1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 *
4 * Copyright SUSE Linux Products GmbH 2009
5 *
6 * Authors: Alexander Graf <agraf@suse.de>
7 */
8
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13 #include <linux/highmem.h>
14
15 #include <asm/kvm_ppc.h>
16 #include <asm/kvm_book3s.h>
17
18 /* #define DEBUG_MMU */
19 /* #define DEBUG_MMU_PTE */
20 /* #define DEBUG_MMU_PTE_IP 0xfff14c40 */
21
22 #ifdef DEBUG_MMU
23 #define dprintk(X...) printk(KERN_INFO X)
24 #else
25 #define dprintk(X...) do { } while(0)
26 #endif
27
28 #ifdef DEBUG_MMU_PTE
29 #define dprintk_pte(X...) printk(KERN_INFO X)
30 #else
31 #define dprintk_pte(X...) do { } while(0)
32 #endif
33
34 #define PTEG_FLAG_ACCESSED 0x00000100
35 #define PTEG_FLAG_DIRTY 0x00000080
36 #ifndef SID_SHIFT
37 #define SID_SHIFT 28
38 #endif
39
check_debug_ip(struct kvm_vcpu * vcpu)40 static inline bool check_debug_ip(struct kvm_vcpu *vcpu)
41 {
42 #ifdef DEBUG_MMU_PTE_IP
43 return vcpu->arch.regs.nip == DEBUG_MMU_PTE_IP;
44 #else
45 return true;
46 #endif
47 }
48
sr_vsid(u32 sr_raw)49 static inline u32 sr_vsid(u32 sr_raw)
50 {
51 return sr_raw & 0x0fffffff;
52 }
53
sr_valid(u32 sr_raw)54 static inline bool sr_valid(u32 sr_raw)
55 {
56 return (sr_raw & 0x80000000) ? false : true;
57 }
58
sr_ks(u32 sr_raw)59 static inline bool sr_ks(u32 sr_raw)
60 {
61 return (sr_raw & 0x40000000) ? true: false;
62 }
63
sr_kp(u32 sr_raw)64 static inline bool sr_kp(u32 sr_raw)
65 {
66 return (sr_raw & 0x20000000) ? true: false;
67 }
68
69 static int kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu *vcpu, gva_t eaddr,
70 struct kvmppc_pte *pte, bool data,
71 bool iswrite);
72 static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
73 u64 *vsid);
74
find_sr(struct kvm_vcpu * vcpu,gva_t eaddr)75 static u32 find_sr(struct kvm_vcpu *vcpu, gva_t eaddr)
76 {
77 return kvmppc_get_sr(vcpu, (eaddr >> 28) & 0xf);
78 }
79
kvmppc_mmu_book3s_32_ea_to_vp(struct kvm_vcpu * vcpu,gva_t eaddr,bool data)80 static u64 kvmppc_mmu_book3s_32_ea_to_vp(struct kvm_vcpu *vcpu, gva_t eaddr,
81 bool data)
82 {
83 u64 vsid;
84 struct kvmppc_pte pte;
85
86 if (!kvmppc_mmu_book3s_32_xlate_bat(vcpu, eaddr, &pte, data, false))
87 return pte.vpage;
88
89 kvmppc_mmu_book3s_32_esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
90 return (((u64)eaddr >> 12) & 0xffff) | (vsid << 16);
91 }
92
kvmppc_mmu_book3s_32_get_pteg(struct kvm_vcpu * vcpu,u32 sre,gva_t eaddr,bool primary)93 static hva_t kvmppc_mmu_book3s_32_get_pteg(struct kvm_vcpu *vcpu,
94 u32 sre, gva_t eaddr,
95 bool primary)
96 {
97 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
98 u32 page, hash, pteg, htabmask;
99 hva_t r;
100
101 page = (eaddr & 0x0FFFFFFF) >> 12;
102 htabmask = ((vcpu_book3s->sdr1 & 0x1FF) << 16) | 0xFFC0;
103
104 hash = ((sr_vsid(sre) ^ page) << 6);
105 if (!primary)
106 hash = ~hash;
107 hash &= htabmask;
108
109 pteg = (vcpu_book3s->sdr1 & 0xffff0000) | hash;
110
111 dprintk("MMU: pc=0x%lx eaddr=0x%lx sdr1=0x%llx pteg=0x%x vsid=0x%x\n",
112 kvmppc_get_pc(vcpu), eaddr, vcpu_book3s->sdr1, pteg,
113 sr_vsid(sre));
114
115 r = gfn_to_hva(vcpu->kvm, pteg >> PAGE_SHIFT);
116 if (kvm_is_error_hva(r))
117 return r;
118 return r | (pteg & ~PAGE_MASK);
119 }
120
kvmppc_mmu_book3s_32_get_ptem(u32 sre,gva_t eaddr,bool primary)121 static u32 kvmppc_mmu_book3s_32_get_ptem(u32 sre, gva_t eaddr, bool primary)
122 {
123 return ((eaddr & 0x0fffffff) >> 22) | (sr_vsid(sre) << 7) |
124 (primary ? 0 : 0x40) | 0x80000000;
125 }
126
kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu * vcpu,gva_t eaddr,struct kvmppc_pte * pte,bool data,bool iswrite)127 static int kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu *vcpu, gva_t eaddr,
128 struct kvmppc_pte *pte, bool data,
129 bool iswrite)
130 {
131 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
132 struct kvmppc_bat *bat;
133 int i;
134
135 for (i = 0; i < 8; i++) {
136 if (data)
137 bat = &vcpu_book3s->dbat[i];
138 else
139 bat = &vcpu_book3s->ibat[i];
140
141 if (kvmppc_get_msr(vcpu) & MSR_PR) {
142 if (!bat->vp)
143 continue;
144 } else {
145 if (!bat->vs)
146 continue;
147 }
148
149 if (check_debug_ip(vcpu))
150 {
151 dprintk_pte("%cBAT %02d: 0x%lx - 0x%x (0x%x)\n",
152 data ? 'd' : 'i', i, eaddr, bat->bepi,
153 bat->bepi_mask);
154 }
155 if ((eaddr & bat->bepi_mask) == bat->bepi) {
156 u64 vsid;
157 kvmppc_mmu_book3s_32_esid_to_vsid(vcpu,
158 eaddr >> SID_SHIFT, &vsid);
159 vsid <<= 16;
160 pte->vpage = (((u64)eaddr >> 12) & 0xffff) | vsid;
161
162 pte->raddr = bat->brpn | (eaddr & ~bat->bepi_mask);
163 pte->may_read = bat->pp;
164 pte->may_write = bat->pp > 1;
165 pte->may_execute = true;
166 if (!pte->may_read) {
167 printk(KERN_INFO "BAT is not readable!\n");
168 continue;
169 }
170 if (iswrite && !pte->may_write) {
171 dprintk_pte("BAT is read-only!\n");
172 continue;
173 }
174
175 return 0;
176 }
177 }
178
179 return -ENOENT;
180 }
181
kvmppc_mmu_book3s_32_xlate_pte(struct kvm_vcpu * vcpu,gva_t eaddr,struct kvmppc_pte * pte,bool data,bool iswrite,bool primary)182 static int kvmppc_mmu_book3s_32_xlate_pte(struct kvm_vcpu *vcpu, gva_t eaddr,
183 struct kvmppc_pte *pte, bool data,
184 bool iswrite, bool primary)
185 {
186 u32 sre;
187 hva_t ptegp;
188 u32 pteg[16];
189 u32 pte0, pte1;
190 u32 ptem = 0;
191 int i;
192 int found = 0;
193
194 sre = find_sr(vcpu, eaddr);
195
196 dprintk_pte("SR 0x%lx: vsid=0x%x, raw=0x%x\n", eaddr >> 28,
197 sr_vsid(sre), sre);
198
199 pte->vpage = kvmppc_mmu_book3s_32_ea_to_vp(vcpu, eaddr, data);
200
201 ptegp = kvmppc_mmu_book3s_32_get_pteg(vcpu, sre, eaddr, primary);
202 if (kvm_is_error_hva(ptegp)) {
203 printk(KERN_INFO "KVM: Invalid PTEG!\n");
204 goto no_page_found;
205 }
206
207 ptem = kvmppc_mmu_book3s_32_get_ptem(sre, eaddr, primary);
208
209 if(copy_from_user(pteg, (void __user *)ptegp, sizeof(pteg))) {
210 printk_ratelimited(KERN_ERR
211 "KVM: Can't copy data from 0x%lx!\n", ptegp);
212 goto no_page_found;
213 }
214
215 for (i=0; i<16; i+=2) {
216 pte0 = be32_to_cpu(pteg[i]);
217 pte1 = be32_to_cpu(pteg[i + 1]);
218 if (ptem == pte0) {
219 u8 pp;
220
221 pte->raddr = (pte1 & ~(0xFFFULL)) | (eaddr & 0xFFF);
222 pp = pte1 & 3;
223
224 if ((sr_kp(sre) && (kvmppc_get_msr(vcpu) & MSR_PR)) ||
225 (sr_ks(sre) && !(kvmppc_get_msr(vcpu) & MSR_PR)))
226 pp |= 4;
227
228 pte->may_write = false;
229 pte->may_read = false;
230 pte->may_execute = true;
231 switch (pp) {
232 case 0:
233 case 1:
234 case 2:
235 case 6:
236 pte->may_write = true;
237 fallthrough;
238 case 3:
239 case 5:
240 case 7:
241 pte->may_read = true;
242 break;
243 }
244
245 dprintk_pte("MMU: Found PTE -> %x %x - %x\n",
246 pte0, pte1, pp);
247 found = 1;
248 break;
249 }
250 }
251
252 /* Update PTE C and A bits, so the guest's swapper knows we used the
253 page */
254 if (found) {
255 u32 pte_r = pte1;
256 char __user *addr = (char __user *) (ptegp + (i+1) * sizeof(u32));
257
258 /*
259 * Use single-byte writes to update the HPTE, to
260 * conform to what real hardware does.
261 */
262 if (pte->may_read && !(pte_r & PTEG_FLAG_ACCESSED)) {
263 pte_r |= PTEG_FLAG_ACCESSED;
264 put_user(pte_r >> 8, addr + 2);
265 }
266 if (iswrite && pte->may_write && !(pte_r & PTEG_FLAG_DIRTY)) {
267 pte_r |= PTEG_FLAG_DIRTY;
268 put_user(pte_r, addr + 3);
269 }
270 if (!pte->may_read || (iswrite && !pte->may_write))
271 return -EPERM;
272 return 0;
273 }
274
275 no_page_found:
276
277 if (check_debug_ip(vcpu)) {
278 dprintk_pte("KVM MMU: No PTE found (sdr1=0x%llx ptegp=0x%lx)\n",
279 to_book3s(vcpu)->sdr1, ptegp);
280 for (i=0; i<16; i+=2) {
281 dprintk_pte(" %02d: 0x%x - 0x%x (0x%x)\n",
282 i, be32_to_cpu(pteg[i]),
283 be32_to_cpu(pteg[i+1]), ptem);
284 }
285 }
286
287 return -ENOENT;
288 }
289
kvmppc_mmu_book3s_32_xlate(struct kvm_vcpu * vcpu,gva_t eaddr,struct kvmppc_pte * pte,bool data,bool iswrite)290 static int kvmppc_mmu_book3s_32_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
291 struct kvmppc_pte *pte, bool data,
292 bool iswrite)
293 {
294 int r;
295 ulong mp_ea = vcpu->arch.magic_page_ea;
296
297 pte->eaddr = eaddr;
298 pte->page_size = MMU_PAGE_4K;
299
300 /* Magic page override */
301 if (unlikely(mp_ea) &&
302 unlikely((eaddr & ~0xfffULL) == (mp_ea & ~0xfffULL)) &&
303 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
304 pte->vpage = kvmppc_mmu_book3s_32_ea_to_vp(vcpu, eaddr, data);
305 pte->raddr = vcpu->arch.magic_page_pa | (pte->raddr & 0xfff);
306 pte->raddr &= KVM_PAM;
307 pte->may_execute = true;
308 pte->may_read = true;
309 pte->may_write = true;
310
311 return 0;
312 }
313
314 r = kvmppc_mmu_book3s_32_xlate_bat(vcpu, eaddr, pte, data, iswrite);
315 if (r < 0)
316 r = kvmppc_mmu_book3s_32_xlate_pte(vcpu, eaddr, pte,
317 data, iswrite, true);
318 if (r == -ENOENT)
319 r = kvmppc_mmu_book3s_32_xlate_pte(vcpu, eaddr, pte,
320 data, iswrite, false);
321
322 return r;
323 }
324
325
kvmppc_mmu_book3s_32_mfsrin(struct kvm_vcpu * vcpu,u32 srnum)326 static u32 kvmppc_mmu_book3s_32_mfsrin(struct kvm_vcpu *vcpu, u32 srnum)
327 {
328 return kvmppc_get_sr(vcpu, srnum);
329 }
330
kvmppc_mmu_book3s_32_mtsrin(struct kvm_vcpu * vcpu,u32 srnum,ulong value)331 static void kvmppc_mmu_book3s_32_mtsrin(struct kvm_vcpu *vcpu, u32 srnum,
332 ulong value)
333 {
334 kvmppc_set_sr(vcpu, srnum, value);
335 kvmppc_mmu_map_segment(vcpu, srnum << SID_SHIFT);
336 }
337
kvmppc_mmu_book3s_32_tlbie(struct kvm_vcpu * vcpu,ulong ea,bool large)338 static void kvmppc_mmu_book3s_32_tlbie(struct kvm_vcpu *vcpu, ulong ea, bool large)
339 {
340 unsigned long i;
341 struct kvm_vcpu *v;
342
343 /* flush this VA on all cpus */
344 kvm_for_each_vcpu(i, v, vcpu->kvm)
345 kvmppc_mmu_pte_flush(v, ea, 0x0FFFF000);
346 }
347
kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu * vcpu,ulong esid,u64 * vsid)348 static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
349 u64 *vsid)
350 {
351 ulong ea = esid << SID_SHIFT;
352 u32 sr;
353 u64 gvsid = esid;
354 u64 msr = kvmppc_get_msr(vcpu);
355
356 if (msr & (MSR_DR|MSR_IR)) {
357 sr = find_sr(vcpu, ea);
358 if (sr_valid(sr))
359 gvsid = sr_vsid(sr);
360 }
361
362 /* In case we only have one of MSR_IR or MSR_DR set, let's put
363 that in the real-mode context (and hope RM doesn't access
364 high memory) */
365 switch (msr & (MSR_DR|MSR_IR)) {
366 case 0:
367 *vsid = VSID_REAL | esid;
368 break;
369 case MSR_IR:
370 *vsid = VSID_REAL_IR | gvsid;
371 break;
372 case MSR_DR:
373 *vsid = VSID_REAL_DR | gvsid;
374 break;
375 case MSR_DR|MSR_IR:
376 if (sr_valid(sr))
377 *vsid = sr_vsid(sr);
378 else
379 *vsid = VSID_BAT | gvsid;
380 break;
381 default:
382 BUG();
383 }
384
385 if (msr & MSR_PR)
386 *vsid |= VSID_PR;
387
388 return 0;
389 }
390
kvmppc_mmu_book3s_32_is_dcbz32(struct kvm_vcpu * vcpu)391 static bool kvmppc_mmu_book3s_32_is_dcbz32(struct kvm_vcpu *vcpu)
392 {
393 return true;
394 }
395
396
kvmppc_mmu_book3s_32_init(struct kvm_vcpu * vcpu)397 void kvmppc_mmu_book3s_32_init(struct kvm_vcpu *vcpu)
398 {
399 struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
400
401 mmu->mtsrin = kvmppc_mmu_book3s_32_mtsrin;
402 mmu->mfsrin = kvmppc_mmu_book3s_32_mfsrin;
403 mmu->xlate = kvmppc_mmu_book3s_32_xlate;
404 mmu->tlbie = kvmppc_mmu_book3s_32_tlbie;
405 mmu->esid_to_vsid = kvmppc_mmu_book3s_32_esid_to_vsid;
406 mmu->ea_to_vp = kvmppc_mmu_book3s_32_ea_to_vp;
407 mmu->is_dcbz32 = kvmppc_mmu_book3s_32_is_dcbz32;
408
409 mmu->slbmte = NULL;
410 mmu->slbmfee = NULL;
411 mmu->slbmfev = NULL;
412 mmu->slbfee = NULL;
413 mmu->slbie = NULL;
414 mmu->slbia = NULL;
415 }
416