX_PER_PORT_ETH56G;
965 tx->has_ready_bitmap = 1;
966
967 return ice_ptp_alloc_tx_tracker(tx);
968 }
969
970 /**
971 * ice_ptp_init_tx_e82x - Initialize tracking for Tx timestamps
972 * @pf: Board private structure
973 * @tx: the Tx tracking structure to initialize
974 * @port: the port this structure tracks
975 *
976 * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
977 * the timestamp block is shared for all ports in the same quad. To avoid
978 * ports using the same timestamp index, logically break the block of
979 * registers into chunks based on the port number.
980 */
981 static int
ice_ptp_init_tx_e82x(struct ice_pf * pf,struct ice_ptp_tx * tx,u8 port)982 ice_ptp_init_tx_e82x(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
983 {
984 tx->block = ICE_GET_QUAD_NUM(port);
985 tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E82X;
986 tx->len = INDEX_PER_PORT_E82X;
987 tx->has_ready_bitmap = 1;
988
989 return ice_ptp_alloc_tx_tracker(tx);
990 }
991
992 /**
993 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
994 * @pf: Board private structure
995 * @tx: the Tx tracking structure to initialize
996 *
997 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
998 * port has its own block of timestamps, independent of the other ports.
999 */
1000 static int
ice_ptp_init_tx_e810(struct ice_pf * pf,struct ice_ptp_tx * tx)1001 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
1002 {
1003 tx->block = pf->hw.port_info->lport;
1004 tx->offset = 0;
1005 tx->len = INDEX_PER_PORT_E810;
1006 /* The E810 PHY does not provide a timestamp ready bitmap. Instead,
1007 * verify new timestamps against cached copy of the last read
1008 * timestamp.
1009 */
1010 tx->has_ready_bitmap = 0;
1011
1012 return ice_ptp_alloc_tx_tracker(tx);
1013 }
1014
1015 /**
1016 * ice_ptp_update_cached_phctime - Update the cached PHC time values
1017 * @pf: Board specific private structure
1018 *
1019 * This function updates the system time values which are cached in the PF
1020 * structure and the Rx rings.
1021 *
1022 * This function must be called periodically to ensure that the cached value
1023 * is never more than 2 seconds old.
1024 *
1025 * Note that the cached copy in the PF PTP structure is always updated, even
1026 * if we can't update the copy in the Rx rings.
1027 *
1028 * Return:
1029 * * 0 - OK, successfully updated
1030 * * -EAGAIN - PF was busy, need to reschedule the update
1031 */
ice_ptp_update_cached_phctime(struct ice_pf * pf)1032 static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
1033 {
1034 struct device *dev = ice_pf_to_dev(pf);
1035 unsigned long update_before;
1036 u64 systime;
1037 int i;
1038
1039 update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
1040 if (pf->ptp.cached_phc_time &&
1041 time_is_before_jiffies(update_before)) {
1042 unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
1043
1044 dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
1045 jiffies_to_msecs(time_taken));
1046 pf->ptp.late_cached_phc_updates++;
1047 }
1048
1049 /* Read the current PHC time */
1050 systime = ice_ptp_read_src_clk_reg(pf, NULL);
1051
1052 /* Update the cached PHC time stored in the PF structure */
1053 WRITE_ONCE(pf->ptp.cached_phc_time, systime);
1054 WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
1055
1056 if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
1057 return -EAGAIN;
1058
1059 ice_for_each_vsi(pf, i) {
1060 struct ice_vsi *vsi = pf->vsi[i];
1061 int j;
1062
1063 if (!vsi)
1064 continue;
1065
1066 if (vsi->type != ICE_VSI_PF)
1067 continue;
1068
1069 ice_for_each_rxq(vsi, j) {
1070 if (!vsi->rx_rings[j])
1071 continue;
1072 WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
1073 }
1074 }
1075 clear_bit(ICE_CFG_BUSY, pf->state);
1076
1077 return 0;
1078 }
1079
1080 /**
1081 * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
1082 * @pf: Board specific private structure
1083 *
1084 * This function must be called when the cached PHC time is no longer valid,
1085 * such as after a time adjustment. It marks any currently outstanding Tx
1086 * timestamps as stale and updates the cached PHC time for both the PF and Rx
1087 * rings.
1088 *
1089 * If updating the PHC time cannot be done immediately, a warning message is
1090 * logged and the work item is scheduled immediately to minimize the window
1091 * with a wrong cached timestamp.
1092 */
ice_ptp_reset_cached_phctime(struct ice_pf * pf)1093 static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
1094 {
1095 struct device *dev = ice_pf_to_dev(pf);
1096 int err;
1097
1098 /* Update the cached PHC time immediately if possible, otherwise
1099 * schedule the work item to execute soon.
1100 */
1101 err = ice_ptp_update_cached_phctime(pf);
1102 if (err) {
1103 /* If another thread is updating the Rx rings, we won't
1104 * properly reset them here. This could lead to reporting of
1105 * invalid timestamps, but there isn't much we can do.
1106 */
1107 dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
1108 __func__);
1109
1110 /* Queue the work item to update the Rx rings when possible */
1111 kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
1112 msecs_to_jiffies(10));
1113 }
1114
1115 /* Mark any outstanding timestamps as stale, since they might have
1116 * been captured in hardware before the time update. This could lead
1117 * to us extending them with the wrong cached value resulting in
1118 * incorrect timestamp values.
1119 */
1120 ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx);
1121 }
1122
1123 /**
1124 * ice_ptp_write_init - Set PHC time to provided value
1125 * @pf: Board private structure
1126 * @ts: timespec structure that holds the new time value
1127 *
1128 * Set the PHC time to the specified time provided in the timespec.
1129 */
ice_ptp_write_init(struct ice_pf * pf,struct timespec64 * ts)1130 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
1131 {
1132 u64 ns = timespec64_to_ns(ts);
1133 struct ice_hw *hw = &pf->hw;
1134
1135 return ice_ptp_init_time(hw, ns);
1136 }
1137
1138 /**
1139 * ice_ptp_write_adj - Adjust PHC clock time atomically
1140 * @pf: Board private structure
1141 * @adj: Adjustment in nanoseconds
1142 *
1143 * Perform an atomic adjustment of the PHC time by the specified number of
1144 * nanoseconds.
1145 */
ice_ptp_write_adj(struct ice_pf * pf,s32 adj)1146 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
1147 {
1148 struct ice_hw *hw = &pf->hw;
1149
1150 return ice_ptp_adj_clock(hw, adj);
1151 }
1152
1153 /**
1154 * ice_base_incval - Get base timer increment value
1155 * @pf: Board private structure
1156 *
1157 * Look up the base timer increment value for this device. The base increment
1158 * value is used to define the nominal clock tick rate. This increment value
1159 * is programmed during device initialization. It is also used as the basis
1160 * for calculating adjustments using scaled_ppm.
1161 */
ice_base_incval(struct ice_pf * pf)1162 static u64 ice_base_incval(struct ice_pf *pf)
1163 {
1164 struct ice_hw *hw = &pf->hw;
1165 u64 incval;
1166
1167 incval = ice_get_base_incval(hw);
1168
1169 dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
1170 incval);
1171
1172 return incval;
1173 }
1174
1175 /**
1176 * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
1177 * @port: PTP port for which Tx FIFO is checked
1178 */
ice_ptp_check_tx_fifo(struct ice_ptp_port * port)1179 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
1180 {
1181 int offs = port->port_num % ICE_PORTS_PER_QUAD;
1182 int quad = ICE_GET_QUAD_NUM(port->port_num);
1183 struct ice_pf *pf;
1184 struct ice_hw *hw;
1185 u32 val, phy_sts;
1186 int err;
1187
1188 pf = ptp_port_to_pf(port);
1189 hw = &pf->hw;
1190
1191 if (port->tx_fifo_busy_cnt == FIFO_OK)
1192 return 0;
1193
1194 /* need to read FIFO state */
1195 if (offs == 0 || offs == 1)
1196 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO01_STATUS,
1197 &val);
1198 else
1199 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO23_STATUS,
1200 &val);
1201
1202 if (err) {
1203 dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
1204 port->port_num, err);
1205 return err;
1206 }
1207
1208 if (offs & 0x1)
1209 phy_sts = FIELD_GET(Q_REG_FIFO13_M, val);
1210 else
1211 phy_sts = FIELD_GET(Q_REG_FIFO02_M, val);
1212
1213 if (phy_sts & FIFO_EMPTY) {
1214 port->tx_fifo_busy_cnt = FIFO_OK;
1215 return 0;
1216 }
1217
1218 port->tx_fifo_busy_cnt++;
1219
1220 dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
1221 port->tx_fifo_busy_cnt, port->port_num);
1222
1223 if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
1224 dev_dbg(ice_pf_to_dev(pf),
1225 "Port %d Tx FIFO still not empty; resetting quad %d\n",
1226 port->port_num, quad);
1227 ice_ptp_reset_ts_memory_quad_e82x(hw, quad);
1228 port->tx_fifo_busy_cnt = FIFO_OK;
1229 return 0;
1230 }
1231
1232 return -EAGAIN;
1233 }
1234
1235 /**
1236 * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets
1237 * @work: Pointer to the kthread_work structure for this task
1238 *
1239 * Check whether hardware has completed measuring the Tx and Rx offset values
1240 * used to configure and enable vernier timestamp calibration.
1241 *
1242 * Once the offset in either direction is measured, configure the associated
1243 * registers with the calibrated offset values and enable timestamping. The Tx
1244 * and Rx directions are configured independently as soon as their associated
1245 * offsets are known.
1246 *
1247 * This function reschedules itself until both Tx and Rx calibration have
1248 * completed.
1249 */
ice_ptp_wait_for_offsets(struct kthread_work * work)1250 static void ice_ptp_wait_for_offsets(struct kthread_work *work)
1251 {
1252 struct ice_ptp_port *port;
1253 struct ice_pf *pf;
1254 struct ice_hw *hw;
1255 int tx_err;
1256 int rx_err;
1257
1258 port = container_of(work, struct ice_ptp_port, ov_work.work);
1259 pf = ptp_port_to_pf(port);
1260 hw = &pf->hw;
1261
1262 if (ice_is_reset_in_progress(pf->state)) {
1263 /* wait for device driver to complete reset */
1264 kthread_queue_delayed_work(pf->ptp.kworker,
1265 &port->ov_work,
1266 msecs_to_jiffies(100));
1267 return;
1268 }
1269
1270 tx_err = ice_ptp_check_tx_fifo(port);
1271 if (!tx_err)
1272 tx_err = ice_phy_cfg_tx_offset_e82x(hw, port->port_num);
1273 rx_err = ice_phy_cfg_rx_offset_e82x(hw, port->port_num);
1274 if (tx_err || rx_err) {
1275 /* Tx and/or Rx offset not yet configured, try again later */
1276 kthread_queue_delayed_work(pf->ptp.kworker,
1277 &port->ov_work,
1278 msecs_to_jiffies(100));
1279 return;
1280 }
1281 }
1282
1283 /**
1284 * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
1285 * @ptp_port: PTP port to stop
1286 */
1287 static int
ice_ptp_port_phy_stop(struct ice_ptp_port * ptp_port)1288 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
1289 {
1290 struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1291 u8 port = ptp_port->port_num;
1292 struct ice_hw *hw = &pf->hw;
1293 int err;
1294
1295 if (ice_is_e810(hw))
1296 return 0;
1297
1298 mutex_lock(&ptp_port->ps_lock);
1299
1300 switch (ice_get_phy_model(hw)) {
1301 case ICE_PHY_ETH56G:
1302 err = ice_stop_phy_timer_eth56g(hw, port, true);
1303 break;
1304 case ICE_PHY_E82X:
1305 kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1306
1307 err = ice_stop_phy_timer_e82x(hw, port, true);
1308 break;
1309 default:
1310 err = -ENODEV;
1311 }
1312 if (err && err != -EBUSY)
1313 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
1314 port, err);
1315
1316 mutex_unlock(&ptp_port->ps_lock);
1317
1318 return err;
1319 }
1320
1321 /**
1322 * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
1323 * @ptp_port: PTP port for which the PHY start is set
1324 *
1325 * Start the PHY timestamping block, and initiate Vernier timestamping
1326 * calibration. If timestamping cannot be calibrated (such as if link is down)
1327 * then disable the timestamping block instead.
1328 */
1329 static int
ice_ptp_port_phy_restart(struct ice_ptp_port * ptp_port)1330 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
1331 {
1332 struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1333 u8 port = ptp_port->port_num;
1334 struct ice_hw *hw = &pf->hw;
1335 unsigned long flags;
1336 int err;
1337
1338 if (ice_is_e810(hw))
1339 return 0;
1340
1341 if (!ptp_port->link_up)
1342 return ice_ptp_port_phy_stop(ptp_port);
1343
1344 mutex_lock(&ptp_port->ps_lock);
1345
1346 switch (ice_get_phy_model(hw)) {
1347 case ICE_PHY_ETH56G:
1348 err = ice_start_phy_timer_eth56g(hw, port);
1349 break;
1350 case ICE_PHY_E82X:
1351 /* Start the PHY timer in Vernier mode */
1352 kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1353
1354 /* temporarily disable Tx timestamps while calibrating
1355 * PHY offset
1356 */
1357 spin_lock_irqsave(&ptp_port->tx.lock, flags);
1358 ptp_port->tx.calibrating = true;
1359 spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1360 ptp_port->tx_fifo_busy_cnt = 0;
1361
1362 /* Start the PHY timer in Vernier mode */
1363 err = ice_start_phy_timer_e82x(hw, port);
1364 if (err)
1365 break;
1366
1367 /* Enable Tx timestamps right away */
1368 spin_lock_irqsave(&ptp_port->tx.lock, flags);
1369 ptp_port->tx.calibrating = false;
1370 spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1371
1372 kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work,
1373 0);
1374 break;
1375 default:
1376 err = -ENODEV;
1377 }
1378
1379 if (err)
1380 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
1381 port, err);
1382
1383 mutex_unlock(&ptp_port->ps_lock);
1384
1385 return err;
1386 }
1387
1388 /**
1389 * ice_ptp_link_change - Reconfigure PTP after link status change
1390 * @pf: Board private structure
1391 * @port: Port for which the PHY start is set
1392 * @linkup: Link is up or down
1393 */
ice_ptp_link_change(struct ice_pf * pf,u8 port,bool linkup)1394 void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
1395 {
1396 struct ice_ptp_port *ptp_port;
1397 struct ice_hw *hw = &pf->hw;
1398
1399 if (pf->ptp.state != ICE_PTP_READY)
1400 return;
1401
1402 if (WARN_ON_ONCE(port >= hw->ptp.num_lports))
1403 return;
1404
1405 ptp_port = &pf->ptp.port;
1406 if (ice_is_e825c(hw) && hw->ptp.is_2x50g_muxed_topo)
1407 port *= 2;
1408 if (WARN_ON_ONCE(ptp_port->port_num != port))
1409 return;
1410
1411 /* Update cached link status for this port immediately */
1412 ptp_port->link_up = linkup;
1413
1414 /* Skip HW writes if reset is in progress */
1415 if (pf->hw.reset_ongoing)
1416 return;
1417 switch (ice_get_phy_model(hw)) {
1418 case ICE_PHY_E810:
1419 /* Do not reconfigure E810 PHY */
1420 return;
1421 case ICE_PHY_ETH56G:
1422 case ICE_PHY_E82X:
1423 ice_ptp_port_phy_restart(ptp_port);
1424 return;
1425 default:
1426 dev_warn(ice_pf_to_dev(pf), "%s: Unknown PHY type\n", __func__);
1427 }
1428 }
1429
1430 /**
1431 * ice_ptp_cfg_phy_interrupt - Configure PHY interrupt settings
1432 * @pf: PF private structure
1433 * @ena: bool value to enable or disable interrupt
1434 * @threshold: Minimum number of packets at which intr is triggered
1435 *
1436 * Utility function to configure all the PHY interrupt settings, including
1437 * whether the PHY interrupt is enabled, and what threshold to use. Also
1438 * configures The E82X timestamp owner to react to interrupts from all PHYs.
1439 *
1440 * Return: 0 on success, -EOPNOTSUPP when PHY model incorrect, other error codes
1441 * when failed to configure PHY interrupt for E82X
1442 */
ice_ptp_cfg_phy_interrupt(struct ice_pf * pf,bool ena,u32 threshold)1443 static int ice_ptp_cfg_phy_interrupt(struct ice_pf *pf, bool ena, u32 threshold)
1444 {
1445 struct device *dev = ice_pf_to_dev(pf);
1446 struct ice_hw *hw = &pf->hw;
1447
1448 ice_ptp_reset_ts_memory(hw);
1449
1450 switch (ice_get_phy_model(hw)) {
1451 case ICE_PHY_ETH56G: {
1452 int port;
1453
1454 for (port = 0; port < hw->ptp.num_lports; port++) {
1455 int err;
1456
1457 err = ice_phy_cfg_intr_eth56g(hw, port, ena, threshold);
1458 if (err) {
1459 dev_err(dev, "Failed to configure PHY interrupt for port %d, err %d\n",
1460 port, err);
1461 return err;
1462 }
1463 }
1464
1465 return 0;
1466 }
1467 case ICE_PHY_E82X: {
1468 int quad;
1469
1470 for (quad = 0; quad < ICE_GET_QUAD_NUM(hw->ptp.num_lports);
1471 quad++) {
1472 int err;
1473
1474 err = ice_phy_cfg_intr_e82x(hw, quad, ena, threshold);
1475 if (err) {
1476 dev_err(dev, "Failed to configure PHY interrupt for quad %d, err %d\n",
1477 quad, err);
1478 return err;
1479 }
1480 }
1481
1482 return 0;
1483 }
1484 case ICE_PHY_E810:
1485 return 0;
1486 case ICE_PHY_UNSUP:
1487 default:
1488 dev_warn(dev, "%s: Unexpected PHY model %d\n", __func__,
1489 ice_get_phy_model(hw));
1490 return -EOPNOTSUPP;
1491 }
1492 }
1493
1494 /**
1495 * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1496 * @pf: Board private structure
1497 */
ice_ptp_reset_phy_timestamping(struct ice_pf * pf)1498 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1499 {
1500 ice_ptp_port_phy_restart(&pf->ptp.port);
1501 }
1502
1503 /**
1504 * ice_ptp_restart_all_phy - Restart all PHYs to recalibrate timestamping
1505 * @pf: Board private structure
1506 */
ice_ptp_restart_all_phy(struct ice_pf * pf)1507 static void ice_ptp_restart_all_phy(struct ice_pf *pf)
1508 {
1509 struct list_head *entry;
1510
1511 list_for_each(entry, &pf->adapter->ports.ports) {
1512 struct ice_ptp_port *port = list_entry(entry,
1513 struct ice_ptp_port,
1514 list_node);
1515
1516 if (port->link_up)
1517 ice_ptp_port_phy_restart(port);
1518 }
1519 }
1520
1521 /**
1522 * ice_ptp_adjfine - Adjust clock increment rate
1523 * @info: the driver's PTP info structure
1524 * @scaled_ppm: Parts per million with 16-bit fractional field
1525 *
1526 * Adjust the frequency of the clock by the indicated scaled ppm from the
1527 * base frequency.
1528 */
ice_ptp_adjfine(struct ptp_clock_info * info,long scaled_ppm)1529 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1530 {
1531 struct ice_pf *pf = ptp_info_to_pf(info);
1532 struct ice_hw *hw = &pf->hw;
1533 u64 incval;
1534 int err;
1535
1536 incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm);
1537 err = ice_ptp_write_incval_locked(hw, incval);
1538 if (err) {
1539 dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1540 err);
1541 return -EIO;
1542 }
1543
1544 return 0;
1545 }
1546
1547 /**
1548 * ice_ptp_extts_event - Process PTP external clock event
1549 * @pf: Board private structure
1550 */
ice_ptp_extts_event(struct ice_pf * pf)1551 void ice_ptp_extts_event(struct ice_pf *pf)
1552 {
1553 struct ptp_clock_event event;
1554 struct ice_hw *hw = &pf->hw;
1555 u8 chan, tmr_idx;
1556 u32 hi, lo;
1557
1558 /* Don't process timestamp events if PTP is not ready */
1559 if (pf->ptp.state != ICE_PTP_READY)
1560 return;
1561
1562 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1563 /* Event time is captured by one of the two matched registers
1564 * GLTSYN_EVNT_L: 32 LSB of sampled time event
1565 * GLTSYN_EVNT_H: 32 MSB of sampled time event
1566 * Event is defined in GLTSYN_EVNT_0 register
1567 */
1568 for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1569 /* Check if channel is enabled */
1570 if (pf->ptp.ext_ts_irq & (1 << chan)) {
1571 lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1572 hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1573 event.timestamp = (((u64)hi) << 32) | lo;
1574 event.type = PTP_CLOCK_EXTTS;
1575 event.index = chan;
1576
1577 /* Fire event */
1578 ptp_clock_event(pf->ptp.clock, &event);
1579 pf->ptp.ext_ts_irq &= ~(1 << chan);
1580 }
1581 }
1582 }
1583
1584 /**
1585 * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1586 * @pf: Board private structure
1587 * @rq: External timestamp request
1588 * @on: Enable/disable flag
1589 *
1590 * Configure an external timestamp event on the requested channel.
1591 *
1592 * Return: 0 on success, negative error code otherwise
1593 */
ice_ptp_cfg_extts(struct ice_pf * pf,struct ptp_extts_request * rq,int on)1594 static int ice_ptp_cfg_extts(struct ice_pf *pf, struct ptp_extts_request *rq,
1595 int on)
1596 {
1597 u32 aux_reg, gpio_reg, irq_reg;
1598 struct ice_hw *hw = &pf->hw;
1599 unsigned int chan, gpio_pin;
1600 int pin_desc_idx;
1601 u8 tmr_idx;
1602
1603 /* Reject requests with unsupported flags */
1604
1605 if (rq->flags & ~(PTP_ENABLE_FEATURE |
1606 PTP_RISING_EDGE |
1607 PTP_FALLING_EDGE |
1608 PTP_STRICT_FLAGS))
1609 return -EOPNOTSUPP;
1610
1611 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1612 chan = rq->index;
1613
1614 pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_EXTTS, chan);
1615 if (pin_desc_idx < 0)
1616 return -EIO;
1617
1618 gpio_pin = pf->ptp.ice_pin_desc[pin_desc_idx].gpio[0];
1619 irq_reg = rd32(hw, PFINT_OICR_ENA);
1620
1621 if (on) {
1622 /* Enable the interrupt */
1623 irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1624 aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1625
1626 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0)
1627 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1)
1628
1629 /* set event level to requested edge */
1630 if (rq->flags & PTP_FALLING_EDGE)
1631 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1632 if (rq->flags & PTP_RISING_EDGE)
1633 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1634
1635 /* Write GPIO CTL reg.
1636 * 0x1 is input sampled by EVENT register(channel)
1637 * + num_in_channels * tmr_idx
1638 */
1639 gpio_reg = FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M,
1640 1 + chan + (tmr_idx * 3));
1641 } else {
1642 bool last_enabled = true;
1643
1644 /* clear the values we set to reset defaults */
1645 aux_reg = 0;
1646 gpio_reg = 0;
1647
1648 for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts; i++)
1649 if ((pf->ptp.extts_rqs[i].flags &
1650 PTP_ENABLE_FEATURE) &&
1651 i != chan) {
1652 last_enabled = false;
1653 }
1654
1655 if (last_enabled)
1656 irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1657 }
1658
1659 wr32(hw, PFINT_OICR_ENA, irq_reg);
1660 wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1661 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1662
1663 return 0;
1664 }
1665
1666 /**
1667 * ice_ptp_disable_all_extts - Disable all EXTTS channels
1668 * @pf: Board private structure
1669 */
ice_ptp_disable_all_extts(struct ice_pf * pf)1670 static void ice_ptp_disable_all_extts(struct ice_pf *pf)
1671 {
1672 for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts ; i++)
1673 if (pf->ptp.extts_rqs[i].flags & PTP_ENABLE_FEATURE)
1674 ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[i],
1675 false);
1676
1677 synchronize_irq(pf->oicr_irq.virq);
1678 }
1679
1680 /**
1681 * ice_ptp_enable_all_extts - Enable all EXTTS channels
1682 * @pf: Board private structure
1683 *
1684 * Called during reset to restore user configuration.
1685 */
ice_ptp_enable_all_extts(struct ice_pf * pf)1686 static void ice_ptp_enable_all_extts(struct ice_pf *pf)
1687 {
1688 for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts ; i++)
1689 if (pf->ptp.extts_rqs[i].flags & PTP_ENABLE_FEATURE)
1690 ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[i],
1691 true);
1692 }
1693
1694 /**
1695 * ice_ptp_write_perout - Write periodic wave parameters to HW
1696 * @hw: pointer to the HW struct
1697 * @chan: target channel
1698 * @gpio_pin: target GPIO pin
1699 * @start: target time to start periodic output
1700 * @period: target period
1701 *
1702 * Return: 0 on success, negative error code otherwise
1703 */
ice_ptp_write_perout(struct ice_hw * hw,unsigned int chan,unsigned int gpio_pin,u64 start,u64 period)1704 static int ice_ptp_write_perout(struct ice_hw *hw, unsigned int chan,
1705 unsigned int gpio_pin, u64 start, u64 period)
1706 {
1707
1708 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1709 u32 val = 0;
1710
1711 /* 0. Reset mode & out_en in AUX_OUT */
1712 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1713
1714 if (ice_is_e825c(hw)) {
1715 int err;
1716
1717 /* Enable/disable CGU 1PPS output for E825C */
1718 err = ice_cgu_cfg_pps_out(hw, !!period);
1719 if (err)
1720 return err;
1721 }
1722
1723 /* 1. Write perout with half of required period value.
1724 * HW toggles output when source clock hits the TGT and then adds
1725 * GLTSYN_CLKO value to the target, so it ends up with 50% duty cycle.
1726 */
1727 period >>= 1;
1728
1729 /* For proper operation, GLTSYN_CLKO must be larger than clock tick and
1730 * period has to fit in 32 bit register.
1731 */
1732 #define MIN_PULSE 3
1733 if (!!period && (period <= MIN_PULSE || period > U32_MAX)) {
1734 dev_err(ice_hw_to_dev(hw), "CLK period ticks must be >= %d && <= 2^32",
1735 MIN_PULSE);
1736 return -EIO;
1737 }
1738
1739 wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1740
1741 /* 2. Write TARGET time */
1742 wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start));
1743 wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start));
1744
1745 /* 3. Write AUX_OUT register */
1746 if (!!period)
1747 val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1748 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1749
1750 /* 4. write GPIO CTL reg */
1751 val = GLGEN_GPIO_CTL_PIN_DIR_M;
1752 if (!!period)
1753 val |= FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M,
1754 8 + chan + (tmr_idx * 4));
1755
1756 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1757
1758 return 0;
1759 }
1760
1761 /**
1762 * ice_ptp_cfg_perout - Configure clock to generate periodic wave
1763 * @pf: Board private structure
1764 * @rq: Periodic output request
1765 * @on: Enable/disable flag
1766 *
1767 * Configure the internal clock generator modules to generate the clock wave of
1768 * specified period.
1769 *
1770 * Return: 0 on success, negative error code otherwise
1771 */
ice_ptp_cfg_perout(struct ice_pf * pf,struct ptp_perout_request * rq,int on)1772 static int ice_ptp_cfg_perout(struct ice_pf *pf, struct ptp_perout_request *rq,
1773 int on)
1774 {
1775 u64 clk, period, start, phase;
1776 struct ice_hw *hw = &pf->hw;
1777 unsigned int gpio_pin;
1778 int pin_desc_idx;
1779
1780 if (rq->flags & ~PTP_PEROUT_PHASE)
1781 return -EOPNOTSUPP;
1782
1783 pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_PEROUT, rq->index);
1784 if (pin_desc_idx < 0)
1785 return -EIO;
1786
1787 gpio_pin = pf->ptp.ice_pin_desc[pin_desc_idx].gpio[1];
1788 period = rq->period.sec * NSEC_PER_SEC + rq->period.nsec;
1789
1790 /* If we're disabling the output or period is 0, clear out CLKO and TGT
1791 * and keep output level low.
1792 */
1793 if (!on || !period)
1794 return ice_ptp_write_perout(hw, rq->index, gpio_pin, 0, 0);
1795
1796 if (strncmp(pf->ptp.pin_desc[pin_desc_idx].name, "1PPS", 64) == 0 &&
1797 period != NSEC_PER_SEC && hw->ptp.phy_model == ICE_PHY_E82X) {
1798 dev_err(ice_pf_to_dev(pf), "1PPS pin supports only 1 s period\n");
1799 return -EOPNOTSUPP;
1800 }
1801
1802 if (period & 0x1) {
1803 dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1804 return -EIO;
1805 }
1806
1807 start = rq->start.sec * NSEC_PER_SEC + rq->start.nsec;
1808
1809 /* If PTP_PEROUT_PHASE is set, rq has phase instead of start time */
1810 if (rq->flags & PTP_PEROUT_PHASE)
1811 phase = start;
1812 else
1813 div64_u64_rem(start, period, &phase);
1814
1815 /* If we have only phase or start time is in the past, start the timer
1816 * at the next multiple of period, maintaining phase.
1817 */
1818 clk = ice_ptp_read_src_clk_reg(pf, NULL);
1819 if (rq->flags & PTP_PEROUT_PHASE || start <= clk - ice_prop_delay(hw))
1820 start = div64_u64(clk + period - 1, period) * period + phase;
1821
1822 /* Compensate for propagation delay from the generator to the pin. */
1823 start -= ice_prop_delay(hw);
1824
1825 return ice_ptp_write_perout(hw, rq->index, gpio_pin, start, period);
1826 }
1827
1828 /**
1829 * ice_ptp_disable_all_perout - Disable all currently configured outputs
1830 * @pf: Board private structure
1831 *
1832 * Disable all currently configured clock outputs. This is necessary before
1833 * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_perout to
1834 * re-enable the clocks again.
1835 */
ice_ptp_disable_all_perout(struct ice_pf * pf)1836 static void ice_ptp_disable_all_perout(struct ice_pf *pf)
1837 {
1838 for (unsigned int i = 0; i < pf->ptp.info.n_per_out; i++)
1839 if (pf->ptp.perout_rqs[i].period.sec ||
1840 pf->ptp.perout_rqs[i].period.nsec)
1841 ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[i],
1842 false);
1843 }
1844
1845 /**
1846 * ice_ptp_enable_all_perout - Enable all configured periodic clock outputs
1847 * @pf: Board private structure
1848 *
1849 * Enable all currently configured clock outputs. Use this after
1850 * ice_ptp_disable_all_perout to reconfigure the output signals according to
1851 * their configuration.
1852 */
ice_ptp_enable_all_perout(struct ice_pf * pf)1853 static void ice_ptp_enable_all_perout(struct ice_pf *pf)
1854 {
1855 for (unsigned int i = 0; i < pf->ptp.info.n_per_out; i++)
1856 if (pf->ptp.perout_rqs[i].period.sec ||
1857 pf->ptp.perout_rqs[i].period.nsec)
1858 ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[i],
1859 true);
1860 }
1861
1862 /**
1863 * ice_ptp_disable_shared_pin - Disable enabled pin that shares GPIO
1864 * @pf: Board private structure
1865 * @pin: Pin index
1866 * @func: Assigned function
1867 *
1868 * Return: 0 on success, negative error code otherwise
1869 */
ice_ptp_disable_shared_pin(struct ice_pf * pf,unsigned int pin,enum ptp_pin_function func)1870 static int ice_ptp_disable_shared_pin(struct ice_pf *pf, unsigned int pin,
1871 enum ptp_pin_function func)
1872 {
1873 unsigned int gpio_pin;
1874
1875 switch (func) {
1876 case PTP_PF_PEROUT:
1877 gpio_pin = pf->ptp.ice_pin_desc[pin].gpio[1];
1878 break;
1879 case PTP_PF_EXTTS:
1880 gpio_pin = pf->ptp.ice_pin_desc[pin].gpio[0];
1881 break;
1882 default:
1883 return -EOPNOTSUPP;
1884 }
1885
1886 for (unsigned int i = 0; i < pf->ptp.info.n_pins; i++) {
1887 struct ptp_pin_desc *pin_desc = &pf->ptp.pin_desc[i];
1888 unsigned int chan = pin_desc->chan;
1889
1890 /* Skip pin idx from the request */
1891 if (i == pin)
1892 continue;
1893
1894 if (pin_desc->func == PTP_PF_PEROUT &&
1895 pf->ptp.ice_pin_desc[i].gpio[1] == gpio_pin) {
1896 pf->ptp.perout_rqs[chan].period.sec = 0;
1897 pf->ptp.perout_rqs[chan].period.nsec = 0;
1898 pin_desc->func = PTP_PF_NONE;
1899 pin_desc->chan = 0;
1900 dev_dbg(ice_pf_to_dev(pf), "Disabling pin %u with shared output GPIO pin %u\n",
1901 i, gpio_pin);
1902 return ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[chan],
1903 false);
1904 } else if (pf->ptp.pin_desc->func == PTP_PF_EXTTS &&
1905 pf->ptp.ice_pin_desc[i].gpio[0] == gpio_pin) {
1906 pf->ptp.extts_rqs[chan].flags &= ~PTP_ENABLE_FEATURE;
1907 pin_desc->func = PTP_PF_NONE;
1908 pin_desc->chan = 0;
1909 dev_dbg(ice_pf_to_dev(pf), "Disabling pin %u with shared input GPIO pin %u\n",
1910 i, gpio_pin);
1911 return ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[chan],
1912 false);
1913 }
1914 }
1915
1916 return 0;
1917 }
1918
1919 /**
1920 * ice_verify_pin - verify if pin supports requested pin function
1921 * @info: the driver's PTP info structure
1922 * @pin: Pin index
1923 * @func: Assigned function
1924 * @chan: Assigned channel
1925 *
1926 * Return: 0 on success, -EOPNOTSUPP when function is not supported.
1927 */
ice_verify_pin(struct ptp_clock_info * info,unsigned int pin,enum ptp_pin_function func,unsigned int chan)1928 static int ice_verify_pin(struct ptp_clock_info *info, unsigned int pin,
1929 enum ptp_pin_function func, unsigned int chan)
1930 {
1931 struct ice_pf *pf = ptp_info_to_pf(info);
1932 const struct ice_ptp_pin_desc *pin_desc;
1933
1934 pin_desc = &pf->ptp.ice_pin_desc[pin];
1935
1936 /* Is assigned function allowed? */
1937 switch (func) {
1938 case PTP_PF_EXTTS:
1939 if (pin_desc->gpio[0] < 0)
1940 return -EOPNOTSUPP;
1941 break;
1942 case PTP_PF_PEROUT:
1943 if (pin_desc->gpio[1] < 0)
1944 return -EOPNOTSUPP;
1945 break;
1946 case PTP_PF_NONE:
1947 break;
1948 case PTP_PF_PHYSYNC:
1949 default:
1950 return -EOPNOTSUPP;
1951 }
1952
1953 /* On adapters with SMA_CTRL disable other pins that share same GPIO */
1954 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
1955 ice_ptp_disable_shared_pin(pf, pin, func);
1956 pf->ptp.pin_desc[pin].func = func;
1957 pf->ptp.pin_desc[pin].chan = chan;
1958 return ice_ptp_set_sma_cfg(pf);
1959 }
1960
1961 return 0;
1962 }
1963
1964 /**
1965 * ice_ptp_gpio_enable - Enable/disable ancillary features of PHC
1966 * @info: The driver's PTP info structure
1967 * @rq: The requested feature to change
1968 * @on: Enable/disable flag
1969 *
1970 * Return: 0 on success, negative error code otherwise
1971 */
ice_ptp_gpio_enable(struct ptp_clock_info * info,struct ptp_clock_request * rq,int on)1972 static int ice_ptp_gpio_enable(struct ptp_clock_info *info,
1973 struct ptp_clock_request *rq, int on)
1974 {
1975 struct ice_pf *pf = ptp_info_to_pf(info);
1976 int err;
1977
1978 switch (rq->type) {
1979 case PTP_CLK_REQ_PEROUT:
1980 {
1981 struct ptp_perout_request *cached =
1982 &pf->ptp.perout_rqs[rq->perout.index];
1983
1984 err = ice_ptp_cfg_perout(pf, &rq->perout, on);
1985 if (!err) {
1986 *cached = rq->perout;
1987 } else {
1988 cached->period.sec = 0;
1989 cached->period.nsec = 0;
1990 }
1991 return err;
1992 }
1993 case PTP_CLK_REQ_EXTTS:
1994 {
1995 struct ptp_extts_request *cached =
1996 &pf->ptp.extts_rqs[rq->extts.index];
1997
1998 err = ice_ptp_cfg_extts(pf, &rq->extts, on);
1999 if (!err)
2000 *cached = rq->extts;
2001 else
2002 cached->flags &= ~PTP_ENABLE_FEATURE;
2003 return err;
2004 }
2005 default:
2006 return -EOPNOTSUPP;
2007 }
2008 }
2009
2010 /**
2011 * ice_ptp_gettimex64 - Get the time of the clock
2012 * @info: the driver's PTP info structure
2013 * @ts: timespec64 structure to hold the current time value
2014 * @sts: Optional parameter for holding a pair of system timestamps from
2015 * the system clock. Will be ignored if NULL is given.
2016 *
2017 * Read the device clock and return the correct value on ns, after converting it
2018 * into a timespec struct.
2019 */
2020 static int
ice_ptp_gettimex64(struct ptp_clock_info * info,struct timespec64 * ts,struct ptp_system_timestamp * sts)2021 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
2022 struct ptp_system_timestamp *sts)
2023 {
2024 struct ice_pf *pf = ptp_info_to_pf(info);
2025 u64 time_ns;
2026
2027 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
2028 *ts = ns_to_timespec64(time_ns);
2029 return 0;
2030 }
2031
2032 /**
2033 * ice_ptp_settime64 - Set the time of the clock
2034 * @info: the driver's PTP info structure
2035 * @ts: timespec64 structure that holds the new time value
2036 *
2037 * Set the device clock to the user input value. The conversion from timespec
2038 * to ns happens in the write function.
2039 */
2040 static int
ice_ptp_settime64(struct ptp_clock_info * info,const struct timespec64 * ts)2041 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
2042 {
2043 struct ice_pf *pf = ptp_info_to_pf(info);
2044 struct timespec64 ts64 = *ts;
2045 struct ice_hw *hw = &pf->hw;
2046 int err;
2047
2048 /* For Vernier mode on E82X, we need to recalibrate after new settime.
2049 * Start with marking timestamps as invalid.
2050 */
2051 if (ice_get_phy_model(hw) == ICE_PHY_E82X) {
2052 err = ice_ptp_clear_phy_offset_ready_e82x(hw);
2053 if (err)
2054 dev_warn(ice_pf_to_dev(pf), "Failed to mark timestamps as invalid before settime\n");
2055 }
2056
2057 if (!ice_ptp_lock(hw)) {
2058 err = -EBUSY;
2059 goto exit;
2060 }
2061
2062 /* Disable periodic outputs */
2063 ice_ptp_disable_all_perout(pf);
2064
2065 err = ice_ptp_write_init(pf, &ts64);
2066 ice_ptp_unlock(hw);
2067
2068 if (!err)
2069 ice_ptp_reset_cached_phctime(pf);
2070
2071 /* Reenable periodic outputs */
2072 ice_ptp_enable_all_perout(pf);
2073
2074 /* Recalibrate and re-enable timestamp blocks for E822/E823 */
2075 if (ice_get_phy_model(hw) == ICE_PHY_E82X)
2076 ice_ptp_restart_all_phy(pf);
2077 exit:
2078 if (err) {
2079 dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
2080 return err;
2081 }
2082
2083 return 0;
2084 }
2085
2086 /**
2087 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
2088 * @info: the driver's PTP info structure
2089 * @delta: Offset in nanoseconds to adjust the time by
2090 */
ice_ptp_adjtime_nonatomic(struct ptp_clock_info * info,s64 delta)2091 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
2092 {
2093 struct timespec64 now, then;
2094 int ret;
2095
2096 then = ns_to_timespec64(delta);
2097 ret = ice_ptp_gettimex64(info, &now, NULL);
2098 if (ret)
2099 return ret;
2100 now = timespec64_add(now, then);
2101
2102 return ice_ptp_settime64(info, (const struct timespec64 *)&now);
2103 }
2104
2105 /**
2106 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
2107 * @info: the driver's PTP info structure
2108 * @delta: Offset in nanoseconds to adjust the time by
2109 */
ice_ptp_adjtime(struct ptp_clock_info * info,s64 delta)2110 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
2111 {
2112 struct ice_pf *pf = ptp_info_to_pf(info);
2113 struct ice_hw *hw = &pf->hw;
2114 struct device *dev;
2115 int err;
2116
2117 dev = ice_pf_to_dev(pf);
2118
2119 /* Hardware only supports atomic adjustments using signed 32-bit
2120 * integers. For any adjustment outside this range, perform
2121 * a non-atomic get->adjust->set flow.
2122 */
2123 if (delta > S32_MAX || delta < S32_MIN) {
2124 dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
2125 return ice_ptp_adjtime_nonatomic(info, delta);
2126 }
2127
2128 if (!ice_ptp_lock(hw)) {
2129 dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
2130 return -EBUSY;
2131 }
2132
2133 /* Disable periodic outputs */
2134 ice_ptp_disable_all_perout(pf);
2135
2136 err = ice_ptp_write_adj(pf, delta);
2137
2138 /* Reenable periodic outputs */
2139 ice_ptp_enable_all_perout(pf);
2140
2141 ice_ptp_unlock(hw);
2142
2143 if (err) {
2144 dev_err(dev, "PTP failed to adjust time, err %d\n", err);
2145 return err;
2146 }
2147
2148 ice_ptp_reset_cached_phctime(pf);
2149
2150 return 0;
2151 }
2152
2153 #ifdef CONFIG_ICE_HWTS
2154 /**
2155 * ice_ptp_get_syncdevicetime - Get the cross time stamp info
2156 * @device: Current device time
2157 * @system: System counter value read synchronously with device time
2158 * @ctx: Context provided by timekeeping code
2159 *
2160 * Read device and system (ART) clock simultaneously and return the corrected
2161 * clock values in ns.
2162 */
2163 static int
ice_ptp_get_syncdevicetime(ktime_t * device,struct system_counterval_t * system,void * ctx)2164 ice_ptp_get_syncdevicetime(ktime_t *device,
2165 struct system_counterval_t *system,
2166 void *ctx)
2167 {
2168 struct ice_pf *pf = (struct ice_pf *)ctx;
2169 struct ice_hw *hw = &pf->hw;
2170 u32 hh_lock, hh_art_ctl;
2171 int i;
2172
2173 #define MAX_HH_HW_LOCK_TRIES 5
2174 #define MAX_HH_CTL_LOCK_TRIES 100
2175
2176 for (i = 0; i < MAX_HH_HW_LOCK_TRIES; i++) {
2177 /* Get the HW lock */
2178 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2179 if (hh_lock & PFHH_SEM_BUSY_M) {
2180 usleep_range(10000, 15000);
2181 continue;
2182 }
2183 break;
2184 }
2185 if (hh_lock & PFHH_SEM_BUSY_M) {
2186 dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
2187 return -EBUSY;
2188 }
2189
2190 /* Program cmd to master timer */
2191 ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
2192
2193 /* Start the ART and device clock sync sequence */
2194 hh_art_ctl = rd32(hw, GLHH_ART_CTL);
2195 hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
2196 wr32(hw, GLHH_ART_CTL, hh_art_ctl);
2197
2198 for (i = 0; i < MAX_HH_CTL_LOCK_TRIES; i++) {
2199 /* Wait for sync to complete */
2200 hh_art_ctl = rd32(hw, GLHH_ART_CTL);
2201 if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
2202 udelay(1);
2203 continue;
2204 } else {
2205 u32 hh_ts_lo, hh_ts_hi, tmr_idx;
2206 u64 hh_ts;
2207
2208 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
2209 /* Read ART time */
2210 hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
2211 hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
2212 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2213 system->cycles = hh_ts;
2214 system->cs_id = CSID_X86_ART;
2215 /* Read Device source clock time */
2216 hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
2217 hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
2218 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2219 *device = ns_to_ktime(hh_ts);
2220 break;
2221 }
2222 }
2223
2224 /* Clear the master timer */
2225 ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2226
2227 /* Release HW lock */
2228 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2229 hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
2230 wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
2231
2232 if (i == MAX_HH_CTL_LOCK_TRIES)
2233 return -ETIMEDOUT;
2234
2235 return 0;
2236 }
2237
2238 /**
2239 * ice_ptp_getcrosststamp_e82x - Capture a device cross timestamp
2240 * @info: the driver's PTP info structure
2241 * @cts: The memory to fill the cross timestamp info
2242 *
2243 * Capture a cross timestamp between the ART and the device PTP hardware
2244 * clock. Fill the cross timestamp information and report it back to the
2245 * caller.
2246 *
2247 * This is only valid for E822 and E823 devices which have support for
2248 * generating the cross timestamp via PCIe PTM.
2249 *
2250 * In order to correctly correlate the ART timestamp back to the TSC time, the
2251 * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
2252 */
2253 static int
ice_ptp_getcrosststamp_e82x(struct ptp_clock_info * info,struct system_device_crosststamp * cts)2254 ice_ptp_getcrosststamp_e82x(struct ptp_clock_info *info,
2255 struct system_device_crosststamp *cts)
2256 {
2257 struct ice_pf *pf = ptp_info_to_pf(info);
2258
2259 return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
2260 pf, NULL, cts);
2261 }
2262 #endif /* CONFIG_ICE_HWTS */
2263
2264 /**
2265 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
2266 * @pf: Board private structure
2267 * @ifr: ioctl data
2268 *
2269 * Copy the timestamping config to user buffer
2270 */
ice_ptp_get_ts_config(struct ice_pf * pf,struct ifreq * ifr)2271 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2272 {
2273 struct hwtstamp_config *config;
2274
2275 if (pf->ptp.state != ICE_PTP_READY)
2276 return -EIO;
2277
2278 config = &pf->ptp.tstamp_config;
2279
2280 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
2281 -EFAULT : 0;
2282 }
2283
2284 /**
2285 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
2286 * @pf: Board private structure
2287 * @config: hwtstamp settings requested or saved
2288 */
2289 static int
ice_ptp_set_timestamp_mode(struct ice_pf * pf,struct hwtstamp_config * config)2290 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
2291 {
2292 switch (config->tx_type) {
2293 case HWTSTAMP_TX_OFF:
2294 pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF;
2295 break;
2296 case HWTSTAMP_TX_ON:
2297 pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON;
2298 break;
2299 default:
2300 return -ERANGE;
2301 }
2302
2303 switch (config->rx_filter) {
2304 case HWTSTAMP_FILTER_NONE:
2305 pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2306 break;
2307 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2308 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2309 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2310 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2311 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2312 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2313 case HWTSTAMP_FILTER_PTP_V2_SYNC:
2314 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2315 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2316 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2317 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2318 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2319 case HWTSTAMP_FILTER_NTP_ALL:
2320 case HWTSTAMP_FILTER_ALL:
2321 pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL;
2322 break;
2323 default:
2324 return -ERANGE;
2325 }
2326
2327 /* Immediately update the device timestamping mode */
2328 ice_ptp_restore_timestamp_mode(pf);
2329
2330 return 0;
2331 }
2332
2333 /**
2334 * ice_ptp_set_ts_config - ioctl interface to control the timestamping
2335 * @pf: Board private structure
2336 * @ifr: ioctl data
2337 *
2338 * Get the user config and store it
2339 */
ice_ptp_set_ts_config(struct ice_pf * pf,struct ifreq * ifr)2340 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2341 {
2342 struct hwtstamp_config config;
2343 int err;
2344
2345 if (pf->ptp.state != ICE_PTP_READY)
2346 return -EAGAIN;
2347
2348 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2349 return -EFAULT;
2350
2351 err = ice_ptp_set_timestamp_mode(pf, &config);
2352 if (err)
2353 return err;
2354
2355 /* Return the actual configuration set */
2356 config = pf->ptp.tstamp_config;
2357
2358 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2359 -EFAULT : 0;
2360 }
2361
2362 /**
2363 * ice_ptp_get_rx_hwts - Get packet Rx timestamp in ns
2364 * @rx_desc: Receive descriptor
2365 * @pkt_ctx: Packet context to get the cached time
2366 *
2367 * The driver receives a notification in the receive descriptor with timestamp.
2368 */
ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc * rx_desc,const struct ice_pkt_ctx * pkt_ctx)2369 u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc,
2370 const struct ice_pkt_ctx *pkt_ctx)
2371 {
2372 u64 ts_ns, cached_time;
2373 u32 ts_high;
2374
2375 if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
2376 return 0;
2377
2378 cached_time = READ_ONCE(pkt_ctx->cached_phctime);
2379
2380 /* Do not report a timestamp if we don't have a cached PHC time */
2381 if (!cached_time)
2382 return 0;
2383
2384 /* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
2385 * PHC value, rather than accessing the PF. This also allows us to
2386 * simply pass the upper 32bits of nanoseconds directly. Calling
2387 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
2388 * bits itself.
2389 */
2390 ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
2391 ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
2392
2393 return ts_ns;
2394 }
2395
2396 /**
2397 * ice_ptp_setup_pin_cfg - setup PTP pin_config structure
2398 * @pf: Board private structure
2399 */
ice_ptp_setup_pin_cfg(struct ice_pf * pf)2400 static void ice_ptp_setup_pin_cfg(struct ice_pf *pf)
2401 {
2402 for (unsigned int i = 0; i < pf->ptp.info.n_pins; i++) {
2403 const struct ice_ptp_pin_desc *desc = &pf->ptp.ice_pin_desc[i];
2404 struct ptp_pin_desc *pin = &pf->ptp.pin_desc[i];
2405 const char *name = NULL;
2406
2407 if (!ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
2408 name = ice_pin_names[desc->name_idx];
2409 else if (desc->name_idx != GPIO_NA)
2410 name = ice_pin_names_nvm[desc->name_idx];
2411 if (name)
2412 strscpy(pin->name, name, sizeof(pin->name));
2413
2414 pin->index = i;
2415 }
2416
2417 pf->ptp.info.pin_config = pf->ptp.pin_desc;
2418 }
2419
2420 /**
2421 * ice_ptp_disable_pins - Disable PTP pins
2422 * @pf: pointer to the PF structure
2423 *
2424 * Disable the OS access to the SMA pins. Called to clear out the OS
2425 * indications of pin support when we fail to setup the SMA control register.
2426 */
ice_ptp_disable_pins(struct ice_pf * pf)2427 static void ice_ptp_disable_pins(struct ice_pf *pf)
2428 {
2429 struct ptp_clock_info *info = &pf->ptp.info;
2430
2431 dev_warn(ice_pf_to_dev(pf), "Failed to configure PTP pin control\n");
2432
2433 info->enable = NULL;
2434 info->verify = NULL;
2435 info->n_pins = 0;
2436 info->n_ext_ts = 0;
2437 info->n_per_out = 0;
2438 }
2439
2440 /**
2441 * ice_ptp_parse_sdp_entries - update ice_ptp_pin_desc structure from NVM
2442 * @pf: pointer to the PF structure
2443 * @entries: SDP connection section from NVM
2444 * @num_entries: number of valid entries in sdp_entries
2445 * @pins: PTP pins array to update
2446 *
2447 * Return: 0 on success, negative error code otherwise.
2448 */
ice_ptp_parse_sdp_entries(struct ice_pf * pf,__le16 * entries,unsigned int num_entries,struct ice_ptp_pin_desc * pins)2449 static int ice_ptp_parse_sdp_entries(struct ice_pf *pf, __le16 *entries,
2450 unsigned int num_entries,
2451 struct ice_ptp_pin_desc *pins)
2452 {
2453 unsigned int n_pins = 0;
2454 unsigned int i;
2455
2456 /* Setup ice_pin_desc array */
2457 for (i = 0; i < ICE_N_PINS_MAX; i++) {
2458 pins[i].name_idx = -1;
2459 pins[i].gpio[0] = -1;
2460 pins[i].gpio[1] = -1;
2461 }
2462
2463 for (i = 0; i < num_entries; i++) {
2464 u16 entry = le16_to_cpu(entries[i]);
2465 DECLARE_BITMAP(bitmap, GPIO_NA);
2466 unsigned int bitmap_idx;
2467 bool dir;
2468 u16 gpio;
2469
2470 *bitmap = FIELD_GET(ICE_AQC_NVM_SDP_AC_PIN_M, entry);
2471 dir = !!FIELD_GET(ICE_AQC_NVM_SDP_AC_DIR_M, entry);
2472 gpio = FIELD_GET(ICE_AQC_NVM_SDP_AC_SDP_NUM_M, entry);
2473 for_each_set_bit(bitmap_idx, bitmap, GPIO_NA + 1) {
2474 unsigned int idx;
2475
2476 /* Check if entry's pin bit is valid */
2477 if (bitmap_idx >= NUM_PTP_PINS_NVM &&
2478 bitmap_idx != GPIO_NA)
2479 continue;
2480
2481 /* Check if pin already exists */
2482 for (idx = 0; idx < ICE_N_PINS_MAX; idx++)
2483 if (pins[idx].name_idx == bitmap_idx)
2484 break;
2485
2486 if (idx == ICE_N_PINS_MAX) {
2487 /* Pin not found, setup its entry and name */
2488 idx = n_pins++;
2489 pins[idx].name_idx = bitmap_idx;
2490 if (bitmap_idx == GPIO_NA)
2491 strscpy(pf->ptp.pin_desc[idx].name,
2492 ice_pin_names[gpio],
2493 sizeof(pf->ptp.pin_desc[idx]
2494 .name));
2495 }
2496
2497 /* Setup in/out GPIO number */
2498 pins[idx].gpio[dir] = gpio;
2499 }
2500 }
2501
2502 for (i = 0; i < n_pins; i++) {
2503 dev_dbg(ice_pf_to_dev(pf),
2504 "NVM pin entry[%d] : name_idx %d gpio_out %d gpio_in %d\n",
2505 i, pins[i].name_idx, pins[i].gpio[1], pins[i].gpio[0]);
2506 }
2507
2508 pf->ptp.info.n_pins = n_pins;
2509 return 0;
2510 }
2511
2512 /**
2513 * ice_ptp_set_funcs_e82x - Set specialized functions for E82X support
2514 * @pf: Board private structure
2515 *
2516 * Assign functions to the PTP capabilities structure for E82X devices.
2517 * Functions which operate across all device families should be set directly
2518 * in ice_ptp_set_caps. Only add functions here which are distinct for E82X
2519 * devices.
2520 */
ice_ptp_set_funcs_e82x(struct ice_pf * pf)2521 static void ice_ptp_set_funcs_e82x(struct ice_pf *pf)
2522 {
2523 #ifdef CONFIG_ICE_HWTS
2524 if (boot_cpu_has(X86_FEATURE_ART) &&
2525 boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
2526 pf->ptp.info.getcrosststamp = ice_ptp_getcrosststamp_e82x;
2527
2528 #endif /* CONFIG_ICE_HWTS */
2529 if (ice_is_e825c(&pf->hw)) {
2530 pf->ptp.ice_pin_desc = ice_pin_desc_e825c;
2531 pf->ptp.info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e825c);
2532 } else {
2533 pf->ptp.ice_pin_desc = ice_pin_desc_e82x;
2534 pf->ptp.info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e82x);
2535 }
2536 ice_ptp_setup_pin_cfg(pf);
2537 }
2538
2539 /**
2540 * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
2541 * @pf: Board private structure
2542 *
2543 * Assign functions to the PTP capabiltiies structure for E810 devices.
2544 * Functions which operate across all device families should be set directly
2545 * in ice_ptp_set_caps. Only add functions here which are distinct for E810
2546 * devices.
2547 */
ice_ptp_set_funcs_e810(struct ice_pf * pf)2548 static void ice_ptp_set_funcs_e810(struct ice_pf *pf)
2549 {
2550 __le16 entries[ICE_AQC_NVM_SDP_AC_MAX_SIZE];
2551 struct ice_ptp_pin_desc *desc = NULL;
2552 struct ice_ptp *ptp = &pf->ptp;
2553 unsigned int num_entries;
2554 int err;
2555
2556 err = ice_ptp_read_sdp_ac(&pf->hw, entries, &num_entries);
2557 if (err) {
2558 /* SDP section does not exist in NVM or is corrupted */
2559 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
2560 ptp->ice_pin_desc = ice_pin_desc_e810_sma;
2561 ptp->info.n_pins =
2562 ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e810_sma);
2563 } else {
2564 pf->ptp.ice_pin_desc = ice_pin_desc_e810;
2565 pf->ptp.info.n_pins =
2566 ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e810);
2567 err = 0;
2568 }
2569 } else {
2570 desc = devm_kcalloc(ice_pf_to_dev(pf), ICE_N_PINS_MAX,
2571 sizeof(struct ice_ptp_pin_desc),
2572 GFP_KERNEL);
2573 if (!desc)
2574 goto err;
2575
2576 err = ice_ptp_parse_sdp_entries(pf, entries, num_entries, desc);
2577 if (err)
2578 goto err;
2579
2580 ptp->ice_pin_desc = (const struct ice_ptp_pin_desc *)desc;
2581 }
2582
2583 ptp->info.pin_config = ptp->pin_desc;
2584 ice_ptp_setup_pin_cfg(pf);
2585
2586 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
2587 err = ice_ptp_set_sma_cfg(pf);
2588 err:
2589 if (err) {
2590 devm_kfree(ice_pf_to_dev(pf), desc);
2591 ice_ptp_disable_pins(pf);
2592 }
2593 }
2594
2595 /**
2596 * ice_ptp_set_caps - Set PTP capabilities
2597 * @pf: Board private structure
2598 */
ice_ptp_set_caps(struct ice_pf * pf)2599 static void ice_ptp_set_caps(struct ice_pf *pf)
2600 {
2601 struct ptp_clock_info *info = &pf->ptp.info;
2602 struct device *dev = ice_pf_to_dev(pf);
2603
2604 snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
2605 dev_driver_string(dev), dev_name(dev));
2606 info->owner = THIS_MODULE;
2607 info->max_adj = 100000000;
2608 info->adjtime = ice_ptp_adjtime;
2609 info->adjfine = ice_ptp_adjfine;
2610 info->gettimex64 = ice_ptp_gettimex64;
2611 info->settime64 = ice_ptp_settime64;
2612 info->n_per_out = GLTSYN_TGT_H_IDX_MAX;
2613 info->n_ext_ts = GLTSYN_EVNT_H_IDX_MAX;
2614 info->enable = ice_ptp_gpio_enable;
2615 info->verify = ice_verify_pin;
2616
2617 if (ice_is_e810(&pf->hw))
2618 ice_ptp_set_funcs_e810(pf);
2619 else
2620 ice_ptp_set_funcs_e82x(pf);
2621 }
2622
2623 /**
2624 * ice_ptp_create_clock - Create PTP clock device for userspace
2625 * @pf: Board private structure
2626 *
2627 * This function creates a new PTP clock device. It only creates one if we
2628 * don't already have one. Will return error if it can't create one, but success
2629 * if we already have a device. Should be used by ice_ptp_init to create clock
2630 * initially, and prevent global resets from creating new clock devices.
2631 */
ice_ptp_create_clock(struct ice_pf * pf)2632 static long ice_ptp_create_clock(struct ice_pf *pf)
2633 {
2634 struct ptp_clock_info *info;
2635 struct device *dev;
2636
2637 /* No need to create a clock device if we already have one */
2638 if (pf->ptp.clock)
2639 return 0;
2640
2641 ice_ptp_set_caps(pf);
2642
2643 info = &pf->ptp.info;
2644 dev = ice_pf_to_dev(pf);
2645
2646 /* Attempt to register the clock before enabling the hardware. */
2647 pf->ptp.clock = ptp_clock_register(info, dev);
2648 if (IS_ERR(pf->ptp.clock)) {
2649 dev_err(ice_pf_to_dev(pf), "Failed to register PTP clock device");
2650 return PTR_ERR(pf->ptp.clock);
2651 }
2652
2653 return 0;
2654 }
2655
2656 /**
2657 * ice_ptp_request_ts - Request an available Tx timestamp index
2658 * @tx: the PTP Tx timestamp tracker to request from
2659 * @skb: the SKB to associate with this timestamp request
2660 */
ice_ptp_request_ts(struct ice_ptp_tx * tx,struct sk_buff * skb)2661 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2662 {
2663 unsigned long flags;
2664 u8 idx;
2665
2666 spin_lock_irqsave(&tx->lock, flags);
2667
2668 /* Check that this tracker is accepting new timestamp requests */
2669 if (!ice_ptp_is_tx_tracker_up(tx)) {
2670 spin_unlock_irqrestore(&tx->lock, flags);
2671 return -1;
2672 }
2673
2674 /* Find and set the first available index */
2675 idx = find_next_zero_bit(tx->in_use, tx->len,
2676 tx->last_ll_ts_idx_read + 1);
2677 if (idx == tx->len)
2678 idx = find_first_zero_bit(tx->in_use, tx->len);
2679
2680 if (idx < tx->len) {
2681 /* We got a valid index that no other thread could have set. Store
2682 * a reference to the skb and the start time to allow discarding old
2683 * requests.
2684 */
2685 set_bit(idx, tx->in_use);
2686 clear_bit(idx, tx->stale);
2687 tx->tstamps[idx].start = jiffies;
2688 tx->tstamps[idx].skb = skb_get(skb);
2689 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2690 ice_trace(tx_tstamp_request, skb, idx);
2691 }
2692
2693 spin_unlock_irqrestore(&tx->lock, flags);
2694
2695 /* return the appropriate PHY timestamp register index, -1 if no
2696 * indexes were available.
2697 */
2698 if (idx >= tx->len)
2699 return -1;
2700 else
2701 return idx + tx->offset;
2702 }
2703
2704 /**
2705 * ice_ptp_process_ts - Process the PTP Tx timestamps
2706 * @pf: Board private structure
2707 *
2708 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx
2709 * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise.
2710 */
ice_ptp_process_ts(struct ice_pf * pf)2711 enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf)
2712 {
2713 switch (pf->ptp.tx_interrupt_mode) {
2714 case ICE_PTP_TX_INTERRUPT_NONE:
2715 /* This device has the clock owner handle timestamps for it */
2716 return ICE_TX_TSTAMP_WORK_DONE;
2717 case ICE_PTP_TX_INTERRUPT_SELF:
2718 /* This device handles its own timestamps */
2719 return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
2720 case ICE_PTP_TX_INTERRUPT_ALL:
2721 /* This device handles timestamps for all ports */
2722 return ice_ptp_tx_tstamp_owner(pf);
2723 default:
2724 WARN_ONCE(1, "Unexpected Tx timestamp interrupt mode %u\n",
2725 pf->ptp.tx_interrupt_mode);
2726 return ICE_TX_TSTAMP_WORK_DONE;
2727 }
2728 }
2729
2730 /**
2731 * ice_ptp_maybe_trigger_tx_interrupt - Trigger Tx timstamp interrupt
2732 * @pf: Board private structure
2733 *
2734 * The device PHY issues Tx timestamp interrupts to the driver for processing
2735 * timestamp data from the PHY. It will not interrupt again until all
2736 * current timestamp data is read. In rare circumstances, it is possible that
2737 * the driver fails to read all outstanding data.
2738 *
2739 * To avoid getting permanently stuck, periodically check if the PHY has
2740 * outstanding timestamp data. If so, trigger an interrupt from software to
2741 * process this data.
2742 */
ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf * pf)2743 static void ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf *pf)
2744 {
2745 struct device *dev = ice_pf_to_dev(pf);
2746 struct ice_hw *hw = &pf->hw;
2747 bool trigger_oicr = false;
2748 unsigned int i;
2749
2750 if (ice_is_e810(hw))
2751 return;
2752
2753 if (!ice_pf_src_tmr_owned(pf))
2754 return;
2755
2756 for (i = 0; i < ICE_GET_QUAD_NUM(hw->ptp.num_lports); i++) {
2757 u64 tstamp_ready;
2758 int err;
2759
2760 err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
2761 if (!err && tstamp_ready) {
2762 trigger_oicr = true;
2763 break;
2764 }
2765 }
2766
2767 if (trigger_oicr) {
2768 /* Trigger a software interrupt, to ensure this data
2769 * gets processed.
2770 */
2771 dev_dbg(dev, "PTP periodic task detected waiting timestamps. Triggering Tx timestamp interrupt now.\n");
2772
2773 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
2774 ice_flush(hw);
2775 }
2776 }
2777
ice_ptp_periodic_work(struct kthread_work * work)2778 static void ice_ptp_periodic_work(struct kthread_work *work)
2779 {
2780 struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2781 struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2782 int err;
2783
2784 if (pf->ptp.state != ICE_PTP_READY)
2785 return;
2786
2787 err = ice_ptp_update_cached_phctime(pf);
2788
2789 ice_ptp_maybe_trigger_tx_interrupt(pf);
2790
2791 /* Run twice a second or reschedule if phc update failed */
2792 kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2793 msecs_to_jiffies(err ? 10 : 500));
2794 }
2795
2796 /**
2797 * ice_ptp_prepare_for_reset - Prepare PTP for reset
2798 * @pf: Board private structure
2799 * @reset_type: the reset type being performed
2800 */
ice_ptp_prepare_for_reset(struct ice_pf * pf,enum ice_reset_req reset_type)2801 void ice_ptp_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
2802 {
2803 struct ice_ptp *ptp = &pf->ptp;
2804 u8 src_tmr;
2805
2806 if (ptp->state != ICE_PTP_READY)
2807 return;
2808
2809 ptp->state = ICE_PTP_RESETTING;
2810
2811 /* Disable timestamping for both Tx and Rx */
2812 ice_ptp_disable_timestamp_mode(pf);
2813
2814 kthread_cancel_delayed_work_sync(&ptp->work);
2815
2816 if (reset_type == ICE_RESET_PFR)
2817 return;
2818
2819 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2820
2821 /* Disable periodic outputs */
2822 ice_ptp_disable_all_perout(pf);
2823
2824 src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2825
2826 /* Disable source clock */
2827 wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2828
2829 /* Acquire PHC and system timer to restore after reset */
2830 ptp->reset_time = ktime_get_real_ns();
2831 }
2832
2833 /**
2834 * ice_ptp_rebuild_owner - Initialize PTP clock owner after reset
2835 * @pf: Board private structure
2836 *
2837 * Companion function for ice_ptp_rebuild() which handles tasks that only the
2838 * PTP clock owner instance should perform.
2839 */
ice_ptp_rebuild_owner(struct ice_pf * pf)2840 static int ice_ptp_rebuild_owner(struct ice_pf *pf)
2841 {
2842 struct ice_ptp *ptp = &pf->ptp;
2843 struct ice_hw *hw = &pf->hw;
2844 struct timespec64 ts;
2845 u64 time_diff;
2846 int err;
2847
2848 err = ice_ptp_init_phc(hw);
2849 if (err)
2850 return err;
2851
2852 /* Acquire the global hardware lock */
2853 if (!ice_ptp_lock(hw)) {
2854 err = -EBUSY;
2855 return err;
2856 }
2857
2858 /* Write the increment time value to PHY and LAN */
2859 err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2860 if (err)
2861 goto err_unlock;
2862
2863 /* Write the initial Time value to PHY and LAN using the cached PHC
2864 * time before the reset and time difference between stopping and
2865 * starting the clock.
2866 */
2867 if (ptp->cached_phc_time) {
2868 time_diff = ktime_get_real_ns() - ptp->reset_time;
2869 ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2870 } else {
2871 ts = ktime_to_timespec64(ktime_get_real());
2872 }
2873 err = ice_ptp_write_init(pf, &ts);
2874 if (err)
2875 goto err_unlock;
2876
2877 /* Release the global hardware lock */
2878 ice_ptp_unlock(hw);
2879
2880 /* Flush software tracking of any outstanding timestamps since we're
2881 * about to flush the PHY timestamp block.
2882 */
2883 ice_ptp_flush_all_tx_tracker(pf);
2884
2885 if (!ice_is_e810(hw)) {
2886 /* Enable quad interrupts */
2887 err = ice_ptp_cfg_phy_interrupt(pf, true, 1);
2888 if (err)
2889 return err;
2890
2891 ice_ptp_restart_all_phy(pf);
2892 }
2893
2894 /* Re-enable all periodic outputs and external timestamp events */
2895 ice_ptp_enable_all_perout(pf);
2896 ice_ptp_enable_all_extts(pf);
2897
2898 return 0;
2899
2900 err_unlock:
2901 ice_ptp_unlock(hw);
2902 return err;
2903 }
2904
2905 /**
2906 * ice_ptp_rebuild - Initialize PTP hardware clock support after reset
2907 * @pf: Board private structure
2908 * @reset_type: the reset type being performed
2909 */
ice_ptp_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)2910 void ice_ptp_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
2911 {
2912 struct ice_ptp *ptp = &pf->ptp;
2913 int err;
2914
2915 if (ptp->state == ICE_PTP_READY) {
2916 ice_ptp_prepare_for_reset(pf, reset_type);
2917 } else if (ptp->state != ICE_PTP_RESETTING) {
2918 err = -EINVAL;
2919 dev_err(ice_pf_to_dev(pf), "PTP was not initialized\n");
2920 goto err;
2921 }
2922
2923 if (ice_pf_src_tmr_owned(pf) && reset_type != ICE_RESET_PFR) {
2924 err = ice_ptp_rebuild_owner(pf);
2925 if (err)
2926 goto err;
2927 }
2928
2929 ptp->state = ICE_PTP_READY;
2930
2931 /* Start periodic work going */
2932 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2933
2934 dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2935 return;
2936
2937 err:
2938 ptp->state = ICE_PTP_ERROR;
2939 dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2940 }
2941
ice_is_primary(struct ice_hw * hw)2942 static bool ice_is_primary(struct ice_hw *hw)
2943 {
2944 return ice_is_e825c(hw) && ice_is_dual(hw) ?
2945 !!(hw->dev_caps.nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) : true;
2946 }
2947
ice_ptp_setup_adapter(struct ice_pf * pf)2948 static int ice_ptp_setup_adapter(struct ice_pf *pf)
2949 {
2950 if (!ice_pf_src_tmr_owned(pf) || !ice_is_primary(&pf->hw))
2951 return -EPERM;
2952
2953 pf->adapter->ctrl_pf = pf;
2954
2955 return 0;
2956 }
2957
ice_ptp_setup_pf(struct ice_pf * pf)2958 static int ice_ptp_setup_pf(struct ice_pf *pf)
2959 {
2960 struct ice_ptp *ctrl_ptp = ice_get_ctrl_ptp(pf);
2961 struct ice_ptp *ptp = &pf->ptp;
2962
2963 if (WARN_ON(!ctrl_ptp) || ice_get_phy_model(&pf->hw) == ICE_PHY_UNSUP)
2964 return -ENODEV;
2965
2966 INIT_LIST_HEAD(&ptp->port.list_node);
2967 mutex_lock(&pf->adapter->ports.lock);
2968
2969 list_add(&ptp->port.list_node,
2970 &pf->adapter->ports.ports);
2971 mutex_unlock(&pf->adapter->ports.lock);
2972
2973 return 0;
2974 }
2975
ice_ptp_cleanup_pf(struct ice_pf * pf)2976 static void ice_ptp_cleanup_pf(struct ice_pf *pf)
2977 {
2978 struct ice_ptp *ptp = &pf->ptp;
2979
2980 if (ice_get_phy_model(&pf->hw) != ICE_PHY_UNSUP) {
2981 mutex_lock(&pf->adapter->ports.lock);
2982 list_del(&ptp->port.list_node);
2983 mutex_unlock(&pf->adapter->ports.lock);
2984 }
2985 }
2986
2987 /**
2988 * ice_ptp_clock_index - Get the PTP clock index for this device
2989 * @pf: Board private structure
2990 *
2991 * Returns: the PTP clock index associated with this PF, or -1 if no PTP clock
2992 * is associated.
2993 */
ice_ptp_clock_index(struct ice_pf * pf)2994 int ice_ptp_clock_index(struct ice_pf *pf)
2995 {
2996 struct ice_ptp *ctrl_ptp = ice_get_ctrl_ptp(pf);
2997 struct ptp_clock *clock;
2998
2999 if (!ctrl_ptp)
3000 return -1;
3001 clock = ctrl_ptp->clock;
3002
3003 return clock ? ptp_clock_index(clock) : -1;
3004 }
3005
3006 /**
3007 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
3008 * @pf: Board private structure
3009 *
3010 * Setup and initialize a PTP clock device that represents the device hardware
3011 * clock. Save the clock index for other functions connected to the same
3012 * hardware resource.
3013 */
ice_ptp_init_owner(struct ice_pf * pf)3014 static int ice_ptp_init_owner(struct ice_pf *pf)
3015 {
3016 struct ice_hw *hw = &pf->hw;
3017 struct timespec64 ts;
3018 int err;
3019
3020 err = ice_ptp_init_phc(hw);
3021 if (err) {
3022 dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
3023 err);
3024 return err;
3025 }
3026
3027 /* Acquire the global hardware lock */
3028 if (!ice_ptp_lock(hw)) {
3029 err = -EBUSY;
3030 goto err_exit;
3031 }
3032
3033 /* Write the increment time value to PHY and LAN */
3034 err = ice_ptp_write_incval(hw, ice_base_incval(pf));
3035 if (err)
3036 goto err_unlock;
3037
3038 ts = ktime_to_timespec64(ktime_get_real());
3039 /* Write the initial Time value to PHY and LAN */
3040 err = ice_ptp_write_init(pf, &ts);
3041 if (err)
3042 goto err_unlock;
3043
3044 /* Release the global hardware lock */
3045 ice_ptp_unlock(hw);
3046
3047 /* Configure PHY interrupt settings */
3048 err = ice_ptp_cfg_phy_interrupt(pf, true, 1);
3049 if (err)
3050 goto err_exit;
3051
3052 /* Ensure we have a clock device */
3053 err = ice_ptp_create_clock(pf);
3054 if (err)
3055 goto err_clk;
3056
3057 return 0;
3058 err_clk:
3059 pf->ptp.clock = NULL;
3060 err_exit:
3061 return err;
3062
3063 err_unlock:
3064 ice_ptp_unlock(hw);
3065 return err;
3066 }
3067
3068 /**
3069 * ice_ptp_init_work - Initialize PTP work threads
3070 * @pf: Board private structure
3071 * @ptp: PF PTP structure
3072 */
ice_ptp_init_work(struct ice_pf * pf,struct ice_ptp * ptp)3073 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
3074 {
3075 struct kthread_worker *kworker;
3076
3077 /* Initialize work functions */
3078 kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
3079
3080 /* Allocate a kworker for handling work required for the ports
3081 * connected to the PTP hardware clock.
3082 */
3083 kworker = kthread_create_worker(0, "ice-ptp-%s",
3084 dev_name(ice_pf_to_dev(pf)));
3085 if (IS_ERR(kworker))
3086 return PTR_ERR(kworker);
3087
3088 ptp->kworker = kworker;
3089
3090 /* Start periodic work going */
3091 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
3092
3093 return 0;
3094 }
3095
3096 /**
3097 * ice_ptp_init_port - Initialize PTP port structure
3098 * @pf: Board private structure
3099 * @ptp_port: PTP port structure
3100 */
ice_ptp_init_port(struct ice_pf * pf,struct ice_ptp_port * ptp_port)3101 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
3102 {
3103 struct ice_hw *hw = &pf->hw;
3104
3105 mutex_init(&ptp_port->ps_lock);
3106
3107 switch (ice_get_phy_model(hw)) {
3108 case ICE_PHY_ETH56G:
3109 return ice_ptp_init_tx_eth56g(pf, &ptp_port->tx,
3110 ptp_port->port_num);
3111 case ICE_PHY_E810:
3112 return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
3113 case ICE_PHY_E82X:
3114 kthread_init_delayed_work(&ptp_port->ov_work,
3115 ice_ptp_wait_for_offsets);
3116
3117 return ice_ptp_init_tx_e82x(pf, &ptp_port->tx,
3118 ptp_port->port_num);
3119 default:
3120 return -ENODEV;
3121 }
3122 }
3123
3124 /**
3125 * ice_ptp_init_tx_interrupt_mode - Initialize device Tx interrupt mode
3126 * @pf: Board private structure
3127 *
3128 * Initialize the Tx timestamp interrupt mode for this device. For most device
3129 * types, each PF processes the interrupt and manages its own timestamps. For
3130 * E822-based devices, only the clock owner processes the timestamps. Other
3131 * PFs disable the interrupt and do not process their own timestamps.
3132 */
ice_ptp_init_tx_interrupt_mode(struct ice_pf * pf)3133 static void ice_ptp_init_tx_interrupt_mode(struct ice_pf *pf)
3134 {
3135 switch (ice_get_phy_model(&pf->hw)) {
3136 case ICE_PHY_E82X:
3137 /* E822 based PHY has the clock owner process the interrupt
3138 * for all ports.
3139 */
3140 if (ice_pf_src_tmr_owned(pf))
3141 pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_ALL;
3142 else
3143 pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_NONE;
3144 break;
3145 default:
3146 /* other PHY types handle their own Tx interrupt */
3147 pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_SELF;
3148 }
3149 }
3150
3151 /**
3152 * ice_ptp_init - Initialize PTP hardware clock support
3153 * @pf: Board private structure
3154 *
3155 * Set up the device for interacting with the PTP hardware clock for all
3156 * functions, both the function that owns the clock hardware, and the
3157 * functions connected to the clock hardware.
3158 *
3159 * The clock owner will allocate and register a ptp_clock with the
3160 * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
3161 * items used for asynchronous work such as Tx timestamps and periodic work.
3162 */
ice_ptp_init(struct ice_pf * pf)3163 void ice_ptp_init(struct ice_pf *pf)
3164 {
3165 struct ice_ptp *ptp = &pf->ptp;
3166 struct ice_hw *hw = &pf->hw;
3167 int err;
3168
3169 ptp->state = ICE_PTP_INITIALIZING;
3170
3171 ice_ptp_init_hw(hw);
3172
3173 ice_ptp_init_tx_interrupt_mode(pf);
3174
3175 /* If this function owns the clock hardware, it must allocate and
3176 * configure the PTP clock device to represent it.
3177 */
3178 if (ice_pf_src_tmr_owned(pf) && ice_is_primary(hw)) {
3179 err = ice_ptp_setup_adapter(pf);
3180 if (err)
3181 goto err_exit;
3182 err = ice_ptp_init_owner(pf);
3183 if (err)
3184 goto err_exit;
3185 }
3186
3187 err = ice_ptp_setup_pf(pf);
3188 if (err)
3189 goto err_exit;
3190
3191 ptp->port.port_num = hw->pf_id;
3192 if (ice_is_e825c(hw) && hw->ptp.is_2x50g_muxed_topo)
3193 ptp->port.port_num = hw->pf_id * 2;
3194
3195 err = ice_ptp_init_port(pf, &ptp->port);
3196 if (err)
3197 goto err_exit;
3198
3199 /* Start the PHY timestamping block */
3200 ice_ptp_reset_phy_timestamping(pf);
3201
3202 /* Configure initial Tx interrupt settings */
3203 ice_ptp_cfg_tx_interrupt(pf);
3204
3205 ptp->state = ICE_PTP_READY;
3206
3207 err = ice_ptp_init_work(pf, ptp);
3208 if (err)
3209 goto err_exit;
3210
3211 dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
3212 return;
3213
3214 err_exit:
3215 /* If we registered a PTP clock, release it */
3216 if (pf->ptp.clock) {
3217 ptp_clock_unregister(ptp->clock);
3218 pf->ptp.clock = NULL;
3219 }
3220 ptp->state = ICE_PTP_ERROR;
3221 dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
3222 }
3223
3224 /**
3225 * ice_ptp_release - Disable the driver/HW support and unregister the clock
3226 * @pf: Board private structure
3227 *
3228 * This function handles the cleanup work required from the initialization by
3229 * clearing out the important information and unregistering the clock
3230 */
ice_ptp_release(struct ice_pf * pf)3231 void ice_ptp_release(struct ice_pf *pf)
3232 {
3233 if (pf->ptp.state != ICE_PTP_READY)
3234 return;
3235
3236 pf->ptp.state = ICE_PTP_UNINIT;
3237
3238 /* Disable timestamping for both Tx and Rx */
3239 ice_ptp_disable_timestamp_mode(pf);
3240
3241 ice_ptp_cleanup_pf(pf);
3242
3243 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
3244
3245 ice_ptp_disable_all_extts(pf);
3246
3247 kthread_cancel_delayed_work_sync(&pf->ptp.work);
3248
3249 ice_ptp_port_phy_stop(&pf->ptp.port);
3250 mutex_destroy(&pf->ptp.port.ps_lock);
3251 if (pf->ptp.kworker) {
3252 kthread_destroy_worker(pf->ptp.kworker);
3253 pf->ptp.kworker = NULL;
3254 }
3255
3256 if (!pf->ptp.clock)
3257 return;
3258
3259 /* Disable periodic outputs */
3260 ice_ptp_disable_all_perout(pf);
3261
3262 ptp_clock_unregister(pf->ptp.clock);
3263 pf->ptp.clock = NULL;
3264
3265 dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
3266 }
3267