1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015, 2016 ARM Ltd.
4 */
5
6 #include <linux/interrupt.h>
7 #include <linux/irq.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list_sort.h>
11 #include <linux/nospec.h>
12
13 #include <asm/kvm_hyp.h>
14
15 #include "vgic.h"
16
17 #define CREATE_TRACE_POINTS
18 #include "trace.h"
19
20 struct vgic_global kvm_vgic_global_state __ro_after_init = {
21 .gicv3_cpuif = STATIC_KEY_FALSE_INIT,
22 };
23
24 /*
25 * Locking order is always:
26 * kvm->lock (mutex)
27 * vcpu->mutex (mutex)
28 * kvm->arch.config_lock (mutex)
29 * its->cmd_lock (mutex)
30 * its->its_lock (mutex)
31 * vgic_dist->lpi_xa.xa_lock must be taken with IRQs disabled
32 * vgic_cpu->ap_list_lock must be taken with IRQs disabled
33 * vgic_irq->irq_lock must be taken with IRQs disabled
34 *
35 * As the ap_list_lock might be taken from the timer interrupt handler,
36 * we have to disable IRQs before taking this lock and everything lower
37 * than it.
38 *
39 * The config_lock has additional ordering requirements:
40 * kvm->slots_lock
41 * kvm->srcu
42 * kvm->arch.config_lock
43 *
44 * If you need to take multiple locks, always take the upper lock first,
45 * then the lower ones, e.g. first take the its_lock, then the irq_lock.
46 * If you are already holding a lock and need to take a higher one, you
47 * have to drop the lower ranking lock first and re-acquire it after having
48 * taken the upper one.
49 *
50 * When taking more than one ap_list_lock at the same time, always take the
51 * lowest numbered VCPU's ap_list_lock first, so:
52 * vcpuX->vcpu_id < vcpuY->vcpu_id:
53 * raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
54 * raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
55 *
56 * Since the VGIC must support injecting virtual interrupts from ISRs, we have
57 * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
58 * spinlocks for any lock that may be taken while injecting an interrupt.
59 */
60
61 /*
62 * Index the VM's xarray of mapped LPIs and return a reference to the IRQ
63 * structure. The caller is expected to call vgic_put_irq() later once it's
64 * finished with the IRQ.
65 */
vgic_get_lpi(struct kvm * kvm,u32 intid)66 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
67 {
68 struct vgic_dist *dist = &kvm->arch.vgic;
69 struct vgic_irq *irq = NULL;
70
71 rcu_read_lock();
72
73 irq = xa_load(&dist->lpi_xa, intid);
74 if (!vgic_try_get_irq_ref(irq))
75 irq = NULL;
76
77 rcu_read_unlock();
78
79 return irq;
80 }
81
82 /*
83 * This looks up the virtual interrupt ID to get the corresponding
84 * struct vgic_irq. It also increases the refcount, so any caller is expected
85 * to call vgic_put_irq() once it's finished with this IRQ.
86 */
vgic_get_irq(struct kvm * kvm,u32 intid)87 struct vgic_irq *vgic_get_irq(struct kvm *kvm, u32 intid)
88 {
89 /* SPIs */
90 if (intid >= VGIC_NR_PRIVATE_IRQS &&
91 intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
92 intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
93 return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
94 }
95
96 /* LPIs */
97 if (intid >= VGIC_MIN_LPI)
98 return vgic_get_lpi(kvm, intid);
99
100 return NULL;
101 }
102
vgic_get_vcpu_irq(struct kvm_vcpu * vcpu,u32 intid)103 struct vgic_irq *vgic_get_vcpu_irq(struct kvm_vcpu *vcpu, u32 intid)
104 {
105 if (WARN_ON(!vcpu))
106 return NULL;
107
108 /* SGIs and PPIs */
109 if (intid < VGIC_NR_PRIVATE_IRQS) {
110 intid = array_index_nospec(intid, VGIC_NR_PRIVATE_IRQS);
111 return &vcpu->arch.vgic_cpu.private_irqs[intid];
112 }
113
114 return vgic_get_irq(vcpu->kvm, intid);
115 }
116
vgic_release_lpi_locked(struct vgic_dist * dist,struct vgic_irq * irq)117 static void vgic_release_lpi_locked(struct vgic_dist *dist, struct vgic_irq *irq)
118 {
119 lockdep_assert_held(&dist->lpi_xa.xa_lock);
120 __xa_erase(&dist->lpi_xa, irq->intid);
121 kfree_rcu(irq, rcu);
122 }
123
__vgic_put_irq(struct kvm * kvm,struct vgic_irq * irq)124 static __must_check bool __vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
125 {
126 if (irq->intid < VGIC_MIN_LPI)
127 return false;
128
129 return refcount_dec_and_test(&irq->refcount);
130 }
131
vgic_put_irq_norelease(struct kvm * kvm,struct vgic_irq * irq)132 static __must_check bool vgic_put_irq_norelease(struct kvm *kvm, struct vgic_irq *irq)
133 {
134 if (!__vgic_put_irq(kvm, irq))
135 return false;
136
137 irq->pending_release = true;
138 return true;
139 }
140
vgic_put_irq(struct kvm * kvm,struct vgic_irq * irq)141 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
142 {
143 struct vgic_dist *dist = &kvm->arch.vgic;
144 unsigned long flags;
145
146 /*
147 * Normally the lock is only taken when the refcount drops to 0.
148 * Acquire/release it early on lockdep kernels to make locking issues
149 * in rare release paths a bit more obvious.
150 */
151 if (IS_ENABLED(CONFIG_LOCKDEP) && irq->intid >= VGIC_MIN_LPI) {
152 guard(spinlock_irqsave)(&dist->lpi_xa.xa_lock);
153 }
154
155 if (!__vgic_put_irq(kvm, irq))
156 return;
157
158 xa_lock_irqsave(&dist->lpi_xa, flags);
159 vgic_release_lpi_locked(dist, irq);
160 xa_unlock_irqrestore(&dist->lpi_xa, flags);
161 }
162
vgic_release_deleted_lpis(struct kvm * kvm)163 static void vgic_release_deleted_lpis(struct kvm *kvm)
164 {
165 struct vgic_dist *dist = &kvm->arch.vgic;
166 unsigned long flags, intid;
167 struct vgic_irq *irq;
168
169 xa_lock_irqsave(&dist->lpi_xa, flags);
170
171 xa_for_each(&dist->lpi_xa, intid, irq) {
172 if (irq->pending_release)
173 vgic_release_lpi_locked(dist, irq);
174 }
175
176 xa_unlock_irqrestore(&dist->lpi_xa, flags);
177 }
178
vgic_flush_pending_lpis(struct kvm_vcpu * vcpu)179 void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
180 {
181 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
182 struct vgic_irq *irq, *tmp;
183 bool deleted = false;
184 unsigned long flags;
185
186 raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
187
188 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
189 if (irq->intid >= VGIC_MIN_LPI) {
190 raw_spin_lock(&irq->irq_lock);
191 list_del(&irq->ap_list);
192 irq->vcpu = NULL;
193 raw_spin_unlock(&irq->irq_lock);
194 deleted |= vgic_put_irq_norelease(vcpu->kvm, irq);
195 }
196 }
197
198 raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
199
200 if (deleted)
201 vgic_release_deleted_lpis(vcpu->kvm);
202 }
203
vgic_irq_set_phys_pending(struct vgic_irq * irq,bool pending)204 void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
205 {
206 WARN_ON(irq_set_irqchip_state(irq->host_irq,
207 IRQCHIP_STATE_PENDING,
208 pending));
209 }
210
vgic_get_phys_line_level(struct vgic_irq * irq)211 bool vgic_get_phys_line_level(struct vgic_irq *irq)
212 {
213 bool line_level;
214
215 BUG_ON(!irq->hw);
216
217 if (irq->ops && irq->ops->get_input_level)
218 return irq->ops->get_input_level(irq->intid);
219
220 WARN_ON(irq_get_irqchip_state(irq->host_irq,
221 IRQCHIP_STATE_PENDING,
222 &line_level));
223 return line_level;
224 }
225
226 /* Set/Clear the physical active state */
vgic_irq_set_phys_active(struct vgic_irq * irq,bool active)227 void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
228 {
229
230 BUG_ON(!irq->hw);
231 WARN_ON(irq_set_irqchip_state(irq->host_irq,
232 IRQCHIP_STATE_ACTIVE,
233 active));
234 }
235
236 /**
237 * vgic_target_oracle - compute the target vcpu for an irq
238 *
239 * @irq: The irq to route. Must be already locked.
240 *
241 * Based on the current state of the interrupt (enabled, pending,
242 * active, vcpu and target_vcpu), compute the next vcpu this should be
243 * given to. Return NULL if this shouldn't be injected at all.
244 *
245 * Requires the IRQ lock to be held.
246 */
vgic_target_oracle(struct vgic_irq * irq)247 struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
248 {
249 lockdep_assert_held(&irq->irq_lock);
250
251 /* If the interrupt is active, it must stay on the current vcpu */
252 if (irq->active)
253 return irq->vcpu ? : irq->target_vcpu;
254
255 /*
256 * If the IRQ is not active but enabled and pending, we should direct
257 * it to its configured target VCPU.
258 * If the distributor is disabled, pending interrupts shouldn't be
259 * forwarded.
260 */
261 if (irq->enabled && irq_is_pending(irq)) {
262 if (unlikely(irq->target_vcpu &&
263 !irq->target_vcpu->kvm->arch.vgic.enabled))
264 return NULL;
265
266 return irq->target_vcpu;
267 }
268
269 /* If neither active nor pending and enabled, then this IRQ should not
270 * be queued to any VCPU.
271 */
272 return NULL;
273 }
274
275 struct vgic_sort_info {
276 struct kvm_vcpu *vcpu;
277 struct vgic_vmcr vmcr;
278 };
279
280 /*
281 * The order of items in the ap_lists defines how we'll pack things in LRs as
282 * well, the first items in the list being the first things populated in the
283 * LRs.
284 *
285 * Pending, non-active interrupts must be placed at the head of the list.
286 * Otherwise things should be sorted by the priority field and the GIC
287 * hardware support will take care of preemption of priority groups etc.
288 * Interrupts that are not deliverable should be at the end of the list.
289 *
290 * Return negative if "a" sorts before "b", 0 to preserve order, and positive
291 * to sort "b" before "a".
292 */
vgic_irq_cmp(void * priv,const struct list_head * a,const struct list_head * b)293 static int vgic_irq_cmp(void *priv, const struct list_head *a,
294 const struct list_head *b)
295 {
296 struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
297 struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
298 struct vgic_sort_info *info = priv;
299 struct kvm_vcpu *vcpu = info->vcpu;
300 bool penda, pendb;
301 int ret;
302
303 /*
304 * list_sort may call this function with the same element when
305 * the list is fairly long.
306 */
307 if (unlikely(irqa == irqb))
308 return 0;
309
310 raw_spin_lock(&irqa->irq_lock);
311 raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
312
313 /* Undeliverable interrupts should be last */
314 ret = (int)(vgic_target_oracle(irqb) == vcpu) - (int)(vgic_target_oracle(irqa) == vcpu);
315 if (ret)
316 goto out;
317
318 /* Same thing for interrupts targeting a disabled group */
319 ret = (int)(irqb->group ? info->vmcr.grpen1 : info->vmcr.grpen0);
320 ret -= (int)(irqa->group ? info->vmcr.grpen1 : info->vmcr.grpen0);
321 if (ret)
322 goto out;
323
324 penda = irqa->enabled && irq_is_pending(irqa) && !irqa->active;
325 pendb = irqb->enabled && irq_is_pending(irqb) && !irqb->active;
326
327 ret = (int)pendb - (int)penda;
328 if (ret)
329 goto out;
330
331 /* Both pending and enabled, sort by priority (lower number first) */
332 ret = (int)irqa->priority - (int)irqb->priority;
333 if (ret)
334 goto out;
335
336 /* Finally, HW bit active interrupts have priority over non-HW ones */
337 ret = (int)irqb->hw - (int)irqa->hw;
338
339 out:
340 raw_spin_unlock(&irqb->irq_lock);
341 raw_spin_unlock(&irqa->irq_lock);
342 return ret;
343 }
344
345 /* Must be called with the ap_list_lock held */
vgic_sort_ap_list(struct kvm_vcpu * vcpu)346 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
347 {
348 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
349 struct vgic_sort_info info = { .vcpu = vcpu, };
350
351 lockdep_assert_held(&vgic_cpu->ap_list_lock);
352
353 vgic_get_vmcr(vcpu, &info.vmcr);
354 list_sort(&info, &vgic_cpu->ap_list_head, vgic_irq_cmp);
355 }
356
357 /*
358 * Only valid injection if changing level for level-triggered IRQs or for a
359 * rising edge, and in-kernel connected IRQ lines can only be controlled by
360 * their owner.
361 */
vgic_validate_injection(struct vgic_irq * irq,bool level,void * owner)362 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
363 {
364 if (irq->owner != owner)
365 return false;
366
367 switch (irq->config) {
368 case VGIC_CONFIG_LEVEL:
369 return irq->line_level != level;
370 case VGIC_CONFIG_EDGE:
371 return level;
372 }
373
374 return false;
375 }
376
vgic_model_needs_bcst_kick(struct kvm * kvm)377 static bool vgic_model_needs_bcst_kick(struct kvm *kvm)
378 {
379 /*
380 * A GICv3 (or GICv3-like) system exposing a GICv3 to the guest
381 * needs a broadcast kick to set TDIR globally.
382 *
383 * For systems that do not have TDIR (ARM's own v8.0 CPUs), the
384 * shadow TDIR bit is always set, and so is the register's TC bit,
385 * so no need to kick the CPUs.
386 */
387 return (cpus_have_final_cap(ARM64_HAS_ICH_HCR_EL2_TDIR) &&
388 kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3);
389 }
390
391 /*
392 * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
393 * Do the queuing if necessary, taking the right locks in the right order.
394 * Returns true when the IRQ was queued, false otherwise.
395 *
396 * Needs to be entered with the IRQ lock already held, but will return
397 * with all locks dropped.
398 */
vgic_queue_irq_unlock(struct kvm * kvm,struct vgic_irq * irq,unsigned long flags)399 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
400 unsigned long flags) __releases(&irq->irq_lock)
401 {
402 struct kvm_vcpu *vcpu;
403 bool bcast;
404
405 lockdep_assert_held(&irq->irq_lock);
406
407 retry:
408 vcpu = vgic_target_oracle(irq);
409 if (irq->vcpu || !vcpu) {
410 /*
411 * If this IRQ is already on a VCPU's ap_list, then it
412 * cannot be moved or modified and there is no more work for
413 * us to do.
414 *
415 * Otherwise, if the irq is not pending and enabled, it does
416 * not need to be inserted into an ap_list and there is also
417 * no more work for us to do.
418 */
419 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
420
421 /*
422 * We have to kick the VCPU here, because we could be
423 * queueing an edge-triggered interrupt for which we
424 * get no EOI maintenance interrupt. In that case,
425 * while the IRQ is already on the VCPU's AP list, the
426 * VCPU could have EOI'ed the original interrupt and
427 * won't see this one until it exits for some other
428 * reason.
429 */
430 if (vcpu) {
431 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
432 kvm_vcpu_kick(vcpu);
433 }
434 return false;
435 }
436
437 /*
438 * We must unlock the irq lock to take the ap_list_lock where
439 * we are going to insert this new pending interrupt.
440 */
441 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
442
443 /* someone can do stuff here, which we re-check below */
444
445 raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
446 raw_spin_lock(&irq->irq_lock);
447
448 /*
449 * Did something change behind our backs?
450 *
451 * There are two cases:
452 * 1) The irq lost its pending state or was disabled behind our
453 * backs and/or it was queued to another VCPU's ap_list.
454 * 2) Someone changed the affinity on this irq behind our
455 * backs and we are now holding the wrong ap_list_lock.
456 *
457 * In both cases, drop the locks and retry.
458 */
459
460 if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
461 raw_spin_unlock(&irq->irq_lock);
462 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
463 flags);
464
465 raw_spin_lock_irqsave(&irq->irq_lock, flags);
466 goto retry;
467 }
468
469 /*
470 * Grab a reference to the irq to reflect the fact that it is
471 * now in the ap_list. This is safe as the caller must already hold a
472 * reference on the irq.
473 */
474 vgic_get_irq_ref(irq);
475 list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
476 irq->vcpu = vcpu;
477
478 /* A new SPI may result in deactivation trapping on all vcpus */
479 bcast = (vgic_model_needs_bcst_kick(vcpu->kvm) &&
480 vgic_valid_spi(vcpu->kvm, irq->intid) &&
481 atomic_fetch_inc(&vcpu->kvm->arch.vgic.active_spis) == 0);
482
483 raw_spin_unlock(&irq->irq_lock);
484 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
485
486 if (!bcast) {
487 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
488 kvm_vcpu_kick(vcpu);
489 } else {
490 kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_IRQ_PENDING);
491 }
492
493 return true;
494 }
495
496 /**
497 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
498 * @kvm: The VM structure pointer
499 * @vcpu: The CPU for PPIs or NULL for global interrupts
500 * @intid: The INTID to inject a new state to.
501 * @level: Edge-triggered: true: to trigger the interrupt
502 * false: to ignore the call
503 * Level-sensitive true: raise the input signal
504 * false: lower the input signal
505 * @owner: The opaque pointer to the owner of the IRQ being raised to verify
506 * that the caller is allowed to inject this IRQ. Userspace
507 * injections will have owner == NULL.
508 *
509 * The VGIC is not concerned with devices being active-LOW or active-HIGH for
510 * level-sensitive interrupts. You can think of the level parameter as 1
511 * being HIGH and 0 being LOW and all devices being active-HIGH.
512 */
kvm_vgic_inject_irq(struct kvm * kvm,struct kvm_vcpu * vcpu,unsigned int intid,bool level,void * owner)513 int kvm_vgic_inject_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
514 unsigned int intid, bool level, void *owner)
515 {
516 struct vgic_irq *irq;
517 unsigned long flags;
518 int ret;
519
520 ret = vgic_lazy_init(kvm);
521 if (ret)
522 return ret;
523
524 if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
525 return -EINVAL;
526
527 trace_vgic_update_irq_pending(vcpu ? vcpu->vcpu_idx : 0, intid, level);
528
529 if (intid < VGIC_NR_PRIVATE_IRQS)
530 irq = vgic_get_vcpu_irq(vcpu, intid);
531 else
532 irq = vgic_get_irq(kvm, intid);
533 if (!irq)
534 return -EINVAL;
535
536 raw_spin_lock_irqsave(&irq->irq_lock, flags);
537
538 if (!vgic_validate_injection(irq, level, owner)) {
539 /* Nothing to see here, move along... */
540 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
541 vgic_put_irq(kvm, irq);
542 return 0;
543 }
544
545 if (irq->config == VGIC_CONFIG_LEVEL)
546 irq->line_level = level;
547 else
548 irq->pending_latch = true;
549
550 vgic_queue_irq_unlock(kvm, irq, flags);
551 vgic_put_irq(kvm, irq);
552
553 return 0;
554 }
555
556 /* @irq->irq_lock must be held */
kvm_vgic_map_irq(struct kvm_vcpu * vcpu,struct vgic_irq * irq,unsigned int host_irq,struct irq_ops * ops)557 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
558 unsigned int host_irq,
559 struct irq_ops *ops)
560 {
561 struct irq_desc *desc;
562 struct irq_data *data;
563
564 /*
565 * Find the physical IRQ number corresponding to @host_irq
566 */
567 desc = irq_to_desc(host_irq);
568 if (!desc) {
569 kvm_err("%s: no interrupt descriptor\n", __func__);
570 return -EINVAL;
571 }
572 data = irq_desc_get_irq_data(desc);
573 while (data->parent_data)
574 data = data->parent_data;
575
576 irq->hw = true;
577 irq->host_irq = host_irq;
578 irq->hwintid = data->hwirq;
579 irq->ops = ops;
580 return 0;
581 }
582
583 /* @irq->irq_lock must be held */
kvm_vgic_unmap_irq(struct vgic_irq * irq)584 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
585 {
586 irq->hw = false;
587 irq->hwintid = 0;
588 irq->ops = NULL;
589 }
590
kvm_vgic_map_phys_irq(struct kvm_vcpu * vcpu,unsigned int host_irq,u32 vintid,struct irq_ops * ops)591 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
592 u32 vintid, struct irq_ops *ops)
593 {
594 struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid);
595 unsigned long flags;
596 int ret;
597
598 BUG_ON(!irq);
599
600 raw_spin_lock_irqsave(&irq->irq_lock, flags);
601 ret = kvm_vgic_map_irq(vcpu, irq, host_irq, ops);
602 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
603 vgic_put_irq(vcpu->kvm, irq);
604
605 return ret;
606 }
607
608 /**
609 * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
610 * @vcpu: The VCPU pointer
611 * @vintid: The INTID of the interrupt
612 *
613 * Reset the active and pending states of a mapped interrupt. Kernel
614 * subsystems injecting mapped interrupts should reset their interrupt lines
615 * when we are doing a reset of the VM.
616 */
kvm_vgic_reset_mapped_irq(struct kvm_vcpu * vcpu,u32 vintid)617 void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
618 {
619 struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid);
620 unsigned long flags;
621
622 if (!irq->hw)
623 goto out;
624
625 raw_spin_lock_irqsave(&irq->irq_lock, flags);
626 irq->active = false;
627 irq->pending_latch = false;
628 irq->line_level = false;
629 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
630 out:
631 vgic_put_irq(vcpu->kvm, irq);
632 }
633
kvm_vgic_unmap_phys_irq(struct kvm_vcpu * vcpu,unsigned int vintid)634 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
635 {
636 struct vgic_irq *irq;
637 unsigned long flags;
638
639 if (!vgic_initialized(vcpu->kvm))
640 return -EAGAIN;
641
642 irq = vgic_get_vcpu_irq(vcpu, vintid);
643 BUG_ON(!irq);
644
645 raw_spin_lock_irqsave(&irq->irq_lock, flags);
646 kvm_vgic_unmap_irq(irq);
647 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
648 vgic_put_irq(vcpu->kvm, irq);
649
650 return 0;
651 }
652
kvm_vgic_get_map(struct kvm_vcpu * vcpu,unsigned int vintid)653 int kvm_vgic_get_map(struct kvm_vcpu *vcpu, unsigned int vintid)
654 {
655 struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid);
656 unsigned long flags;
657 int ret = -1;
658
659 raw_spin_lock_irqsave(&irq->irq_lock, flags);
660 if (irq->hw)
661 ret = irq->hwintid;
662 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
663
664 vgic_put_irq(vcpu->kvm, irq);
665 return ret;
666 }
667
668 /**
669 * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
670 *
671 * @vcpu: Pointer to the VCPU (used for PPIs)
672 * @intid: The virtual INTID identifying the interrupt (PPI or SPI)
673 * @owner: Opaque pointer to the owner
674 *
675 * Returns 0 if intid is not already used by another in-kernel device and the
676 * owner is set, otherwise returns an error code.
677 */
kvm_vgic_set_owner(struct kvm_vcpu * vcpu,unsigned int intid,void * owner)678 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
679 {
680 struct vgic_irq *irq;
681 unsigned long flags;
682 int ret = 0;
683
684 if (!vgic_initialized(vcpu->kvm))
685 return -EAGAIN;
686
687 /* SGIs and LPIs cannot be wired up to any device */
688 if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
689 return -EINVAL;
690
691 irq = vgic_get_vcpu_irq(vcpu, intid);
692 raw_spin_lock_irqsave(&irq->irq_lock, flags);
693 if (irq->owner && irq->owner != owner)
694 ret = -EEXIST;
695 else
696 irq->owner = owner;
697 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
698
699 return ret;
700 }
701
702 /**
703 * vgic_prune_ap_list - Remove non-relevant interrupts from the list
704 *
705 * @vcpu: The VCPU pointer
706 *
707 * Go over the list of "interesting" interrupts, and prune those that we
708 * won't have to consider in the near future.
709 */
vgic_prune_ap_list(struct kvm_vcpu * vcpu)710 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
711 {
712 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
713 struct vgic_irq *irq, *tmp;
714 bool deleted_lpis = false;
715
716 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
717
718 retry:
719 raw_spin_lock(&vgic_cpu->ap_list_lock);
720
721 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
722 struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
723 bool target_vcpu_needs_kick = false;
724
725 raw_spin_lock(&irq->irq_lock);
726
727 BUG_ON(vcpu != irq->vcpu);
728
729 target_vcpu = vgic_target_oracle(irq);
730
731 if (!target_vcpu) {
732 /*
733 * We don't need to process this interrupt any
734 * further, move it off the list.
735 */
736 list_del(&irq->ap_list);
737 irq->vcpu = NULL;
738 raw_spin_unlock(&irq->irq_lock);
739
740 /*
741 * This vgic_put_irq call matches the
742 * vgic_get_irq_ref in vgic_queue_irq_unlock,
743 * where we added the LPI to the ap_list. As
744 * we remove the irq from the list, we drop
745 * also drop the refcount.
746 */
747 deleted_lpis |= vgic_put_irq_norelease(vcpu->kvm, irq);
748 continue;
749 }
750
751 if (target_vcpu == vcpu) {
752 /* We're on the right CPU */
753 raw_spin_unlock(&irq->irq_lock);
754 continue;
755 }
756
757 /* This interrupt looks like it has to be migrated. */
758
759 raw_spin_unlock(&irq->irq_lock);
760 raw_spin_unlock(&vgic_cpu->ap_list_lock);
761
762 /*
763 * Ensure locking order by always locking the smallest
764 * ID first.
765 */
766 if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
767 vcpuA = vcpu;
768 vcpuB = target_vcpu;
769 } else {
770 vcpuA = target_vcpu;
771 vcpuB = vcpu;
772 }
773
774 raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
775 raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
776 SINGLE_DEPTH_NESTING);
777 raw_spin_lock(&irq->irq_lock);
778
779 /*
780 * If the affinity has been preserved, move the
781 * interrupt around. Otherwise, it means things have
782 * changed while the interrupt was unlocked, and we
783 * need to replay this.
784 *
785 * In all cases, we cannot trust the list not to have
786 * changed, so we restart from the beginning.
787 */
788 if (target_vcpu == vgic_target_oracle(irq)) {
789 struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
790
791 list_del(&irq->ap_list);
792 irq->vcpu = target_vcpu;
793 list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
794 target_vcpu_needs_kick = true;
795 }
796
797 raw_spin_unlock(&irq->irq_lock);
798 raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
799 raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
800
801 if (target_vcpu_needs_kick) {
802 kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
803 kvm_vcpu_kick(target_vcpu);
804 }
805
806 goto retry;
807 }
808
809 raw_spin_unlock(&vgic_cpu->ap_list_lock);
810
811 if (unlikely(deleted_lpis))
812 vgic_release_deleted_lpis(vcpu->kvm);
813 }
814
vgic_fold_lr_state(struct kvm_vcpu * vcpu)815 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
816 {
817 if (kvm_vgic_global_state.type == VGIC_V2)
818 vgic_v2_fold_lr_state(vcpu);
819 else
820 vgic_v3_fold_lr_state(vcpu);
821 }
822
823 /* Requires the irq_lock to be held. */
vgic_populate_lr(struct kvm_vcpu * vcpu,struct vgic_irq * irq,int lr)824 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
825 struct vgic_irq *irq, int lr)
826 {
827 lockdep_assert_held(&irq->irq_lock);
828
829 if (kvm_vgic_global_state.type == VGIC_V2)
830 vgic_v2_populate_lr(vcpu, irq, lr);
831 else
832 vgic_v3_populate_lr(vcpu, irq, lr);
833 }
834
vgic_clear_lr(struct kvm_vcpu * vcpu,int lr)835 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
836 {
837 if (kvm_vgic_global_state.type == VGIC_V2)
838 vgic_v2_clear_lr(vcpu, lr);
839 else
840 vgic_v3_clear_lr(vcpu, lr);
841 }
842
summarize_ap_list(struct kvm_vcpu * vcpu,struct ap_list_summary * als)843 static void summarize_ap_list(struct kvm_vcpu *vcpu,
844 struct ap_list_summary *als)
845 {
846 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
847 struct vgic_irq *irq;
848
849 lockdep_assert_held(&vgic_cpu->ap_list_lock);
850
851 *als = (typeof(*als)){};
852
853 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
854 guard(raw_spinlock)(&irq->irq_lock);
855
856 if (unlikely(vgic_target_oracle(irq) != vcpu))
857 continue;
858
859 if (!irq->active)
860 als->nr_pend++;
861 else
862 als->nr_act++;
863
864 if (irq->intid < VGIC_NR_SGIS)
865 als->nr_sgi++;
866 }
867 }
868
869 /*
870 * Dealing with LR overflow is close to black magic -- dress accordingly.
871 *
872 * We have to present an almost infinite number of interrupts through a very
873 * limited number of registers. Therefore crucial decisions must be made to
874 * ensure we feed the most relevant interrupts into the LRs, and yet have
875 * some facilities to let the guest interact with those that are not there.
876 *
877 * All considerations below are in the context of interrupts targeting a
878 * single vcpu with non-idle state (either pending, active, or both),
879 * colloquially called the ap_list:
880 *
881 * - Pending interrupts must have priority over active interrupts. This also
882 * excludes pending+active interrupts. This ensures that a guest can
883 * perform priority drops on any number of interrupts, and yet be
884 * presented the next pending one.
885 *
886 * - Deactivation of interrupts outside of the LRs must be tracked by using
887 * either the EOIcount-driven maintenance interrupt, and sometimes by
888 * trapping the DIR register.
889 *
890 * - For EOImode=0, a non-zero EOIcount means walking the ap_list past the
891 * point that made it into the LRs, and deactivate interrupts that would
892 * have made it onto the LRs if we had the space.
893 *
894 * - The MI-generation bits must be used to try and force an exit when the
895 * guest has done enough changes to the LRs that we want to reevaluate the
896 * situation:
897 *
898 * - if the total number of pending interrupts exceeds the number of
899 * LR, NPIE must be set in order to exit once no pending interrupts
900 * are present in the LRs, allowing us to populate the next batch.
901 *
902 * - if there are active interrupts outside of the LRs, then LRENPIE
903 * must be set so that we exit on deactivation of one of these, and
904 * work out which one is to be deactivated. Note that this is not
905 * enough to deal with EOImode=1, see below.
906 *
907 * - if the overall number of interrupts exceeds the number of LRs,
908 * then UIE must be set to allow refilling of the LRs once the
909 * majority of them has been processed.
910 *
911 * - as usual, MI triggers are only an optimisation, since we cannot
912 * rely on the MI being delivered in timely manner...
913 *
914 * - EOImode=1 creates some additional problems:
915 *
916 * - deactivation can happen in any order, and we cannot rely on
917 * EOImode=0's coupling of priority-drop and deactivation which
918 * imposes strict reverse Ack order. This means that DIR must
919 * trap if we have active interrupts outside of the LRs.
920 *
921 * - deactivation of SPIs can occur on any CPU, while the SPI is only
922 * present in the ap_list of the CPU that actually ack-ed it. In that
923 * case, EOIcount doesn't provide enough information, and we must
924 * resort to trapping DIR even if we don't overflow the LRs. Bonus
925 * point for not trapping DIR when no SPIs are pending or active in
926 * the whole VM.
927 *
928 * - LPIs do not suffer the same problem as SPIs on deactivation, as we
929 * have to essentially discard the active state, see below.
930 *
931 * - Virtual LPIs have an active state (surprise!), which gets removed on
932 * priority drop (EOI). However, EOIcount doesn't get bumped when the LPI
933 * is not present in the LR (surprise again!). Special care must therefore
934 * be taken to remove the active state from any activated LPI when exiting
935 * from the guest. This is in a way no different from what happens on the
936 * physical side. We still rely on the running priority to have been
937 * removed from the APRs, irrespective of the LPI being present in the LRs
938 * or not.
939 *
940 * - Virtual SGIs directly injected via GICv4.1 must not affect EOIcount, as
941 * they are not managed in SW and don't have a true active state. So only
942 * set vSGIEOICount when no SGIs are in the ap_list.
943 *
944 * - GICv2 SGIs with multiple sources are injected one source at a time, as
945 * if they were made pending sequentially. This may mean that we don't
946 * always present the HPPI if other interrupts with lower priority are
947 * pending in the LRs. Big deal.
948 */
vgic_flush_lr_state(struct kvm_vcpu * vcpu)949 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
950 {
951 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
952 struct ap_list_summary als;
953 struct vgic_irq *irq;
954 int count = 0;
955
956 lockdep_assert_held(&vgic_cpu->ap_list_lock);
957
958 summarize_ap_list(vcpu, &als);
959
960 if (irqs_outside_lrs(&als))
961 vgic_sort_ap_list(vcpu);
962
963 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
964 scoped_guard(raw_spinlock, &irq->irq_lock) {
965 if (likely(vgic_target_oracle(irq) == vcpu)) {
966 vgic_populate_lr(vcpu, irq, count++);
967 }
968 }
969
970 if (count == kvm_vgic_global_state.nr_lr)
971 break;
972 }
973
974 /* Nuke remaining LRs */
975 for (int i = count ; i < kvm_vgic_global_state.nr_lr; i++)
976 vgic_clear_lr(vcpu, i);
977
978 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
979 vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count;
980 vgic_v2_configure_hcr(vcpu, &als);
981 } else {
982 vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count;
983 vgic_v3_configure_hcr(vcpu, &als);
984 }
985 }
986
can_access_vgic_from_kernel(void)987 static inline bool can_access_vgic_from_kernel(void)
988 {
989 /*
990 * GICv2 can always be accessed from the kernel because it is
991 * memory-mapped, and VHE systems can access GICv3 EL2 system
992 * registers.
993 */
994 return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
995 }
996
vgic_save_state(struct kvm_vcpu * vcpu)997 static inline void vgic_save_state(struct kvm_vcpu *vcpu)
998 {
999 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1000 vgic_v2_save_state(vcpu);
1001 else
1002 __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
1003 }
1004
1005 /* Sync back the hardware VGIC state into our emulation after a guest's run. */
kvm_vgic_sync_hwstate(struct kvm_vcpu * vcpu)1006 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1007 {
1008 /* If nesting, emulate the HW effect from L0 to L1 */
1009 if (vgic_state_is_nested(vcpu)) {
1010 vgic_v3_sync_nested(vcpu);
1011 return;
1012 }
1013
1014 if (vcpu_has_nv(vcpu))
1015 vgic_v3_nested_update_mi(vcpu);
1016
1017 if (can_access_vgic_from_kernel())
1018 vgic_save_state(vcpu);
1019
1020 vgic_fold_lr_state(vcpu);
1021 vgic_prune_ap_list(vcpu);
1022 }
1023
1024 /* Sync interrupts that were deactivated through a DIR trap */
kvm_vgic_process_async_update(struct kvm_vcpu * vcpu)1025 void kvm_vgic_process_async_update(struct kvm_vcpu *vcpu)
1026 {
1027 unsigned long flags;
1028
1029 /* Make sure we're in the same context as LR handling */
1030 local_irq_save(flags);
1031 vgic_prune_ap_list(vcpu);
1032 local_irq_restore(flags);
1033 }
1034
vgic_restore_state(struct kvm_vcpu * vcpu)1035 static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
1036 {
1037 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1038 vgic_v2_restore_state(vcpu);
1039 else
1040 __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
1041 }
1042
1043 /* Flush our emulation state into the GIC hardware before entering the guest. */
kvm_vgic_flush_hwstate(struct kvm_vcpu * vcpu)1044 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1045 {
1046 /*
1047 * If in a nested state, we must return early. Two possibilities:
1048 *
1049 * - If we have any pending IRQ for the guest and the guest
1050 * expects IRQs to be handled in its virtual EL2 mode (the
1051 * virtual IMO bit is set) and it is not already running in
1052 * virtual EL2 mode, then we have to emulate an IRQ
1053 * exception to virtual EL2.
1054 *
1055 * We do that by placing a request to ourselves which will
1056 * abort the entry procedure and inject the exception at the
1057 * beginning of the run loop.
1058 *
1059 * - Otherwise, do exactly *NOTHING* apart from enabling the virtual
1060 * CPU interface. The guest state is already loaded, and we can
1061 * carry on with running it.
1062 *
1063 * If we have NV, but are not in a nested state, compute the
1064 * maintenance interrupt state, as it may fire.
1065 */
1066 if (vgic_state_is_nested(vcpu)) {
1067 if (kvm_vgic_vcpu_pending_irq(vcpu))
1068 kvm_make_request(KVM_REQ_GUEST_HYP_IRQ_PENDING, vcpu);
1069
1070 vgic_v3_flush_nested(vcpu);
1071 return;
1072 }
1073
1074 if (vcpu_has_nv(vcpu))
1075 vgic_v3_nested_update_mi(vcpu);
1076
1077 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
1078
1079 scoped_guard(raw_spinlock, &vcpu->arch.vgic_cpu.ap_list_lock)
1080 vgic_flush_lr_state(vcpu);
1081
1082 if (can_access_vgic_from_kernel())
1083 vgic_restore_state(vcpu);
1084
1085 if (vgic_supports_direct_irqs(vcpu->kvm))
1086 vgic_v4_commit(vcpu);
1087 }
1088
kvm_vgic_load(struct kvm_vcpu * vcpu)1089 void kvm_vgic_load(struct kvm_vcpu *vcpu)
1090 {
1091 if (unlikely(!irqchip_in_kernel(vcpu->kvm) || !vgic_initialized(vcpu->kvm))) {
1092 if (has_vhe() && static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1093 __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
1094 return;
1095 }
1096
1097 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1098 vgic_v2_load(vcpu);
1099 else
1100 vgic_v3_load(vcpu);
1101 }
1102
kvm_vgic_put(struct kvm_vcpu * vcpu)1103 void kvm_vgic_put(struct kvm_vcpu *vcpu)
1104 {
1105 if (unlikely(!irqchip_in_kernel(vcpu->kvm) || !vgic_initialized(vcpu->kvm))) {
1106 if (has_vhe() && static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1107 __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
1108 return;
1109 }
1110
1111 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1112 vgic_v2_put(vcpu);
1113 else
1114 vgic_v3_put(vcpu);
1115 }
1116
kvm_vgic_vcpu_pending_irq(struct kvm_vcpu * vcpu)1117 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1118 {
1119 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1120 struct vgic_irq *irq;
1121 bool pending = false;
1122 unsigned long flags;
1123 struct vgic_vmcr vmcr;
1124
1125 if (!vcpu->kvm->arch.vgic.enabled)
1126 return false;
1127
1128 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
1129 return true;
1130
1131 vgic_get_vmcr(vcpu, &vmcr);
1132
1133 raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
1134
1135 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
1136 raw_spin_lock(&irq->irq_lock);
1137 pending = irq_is_pending(irq) && irq->enabled &&
1138 !irq->active &&
1139 irq->priority < vmcr.pmr;
1140 raw_spin_unlock(&irq->irq_lock);
1141
1142 if (pending)
1143 break;
1144 }
1145
1146 raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
1147
1148 return pending;
1149 }
1150
vgic_kick_vcpus(struct kvm * kvm)1151 void vgic_kick_vcpus(struct kvm *kvm)
1152 {
1153 struct kvm_vcpu *vcpu;
1154 unsigned long c;
1155
1156 /*
1157 * We've injected an interrupt, time to find out who deserves
1158 * a good kick...
1159 */
1160 kvm_for_each_vcpu(c, vcpu, kvm) {
1161 if (kvm_vgic_vcpu_pending_irq(vcpu)) {
1162 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1163 kvm_vcpu_kick(vcpu);
1164 }
1165 }
1166 }
1167
kvm_vgic_map_is_active(struct kvm_vcpu * vcpu,unsigned int vintid)1168 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
1169 {
1170 struct vgic_irq *irq;
1171 bool map_is_active;
1172 unsigned long flags;
1173
1174 if (!vgic_initialized(vcpu->kvm))
1175 return false;
1176
1177 irq = vgic_get_vcpu_irq(vcpu, vintid);
1178 raw_spin_lock_irqsave(&irq->irq_lock, flags);
1179 map_is_active = irq->hw && irq->active;
1180 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1181 vgic_put_irq(vcpu->kvm, irq);
1182
1183 return map_is_active;
1184 }
1185
1186 /*
1187 * Level-triggered mapped IRQs are special because we only observe rising
1188 * edges as input to the VGIC.
1189 *
1190 * If the guest never acked the interrupt we have to sample the physical
1191 * line and set the line level, because the device state could have changed
1192 * or we simply need to process the still pending interrupt later.
1193 *
1194 * We could also have entered the guest with the interrupt active+pending.
1195 * On the next exit, we need to re-evaluate the pending state, as it could
1196 * otherwise result in a spurious interrupt by injecting a now potentially
1197 * stale pending state.
1198 *
1199 * If this causes us to lower the level, we have to also clear the physical
1200 * active state, since we will otherwise never be told when the interrupt
1201 * becomes asserted again.
1202 *
1203 * Another case is when the interrupt requires a helping hand on
1204 * deactivation (no HW deactivation, for example).
1205 */
vgic_irq_handle_resampling(struct vgic_irq * irq,bool lr_deactivated,bool lr_pending)1206 void vgic_irq_handle_resampling(struct vgic_irq *irq,
1207 bool lr_deactivated, bool lr_pending)
1208 {
1209 if (vgic_irq_is_mapped_level(irq)) {
1210 bool resample = false;
1211
1212 if (unlikely(vgic_irq_needs_resampling(irq))) {
1213 resample = !(irq->active || irq->pending_latch);
1214 } else if (lr_pending || (lr_deactivated && irq->line_level)) {
1215 irq->line_level = vgic_get_phys_line_level(irq);
1216 resample = !irq->line_level;
1217 }
1218
1219 if (resample)
1220 vgic_irq_set_phys_active(irq, false);
1221 }
1222 }
1223