xref: /linux/include/linux/slab.h (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4  *
5  * (C) SGI 2006, Christoph Lameter
6  * 	Cleaned up and restructured to ease the addition of alternative
7  * 	implementations of SLAB allocators.
8  * (C) Linux Foundation 2008-2013
9  *      Unified interface for all slab allocators
10  */
11 
12 #ifndef _LINUX_SLAB_H
13 #define	_LINUX_SLAB_H
14 
15 #include <linux/cache.h>
16 #include <linux/gfp.h>
17 #include <linux/overflow.h>
18 #include <linux/types.h>
19 #include <linux/workqueue.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/cleanup.h>
22 #include <linux/hash.h>
23 
24 enum _slab_flag_bits {
25 	_SLAB_CONSISTENCY_CHECKS,
26 	_SLAB_RED_ZONE,
27 	_SLAB_POISON,
28 	_SLAB_KMALLOC,
29 	_SLAB_HWCACHE_ALIGN,
30 	_SLAB_CACHE_DMA,
31 	_SLAB_CACHE_DMA32,
32 	_SLAB_STORE_USER,
33 	_SLAB_PANIC,
34 	_SLAB_TYPESAFE_BY_RCU,
35 	_SLAB_TRACE,
36 #ifdef CONFIG_DEBUG_OBJECTS
37 	_SLAB_DEBUG_OBJECTS,
38 #endif
39 	_SLAB_NOLEAKTRACE,
40 	_SLAB_NO_MERGE,
41 #ifdef CONFIG_FAILSLAB
42 	_SLAB_FAILSLAB,
43 #endif
44 #ifdef CONFIG_MEMCG
45 	_SLAB_ACCOUNT,
46 #endif
47 #ifdef CONFIG_KASAN_GENERIC
48 	_SLAB_KASAN,
49 #endif
50 	_SLAB_NO_USER_FLAGS,
51 #ifdef CONFIG_KFENCE
52 	_SLAB_SKIP_KFENCE,
53 #endif
54 #ifndef CONFIG_SLUB_TINY
55 	_SLAB_RECLAIM_ACCOUNT,
56 #endif
57 	_SLAB_OBJECT_POISON,
58 	_SLAB_CMPXCHG_DOUBLE,
59 #ifdef CONFIG_SLAB_OBJ_EXT
60 	_SLAB_NO_OBJ_EXT,
61 #endif
62 	_SLAB_FLAGS_LAST_BIT
63 };
64 
65 #define __SLAB_FLAG_BIT(nr)	((slab_flags_t __force)(1U << (nr)))
66 #define __SLAB_FLAG_UNUSED	((slab_flags_t __force)(0U))
67 
68 /*
69  * Flags to pass to kmem_cache_create().
70  * The ones marked DEBUG need CONFIG_SLUB_DEBUG enabled, otherwise are no-op
71  */
72 /* DEBUG: Perform (expensive) checks on alloc/free */
73 #define SLAB_CONSISTENCY_CHECKS	__SLAB_FLAG_BIT(_SLAB_CONSISTENCY_CHECKS)
74 /* DEBUG: Red zone objs in a cache */
75 #define SLAB_RED_ZONE		__SLAB_FLAG_BIT(_SLAB_RED_ZONE)
76 /* DEBUG: Poison objects */
77 #define SLAB_POISON		__SLAB_FLAG_BIT(_SLAB_POISON)
78 /* Indicate a kmalloc slab */
79 #define SLAB_KMALLOC		__SLAB_FLAG_BIT(_SLAB_KMALLOC)
80 /* Align objs on cache lines */
81 #define SLAB_HWCACHE_ALIGN	__SLAB_FLAG_BIT(_SLAB_HWCACHE_ALIGN)
82 /* Use GFP_DMA memory */
83 #define SLAB_CACHE_DMA		__SLAB_FLAG_BIT(_SLAB_CACHE_DMA)
84 /* Use GFP_DMA32 memory */
85 #define SLAB_CACHE_DMA32	__SLAB_FLAG_BIT(_SLAB_CACHE_DMA32)
86 /* DEBUG: Store the last owner for bug hunting */
87 #define SLAB_STORE_USER		__SLAB_FLAG_BIT(_SLAB_STORE_USER)
88 /* Panic if kmem_cache_create() fails */
89 #define SLAB_PANIC		__SLAB_FLAG_BIT(_SLAB_PANIC)
90 /*
91  * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
92  *
93  * This delays freeing the SLAB page by a grace period, it does _NOT_
94  * delay object freeing. This means that if you do kmem_cache_free()
95  * that memory location is free to be reused at any time. Thus it may
96  * be possible to see another object there in the same RCU grace period.
97  *
98  * This feature only ensures the memory location backing the object
99  * stays valid, the trick to using this is relying on an independent
100  * object validation pass. Something like:
101  *
102  * begin:
103  *  rcu_read_lock();
104  *  obj = lockless_lookup(key);
105  *  if (obj) {
106  *    if (!try_get_ref(obj)) // might fail for free objects
107  *      rcu_read_unlock();
108  *      goto begin;
109  *
110  *    if (obj->key != key) { // not the object we expected
111  *      put_ref(obj);
112  *      rcu_read_unlock();
113  *      goto begin;
114  *    }
115  *  }
116  *  rcu_read_unlock();
117  *
118  * This is useful if we need to approach a kernel structure obliquely,
119  * from its address obtained without the usual locking. We can lock
120  * the structure to stabilize it and check it's still at the given address,
121  * only if we can be sure that the memory has not been meanwhile reused
122  * for some other kind of object (which our subsystem's lock might corrupt).
123  *
124  * rcu_read_lock before reading the address, then rcu_read_unlock after
125  * taking the spinlock within the structure expected at that address.
126  *
127  * Note that it is not possible to acquire a lock within a structure
128  * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference
129  * as described above.  The reason is that SLAB_TYPESAFE_BY_RCU pages
130  * are not zeroed before being given to the slab, which means that any
131  * locks must be initialized after each and every kmem_struct_alloc().
132  * Alternatively, make the ctor passed to kmem_cache_create() initialize
133  * the locks at page-allocation time, as is done in __i915_request_ctor(),
134  * sighand_ctor(), and anon_vma_ctor().  Such a ctor permits readers
135  * to safely acquire those ctor-initialized locks under rcu_read_lock()
136  * protection.
137  *
138  * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
139  */
140 /* Defer freeing slabs to RCU */
141 #define SLAB_TYPESAFE_BY_RCU	__SLAB_FLAG_BIT(_SLAB_TYPESAFE_BY_RCU)
142 /* Trace allocations and frees */
143 #define SLAB_TRACE		__SLAB_FLAG_BIT(_SLAB_TRACE)
144 
145 /* Flag to prevent checks on free */
146 #ifdef CONFIG_DEBUG_OBJECTS
147 # define SLAB_DEBUG_OBJECTS	__SLAB_FLAG_BIT(_SLAB_DEBUG_OBJECTS)
148 #else
149 # define SLAB_DEBUG_OBJECTS	__SLAB_FLAG_UNUSED
150 #endif
151 
152 /* Avoid kmemleak tracing */
153 #define SLAB_NOLEAKTRACE	__SLAB_FLAG_BIT(_SLAB_NOLEAKTRACE)
154 
155 /*
156  * Prevent merging with compatible kmem caches. This flag should be used
157  * cautiously. Valid use cases:
158  *
159  * - caches created for self-tests (e.g. kunit)
160  * - general caches created and used by a subsystem, only when a
161  *   (subsystem-specific) debug option is enabled
162  * - performance critical caches, should be very rare and consulted with slab
163  *   maintainers, and not used together with CONFIG_SLUB_TINY
164  */
165 #define SLAB_NO_MERGE		__SLAB_FLAG_BIT(_SLAB_NO_MERGE)
166 
167 /* Fault injection mark */
168 #ifdef CONFIG_FAILSLAB
169 # define SLAB_FAILSLAB		__SLAB_FLAG_BIT(_SLAB_FAILSLAB)
170 #else
171 # define SLAB_FAILSLAB		__SLAB_FLAG_UNUSED
172 #endif
173 /* Account to memcg */
174 #ifdef CONFIG_MEMCG
175 # define SLAB_ACCOUNT		__SLAB_FLAG_BIT(_SLAB_ACCOUNT)
176 #else
177 # define SLAB_ACCOUNT		__SLAB_FLAG_UNUSED
178 #endif
179 
180 #ifdef CONFIG_KASAN_GENERIC
181 #define SLAB_KASAN		__SLAB_FLAG_BIT(_SLAB_KASAN)
182 #else
183 #define SLAB_KASAN		__SLAB_FLAG_UNUSED
184 #endif
185 
186 /*
187  * Ignore user specified debugging flags.
188  * Intended for caches created for self-tests so they have only flags
189  * specified in the code and other flags are ignored.
190  */
191 #define SLAB_NO_USER_FLAGS	__SLAB_FLAG_BIT(_SLAB_NO_USER_FLAGS)
192 
193 #ifdef CONFIG_KFENCE
194 #define SLAB_SKIP_KFENCE	__SLAB_FLAG_BIT(_SLAB_SKIP_KFENCE)
195 #else
196 #define SLAB_SKIP_KFENCE	__SLAB_FLAG_UNUSED
197 #endif
198 
199 /* The following flags affect the page allocator grouping pages by mobility */
200 /* Objects are reclaimable */
201 #ifndef CONFIG_SLUB_TINY
202 #define SLAB_RECLAIM_ACCOUNT	__SLAB_FLAG_BIT(_SLAB_RECLAIM_ACCOUNT)
203 #else
204 #define SLAB_RECLAIM_ACCOUNT	__SLAB_FLAG_UNUSED
205 #endif
206 #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
207 
208 /* Slab created using create_boot_cache */
209 #ifdef CONFIG_SLAB_OBJ_EXT
210 #define SLAB_NO_OBJ_EXT		__SLAB_FLAG_BIT(_SLAB_NO_OBJ_EXT)
211 #else
212 #define SLAB_NO_OBJ_EXT		__SLAB_FLAG_UNUSED
213 #endif
214 
215 /*
216  * freeptr_t represents a SLUB freelist pointer, which might be encoded
217  * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
218  */
219 typedef struct { unsigned long v; } freeptr_t;
220 
221 /*
222  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
223  *
224  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
225  *
226  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
227  * Both make kfree a no-op.
228  */
229 #define ZERO_SIZE_PTR ((void *)16)
230 
231 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
232 				(unsigned long)ZERO_SIZE_PTR)
233 
234 #include <linux/kasan.h>
235 
236 struct list_lru;
237 struct mem_cgroup;
238 /*
239  * struct kmem_cache related prototypes
240  */
241 bool slab_is_available(void);
242 
243 /**
244  * struct kmem_cache_args - Less common arguments for kmem_cache_create()
245  *
246  * Any uninitialized fields of the structure are interpreted as unused. The
247  * exception is @freeptr_offset where %0 is a valid value, so
248  * @use_freeptr_offset must be also set to %true in order to interpret the field
249  * as used. For @useroffset %0 is also valid, but only with non-%0
250  * @usersize.
251  *
252  * When %NULL args is passed to kmem_cache_create(), it is equivalent to all
253  * fields unused.
254  */
255 struct kmem_cache_args {
256 	/**
257 	 * @align: The required alignment for the objects.
258 	 *
259 	 * %0 means no specific alignment is requested.
260 	 */
261 	unsigned int align;
262 	/**
263 	 * @useroffset: Usercopy region offset.
264 	 *
265 	 * %0 is a valid offset, when @usersize is non-%0
266 	 */
267 	unsigned int useroffset;
268 	/**
269 	 * @usersize: Usercopy region size.
270 	 *
271 	 * %0 means no usercopy region is specified.
272 	 */
273 	unsigned int usersize;
274 	/**
275 	 * @freeptr_offset: Custom offset for the free pointer
276 	 * in &SLAB_TYPESAFE_BY_RCU caches
277 	 *
278 	 * By default &SLAB_TYPESAFE_BY_RCU caches place the free pointer
279 	 * outside of the object. This might cause the object to grow in size.
280 	 * Cache creators that have a reason to avoid this can specify a custom
281 	 * free pointer offset in their struct where the free pointer will be
282 	 * placed.
283 	 *
284 	 * Note that placing the free pointer inside the object requires the
285 	 * caller to ensure that no fields are invalidated that are required to
286 	 * guard against object recycling (See &SLAB_TYPESAFE_BY_RCU for
287 	 * details).
288 	 *
289 	 * Using %0 as a value for @freeptr_offset is valid. If @freeptr_offset
290 	 * is specified, %use_freeptr_offset must be set %true.
291 	 *
292 	 * Note that @ctor currently isn't supported with custom free pointers
293 	 * as a @ctor requires an external free pointer.
294 	 */
295 	unsigned int freeptr_offset;
296 	/**
297 	 * @use_freeptr_offset: Whether a @freeptr_offset is used.
298 	 */
299 	bool use_freeptr_offset;
300 	/**
301 	 * @ctor: A constructor for the objects.
302 	 *
303 	 * The constructor is invoked for each object in a newly allocated slab
304 	 * page. It is the cache user's responsibility to free object in the
305 	 * same state as after calling the constructor, or deal appropriately
306 	 * with any differences between a freshly constructed and a reallocated
307 	 * object.
308 	 *
309 	 * %NULL means no constructor.
310 	 */
311 	void (*ctor)(void *);
312 };
313 
314 struct kmem_cache *__kmem_cache_create_args(const char *name,
315 					    unsigned int object_size,
316 					    struct kmem_cache_args *args,
317 					    slab_flags_t flags);
318 static inline struct kmem_cache *
__kmem_cache_create(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))319 __kmem_cache_create(const char *name, unsigned int size, unsigned int align,
320 		    slab_flags_t flags, void (*ctor)(void *))
321 {
322 	struct kmem_cache_args kmem_args = {
323 		.align	= align,
324 		.ctor	= ctor,
325 	};
326 
327 	return __kmem_cache_create_args(name, size, &kmem_args, flags);
328 }
329 
330 /**
331  * kmem_cache_create_usercopy - Create a kmem cache with a region suitable
332  * for copying to userspace.
333  * @name: A string which is used in /proc/slabinfo to identify this cache.
334  * @size: The size of objects to be created in this cache.
335  * @align: The required alignment for the objects.
336  * @flags: SLAB flags
337  * @useroffset: Usercopy region offset
338  * @usersize: Usercopy region size
339  * @ctor: A constructor for the objects, or %NULL.
340  *
341  * This is a legacy wrapper, new code should use either KMEM_CACHE_USERCOPY()
342  * if whitelisting a single field is sufficient, or kmem_cache_create() with
343  * the necessary parameters passed via the args parameter (see
344  * &struct kmem_cache_args)
345  *
346  * Return: a pointer to the cache on success, NULL on failure.
347  */
348 static inline struct kmem_cache *
kmem_cache_create_usercopy(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *))349 kmem_cache_create_usercopy(const char *name, unsigned int size,
350 			   unsigned int align, slab_flags_t flags,
351 			   unsigned int useroffset, unsigned int usersize,
352 			   void (*ctor)(void *))
353 {
354 	struct kmem_cache_args kmem_args = {
355 		.align		= align,
356 		.ctor		= ctor,
357 		.useroffset	= useroffset,
358 		.usersize	= usersize,
359 	};
360 
361 	return __kmem_cache_create_args(name, size, &kmem_args, flags);
362 }
363 
364 /* If NULL is passed for @args, use this variant with default arguments. */
365 static inline struct kmem_cache *
__kmem_cache_default_args(const char * name,unsigned int size,struct kmem_cache_args * args,slab_flags_t flags)366 __kmem_cache_default_args(const char *name, unsigned int size,
367 			  struct kmem_cache_args *args,
368 			  slab_flags_t flags)
369 {
370 	struct kmem_cache_args kmem_default_args = {};
371 
372 	/* Make sure we don't get passed garbage. */
373 	if (WARN_ON_ONCE(args))
374 		return ERR_PTR(-EINVAL);
375 
376 	return __kmem_cache_create_args(name, size, &kmem_default_args, flags);
377 }
378 
379 /**
380  * kmem_cache_create - Create a kmem cache.
381  * @__name: A string which is used in /proc/slabinfo to identify this cache.
382  * @__object_size: The size of objects to be created in this cache.
383  * @__args: Optional arguments, see &struct kmem_cache_args. Passing %NULL
384  *	    means defaults will be used for all the arguments.
385  *
386  * This is currently implemented as a macro using ``_Generic()`` to call
387  * either the new variant of the function, or a legacy one.
388  *
389  * The new variant has 4 parameters:
390  * ``kmem_cache_create(name, object_size, args, flags)``
391  *
392  * See __kmem_cache_create_args() which implements this.
393  *
394  * The legacy variant has 5 parameters:
395  * ``kmem_cache_create(name, object_size, align, flags, ctor)``
396  *
397  * The align and ctor parameters map to the respective fields of
398  * &struct kmem_cache_args
399  *
400  * Context: Cannot be called within a interrupt, but can be interrupted.
401  *
402  * Return: a pointer to the cache on success, NULL on failure.
403  */
404 #define kmem_cache_create(__name, __object_size, __args, ...)           \
405 	_Generic((__args),                                              \
406 		struct kmem_cache_args *: __kmem_cache_create_args,	\
407 		void *: __kmem_cache_default_args,			\
408 		default: __kmem_cache_create)(__name, __object_size, __args, __VA_ARGS__)
409 
410 void kmem_cache_destroy(struct kmem_cache *s);
411 int kmem_cache_shrink(struct kmem_cache *s);
412 
413 /*
414  * Please use this macro to create slab caches. Simply specify the
415  * name of the structure and maybe some flags that are listed above.
416  *
417  * The alignment of the struct determines object alignment. If you
418  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
419  * then the objects will be properly aligned in SMP configurations.
420  */
421 #define KMEM_CACHE(__struct, __flags)                                   \
422 	__kmem_cache_create_args(#__struct, sizeof(struct __struct),    \
423 			&(struct kmem_cache_args) {			\
424 				.align	= __alignof__(struct __struct), \
425 			}, (__flags))
426 
427 /*
428  * To whitelist a single field for copying to/from usercopy, use this
429  * macro instead for KMEM_CACHE() above.
430  */
431 #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)						\
432 	__kmem_cache_create_args(#__struct, sizeof(struct __struct),				\
433 			&(struct kmem_cache_args) {						\
434 				.align		= __alignof__(struct __struct),			\
435 				.useroffset	= offsetof(struct __struct, __field),		\
436 				.usersize	= sizeof_field(struct __struct, __field),	\
437 			}, (__flags))
438 
439 /*
440  * Common kmalloc functions provided by all allocators
441  */
442 void * __must_check krealloc_noprof(const void *objp, size_t new_size,
443 				    gfp_t flags) __realloc_size(2);
444 #define krealloc(...)				alloc_hooks(krealloc_noprof(__VA_ARGS__))
445 
446 void kfree(const void *objp);
447 void kfree_sensitive(const void *objp);
448 size_t __ksize(const void *objp);
449 
450 DEFINE_FREE(kfree, void *, if (!IS_ERR_OR_NULL(_T)) kfree(_T))
451 
452 /**
453  * ksize - Report actual allocation size of associated object
454  *
455  * @objp: Pointer returned from a prior kmalloc()-family allocation.
456  *
457  * This should not be used for writing beyond the originally requested
458  * allocation size. Either use krealloc() or round up the allocation size
459  * with kmalloc_size_roundup() prior to allocation. If this is used to
460  * access beyond the originally requested allocation size, UBSAN_BOUNDS
461  * and/or FORTIFY_SOURCE may trip, since they only know about the
462  * originally allocated size via the __alloc_size attribute.
463  */
464 size_t ksize(const void *objp);
465 
466 #ifdef CONFIG_PRINTK
467 bool kmem_dump_obj(void *object);
468 #else
kmem_dump_obj(void * object)469 static inline bool kmem_dump_obj(void *object) { return false; }
470 #endif
471 
472 /*
473  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
474  * alignment larger than the alignment of a 64-bit integer.
475  * Setting ARCH_DMA_MINALIGN in arch headers allows that.
476  */
477 #ifdef ARCH_HAS_DMA_MINALIGN
478 #if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMALLOC_MINALIGN)
479 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
480 #endif
481 #endif
482 
483 #ifndef ARCH_KMALLOC_MINALIGN
484 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
485 #elif ARCH_KMALLOC_MINALIGN > 8
486 #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
487 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
488 #endif
489 
490 /*
491  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
492  * Intended for arches that get misalignment faults even for 64 bit integer
493  * aligned buffers.
494  */
495 #ifndef ARCH_SLAB_MINALIGN
496 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
497 #endif
498 
499 /*
500  * Arches can define this function if they want to decide the minimum slab
501  * alignment at runtime. The value returned by the function must be a power
502  * of two and >= ARCH_SLAB_MINALIGN.
503  */
504 #ifndef arch_slab_minalign
arch_slab_minalign(void)505 static inline unsigned int arch_slab_minalign(void)
506 {
507 	return ARCH_SLAB_MINALIGN;
508 }
509 #endif
510 
511 /*
512  * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
513  * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
514  * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
515  */
516 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
517 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
518 #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
519 
520 /*
521  * Kmalloc array related definitions
522  */
523 
524 /*
525  * SLUB directly allocates requests fitting in to an order-1 page
526  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
527  */
528 #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
529 #define KMALLOC_SHIFT_MAX	(MAX_PAGE_ORDER + PAGE_SHIFT)
530 #ifndef KMALLOC_SHIFT_LOW
531 #define KMALLOC_SHIFT_LOW	3
532 #endif
533 
534 /* Maximum allocatable size */
535 #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
536 /* Maximum size for which we actually use a slab cache */
537 #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
538 /* Maximum order allocatable via the slab allocator */
539 #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
540 
541 /*
542  * Kmalloc subsystem.
543  */
544 #ifndef KMALLOC_MIN_SIZE
545 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
546 #endif
547 
548 /*
549  * This restriction comes from byte sized index implementation.
550  * Page size is normally 2^12 bytes and, in this case, if we want to use
551  * byte sized index which can represent 2^8 entries, the size of the object
552  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
553  * If minimum size of kmalloc is less than 16, we use it as minimum object
554  * size and give up to use byte sized index.
555  */
556 #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
557                                (KMALLOC_MIN_SIZE) : 16)
558 
559 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
560 #define RANDOM_KMALLOC_CACHES_NR	15 // # of cache copies
561 #else
562 #define RANDOM_KMALLOC_CACHES_NR	0
563 #endif
564 
565 /*
566  * Whenever changing this, take care of that kmalloc_type() and
567  * create_kmalloc_caches() still work as intended.
568  *
569  * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
570  * is for accounted but unreclaimable and non-dma objects. All the other
571  * kmem caches can have both accounted and unaccounted objects.
572  */
573 enum kmalloc_cache_type {
574 	KMALLOC_NORMAL = 0,
575 #ifndef CONFIG_ZONE_DMA
576 	KMALLOC_DMA = KMALLOC_NORMAL,
577 #endif
578 #ifndef CONFIG_MEMCG
579 	KMALLOC_CGROUP = KMALLOC_NORMAL,
580 #endif
581 	KMALLOC_RANDOM_START = KMALLOC_NORMAL,
582 	KMALLOC_RANDOM_END = KMALLOC_RANDOM_START + RANDOM_KMALLOC_CACHES_NR,
583 #ifdef CONFIG_SLUB_TINY
584 	KMALLOC_RECLAIM = KMALLOC_NORMAL,
585 #else
586 	KMALLOC_RECLAIM,
587 #endif
588 #ifdef CONFIG_ZONE_DMA
589 	KMALLOC_DMA,
590 #endif
591 #ifdef CONFIG_MEMCG
592 	KMALLOC_CGROUP,
593 #endif
594 	NR_KMALLOC_TYPES
595 };
596 
597 typedef struct kmem_cache * kmem_buckets[KMALLOC_SHIFT_HIGH + 1];
598 
599 extern kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES];
600 
601 /*
602  * Define gfp bits that should not be set for KMALLOC_NORMAL.
603  */
604 #define KMALLOC_NOT_NORMAL_BITS					\
605 	(__GFP_RECLAIMABLE |					\
606 	(IS_ENABLED(CONFIG_ZONE_DMA)   ? __GFP_DMA : 0) |	\
607 	(IS_ENABLED(CONFIG_MEMCG) ? __GFP_ACCOUNT : 0))
608 
609 extern unsigned long random_kmalloc_seed;
610 
kmalloc_type(gfp_t flags,unsigned long caller)611 static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags, unsigned long caller)
612 {
613 	/*
614 	 * The most common case is KMALLOC_NORMAL, so test for it
615 	 * with a single branch for all the relevant flags.
616 	 */
617 	if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
618 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
619 		/* RANDOM_KMALLOC_CACHES_NR (=15) copies + the KMALLOC_NORMAL */
620 		return KMALLOC_RANDOM_START + hash_64(caller ^ random_kmalloc_seed,
621 						      ilog2(RANDOM_KMALLOC_CACHES_NR + 1));
622 #else
623 		return KMALLOC_NORMAL;
624 #endif
625 
626 	/*
627 	 * At least one of the flags has to be set. Their priorities in
628 	 * decreasing order are:
629 	 *  1) __GFP_DMA
630 	 *  2) __GFP_RECLAIMABLE
631 	 *  3) __GFP_ACCOUNT
632 	 */
633 	if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
634 		return KMALLOC_DMA;
635 	if (!IS_ENABLED(CONFIG_MEMCG) || (flags & __GFP_RECLAIMABLE))
636 		return KMALLOC_RECLAIM;
637 	else
638 		return KMALLOC_CGROUP;
639 }
640 
641 /*
642  * Figure out which kmalloc slab an allocation of a certain size
643  * belongs to.
644  * 0 = zero alloc
645  * 1 =  65 .. 96 bytes
646  * 2 = 129 .. 192 bytes
647  * n = 2^(n-1)+1 .. 2^n
648  *
649  * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
650  * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
651  * Callers where !size_is_constant should only be test modules, where runtime
652  * overheads of __kmalloc_index() can be tolerated.  Also see kmalloc_slab().
653  */
__kmalloc_index(size_t size,bool size_is_constant)654 static __always_inline unsigned int __kmalloc_index(size_t size,
655 						    bool size_is_constant)
656 {
657 	if (!size)
658 		return 0;
659 
660 	if (size <= KMALLOC_MIN_SIZE)
661 		return KMALLOC_SHIFT_LOW;
662 
663 	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
664 		return 1;
665 	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
666 		return 2;
667 	if (size <=          8) return 3;
668 	if (size <=         16) return 4;
669 	if (size <=         32) return 5;
670 	if (size <=         64) return 6;
671 	if (size <=        128) return 7;
672 	if (size <=        256) return 8;
673 	if (size <=        512) return 9;
674 	if (size <=       1024) return 10;
675 	if (size <=   2 * 1024) return 11;
676 	if (size <=   4 * 1024) return 12;
677 	if (size <=   8 * 1024) return 13;
678 	if (size <=  16 * 1024) return 14;
679 	if (size <=  32 * 1024) return 15;
680 	if (size <=  64 * 1024) return 16;
681 	if (size <= 128 * 1024) return 17;
682 	if (size <= 256 * 1024) return 18;
683 	if (size <= 512 * 1024) return 19;
684 	if (size <= 1024 * 1024) return 20;
685 	if (size <=  2 * 1024 * 1024) return 21;
686 
687 	if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
688 		BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
689 	else
690 		BUG();
691 
692 	/* Will never be reached. Needed because the compiler may complain */
693 	return -1;
694 }
695 static_assert(PAGE_SHIFT <= 20);
696 #define kmalloc_index(s) __kmalloc_index(s, true)
697 
698 #include <linux/alloc_tag.h>
699 
700 /**
701  * kmem_cache_alloc - Allocate an object
702  * @cachep: The cache to allocate from.
703  * @flags: See kmalloc().
704  *
705  * Allocate an object from this cache.
706  * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags.
707  *
708  * Return: pointer to the new object or %NULL in case of error
709  */
710 void *kmem_cache_alloc_noprof(struct kmem_cache *cachep,
711 			      gfp_t flags) __assume_slab_alignment __malloc;
712 #define kmem_cache_alloc(...)			alloc_hooks(kmem_cache_alloc_noprof(__VA_ARGS__))
713 
714 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
715 			    gfp_t gfpflags) __assume_slab_alignment __malloc;
716 #define kmem_cache_alloc_lru(...)	alloc_hooks(kmem_cache_alloc_lru_noprof(__VA_ARGS__))
717 
718 /**
719  * kmem_cache_charge - memcg charge an already allocated slab memory
720  * @objp: address of the slab object to memcg charge
721  * @gfpflags: describe the allocation context
722  *
723  * kmem_cache_charge allows charging a slab object to the current memcg,
724  * primarily in cases where charging at allocation time might not be possible
725  * because the target memcg is not known (i.e. softirq context)
726  *
727  * The objp should be pointer returned by the slab allocator functions like
728  * kmalloc (with __GFP_ACCOUNT in flags) or kmem_cache_alloc. The memcg charge
729  * behavior can be controlled through gfpflags parameter, which affects how the
730  * necessary internal metadata can be allocated. Including __GFP_NOFAIL denotes
731  * that overcharging is requested instead of failure, but is not applied for the
732  * internal metadata allocation.
733  *
734  * There are several cases where it will return true even if the charging was
735  * not done:
736  * More specifically:
737  *
738  * 1. For !CONFIG_MEMCG or cgroup_disable=memory systems.
739  * 2. Already charged slab objects.
740  * 3. For slab objects from KMALLOC_NORMAL caches - allocated by kmalloc()
741  *    without __GFP_ACCOUNT
742  * 4. Allocating internal metadata has failed
743  *
744  * Return: true if charge was successful otherwise false.
745  */
746 bool kmem_cache_charge(void *objp, gfp_t gfpflags);
747 void kmem_cache_free(struct kmem_cache *s, void *objp);
748 
749 kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags,
750 				  unsigned int useroffset, unsigned int usersize,
751 				  void (*ctor)(void *));
752 
753 /*
754  * Bulk allocation and freeing operations. These are accelerated in an
755  * allocator specific way to avoid taking locks repeatedly or building
756  * metadata structures unnecessarily.
757  *
758  * Note that interrupts must be enabled when calling these functions.
759  */
760 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
761 
762 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
763 #define kmem_cache_alloc_bulk(...)	alloc_hooks(kmem_cache_alloc_bulk_noprof(__VA_ARGS__))
764 
kfree_bulk(size_t size,void ** p)765 static __always_inline void kfree_bulk(size_t size, void **p)
766 {
767 	kmem_cache_free_bulk(NULL, size, p);
768 }
769 
770 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t flags,
771 				   int node) __assume_slab_alignment __malloc;
772 #define kmem_cache_alloc_node(...)	alloc_hooks(kmem_cache_alloc_node_noprof(__VA_ARGS__))
773 
774 /*
775  * These macros allow declaring a kmem_buckets * parameter alongside size, which
776  * can be compiled out with CONFIG_SLAB_BUCKETS=n so that a large number of call
777  * sites don't have to pass NULL.
778  */
779 #ifdef CONFIG_SLAB_BUCKETS
780 #define DECL_BUCKET_PARAMS(_size, _b)	size_t (_size), kmem_buckets *(_b)
781 #define PASS_BUCKET_PARAMS(_size, _b)	(_size), (_b)
782 #define PASS_BUCKET_PARAM(_b)		(_b)
783 #else
784 #define DECL_BUCKET_PARAMS(_size, _b)	size_t (_size)
785 #define PASS_BUCKET_PARAMS(_size, _b)	(_size)
786 #define PASS_BUCKET_PARAM(_b)		NULL
787 #endif
788 
789 /*
790  * The following functions are not to be used directly and are intended only
791  * for internal use from kmalloc() and kmalloc_node()
792  * with the exception of kunit tests
793  */
794 
795 void *__kmalloc_noprof(size_t size, gfp_t flags)
796 				__assume_kmalloc_alignment __alloc_size(1);
797 
798 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
799 				__assume_kmalloc_alignment __alloc_size(1);
800 
801 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t flags, size_t size)
802 				__assume_kmalloc_alignment __alloc_size(3);
803 
804 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
805 				  int node, size_t size)
806 				__assume_kmalloc_alignment __alloc_size(4);
807 
808 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
809 				__assume_page_alignment __alloc_size(1);
810 
811 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
812 				__assume_page_alignment __alloc_size(1);
813 
814 /**
815  * kmalloc - allocate kernel memory
816  * @size: how many bytes of memory are required.
817  * @flags: describe the allocation context
818  *
819  * kmalloc is the normal method of allocating memory
820  * for objects smaller than page size in the kernel.
821  *
822  * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
823  * bytes. For @size of power of two bytes, the alignment is also guaranteed
824  * to be at least to the size. For other sizes, the alignment is guaranteed to
825  * be at least the largest power-of-two divisor of @size.
826  *
827  * The @flags argument may be one of the GFP flags defined at
828  * include/linux/gfp_types.h and described at
829  * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
830  *
831  * The recommended usage of the @flags is described at
832  * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
833  *
834  * Below is a brief outline of the most useful GFP flags
835  *
836  * %GFP_KERNEL
837  *	Allocate normal kernel ram. May sleep.
838  *
839  * %GFP_NOWAIT
840  *	Allocation will not sleep.
841  *
842  * %GFP_ATOMIC
843  *	Allocation will not sleep.  May use emergency pools.
844  *
845  * Also it is possible to set different flags by OR'ing
846  * in one or more of the following additional @flags:
847  *
848  * %__GFP_ZERO
849  *	Zero the allocated memory before returning. Also see kzalloc().
850  *
851  * %__GFP_HIGH
852  *	This allocation has high priority and may use emergency pools.
853  *
854  * %__GFP_NOFAIL
855  *	Indicate that this allocation is in no way allowed to fail
856  *	(think twice before using).
857  *
858  * %__GFP_NORETRY
859  *	If memory is not immediately available,
860  *	then give up at once.
861  *
862  * %__GFP_NOWARN
863  *	If allocation fails, don't issue any warnings.
864  *
865  * %__GFP_RETRY_MAYFAIL
866  *	Try really hard to succeed the allocation but fail
867  *	eventually.
868  */
kmalloc_noprof(size_t size,gfp_t flags)869 static __always_inline __alloc_size(1) void *kmalloc_noprof(size_t size, gfp_t flags)
870 {
871 	if (__builtin_constant_p(size) && size) {
872 		unsigned int index;
873 
874 		if (size > KMALLOC_MAX_CACHE_SIZE)
875 			return __kmalloc_large_noprof(size, flags);
876 
877 		index = kmalloc_index(size);
878 		return __kmalloc_cache_noprof(
879 				kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index],
880 				flags, size);
881 	}
882 	return __kmalloc_noprof(size, flags);
883 }
884 #define kmalloc(...)				alloc_hooks(kmalloc_noprof(__VA_ARGS__))
885 
886 #define kmem_buckets_alloc(_b, _size, _flags)	\
887 	alloc_hooks(__kmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))
888 
889 #define kmem_buckets_alloc_track_caller(_b, _size, _flags)	\
890 	alloc_hooks(__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE, _RET_IP_))
891 
kmalloc_node_noprof(size_t size,gfp_t flags,int node)892 static __always_inline __alloc_size(1) void *kmalloc_node_noprof(size_t size, gfp_t flags, int node)
893 {
894 	if (__builtin_constant_p(size) && size) {
895 		unsigned int index;
896 
897 		if (size > KMALLOC_MAX_CACHE_SIZE)
898 			return __kmalloc_large_node_noprof(size, flags, node);
899 
900 		index = kmalloc_index(size);
901 		return __kmalloc_cache_node_noprof(
902 				kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index],
903 				flags, node, size);
904 	}
905 	return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node);
906 }
907 #define kmalloc_node(...)			alloc_hooks(kmalloc_node_noprof(__VA_ARGS__))
908 
909 /**
910  * kmalloc_array - allocate memory for an array.
911  * @n: number of elements.
912  * @size: element size.
913  * @flags: the type of memory to allocate (see kmalloc).
914  */
kmalloc_array_noprof(size_t n,size_t size,gfp_t flags)915 static inline __alloc_size(1, 2) void *kmalloc_array_noprof(size_t n, size_t size, gfp_t flags)
916 {
917 	size_t bytes;
918 
919 	if (unlikely(check_mul_overflow(n, size, &bytes)))
920 		return NULL;
921 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
922 		return kmalloc_noprof(bytes, flags);
923 	return kmalloc_noprof(bytes, flags);
924 }
925 #define kmalloc_array(...)			alloc_hooks(kmalloc_array_noprof(__VA_ARGS__))
926 
927 /**
928  * krealloc_array - reallocate memory for an array.
929  * @p: pointer to the memory chunk to reallocate
930  * @new_n: new number of elements to alloc
931  * @new_size: new size of a single member of the array
932  * @flags: the type of memory to allocate (see kmalloc)
933  *
934  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
935  * initial memory allocation, every subsequent call to this API for the same
936  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
937  * __GFP_ZERO is not fully honored by this API.
938  *
939  * See krealloc_noprof() for further details.
940  *
941  * In any case, the contents of the object pointed to are preserved up to the
942  * lesser of the new and old sizes.
943  */
krealloc_array_noprof(void * p,size_t new_n,size_t new_size,gfp_t flags)944 static inline __realloc_size(2, 3) void * __must_check krealloc_array_noprof(void *p,
945 								       size_t new_n,
946 								       size_t new_size,
947 								       gfp_t flags)
948 {
949 	size_t bytes;
950 
951 	if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
952 		return NULL;
953 
954 	return krealloc_noprof(p, bytes, flags);
955 }
956 #define krealloc_array(...)			alloc_hooks(krealloc_array_noprof(__VA_ARGS__))
957 
958 /**
959  * kcalloc - allocate memory for an array. The memory is set to zero.
960  * @n: number of elements.
961  * @size: element size.
962  * @flags: the type of memory to allocate (see kmalloc).
963  */
964 #define kcalloc(n, size, flags)		kmalloc_array(n, size, (flags) | __GFP_ZERO)
965 
966 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node,
967 					 unsigned long caller) __alloc_size(1);
968 #define kmalloc_node_track_caller_noprof(size, flags, node, caller) \
969 	__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node, caller)
970 #define kmalloc_node_track_caller(...)		\
971 	alloc_hooks(kmalloc_node_track_caller_noprof(__VA_ARGS__, _RET_IP_))
972 
973 /*
974  * kmalloc_track_caller is a special version of kmalloc that records the
975  * calling function of the routine calling it for slab leak tracking instead
976  * of just the calling function (confusing, eh?).
977  * It's useful when the call to kmalloc comes from a widely-used standard
978  * allocator where we care about the real place the memory allocation
979  * request comes from.
980  */
981 #define kmalloc_track_caller(...)		kmalloc_node_track_caller(__VA_ARGS__, NUMA_NO_NODE)
982 
983 #define kmalloc_track_caller_noprof(...)	\
984 		kmalloc_node_track_caller_noprof(__VA_ARGS__, NUMA_NO_NODE, _RET_IP_)
985 
kmalloc_array_node_noprof(size_t n,size_t size,gfp_t flags,int node)986 static inline __alloc_size(1, 2) void *kmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags,
987 							  int node)
988 {
989 	size_t bytes;
990 
991 	if (unlikely(check_mul_overflow(n, size, &bytes)))
992 		return NULL;
993 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
994 		return kmalloc_node_noprof(bytes, flags, node);
995 	return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(bytes, NULL), flags, node);
996 }
997 #define kmalloc_array_node(...)			alloc_hooks(kmalloc_array_node_noprof(__VA_ARGS__))
998 
999 #define kcalloc_node(_n, _size, _flags, _node)	\
1000 	kmalloc_array_node(_n, _size, (_flags) | __GFP_ZERO, _node)
1001 
1002 /*
1003  * Shortcuts
1004  */
1005 #define kmem_cache_zalloc(_k, _flags)		kmem_cache_alloc(_k, (_flags)|__GFP_ZERO)
1006 
1007 /**
1008  * kzalloc - allocate memory. The memory is set to zero.
1009  * @size: how many bytes of memory are required.
1010  * @flags: the type of memory to allocate (see kmalloc).
1011  */
kzalloc_noprof(size_t size,gfp_t flags)1012 static inline __alloc_size(1) void *kzalloc_noprof(size_t size, gfp_t flags)
1013 {
1014 	return kmalloc_noprof(size, flags | __GFP_ZERO);
1015 }
1016 #define kzalloc(...)				alloc_hooks(kzalloc_noprof(__VA_ARGS__))
1017 #define kzalloc_node(_size, _flags, _node)	kmalloc_node(_size, (_flags)|__GFP_ZERO, _node)
1018 
1019 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) __alloc_size(1);
1020 #define kvmalloc_node_noprof(size, flags, node)	\
1021 	__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node)
1022 #define kvmalloc_node(...)			alloc_hooks(kvmalloc_node_noprof(__VA_ARGS__))
1023 
1024 #define kvmalloc(_size, _flags)			kvmalloc_node(_size, _flags, NUMA_NO_NODE)
1025 #define kvmalloc_noprof(_size, _flags)		kvmalloc_node_noprof(_size, _flags, NUMA_NO_NODE)
1026 #define kvzalloc(_size, _flags)			kvmalloc(_size, (_flags)|__GFP_ZERO)
1027 
1028 #define kvzalloc_node(_size, _flags, _node)	kvmalloc_node(_size, (_flags)|__GFP_ZERO, _node)
1029 #define kmem_buckets_valloc(_b, _size, _flags)	\
1030 	alloc_hooks(__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))
1031 
1032 static inline __alloc_size(1, 2) void *
kvmalloc_array_node_noprof(size_t n,size_t size,gfp_t flags,int node)1033 kvmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags, int node)
1034 {
1035 	size_t bytes;
1036 
1037 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1038 		return NULL;
1039 
1040 	return kvmalloc_node_noprof(bytes, flags, node);
1041 }
1042 
1043 #define kvmalloc_array_noprof(...)		kvmalloc_array_node_noprof(__VA_ARGS__, NUMA_NO_NODE)
1044 #define kvcalloc_node_noprof(_n,_s,_f,_node)	kvmalloc_array_node_noprof(_n,_s,(_f)|__GFP_ZERO,_node)
1045 #define kvcalloc_noprof(...)			kvcalloc_node_noprof(__VA_ARGS__, NUMA_NO_NODE)
1046 
1047 #define kvmalloc_array(...)			alloc_hooks(kvmalloc_array_noprof(__VA_ARGS__))
1048 #define kvcalloc_node(...)			alloc_hooks(kvcalloc_node_noprof(__VA_ARGS__))
1049 #define kvcalloc(...)				alloc_hooks(kvcalloc_noprof(__VA_ARGS__))
1050 
1051 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
1052 		__realloc_size(2);
1053 #define kvrealloc(...)				alloc_hooks(kvrealloc_noprof(__VA_ARGS__))
1054 
1055 extern void kvfree(const void *addr);
1056 DEFINE_FREE(kvfree, void *, if (!IS_ERR_OR_NULL(_T)) kvfree(_T))
1057 
1058 extern void kvfree_sensitive(const void *addr, size_t len);
1059 
1060 unsigned int kmem_cache_size(struct kmem_cache *s);
1061 
1062 /**
1063  * kmalloc_size_roundup - Report allocation bucket size for the given size
1064  *
1065  * @size: Number of bytes to round up from.
1066  *
1067  * This returns the number of bytes that would be available in a kmalloc()
1068  * allocation of @size bytes. For example, a 126 byte request would be
1069  * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly
1070  * for the general-purpose kmalloc()-based allocations, and is not for the
1071  * pre-sized kmem_cache_alloc()-based allocations.)
1072  *
1073  * Use this to kmalloc() the full bucket size ahead of time instead of using
1074  * ksize() to query the size after an allocation.
1075  */
1076 size_t kmalloc_size_roundup(size_t size);
1077 
1078 void __init kmem_cache_init_late(void);
1079 
1080 #endif	/* _LINUX_SLAB_H */
1081