1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015, 2016 ARM Ltd.
4 */
5
6 #include <linux/interrupt.h>
7 #include <linux/irq.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list_sort.h>
11 #include <linux/nospec.h>
12
13 #include <asm/kvm_hyp.h>
14
15 #include "vgic.h"
16
17 #define CREATE_TRACE_POINTS
18 #include "trace.h"
19
20 struct vgic_global kvm_vgic_global_state __ro_after_init = {
21 .gicv3_cpuif = STATIC_KEY_FALSE_INIT,
22 };
23
24 /*
25 * Locking order is always:
26 * kvm->lock (mutex)
27 * vcpu->mutex (mutex)
28 * kvm->arch.config_lock (mutex)
29 * its->cmd_lock (mutex)
30 * its->its_lock (mutex)
31 * vgic_dist->lpi_xa.xa_lock must be taken with IRQs disabled
32 * vgic_cpu->ap_list_lock must be taken with IRQs disabled
33 * vgic_irq->irq_lock must be taken with IRQs disabled
34 *
35 * As the ap_list_lock might be taken from the timer interrupt handler,
36 * we have to disable IRQs before taking this lock and everything lower
37 * than it.
38 *
39 * The config_lock has additional ordering requirements:
40 * kvm->slots_lock
41 * kvm->srcu
42 * kvm->arch.config_lock
43 *
44 * If you need to take multiple locks, always take the upper lock first,
45 * then the lower ones, e.g. first take the its_lock, then the irq_lock.
46 * If you are already holding a lock and need to take a higher one, you
47 * have to drop the lower ranking lock first and re-acquire it after having
48 * taken the upper one.
49 *
50 * When taking more than one ap_list_lock at the same time, always take the
51 * lowest numbered VCPU's ap_list_lock first, so:
52 * vcpuX->vcpu_id < vcpuY->vcpu_id:
53 * raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
54 * raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
55 *
56 * Since the VGIC must support injecting virtual interrupts from ISRs, we have
57 * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
58 * spinlocks for any lock that may be taken while injecting an interrupt.
59 */
60
61 /*
62 * Index the VM's xarray of mapped LPIs and return a reference to the IRQ
63 * structure. The caller is expected to call vgic_put_irq() later once it's
64 * finished with the IRQ.
65 */
vgic_get_lpi(struct kvm * kvm,u32 intid)66 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
67 {
68 struct vgic_dist *dist = &kvm->arch.vgic;
69 struct vgic_irq *irq = NULL;
70
71 rcu_read_lock();
72
73 irq = xa_load(&dist->lpi_xa, intid);
74 if (!vgic_try_get_irq_ref(irq))
75 irq = NULL;
76
77 rcu_read_unlock();
78
79 return irq;
80 }
81
82 /*
83 * This looks up the virtual interrupt ID to get the corresponding
84 * struct vgic_irq. It also increases the refcount, so any caller is expected
85 * to call vgic_put_irq() once it's finished with this IRQ.
86 */
vgic_get_irq(struct kvm * kvm,u32 intid)87 struct vgic_irq *vgic_get_irq(struct kvm *kvm, u32 intid)
88 {
89 /* SPIs */
90 if (intid >= VGIC_NR_PRIVATE_IRQS &&
91 intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
92 intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
93 return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
94 }
95
96 /* LPIs */
97 if (intid >= VGIC_MIN_LPI)
98 return vgic_get_lpi(kvm, intid);
99
100 return NULL;
101 }
102
vgic_get_vcpu_irq(struct kvm_vcpu * vcpu,u32 intid)103 struct vgic_irq *vgic_get_vcpu_irq(struct kvm_vcpu *vcpu, u32 intid)
104 {
105 if (WARN_ON(!vcpu))
106 return NULL;
107
108 /* SGIs and PPIs */
109 if (intid < VGIC_NR_PRIVATE_IRQS) {
110 intid = array_index_nospec(intid, VGIC_NR_PRIVATE_IRQS);
111 return &vcpu->arch.vgic_cpu.private_irqs[intid];
112 }
113
114 return vgic_get_irq(vcpu->kvm, intid);
115 }
116
vgic_release_lpi_locked(struct vgic_dist * dist,struct vgic_irq * irq)117 static void vgic_release_lpi_locked(struct vgic_dist *dist, struct vgic_irq *irq)
118 {
119 lockdep_assert_held(&dist->lpi_xa.xa_lock);
120 __xa_erase(&dist->lpi_xa, irq->intid);
121 kfree_rcu(irq, rcu);
122 }
123
__vgic_put_irq(struct kvm * kvm,struct vgic_irq * irq)124 static __must_check bool __vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
125 {
126 if (irq->intid < VGIC_MIN_LPI)
127 return false;
128
129 return refcount_dec_and_test(&irq->refcount);
130 }
131
vgic_put_irq_norelease(struct kvm * kvm,struct vgic_irq * irq)132 static __must_check bool vgic_put_irq_norelease(struct kvm *kvm, struct vgic_irq *irq)
133 {
134 if (!__vgic_put_irq(kvm, irq))
135 return false;
136
137 irq->pending_release = true;
138 return true;
139 }
140
vgic_put_irq(struct kvm * kvm,struct vgic_irq * irq)141 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
142 {
143 struct vgic_dist *dist = &kvm->arch.vgic;
144 unsigned long flags;
145
146 /*
147 * Normally the lock is only taken when the refcount drops to 0.
148 * Acquire/release it early on lockdep kernels to make locking issues
149 * in rare release paths a bit more obvious.
150 */
151 if (IS_ENABLED(CONFIG_LOCKDEP) && irq->intid >= VGIC_MIN_LPI) {
152 guard(spinlock_irqsave)(&dist->lpi_xa.xa_lock);
153 }
154
155 if (!__vgic_put_irq(kvm, irq))
156 return;
157
158 xa_lock_irqsave(&dist->lpi_xa, flags);
159 vgic_release_lpi_locked(dist, irq);
160 xa_unlock_irqrestore(&dist->lpi_xa, flags);
161 }
162
vgic_release_deleted_lpis(struct kvm * kvm)163 static void vgic_release_deleted_lpis(struct kvm *kvm)
164 {
165 struct vgic_dist *dist = &kvm->arch.vgic;
166 unsigned long flags, intid;
167 struct vgic_irq *irq;
168
169 xa_lock_irqsave(&dist->lpi_xa, flags);
170
171 xa_for_each(&dist->lpi_xa, intid, irq) {
172 if (irq->pending_release)
173 vgic_release_lpi_locked(dist, irq);
174 }
175
176 xa_unlock_irqrestore(&dist->lpi_xa, flags);
177 }
178
vgic_flush_pending_lpis(struct kvm_vcpu * vcpu)179 void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
180 {
181 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
182 struct vgic_irq *irq, *tmp;
183 bool deleted = false;
184 unsigned long flags;
185
186 raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
187
188 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
189 if (irq->intid >= VGIC_MIN_LPI) {
190 raw_spin_lock(&irq->irq_lock);
191 list_del(&irq->ap_list);
192 irq->vcpu = NULL;
193 raw_spin_unlock(&irq->irq_lock);
194 deleted |= vgic_put_irq_norelease(vcpu->kvm, irq);
195 }
196 }
197
198 raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
199
200 if (deleted)
201 vgic_release_deleted_lpis(vcpu->kvm);
202 }
203
vgic_irq_set_phys_pending(struct vgic_irq * irq,bool pending)204 void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
205 {
206 WARN_ON(irq_set_irqchip_state(irq->host_irq,
207 IRQCHIP_STATE_PENDING,
208 pending));
209 }
210
vgic_get_phys_line_level(struct vgic_irq * irq)211 bool vgic_get_phys_line_level(struct vgic_irq *irq)
212 {
213 bool line_level;
214
215 BUG_ON(!irq->hw);
216
217 if (irq->ops && irq->ops->get_input_level)
218 return irq->ops->get_input_level(irq->intid);
219
220 WARN_ON(irq_get_irqchip_state(irq->host_irq,
221 IRQCHIP_STATE_PENDING,
222 &line_level));
223 return line_level;
224 }
225
226 /* Set/Clear the physical active state */
vgic_irq_set_phys_active(struct vgic_irq * irq,bool active)227 void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
228 {
229
230 BUG_ON(!irq->hw);
231 WARN_ON(irq_set_irqchip_state(irq->host_irq,
232 IRQCHIP_STATE_ACTIVE,
233 active));
234 }
235
236 /**
237 * vgic_target_oracle - compute the target vcpu for an irq
238 *
239 * @irq: The irq to route. Must be already locked.
240 *
241 * Based on the current state of the interrupt (enabled, pending,
242 * active, vcpu and target_vcpu), compute the next vcpu this should be
243 * given to. Return NULL if this shouldn't be injected at all.
244 *
245 * Requires the IRQ lock to be held.
246 */
vgic_target_oracle(struct vgic_irq * irq)247 static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
248 {
249 lockdep_assert_held(&irq->irq_lock);
250
251 /* If the interrupt is active, it must stay on the current vcpu */
252 if (irq->active)
253 return irq->vcpu ? : irq->target_vcpu;
254
255 /*
256 * If the IRQ is not active but enabled and pending, we should direct
257 * it to its configured target VCPU.
258 * If the distributor is disabled, pending interrupts shouldn't be
259 * forwarded.
260 */
261 if (irq->enabled && irq_is_pending(irq)) {
262 if (unlikely(irq->target_vcpu &&
263 !irq->target_vcpu->kvm->arch.vgic.enabled))
264 return NULL;
265
266 return irq->target_vcpu;
267 }
268
269 /* If neither active nor pending and enabled, then this IRQ should not
270 * be queued to any VCPU.
271 */
272 return NULL;
273 }
274
275 /*
276 * The order of items in the ap_lists defines how we'll pack things in LRs as
277 * well, the first items in the list being the first things populated in the
278 * LRs.
279 *
280 * A hard rule is that active interrupts can never be pushed out of the LRs
281 * (and therefore take priority) since we cannot reliably trap on deactivation
282 * of IRQs and therefore they have to be present in the LRs.
283 *
284 * Otherwise things should be sorted by the priority field and the GIC
285 * hardware support will take care of preemption of priority groups etc.
286 *
287 * Return negative if "a" sorts before "b", 0 to preserve order, and positive
288 * to sort "b" before "a".
289 */
vgic_irq_cmp(void * priv,const struct list_head * a,const struct list_head * b)290 static int vgic_irq_cmp(void *priv, const struct list_head *a,
291 const struct list_head *b)
292 {
293 struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
294 struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
295 bool penda, pendb;
296 int ret;
297
298 /*
299 * list_sort may call this function with the same element when
300 * the list is fairly long.
301 */
302 if (unlikely(irqa == irqb))
303 return 0;
304
305 raw_spin_lock(&irqa->irq_lock);
306 raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
307
308 if (irqa->active || irqb->active) {
309 ret = (int)irqb->active - (int)irqa->active;
310 goto out;
311 }
312
313 penda = irqa->enabled && irq_is_pending(irqa);
314 pendb = irqb->enabled && irq_is_pending(irqb);
315
316 if (!penda || !pendb) {
317 ret = (int)pendb - (int)penda;
318 goto out;
319 }
320
321 /* Both pending and enabled, sort by priority */
322 ret = irqa->priority - irqb->priority;
323 out:
324 raw_spin_unlock(&irqb->irq_lock);
325 raw_spin_unlock(&irqa->irq_lock);
326 return ret;
327 }
328
329 /* Must be called with the ap_list_lock held */
vgic_sort_ap_list(struct kvm_vcpu * vcpu)330 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
331 {
332 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
333
334 lockdep_assert_held(&vgic_cpu->ap_list_lock);
335
336 list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
337 }
338
339 /*
340 * Only valid injection if changing level for level-triggered IRQs or for a
341 * rising edge, and in-kernel connected IRQ lines can only be controlled by
342 * their owner.
343 */
vgic_validate_injection(struct vgic_irq * irq,bool level,void * owner)344 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
345 {
346 if (irq->owner != owner)
347 return false;
348
349 switch (irq->config) {
350 case VGIC_CONFIG_LEVEL:
351 return irq->line_level != level;
352 case VGIC_CONFIG_EDGE:
353 return level;
354 }
355
356 return false;
357 }
358
359 /*
360 * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
361 * Do the queuing if necessary, taking the right locks in the right order.
362 * Returns true when the IRQ was queued, false otherwise.
363 *
364 * Needs to be entered with the IRQ lock already held, but will return
365 * with all locks dropped.
366 */
vgic_queue_irq_unlock(struct kvm * kvm,struct vgic_irq * irq,unsigned long flags)367 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
368 unsigned long flags) __releases(&irq->irq_lock)
369 {
370 struct kvm_vcpu *vcpu;
371
372 lockdep_assert_held(&irq->irq_lock);
373
374 retry:
375 vcpu = vgic_target_oracle(irq);
376 if (irq->vcpu || !vcpu) {
377 /*
378 * If this IRQ is already on a VCPU's ap_list, then it
379 * cannot be moved or modified and there is no more work for
380 * us to do.
381 *
382 * Otherwise, if the irq is not pending and enabled, it does
383 * not need to be inserted into an ap_list and there is also
384 * no more work for us to do.
385 */
386 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
387
388 /*
389 * We have to kick the VCPU here, because we could be
390 * queueing an edge-triggered interrupt for which we
391 * get no EOI maintenance interrupt. In that case,
392 * while the IRQ is already on the VCPU's AP list, the
393 * VCPU could have EOI'ed the original interrupt and
394 * won't see this one until it exits for some other
395 * reason.
396 */
397 if (vcpu) {
398 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
399 kvm_vcpu_kick(vcpu);
400 }
401 return false;
402 }
403
404 /*
405 * We must unlock the irq lock to take the ap_list_lock where
406 * we are going to insert this new pending interrupt.
407 */
408 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
409
410 /* someone can do stuff here, which we re-check below */
411
412 raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
413 raw_spin_lock(&irq->irq_lock);
414
415 /*
416 * Did something change behind our backs?
417 *
418 * There are two cases:
419 * 1) The irq lost its pending state or was disabled behind our
420 * backs and/or it was queued to another VCPU's ap_list.
421 * 2) Someone changed the affinity on this irq behind our
422 * backs and we are now holding the wrong ap_list_lock.
423 *
424 * In both cases, drop the locks and retry.
425 */
426
427 if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
428 raw_spin_unlock(&irq->irq_lock);
429 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
430 flags);
431
432 raw_spin_lock_irqsave(&irq->irq_lock, flags);
433 goto retry;
434 }
435
436 /*
437 * Grab a reference to the irq to reflect the fact that it is
438 * now in the ap_list. This is safe as the caller must already hold a
439 * reference on the irq.
440 */
441 vgic_get_irq_ref(irq);
442 list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
443 irq->vcpu = vcpu;
444
445 raw_spin_unlock(&irq->irq_lock);
446 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
447
448 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
449 kvm_vcpu_kick(vcpu);
450
451 return true;
452 }
453
454 /**
455 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
456 * @kvm: The VM structure pointer
457 * @vcpu: The CPU for PPIs or NULL for global interrupts
458 * @intid: The INTID to inject a new state to.
459 * @level: Edge-triggered: true: to trigger the interrupt
460 * false: to ignore the call
461 * Level-sensitive true: raise the input signal
462 * false: lower the input signal
463 * @owner: The opaque pointer to the owner of the IRQ being raised to verify
464 * that the caller is allowed to inject this IRQ. Userspace
465 * injections will have owner == NULL.
466 *
467 * The VGIC is not concerned with devices being active-LOW or active-HIGH for
468 * level-sensitive interrupts. You can think of the level parameter as 1
469 * being HIGH and 0 being LOW and all devices being active-HIGH.
470 */
kvm_vgic_inject_irq(struct kvm * kvm,struct kvm_vcpu * vcpu,unsigned int intid,bool level,void * owner)471 int kvm_vgic_inject_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
472 unsigned int intid, bool level, void *owner)
473 {
474 struct vgic_irq *irq;
475 unsigned long flags;
476 int ret;
477
478 ret = vgic_lazy_init(kvm);
479 if (ret)
480 return ret;
481
482 if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
483 return -EINVAL;
484
485 trace_vgic_update_irq_pending(vcpu ? vcpu->vcpu_idx : 0, intid, level);
486
487 if (intid < VGIC_NR_PRIVATE_IRQS)
488 irq = vgic_get_vcpu_irq(vcpu, intid);
489 else
490 irq = vgic_get_irq(kvm, intid);
491 if (!irq)
492 return -EINVAL;
493
494 raw_spin_lock_irqsave(&irq->irq_lock, flags);
495
496 if (!vgic_validate_injection(irq, level, owner)) {
497 /* Nothing to see here, move along... */
498 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
499 vgic_put_irq(kvm, irq);
500 return 0;
501 }
502
503 if (irq->config == VGIC_CONFIG_LEVEL)
504 irq->line_level = level;
505 else
506 irq->pending_latch = true;
507
508 vgic_queue_irq_unlock(kvm, irq, flags);
509 vgic_put_irq(kvm, irq);
510
511 return 0;
512 }
513
514 /* @irq->irq_lock must be held */
kvm_vgic_map_irq(struct kvm_vcpu * vcpu,struct vgic_irq * irq,unsigned int host_irq,struct irq_ops * ops)515 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
516 unsigned int host_irq,
517 struct irq_ops *ops)
518 {
519 struct irq_desc *desc;
520 struct irq_data *data;
521
522 /*
523 * Find the physical IRQ number corresponding to @host_irq
524 */
525 desc = irq_to_desc(host_irq);
526 if (!desc) {
527 kvm_err("%s: no interrupt descriptor\n", __func__);
528 return -EINVAL;
529 }
530 data = irq_desc_get_irq_data(desc);
531 while (data->parent_data)
532 data = data->parent_data;
533
534 irq->hw = true;
535 irq->host_irq = host_irq;
536 irq->hwintid = data->hwirq;
537 irq->ops = ops;
538 return 0;
539 }
540
541 /* @irq->irq_lock must be held */
kvm_vgic_unmap_irq(struct vgic_irq * irq)542 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
543 {
544 irq->hw = false;
545 irq->hwintid = 0;
546 irq->ops = NULL;
547 }
548
kvm_vgic_map_phys_irq(struct kvm_vcpu * vcpu,unsigned int host_irq,u32 vintid,struct irq_ops * ops)549 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
550 u32 vintid, struct irq_ops *ops)
551 {
552 struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid);
553 unsigned long flags;
554 int ret;
555
556 BUG_ON(!irq);
557
558 raw_spin_lock_irqsave(&irq->irq_lock, flags);
559 ret = kvm_vgic_map_irq(vcpu, irq, host_irq, ops);
560 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
561 vgic_put_irq(vcpu->kvm, irq);
562
563 return ret;
564 }
565
566 /**
567 * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
568 * @vcpu: The VCPU pointer
569 * @vintid: The INTID of the interrupt
570 *
571 * Reset the active and pending states of a mapped interrupt. Kernel
572 * subsystems injecting mapped interrupts should reset their interrupt lines
573 * when we are doing a reset of the VM.
574 */
kvm_vgic_reset_mapped_irq(struct kvm_vcpu * vcpu,u32 vintid)575 void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
576 {
577 struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid);
578 unsigned long flags;
579
580 if (!irq->hw)
581 goto out;
582
583 raw_spin_lock_irqsave(&irq->irq_lock, flags);
584 irq->active = false;
585 irq->pending_latch = false;
586 irq->line_level = false;
587 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
588 out:
589 vgic_put_irq(vcpu->kvm, irq);
590 }
591
kvm_vgic_unmap_phys_irq(struct kvm_vcpu * vcpu,unsigned int vintid)592 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
593 {
594 struct vgic_irq *irq;
595 unsigned long flags;
596
597 if (!vgic_initialized(vcpu->kvm))
598 return -EAGAIN;
599
600 irq = vgic_get_vcpu_irq(vcpu, vintid);
601 BUG_ON(!irq);
602
603 raw_spin_lock_irqsave(&irq->irq_lock, flags);
604 kvm_vgic_unmap_irq(irq);
605 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
606 vgic_put_irq(vcpu->kvm, irq);
607
608 return 0;
609 }
610
kvm_vgic_get_map(struct kvm_vcpu * vcpu,unsigned int vintid)611 int kvm_vgic_get_map(struct kvm_vcpu *vcpu, unsigned int vintid)
612 {
613 struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid);
614 unsigned long flags;
615 int ret = -1;
616
617 raw_spin_lock_irqsave(&irq->irq_lock, flags);
618 if (irq->hw)
619 ret = irq->hwintid;
620 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
621
622 vgic_put_irq(vcpu->kvm, irq);
623 return ret;
624 }
625
626 /**
627 * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
628 *
629 * @vcpu: Pointer to the VCPU (used for PPIs)
630 * @intid: The virtual INTID identifying the interrupt (PPI or SPI)
631 * @owner: Opaque pointer to the owner
632 *
633 * Returns 0 if intid is not already used by another in-kernel device and the
634 * owner is set, otherwise returns an error code.
635 */
kvm_vgic_set_owner(struct kvm_vcpu * vcpu,unsigned int intid,void * owner)636 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
637 {
638 struct vgic_irq *irq;
639 unsigned long flags;
640 int ret = 0;
641
642 if (!vgic_initialized(vcpu->kvm))
643 return -EAGAIN;
644
645 /* SGIs and LPIs cannot be wired up to any device */
646 if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
647 return -EINVAL;
648
649 irq = vgic_get_vcpu_irq(vcpu, intid);
650 raw_spin_lock_irqsave(&irq->irq_lock, flags);
651 if (irq->owner && irq->owner != owner)
652 ret = -EEXIST;
653 else
654 irq->owner = owner;
655 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
656
657 return ret;
658 }
659
660 /**
661 * vgic_prune_ap_list - Remove non-relevant interrupts from the list
662 *
663 * @vcpu: The VCPU pointer
664 *
665 * Go over the list of "interesting" interrupts, and prune those that we
666 * won't have to consider in the near future.
667 */
vgic_prune_ap_list(struct kvm_vcpu * vcpu)668 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
669 {
670 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
671 struct vgic_irq *irq, *tmp;
672 bool deleted_lpis = false;
673
674 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
675
676 retry:
677 raw_spin_lock(&vgic_cpu->ap_list_lock);
678
679 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
680 struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
681 bool target_vcpu_needs_kick = false;
682
683 raw_spin_lock(&irq->irq_lock);
684
685 BUG_ON(vcpu != irq->vcpu);
686
687 target_vcpu = vgic_target_oracle(irq);
688
689 if (!target_vcpu) {
690 /*
691 * We don't need to process this interrupt any
692 * further, move it off the list.
693 */
694 list_del(&irq->ap_list);
695 irq->vcpu = NULL;
696 raw_spin_unlock(&irq->irq_lock);
697
698 /*
699 * This vgic_put_irq call matches the
700 * vgic_get_irq_ref in vgic_queue_irq_unlock,
701 * where we added the LPI to the ap_list. As
702 * we remove the irq from the list, we drop
703 * also drop the refcount.
704 */
705 deleted_lpis |= vgic_put_irq_norelease(vcpu->kvm, irq);
706 continue;
707 }
708
709 if (target_vcpu == vcpu) {
710 /* We're on the right CPU */
711 raw_spin_unlock(&irq->irq_lock);
712 continue;
713 }
714
715 /* This interrupt looks like it has to be migrated. */
716
717 raw_spin_unlock(&irq->irq_lock);
718 raw_spin_unlock(&vgic_cpu->ap_list_lock);
719
720 /*
721 * Ensure locking order by always locking the smallest
722 * ID first.
723 */
724 if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
725 vcpuA = vcpu;
726 vcpuB = target_vcpu;
727 } else {
728 vcpuA = target_vcpu;
729 vcpuB = vcpu;
730 }
731
732 raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
733 raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
734 SINGLE_DEPTH_NESTING);
735 raw_spin_lock(&irq->irq_lock);
736
737 /*
738 * If the affinity has been preserved, move the
739 * interrupt around. Otherwise, it means things have
740 * changed while the interrupt was unlocked, and we
741 * need to replay this.
742 *
743 * In all cases, we cannot trust the list not to have
744 * changed, so we restart from the beginning.
745 */
746 if (target_vcpu == vgic_target_oracle(irq)) {
747 struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
748
749 list_del(&irq->ap_list);
750 irq->vcpu = target_vcpu;
751 list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
752 target_vcpu_needs_kick = true;
753 }
754
755 raw_spin_unlock(&irq->irq_lock);
756 raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
757 raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
758
759 if (target_vcpu_needs_kick) {
760 kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
761 kvm_vcpu_kick(target_vcpu);
762 }
763
764 goto retry;
765 }
766
767 raw_spin_unlock(&vgic_cpu->ap_list_lock);
768
769 if (unlikely(deleted_lpis))
770 vgic_release_deleted_lpis(vcpu->kvm);
771 }
772
vgic_fold_lr_state(struct kvm_vcpu * vcpu)773 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
774 {
775 if (kvm_vgic_global_state.type == VGIC_V2)
776 vgic_v2_fold_lr_state(vcpu);
777 else
778 vgic_v3_fold_lr_state(vcpu);
779 }
780
781 /* Requires the irq_lock to be held. */
vgic_populate_lr(struct kvm_vcpu * vcpu,struct vgic_irq * irq,int lr)782 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
783 struct vgic_irq *irq, int lr)
784 {
785 lockdep_assert_held(&irq->irq_lock);
786
787 if (kvm_vgic_global_state.type == VGIC_V2)
788 vgic_v2_populate_lr(vcpu, irq, lr);
789 else
790 vgic_v3_populate_lr(vcpu, irq, lr);
791 }
792
vgic_clear_lr(struct kvm_vcpu * vcpu,int lr)793 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
794 {
795 if (kvm_vgic_global_state.type == VGIC_V2)
796 vgic_v2_clear_lr(vcpu, lr);
797 else
798 vgic_v3_clear_lr(vcpu, lr);
799 }
800
vgic_set_underflow(struct kvm_vcpu * vcpu)801 static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
802 {
803 if (kvm_vgic_global_state.type == VGIC_V2)
804 vgic_v2_set_underflow(vcpu);
805 else
806 vgic_v3_set_underflow(vcpu);
807 }
808
809 /* Requires the ap_list_lock to be held. */
compute_ap_list_depth(struct kvm_vcpu * vcpu,bool * multi_sgi)810 static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
811 bool *multi_sgi)
812 {
813 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
814 struct vgic_irq *irq;
815 int count = 0;
816
817 *multi_sgi = false;
818
819 lockdep_assert_held(&vgic_cpu->ap_list_lock);
820
821 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
822 int w;
823
824 raw_spin_lock(&irq->irq_lock);
825 /* GICv2 SGIs can count for more than one... */
826 w = vgic_irq_get_lr_count(irq);
827 raw_spin_unlock(&irq->irq_lock);
828
829 count += w;
830 *multi_sgi |= (w > 1);
831 }
832 return count;
833 }
834
835 /* Requires the VCPU's ap_list_lock to be held. */
vgic_flush_lr_state(struct kvm_vcpu * vcpu)836 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
837 {
838 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
839 struct vgic_irq *irq;
840 int count;
841 bool multi_sgi;
842 u8 prio = 0xff;
843 int i = 0;
844
845 lockdep_assert_held(&vgic_cpu->ap_list_lock);
846
847 count = compute_ap_list_depth(vcpu, &multi_sgi);
848 if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
849 vgic_sort_ap_list(vcpu);
850
851 count = 0;
852
853 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
854 raw_spin_lock(&irq->irq_lock);
855
856 /*
857 * If we have multi-SGIs in the pipeline, we need to
858 * guarantee that they are all seen before any IRQ of
859 * lower priority. In that case, we need to filter out
860 * these interrupts by exiting early. This is easy as
861 * the AP list has been sorted already.
862 */
863 if (multi_sgi && irq->priority > prio) {
864 raw_spin_unlock(&irq->irq_lock);
865 break;
866 }
867
868 if (likely(vgic_target_oracle(irq) == vcpu)) {
869 vgic_populate_lr(vcpu, irq, count++);
870
871 if (irq->source)
872 prio = irq->priority;
873 }
874
875 raw_spin_unlock(&irq->irq_lock);
876
877 if (count == kvm_vgic_global_state.nr_lr) {
878 if (!list_is_last(&irq->ap_list,
879 &vgic_cpu->ap_list_head))
880 vgic_set_underflow(vcpu);
881 break;
882 }
883 }
884
885 /* Nuke remaining LRs */
886 for (i = count ; i < kvm_vgic_global_state.nr_lr; i++)
887 vgic_clear_lr(vcpu, i);
888
889 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
890 vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count;
891 else
892 vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count;
893 }
894
can_access_vgic_from_kernel(void)895 static inline bool can_access_vgic_from_kernel(void)
896 {
897 /*
898 * GICv2 can always be accessed from the kernel because it is
899 * memory-mapped, and VHE systems can access GICv3 EL2 system
900 * registers.
901 */
902 return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
903 }
904
vgic_save_state(struct kvm_vcpu * vcpu)905 static inline void vgic_save_state(struct kvm_vcpu *vcpu)
906 {
907 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
908 vgic_v2_save_state(vcpu);
909 else
910 __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
911 }
912
913 /* Sync back the hardware VGIC state into our emulation after a guest's run. */
kvm_vgic_sync_hwstate(struct kvm_vcpu * vcpu)914 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
915 {
916 int used_lrs;
917
918 /* If nesting, emulate the HW effect from L0 to L1 */
919 if (vgic_state_is_nested(vcpu)) {
920 vgic_v3_sync_nested(vcpu);
921 return;
922 }
923
924 if (vcpu_has_nv(vcpu))
925 vgic_v3_nested_update_mi(vcpu);
926
927 /* An empty ap_list_head implies used_lrs == 0 */
928 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
929 return;
930
931 if (can_access_vgic_from_kernel())
932 vgic_save_state(vcpu);
933
934 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
935 used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
936 else
937 used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
938
939 if (used_lrs)
940 vgic_fold_lr_state(vcpu);
941 vgic_prune_ap_list(vcpu);
942 }
943
vgic_restore_state(struct kvm_vcpu * vcpu)944 static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
945 {
946 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
947 vgic_v2_restore_state(vcpu);
948 else
949 __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
950 }
951
952 /* Flush our emulation state into the GIC hardware before entering the guest. */
kvm_vgic_flush_hwstate(struct kvm_vcpu * vcpu)953 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
954 {
955 /*
956 * If in a nested state, we must return early. Two possibilities:
957 *
958 * - If we have any pending IRQ for the guest and the guest
959 * expects IRQs to be handled in its virtual EL2 mode (the
960 * virtual IMO bit is set) and it is not already running in
961 * virtual EL2 mode, then we have to emulate an IRQ
962 * exception to virtual EL2.
963 *
964 * We do that by placing a request to ourselves which will
965 * abort the entry procedure and inject the exception at the
966 * beginning of the run loop.
967 *
968 * - Otherwise, do exactly *NOTHING*. The guest state is
969 * already loaded, and we can carry on with running it.
970 *
971 * If we have NV, but are not in a nested state, compute the
972 * maintenance interrupt state, as it may fire.
973 */
974 if (vgic_state_is_nested(vcpu)) {
975 if (kvm_vgic_vcpu_pending_irq(vcpu))
976 kvm_make_request(KVM_REQ_GUEST_HYP_IRQ_PENDING, vcpu);
977
978 return;
979 }
980
981 if (vcpu_has_nv(vcpu))
982 vgic_v3_nested_update_mi(vcpu);
983
984 /*
985 * If there are no virtual interrupts active or pending for this
986 * VCPU, then there is no work to do and we can bail out without
987 * taking any lock. There is a potential race with someone injecting
988 * interrupts to the VCPU, but it is a benign race as the VCPU will
989 * either observe the new interrupt before or after doing this check,
990 * and introducing additional synchronization mechanism doesn't change
991 * this.
992 *
993 * Note that we still need to go through the whole thing if anything
994 * can be directly injected (GICv4).
995 */
996 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) &&
997 !vgic_supports_direct_irqs(vcpu->kvm))
998 return;
999
1000 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
1001
1002 if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) {
1003 raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
1004 vgic_flush_lr_state(vcpu);
1005 raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
1006 }
1007
1008 if (can_access_vgic_from_kernel())
1009 vgic_restore_state(vcpu);
1010
1011 if (vgic_supports_direct_irqs(vcpu->kvm))
1012 vgic_v4_commit(vcpu);
1013 }
1014
kvm_vgic_load(struct kvm_vcpu * vcpu)1015 void kvm_vgic_load(struct kvm_vcpu *vcpu)
1016 {
1017 if (unlikely(!irqchip_in_kernel(vcpu->kvm) || !vgic_initialized(vcpu->kvm))) {
1018 if (has_vhe() && static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1019 __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
1020 return;
1021 }
1022
1023 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1024 vgic_v2_load(vcpu);
1025 else
1026 vgic_v3_load(vcpu);
1027 }
1028
kvm_vgic_put(struct kvm_vcpu * vcpu)1029 void kvm_vgic_put(struct kvm_vcpu *vcpu)
1030 {
1031 if (unlikely(!irqchip_in_kernel(vcpu->kvm) || !vgic_initialized(vcpu->kvm))) {
1032 if (has_vhe() && static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1033 __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
1034 return;
1035 }
1036
1037 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1038 vgic_v2_put(vcpu);
1039 else
1040 vgic_v3_put(vcpu);
1041 }
1042
kvm_vgic_vcpu_pending_irq(struct kvm_vcpu * vcpu)1043 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1044 {
1045 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1046 struct vgic_irq *irq;
1047 bool pending = false;
1048 unsigned long flags;
1049 struct vgic_vmcr vmcr;
1050
1051 if (!vcpu->kvm->arch.vgic.enabled)
1052 return false;
1053
1054 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
1055 return true;
1056
1057 vgic_get_vmcr(vcpu, &vmcr);
1058
1059 raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
1060
1061 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
1062 raw_spin_lock(&irq->irq_lock);
1063 pending = irq_is_pending(irq) && irq->enabled &&
1064 !irq->active &&
1065 irq->priority < vmcr.pmr;
1066 raw_spin_unlock(&irq->irq_lock);
1067
1068 if (pending)
1069 break;
1070 }
1071
1072 raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
1073
1074 return pending;
1075 }
1076
vgic_kick_vcpus(struct kvm * kvm)1077 void vgic_kick_vcpus(struct kvm *kvm)
1078 {
1079 struct kvm_vcpu *vcpu;
1080 unsigned long c;
1081
1082 /*
1083 * We've injected an interrupt, time to find out who deserves
1084 * a good kick...
1085 */
1086 kvm_for_each_vcpu(c, vcpu, kvm) {
1087 if (kvm_vgic_vcpu_pending_irq(vcpu)) {
1088 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1089 kvm_vcpu_kick(vcpu);
1090 }
1091 }
1092 }
1093
kvm_vgic_map_is_active(struct kvm_vcpu * vcpu,unsigned int vintid)1094 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
1095 {
1096 struct vgic_irq *irq;
1097 bool map_is_active;
1098 unsigned long flags;
1099
1100 if (!vgic_initialized(vcpu->kvm))
1101 return false;
1102
1103 irq = vgic_get_vcpu_irq(vcpu, vintid);
1104 raw_spin_lock_irqsave(&irq->irq_lock, flags);
1105 map_is_active = irq->hw && irq->active;
1106 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1107 vgic_put_irq(vcpu->kvm, irq);
1108
1109 return map_is_active;
1110 }
1111
1112 /*
1113 * Level-triggered mapped IRQs are special because we only observe rising
1114 * edges as input to the VGIC.
1115 *
1116 * If the guest never acked the interrupt we have to sample the physical
1117 * line and set the line level, because the device state could have changed
1118 * or we simply need to process the still pending interrupt later.
1119 *
1120 * We could also have entered the guest with the interrupt active+pending.
1121 * On the next exit, we need to re-evaluate the pending state, as it could
1122 * otherwise result in a spurious interrupt by injecting a now potentially
1123 * stale pending state.
1124 *
1125 * If this causes us to lower the level, we have to also clear the physical
1126 * active state, since we will otherwise never be told when the interrupt
1127 * becomes asserted again.
1128 *
1129 * Another case is when the interrupt requires a helping hand on
1130 * deactivation (no HW deactivation, for example).
1131 */
vgic_irq_handle_resampling(struct vgic_irq * irq,bool lr_deactivated,bool lr_pending)1132 void vgic_irq_handle_resampling(struct vgic_irq *irq,
1133 bool lr_deactivated, bool lr_pending)
1134 {
1135 if (vgic_irq_is_mapped_level(irq)) {
1136 bool resample = false;
1137
1138 if (unlikely(vgic_irq_needs_resampling(irq))) {
1139 resample = !(irq->active || irq->pending_latch);
1140 } else if (lr_pending || (lr_deactivated && irq->line_level)) {
1141 irq->line_level = vgic_get_phys_line_level(irq);
1142 resample = !irq->line_level;
1143 }
1144
1145 if (resample)
1146 vgic_irq_set_phys_active(irq, false);
1147 }
1148 }
1149