1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015, 2016 ARM Ltd. 4 */ 5 6 #include <linux/uaccess.h> 7 #include <linux/interrupt.h> 8 #include <linux/cpu.h> 9 #include <linux/kvm_host.h> 10 #include <kvm/arm_vgic.h> 11 #include <asm/kvm_emulate.h> 12 #include <asm/kvm_mmu.h> 13 #include "vgic.h" 14 15 /* 16 * Initialization rules: there are multiple stages to the vgic 17 * initialization, both for the distributor and the CPU interfaces. The basic 18 * idea is that even though the VGIC is not functional or not requested from 19 * user space, the critical path of the run loop can still call VGIC functions 20 * that just won't do anything, without them having to check additional 21 * initialization flags to ensure they don't look at uninitialized data 22 * structures. 23 * 24 * Distributor: 25 * 26 * - kvm_vgic_early_init(): initialization of static data that doesn't 27 * depend on any sizing information or emulation type. No allocation 28 * is allowed there. 29 * 30 * - vgic_init(): allocation and initialization of the generic data 31 * structures that depend on sizing information (number of CPUs, 32 * number of interrupts). Also initializes the vcpu specific data 33 * structures. Can be executed lazily for GICv2. 34 * 35 * CPU Interface: 36 * 37 * - kvm_vgic_vcpu_init(): initialization of static data that doesn't depend 38 * on any sizing information. Private interrupts are allocated if not 39 * already allocated at vgic-creation time. 40 */ 41 42 /* EARLY INIT */ 43 44 /** 45 * kvm_vgic_early_init() - Initialize static VGIC VCPU data structures 46 * @kvm: The VM whose VGIC districutor should be initialized 47 * 48 * Only do initialization of static structures that don't require any 49 * allocation or sizing information from userspace. vgic_init() called 50 * kvm_vgic_dist_init() which takes care of the rest. 51 */ 52 void kvm_vgic_early_init(struct kvm *kvm) 53 { 54 struct vgic_dist *dist = &kvm->arch.vgic; 55 56 xa_init_flags(&dist->lpi_xa, XA_FLAGS_LOCK_IRQ); 57 } 58 59 /* CREATION */ 60 61 static int vgic_allocate_private_irqs_locked(struct kvm_vcpu *vcpu, u32 type); 62 63 /** 64 * kvm_vgic_create: triggered by the instantiation of the VGIC device by 65 * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only) 66 * or through the generic KVM_CREATE_DEVICE API ioctl. 67 * irqchip_in_kernel() tells you if this function succeeded or not. 68 * @kvm: kvm struct pointer 69 * @type: KVM_DEV_TYPE_ARM_VGIC_V[23] 70 */ 71 int kvm_vgic_create(struct kvm *kvm, u32 type) 72 { 73 struct kvm_vcpu *vcpu; 74 u64 aa64pfr0, pfr1; 75 unsigned long i; 76 int ret; 77 78 /* 79 * This function is also called by the KVM_CREATE_IRQCHIP handler, 80 * which had no chance yet to check the availability of the GICv2 81 * emulation. So check this here again. KVM_CREATE_DEVICE does 82 * the proper checks already. 83 */ 84 if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && 85 !kvm_vgic_global_state.can_emulate_gicv2) 86 return -ENODEV; 87 88 /* 89 * Ensure mutual exclusion with vCPU creation and any vCPU ioctls by: 90 * 91 * - Holding kvm->lock to prevent KVM_CREATE_VCPU from reaching 92 * kvm_arch_vcpu_precreate() and ensuring created_vcpus is stable. 93 * This alone is insufficient, as kvm_vm_ioctl_create_vcpu() drops 94 * the kvm->lock before completing the vCPU creation. 95 */ 96 lockdep_assert_held(&kvm->lock); 97 98 /* 99 * - Acquiring the vCPU mutex for every *online* vCPU to prevent 100 * concurrent vCPU ioctls for vCPUs already visible to userspace. 101 */ 102 ret = -EBUSY; 103 if (kvm_trylock_all_vcpus(kvm)) 104 return ret; 105 106 /* 107 * - Taking the config_lock which protects VGIC data structures such 108 * as the per-vCPU arrays of private IRQs (SGIs, PPIs). 109 */ 110 mutex_lock(&kvm->arch.config_lock); 111 112 /* 113 * - Bailing on the entire thing if a vCPU is in the middle of creation, 114 * dropped the kvm->lock, but hasn't reached kvm_arch_vcpu_create(). 115 * 116 * The whole combination of this guarantees that no vCPU can get into 117 * KVM with a VGIC configuration inconsistent with the VM's VGIC. 118 */ 119 if (kvm->created_vcpus != atomic_read(&kvm->online_vcpus)) 120 goto out_unlock; 121 122 if (irqchip_in_kernel(kvm)) { 123 ret = -EEXIST; 124 goto out_unlock; 125 } 126 127 kvm_for_each_vcpu(i, vcpu, kvm) { 128 if (vcpu_has_run_once(vcpu)) 129 goto out_unlock; 130 } 131 ret = 0; 132 133 if (type == KVM_DEV_TYPE_ARM_VGIC_V2) 134 kvm->max_vcpus = VGIC_V2_MAX_CPUS; 135 else 136 kvm->max_vcpus = VGIC_V3_MAX_CPUS; 137 138 if (atomic_read(&kvm->online_vcpus) > kvm->max_vcpus) { 139 ret = -E2BIG; 140 goto out_unlock; 141 } 142 143 kvm->arch.vgic.in_kernel = true; 144 kvm->arch.vgic.vgic_model = type; 145 kvm->arch.vgic.implementation_rev = KVM_VGIC_IMP_REV_LATEST; 146 147 kvm_for_each_vcpu(i, vcpu, kvm) { 148 ret = vgic_allocate_private_irqs_locked(vcpu, type); 149 if (ret) 150 break; 151 } 152 153 if (ret) { 154 kvm_for_each_vcpu(i, vcpu, kvm) { 155 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 156 kfree(vgic_cpu->private_irqs); 157 vgic_cpu->private_irqs = NULL; 158 } 159 160 goto out_unlock; 161 } 162 163 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF; 164 165 aa64pfr0 = kvm_read_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1) & ~ID_AA64PFR0_EL1_GIC; 166 pfr1 = kvm_read_vm_id_reg(kvm, SYS_ID_PFR1_EL1) & ~ID_PFR1_EL1_GIC; 167 168 if (type == KVM_DEV_TYPE_ARM_VGIC_V2) { 169 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF; 170 } else { 171 INIT_LIST_HEAD(&kvm->arch.vgic.rd_regions); 172 aa64pfr0 |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP); 173 pfr1 |= SYS_FIELD_PREP_ENUM(ID_PFR1_EL1, GIC, GICv3); 174 } 175 176 kvm_set_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1, aa64pfr0); 177 kvm_set_vm_id_reg(kvm, SYS_ID_PFR1_EL1, pfr1); 178 179 if (type == KVM_DEV_TYPE_ARM_VGIC_V3) 180 kvm->arch.vgic.nassgicap = system_supports_direct_sgis(); 181 182 out_unlock: 183 mutex_unlock(&kvm->arch.config_lock); 184 kvm_unlock_all_vcpus(kvm); 185 return ret; 186 } 187 188 /* INIT/DESTROY */ 189 190 /** 191 * kvm_vgic_dist_init: initialize the dist data structures 192 * @kvm: kvm struct pointer 193 * @nr_spis: number of spis, frozen by caller 194 */ 195 static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis) 196 { 197 struct vgic_dist *dist = &kvm->arch.vgic; 198 struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0); 199 int i; 200 201 dist->active_spis = (atomic_t)ATOMIC_INIT(0); 202 dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT); 203 if (!dist->spis) 204 return -ENOMEM; 205 206 /* 207 * In the following code we do not take the irq struct lock since 208 * no other action on irq structs can happen while the VGIC is 209 * not initialized yet: 210 * If someone wants to inject an interrupt or does a MMIO access, we 211 * require prior initialization in case of a virtual GICv3 or trigger 212 * initialization when using a virtual GICv2. 213 */ 214 for (i = 0; i < nr_spis; i++) { 215 struct vgic_irq *irq = &dist->spis[i]; 216 217 irq->intid = i + VGIC_NR_PRIVATE_IRQS; 218 INIT_LIST_HEAD(&irq->ap_list); 219 raw_spin_lock_init(&irq->irq_lock); 220 irq->vcpu = NULL; 221 irq->target_vcpu = vcpu0; 222 refcount_set(&irq->refcount, 0); 223 switch (dist->vgic_model) { 224 case KVM_DEV_TYPE_ARM_VGIC_V2: 225 irq->targets = 0; 226 irq->group = 0; 227 break; 228 case KVM_DEV_TYPE_ARM_VGIC_V3: 229 irq->mpidr = 0; 230 irq->group = 1; 231 break; 232 default: 233 kfree(dist->spis); 234 dist->spis = NULL; 235 return -EINVAL; 236 } 237 } 238 return 0; 239 } 240 241 /* Default GICv3 Maintenance Interrupt INTID, as per SBSA */ 242 #define DEFAULT_MI_INTID 25 243 244 int kvm_vgic_vcpu_nv_init(struct kvm_vcpu *vcpu) 245 { 246 int ret; 247 248 guard(mutex)(&vcpu->kvm->arch.config_lock); 249 250 /* 251 * Matching the tradition established with the timers, provide 252 * a default PPI for the maintenance interrupt. It makes 253 * things easier to reason about. 254 */ 255 if (vcpu->kvm->arch.vgic.mi_intid == 0) 256 vcpu->kvm->arch.vgic.mi_intid = DEFAULT_MI_INTID; 257 ret = kvm_vgic_set_owner(vcpu, vcpu->kvm->arch.vgic.mi_intid, vcpu); 258 259 return ret; 260 } 261 262 static int vgic_allocate_private_irqs_locked(struct kvm_vcpu *vcpu, u32 type) 263 { 264 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 265 int i; 266 267 lockdep_assert_held(&vcpu->kvm->arch.config_lock); 268 269 if (vgic_cpu->private_irqs) 270 return 0; 271 272 vgic_cpu->private_irqs = kcalloc(VGIC_NR_PRIVATE_IRQS, 273 sizeof(struct vgic_irq), 274 GFP_KERNEL_ACCOUNT); 275 276 if (!vgic_cpu->private_irqs) 277 return -ENOMEM; 278 279 /* 280 * Enable and configure all SGIs to be edge-triggered and 281 * configure all PPIs as level-triggered. 282 */ 283 for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) { 284 struct vgic_irq *irq = &vgic_cpu->private_irqs[i]; 285 286 INIT_LIST_HEAD(&irq->ap_list); 287 raw_spin_lock_init(&irq->irq_lock); 288 irq->intid = i; 289 irq->vcpu = NULL; 290 irq->target_vcpu = vcpu; 291 refcount_set(&irq->refcount, 0); 292 if (vgic_irq_is_sgi(i)) { 293 /* SGIs */ 294 irq->enabled = 1; 295 irq->config = VGIC_CONFIG_EDGE; 296 } else { 297 /* PPIs */ 298 irq->config = VGIC_CONFIG_LEVEL; 299 } 300 301 switch (type) { 302 case KVM_DEV_TYPE_ARM_VGIC_V3: 303 irq->group = 1; 304 irq->mpidr = kvm_vcpu_get_mpidr_aff(vcpu); 305 break; 306 case KVM_DEV_TYPE_ARM_VGIC_V2: 307 irq->group = 0; 308 irq->targets = BIT(vcpu->vcpu_id); 309 break; 310 } 311 } 312 313 return 0; 314 } 315 316 static int vgic_allocate_private_irqs(struct kvm_vcpu *vcpu, u32 type) 317 { 318 int ret; 319 320 mutex_lock(&vcpu->kvm->arch.config_lock); 321 ret = vgic_allocate_private_irqs_locked(vcpu, type); 322 mutex_unlock(&vcpu->kvm->arch.config_lock); 323 324 return ret; 325 } 326 327 /** 328 * kvm_vgic_vcpu_init() - Initialize static VGIC VCPU data 329 * structures and register VCPU-specific KVM iodevs 330 * 331 * @vcpu: pointer to the VCPU being created and initialized 332 * 333 * Only do initialization, but do not actually enable the 334 * VGIC CPU interface 335 */ 336 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu) 337 { 338 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 339 struct vgic_dist *dist = &vcpu->kvm->arch.vgic; 340 int ret = 0; 341 342 vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF; 343 344 INIT_LIST_HEAD(&vgic_cpu->ap_list_head); 345 raw_spin_lock_init(&vgic_cpu->ap_list_lock); 346 atomic_set(&vgic_cpu->vgic_v3.its_vpe.vlpi_count, 0); 347 348 if (!irqchip_in_kernel(vcpu->kvm)) 349 return 0; 350 351 ret = vgic_allocate_private_irqs(vcpu, dist->vgic_model); 352 if (ret) 353 return ret; 354 355 /* 356 * If we are creating a VCPU with a GICv3 we must also register the 357 * KVM io device for the redistributor that belongs to this VCPU. 358 */ 359 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 360 mutex_lock(&vcpu->kvm->slots_lock); 361 ret = vgic_register_redist_iodev(vcpu); 362 mutex_unlock(&vcpu->kvm->slots_lock); 363 } 364 return ret; 365 } 366 367 static void kvm_vgic_vcpu_reset(struct kvm_vcpu *vcpu) 368 { 369 if (kvm_vgic_global_state.type == VGIC_V2) 370 vgic_v2_reset(vcpu); 371 else 372 vgic_v3_reset(vcpu); 373 } 374 375 /* 376 * vgic_init: allocates and initializes dist and vcpu data structures 377 * depending on two dimensioning parameters: 378 * - the number of spis 379 * - the number of vcpus 380 * The function is generally called when nr_spis has been explicitly set 381 * by the guest through the KVM DEVICE API. If not nr_spis is set to 256. 382 * vgic_initialized() returns true when this function has succeeded. 383 */ 384 int vgic_init(struct kvm *kvm) 385 { 386 struct vgic_dist *dist = &kvm->arch.vgic; 387 struct kvm_vcpu *vcpu; 388 int ret = 0; 389 unsigned long idx; 390 391 lockdep_assert_held(&kvm->arch.config_lock); 392 393 if (vgic_initialized(kvm)) 394 return 0; 395 396 /* Are we also in the middle of creating a VCPU? */ 397 if (kvm->created_vcpus != atomic_read(&kvm->online_vcpus)) 398 return -EBUSY; 399 400 /* freeze the number of spis */ 401 if (!dist->nr_spis) 402 dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS; 403 404 ret = kvm_vgic_dist_init(kvm, dist->nr_spis); 405 if (ret) 406 goto out; 407 408 /* 409 * Ensure vPEs are allocated if direct IRQ injection (e.g. vSGIs, 410 * vLPIs) is supported. 411 */ 412 if (vgic_supports_direct_irqs(kvm)) { 413 ret = vgic_v4_init(kvm); 414 if (ret) 415 goto out; 416 } 417 418 kvm_for_each_vcpu(idx, vcpu, kvm) 419 kvm_vgic_vcpu_reset(vcpu); 420 421 ret = kvm_vgic_setup_default_irq_routing(kvm); 422 if (ret) 423 goto out; 424 425 vgic_debug_init(kvm); 426 dist->initialized = true; 427 out: 428 return ret; 429 } 430 431 static void kvm_vgic_dist_destroy(struct kvm *kvm) 432 { 433 struct vgic_dist *dist = &kvm->arch.vgic; 434 struct vgic_redist_region *rdreg, *next; 435 436 dist->ready = false; 437 dist->initialized = false; 438 439 kfree(dist->spis); 440 dist->spis = NULL; 441 dist->nr_spis = 0; 442 dist->vgic_dist_base = VGIC_ADDR_UNDEF; 443 444 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 445 list_for_each_entry_safe(rdreg, next, &dist->rd_regions, list) 446 vgic_v3_free_redist_region(kvm, rdreg); 447 INIT_LIST_HEAD(&dist->rd_regions); 448 } else { 449 dist->vgic_cpu_base = VGIC_ADDR_UNDEF; 450 } 451 452 if (vgic_supports_direct_irqs(kvm)) 453 vgic_v4_teardown(kvm); 454 455 xa_destroy(&dist->lpi_xa); 456 } 457 458 static void __kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu) 459 { 460 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 461 462 /* 463 * Retire all pending LPIs on this vcpu anyway as we're 464 * going to destroy it. 465 */ 466 vgic_flush_pending_lpis(vcpu); 467 468 INIT_LIST_HEAD(&vgic_cpu->ap_list_head); 469 kfree(vgic_cpu->private_irqs); 470 vgic_cpu->private_irqs = NULL; 471 472 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 473 /* 474 * If this vCPU is being destroyed because of a failed creation 475 * then unregister the redistributor to avoid leaving behind a 476 * dangling pointer to the vCPU struct. 477 * 478 * vCPUs that have been successfully created (i.e. added to 479 * kvm->vcpu_array) get unregistered in kvm_vgic_destroy(), as 480 * this function gets called while holding kvm->arch.config_lock 481 * in the VM teardown path and would otherwise introduce a lock 482 * inversion w.r.t. kvm->srcu. 483 * 484 * vCPUs that failed creation are torn down outside of the 485 * kvm->arch.config_lock and do not get unregistered in 486 * kvm_vgic_destroy(), meaning it is both safe and necessary to 487 * do so here. 488 */ 489 if (kvm_get_vcpu_by_id(vcpu->kvm, vcpu->vcpu_id) != vcpu) 490 vgic_unregister_redist_iodev(vcpu); 491 492 vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF; 493 } 494 } 495 496 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu) 497 { 498 struct kvm *kvm = vcpu->kvm; 499 500 mutex_lock(&kvm->slots_lock); 501 __kvm_vgic_vcpu_destroy(vcpu); 502 mutex_unlock(&kvm->slots_lock); 503 } 504 505 void kvm_vgic_destroy(struct kvm *kvm) 506 { 507 struct kvm_vcpu *vcpu; 508 unsigned long i; 509 510 mutex_lock(&kvm->slots_lock); 511 mutex_lock(&kvm->arch.config_lock); 512 513 vgic_debug_destroy(kvm); 514 515 kvm_for_each_vcpu(i, vcpu, kvm) 516 __kvm_vgic_vcpu_destroy(vcpu); 517 518 kvm_vgic_dist_destroy(kvm); 519 520 mutex_unlock(&kvm->arch.config_lock); 521 522 if (kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) 523 kvm_for_each_vcpu(i, vcpu, kvm) 524 vgic_unregister_redist_iodev(vcpu); 525 526 mutex_unlock(&kvm->slots_lock); 527 } 528 529 /** 530 * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest 531 * is a GICv2. A GICv3 must be explicitly initialized by userspace using the 532 * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group. 533 * @kvm: kvm struct pointer 534 */ 535 int vgic_lazy_init(struct kvm *kvm) 536 { 537 int ret = 0; 538 539 if (unlikely(!vgic_initialized(kvm))) { 540 /* 541 * We only provide the automatic initialization of the VGIC 542 * for the legacy case of a GICv2. Any other type must 543 * be explicitly initialized once setup with the respective 544 * KVM device call. 545 */ 546 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) 547 return -EBUSY; 548 549 mutex_lock(&kvm->arch.config_lock); 550 ret = vgic_init(kvm); 551 mutex_unlock(&kvm->arch.config_lock); 552 } 553 554 return ret; 555 } 556 557 /* RESOURCE MAPPING */ 558 559 /** 560 * kvm_vgic_map_resources - map the MMIO regions 561 * @kvm: kvm struct pointer 562 * 563 * Map the MMIO regions depending on the VGIC model exposed to the guest 564 * called on the first VCPU run. 565 * Also map the virtual CPU interface into the VM. 566 * v2 calls vgic_init() if not already done. 567 * v3 and derivatives return an error if the VGIC is not initialized. 568 */ 569 int kvm_vgic_map_resources(struct kvm *kvm) 570 { 571 struct vgic_dist *dist = &kvm->arch.vgic; 572 enum vgic_type type; 573 gpa_t dist_base; 574 int ret = 0; 575 576 if (likely(smp_load_acquire(&dist->ready))) 577 return 0; 578 579 mutex_lock(&kvm->slots_lock); 580 mutex_lock(&kvm->arch.config_lock); 581 if (dist->ready) 582 goto out; 583 584 if (!irqchip_in_kernel(kvm)) 585 goto out; 586 587 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2) { 588 ret = vgic_v2_map_resources(kvm); 589 type = VGIC_V2; 590 } else { 591 ret = vgic_v3_map_resources(kvm); 592 type = VGIC_V3; 593 } 594 595 if (ret) 596 goto out; 597 598 dist_base = dist->vgic_dist_base; 599 mutex_unlock(&kvm->arch.config_lock); 600 601 ret = vgic_register_dist_iodev(kvm, dist_base, type); 602 if (ret) { 603 kvm_err("Unable to register VGIC dist MMIO regions\n"); 604 goto out_slots; 605 } 606 607 smp_store_release(&dist->ready, true); 608 goto out_slots; 609 out: 610 mutex_unlock(&kvm->arch.config_lock); 611 out_slots: 612 if (ret) 613 kvm_vm_dead(kvm); 614 615 mutex_unlock(&kvm->slots_lock); 616 617 return ret; 618 } 619 620 /* GENERIC PROBE */ 621 622 void kvm_vgic_cpu_up(void) 623 { 624 enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0); 625 } 626 627 628 void kvm_vgic_cpu_down(void) 629 { 630 disable_percpu_irq(kvm_vgic_global_state.maint_irq); 631 } 632 633 static irqreturn_t vgic_maintenance_handler(int irq, void *data) 634 { 635 struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)data; 636 637 /* 638 * We cannot rely on the vgic maintenance interrupt to be 639 * delivered synchronously. This means we can only use it to 640 * exit the VM, and we perform the handling of EOIed 641 * interrupts on the exit path (see vgic_fold_lr_state). 642 * 643 * Of course, NV throws a wrench in this plan, and needs 644 * something special. 645 */ 646 if (vcpu && vgic_state_is_nested(vcpu)) 647 vgic_v3_handle_nested_maint_irq(vcpu); 648 649 return IRQ_HANDLED; 650 } 651 652 static struct gic_kvm_info *gic_kvm_info; 653 654 void __init vgic_set_kvm_info(const struct gic_kvm_info *info) 655 { 656 BUG_ON(gic_kvm_info != NULL); 657 gic_kvm_info = kmalloc(sizeof(*info), GFP_KERNEL); 658 if (gic_kvm_info) 659 *gic_kvm_info = *info; 660 } 661 662 /** 663 * kvm_vgic_init_cpu_hardware - initialize the GIC VE hardware 664 * 665 * For a specific CPU, initialize the GIC VE hardware. 666 */ 667 void kvm_vgic_init_cpu_hardware(void) 668 { 669 BUG_ON(preemptible()); 670 671 /* 672 * We want to make sure the list registers start out clear so that we 673 * only have the program the used registers. 674 */ 675 if (kvm_vgic_global_state.type == VGIC_V2) { 676 vgic_v2_init_lrs(); 677 } else if (kvm_vgic_global_state.type == VGIC_V3 || 678 kvm_vgic_global_state.has_gcie_v3_compat) { 679 kvm_call_hyp(__vgic_v3_init_lrs); 680 } 681 } 682 683 /** 684 * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable 685 * according to the host GIC model. Accordingly calls either 686 * vgic_v2/v3_probe which registers the KVM_DEVICE that can be 687 * instantiated by a guest later on . 688 */ 689 int kvm_vgic_hyp_init(void) 690 { 691 bool has_mask; 692 int ret; 693 694 if (!gic_kvm_info) 695 return -ENODEV; 696 697 has_mask = !gic_kvm_info->no_maint_irq_mask; 698 699 if (has_mask && !gic_kvm_info->maint_irq) { 700 kvm_err("No vgic maintenance irq\n"); 701 return -ENXIO; 702 } 703 704 /* 705 * If we get one of these oddball non-GICs, taint the kernel, 706 * as we have no idea of how they *really* behave. 707 */ 708 if (gic_kvm_info->no_hw_deactivation) { 709 kvm_info("Non-architectural vgic, tainting kernel\n"); 710 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 711 kvm_vgic_global_state.no_hw_deactivation = true; 712 } 713 714 switch (gic_kvm_info->type) { 715 case GIC_V2: 716 ret = vgic_v2_probe(gic_kvm_info); 717 break; 718 case GIC_V3: 719 ret = vgic_v3_probe(gic_kvm_info); 720 if (!ret) { 721 static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif); 722 kvm_info("GIC system register CPU interface enabled\n"); 723 } 724 break; 725 case GIC_V5: 726 ret = vgic_v5_probe(gic_kvm_info); 727 break; 728 default: 729 ret = -ENODEV; 730 } 731 732 kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq; 733 734 kfree(gic_kvm_info); 735 gic_kvm_info = NULL; 736 737 if (ret) 738 return ret; 739 740 if (!has_mask && !kvm_vgic_global_state.maint_irq) 741 return 0; 742 743 ret = request_percpu_irq(kvm_vgic_global_state.maint_irq, 744 vgic_maintenance_handler, 745 "vgic", kvm_get_running_vcpus()); 746 if (ret) { 747 kvm_err("Cannot register interrupt %d\n", 748 kvm_vgic_global_state.maint_irq); 749 return ret; 750 } 751 752 kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq); 753 return 0; 754 } 755