xref: /linux/arch/mips/kvm/entry.c (revision 79790b6818e96c58fe2bffee1b418c16e64e7b80)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Generation of main entry point for the guest, exception handling.
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  *
11  * Copyright (C) 2016 Imagination Technologies Ltd.
12  */
13 
14 #include <linux/kvm_host.h>
15 #include <linux/log2.h>
16 #include <asm/mipsregs.h>
17 #include <asm/mmu_context.h>
18 #include <asm/msa.h>
19 #include <asm/regdef.h>
20 #include <asm/setup.h>
21 #include <asm/tlbex.h>
22 #include <asm/uasm.h>
23 
24 #define CALLFRAME_SIZ   32
25 
26 static unsigned int scratch_vcpu[2] = { C0_DDATALO };
27 static unsigned int scratch_tmp[2] = { C0_ERROREPC };
28 
29 enum label_id {
30 	label_fpu_1 = 1,
31 	label_msa_1,
32 	label_return_to_host,
33 	label_kernel_asid,
34 	label_exit_common,
35 };
36 
37 UASM_L_LA(_fpu_1)
38 UASM_L_LA(_msa_1)
39 UASM_L_LA(_return_to_host)
40 UASM_L_LA(_kernel_asid)
41 UASM_L_LA(_exit_common)
42 
43 static void *kvm_mips_build_enter_guest(void *addr);
44 static void *kvm_mips_build_ret_from_exit(void *addr);
45 static void *kvm_mips_build_ret_to_guest(void *addr);
46 static void *kvm_mips_build_ret_to_host(void *addr);
47 
48 /*
49  * The version of this function in tlbex.c uses current_cpu_type(), but for KVM
50  * we assume symmetry.
51  */
c0_kscratch(void)52 static int c0_kscratch(void)
53 {
54 	return 31;
55 }
56 
57 /**
58  * kvm_mips_entry_setup() - Perform global setup for entry code.
59  *
60  * Perform global setup for entry code, such as choosing a scratch register.
61  *
62  * Returns:	0 on success.
63  *		-errno on failure.
64  */
kvm_mips_entry_setup(void)65 int kvm_mips_entry_setup(void)
66 {
67 	/*
68 	 * We prefer to use KScratchN registers if they are available over the
69 	 * defaults above, which may not work on all cores.
70 	 */
71 	unsigned int kscratch_mask = cpu_data[0].kscratch_mask;
72 
73 	if (pgd_reg != -1)
74 		kscratch_mask &= ~BIT(pgd_reg);
75 
76 	/* Pick a scratch register for storing VCPU */
77 	if (kscratch_mask) {
78 		scratch_vcpu[0] = c0_kscratch();
79 		scratch_vcpu[1] = ffs(kscratch_mask) - 1;
80 		kscratch_mask &= ~BIT(scratch_vcpu[1]);
81 	}
82 
83 	/* Pick a scratch register to use as a temp for saving state */
84 	if (kscratch_mask) {
85 		scratch_tmp[0] = c0_kscratch();
86 		scratch_tmp[1] = ffs(kscratch_mask) - 1;
87 		kscratch_mask &= ~BIT(scratch_tmp[1]);
88 	}
89 
90 	return 0;
91 }
92 
kvm_mips_build_save_scratch(u32 ** p,unsigned int tmp,unsigned int frame)93 static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
94 					unsigned int frame)
95 {
96 	/* Save the VCPU scratch register value in cp0_epc of the stack frame */
97 	UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
98 	UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
99 
100 	/* Save the temp scratch register value in cp0_cause of stack frame */
101 	if (scratch_tmp[0] == c0_kscratch()) {
102 		UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
103 		UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
104 	}
105 }
106 
kvm_mips_build_restore_scratch(u32 ** p,unsigned int tmp,unsigned int frame)107 static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
108 					   unsigned int frame)
109 {
110 	/*
111 	 * Restore host scratch register values saved by
112 	 * kvm_mips_build_save_scratch().
113 	 */
114 	UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
115 	UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
116 
117 	if (scratch_tmp[0] == c0_kscratch()) {
118 		UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
119 		UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
120 	}
121 }
122 
123 /**
124  * build_set_exc_base() - Assemble code to write exception base address.
125  * @p:		Code buffer pointer.
126  * @reg:	Source register (generated code may set WG bit in @reg).
127  *
128  * Assemble code to modify the exception base address in the EBase register,
129  * using the appropriately sized access and setting the WG bit if necessary.
130  */
build_set_exc_base(u32 ** p,unsigned int reg)131 static inline void build_set_exc_base(u32 **p, unsigned int reg)
132 {
133 	if (cpu_has_ebase_wg) {
134 		/* Set WG so that all the bits get written */
135 		uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
136 		UASM_i_MTC0(p, reg, C0_EBASE);
137 	} else {
138 		uasm_i_mtc0(p, reg, C0_EBASE);
139 	}
140 }
141 
142 /**
143  * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
144  * @addr:	Address to start writing code.
145  *
146  * Assemble the start of the vcpu_run function to run a guest VCPU. The function
147  * conforms to the following prototype:
148  *
149  * int vcpu_run(struct kvm_vcpu *vcpu);
150  *
151  * The exit from the guest and return to the caller is handled by the code
152  * generated by kvm_mips_build_ret_to_host().
153  *
154  * Returns:	Next address after end of written function.
155  */
kvm_mips_build_vcpu_run(void * addr)156 void *kvm_mips_build_vcpu_run(void *addr)
157 {
158 	u32 *p = addr;
159 	unsigned int i;
160 
161 	/*
162 	 * GPR_A0: vcpu
163 	 */
164 
165 	/* k0/k1 not being used in host kernel context */
166 	UASM_i_ADDIU(&p, GPR_K1, GPR_SP, -(int)sizeof(struct pt_regs));
167 	for (i = 16; i < 32; ++i) {
168 		if (i == 24)
169 			i = 28;
170 		UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), GPR_K1);
171 	}
172 
173 	/* Save host status */
174 	uasm_i_mfc0(&p, GPR_V0, C0_STATUS);
175 	UASM_i_SW(&p, GPR_V0, offsetof(struct pt_regs, cp0_status), GPR_K1);
176 
177 	/* Save scratch registers, will be used to store pointer to vcpu etc */
178 	kvm_mips_build_save_scratch(&p, GPR_V1, GPR_K1);
179 
180 	/* VCPU scratch register has pointer to vcpu */
181 	UASM_i_MTC0(&p, GPR_A0, scratch_vcpu[0], scratch_vcpu[1]);
182 
183 	/* Offset into vcpu->arch */
184 	UASM_i_ADDIU(&p, GPR_K1, GPR_A0, offsetof(struct kvm_vcpu, arch));
185 
186 	/*
187 	 * Save the host stack to VCPU, used for exception processing
188 	 * when we exit from the Guest
189 	 */
190 	UASM_i_SW(&p, GPR_SP, offsetof(struct kvm_vcpu_arch, host_stack), GPR_K1);
191 
192 	/* Save the kernel gp as well */
193 	UASM_i_SW(&p, GPR_GP, offsetof(struct kvm_vcpu_arch, host_gp), GPR_K1);
194 
195 	/*
196 	 * Setup status register for running the guest in UM, interrupts
197 	 * are disabled
198 	 */
199 	UASM_i_LA(&p, GPR_K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
200 	uasm_i_mtc0(&p, GPR_K0, C0_STATUS);
201 	uasm_i_ehb(&p);
202 
203 	/* load up the new EBASE */
204 	UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, guest_ebase), GPR_K1);
205 	build_set_exc_base(&p, GPR_K0);
206 
207 	/*
208 	 * Now that the new EBASE has been loaded, unset BEV, set
209 	 * interrupt mask as it was but make sure that timer interrupts
210 	 * are enabled
211 	 */
212 	uasm_i_addiu(&p, GPR_K0, GPR_ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
213 	uasm_i_andi(&p, GPR_V0, GPR_V0, ST0_IM);
214 	uasm_i_or(&p, GPR_K0, GPR_K0, GPR_V0);
215 	uasm_i_mtc0(&p, GPR_K0, C0_STATUS);
216 	uasm_i_ehb(&p);
217 
218 	p = kvm_mips_build_enter_guest(p);
219 
220 	return p;
221 }
222 
223 /**
224  * kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
225  * @addr:	Address to start writing code.
226  *
227  * Assemble the code to resume guest execution. This code is common between the
228  * initial entry into the guest from the host, and returning from the exit
229  * handler back to the guest.
230  *
231  * Returns:	Next address after end of written function.
232  */
kvm_mips_build_enter_guest(void * addr)233 static void *kvm_mips_build_enter_guest(void *addr)
234 {
235 	u32 *p = addr;
236 	unsigned int i;
237 	struct uasm_label labels[2];
238 	struct uasm_reloc relocs[2];
239 	struct uasm_label __maybe_unused *l = labels;
240 	struct uasm_reloc __maybe_unused *r = relocs;
241 
242 	memset(labels, 0, sizeof(labels));
243 	memset(relocs, 0, sizeof(relocs));
244 
245 	/* Set Guest EPC */
246 	UASM_i_LW(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, pc), GPR_K1);
247 	UASM_i_MTC0(&p, GPR_T0, C0_EPC);
248 
249 	/* Save normal linux process pgd (VZ guarantees pgd_reg is set) */
250 	if (cpu_has_ldpte)
251 		UASM_i_MFC0(&p, GPR_K0, C0_PWBASE);
252 	else
253 		UASM_i_MFC0(&p, GPR_K0, c0_kscratch(), pgd_reg);
254 	UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, host_pgd), GPR_K1);
255 
256 	/*
257 	 * Set up KVM GPA pgd.
258 	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
259 	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
260 	 * - write mm->pgd into CP0_PWBase
261 	 *
262 	 * We keep GPR_S0 pointing at struct kvm so we can load the ASID below.
263 	 */
264 	UASM_i_LW(&p, GPR_S0, (int)offsetof(struct kvm_vcpu, kvm) -
265 			  (int)offsetof(struct kvm_vcpu, arch), GPR_K1);
266 	UASM_i_LW(&p, GPR_A0, offsetof(struct kvm, arch.gpa_mm.pgd), GPR_S0);
267 	UASM_i_LA(&p, GPR_T9, (unsigned long)tlbmiss_handler_setup_pgd);
268 	uasm_i_jalr(&p, GPR_RA, GPR_T9);
269 	/* delay slot */
270 	if (cpu_has_htw)
271 		UASM_i_MTC0(&p, GPR_A0, C0_PWBASE);
272 	else
273 		uasm_i_nop(&p);
274 
275 	/* Set GM bit to setup eret to VZ guest context */
276 	uasm_i_addiu(&p, GPR_V1, GPR_ZERO, 1);
277 	uasm_i_mfc0(&p, GPR_K0, C0_GUESTCTL0);
278 	uasm_i_ins(&p, GPR_K0, GPR_V1, MIPS_GCTL0_GM_SHIFT, 1);
279 	uasm_i_mtc0(&p, GPR_K0, C0_GUESTCTL0);
280 
281 	if (cpu_has_guestid) {
282 		/*
283 		 * Set root mode GuestID, so that root TLB refill handler can
284 		 * use the correct GuestID in the root TLB.
285 		 */
286 
287 		/* Get current GuestID */
288 		uasm_i_mfc0(&p, GPR_T0, C0_GUESTCTL1);
289 		/* Set GuestCtl1.RID = GuestCtl1.ID */
290 		uasm_i_ext(&p, GPR_T1, GPR_T0, MIPS_GCTL1_ID_SHIFT,
291 			   MIPS_GCTL1_ID_WIDTH);
292 		uasm_i_ins(&p, GPR_T0, GPR_T1, MIPS_GCTL1_RID_SHIFT,
293 			   MIPS_GCTL1_RID_WIDTH);
294 		uasm_i_mtc0(&p, GPR_T0, C0_GUESTCTL1);
295 
296 		/* GuestID handles dealiasing so we don't need to touch ASID */
297 		goto skip_asid_restore;
298 	}
299 
300 	/* Root ASID Dealias (RAD) */
301 
302 	/* Save host ASID */
303 	UASM_i_MFC0(&p, GPR_K0, C0_ENTRYHI);
304 	UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
305 		  GPR_K1);
306 
307 	/* Set the root ASID for the Guest */
308 	UASM_i_ADDIU(&p, GPR_T1, GPR_S0,
309 		     offsetof(struct kvm, arch.gpa_mm.context.asid));
310 
311 	/* t1: contains the base of the ASID array, need to get the cpu id  */
312 	/* smp_processor_id */
313 	uasm_i_lw(&p, GPR_T2, offsetof(struct thread_info, cpu), GPR_GP);
314 	/* index the ASID array */
315 	uasm_i_sll(&p, GPR_T2, GPR_T2, ilog2(sizeof(long)));
316 	UASM_i_ADDU(&p, GPR_T3, GPR_T1, GPR_T2);
317 	UASM_i_LW(&p, GPR_K0, 0, GPR_T3);
318 #ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
319 	/*
320 	 * reuse ASID array offset
321 	 * cpuinfo_mips is a multiple of sizeof(long)
322 	 */
323 	uasm_i_addiu(&p, GPR_T3, GPR_ZERO, sizeof(struct cpuinfo_mips)/sizeof(long));
324 	uasm_i_mul(&p, GPR_T2, GPR_T2, GPR_T3);
325 
326 	UASM_i_LA_mostly(&p, GPR_AT, (long)&cpu_data[0].asid_mask);
327 	UASM_i_ADDU(&p, GPR_AT, GPR_AT, GPR_T2);
328 	UASM_i_LW(&p, GPR_T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), GPR_AT);
329 	uasm_i_and(&p, GPR_K0, GPR_K0, GPR_T2);
330 #else
331 	uasm_i_andi(&p, GPR_K0, GPR_K0, MIPS_ENTRYHI_ASID);
332 #endif
333 
334 	/* Set up KVM VZ root ASID (!guestid) */
335 	uasm_i_mtc0(&p, GPR_K0, C0_ENTRYHI);
336 skip_asid_restore:
337 	uasm_i_ehb(&p);
338 
339 	/* Disable RDHWR access */
340 	uasm_i_mtc0(&p, GPR_ZERO, C0_HWRENA);
341 
342 	/* load the guest context from VCPU and return */
343 	for (i = 1; i < 32; ++i) {
344 		/* Guest k0/k1 loaded later */
345 		if (i == GPR_K0 || i == GPR_K1)
346 			continue;
347 		UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), GPR_K1);
348 	}
349 
350 #ifndef CONFIG_CPU_MIPSR6
351 	/* Restore hi/lo */
352 	UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, hi), GPR_K1);
353 	uasm_i_mthi(&p, GPR_K0);
354 
355 	UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, lo), GPR_K1);
356 	uasm_i_mtlo(&p, GPR_K0);
357 #endif
358 
359 	/* Restore the guest's k0/k1 registers */
360 	UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, gprs[GPR_K0]), GPR_K1);
361 	UASM_i_LW(&p, GPR_K1, offsetof(struct kvm_vcpu_arch, gprs[GPR_K1]), GPR_K1);
362 
363 	/* Jump to guest */
364 	uasm_i_eret(&p);
365 
366 	uasm_resolve_relocs(relocs, labels);
367 
368 	return p;
369 }
370 
371 /**
372  * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
373  * @addr:	Address to start writing code.
374  * @handler:	Address of common handler (within range of @addr).
375  *
376  * Assemble TLB refill exception fast path handler for guest execution.
377  *
378  * Returns:	Next address after end of written function.
379  */
kvm_mips_build_tlb_refill_exception(void * addr,void * handler)380 void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler)
381 {
382 	u32 *p = addr;
383 	struct uasm_label labels[2];
384 	struct uasm_reloc relocs[2];
385 #ifndef CONFIG_CPU_LOONGSON64
386 	struct uasm_label *l = labels;
387 	struct uasm_reloc *r = relocs;
388 #endif
389 
390 	memset(labels, 0, sizeof(labels));
391 	memset(relocs, 0, sizeof(relocs));
392 
393 	/* Save guest k1 into scratch register */
394 	UASM_i_MTC0(&p, GPR_K1, scratch_tmp[0], scratch_tmp[1]);
395 
396 	/* Get the VCPU pointer from the VCPU scratch register */
397 	UASM_i_MFC0(&p, GPR_K1, scratch_vcpu[0], scratch_vcpu[1]);
398 
399 	/* Save guest k0 into VCPU structure */
400 	UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu, arch.gprs[GPR_K0]), GPR_K1);
401 
402 	/*
403 	 * Some of the common tlbex code uses current_cpu_type(). For KVM we
404 	 * assume symmetry and just disable preemption to silence the warning.
405 	 */
406 	preempt_disable();
407 
408 #ifdef CONFIG_CPU_LOONGSON64
409 	UASM_i_MFC0(&p, GPR_K1, C0_PGD);
410 	uasm_i_lddir(&p, GPR_K0, GPR_K1, 3);  /* global page dir */
411 #ifndef __PAGETABLE_PMD_FOLDED
412 	uasm_i_lddir(&p, GPR_K1, GPR_K0, 1);  /* middle page dir */
413 #endif
414 	uasm_i_ldpte(&p, GPR_K1, 0);      /* even */
415 	uasm_i_ldpte(&p, GPR_K1, 1);      /* odd */
416 	uasm_i_tlbwr(&p);
417 #else
418 	/*
419 	 * Now for the actual refill bit. A lot of this can be common with the
420 	 * Linux TLB refill handler, however we don't need to handle so many
421 	 * cases. We only need to handle user mode refills, and user mode runs
422 	 * with 32-bit addressing.
423 	 *
424 	 * Therefore the branch to label_vmalloc generated by build_get_pmde64()
425 	 * that isn't resolved should never actually get taken and is harmless
426 	 * to leave in place for now.
427 	 */
428 
429 #ifdef CONFIG_64BIT
430 	build_get_pmde64(&p, &l, &r, GPR_K0, GPR_K1); /* get pmd in GPR_K1 */
431 #else
432 	build_get_pgde32(&p, GPR_K0, GPR_K1); /* get pgd in GPR_K1 */
433 #endif
434 
435 	/* we don't support huge pages yet */
436 
437 	build_get_ptep(&p, GPR_K0, GPR_K1);
438 	build_update_entries(&p, GPR_K0, GPR_K1);
439 	build_tlb_write_entry(&p, &l, &r, tlb_random);
440 #endif
441 
442 	preempt_enable();
443 
444 	/* Get the VCPU pointer from the VCPU scratch register again */
445 	UASM_i_MFC0(&p, GPR_K1, scratch_vcpu[0], scratch_vcpu[1]);
446 
447 	/* Restore the guest's k0/k1 registers */
448 	UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu, arch.gprs[GPR_K0]), GPR_K1);
449 	uasm_i_ehb(&p);
450 	UASM_i_MFC0(&p, GPR_K1, scratch_tmp[0], scratch_tmp[1]);
451 
452 	/* Jump to guest */
453 	uasm_i_eret(&p);
454 
455 	return p;
456 }
457 
458 /**
459  * kvm_mips_build_exception() - Assemble first level guest exception handler.
460  * @addr:	Address to start writing code.
461  * @handler:	Address of common handler (within range of @addr).
462  *
463  * Assemble exception vector code for guest execution. The generated vector will
464  * branch to the common exception handler generated by kvm_mips_build_exit().
465  *
466  * Returns:	Next address after end of written function.
467  */
kvm_mips_build_exception(void * addr,void * handler)468 void *kvm_mips_build_exception(void *addr, void *handler)
469 {
470 	u32 *p = addr;
471 	struct uasm_label labels[2];
472 	struct uasm_reloc relocs[2];
473 	struct uasm_label *l = labels;
474 	struct uasm_reloc *r = relocs;
475 
476 	memset(labels, 0, sizeof(labels));
477 	memset(relocs, 0, sizeof(relocs));
478 
479 	/* Save guest k1 into scratch register */
480 	UASM_i_MTC0(&p, GPR_K1, scratch_tmp[0], scratch_tmp[1]);
481 
482 	/* Get the VCPU pointer from the VCPU scratch register */
483 	UASM_i_MFC0(&p, GPR_K1, scratch_vcpu[0], scratch_vcpu[1]);
484 	UASM_i_ADDIU(&p, GPR_K1, GPR_K1, offsetof(struct kvm_vcpu, arch));
485 
486 	/* Save guest k0 into VCPU structure */
487 	UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, gprs[GPR_K0]), GPR_K1);
488 
489 	/* Branch to the common handler */
490 	uasm_il_b(&p, &r, label_exit_common);
491 	 uasm_i_nop(&p);
492 
493 	uasm_l_exit_common(&l, handler);
494 	uasm_resolve_relocs(relocs, labels);
495 
496 	return p;
497 }
498 
499 /**
500  * kvm_mips_build_exit() - Assemble common guest exit handler.
501  * @addr:	Address to start writing code.
502  *
503  * Assemble the generic guest exit handling code. This is called by the
504  * exception vectors (generated by kvm_mips_build_exception()), and calls
505  * kvm_mips_handle_exit(), then either resumes the guest or returns to the host
506  * depending on the return value.
507  *
508  * Returns:	Next address after end of written function.
509  */
kvm_mips_build_exit(void * addr)510 void *kvm_mips_build_exit(void *addr)
511 {
512 	u32 *p = addr;
513 	unsigned int i;
514 	struct uasm_label labels[3];
515 	struct uasm_reloc relocs[3];
516 	struct uasm_label *l = labels;
517 	struct uasm_reloc *r = relocs;
518 
519 	memset(labels, 0, sizeof(labels));
520 	memset(relocs, 0, sizeof(relocs));
521 
522 	/*
523 	 * Generic Guest exception handler. We end up here when the guest
524 	 * does something that causes a trap to kernel mode.
525 	 *
526 	 * Both k0/k1 registers will have already been saved (k0 into the vcpu
527 	 * structure, and k1 into the scratch_tmp register).
528 	 *
529 	 * The k1 register will already contain the kvm_vcpu_arch pointer.
530 	 */
531 
532 	/* Start saving Guest context to VCPU */
533 	for (i = 0; i < 32; ++i) {
534 		/* Guest k0/k1 saved later */
535 		if (i == GPR_K0 || i == GPR_K1)
536 			continue;
537 		UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), GPR_K1);
538 	}
539 
540 #ifndef CONFIG_CPU_MIPSR6
541 	/* We need to save hi/lo and restore them on the way out */
542 	uasm_i_mfhi(&p, GPR_T0);
543 	UASM_i_SW(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, hi), GPR_K1);
544 
545 	uasm_i_mflo(&p, GPR_T0);
546 	UASM_i_SW(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, lo), GPR_K1);
547 #endif
548 
549 	/* Finally save guest k1 to VCPU */
550 	uasm_i_ehb(&p);
551 	UASM_i_MFC0(&p, GPR_T0, scratch_tmp[0], scratch_tmp[1]);
552 	UASM_i_SW(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, gprs[GPR_K1]), GPR_K1);
553 
554 	/* Now that context has been saved, we can use other registers */
555 
556 	/* Restore vcpu */
557 	UASM_i_MFC0(&p, GPR_S0, scratch_vcpu[0], scratch_vcpu[1]);
558 
559 	/*
560 	 * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
561 	 * the exception
562 	 */
563 	UASM_i_MFC0(&p, GPR_K0, C0_EPC);
564 	UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, pc), GPR_K1);
565 
566 	UASM_i_MFC0(&p, GPR_K0, C0_BADVADDR);
567 	UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
568 		  GPR_K1);
569 
570 	uasm_i_mfc0(&p, GPR_K0, C0_CAUSE);
571 	uasm_i_sw(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), GPR_K1);
572 
573 	if (cpu_has_badinstr) {
574 		uasm_i_mfc0(&p, GPR_K0, C0_BADINSTR);
575 		uasm_i_sw(&p, GPR_K0, offsetof(struct kvm_vcpu_arch,
576 					   host_cp0_badinstr), GPR_K1);
577 	}
578 
579 	if (cpu_has_badinstrp) {
580 		uasm_i_mfc0(&p, GPR_K0, C0_BADINSTRP);
581 		uasm_i_sw(&p, GPR_K0, offsetof(struct kvm_vcpu_arch,
582 					   host_cp0_badinstrp), GPR_K1);
583 	}
584 
585 	/* Now restore the host state just enough to run the handlers */
586 
587 	/* Switch EBASE to the one used by Linux */
588 	/* load up the host EBASE */
589 	uasm_i_mfc0(&p, GPR_V0, C0_STATUS);
590 
591 	uasm_i_lui(&p, GPR_AT, ST0_BEV >> 16);
592 	uasm_i_or(&p, GPR_K0, GPR_V0, GPR_AT);
593 
594 	uasm_i_mtc0(&p, GPR_K0, C0_STATUS);
595 	uasm_i_ehb(&p);
596 
597 	UASM_i_LA_mostly(&p, GPR_K0, (long)&ebase);
598 	UASM_i_LW(&p, GPR_K0, uasm_rel_lo((long)&ebase), GPR_K0);
599 	build_set_exc_base(&p, GPR_K0);
600 
601 	if (raw_cpu_has_fpu) {
602 		/*
603 		 * If FPU is enabled, save FCR31 and clear it so that later
604 		 * ctc1's don't trigger FPE for pending exceptions.
605 		 */
606 		uasm_i_lui(&p, GPR_AT, ST0_CU1 >> 16);
607 		uasm_i_and(&p, GPR_V1, GPR_V0, GPR_AT);
608 		uasm_il_beqz(&p, &r, GPR_V1, label_fpu_1);
609 		 uasm_i_nop(&p);
610 		uasm_i_cfc1(&p, GPR_T0, 31);
611 		uasm_i_sw(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
612 			  GPR_K1);
613 		uasm_i_ctc1(&p, GPR_ZERO, 31);
614 		uasm_l_fpu_1(&l, p);
615 	}
616 
617 	if (cpu_has_msa) {
618 		/*
619 		 * If MSA is enabled, save MSACSR and clear it so that later
620 		 * instructions don't trigger MSAFPE for pending exceptions.
621 		 */
622 		uasm_i_mfc0(&p, GPR_T0, C0_CONFIG5);
623 		uasm_i_ext(&p, GPR_T0, GPR_T0, 27, 1); /* MIPS_CONF5_MSAEN */
624 		uasm_il_beqz(&p, &r, GPR_T0, label_msa_1);
625 		 uasm_i_nop(&p);
626 		uasm_i_cfcmsa(&p, GPR_T0, MSA_CSR);
627 		uasm_i_sw(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
628 			  GPR_K1);
629 		uasm_i_ctcmsa(&p, MSA_CSR, GPR_ZERO);
630 		uasm_l_msa_1(&l, p);
631 	}
632 
633 	/* Restore host ASID */
634 	if (!cpu_has_guestid) {
635 		UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
636 			  GPR_K1);
637 		UASM_i_MTC0(&p, GPR_K0, C0_ENTRYHI);
638 	}
639 
640 	/*
641 	 * Set up normal Linux process pgd.
642 	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
643 	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
644 	 * - write mm->pgd into CP0_PWBase
645 	 */
646 	UASM_i_LW(&p, GPR_A0,
647 		  offsetof(struct kvm_vcpu_arch, host_pgd), GPR_K1);
648 	UASM_i_LA(&p, GPR_T9, (unsigned long)tlbmiss_handler_setup_pgd);
649 	uasm_i_jalr(&p, GPR_RA, GPR_T9);
650 	/* delay slot */
651 	if (cpu_has_htw)
652 		UASM_i_MTC0(&p, GPR_A0, C0_PWBASE);
653 	else
654 		uasm_i_nop(&p);
655 
656 	/* Clear GM bit so we don't enter guest mode when EXL is cleared */
657 	uasm_i_mfc0(&p, GPR_K0, C0_GUESTCTL0);
658 	uasm_i_ins(&p, GPR_K0, GPR_ZERO, MIPS_GCTL0_GM_SHIFT, 1);
659 	uasm_i_mtc0(&p, GPR_K0, C0_GUESTCTL0);
660 
661 	/* Save GuestCtl0 so we can access GExcCode after CPU migration */
662 	uasm_i_sw(&p, GPR_K0,
663 		  offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), GPR_K1);
664 
665 	if (cpu_has_guestid) {
666 		/*
667 		 * Clear root mode GuestID, so that root TLB operations use the
668 		 * root GuestID in the root TLB.
669 		 */
670 		uasm_i_mfc0(&p, GPR_T0, C0_GUESTCTL1);
671 		/* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */
672 		uasm_i_ins(&p, GPR_T0, GPR_ZERO, MIPS_GCTL1_RID_SHIFT,
673 			   MIPS_GCTL1_RID_WIDTH);
674 		uasm_i_mtc0(&p, GPR_T0, C0_GUESTCTL1);
675 	}
676 
677 	/* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
678 	uasm_i_addiu(&p, GPR_AT, GPR_ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
679 	uasm_i_and(&p, GPR_V0, GPR_V0, GPR_AT);
680 	uasm_i_lui(&p, GPR_AT, ST0_CU0 >> 16);
681 	uasm_i_or(&p, GPR_V0, GPR_V0, GPR_AT);
682 #ifdef CONFIG_64BIT
683 	uasm_i_ori(&p, GPR_V0, GPR_V0, ST0_SX | ST0_UX);
684 #endif
685 	uasm_i_mtc0(&p, GPR_V0, C0_STATUS);
686 	uasm_i_ehb(&p);
687 
688 	/* Load up host GPR_GP */
689 	UASM_i_LW(&p, GPR_GP, offsetof(struct kvm_vcpu_arch, host_gp), GPR_K1);
690 
691 	/* Need a stack before we can jump to "C" */
692 	UASM_i_LW(&p, GPR_SP, offsetof(struct kvm_vcpu_arch, host_stack), GPR_K1);
693 
694 	/* Saved host state */
695 	UASM_i_ADDIU(&p, GPR_SP, GPR_SP, -(int)sizeof(struct pt_regs));
696 
697 	/*
698 	 * XXXKYMA do we need to load the host ASID, maybe not because the
699 	 * kernel entries are marked GLOBAL, need to verify
700 	 */
701 
702 	/* Restore host scratch registers, as we'll have clobbered them */
703 	kvm_mips_build_restore_scratch(&p, GPR_K0, GPR_SP);
704 
705 	/* Restore RDHWR access */
706 	UASM_i_LA_mostly(&p, GPR_K0, (long)&hwrena);
707 	uasm_i_lw(&p, GPR_K0, uasm_rel_lo((long)&hwrena), GPR_K0);
708 	uasm_i_mtc0(&p, GPR_K0, C0_HWRENA);
709 
710 	/* Jump to handler */
711 	/*
712 	 * XXXKYMA: not sure if this is safe, how large is the stack??
713 	 * Now jump to the kvm_mips_handle_exit() to see if we can deal
714 	 * with this in the kernel
715 	 */
716 	uasm_i_move(&p, GPR_A0, GPR_S0);
717 	UASM_i_LA(&p, GPR_T9, (unsigned long)kvm_mips_handle_exit);
718 	uasm_i_jalr(&p, GPR_RA, GPR_T9);
719 	 UASM_i_ADDIU(&p, GPR_SP, GPR_SP, -CALLFRAME_SIZ);
720 
721 	uasm_resolve_relocs(relocs, labels);
722 
723 	p = kvm_mips_build_ret_from_exit(p);
724 
725 	return p;
726 }
727 
728 /**
729  * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
730  * @addr:	Address to start writing code.
731  *
732  * Assemble the code to handle the return from kvm_mips_handle_exit(), either
733  * resuming the guest or returning to the host depending on the return value.
734  *
735  * Returns:	Next address after end of written function.
736  */
kvm_mips_build_ret_from_exit(void * addr)737 static void *kvm_mips_build_ret_from_exit(void *addr)
738 {
739 	u32 *p = addr;
740 	struct uasm_label labels[2];
741 	struct uasm_reloc relocs[2];
742 	struct uasm_label *l = labels;
743 	struct uasm_reloc *r = relocs;
744 
745 	memset(labels, 0, sizeof(labels));
746 	memset(relocs, 0, sizeof(relocs));
747 
748 	/* Return from handler Make sure interrupts are disabled */
749 	uasm_i_di(&p, GPR_ZERO);
750 	uasm_i_ehb(&p);
751 
752 	/*
753 	 * XXXKYMA: k0/k1 could have been blown away if we processed
754 	 * an exception while we were handling the exception from the
755 	 * guest, reload k1
756 	 */
757 
758 	uasm_i_move(&p, GPR_K1, GPR_S0);
759 	UASM_i_ADDIU(&p, GPR_K1, GPR_K1, offsetof(struct kvm_vcpu, arch));
760 
761 	/*
762 	 * Check return value, should tell us if we are returning to the
763 	 * host (handle I/O etc)or resuming the guest
764 	 */
765 	uasm_i_andi(&p, GPR_T0, GPR_V0, RESUME_HOST);
766 	uasm_il_bnez(&p, &r, GPR_T0, label_return_to_host);
767 	 uasm_i_nop(&p);
768 
769 	p = kvm_mips_build_ret_to_guest(p);
770 
771 	uasm_l_return_to_host(&l, p);
772 	p = kvm_mips_build_ret_to_host(p);
773 
774 	uasm_resolve_relocs(relocs, labels);
775 
776 	return p;
777 }
778 
779 /**
780  * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
781  * @addr:	Address to start writing code.
782  *
783  * Assemble the code to handle return from the guest exit handler
784  * (kvm_mips_handle_exit()) back to the guest.
785  *
786  * Returns:	Next address after end of written function.
787  */
kvm_mips_build_ret_to_guest(void * addr)788 static void *kvm_mips_build_ret_to_guest(void *addr)
789 {
790 	u32 *p = addr;
791 
792 	/* Put the saved pointer to vcpu (s0) back into the scratch register */
793 	UASM_i_MTC0(&p, GPR_S0, scratch_vcpu[0], scratch_vcpu[1]);
794 
795 	/* Load up the Guest EBASE to minimize the window where BEV is set */
796 	UASM_i_LW(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, guest_ebase), GPR_K1);
797 
798 	/* Switch EBASE back to the one used by KVM */
799 	uasm_i_mfc0(&p, GPR_V1, C0_STATUS);
800 	uasm_i_lui(&p, GPR_AT, ST0_BEV >> 16);
801 	uasm_i_or(&p, GPR_K0, GPR_V1, GPR_AT);
802 	uasm_i_mtc0(&p, GPR_K0, C0_STATUS);
803 	uasm_i_ehb(&p);
804 	build_set_exc_base(&p, GPR_T0);
805 
806 	/* Setup status register for running guest in UM */
807 	uasm_i_ori(&p, GPR_V1, GPR_V1, ST0_EXL | KSU_USER | ST0_IE);
808 	UASM_i_LA(&p, GPR_AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
809 	uasm_i_and(&p, GPR_V1, GPR_V1, GPR_AT);
810 	uasm_i_mtc0(&p, GPR_V1, C0_STATUS);
811 	uasm_i_ehb(&p);
812 
813 	p = kvm_mips_build_enter_guest(p);
814 
815 	return p;
816 }
817 
818 /**
819  * kvm_mips_build_ret_to_host() - Assemble code to return to the host.
820  * @addr:	Address to start writing code.
821  *
822  * Assemble the code to handle return from the guest exit handler
823  * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
824  * function generated by kvm_mips_build_vcpu_run().
825  *
826  * Returns:	Next address after end of written function.
827  */
kvm_mips_build_ret_to_host(void * addr)828 static void *kvm_mips_build_ret_to_host(void *addr)
829 {
830 	u32 *p = addr;
831 	unsigned int i;
832 
833 	/* EBASE is already pointing to Linux */
834 	UASM_i_LW(&p, GPR_K1, offsetof(struct kvm_vcpu_arch, host_stack), GPR_K1);
835 	UASM_i_ADDIU(&p, GPR_K1, GPR_K1, -(int)sizeof(struct pt_regs));
836 
837 	/*
838 	 * r2/v0 is the return code, shift it down by 2 (arithmetic)
839 	 * to recover the err code
840 	 */
841 	uasm_i_sra(&p, GPR_K0, GPR_V0, 2);
842 	uasm_i_move(&p, GPR_V0, GPR_K0);
843 
844 	/* Load context saved on the host stack */
845 	for (i = 16; i < 31; ++i) {
846 		if (i == 24)
847 			i = 28;
848 		UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), GPR_K1);
849 	}
850 
851 	/* Restore RDHWR access */
852 	UASM_i_LA_mostly(&p, GPR_K0, (long)&hwrena);
853 	uasm_i_lw(&p, GPR_K0, uasm_rel_lo((long)&hwrena), GPR_K0);
854 	uasm_i_mtc0(&p, GPR_K0, C0_HWRENA);
855 
856 	/* Restore GPR_RA, which is the address we will return to */
857 	UASM_i_LW(&p, GPR_RA, offsetof(struct pt_regs, regs[GPR_RA]), GPR_K1);
858 	uasm_i_jr(&p, GPR_RA);
859 	 uasm_i_nop(&p);
860 
861 	return p;
862 }
863 
864