xref: /linux/drivers/memory/tegra/tegra210-emc-core.c (revision be54f8c558027a218423134dd9b8c7c46d92204a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015-2020, NVIDIA CORPORATION.  All rights reserved.
4  */
5 
6 #include <linux/bitfield.h>
7 #include <linux/clk.h>
8 #include <linux/clk/tegra.h>
9 #include <linux/debugfs.h>
10 #include <linux/delay.h>
11 #include <linux/kernel.h>
12 #include <linux/mod_devicetable.h>
13 #include <linux/module.h>
14 #include <linux/of_reserved_mem.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 #include <linux/thermal.h>
18 #include <soc/tegra/fuse.h>
19 #include <soc/tegra/mc.h>
20 
21 #include "tegra210-emc.h"
22 #include "tegra210-mc.h"
23 
24 /* CLK_RST_CONTROLLER_CLK_SOURCE_EMC */
25 #define EMC_CLK_EMC_2X_CLK_SRC_SHIFT			29
26 #define EMC_CLK_EMC_2X_CLK_SRC_MASK			\
27 	(0x7 << EMC_CLK_EMC_2X_CLK_SRC_SHIFT)
28 #define EMC_CLK_SOURCE_PLLM_LJ				0x4
29 #define EMC_CLK_SOURCE_PLLMB_LJ				0x5
30 #define EMC_CLK_FORCE_CC_TRIGGER			BIT(27)
31 #define EMC_CLK_MC_EMC_SAME_FREQ			BIT(16)
32 #define EMC_CLK_EMC_2X_CLK_DIVISOR_SHIFT		0
33 #define EMC_CLK_EMC_2X_CLK_DIVISOR_MASK			\
34 	(0xff << EMC_CLK_EMC_2X_CLK_DIVISOR_SHIFT)
35 
36 /* CLK_RST_CONTROLLER_CLK_SOURCE_EMC_DLL */
37 #define DLL_CLK_EMC_DLL_CLK_SRC_SHIFT			29
38 #define DLL_CLK_EMC_DLL_CLK_SRC_MASK			\
39 	(0x7 << DLL_CLK_EMC_DLL_CLK_SRC_SHIFT)
40 #define DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT		10
41 #define DLL_CLK_EMC_DLL_DDLL_CLK_SEL_MASK		\
42 	(0x3 << DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT)
43 #define PLLM_VCOA					0
44 #define PLLM_VCOB					1
45 #define EMC_DLL_SWITCH_OUT				2
46 #define DLL_CLK_EMC_DLL_CLK_DIVISOR_SHIFT		0
47 #define DLL_CLK_EMC_DLL_CLK_DIVISOR_MASK		\
48 	(0xff << DLL_CLK_EMC_DLL_CLK_DIVISOR_SHIFT)
49 
50 /* MC_EMEM_ARB_MISC0 */
51 #define MC_EMEM_ARB_MISC0_EMC_SAME_FREQ			BIT(27)
52 
53 /* EMC_DATA_BRLSHFT_X */
54 #define EMC0_EMC_DATA_BRLSHFT_0_INDEX	2
55 #define EMC1_EMC_DATA_BRLSHFT_0_INDEX	3
56 #define EMC0_EMC_DATA_BRLSHFT_1_INDEX	4
57 #define EMC1_EMC_DATA_BRLSHFT_1_INDEX	5
58 
59 #define TRIM_REG(chan, rank, reg, byte)					\
60 	(((EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ##	\
61 	   _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte ## _MASK &	\
62 	   next->trim_regs[EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ##		\
63 				 rank ## _ ## reg ## _INDEX]) >>	\
64 	  EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ##	\
65 	  _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte ## _SHIFT)	\
66 	 +								\
67 	 (((EMC_DATA_BRLSHFT_ ## rank ## _RANK ## rank ## _BYTE ##	\
68 	    byte ## _DATA_BRLSHFT_MASK &				\
69 	    next->trim_perch_regs[EMC ## chan ##			\
70 			      _EMC_DATA_BRLSHFT_ ## rank ## _INDEX]) >>	\
71 	   EMC_DATA_BRLSHFT_ ## rank ## _RANK ## rank ## _BYTE ##	\
72 	   byte ## _DATA_BRLSHFT_SHIFT) * 64))
73 
74 #define CALC_TEMP(rank, reg, byte1, byte2, n)				\
75 	(((new[n] << EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ##	\
76 	   reg ## _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte1 ## _SHIFT) & \
77 	  EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ##	\
78 	  _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte1 ## _MASK)	\
79 	 |								\
80 	 ((new[n + 1] << EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ##\
81 	   reg ## _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte2 ## _SHIFT) & \
82 	  EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ##	\
83 	  _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte2 ## _MASK))
84 
85 #define REFRESH_SPEEDUP(value, speedup) \
86 		(((value) & 0xffff0000) | ((value) & 0xffff) * (speedup))
87 
88 #define LPDDR2_MR4_SRR GENMASK(2, 0)
89 
90 static const struct tegra210_emc_sequence *tegra210_emc_sequences[] = {
91 	&tegra210_emc_r21021,
92 };
93 
94 static const struct tegra210_emc_table_register_offsets
95 tegra210_emc_table_register_offsets = {
96 	.burst = {
97 		EMC_RC,
98 		EMC_RFC,
99 		EMC_RFCPB,
100 		EMC_REFCTRL2,
101 		EMC_RFC_SLR,
102 		EMC_RAS,
103 		EMC_RP,
104 		EMC_R2W,
105 		EMC_W2R,
106 		EMC_R2P,
107 		EMC_W2P,
108 		EMC_R2R,
109 		EMC_TPPD,
110 		EMC_CCDMW,
111 		EMC_RD_RCD,
112 		EMC_WR_RCD,
113 		EMC_RRD,
114 		EMC_REXT,
115 		EMC_WEXT,
116 		EMC_WDV_CHK,
117 		EMC_WDV,
118 		EMC_WSV,
119 		EMC_WEV,
120 		EMC_WDV_MASK,
121 		EMC_WS_DURATION,
122 		EMC_WE_DURATION,
123 		EMC_QUSE,
124 		EMC_QUSE_WIDTH,
125 		EMC_IBDLY,
126 		EMC_OBDLY,
127 		EMC_EINPUT,
128 		EMC_MRW6,
129 		EMC_EINPUT_DURATION,
130 		EMC_PUTERM_EXTRA,
131 		EMC_PUTERM_WIDTH,
132 		EMC_QRST,
133 		EMC_QSAFE,
134 		EMC_RDV,
135 		EMC_RDV_MASK,
136 		EMC_RDV_EARLY,
137 		EMC_RDV_EARLY_MASK,
138 		EMC_REFRESH,
139 		EMC_BURST_REFRESH_NUM,
140 		EMC_PRE_REFRESH_REQ_CNT,
141 		EMC_PDEX2WR,
142 		EMC_PDEX2RD,
143 		EMC_PCHG2PDEN,
144 		EMC_ACT2PDEN,
145 		EMC_AR2PDEN,
146 		EMC_RW2PDEN,
147 		EMC_CKE2PDEN,
148 		EMC_PDEX2CKE,
149 		EMC_PDEX2MRR,
150 		EMC_TXSR,
151 		EMC_TXSRDLL,
152 		EMC_TCKE,
153 		EMC_TCKESR,
154 		EMC_TPD,
155 		EMC_TFAW,
156 		EMC_TRPAB,
157 		EMC_TCLKSTABLE,
158 		EMC_TCLKSTOP,
159 		EMC_MRW7,
160 		EMC_TREFBW,
161 		EMC_ODT_WRITE,
162 		EMC_FBIO_CFG5,
163 		EMC_FBIO_CFG7,
164 		EMC_CFG_DIG_DLL,
165 		EMC_CFG_DIG_DLL_PERIOD,
166 		EMC_PMACRO_IB_RXRT,
167 		EMC_CFG_PIPE_1,
168 		EMC_CFG_PIPE_2,
169 		EMC_PMACRO_QUSE_DDLL_RANK0_4,
170 		EMC_PMACRO_QUSE_DDLL_RANK0_5,
171 		EMC_PMACRO_QUSE_DDLL_RANK1_4,
172 		EMC_PMACRO_QUSE_DDLL_RANK1_5,
173 		EMC_MRW8,
174 		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_4,
175 		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_5,
176 		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_0,
177 		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_1,
178 		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_2,
179 		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_3,
180 		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_4,
181 		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_5,
182 		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_0,
183 		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_1,
184 		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_2,
185 		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_3,
186 		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_4,
187 		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_5,
188 		EMC_PMACRO_DDLL_LONG_CMD_0,
189 		EMC_PMACRO_DDLL_LONG_CMD_1,
190 		EMC_PMACRO_DDLL_LONG_CMD_2,
191 		EMC_PMACRO_DDLL_LONG_CMD_3,
192 		EMC_PMACRO_DDLL_LONG_CMD_4,
193 		EMC_PMACRO_DDLL_SHORT_CMD_0,
194 		EMC_PMACRO_DDLL_SHORT_CMD_1,
195 		EMC_PMACRO_DDLL_SHORT_CMD_2,
196 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_3,
197 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_3,
198 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_3,
199 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_3,
200 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_3,
201 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_3,
202 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_3,
203 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_3,
204 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_3,
205 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_3,
206 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_3,
207 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_3,
208 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_3,
209 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_3,
210 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_3,
211 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_3,
212 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_3,
213 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_3,
214 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_3,
215 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_3,
216 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD0_0,
217 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD0_1,
218 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD0_2,
219 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD0_3,
220 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD1_0,
221 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD1_1,
222 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD1_2,
223 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD1_3,
224 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD2_0,
225 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD2_1,
226 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD2_2,
227 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD2_3,
228 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD3_0,
229 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD3_1,
230 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD3_2,
231 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD3_3,
232 		EMC_TXDSRVTTGEN,
233 		EMC_FDPD_CTRL_DQ,
234 		EMC_FDPD_CTRL_CMD,
235 		EMC_FBIO_SPARE,
236 		EMC_ZCAL_INTERVAL,
237 		EMC_ZCAL_WAIT_CNT,
238 		EMC_MRS_WAIT_CNT,
239 		EMC_MRS_WAIT_CNT2,
240 		EMC_AUTO_CAL_CHANNEL,
241 		EMC_DLL_CFG_0,
242 		EMC_DLL_CFG_1,
243 		EMC_PMACRO_AUTOCAL_CFG_COMMON,
244 		EMC_PMACRO_ZCTRL,
245 		EMC_CFG,
246 		EMC_CFG_PIPE,
247 		EMC_DYN_SELF_REF_CONTROL,
248 		EMC_QPOP,
249 		EMC_DQS_BRLSHFT_0,
250 		EMC_DQS_BRLSHFT_1,
251 		EMC_CMD_BRLSHFT_2,
252 		EMC_CMD_BRLSHFT_3,
253 		EMC_PMACRO_PAD_CFG_CTRL,
254 		EMC_PMACRO_DATA_PAD_RX_CTRL,
255 		EMC_PMACRO_CMD_PAD_RX_CTRL,
256 		EMC_PMACRO_DATA_RX_TERM_MODE,
257 		EMC_PMACRO_CMD_RX_TERM_MODE,
258 		EMC_PMACRO_CMD_PAD_TX_CTRL,
259 		EMC_PMACRO_DATA_PAD_TX_CTRL,
260 		EMC_PMACRO_COMMON_PAD_TX_CTRL,
261 		EMC_PMACRO_VTTGEN_CTRL_0,
262 		EMC_PMACRO_VTTGEN_CTRL_1,
263 		EMC_PMACRO_VTTGEN_CTRL_2,
264 		EMC_PMACRO_BRICK_CTRL_RFU1,
265 		EMC_PMACRO_CMD_BRICK_CTRL_FDPD,
266 		EMC_PMACRO_BRICK_CTRL_RFU2,
267 		EMC_PMACRO_DATA_BRICK_CTRL_FDPD,
268 		EMC_PMACRO_BG_BIAS_CTRL_0,
269 		EMC_CFG_3,
270 		EMC_PMACRO_TX_PWRD_0,
271 		EMC_PMACRO_TX_PWRD_1,
272 		EMC_PMACRO_TX_PWRD_2,
273 		EMC_PMACRO_TX_PWRD_3,
274 		EMC_PMACRO_TX_PWRD_4,
275 		EMC_PMACRO_TX_PWRD_5,
276 		EMC_CONFIG_SAMPLE_DELAY,
277 		EMC_PMACRO_TX_SEL_CLK_SRC_0,
278 		EMC_PMACRO_TX_SEL_CLK_SRC_1,
279 		EMC_PMACRO_TX_SEL_CLK_SRC_2,
280 		EMC_PMACRO_TX_SEL_CLK_SRC_3,
281 		EMC_PMACRO_TX_SEL_CLK_SRC_4,
282 		EMC_PMACRO_TX_SEL_CLK_SRC_5,
283 		EMC_PMACRO_DDLL_BYPASS,
284 		EMC_PMACRO_DDLL_PWRD_0,
285 		EMC_PMACRO_DDLL_PWRD_1,
286 		EMC_PMACRO_DDLL_PWRD_2,
287 		EMC_PMACRO_CMD_CTRL_0,
288 		EMC_PMACRO_CMD_CTRL_1,
289 		EMC_PMACRO_CMD_CTRL_2,
290 		EMC_TR_TIMING_0,
291 		EMC_TR_DVFS,
292 		EMC_TR_CTRL_1,
293 		EMC_TR_RDV,
294 		EMC_TR_QPOP,
295 		EMC_TR_RDV_MASK,
296 		EMC_MRW14,
297 		EMC_TR_QSAFE,
298 		EMC_TR_QRST,
299 		EMC_TRAINING_CTRL,
300 		EMC_TRAINING_SETTLE,
301 		EMC_TRAINING_VREF_SETTLE,
302 		EMC_TRAINING_CA_FINE_CTRL,
303 		EMC_TRAINING_CA_CTRL_MISC,
304 		EMC_TRAINING_CA_CTRL_MISC1,
305 		EMC_TRAINING_CA_VREF_CTRL,
306 		EMC_TRAINING_QUSE_CORS_CTRL,
307 		EMC_TRAINING_QUSE_FINE_CTRL,
308 		EMC_TRAINING_QUSE_CTRL_MISC,
309 		EMC_TRAINING_QUSE_VREF_CTRL,
310 		EMC_TRAINING_READ_FINE_CTRL,
311 		EMC_TRAINING_READ_CTRL_MISC,
312 		EMC_TRAINING_READ_VREF_CTRL,
313 		EMC_TRAINING_WRITE_FINE_CTRL,
314 		EMC_TRAINING_WRITE_CTRL_MISC,
315 		EMC_TRAINING_WRITE_VREF_CTRL,
316 		EMC_TRAINING_MPC,
317 		EMC_MRW15,
318 	},
319 	.trim = {
320 		EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_0,
321 		EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_1,
322 		EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_2,
323 		EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_3,
324 		EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_0,
325 		EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_1,
326 		EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_2,
327 		EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_3,
328 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_0,
329 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_1,
330 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_2,
331 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_0,
332 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_1,
333 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_2,
334 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_0,
335 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_1,
336 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_2,
337 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_0,
338 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_1,
339 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_2,
340 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_0,
341 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_1,
342 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_2,
343 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_0,
344 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_1,
345 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_2,
346 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_0,
347 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_1,
348 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_2,
349 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_0,
350 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_1,
351 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_2,
352 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_0,
353 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_1,
354 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_2,
355 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_0,
356 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_1,
357 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_2,
358 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_0,
359 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_1,
360 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_2,
361 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_0,
362 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_1,
363 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_2,
364 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_0,
365 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_1,
366 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_2,
367 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_0,
368 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_1,
369 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_2,
370 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_0,
371 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_1,
372 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_2,
373 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_0,
374 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_1,
375 		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_2,
376 		EMC_PMACRO_IB_VREF_DQS_0,
377 		EMC_PMACRO_IB_VREF_DQS_1,
378 		EMC_PMACRO_IB_VREF_DQ_0,
379 		EMC_PMACRO_IB_VREF_DQ_1,
380 		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0,
381 		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1,
382 		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2,
383 		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3,
384 		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_4,
385 		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_5,
386 		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0,
387 		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1,
388 		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2,
389 		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3,
390 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_0,
391 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_1,
392 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_2,
393 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_0,
394 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_1,
395 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_2,
396 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_0,
397 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_1,
398 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_2,
399 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_0,
400 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_1,
401 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_2,
402 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_0,
403 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_1,
404 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_2,
405 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_0,
406 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_1,
407 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_2,
408 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_0,
409 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_1,
410 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_2,
411 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_0,
412 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_1,
413 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_2,
414 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_0,
415 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_1,
416 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_2,
417 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_0,
418 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_1,
419 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_2,
420 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_0,
421 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_1,
422 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_2,
423 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_0,
424 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_1,
425 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_2,
426 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_0,
427 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_1,
428 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_2,
429 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_0,
430 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_1,
431 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_2,
432 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_0,
433 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_1,
434 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_2,
435 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_0,
436 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_1,
437 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_2,
438 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_0,
439 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_1,
440 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_2,
441 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_0,
442 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_1,
443 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_2,
444 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_0,
445 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_1,
446 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_2,
447 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_0,
448 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_1,
449 		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_2,
450 		EMC_PMACRO_QUSE_DDLL_RANK0_0,
451 		EMC_PMACRO_QUSE_DDLL_RANK0_1,
452 		EMC_PMACRO_QUSE_DDLL_RANK0_2,
453 		EMC_PMACRO_QUSE_DDLL_RANK0_3,
454 		EMC_PMACRO_QUSE_DDLL_RANK1_0,
455 		EMC_PMACRO_QUSE_DDLL_RANK1_1,
456 		EMC_PMACRO_QUSE_DDLL_RANK1_2,
457 		EMC_PMACRO_QUSE_DDLL_RANK1_3
458 	},
459 	.burst_mc = {
460 		MC_EMEM_ARB_CFG,
461 		MC_EMEM_ARB_OUTSTANDING_REQ,
462 		MC_EMEM_ARB_REFPB_HP_CTRL,
463 		MC_EMEM_ARB_REFPB_BANK_CTRL,
464 		MC_EMEM_ARB_TIMING_RCD,
465 		MC_EMEM_ARB_TIMING_RP,
466 		MC_EMEM_ARB_TIMING_RC,
467 		MC_EMEM_ARB_TIMING_RAS,
468 		MC_EMEM_ARB_TIMING_FAW,
469 		MC_EMEM_ARB_TIMING_RRD,
470 		MC_EMEM_ARB_TIMING_RAP2PRE,
471 		MC_EMEM_ARB_TIMING_WAP2PRE,
472 		MC_EMEM_ARB_TIMING_R2R,
473 		MC_EMEM_ARB_TIMING_W2W,
474 		MC_EMEM_ARB_TIMING_R2W,
475 		MC_EMEM_ARB_TIMING_CCDMW,
476 		MC_EMEM_ARB_TIMING_W2R,
477 		MC_EMEM_ARB_TIMING_RFCPB,
478 		MC_EMEM_ARB_DA_TURNS,
479 		MC_EMEM_ARB_DA_COVERS,
480 		MC_EMEM_ARB_MISC0,
481 		MC_EMEM_ARB_MISC1,
482 		MC_EMEM_ARB_MISC2,
483 		MC_EMEM_ARB_RING1_THROTTLE,
484 		MC_EMEM_ARB_DHYST_CTRL,
485 		MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_0,
486 		MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_1,
487 		MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_2,
488 		MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_3,
489 		MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_4,
490 		MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_5,
491 		MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_6,
492 		MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_7,
493 	},
494 	.la_scale = {
495 		MC_MLL_MPCORER_PTSA_RATE,
496 		MC_FTOP_PTSA_RATE,
497 		MC_PTSA_GRANT_DECREMENT,
498 		MC_LATENCY_ALLOWANCE_XUSB_0,
499 		MC_LATENCY_ALLOWANCE_XUSB_1,
500 		MC_LATENCY_ALLOWANCE_TSEC_0,
501 		MC_LATENCY_ALLOWANCE_SDMMCA_0,
502 		MC_LATENCY_ALLOWANCE_SDMMCAA_0,
503 		MC_LATENCY_ALLOWANCE_SDMMC_0,
504 		MC_LATENCY_ALLOWANCE_SDMMCAB_0,
505 		MC_LATENCY_ALLOWANCE_PPCS_0,
506 		MC_LATENCY_ALLOWANCE_PPCS_1,
507 		MC_LATENCY_ALLOWANCE_MPCORE_0,
508 		MC_LATENCY_ALLOWANCE_HC_0,
509 		MC_LATENCY_ALLOWANCE_HC_1,
510 		MC_LATENCY_ALLOWANCE_AVPC_0,
511 		MC_LATENCY_ALLOWANCE_GPU_0,
512 		MC_LATENCY_ALLOWANCE_GPU2_0,
513 		MC_LATENCY_ALLOWANCE_NVENC_0,
514 		MC_LATENCY_ALLOWANCE_NVDEC_0,
515 		MC_LATENCY_ALLOWANCE_VIC_0,
516 		MC_LATENCY_ALLOWANCE_VI2_0,
517 		MC_LATENCY_ALLOWANCE_ISP2_0,
518 		MC_LATENCY_ALLOWANCE_ISP2_1,
519 	},
520 	.burst_per_channel = {
521 		{ .bank = 0, .offset = EMC_MRW10, },
522 		{ .bank = 1, .offset = EMC_MRW10, },
523 		{ .bank = 0, .offset = EMC_MRW11, },
524 		{ .bank = 1, .offset = EMC_MRW11, },
525 		{ .bank = 0, .offset = EMC_MRW12, },
526 		{ .bank = 1, .offset = EMC_MRW12, },
527 		{ .bank = 0, .offset = EMC_MRW13, },
528 		{ .bank = 1, .offset = EMC_MRW13, },
529 	},
530 	.trim_per_channel = {
531 		{ .bank = 0, .offset = EMC_CMD_BRLSHFT_0, },
532 		{ .bank = 1, .offset = EMC_CMD_BRLSHFT_1, },
533 		{ .bank = 0, .offset = EMC_DATA_BRLSHFT_0, },
534 		{ .bank = 1, .offset = EMC_DATA_BRLSHFT_0, },
535 		{ .bank = 0, .offset = EMC_DATA_BRLSHFT_1, },
536 		{ .bank = 1, .offset = EMC_DATA_BRLSHFT_1, },
537 		{ .bank = 0, .offset = EMC_QUSE_BRLSHFT_0, },
538 		{ .bank = 1, .offset = EMC_QUSE_BRLSHFT_1, },
539 		{ .bank = 0, .offset = EMC_QUSE_BRLSHFT_2, },
540 		{ .bank = 1, .offset = EMC_QUSE_BRLSHFT_3, },
541 	},
542 	.vref_per_channel = {
543 		{
544 			.bank = 0,
545 			.offset = EMC_TRAINING_OPT_DQS_IB_VREF_RANK0,
546 		}, {
547 			.bank = 1,
548 			.offset = EMC_TRAINING_OPT_DQS_IB_VREF_RANK0,
549 		}, {
550 			.bank = 0,
551 			.offset = EMC_TRAINING_OPT_DQS_IB_VREF_RANK1,
552 		}, {
553 			.bank = 1,
554 			.offset = EMC_TRAINING_OPT_DQS_IB_VREF_RANK1,
555 		},
556 	},
557 };
558 
tegra210_emc_train(struct timer_list * timer)559 static void tegra210_emc_train(struct timer_list *timer)
560 {
561 	struct tegra210_emc *emc = timer_container_of(emc, timer, training);
562 	unsigned long flags;
563 
564 	if (!emc->last)
565 		return;
566 
567 	spin_lock_irqsave(&emc->lock, flags);
568 
569 	if (emc->sequence->periodic_compensation)
570 		emc->sequence->periodic_compensation(emc);
571 
572 	spin_unlock_irqrestore(&emc->lock, flags);
573 
574 	mod_timer(&emc->training,
575 		  jiffies + msecs_to_jiffies(emc->training_interval));
576 }
577 
tegra210_emc_training_start(struct tegra210_emc * emc)578 static void tegra210_emc_training_start(struct tegra210_emc *emc)
579 {
580 	mod_timer(&emc->training,
581 		  jiffies + msecs_to_jiffies(emc->training_interval));
582 }
583 
tegra210_emc_training_stop(struct tegra210_emc * emc)584 static void tegra210_emc_training_stop(struct tegra210_emc *emc)
585 {
586 	timer_delete(&emc->training);
587 }
588 
tegra210_emc_get_temperature(struct tegra210_emc * emc)589 static unsigned int tegra210_emc_get_temperature(struct tegra210_emc *emc)
590 {
591 	unsigned long flags;
592 	u32 value, max = 0;
593 	unsigned int i;
594 
595 	spin_lock_irqsave(&emc->lock, flags);
596 
597 	for (i = 0; i < emc->num_devices; i++) {
598 		value = tegra210_emc_mrr_read(emc, i, 4);
599 
600 		if (value & BIT(7))
601 			dev_dbg(emc->dev,
602 				"sensor reading changed for device %u: %08x\n",
603 				i, value);
604 
605 		value = FIELD_GET(LPDDR2_MR4_SRR, value);
606 		if (value > max)
607 			max = value;
608 	}
609 
610 	spin_unlock_irqrestore(&emc->lock, flags);
611 
612 	return max;
613 }
614 
tegra210_emc_poll_refresh(struct timer_list * timer)615 static void tegra210_emc_poll_refresh(struct timer_list *timer)
616 {
617 	struct tegra210_emc *emc = timer_container_of(emc, timer,
618 						      refresh_timer);
619 	unsigned int temperature;
620 
621 	if (!emc->debugfs.temperature)
622 		temperature = tegra210_emc_get_temperature(emc);
623 	else
624 		temperature = emc->debugfs.temperature;
625 
626 	if (temperature == emc->temperature)
627 		goto reset;
628 
629 	switch (temperature) {
630 	case 0 ... 3:
631 		/* temperature is fine, using regular refresh */
632 		dev_dbg(emc->dev, "switching to nominal refresh...\n");
633 		tegra210_emc_set_refresh(emc, TEGRA210_EMC_REFRESH_NOMINAL);
634 		break;
635 
636 	case 4:
637 		dev_dbg(emc->dev, "switching to 2x refresh...\n");
638 		tegra210_emc_set_refresh(emc, TEGRA210_EMC_REFRESH_2X);
639 		break;
640 
641 	case 5:
642 		dev_dbg(emc->dev, "switching to 4x refresh...\n");
643 		tegra210_emc_set_refresh(emc, TEGRA210_EMC_REFRESH_4X);
644 		break;
645 
646 	case 6 ... 7:
647 		dev_dbg(emc->dev, "switching to throttle refresh...\n");
648 		tegra210_emc_set_refresh(emc, TEGRA210_EMC_REFRESH_THROTTLE);
649 		break;
650 
651 	default:
652 		WARN(1, "invalid DRAM temperature state %u\n", temperature);
653 		return;
654 	}
655 
656 	emc->temperature = temperature;
657 
658 reset:
659 	if (atomic_read(&emc->refresh_poll) > 0) {
660 		unsigned int interval = emc->refresh_poll_interval;
661 		unsigned int timeout = msecs_to_jiffies(interval);
662 
663 		mod_timer(&emc->refresh_timer, jiffies + timeout);
664 	}
665 }
666 
tegra210_emc_poll_refresh_stop(struct tegra210_emc * emc)667 static void tegra210_emc_poll_refresh_stop(struct tegra210_emc *emc)
668 {
669 	atomic_set(&emc->refresh_poll, 0);
670 	timer_delete_sync(&emc->refresh_timer);
671 }
672 
tegra210_emc_poll_refresh_start(struct tegra210_emc * emc)673 static void tegra210_emc_poll_refresh_start(struct tegra210_emc *emc)
674 {
675 	atomic_set(&emc->refresh_poll, 1);
676 
677 	mod_timer(&emc->refresh_timer,
678 		  jiffies + msecs_to_jiffies(emc->refresh_poll_interval));
679 }
680 
tegra210_emc_cd_max_state(struct thermal_cooling_device * cd,unsigned long * state)681 static int tegra210_emc_cd_max_state(struct thermal_cooling_device *cd,
682 				     unsigned long *state)
683 {
684 	*state = 1;
685 
686 	return 0;
687 }
688 
tegra210_emc_cd_get_state(struct thermal_cooling_device * cd,unsigned long * state)689 static int tegra210_emc_cd_get_state(struct thermal_cooling_device *cd,
690 				     unsigned long *state)
691 {
692 	struct tegra210_emc *emc = cd->devdata;
693 
694 	*state = atomic_read(&emc->refresh_poll);
695 
696 	return 0;
697 }
698 
tegra210_emc_cd_set_state(struct thermal_cooling_device * cd,unsigned long state)699 static int tegra210_emc_cd_set_state(struct thermal_cooling_device *cd,
700 				     unsigned long state)
701 {
702 	struct tegra210_emc *emc = cd->devdata;
703 
704 	if (state == atomic_read(&emc->refresh_poll))
705 		return 0;
706 
707 	if (state)
708 		tegra210_emc_poll_refresh_start(emc);
709 	else
710 		tegra210_emc_poll_refresh_stop(emc);
711 
712 	return 0;
713 }
714 
715 static const struct thermal_cooling_device_ops tegra210_emc_cd_ops = {
716 	.get_max_state = tegra210_emc_cd_max_state,
717 	.get_cur_state = tegra210_emc_cd_get_state,
718 	.set_cur_state = tegra210_emc_cd_set_state,
719 };
720 
tegra210_emc_set_clock(struct tegra210_emc * emc,u32 clksrc)721 static void tegra210_emc_set_clock(struct tegra210_emc *emc, u32 clksrc)
722 {
723 	emc->sequence->set_clock(emc, clksrc);
724 
725 	if (emc->next->periodic_training)
726 		tegra210_emc_training_start(emc);
727 	else
728 		tegra210_emc_training_stop(emc);
729 }
730 
tegra210_change_dll_src(struct tegra210_emc * emc,u32 clksrc)731 static void tegra210_change_dll_src(struct tegra210_emc *emc,
732 				    u32 clksrc)
733 {
734 	u32 dll_setting = emc->next->dll_clk_src;
735 	u32 emc_clk_src;
736 	u32 emc_clk_div;
737 
738 	emc_clk_src = (clksrc & EMC_CLK_EMC_2X_CLK_SRC_MASK) >>
739 		       EMC_CLK_EMC_2X_CLK_SRC_SHIFT;
740 	emc_clk_div = (clksrc & EMC_CLK_EMC_2X_CLK_DIVISOR_MASK) >>
741 		       EMC_CLK_EMC_2X_CLK_DIVISOR_SHIFT;
742 
743 	dll_setting &= ~(DLL_CLK_EMC_DLL_CLK_SRC_MASK |
744 			 DLL_CLK_EMC_DLL_CLK_DIVISOR_MASK);
745 	dll_setting |= emc_clk_src << DLL_CLK_EMC_DLL_CLK_SRC_SHIFT;
746 	dll_setting |= emc_clk_div << DLL_CLK_EMC_DLL_CLK_DIVISOR_SHIFT;
747 
748 	dll_setting &= ~DLL_CLK_EMC_DLL_DDLL_CLK_SEL_MASK;
749 	if (emc_clk_src == EMC_CLK_SOURCE_PLLMB_LJ)
750 		dll_setting |= (PLLM_VCOB <<
751 				DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT);
752 	else if (emc_clk_src == EMC_CLK_SOURCE_PLLM_LJ)
753 		dll_setting |= (PLLM_VCOA <<
754 				DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT);
755 	else
756 		dll_setting |= (EMC_DLL_SWITCH_OUT <<
757 				DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT);
758 
759 	tegra210_clk_emc_dll_update_setting(dll_setting);
760 
761 	if (emc->next->clk_out_enb_x_0_clk_enb_emc_dll)
762 		tegra210_clk_emc_dll_enable(true);
763 	else
764 		tegra210_clk_emc_dll_enable(false);
765 }
766 
tegra210_emc_set_refresh(struct tegra210_emc * emc,enum tegra210_emc_refresh refresh)767 int tegra210_emc_set_refresh(struct tegra210_emc *emc,
768 			     enum tegra210_emc_refresh refresh)
769 {
770 	struct tegra210_emc_timing *timings;
771 	unsigned long flags;
772 
773 	if ((emc->dram_type != DRAM_TYPE_LPDDR2 &&
774 	     emc->dram_type != DRAM_TYPE_LPDDR4) ||
775 	    !emc->last)
776 		return -ENODEV;
777 
778 	if (refresh > TEGRA210_EMC_REFRESH_THROTTLE)
779 		return -EINVAL;
780 
781 	if (refresh == emc->refresh)
782 		return 0;
783 
784 	spin_lock_irqsave(&emc->lock, flags);
785 
786 	if (refresh == TEGRA210_EMC_REFRESH_THROTTLE && emc->derated)
787 		timings = emc->derated;
788 	else
789 		timings = emc->nominal;
790 
791 	if (timings != emc->timings) {
792 		unsigned int index = emc->last - emc->timings;
793 		u32 clksrc;
794 
795 		clksrc = emc->provider.configs[index].value |
796 			 EMC_CLK_FORCE_CC_TRIGGER;
797 
798 		emc->next = &timings[index];
799 		emc->timings = timings;
800 
801 		tegra210_emc_set_clock(emc, clksrc);
802 	} else {
803 		tegra210_emc_adjust_timing(emc, emc->last);
804 		tegra210_emc_timing_update(emc);
805 
806 		if (refresh != TEGRA210_EMC_REFRESH_NOMINAL)
807 			emc_writel(emc, EMC_REF_REF_CMD, EMC_REF);
808 	}
809 
810 	spin_unlock_irqrestore(&emc->lock, flags);
811 
812 	return 0;
813 }
814 
tegra210_emc_mrr_read(struct tegra210_emc * emc,unsigned int chip,unsigned int address)815 u32 tegra210_emc_mrr_read(struct tegra210_emc *emc, unsigned int chip,
816 			  unsigned int address)
817 {
818 	u32 value, ret = 0;
819 	unsigned int i;
820 
821 	value = (chip & EMC_MRR_DEV_SEL_MASK) << EMC_MRR_DEV_SEL_SHIFT |
822 		(address & EMC_MRR_MA_MASK) << EMC_MRR_MA_SHIFT;
823 	emc_writel(emc, value, EMC_MRR);
824 
825 	for (i = 0; i < emc->num_channels; i++)
826 		WARN(tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS,
827 						  EMC_EMC_STATUS_MRR_DIVLD, 1),
828 		     "Timed out waiting for MRR %u (ch=%u)\n", address, i);
829 
830 	for (i = 0; i < emc->num_channels; i++) {
831 		value = emc_channel_readl(emc, i, EMC_MRR);
832 		value &= EMC_MRR_DATA_MASK;
833 
834 		ret = (ret << 16) | value;
835 	}
836 
837 	return ret;
838 }
839 
tegra210_emc_do_clock_change(struct tegra210_emc * emc,u32 clksrc)840 void tegra210_emc_do_clock_change(struct tegra210_emc *emc, u32 clksrc)
841 {
842 	int err;
843 
844 	mc_readl(emc->mc, MC_EMEM_ADR_CFG);
845 	emc_readl(emc, EMC_INTSTATUS);
846 
847 	tegra210_clk_emc_update_setting(clksrc);
848 
849 	err = tegra210_emc_wait_for_update(emc, 0, EMC_INTSTATUS,
850 					   EMC_INTSTATUS_CLKCHANGE_COMPLETE,
851 					   true);
852 	if (err)
853 		dev_warn(emc->dev, "clock change completion error: %d\n", err);
854 }
855 
tegra210_emc_find_timing(struct tegra210_emc * emc,unsigned long rate)856 struct tegra210_emc_timing *tegra210_emc_find_timing(struct tegra210_emc *emc,
857 						     unsigned long rate)
858 {
859 	unsigned int i;
860 
861 	for (i = 0; i < emc->num_timings; i++)
862 		if (emc->timings[i].rate * 1000UL == rate)
863 			return &emc->timings[i];
864 
865 	return NULL;
866 }
867 
tegra210_emc_wait_for_update(struct tegra210_emc * emc,unsigned int channel,unsigned int offset,u32 bit_mask,bool state)868 int tegra210_emc_wait_for_update(struct tegra210_emc *emc, unsigned int channel,
869 				 unsigned int offset, u32 bit_mask, bool state)
870 {
871 	unsigned int i;
872 	u32 value;
873 
874 	for (i = 0; i < EMC_STATUS_UPDATE_TIMEOUT; i++) {
875 		value = emc_channel_readl(emc, channel, offset);
876 		if (!!(value & bit_mask) == state)
877 			return 0;
878 
879 		udelay(1);
880 	}
881 
882 	return -ETIMEDOUT;
883 }
884 
tegra210_emc_set_shadow_bypass(struct tegra210_emc * emc,int set)885 void tegra210_emc_set_shadow_bypass(struct tegra210_emc *emc, int set)
886 {
887 	u32 emc_dbg = emc_readl(emc, EMC_DBG);
888 
889 	if (set)
890 		emc_writel(emc, emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE, EMC_DBG);
891 	else
892 		emc_writel(emc, emc_dbg & ~EMC_DBG_WRITE_MUX_ACTIVE, EMC_DBG);
893 }
894 
tegra210_emc_get_dll_state(struct tegra210_emc_timing * next)895 u32 tegra210_emc_get_dll_state(struct tegra210_emc_timing *next)
896 {
897 	if (next->emc_emrs & 0x1)
898 		return 0;
899 
900 	return 1;
901 }
902 
tegra210_emc_timing_update(struct tegra210_emc * emc)903 void tegra210_emc_timing_update(struct tegra210_emc *emc)
904 {
905 	unsigned int i;
906 	int err = 0;
907 
908 	emc_writel(emc, 0x1, EMC_TIMING_CONTROL);
909 
910 	for (i = 0; i < emc->num_channels; i++) {
911 		err |= tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS,
912 						    EMC_EMC_STATUS_TIMING_UPDATE_STALLED,
913 						    false);
914 	}
915 
916 	if (err)
917 		dev_warn(emc->dev, "timing update error: %d\n", err);
918 }
919 
tegra210_emc_actual_osc_clocks(u32 in)920 unsigned long tegra210_emc_actual_osc_clocks(u32 in)
921 {
922 	if (in < 0x40)
923 		return in * 16;
924 	else if (in < 0x80)
925 		return 2048;
926 	else if (in < 0xc0)
927 		return 4096;
928 	else
929 		return 8192;
930 }
931 
tegra210_emc_start_periodic_compensation(struct tegra210_emc * emc)932 void tegra210_emc_start_periodic_compensation(struct tegra210_emc *emc)
933 {
934 	u32 mpc_req = 0x4b;
935 
936 	emc_writel(emc, mpc_req, EMC_MPC);
937 	mpc_req = emc_readl(emc, EMC_MPC);
938 }
939 
tegra210_emc_compensate(struct tegra210_emc_timing * next,u32 offset)940 u32 tegra210_emc_compensate(struct tegra210_emc_timing *next, u32 offset)
941 {
942 	u32 temp = 0, rate = next->rate / 1000;
943 	s32 delta[4], delta_taps[4];
944 	s32 new[] = {
945 		TRIM_REG(0, 0, 0, 0),
946 		TRIM_REG(0, 0, 0, 1),
947 		TRIM_REG(0, 0, 1, 2),
948 		TRIM_REG(0, 0, 1, 3),
949 
950 		TRIM_REG(1, 0, 2, 4),
951 		TRIM_REG(1, 0, 2, 5),
952 		TRIM_REG(1, 0, 3, 6),
953 		TRIM_REG(1, 0, 3, 7),
954 
955 		TRIM_REG(0, 1, 0, 0),
956 		TRIM_REG(0, 1, 0, 1),
957 		TRIM_REG(0, 1, 1, 2),
958 		TRIM_REG(0, 1, 1, 3),
959 
960 		TRIM_REG(1, 1, 2, 4),
961 		TRIM_REG(1, 1, 2, 5),
962 		TRIM_REG(1, 1, 3, 6),
963 		TRIM_REG(1, 1, 3, 7)
964 	};
965 	unsigned i;
966 
967 	switch (offset) {
968 	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0:
969 	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1:
970 	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2:
971 	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3:
972 	case EMC_DATA_BRLSHFT_0:
973 		delta[0] = 128 * (next->current_dram_clktree[C0D0U0] -
974 				  next->trained_dram_clktree[C0D0U0]);
975 		delta[1] = 128 * (next->current_dram_clktree[C0D0U1] -
976 				  next->trained_dram_clktree[C0D0U1]);
977 		delta[2] = 128 * (next->current_dram_clktree[C1D0U0] -
978 				  next->trained_dram_clktree[C1D0U0]);
979 		delta[3] = 128 * (next->current_dram_clktree[C1D0U1] -
980 				  next->trained_dram_clktree[C1D0U1]);
981 
982 		delta_taps[0] = (delta[0] * (s32)rate) / 1000000;
983 		delta_taps[1] = (delta[1] * (s32)rate) / 1000000;
984 		delta_taps[2] = (delta[2] * (s32)rate) / 1000000;
985 		delta_taps[3] = (delta[3] * (s32)rate) / 1000000;
986 
987 		for (i = 0; i < 4; i++) {
988 			if ((delta_taps[i] > next->tree_margin) ||
989 			    (delta_taps[i] < (-1 * next->tree_margin))) {
990 				new[i * 2] = new[i * 2] + delta_taps[i];
991 				new[i * 2 + 1] = new[i * 2 + 1] +
992 							delta_taps[i];
993 			}
994 		}
995 
996 		if (offset == EMC_DATA_BRLSHFT_0) {
997 			for (i = 0; i < 8; i++)
998 				new[i] = new[i] / 64;
999 		} else {
1000 			for (i = 0; i < 8; i++)
1001 				new[i] = new[i] % 64;
1002 		}
1003 
1004 		break;
1005 
1006 	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0:
1007 	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1:
1008 	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2:
1009 	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3:
1010 	case EMC_DATA_BRLSHFT_1:
1011 		delta[0] = 128 * (next->current_dram_clktree[C0D1U0] -
1012 				  next->trained_dram_clktree[C0D1U0]);
1013 		delta[1] = 128 * (next->current_dram_clktree[C0D1U1] -
1014 				  next->trained_dram_clktree[C0D1U1]);
1015 		delta[2] = 128 * (next->current_dram_clktree[C1D1U0] -
1016 				  next->trained_dram_clktree[C1D1U0]);
1017 		delta[3] = 128 * (next->current_dram_clktree[C1D1U1] -
1018 				  next->trained_dram_clktree[C1D1U1]);
1019 
1020 		delta_taps[0] = (delta[0] * (s32)rate) / 1000000;
1021 		delta_taps[1] = (delta[1] * (s32)rate) / 1000000;
1022 		delta_taps[2] = (delta[2] * (s32)rate) / 1000000;
1023 		delta_taps[3] = (delta[3] * (s32)rate) / 1000000;
1024 
1025 		for (i = 0; i < 4; i++) {
1026 			if ((delta_taps[i] > next->tree_margin) ||
1027 			    (delta_taps[i] < (-1 * next->tree_margin))) {
1028 				new[8 + i * 2] = new[8 + i * 2] +
1029 							delta_taps[i];
1030 				new[8 + i * 2 + 1] = new[8 + i * 2 + 1] +
1031 							delta_taps[i];
1032 			}
1033 		}
1034 
1035 		if (offset == EMC_DATA_BRLSHFT_1) {
1036 			for (i = 0; i < 8; i++)
1037 				new[i + 8] = new[i + 8] / 64;
1038 		} else {
1039 			for (i = 0; i < 8; i++)
1040 				new[i + 8] = new[i + 8] % 64;
1041 		}
1042 
1043 		break;
1044 	}
1045 
1046 	switch (offset) {
1047 	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0:
1048 		temp = CALC_TEMP(0, 0, 0, 1, 0);
1049 		break;
1050 
1051 	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1:
1052 		temp = CALC_TEMP(0, 1, 2, 3, 2);
1053 		break;
1054 
1055 	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2:
1056 		temp = CALC_TEMP(0, 2, 4, 5, 4);
1057 		break;
1058 
1059 	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3:
1060 		temp = CALC_TEMP(0, 3, 6, 7, 6);
1061 		break;
1062 
1063 	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0:
1064 		temp = CALC_TEMP(1, 0, 0, 1, 8);
1065 		break;
1066 
1067 	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1:
1068 		temp = CALC_TEMP(1, 1, 2, 3, 10);
1069 		break;
1070 
1071 	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2:
1072 		temp = CALC_TEMP(1, 2, 4, 5, 12);
1073 		break;
1074 
1075 	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3:
1076 		temp = CALC_TEMP(1, 3, 6, 7, 14);
1077 		break;
1078 
1079 	case EMC_DATA_BRLSHFT_0:
1080 		temp = ((new[0] <<
1081 			 EMC_DATA_BRLSHFT_0_RANK0_BYTE0_DATA_BRLSHFT_SHIFT) &
1082 			 EMC_DATA_BRLSHFT_0_RANK0_BYTE0_DATA_BRLSHFT_MASK) |
1083 		       ((new[1] <<
1084 			 EMC_DATA_BRLSHFT_0_RANK0_BYTE1_DATA_BRLSHFT_SHIFT) &
1085 			 EMC_DATA_BRLSHFT_0_RANK0_BYTE1_DATA_BRLSHFT_MASK) |
1086 		       ((new[2] <<
1087 			 EMC_DATA_BRLSHFT_0_RANK0_BYTE2_DATA_BRLSHFT_SHIFT) &
1088 			 EMC_DATA_BRLSHFT_0_RANK0_BYTE2_DATA_BRLSHFT_MASK) |
1089 		       ((new[3] <<
1090 			 EMC_DATA_BRLSHFT_0_RANK0_BYTE3_DATA_BRLSHFT_SHIFT) &
1091 			 EMC_DATA_BRLSHFT_0_RANK0_BYTE3_DATA_BRLSHFT_MASK) |
1092 		       ((new[4] <<
1093 			 EMC_DATA_BRLSHFT_0_RANK0_BYTE4_DATA_BRLSHFT_SHIFT) &
1094 			 EMC_DATA_BRLSHFT_0_RANK0_BYTE4_DATA_BRLSHFT_MASK) |
1095 		       ((new[5] <<
1096 			 EMC_DATA_BRLSHFT_0_RANK0_BYTE5_DATA_BRLSHFT_SHIFT) &
1097 			 EMC_DATA_BRLSHFT_0_RANK0_BYTE5_DATA_BRLSHFT_MASK) |
1098 		       ((new[6] <<
1099 			 EMC_DATA_BRLSHFT_0_RANK0_BYTE6_DATA_BRLSHFT_SHIFT) &
1100 			 EMC_DATA_BRLSHFT_0_RANK0_BYTE6_DATA_BRLSHFT_MASK) |
1101 		       ((new[7] <<
1102 			 EMC_DATA_BRLSHFT_0_RANK0_BYTE7_DATA_BRLSHFT_SHIFT) &
1103 			 EMC_DATA_BRLSHFT_0_RANK0_BYTE7_DATA_BRLSHFT_MASK);
1104 		break;
1105 
1106 	case EMC_DATA_BRLSHFT_1:
1107 		temp = ((new[8] <<
1108 			 EMC_DATA_BRLSHFT_1_RANK1_BYTE0_DATA_BRLSHFT_SHIFT) &
1109 			 EMC_DATA_BRLSHFT_1_RANK1_BYTE0_DATA_BRLSHFT_MASK) |
1110 		       ((new[9] <<
1111 			 EMC_DATA_BRLSHFT_1_RANK1_BYTE1_DATA_BRLSHFT_SHIFT) &
1112 			 EMC_DATA_BRLSHFT_1_RANK1_BYTE1_DATA_BRLSHFT_MASK) |
1113 		       ((new[10] <<
1114 			 EMC_DATA_BRLSHFT_1_RANK1_BYTE2_DATA_BRLSHFT_SHIFT) &
1115 			 EMC_DATA_BRLSHFT_1_RANK1_BYTE2_DATA_BRLSHFT_MASK) |
1116 		       ((new[11] <<
1117 			 EMC_DATA_BRLSHFT_1_RANK1_BYTE3_DATA_BRLSHFT_SHIFT) &
1118 			 EMC_DATA_BRLSHFT_1_RANK1_BYTE3_DATA_BRLSHFT_MASK) |
1119 		       ((new[12] <<
1120 			 EMC_DATA_BRLSHFT_1_RANK1_BYTE4_DATA_BRLSHFT_SHIFT) &
1121 			 EMC_DATA_BRLSHFT_1_RANK1_BYTE4_DATA_BRLSHFT_MASK) |
1122 		       ((new[13] <<
1123 			 EMC_DATA_BRLSHFT_1_RANK1_BYTE5_DATA_BRLSHFT_SHIFT) &
1124 			 EMC_DATA_BRLSHFT_1_RANK1_BYTE5_DATA_BRLSHFT_MASK) |
1125 		       ((new[14] <<
1126 			 EMC_DATA_BRLSHFT_1_RANK1_BYTE6_DATA_BRLSHFT_SHIFT) &
1127 			 EMC_DATA_BRLSHFT_1_RANK1_BYTE6_DATA_BRLSHFT_MASK) |
1128 		       ((new[15] <<
1129 			 EMC_DATA_BRLSHFT_1_RANK1_BYTE7_DATA_BRLSHFT_SHIFT) &
1130 			 EMC_DATA_BRLSHFT_1_RANK1_BYTE7_DATA_BRLSHFT_MASK);
1131 		break;
1132 
1133 	default:
1134 		break;
1135 	}
1136 
1137 	return temp;
1138 }
1139 
tegra210_emc_dll_prelock(struct tegra210_emc * emc,u32 clksrc)1140 u32 tegra210_emc_dll_prelock(struct tegra210_emc *emc, u32 clksrc)
1141 {
1142 	unsigned int i;
1143 	u32 value;
1144 
1145 	value = emc_readl(emc, EMC_CFG_DIG_DLL);
1146 	value &= ~EMC_CFG_DIG_DLL_CFG_DLL_LOCK_LIMIT_MASK;
1147 	value |= (3 << EMC_CFG_DIG_DLL_CFG_DLL_LOCK_LIMIT_SHIFT);
1148 	value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN;
1149 	value &= ~EMC_CFG_DIG_DLL_CFG_DLL_MODE_MASK;
1150 	value |= (3 << EMC_CFG_DIG_DLL_CFG_DLL_MODE_SHIFT);
1151 	value |= EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_TRAFFIC;
1152 	value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_RW_UNTIL_LOCK;
1153 	value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK;
1154 	emc_writel(emc, value, EMC_CFG_DIG_DLL);
1155 	emc_writel(emc, 1, EMC_TIMING_CONTROL);
1156 
1157 	for (i = 0; i < emc->num_channels; i++)
1158 		tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS,
1159 					     EMC_EMC_STATUS_TIMING_UPDATE_STALLED,
1160 					     0);
1161 
1162 	for (i = 0; i < emc->num_channels; i++) {
1163 		while (true) {
1164 			value = emc_channel_readl(emc, i, EMC_CFG_DIG_DLL);
1165 			if ((value & EMC_CFG_DIG_DLL_CFG_DLL_EN) == 0)
1166 				break;
1167 		}
1168 	}
1169 
1170 	value = emc->next->burst_regs[EMC_DLL_CFG_0_INDEX];
1171 	emc_writel(emc, value, EMC_DLL_CFG_0);
1172 
1173 	value = emc_readl(emc, EMC_DLL_CFG_1);
1174 	value &= EMC_DLL_CFG_1_DDLLCAL_CTRL_START_TRIM_MASK;
1175 
1176 	if (emc->next->rate >= 400000 && emc->next->rate < 600000)
1177 		value |= 150;
1178 	else if (emc->next->rate >= 600000 && emc->next->rate < 800000)
1179 		value |= 100;
1180 	else if (emc->next->rate >= 800000 && emc->next->rate < 1000000)
1181 		value |= 70;
1182 	else if (emc->next->rate >= 1000000 && emc->next->rate < 1200000)
1183 		value |= 30;
1184 	else
1185 		value |= 20;
1186 
1187 	emc_writel(emc, value, EMC_DLL_CFG_1);
1188 
1189 	tegra210_change_dll_src(emc, clksrc);
1190 
1191 	value = emc_readl(emc, EMC_CFG_DIG_DLL);
1192 	value |= EMC_CFG_DIG_DLL_CFG_DLL_EN;
1193 	emc_writel(emc, value, EMC_CFG_DIG_DLL);
1194 
1195 	tegra210_emc_timing_update(emc);
1196 
1197 	for (i = 0; i < emc->num_channels; i++) {
1198 		while (true) {
1199 			value = emc_channel_readl(emc, 0, EMC_CFG_DIG_DLL);
1200 			if (value & EMC_CFG_DIG_DLL_CFG_DLL_EN)
1201 				break;
1202 		}
1203 	}
1204 
1205 	while (true) {
1206 		value = emc_readl(emc, EMC_DIG_DLL_STATUS);
1207 
1208 		if ((value & EMC_DIG_DLL_STATUS_DLL_PRIV_UPDATED) == 0)
1209 			continue;
1210 
1211 		if ((value & EMC_DIG_DLL_STATUS_DLL_LOCK) == 0)
1212 			continue;
1213 
1214 		break;
1215 	}
1216 
1217 	value = emc_readl(emc, EMC_DIG_DLL_STATUS);
1218 
1219 	return value & EMC_DIG_DLL_STATUS_DLL_OUT_MASK;
1220 }
1221 
tegra210_emc_dvfs_power_ramp_up(struct tegra210_emc * emc,u32 clk,bool flip_backward)1222 u32 tegra210_emc_dvfs_power_ramp_up(struct tegra210_emc *emc, u32 clk,
1223 				    bool flip_backward)
1224 {
1225 	u32 cmd_pad, dq_pad, rfu1, cfg5, common_tx, ramp_up_wait = 0;
1226 	const struct tegra210_emc_timing *timing;
1227 
1228 	if (flip_backward)
1229 		timing = emc->last;
1230 	else
1231 		timing = emc->next;
1232 
1233 	cmd_pad = timing->burst_regs[EMC_PMACRO_CMD_PAD_TX_CTRL_INDEX];
1234 	dq_pad = timing->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX];
1235 	rfu1 = timing->burst_regs[EMC_PMACRO_BRICK_CTRL_RFU1_INDEX];
1236 	cfg5 = timing->burst_regs[EMC_FBIO_CFG5_INDEX];
1237 	common_tx = timing->burst_regs[EMC_PMACRO_COMMON_PAD_TX_CTRL_INDEX];
1238 
1239 	cmd_pad |= EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON;
1240 
1241 	if (clk < 1000000 / DVFS_FGCG_MID_SPEED_THRESHOLD) {
1242 		ccfifo_writel(emc, common_tx & 0xa,
1243 			      EMC_PMACRO_COMMON_PAD_TX_CTRL, 0);
1244 		ccfifo_writel(emc, common_tx & 0xf,
1245 			      EMC_PMACRO_COMMON_PAD_TX_CTRL,
1246 			      (100000 / clk) + 1);
1247 		ramp_up_wait += 100000;
1248 	} else {
1249 		ccfifo_writel(emc, common_tx | 0x8,
1250 			      EMC_PMACRO_COMMON_PAD_TX_CTRL, 0);
1251 	}
1252 
1253 	if (clk < 1000000 / DVFS_FGCG_HIGH_SPEED_THRESHOLD) {
1254 		if (clk < 1000000 / IOBRICK_DCC_THRESHOLD) {
1255 			cmd_pad |=
1256 				EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC |
1257 				EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC;
1258 			cmd_pad &=
1259 				~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC |
1260 				  EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC);
1261 			ccfifo_writel(emc, cmd_pad,
1262 				      EMC_PMACRO_CMD_PAD_TX_CTRL,
1263 				      (100000 / clk) + 1);
1264 			ramp_up_wait += 100000;
1265 
1266 			dq_pad |=
1267 				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC |
1268 				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC;
1269 			dq_pad &=
1270 			       ~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC |
1271 				 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC);
1272 			ccfifo_writel(emc, dq_pad,
1273 				      EMC_PMACRO_DATA_PAD_TX_CTRL, 0);
1274 			ccfifo_writel(emc, rfu1 & 0xfe40fe40,
1275 				      EMC_PMACRO_BRICK_CTRL_RFU1, 0);
1276 		} else {
1277 			ccfifo_writel(emc, rfu1 & 0xfe40fe40,
1278 				      EMC_PMACRO_BRICK_CTRL_RFU1,
1279 				      (100000 / clk) + 1);
1280 			ramp_up_wait += 100000;
1281 		}
1282 
1283 		ccfifo_writel(emc, rfu1 & 0xfeedfeed,
1284 			      EMC_PMACRO_BRICK_CTRL_RFU1, (100000 / clk) + 1);
1285 		ramp_up_wait += 100000;
1286 
1287 		if (clk < 1000000 / IOBRICK_DCC_THRESHOLD) {
1288 			cmd_pad |=
1289 				EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC |
1290 				EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC |
1291 				EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC |
1292 				EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC;
1293 			ccfifo_writel(emc, cmd_pad,
1294 				      EMC_PMACRO_CMD_PAD_TX_CTRL,
1295 				      (100000 / clk) + 1);
1296 			ramp_up_wait += 100000;
1297 
1298 			dq_pad |=
1299 				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC |
1300 				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC |
1301 				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC |
1302 				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC;
1303 			ccfifo_writel(emc, dq_pad,
1304 				      EMC_PMACRO_DATA_PAD_TX_CTRL, 0);
1305 			ccfifo_writel(emc, rfu1,
1306 				      EMC_PMACRO_BRICK_CTRL_RFU1, 0);
1307 		} else {
1308 			ccfifo_writel(emc, rfu1,
1309 				      EMC_PMACRO_BRICK_CTRL_RFU1,
1310 				      (100000 / clk) + 1);
1311 			ramp_up_wait += 100000;
1312 		}
1313 
1314 		ccfifo_writel(emc, cfg5 & ~EMC_FBIO_CFG5_CMD_TX_DIS,
1315 			      EMC_FBIO_CFG5, (100000 / clk) + 10);
1316 		ramp_up_wait += 100000 + (10 * clk);
1317 	} else if (clk < 1000000 / DVFS_FGCG_MID_SPEED_THRESHOLD) {
1318 		ccfifo_writel(emc, rfu1 | 0x06000600,
1319 			      EMC_PMACRO_BRICK_CTRL_RFU1, (100000 / clk) + 1);
1320 		ccfifo_writel(emc, cfg5 & ~EMC_FBIO_CFG5_CMD_TX_DIS,
1321 			      EMC_FBIO_CFG5, (100000 / clk) + 10);
1322 		ramp_up_wait += 100000 + 10 * clk;
1323 	} else {
1324 		ccfifo_writel(emc, rfu1 | 0x00000600,
1325 			      EMC_PMACRO_BRICK_CTRL_RFU1, 0);
1326 		ccfifo_writel(emc, cfg5 & ~EMC_FBIO_CFG5_CMD_TX_DIS,
1327 			      EMC_FBIO_CFG5, 12);
1328 		ramp_up_wait += 12 * clk;
1329 	}
1330 
1331 	cmd_pad &= ~EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON;
1332 	ccfifo_writel(emc, cmd_pad, EMC_PMACRO_CMD_PAD_TX_CTRL, 5);
1333 
1334 	return ramp_up_wait;
1335 }
1336 
tegra210_emc_dvfs_power_ramp_down(struct tegra210_emc * emc,u32 clk,bool flip_backward)1337 u32 tegra210_emc_dvfs_power_ramp_down(struct tegra210_emc *emc, u32 clk,
1338 				      bool flip_backward)
1339 {
1340 	u32 ramp_down_wait = 0, cmd_pad, dq_pad, rfu1, cfg5, common_tx;
1341 	const struct tegra210_emc_timing *entry;
1342 	u32 seq_wait;
1343 
1344 	if (flip_backward)
1345 		entry = emc->next;
1346 	else
1347 		entry = emc->last;
1348 
1349 	cmd_pad = entry->burst_regs[EMC_PMACRO_CMD_PAD_TX_CTRL_INDEX];
1350 	dq_pad = entry->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX];
1351 	rfu1 = entry->burst_regs[EMC_PMACRO_BRICK_CTRL_RFU1_INDEX];
1352 	cfg5 = entry->burst_regs[EMC_FBIO_CFG5_INDEX];
1353 	common_tx = entry->burst_regs[EMC_PMACRO_COMMON_PAD_TX_CTRL_INDEX];
1354 
1355 	cmd_pad |= EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON;
1356 
1357 	ccfifo_writel(emc, cmd_pad, EMC_PMACRO_CMD_PAD_TX_CTRL, 0);
1358 	ccfifo_writel(emc, cfg5 | EMC_FBIO_CFG5_CMD_TX_DIS,
1359 		      EMC_FBIO_CFG5, 12);
1360 	ramp_down_wait = 12 * clk;
1361 
1362 	seq_wait = (100000 / clk) + 1;
1363 
1364 	if (clk < (1000000 / DVFS_FGCG_HIGH_SPEED_THRESHOLD)) {
1365 		if (clk < (1000000 / IOBRICK_DCC_THRESHOLD)) {
1366 			cmd_pad &=
1367 				~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC |
1368 				  EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC);
1369 			cmd_pad |=
1370 				EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC |
1371 				EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC;
1372 			ccfifo_writel(emc, cmd_pad,
1373 				      EMC_PMACRO_CMD_PAD_TX_CTRL, seq_wait);
1374 			ramp_down_wait += 100000;
1375 
1376 			dq_pad &=
1377 			      ~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC |
1378 				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC);
1379 			dq_pad |=
1380 				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC |
1381 				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC;
1382 			ccfifo_writel(emc, dq_pad,
1383 				      EMC_PMACRO_DATA_PAD_TX_CTRL, 0);
1384 			ccfifo_writel(emc, rfu1 & ~0x01120112,
1385 				      EMC_PMACRO_BRICK_CTRL_RFU1, 0);
1386 		} else {
1387 			ccfifo_writel(emc, rfu1 & ~0x01120112,
1388 				      EMC_PMACRO_BRICK_CTRL_RFU1, seq_wait);
1389 			ramp_down_wait += 100000;
1390 		}
1391 
1392 		ccfifo_writel(emc, rfu1 & ~0x01bf01bf,
1393 			      EMC_PMACRO_BRICK_CTRL_RFU1, seq_wait);
1394 		ramp_down_wait += 100000;
1395 
1396 		if (clk < (1000000 / IOBRICK_DCC_THRESHOLD)) {
1397 			cmd_pad &=
1398 				~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC |
1399 				  EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC |
1400 				  EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC |
1401 				  EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC);
1402 			ccfifo_writel(emc, cmd_pad,
1403 				      EMC_PMACRO_CMD_PAD_TX_CTRL, seq_wait);
1404 			ramp_down_wait += 100000;
1405 
1406 			dq_pad &=
1407 			      ~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC |
1408 				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC |
1409 				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC |
1410 				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC);
1411 			ccfifo_writel(emc, dq_pad,
1412 				      EMC_PMACRO_DATA_PAD_TX_CTRL, 0);
1413 			ccfifo_writel(emc, rfu1 & ~0x07ff07ff,
1414 				      EMC_PMACRO_BRICK_CTRL_RFU1, 0);
1415 		} else {
1416 			ccfifo_writel(emc, rfu1 & ~0x07ff07ff,
1417 				      EMC_PMACRO_BRICK_CTRL_RFU1, seq_wait);
1418 			ramp_down_wait += 100000;
1419 		}
1420 	} else {
1421 		ccfifo_writel(emc, rfu1 & ~0xffff07ff,
1422 			      EMC_PMACRO_BRICK_CTRL_RFU1, seq_wait + 19);
1423 		ramp_down_wait += 100000 + (20 * clk);
1424 	}
1425 
1426 	if (clk < (1000000 / DVFS_FGCG_MID_SPEED_THRESHOLD)) {
1427 		ramp_down_wait += 100000;
1428 		ccfifo_writel(emc, common_tx & ~0x5,
1429 			      EMC_PMACRO_COMMON_PAD_TX_CTRL, seq_wait);
1430 		ramp_down_wait += 100000;
1431 		ccfifo_writel(emc, common_tx & ~0xf,
1432 			      EMC_PMACRO_COMMON_PAD_TX_CTRL, seq_wait);
1433 		ramp_down_wait += 100000;
1434 		ccfifo_writel(emc, 0, 0, seq_wait);
1435 		ramp_down_wait += 100000;
1436 	} else {
1437 		ccfifo_writel(emc, common_tx & ~0xf,
1438 			      EMC_PMACRO_COMMON_PAD_TX_CTRL, seq_wait);
1439 	}
1440 
1441 	return ramp_down_wait;
1442 }
1443 
tegra210_emc_reset_dram_clktree_values(struct tegra210_emc_timing * timing)1444 void tegra210_emc_reset_dram_clktree_values(struct tegra210_emc_timing *timing)
1445 {
1446 	timing->current_dram_clktree[C0D0U0] =
1447 		timing->trained_dram_clktree[C0D0U0];
1448 	timing->current_dram_clktree[C0D0U1] =
1449 		timing->trained_dram_clktree[C0D0U1];
1450 	timing->current_dram_clktree[C1D0U0] =
1451 		timing->trained_dram_clktree[C1D0U0];
1452 	timing->current_dram_clktree[C1D0U1] =
1453 		timing->trained_dram_clktree[C1D0U1];
1454 	timing->current_dram_clktree[C1D1U0] =
1455 		timing->trained_dram_clktree[C1D1U0];
1456 	timing->current_dram_clktree[C1D1U1] =
1457 		timing->trained_dram_clktree[C1D1U1];
1458 }
1459 
update_dll_control(struct tegra210_emc * emc,u32 value,bool state)1460 static void update_dll_control(struct tegra210_emc *emc, u32 value, bool state)
1461 {
1462 	unsigned int i;
1463 
1464 	emc_writel(emc, value, EMC_CFG_DIG_DLL);
1465 	tegra210_emc_timing_update(emc);
1466 
1467 	for (i = 0; i < emc->num_channels; i++)
1468 		tegra210_emc_wait_for_update(emc, i, EMC_CFG_DIG_DLL,
1469 					     EMC_CFG_DIG_DLL_CFG_DLL_EN,
1470 					     state);
1471 }
1472 
tegra210_emc_dll_disable(struct tegra210_emc * emc)1473 void tegra210_emc_dll_disable(struct tegra210_emc *emc)
1474 {
1475 	u32 value;
1476 
1477 	value = emc_readl(emc, EMC_CFG_DIG_DLL);
1478 	value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN;
1479 
1480 	update_dll_control(emc, value, false);
1481 }
1482 
tegra210_emc_dll_enable(struct tegra210_emc * emc)1483 void tegra210_emc_dll_enable(struct tegra210_emc *emc)
1484 {
1485 	u32 value;
1486 
1487 	value = emc_readl(emc, EMC_CFG_DIG_DLL);
1488 	value |= EMC_CFG_DIG_DLL_CFG_DLL_EN;
1489 
1490 	update_dll_control(emc, value, true);
1491 }
1492 
tegra210_emc_adjust_timing(struct tegra210_emc * emc,struct tegra210_emc_timing * timing)1493 void tegra210_emc_adjust_timing(struct tegra210_emc *emc,
1494 				struct tegra210_emc_timing *timing)
1495 {
1496 	u32 dsr_cntrl = timing->burst_regs[EMC_DYN_SELF_REF_CONTROL_INDEX];
1497 	u32 pre_ref = timing->burst_regs[EMC_PRE_REFRESH_REQ_CNT_INDEX];
1498 	u32 ref = timing->burst_regs[EMC_REFRESH_INDEX];
1499 
1500 	switch (emc->refresh) {
1501 	case TEGRA210_EMC_REFRESH_NOMINAL:
1502 	case TEGRA210_EMC_REFRESH_THROTTLE:
1503 		break;
1504 
1505 	case TEGRA210_EMC_REFRESH_2X:
1506 		ref = REFRESH_SPEEDUP(ref, 2);
1507 		pre_ref = REFRESH_SPEEDUP(pre_ref, 2);
1508 		dsr_cntrl = REFRESH_SPEEDUP(dsr_cntrl, 2);
1509 		break;
1510 
1511 	case TEGRA210_EMC_REFRESH_4X:
1512 		ref = REFRESH_SPEEDUP(ref, 4);
1513 		pre_ref = REFRESH_SPEEDUP(pre_ref, 4);
1514 		dsr_cntrl = REFRESH_SPEEDUP(dsr_cntrl, 4);
1515 		break;
1516 
1517 	default:
1518 		dev_warn(emc->dev, "failed to set refresh: %d\n", emc->refresh);
1519 		return;
1520 	}
1521 
1522 	emc_writel(emc, ref, emc->offsets->burst[EMC_REFRESH_INDEX]);
1523 	emc_writel(emc, pre_ref,
1524 		   emc->offsets->burst[EMC_PRE_REFRESH_REQ_CNT_INDEX]);
1525 	emc_writel(emc, dsr_cntrl,
1526 		   emc->offsets->burst[EMC_DYN_SELF_REF_CONTROL_INDEX]);
1527 }
1528 
tegra210_emc_set_rate(struct device * dev,const struct tegra210_clk_emc_config * config)1529 static int tegra210_emc_set_rate(struct device *dev,
1530 				 const struct tegra210_clk_emc_config *config)
1531 {
1532 	struct tegra210_emc *emc = dev_get_drvdata(dev);
1533 	struct tegra210_emc_timing *timing = NULL;
1534 	unsigned long rate = config->rate;
1535 	s64 last_change_delay;
1536 	unsigned long flags;
1537 	unsigned int i;
1538 
1539 	if (rate == emc->last->rate * 1000UL)
1540 		return 0;
1541 
1542 	for (i = 0; i < emc->num_timings; i++) {
1543 		if (emc->timings[i].rate * 1000UL == rate) {
1544 			timing = &emc->timings[i];
1545 			break;
1546 		}
1547 	}
1548 
1549 	if (!timing)
1550 		return -EINVAL;
1551 
1552 	if (rate > 204000000 && !timing->trained)
1553 		return -EINVAL;
1554 
1555 	emc->next = timing;
1556 	last_change_delay = ktime_us_delta(ktime_get(), emc->clkchange_time);
1557 
1558 	/* XXX use non-busy-looping sleep? */
1559 	if ((last_change_delay >= 0) &&
1560 	    (last_change_delay < emc->clkchange_delay))
1561 		udelay(emc->clkchange_delay - (int)last_change_delay);
1562 
1563 	spin_lock_irqsave(&emc->lock, flags);
1564 	tegra210_emc_set_clock(emc, config->value);
1565 	emc->clkchange_time = ktime_get();
1566 	emc->last = timing;
1567 	spin_unlock_irqrestore(&emc->lock, flags);
1568 
1569 	return 0;
1570 }
1571 
1572 /*
1573  * debugfs interface
1574  *
1575  * The memory controller driver exposes some files in debugfs that can be used
1576  * to control the EMC frequency. The top-level directory can be found here:
1577  *
1578  *   /sys/kernel/debug/emc
1579  *
1580  * It contains the following files:
1581  *
1582  *   - available_rates: This file contains a list of valid, space-separated
1583  *     EMC frequencies.
1584  *
1585  *   - min_rate: Writing a value to this file sets the given frequency as the
1586  *       floor of the permitted range. If this is higher than the currently
1587  *       configured EMC frequency, this will cause the frequency to be
1588  *       increased so that it stays within the valid range.
1589  *
1590  *   - max_rate: Similarily to the min_rate file, writing a value to this file
1591  *       sets the given frequency as the ceiling of the permitted range. If
1592  *       the value is lower than the currently configured EMC frequency, this
1593  *       will cause the frequency to be decreased so that it stays within the
1594  *       valid range.
1595  */
1596 
tegra210_emc_validate_rate(struct tegra210_emc * emc,unsigned long rate)1597 static bool tegra210_emc_validate_rate(struct tegra210_emc *emc,
1598 				       unsigned long rate)
1599 {
1600 	unsigned int i;
1601 
1602 	for (i = 0; i < emc->num_timings; i++)
1603 		if (rate == emc->timings[i].rate * 1000UL)
1604 			return true;
1605 
1606 	return false;
1607 }
1608 
tegra210_emc_debug_available_rates_show(struct seq_file * s,void * data)1609 static int tegra210_emc_debug_available_rates_show(struct seq_file *s,
1610 						   void *data)
1611 {
1612 	struct tegra210_emc *emc = s->private;
1613 	const char *prefix = "";
1614 	unsigned int i;
1615 
1616 	for (i = 0; i < emc->num_timings; i++) {
1617 		seq_printf(s, "%s%u", prefix, emc->timings[i].rate * 1000);
1618 		prefix = " ";
1619 	}
1620 
1621 	seq_puts(s, "\n");
1622 
1623 	return 0;
1624 }
1625 DEFINE_SHOW_ATTRIBUTE(tegra210_emc_debug_available_rates);
1626 
tegra210_emc_debug_min_rate_get(void * data,u64 * rate)1627 static int tegra210_emc_debug_min_rate_get(void *data, u64 *rate)
1628 {
1629 	struct tegra210_emc *emc = data;
1630 
1631 	*rate = emc->debugfs.min_rate;
1632 
1633 	return 0;
1634 }
1635 
tegra210_emc_debug_min_rate_set(void * data,u64 rate)1636 static int tegra210_emc_debug_min_rate_set(void *data, u64 rate)
1637 {
1638 	struct tegra210_emc *emc = data;
1639 	int err;
1640 
1641 	if (!tegra210_emc_validate_rate(emc, rate))
1642 		return -EINVAL;
1643 
1644 	err = clk_set_min_rate(emc->clk, rate);
1645 	if (err < 0)
1646 		return err;
1647 
1648 	emc->debugfs.min_rate = rate;
1649 
1650 	return 0;
1651 }
1652 
1653 DEFINE_DEBUGFS_ATTRIBUTE(tegra210_emc_debug_min_rate_fops,
1654 			tegra210_emc_debug_min_rate_get,
1655 			tegra210_emc_debug_min_rate_set, "%llu\n");
1656 
tegra210_emc_debug_max_rate_get(void * data,u64 * rate)1657 static int tegra210_emc_debug_max_rate_get(void *data, u64 *rate)
1658 {
1659 	struct tegra210_emc *emc = data;
1660 
1661 	*rate = emc->debugfs.max_rate;
1662 
1663 	return 0;
1664 }
1665 
tegra210_emc_debug_max_rate_set(void * data,u64 rate)1666 static int tegra210_emc_debug_max_rate_set(void *data, u64 rate)
1667 {
1668 	struct tegra210_emc *emc = data;
1669 	int err;
1670 
1671 	if (!tegra210_emc_validate_rate(emc, rate))
1672 		return -EINVAL;
1673 
1674 	err = clk_set_max_rate(emc->clk, rate);
1675 	if (err < 0)
1676 		return err;
1677 
1678 	emc->debugfs.max_rate = rate;
1679 
1680 	return 0;
1681 }
1682 
1683 DEFINE_DEBUGFS_ATTRIBUTE(tegra210_emc_debug_max_rate_fops,
1684 			tegra210_emc_debug_max_rate_get,
1685 			tegra210_emc_debug_max_rate_set, "%llu\n");
1686 
tegra210_emc_debug_temperature_get(void * data,u64 * temperature)1687 static int tegra210_emc_debug_temperature_get(void *data, u64 *temperature)
1688 {
1689 	struct tegra210_emc *emc = data;
1690 	unsigned int value;
1691 
1692 	if (!emc->debugfs.temperature)
1693 		value = tegra210_emc_get_temperature(emc);
1694 	else
1695 		value = emc->debugfs.temperature;
1696 
1697 	*temperature = value;
1698 
1699 	return 0;
1700 }
1701 
tegra210_emc_debug_temperature_set(void * data,u64 temperature)1702 static int tegra210_emc_debug_temperature_set(void *data, u64 temperature)
1703 {
1704 	struct tegra210_emc *emc = data;
1705 
1706 	if (temperature > 7)
1707 		return -EINVAL;
1708 
1709 	emc->debugfs.temperature = temperature;
1710 
1711 	return 0;
1712 }
1713 
1714 DEFINE_DEBUGFS_ATTRIBUTE(tegra210_emc_debug_temperature_fops,
1715 			tegra210_emc_debug_temperature_get,
1716 			tegra210_emc_debug_temperature_set, "%llu\n");
1717 
tegra210_emc_debugfs_init(struct tegra210_emc * emc)1718 static void tegra210_emc_debugfs_init(struct tegra210_emc *emc)
1719 {
1720 	struct device *dev = emc->dev;
1721 	unsigned int i;
1722 	int err;
1723 
1724 	emc->debugfs.min_rate = ULONG_MAX;
1725 	emc->debugfs.max_rate = 0;
1726 
1727 	for (i = 0; i < emc->num_timings; i++) {
1728 		if (emc->timings[i].rate * 1000UL < emc->debugfs.min_rate)
1729 			emc->debugfs.min_rate = emc->timings[i].rate * 1000UL;
1730 
1731 		if (emc->timings[i].rate * 1000UL > emc->debugfs.max_rate)
1732 			emc->debugfs.max_rate = emc->timings[i].rate * 1000UL;
1733 	}
1734 
1735 	if (!emc->num_timings) {
1736 		emc->debugfs.min_rate = clk_get_rate(emc->clk);
1737 		emc->debugfs.max_rate = emc->debugfs.min_rate;
1738 	}
1739 
1740 	err = clk_set_rate_range(emc->clk, emc->debugfs.min_rate,
1741 				 emc->debugfs.max_rate);
1742 	if (err < 0) {
1743 		dev_err(dev, "failed to set rate range [%lu-%lu] for %pC\n",
1744 			emc->debugfs.min_rate, emc->debugfs.max_rate,
1745 			emc->clk);
1746 		return;
1747 	}
1748 
1749 	emc->debugfs.root = debugfs_create_dir("emc", NULL);
1750 
1751 	debugfs_create_file("available_rates", 0444, emc->debugfs.root, emc,
1752 			    &tegra210_emc_debug_available_rates_fops);
1753 	debugfs_create_file("min_rate", 0644, emc->debugfs.root, emc,
1754 			    &tegra210_emc_debug_min_rate_fops);
1755 	debugfs_create_file("max_rate", 0644, emc->debugfs.root, emc,
1756 			    &tegra210_emc_debug_max_rate_fops);
1757 	debugfs_create_file("temperature", 0644, emc->debugfs.root, emc,
1758 			    &tegra210_emc_debug_temperature_fops);
1759 }
1760 
tegra210_emc_detect(struct tegra210_emc * emc)1761 static void tegra210_emc_detect(struct tegra210_emc *emc)
1762 {
1763 	u32 value;
1764 
1765 	/* probe the number of connected DRAM devices */
1766 	value = mc_readl(emc->mc, MC_EMEM_ADR_CFG);
1767 
1768 	if (value & MC_EMEM_ADR_CFG_EMEM_NUMDEV)
1769 		emc->num_devices = 2;
1770 	else
1771 		emc->num_devices = 1;
1772 
1773 	/* probe the type of DRAM */
1774 	value = emc_readl(emc, EMC_FBIO_CFG5);
1775 	emc->dram_type = value & 0x3;
1776 
1777 	/* probe the number of channels */
1778 	value = emc_readl(emc, EMC_FBIO_CFG7);
1779 
1780 	if ((value & EMC_FBIO_CFG7_CH1_ENABLE) &&
1781 	    (value & EMC_FBIO_CFG7_CH0_ENABLE))
1782 		emc->num_channels = 2;
1783 	else
1784 		emc->num_channels = 1;
1785 }
1786 
tegra210_emc_validate_timings(struct tegra210_emc * emc,struct tegra210_emc_timing * timings,unsigned int num_timings)1787 static int tegra210_emc_validate_timings(struct tegra210_emc *emc,
1788 					 struct tegra210_emc_timing *timings,
1789 					 unsigned int num_timings)
1790 {
1791 	unsigned int i;
1792 
1793 	for (i = 0; i < num_timings; i++) {
1794 		u32 min_volt = timings[i].min_volt;
1795 		u32 rate = timings[i].rate;
1796 
1797 		if (!rate)
1798 			return -EINVAL;
1799 
1800 		if ((i > 0) && ((rate <= timings[i - 1].rate) ||
1801 		    (min_volt < timings[i - 1].min_volt)))
1802 			return -EINVAL;
1803 
1804 		if (timings[i].revision != timings[0].revision)
1805 			continue;
1806 	}
1807 
1808 	return 0;
1809 }
1810 
tegra210_emc_probe(struct platform_device * pdev)1811 static int tegra210_emc_probe(struct platform_device *pdev)
1812 {
1813 	struct thermal_cooling_device *cd;
1814 	unsigned long current_rate;
1815 	struct tegra210_emc *emc;
1816 	struct device_node *np;
1817 	unsigned int i;
1818 	int err;
1819 
1820 	emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL);
1821 	if (!emc)
1822 		return -ENOMEM;
1823 
1824 	emc->clk = devm_clk_get(&pdev->dev, "emc");
1825 	if (IS_ERR(emc->clk))
1826 		return PTR_ERR(emc->clk);
1827 
1828 	platform_set_drvdata(pdev, emc);
1829 	spin_lock_init(&emc->lock);
1830 	emc->dev = &pdev->dev;
1831 
1832 	emc->mc = devm_tegra_memory_controller_get(&pdev->dev);
1833 	if (IS_ERR(emc->mc))
1834 		return PTR_ERR(emc->mc);
1835 
1836 	emc->regs = devm_platform_ioremap_resource(pdev, 0);
1837 	if (IS_ERR(emc->regs))
1838 		return PTR_ERR(emc->regs);
1839 
1840 	for (i = 0; i < 2; i++) {
1841 		emc->channel[i] = devm_platform_ioremap_resource(pdev, 1 + i);
1842 		if (IS_ERR(emc->channel[i]))
1843 			return PTR_ERR(emc->channel[i]);
1844 
1845 	}
1846 
1847 	tegra210_emc_detect(emc);
1848 	np = pdev->dev.of_node;
1849 
1850 	/* attach to the nominal and (optional) derated tables */
1851 	err = of_reserved_mem_device_init_by_name(emc->dev, np, "nominal");
1852 	if (err < 0) {
1853 		dev_err(emc->dev, "failed to get nominal EMC table: %d\n", err);
1854 		return err;
1855 	}
1856 
1857 	err = of_reserved_mem_device_init_by_name(emc->dev, np, "derated");
1858 	if (err < 0 && err != -ENODEV) {
1859 		dev_err(emc->dev, "failed to get derated EMC table: %d\n", err);
1860 		goto release;
1861 	}
1862 
1863 	/* validate the tables */
1864 	if (emc->nominal) {
1865 		err = tegra210_emc_validate_timings(emc, emc->nominal,
1866 						    emc->num_timings);
1867 		if (err < 0)
1868 			goto release;
1869 	}
1870 
1871 	if (emc->derated) {
1872 		err = tegra210_emc_validate_timings(emc, emc->derated,
1873 						    emc->num_timings);
1874 		if (err < 0)
1875 			goto release;
1876 	}
1877 
1878 	/* default to the nominal table */
1879 	emc->timings = emc->nominal;
1880 
1881 	/* pick the current timing based on the current EMC clock rate */
1882 	current_rate = clk_get_rate(emc->clk) / 1000;
1883 
1884 	for (i = 0; i < emc->num_timings; i++) {
1885 		if (emc->timings[i].rate == current_rate) {
1886 			emc->last = &emc->timings[i];
1887 			break;
1888 		}
1889 	}
1890 
1891 	if (i == emc->num_timings) {
1892 		dev_err(emc->dev, "no EMC table entry found for %lu kHz\n",
1893 			current_rate);
1894 		err = -ENOENT;
1895 		goto release;
1896 	}
1897 
1898 	/* pick a compatible clock change sequence for the EMC table */
1899 	for (i = 0; i < ARRAY_SIZE(tegra210_emc_sequences); i++) {
1900 		const struct tegra210_emc_sequence *sequence =
1901 				tegra210_emc_sequences[i];
1902 
1903 		if (emc->timings[0].revision == sequence->revision) {
1904 			emc->sequence = sequence;
1905 			break;
1906 		}
1907 	}
1908 
1909 	if (!emc->sequence) {
1910 		dev_err(&pdev->dev, "sequence %u not supported\n",
1911 			emc->timings[0].revision);
1912 		err = -ENOTSUPP;
1913 		goto release;
1914 	}
1915 
1916 	emc->offsets = &tegra210_emc_table_register_offsets;
1917 	emc->refresh = TEGRA210_EMC_REFRESH_NOMINAL;
1918 
1919 	emc->provider.owner = THIS_MODULE;
1920 	emc->provider.dev = &pdev->dev;
1921 	emc->provider.set_rate = tegra210_emc_set_rate;
1922 
1923 	emc->provider.configs = devm_kcalloc(&pdev->dev, emc->num_timings,
1924 					     sizeof(*emc->provider.configs),
1925 					     GFP_KERNEL);
1926 	if (!emc->provider.configs) {
1927 		err = -ENOMEM;
1928 		goto release;
1929 	}
1930 
1931 	emc->provider.num_configs = emc->num_timings;
1932 
1933 	for (i = 0; i < emc->provider.num_configs; i++) {
1934 		struct tegra210_emc_timing *timing = &emc->timings[i];
1935 		struct tegra210_clk_emc_config *config =
1936 				&emc->provider.configs[i];
1937 		u32 value;
1938 
1939 		config->rate = timing->rate * 1000UL;
1940 		config->value = timing->clk_src_emc;
1941 
1942 		value = timing->burst_mc_regs[MC_EMEM_ARB_MISC0_INDEX];
1943 
1944 		if ((value & MC_EMEM_ARB_MISC0_EMC_SAME_FREQ) == 0)
1945 			config->same_freq = false;
1946 		else
1947 			config->same_freq = true;
1948 	}
1949 
1950 	err = tegra210_clk_emc_attach(emc->clk, &emc->provider);
1951 	if (err < 0) {
1952 		dev_err(&pdev->dev, "failed to attach to EMC clock: %d\n", err);
1953 		goto release;
1954 	}
1955 
1956 	emc->clkchange_delay = 100;
1957 	emc->training_interval = 100;
1958 	dev_set_drvdata(emc->dev, emc);
1959 
1960 	timer_setup(&emc->refresh_timer, tegra210_emc_poll_refresh,
1961 		    TIMER_DEFERRABLE);
1962 	atomic_set(&emc->refresh_poll, 0);
1963 	emc->refresh_poll_interval = 1000;
1964 
1965 	timer_setup(&emc->training, tegra210_emc_train, 0);
1966 
1967 	tegra210_emc_debugfs_init(emc);
1968 
1969 	cd = devm_thermal_of_cooling_device_register(emc->dev, np, "emc", emc,
1970 						     &tegra210_emc_cd_ops);
1971 	if (IS_ERR(cd)) {
1972 		err = PTR_ERR(cd);
1973 		dev_err(emc->dev, "failed to register cooling device: %d\n",
1974 			err);
1975 		goto detach;
1976 	}
1977 
1978 	return 0;
1979 
1980 detach:
1981 	debugfs_remove_recursive(emc->debugfs.root);
1982 	tegra210_clk_emc_detach(emc->clk);
1983 release:
1984 	of_reserved_mem_device_release(emc->dev);
1985 
1986 	return err;
1987 }
1988 
tegra210_emc_remove(struct platform_device * pdev)1989 static void tegra210_emc_remove(struct platform_device *pdev)
1990 {
1991 	struct tegra210_emc *emc = platform_get_drvdata(pdev);
1992 
1993 	debugfs_remove_recursive(emc->debugfs.root);
1994 	tegra210_clk_emc_detach(emc->clk);
1995 	of_reserved_mem_device_release(emc->dev);
1996 }
1997 
tegra210_emc_suspend(struct device * dev)1998 static int __maybe_unused tegra210_emc_suspend(struct device *dev)
1999 {
2000 	struct tegra210_emc *emc = dev_get_drvdata(dev);
2001 	int err;
2002 
2003 	err = clk_rate_exclusive_get(emc->clk);
2004 	if (err < 0) {
2005 		dev_err(emc->dev, "failed to acquire clock: %d\n", err);
2006 		return err;
2007 	}
2008 
2009 	emc->resume_rate = clk_get_rate(emc->clk);
2010 
2011 	clk_set_rate(emc->clk, 204000000);
2012 	tegra210_clk_emc_detach(emc->clk);
2013 
2014 	dev_dbg(dev, "suspending at %lu Hz\n", clk_get_rate(emc->clk));
2015 
2016 	return 0;
2017 }
2018 
tegra210_emc_resume(struct device * dev)2019 static int __maybe_unused tegra210_emc_resume(struct device *dev)
2020 {
2021 	struct tegra210_emc *emc = dev_get_drvdata(dev);
2022 	int err;
2023 
2024 	err = tegra210_clk_emc_attach(emc->clk, &emc->provider);
2025 	if (err < 0) {
2026 		dev_err(dev, "failed to attach to EMC clock: %d\n", err);
2027 		return err;
2028 	}
2029 
2030 	clk_set_rate(emc->clk, emc->resume_rate);
2031 	clk_rate_exclusive_put(emc->clk);
2032 
2033 	dev_dbg(dev, "resuming at %lu Hz\n", clk_get_rate(emc->clk));
2034 
2035 	return 0;
2036 }
2037 
2038 static const struct dev_pm_ops tegra210_emc_pm_ops = {
2039 	SET_SYSTEM_SLEEP_PM_OPS(tegra210_emc_suspend, tegra210_emc_resume)
2040 };
2041 
2042 static const struct of_device_id tegra210_emc_of_match[] = {
2043 	{ .compatible = "nvidia,tegra210-emc", },
2044 	{ },
2045 };
2046 MODULE_DEVICE_TABLE(of, tegra210_emc_of_match);
2047 
2048 static struct platform_driver tegra210_emc_driver = {
2049 	.driver = {
2050 		.name = "tegra210-emc",
2051 		.of_match_table = tegra210_emc_of_match,
2052 		.pm = &tegra210_emc_pm_ops,
2053 	},
2054 	.probe = tegra210_emc_probe,
2055 	.remove = tegra210_emc_remove,
2056 };
2057 
2058 module_platform_driver(tegra210_emc_driver);
2059 
2060 MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>");
2061 MODULE_AUTHOR("Joseph Lo <josephl@nvidia.com>");
2062 MODULE_DESCRIPTION("NVIDIA Tegra210 EMC driver");
2063 MODULE_LICENSE("GPL v2");
2064