xref: /linux/arch/mips/kernel/smp-cps.c (revision 67faad74352d1ce0c1f411f92fdb1e0c0f3c9380)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2013 Imagination Technologies
4  * Author: Paul Burton <paul.burton@mips.com>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/delay.h>
9 #include <linux/io.h>
10 #include <linux/memblock.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/slab.h>
14 #include <linux/smp.h>
15 #include <linux/types.h>
16 #include <linux/irq.h>
17 
18 #include <asm/bcache.h>
19 #include <asm/mips-cps.h>
20 #include <asm/mips_mt.h>
21 #include <asm/mipsregs.h>
22 #include <asm/pm-cps.h>
23 #include <asm/r4kcache.h>
24 #include <asm/regdef.h>
25 #include <asm/smp.h>
26 #include <asm/smp-cps.h>
27 #include <asm/time.h>
28 #include <asm/uasm.h>
29 
30 #define BEV_VEC_SIZE	0x500
31 #define BEV_VEC_ALIGN	0x1000
32 
33 enum label_id {
34 	label_not_nmi = 1,
35 };
36 
37 UASM_L_LA(_not_nmi)
38 
39 static u64 core_entry_reg;
40 static phys_addr_t cps_vec_pa;
41 
42 struct cluster_boot_config *mips_cps_cluster_bootcfg;
43 
power_up_other_cluster(unsigned int cluster)44 static void power_up_other_cluster(unsigned int cluster)
45 {
46 	u32 stat, seq_state;
47 	unsigned int timeout;
48 
49 	mips_cm_lock_other(cluster, CM_GCR_Cx_OTHER_CORE_CM, 0,
50 			   CM_GCR_Cx_OTHER_BLOCK_LOCAL);
51 	stat = read_cpc_co_stat_conf();
52 	mips_cm_unlock_other();
53 
54 	seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
55 	seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
56 	if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U5)
57 		return;
58 
59 	/* Set endianness & power up the CM */
60 	mips_cm_lock_other(cluster, 0, 0, CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
61 	write_cpc_redir_sys_config(IS_ENABLED(CONFIG_CPU_BIG_ENDIAN));
62 	write_cpc_redir_pwrup_ctl(1);
63 	mips_cm_unlock_other();
64 
65 	/* Wait for the CM to start up */
66 	timeout = 1000;
67 	mips_cm_lock_other(cluster, CM_GCR_Cx_OTHER_CORE_CM, 0,
68 			   CM_GCR_Cx_OTHER_BLOCK_LOCAL);
69 	while (1) {
70 		stat = read_cpc_co_stat_conf();
71 		seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
72 		seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
73 		if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U5)
74 			break;
75 
76 		if (timeout) {
77 			mdelay(1);
78 			timeout--;
79 		} else {
80 			pr_warn("Waiting for cluster %u CM to power up... STAT_CONF=0x%x\n",
81 				cluster, stat);
82 			mdelay(1000);
83 		}
84 	}
85 
86 	mips_cm_unlock_other();
87 }
88 
core_vpe_count(unsigned int cluster,unsigned core)89 static unsigned __init core_vpe_count(unsigned int cluster, unsigned core)
90 {
91 	return min(smp_max_threads, mips_cps_numvps(cluster, core));
92 }
93 
mips_cps_build_core_entry(void * addr)94 static void __init *mips_cps_build_core_entry(void *addr)
95 {
96 	extern void (*nmi_handler)(void);
97 	u32 *p = addr;
98 	u32 val;
99 	struct uasm_label labels[2];
100 	struct uasm_reloc relocs[2];
101 	struct uasm_label *l = labels;
102 	struct uasm_reloc *r = relocs;
103 
104 	memset(labels, 0, sizeof(labels));
105 	memset(relocs, 0, sizeof(relocs));
106 
107 	uasm_i_mfc0(&p, GPR_K0, C0_STATUS);
108 	UASM_i_LA(&p, GPR_T9, ST0_NMI);
109 	uasm_i_and(&p, GPR_K0, GPR_K0, GPR_T9);
110 
111 	uasm_il_bnez(&p, &r, GPR_K0, label_not_nmi);
112 	uasm_i_nop(&p);
113 	UASM_i_LA(&p, GPR_K0, (long)&nmi_handler);
114 
115 	uasm_l_not_nmi(&l, p);
116 
117 	val = CAUSEF_IV;
118 	uasm_i_lui(&p, GPR_K0, val >> 16);
119 	uasm_i_ori(&p, GPR_K0, GPR_K0, val & 0xffff);
120 	uasm_i_mtc0(&p, GPR_K0, C0_CAUSE);
121 	val = ST0_CU1 | ST0_CU0 | ST0_BEV | ST0_KX_IF_64;
122 	uasm_i_lui(&p, GPR_K0, val >> 16);
123 	uasm_i_ori(&p, GPR_K0, GPR_K0, val & 0xffff);
124 	uasm_i_mtc0(&p, GPR_K0, C0_STATUS);
125 	uasm_i_ehb(&p);
126 	uasm_i_ori(&p, GPR_A0, 0, read_c0_config() & CONF_CM_CMASK);
127 	UASM_i_LA(&p, GPR_A1, (long)mips_gcr_base);
128 #if defined(KBUILD_64BIT_SYM32) || defined(CONFIG_32BIT)
129 	UASM_i_LA(&p, GPR_T9, CKSEG1ADDR(__pa_symbol(mips_cps_core_boot)));
130 #else
131 	UASM_i_LA(&p, GPR_T9, TO_UNCAC(__pa_symbol(mips_cps_core_boot)));
132 #endif
133 	uasm_i_jr(&p, GPR_T9);
134 	uasm_i_nop(&p);
135 
136 	uasm_resolve_relocs(relocs, labels);
137 
138 	return p;
139 }
140 
check_64bit_reset(void)141 static bool __init check_64bit_reset(void)
142 {
143 	bool cx_64bit_reset = false;
144 
145 	mips_cm_lock_other(0, 0, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
146 	write_gcr_co_reset64_base(CM_GCR_Cx_RESET64_BASE_BEVEXCBASE);
147 	if ((read_gcr_co_reset64_base() & CM_GCR_Cx_RESET64_BASE_BEVEXCBASE) ==
148 	    CM_GCR_Cx_RESET64_BASE_BEVEXCBASE)
149 		cx_64bit_reset = true;
150 	mips_cm_unlock_other();
151 
152 	return cx_64bit_reset;
153 }
154 
allocate_cps_vecs(void)155 static int __init allocate_cps_vecs(void)
156 {
157 	/* Try to allocate in KSEG1 first */
158 	cps_vec_pa = memblock_phys_alloc_range(BEV_VEC_SIZE, BEV_VEC_ALIGN,
159 						0x0, CSEGX_SIZE - 1);
160 
161 	if (cps_vec_pa)
162 		core_entry_reg = CKSEG1ADDR(cps_vec_pa) &
163 					CM_GCR_Cx_RESET_BASE_BEVEXCBASE;
164 
165 	if (!cps_vec_pa && mips_cm_is64) {
166 		phys_addr_t end;
167 
168 		if (check_64bit_reset()) {
169 			pr_info("VP Local Reset Exception Base support 47 bits address\n");
170 			end = MEMBLOCK_ALLOC_ANYWHERE;
171 		} else {
172 			end = SZ_4G - 1;
173 		}
174 		cps_vec_pa = memblock_phys_alloc_range(BEV_VEC_SIZE, BEV_VEC_ALIGN, 0, end);
175 		if (cps_vec_pa) {
176 			if (check_64bit_reset())
177 				core_entry_reg = (cps_vec_pa & CM_GCR_Cx_RESET64_BASE_BEVEXCBASE) |
178 					CM_GCR_Cx_RESET_BASE_MODE;
179 			else
180 				core_entry_reg = (cps_vec_pa & CM_GCR_Cx_RESET_BASE_BEVEXCBASE) |
181 					CM_GCR_Cx_RESET_BASE_MODE;
182 		}
183 	}
184 
185 	if (!cps_vec_pa)
186 		return -ENOMEM;
187 
188 	return 0;
189 }
190 
setup_cps_vecs(void)191 static void __init setup_cps_vecs(void)
192 {
193 	void *cps_vec;
194 
195 	cps_vec = (void *)CKSEG1ADDR_OR_64BIT(cps_vec_pa);
196 	mips_cps_build_core_entry(cps_vec);
197 
198 	memcpy(cps_vec + 0x200, &excep_tlbfill, 0x80);
199 	memcpy(cps_vec + 0x280, &excep_xtlbfill, 0x80);
200 	memcpy(cps_vec + 0x300, &excep_cache, 0x80);
201 	memcpy(cps_vec + 0x380, &excep_genex, 0x80);
202 	memcpy(cps_vec + 0x400, &excep_intex, 0x80);
203 	memcpy(cps_vec + 0x480, &excep_ejtag, 0x80);
204 
205 	/* Make sure no prefetched data in cache */
206 	blast_inv_dcache_range(CKSEG0ADDR_OR_64BIT(cps_vec_pa), CKSEG0ADDR_OR_64BIT(cps_vec_pa) + BEV_VEC_SIZE);
207 	bc_inv(CKSEG0ADDR_OR_64BIT(cps_vec_pa), BEV_VEC_SIZE);
208 	__sync();
209 }
210 
cps_smp_setup(void)211 static void __init cps_smp_setup(void)
212 {
213 	unsigned int nclusters, ncores, nvpes, core_vpes;
214 	int cl, c, v;
215 
216 	/* Detect & record VPE topology */
217 	nvpes = 0;
218 	nclusters = mips_cps_numclusters();
219 	pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
220 	for (cl = 0; cl < nclusters; cl++) {
221 		if (cl > 0)
222 			pr_cont(",");
223 		pr_cont("{");
224 
225 		if (mips_cm_revision() >= CM_REV_CM3_5)
226 			power_up_other_cluster(cl);
227 
228 		ncores = mips_cps_numcores(cl);
229 		for (c = 0; c < ncores; c++) {
230 			core_vpes = core_vpe_count(cl, c);
231 
232 			if (c > 0)
233 				pr_cont(",");
234 			pr_cont("%u", core_vpes);
235 
236 			/* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
237 			if (!cl && !c)
238 				smp_num_siblings = core_vpes;
239 			cpumask_set_cpu(nvpes, &__cpu_primary_thread_mask);
240 
241 			for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
242 				cpu_set_cluster(&cpu_data[nvpes + v], cl);
243 				cpu_set_core(&cpu_data[nvpes + v], c);
244 				cpu_set_vpe_id(&cpu_data[nvpes + v], v);
245 			}
246 
247 			nvpes += core_vpes;
248 		}
249 
250 		pr_cont("}");
251 	}
252 	pr_cont(" total %u\n", nvpes);
253 
254 	/* Indicate present CPUs (CPU being synonymous with VPE) */
255 	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
256 		set_cpu_possible(v, true);
257 		set_cpu_present(v, true);
258 		__cpu_number_map[v] = v;
259 		__cpu_logical_map[v] = v;
260 	}
261 
262 	/* Set a coherent default CCA (CWB) */
263 	change_c0_config(CONF_CM_CMASK, 0x5);
264 
265 	/* Initialise core 0 */
266 	mips_cps_core_init();
267 
268 	/* Make core 0 coherent with everything */
269 	write_gcr_cl_coherence(0xff);
270 
271 	if (allocate_cps_vecs())
272 		pr_err("Failed to allocate CPS vectors\n");
273 
274 	if (core_entry_reg && mips_cm_revision() >= CM_REV_CM3)
275 		write_gcr_bev_base(core_entry_reg);
276 
277 #ifdef CONFIG_MIPS_MT_FPAFF
278 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
279 	if (cpu_has_fpu)
280 		cpumask_set_cpu(0, &mt_fpu_cpumask);
281 #endif /* CONFIG_MIPS_MT_FPAFF */
282 }
283 
cps_prepare_cpus(unsigned int max_cpus)284 static void __init cps_prepare_cpus(unsigned int max_cpus)
285 {
286 	unsigned int nclusters, ncores, core_vpes, c, cl, cca;
287 	bool cca_unsuitable, cores_limited;
288 	struct cluster_boot_config *cluster_bootcfg;
289 	struct core_boot_config *core_bootcfg;
290 
291 	mips_mt_set_cpuoptions();
292 
293 	if (!core_entry_reg) {
294 		pr_err("core_entry address unsuitable, disabling smp-cps\n");
295 		goto err_out;
296 	}
297 
298 	/* Detect whether the CCA is unsuited to multi-core SMP */
299 	cca = read_c0_config() & CONF_CM_CMASK;
300 	switch (cca) {
301 	case 0x4: /* CWBE */
302 	case 0x5: /* CWB */
303 		/* The CCA is coherent, multi-core is fine */
304 		cca_unsuitable = false;
305 		break;
306 
307 	default:
308 		/* CCA is not coherent, multi-core is not usable */
309 		cca_unsuitable = true;
310 	}
311 
312 	/* Warn the user if the CCA prevents multi-core */
313 	cores_limited = false;
314 	if (cca_unsuitable || cpu_has_dc_aliases) {
315 		for_each_present_cpu(c) {
316 			if (cpus_are_siblings(smp_processor_id(), c))
317 				continue;
318 
319 			set_cpu_present(c, false);
320 			cores_limited = true;
321 		}
322 	}
323 	if (cores_limited)
324 		pr_warn("Using only one core due to %s%s%s\n",
325 			cca_unsuitable ? "unsuitable CCA" : "",
326 			(cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
327 			cpu_has_dc_aliases ? "dcache aliasing" : "");
328 
329 	setup_cps_vecs();
330 
331 	/* Allocate cluster boot configuration structs */
332 	nclusters = mips_cps_numclusters();
333 	mips_cps_cluster_bootcfg = kcalloc(nclusters,
334 					   sizeof(*mips_cps_cluster_bootcfg),
335 					   GFP_KERNEL);
336 	if (!mips_cps_cluster_bootcfg)
337 		goto err_out;
338 
339 	if (nclusters > 1)
340 		mips_cm_update_property();
341 
342 	for (cl = 0; cl < nclusters; cl++) {
343 		/* Allocate core boot configuration structs */
344 		ncores = mips_cps_numcores(cl);
345 		core_bootcfg = kcalloc(ncores, sizeof(*core_bootcfg),
346 					GFP_KERNEL);
347 		if (!core_bootcfg)
348 			goto err_out;
349 		mips_cps_cluster_bootcfg[cl].core_config = core_bootcfg;
350 
351 		mips_cps_cluster_bootcfg[cl].core_power =
352 			kcalloc(BITS_TO_LONGS(ncores), sizeof(unsigned long),
353 				GFP_KERNEL);
354 		if (!mips_cps_cluster_bootcfg[cl].core_power)
355 			goto err_out;
356 
357 		/* Allocate VPE boot configuration structs */
358 		for (c = 0; c < ncores; c++) {
359 			core_vpes = core_vpe_count(cl, c);
360 			core_bootcfg[c].vpe_config = kcalloc(core_vpes,
361 					sizeof(*core_bootcfg[c].vpe_config),
362 					GFP_KERNEL);
363 			if (!core_bootcfg[c].vpe_config)
364 				goto err_out;
365 		}
366 	}
367 
368 	/* Mark this CPU as powered up & booted */
369 	cl = cpu_cluster(&current_cpu_data);
370 	c = cpu_core(&current_cpu_data);
371 	cluster_bootcfg = &mips_cps_cluster_bootcfg[cl];
372 	cpu_smt_set_num_threads(core_vpes, core_vpes);
373 	core_bootcfg = &cluster_bootcfg->core_config[c];
374 	bitmap_set(cluster_bootcfg->core_power, cpu_core(&current_cpu_data), 1);
375 	atomic_set(&core_bootcfg->vpe_mask, 1 << cpu_vpe_id(&current_cpu_data));
376 
377 	return;
378 err_out:
379 	/* Clean up allocations */
380 	if (mips_cps_cluster_bootcfg) {
381 		for (cl = 0; cl < nclusters; cl++) {
382 			cluster_bootcfg = &mips_cps_cluster_bootcfg[cl];
383 			ncores = mips_cps_numcores(cl);
384 			for (c = 0; c < ncores; c++) {
385 				core_bootcfg = &cluster_bootcfg->core_config[c];
386 				kfree(core_bootcfg->vpe_config);
387 			}
388 			kfree(mips_cps_cluster_bootcfg[c].core_config);
389 		}
390 		kfree(mips_cps_cluster_bootcfg);
391 		mips_cps_cluster_bootcfg = NULL;
392 	}
393 
394 	/* Effectively disable SMP by declaring CPUs not present */
395 	for_each_possible_cpu(c) {
396 		if (c == 0)
397 			continue;
398 		set_cpu_present(c, false);
399 	}
400 }
401 
init_cluster_l2(void)402 static void init_cluster_l2(void)
403 {
404 	u32 l2_cfg, l2sm_cop, result;
405 
406 	while (!mips_cm_is_l2_hci_broken) {
407 		l2_cfg = read_gcr_redir_l2_ram_config();
408 
409 		/* If HCI is not supported, use the state machine below */
410 		if (!(l2_cfg & CM_GCR_L2_RAM_CONFIG_PRESENT))
411 			break;
412 		if (!(l2_cfg & CM_GCR_L2_RAM_CONFIG_HCI_SUPPORTED))
413 			break;
414 
415 		/* If the HCI_DONE bit is set, we're finished */
416 		if (l2_cfg & CM_GCR_L2_RAM_CONFIG_HCI_DONE)
417 			return;
418 	}
419 
420 	l2sm_cop = read_gcr_redir_l2sm_cop();
421 	if (WARN(!(l2sm_cop & CM_GCR_L2SM_COP_PRESENT),
422 		 "L2 init not supported on this system yet"))
423 		return;
424 
425 	/* Clear L2 tag registers */
426 	write_gcr_redir_l2_tag_state(0);
427 	write_gcr_redir_l2_ecc(0);
428 
429 	/* Ensure the L2 tag writes complete before the state machine starts */
430 	mb();
431 
432 	/* Wait for the L2 state machine to be idle */
433 	do {
434 		l2sm_cop = read_gcr_redir_l2sm_cop();
435 	} while (l2sm_cop & CM_GCR_L2SM_COP_RUNNING);
436 
437 	/* Start a store tag operation */
438 	l2sm_cop = CM_GCR_L2SM_COP_TYPE_IDX_STORETAG;
439 	l2sm_cop <<= __ffs(CM_GCR_L2SM_COP_TYPE);
440 	l2sm_cop |= CM_GCR_L2SM_COP_CMD_START;
441 	write_gcr_redir_l2sm_cop(l2sm_cop);
442 
443 	/* Ensure the state machine starts before we poll for completion */
444 	mb();
445 
446 	/* Wait for the operation to be complete */
447 	do {
448 		l2sm_cop = read_gcr_redir_l2sm_cop();
449 		result = l2sm_cop & CM_GCR_L2SM_COP_RESULT;
450 		result >>= __ffs(CM_GCR_L2SM_COP_RESULT);
451 	} while (!result);
452 
453 	WARN(result != CM_GCR_L2SM_COP_RESULT_DONE_OK,
454 	     "L2 state machine failed cache init with error %u\n", result);
455 }
456 
boot_core(unsigned int cluster,unsigned int core,unsigned int vpe_id)457 static void boot_core(unsigned int cluster, unsigned int core,
458 		      unsigned int vpe_id)
459 {
460 	struct cluster_boot_config *cluster_cfg;
461 	u32 access, stat, seq_state;
462 	unsigned int timeout, ncores;
463 
464 	cluster_cfg = &mips_cps_cluster_bootcfg[cluster];
465 	ncores = mips_cps_numcores(cluster);
466 
467 	if ((cluster != cpu_cluster(&current_cpu_data)) &&
468 	    bitmap_empty(cluster_cfg->core_power, ncores)) {
469 		power_up_other_cluster(cluster);
470 
471 		mips_cm_lock_other(cluster, core, 0,
472 				   CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
473 
474 		/* Ensure cluster GCRs are where we expect */
475 		write_gcr_redir_base(read_gcr_base());
476 		write_gcr_redir_cpc_base(read_gcr_cpc_base());
477 		write_gcr_redir_gic_base(read_gcr_gic_base());
478 
479 		init_cluster_l2();
480 
481 		/* Mirror L2 configuration */
482 		write_gcr_redir_l2_only_sync_base(read_gcr_l2_only_sync_base());
483 		write_gcr_redir_l2_pft_control(read_gcr_l2_pft_control());
484 		write_gcr_redir_l2_pft_control_b(read_gcr_l2_pft_control_b());
485 
486 		/* Mirror ECC/parity setup */
487 		write_gcr_redir_err_control(read_gcr_err_control());
488 
489 		/* Set BEV base */
490 		write_gcr_redir_bev_base(core_entry_reg);
491 
492 		mips_cm_unlock_other();
493 	}
494 
495 	if (cluster != cpu_cluster(&current_cpu_data)) {
496 		mips_cm_lock_other(cluster, core, 0,
497 				   CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
498 
499 		/* Ensure the core can access the GCRs */
500 		access = read_gcr_redir_access();
501 		access |= BIT(core);
502 		write_gcr_redir_access(access);
503 
504 		mips_cm_unlock_other();
505 	} else {
506 		/* Ensure the core can access the GCRs */
507 		access = read_gcr_access();
508 		access |= BIT(core);
509 		write_gcr_access(access);
510 	}
511 
512 	/* Select the appropriate core */
513 	mips_cm_lock_other(cluster, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
514 
515 	/* Set its reset vector */
516 	if (mips_cm_is64)
517 		write_gcr_co_reset64_base(core_entry_reg);
518 	else
519 		write_gcr_co_reset_base(core_entry_reg);
520 
521 	/* Ensure its coherency is disabled */
522 	write_gcr_co_coherence(0);
523 
524 	/* Start it with the legacy memory map and exception base */
525 	write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
526 
527 	/* Ensure the core can access the GCRs */
528 	if (mips_cm_revision() < CM_REV_CM3)
529 		set_gcr_access(1 << core);
530 	else
531 		set_gcr_access_cm3(1 << core);
532 
533 	if (mips_cpc_present()) {
534 		/* Reset the core */
535 		mips_cpc_lock_other(core);
536 
537 		if (mips_cm_revision() >= CM_REV_CM3) {
538 			/* Run only the requested VP following the reset */
539 			write_cpc_co_vp_stop(0xf);
540 			write_cpc_co_vp_run(1 << vpe_id);
541 
542 			/*
543 			 * Ensure that the VP_RUN register is written before the
544 			 * core leaves reset.
545 			 */
546 			wmb();
547 		}
548 
549 		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
550 
551 		timeout = 100;
552 		while (true) {
553 			stat = read_cpc_co_stat_conf();
554 			seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
555 			seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
556 
557 			/* U6 == coherent execution, ie. the core is up */
558 			if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
559 				break;
560 
561 			/* Delay a little while before we start warning */
562 			if (timeout) {
563 				timeout--;
564 				mdelay(10);
565 				continue;
566 			}
567 
568 			pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
569 				core, stat);
570 			mdelay(1000);
571 		}
572 
573 		mips_cpc_unlock_other();
574 	} else {
575 		/* Take the core out of reset */
576 		write_gcr_co_reset_release(0);
577 	}
578 
579 	mips_cm_unlock_other();
580 
581 	/* The core is now powered up */
582 	bitmap_set(cluster_cfg->core_power, core, 1);
583 
584 	/*
585 	 * Restore CM_PWRUP=0 so that the CM can power down if all the cores in
586 	 * the cluster do (eg. if they're all removed via hotplug.
587 	 */
588 	if (mips_cm_revision() >= CM_REV_CM3_5) {
589 		mips_cm_lock_other(cluster, 0, 0, CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
590 		write_cpc_redir_pwrup_ctl(0);
591 		mips_cm_unlock_other();
592 	}
593 }
594 
remote_vpe_boot(void * dummy)595 static void remote_vpe_boot(void *dummy)
596 {
597 	unsigned int cluster = cpu_cluster(&current_cpu_data);
598 	unsigned core = cpu_core(&current_cpu_data);
599 	struct cluster_boot_config *cluster_cfg =
600 		&mips_cps_cluster_bootcfg[cluster];
601 	struct core_boot_config *core_cfg = &cluster_cfg->core_config[core];
602 
603 	mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
604 }
605 
cps_boot_secondary(int cpu,struct task_struct * idle)606 static int cps_boot_secondary(int cpu, struct task_struct *idle)
607 {
608 	unsigned int cluster = cpu_cluster(&cpu_data[cpu]);
609 	unsigned core = cpu_core(&cpu_data[cpu]);
610 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
611 	struct cluster_boot_config *cluster_cfg =
612 		&mips_cps_cluster_bootcfg[cluster];
613 	struct core_boot_config *core_cfg = &cluster_cfg->core_config[core];
614 	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
615 	unsigned int remote;
616 	int err;
617 
618 	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
619 	vpe_cfg->sp = __KSTK_TOS(idle);
620 	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
621 
622 	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
623 
624 	preempt_disable();
625 
626 	if (!test_bit(core, cluster_cfg->core_power)) {
627 		/* Boot a VPE on a powered down core */
628 		boot_core(cluster, core, vpe_id);
629 		goto out;
630 	}
631 
632 	if (cpu_has_vp) {
633 		mips_cm_lock_other(cluster, core, vpe_id,
634 				   CM_GCR_Cx_OTHER_BLOCK_LOCAL);
635 		if (mips_cm_is64)
636 			write_gcr_co_reset64_base(core_entry_reg);
637 		else
638 			write_gcr_co_reset_base(core_entry_reg);
639 		mips_cm_unlock_other();
640 	}
641 
642 	if (!cpus_are_siblings(cpu, smp_processor_id())) {
643 		/* Boot a VPE on another powered up core */
644 		for (remote = 0; remote < NR_CPUS; remote++) {
645 			if (!cpus_are_siblings(cpu, remote))
646 				continue;
647 			if (cpu_online(remote))
648 				break;
649 		}
650 		if (remote >= NR_CPUS) {
651 			pr_crit("No online CPU in core %u to start CPU%d\n",
652 				core, cpu);
653 			goto out;
654 		}
655 
656 		err = smp_call_function_single(remote, remote_vpe_boot,
657 					       NULL, 1);
658 		if (err)
659 			panic("Failed to call remote CPU\n");
660 		goto out;
661 	}
662 
663 	BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
664 
665 	/* Boot a VPE on this core */
666 	mips_cps_boot_vpes(core_cfg, vpe_id);
667 out:
668 	preempt_enable();
669 	return 0;
670 }
671 
cps_init_secondary(void)672 static void cps_init_secondary(void)
673 {
674 	int core = cpu_core(&current_cpu_data);
675 
676 	/* Disable MT - we only want to run 1 TC per VPE */
677 	if (cpu_has_mipsmt)
678 		dmt();
679 
680 	if (mips_cm_revision() >= CM_REV_CM3) {
681 		unsigned int ident = read_gic_vl_ident();
682 
683 		/*
684 		 * Ensure that our calculation of the VP ID matches up with
685 		 * what the GIC reports, otherwise we'll have configured
686 		 * interrupts incorrectly.
687 		 */
688 		BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
689 	}
690 
691 	if (core > 0 && !read_gcr_cl_coherence())
692 		pr_warn("Core %u is not in coherent domain\n", core);
693 
694 	if (cpu_has_veic)
695 		clear_c0_status(ST0_IM);
696 	else
697 		change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
698 					 STATUSF_IP4 | STATUSF_IP5 |
699 					 STATUSF_IP6 | STATUSF_IP7);
700 }
701 
cps_smp_finish(void)702 static void cps_smp_finish(void)
703 {
704 	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
705 
706 #ifdef CONFIG_MIPS_MT_FPAFF
707 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
708 	if (cpu_has_fpu)
709 		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
710 #endif /* CONFIG_MIPS_MT_FPAFF */
711 
712 	local_irq_enable();
713 }
714 
715 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC_CORE)
716 
717 enum cpu_death {
718 	CPU_DEATH_HALT,
719 	CPU_DEATH_POWER,
720 };
721 
cps_shutdown_this_cpu(enum cpu_death death)722 static void cps_shutdown_this_cpu(enum cpu_death death)
723 {
724 	unsigned int cpu, core, vpe_id;
725 
726 	cpu = smp_processor_id();
727 	core = cpu_core(&cpu_data[cpu]);
728 
729 	if (death == CPU_DEATH_HALT) {
730 		vpe_id = cpu_vpe_id(&cpu_data[cpu]);
731 
732 		pr_debug("Halting core %d VP%d\n", core, vpe_id);
733 		if (cpu_has_mipsmt) {
734 			/* Halt this TC */
735 			write_c0_tchalt(TCHALT_H);
736 			instruction_hazard();
737 		} else if (cpu_has_vp) {
738 			write_cpc_cl_vp_stop(1 << vpe_id);
739 
740 			/* Ensure that the VP_STOP register is written */
741 			wmb();
742 		}
743 	} else {
744 		if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
745 			pr_debug("Gating power to core %d\n", core);
746 			/* Power down the core */
747 			cps_pm_enter_state(CPS_PM_POWER_GATED);
748 		}
749 	}
750 }
751 
752 #ifdef CONFIG_KEXEC_CORE
753 
cps_kexec_nonboot_cpu(void)754 static void cps_kexec_nonboot_cpu(void)
755 {
756 	if (cpu_has_mipsmt || cpu_has_vp)
757 		cps_shutdown_this_cpu(CPU_DEATH_HALT);
758 	else
759 		cps_shutdown_this_cpu(CPU_DEATH_POWER);
760 }
761 
762 #endif /* CONFIG_KEXEC_CORE */
763 
764 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC_CORE */
765 
766 #ifdef CONFIG_HOTPLUG_CPU
767 
cps_cpu_disable(void)768 static int cps_cpu_disable(void)
769 {
770 	unsigned cpu = smp_processor_id();
771 	struct cluster_boot_config *cluster_cfg;
772 	struct core_boot_config *core_cfg;
773 
774 	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
775 		return -EINVAL;
776 
777 	cluster_cfg = &mips_cps_cluster_bootcfg[cpu_cluster(&current_cpu_data)];
778 	core_cfg = &cluster_cfg->core_config[cpu_core(&current_cpu_data)];
779 	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
780 	smp_mb__after_atomic();
781 	set_cpu_online(cpu, false);
782 	calculate_cpu_foreign_map();
783 	irq_migrate_all_off_this_cpu();
784 
785 	return 0;
786 }
787 
788 static unsigned cpu_death_sibling;
789 static enum cpu_death cpu_death;
790 
play_dead(void)791 void play_dead(void)
792 {
793 	unsigned int cpu;
794 
795 	local_irq_disable();
796 	idle_task_exit();
797 	cpu = smp_processor_id();
798 	cpu_death = CPU_DEATH_POWER;
799 
800 	pr_debug("CPU%d going offline\n", cpu);
801 
802 	if (cpu_has_mipsmt || cpu_has_vp) {
803 		/* Look for another online VPE within the core */
804 		for_each_online_cpu(cpu_death_sibling) {
805 			if (!cpus_are_siblings(cpu, cpu_death_sibling))
806 				continue;
807 
808 			/*
809 			 * There is an online VPE within the core. Just halt
810 			 * this TC and leave the core alone.
811 			 */
812 			cpu_death = CPU_DEATH_HALT;
813 			break;
814 		}
815 	}
816 
817 	cpuhp_ap_report_dead();
818 
819 	cps_shutdown_this_cpu(cpu_death);
820 
821 	/* This should never be reached */
822 	panic("Failed to offline CPU %u", cpu);
823 }
824 
wait_for_sibling_halt(void * ptr_cpu)825 static void wait_for_sibling_halt(void *ptr_cpu)
826 {
827 	unsigned cpu = (unsigned long)ptr_cpu;
828 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
829 	unsigned halted;
830 	unsigned long flags;
831 
832 	do {
833 		local_irq_save(flags);
834 		settc(vpe_id);
835 		halted = read_tc_c0_tchalt();
836 		local_irq_restore(flags);
837 	} while (!(halted & TCHALT_H));
838 }
839 
cps_cpu_die(unsigned int cpu)840 static void cps_cpu_die(unsigned int cpu) { }
841 
cps_cleanup_dead_cpu(unsigned cpu)842 static void cps_cleanup_dead_cpu(unsigned cpu)
843 {
844 	unsigned int cluster = cpu_cluster(&cpu_data[cpu]);
845 	unsigned core = cpu_core(&cpu_data[cpu]);
846 	unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
847 	ktime_t fail_time;
848 	unsigned stat;
849 	int err;
850 	struct cluster_boot_config *cluster_cfg;
851 
852 	cluster_cfg = &mips_cps_cluster_bootcfg[cluster];
853 
854 	/*
855 	 * Now wait for the CPU to actually offline. Without doing this that
856 	 * offlining may race with one or more of:
857 	 *
858 	 *   - Onlining the CPU again.
859 	 *   - Powering down the core if another VPE within it is offlined.
860 	 *   - A sibling VPE entering a non-coherent state.
861 	 *
862 	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
863 	 * with which we could race, so do nothing.
864 	 */
865 	if (cpu_death == CPU_DEATH_POWER) {
866 		/*
867 		 * Wait for the core to enter a powered down or clock gated
868 		 * state, the latter happening when a JTAG probe is connected
869 		 * in which case the CPC will refuse to power down the core.
870 		 */
871 		fail_time = ktime_add_ms(ktime_get(), 2000);
872 		do {
873 			mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
874 			mips_cpc_lock_other(core);
875 			stat = read_cpc_co_stat_conf();
876 			stat &= CPC_Cx_STAT_CONF_SEQSTATE;
877 			stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
878 			mips_cpc_unlock_other();
879 			mips_cm_unlock_other();
880 
881 			if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
882 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
883 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
884 				break;
885 
886 			/*
887 			 * The core ought to have powered down, but didn't &
888 			 * now we don't really know what state it's in. It's
889 			 * likely that its _pwr_up pin has been wired to logic
890 			 * 1 & it powered back up as soon as we powered it
891 			 * down...
892 			 *
893 			 * The best we can do is warn the user & continue in
894 			 * the hope that the core is doing nothing harmful &
895 			 * might behave properly if we online it later.
896 			 */
897 			if (WARN(ktime_after(ktime_get(), fail_time),
898 				 "CPU%u hasn't powered down, seq. state %u\n",
899 				 cpu, stat))
900 				break;
901 		} while (1);
902 
903 		/* Indicate the core is powered off */
904 		bitmap_clear(cluster_cfg->core_power, core, 1);
905 	} else if (cpu_has_mipsmt) {
906 		/*
907 		 * Have a CPU with access to the offlined CPUs registers wait
908 		 * for its TC to halt.
909 		 */
910 		err = smp_call_function_single(cpu_death_sibling,
911 					       wait_for_sibling_halt,
912 					       (void *)(unsigned long)cpu, 1);
913 		if (err)
914 			panic("Failed to call remote sibling CPU\n");
915 	} else if (cpu_has_vp) {
916 		do {
917 			mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
918 			stat = read_cpc_co_vp_running();
919 			mips_cm_unlock_other();
920 		} while (stat & (1 << vpe_id));
921 	}
922 }
923 
924 #endif /* CONFIG_HOTPLUG_CPU */
925 
926 static const struct plat_smp_ops cps_smp_ops = {
927 	.smp_setup		= cps_smp_setup,
928 	.prepare_cpus		= cps_prepare_cpus,
929 	.boot_secondary		= cps_boot_secondary,
930 	.init_secondary		= cps_init_secondary,
931 	.smp_finish		= cps_smp_finish,
932 	.send_ipi_single	= mips_smp_send_ipi_single,
933 	.send_ipi_mask		= mips_smp_send_ipi_mask,
934 #ifdef CONFIG_HOTPLUG_CPU
935 	.cpu_disable		= cps_cpu_disable,
936 	.cpu_die		= cps_cpu_die,
937 	.cleanup_dead_cpu	= cps_cleanup_dead_cpu,
938 #endif
939 #ifdef CONFIG_KEXEC_CORE
940 	.kexec_nonboot_cpu	= cps_kexec_nonboot_cpu,
941 #endif
942 };
943 
mips_cps_smp_in_use(void)944 bool mips_cps_smp_in_use(void)
945 {
946 	extern const struct plat_smp_ops *mp_ops;
947 	return mp_ops == &cps_smp_ops;
948 }
949 
register_cps_smp_ops(void)950 int register_cps_smp_ops(void)
951 {
952 	if (!mips_cm_present()) {
953 		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
954 		return -ENODEV;
955 	}
956 
957 	/* check we have a GIC - we need one for IPIs */
958 	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
959 		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
960 		return -ENODEV;
961 	}
962 
963 	register_smp_ops(&cps_smp_ops);
964 	return 0;
965 }
966