1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine (KVM) Hypervisor
4 *
5 * Copyright (C) 2006 Qumranet, Inc.
6 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7 *
8 * Authors:
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
11 */
12
13 #include <kvm/iodev.h>
14
15 #include <linux/kvm_host.h>
16 #include <linux/kvm.h>
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/percpu.h>
20 #include <linux/mm.h>
21 #include <linux/miscdevice.h>
22 #include <linux/vmalloc.h>
23 #include <linux/reboot.h>
24 #include <linux/debugfs.h>
25 #include <linux/highmem.h>
26 #include <linux/file.h>
27 #include <linux/syscore_ops.h>
28 #include <linux/cpu.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/stat.h>
32 #include <linux/cpumask.h>
33 #include <linux/smp.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/profile.h>
36 #include <linux/kvm_para.h>
37 #include <linux/pagemap.h>
38 #include <linux/mman.h>
39 #include <linux/swap.h>
40 #include <linux/bitops.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/srcu.h>
44 #include <linux/hugetlb.h>
45 #include <linux/slab.h>
46 #include <linux/sort.h>
47 #include <linux/bsearch.h>
48 #include <linux/io.h>
49 #include <linux/lockdep.h>
50 #include <linux/kthread.h>
51 #include <linux/suspend.h>
52
53 #include <asm/processor.h>
54 #include <asm/ioctl.h>
55 #include <linux/uaccess.h>
56
57 #include "coalesced_mmio.h"
58 #include "async_pf.h"
59 #include "kvm_mm.h"
60 #include "vfio.h"
61
62 #include <trace/events/ipi.h>
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 #include <linux/kvm_dirty_ring.h>
68
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor");
75 MODULE_LICENSE("GPL");
76
77 /* Architectures should define their poll value according to the halt latency */
78 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
79 module_param(halt_poll_ns, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns);
81
82 /* Default doubles per-vcpu halt_poll_ns. */
83 unsigned int halt_poll_ns_grow = 2;
84 module_param(halt_poll_ns_grow, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
86
87 /* The start value to grow halt_poll_ns from */
88 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
89 module_param(halt_poll_ns_grow_start, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
91
92 /* Default halves per-vcpu halt_poll_ns. */
93 unsigned int halt_poll_ns_shrink = 2;
94 module_param(halt_poll_ns_shrink, uint, 0644);
95 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
96
97 /*
98 * Allow direct access (from KVM or the CPU) without MMU notifier protection
99 * to unpinned pages.
100 */
101 static bool allow_unsafe_mappings;
102 module_param(allow_unsafe_mappings, bool, 0444);
103
104 /*
105 * Ordering of locks:
106 *
107 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
108 */
109
110 DEFINE_MUTEX(kvm_lock);
111 LIST_HEAD(vm_list);
112
113 static struct kmem_cache *kvm_vcpu_cache;
114
115 static __read_mostly struct preempt_ops kvm_preempt_ops;
116 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
117
118 static struct dentry *kvm_debugfs_dir;
119
120 static const struct file_operations stat_fops_per_vm;
121
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123 unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126 unsigned long arg);
127 #define KVM_COMPAT(c) .compat_ioctl = (c)
128 #else
129 /*
130 * For architectures that don't implement a compat infrastructure,
131 * adopt a double line of defense:
132 * - Prevent a compat task from opening /dev/kvm
133 * - If the open has been done by a 64bit task, and the KVM fd
134 * passed to a compat task, let the ioctls fail.
135 */
kvm_no_compat_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137 unsigned long arg) { return -EINVAL; }
138
kvm_no_compat_open(struct inode * inode,struct file * file)139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141 return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
144 .open = kvm_no_compat_open
145 #endif
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 #define KVM_EVENT_CREATE_VM 0
150 #define KVM_EVENT_DESTROY_VM 1
151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152 static unsigned long long kvm_createvm_count;
153 static unsigned long long kvm_active_vms;
154
155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)157 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
158 {
159 }
160
161 /*
162 * Switches to specified vcpu, until a matching vcpu_put()
163 */
vcpu_load(struct kvm_vcpu * vcpu)164 void vcpu_load(struct kvm_vcpu *vcpu)
165 {
166 int cpu = get_cpu();
167
168 __this_cpu_write(kvm_running_vcpu, vcpu);
169 preempt_notifier_register(&vcpu->preempt_notifier);
170 kvm_arch_vcpu_load(vcpu, cpu);
171 put_cpu();
172 }
173 EXPORT_SYMBOL_GPL(vcpu_load);
174
vcpu_put(struct kvm_vcpu * vcpu)175 void vcpu_put(struct kvm_vcpu *vcpu)
176 {
177 preempt_disable();
178 kvm_arch_vcpu_put(vcpu);
179 preempt_notifier_unregister(&vcpu->preempt_notifier);
180 __this_cpu_write(kvm_running_vcpu, NULL);
181 preempt_enable();
182 }
183 EXPORT_SYMBOL_GPL(vcpu_put);
184
185 /* TODO: merge with kvm_arch_vcpu_should_kick */
kvm_request_needs_ipi(struct kvm_vcpu * vcpu,unsigned req)186 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
187 {
188 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
189
190 /*
191 * We need to wait for the VCPU to reenable interrupts and get out of
192 * READING_SHADOW_PAGE_TABLES mode.
193 */
194 if (req & KVM_REQUEST_WAIT)
195 return mode != OUTSIDE_GUEST_MODE;
196
197 /*
198 * Need to kick a running VCPU, but otherwise there is nothing to do.
199 */
200 return mode == IN_GUEST_MODE;
201 }
202
ack_kick(void * _completed)203 static void ack_kick(void *_completed)
204 {
205 }
206
kvm_kick_many_cpus(struct cpumask * cpus,bool wait)207 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
208 {
209 if (cpumask_empty(cpus))
210 return false;
211
212 smp_call_function_many(cpus, ack_kick, NULL, wait);
213 return true;
214 }
215
kvm_make_vcpu_request(struct kvm_vcpu * vcpu,unsigned int req,struct cpumask * tmp,int current_cpu)216 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
217 struct cpumask *tmp, int current_cpu)
218 {
219 int cpu;
220
221 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
222 __kvm_make_request(req, vcpu);
223
224 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
225 return;
226
227 /*
228 * Note, the vCPU could get migrated to a different pCPU at any point
229 * after kvm_request_needs_ipi(), which could result in sending an IPI
230 * to the previous pCPU. But, that's OK because the purpose of the IPI
231 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
232 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
233 * after this point is also OK, as the requirement is only that KVM wait
234 * for vCPUs that were reading SPTEs _before_ any changes were
235 * finalized. See kvm_vcpu_kick() for more details on handling requests.
236 */
237 if (kvm_request_needs_ipi(vcpu, req)) {
238 cpu = READ_ONCE(vcpu->cpu);
239 if (cpu != -1 && cpu != current_cpu)
240 __cpumask_set_cpu(cpu, tmp);
241 }
242 }
243
kvm_make_vcpus_request_mask(struct kvm * kvm,unsigned int req,unsigned long * vcpu_bitmap)244 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
245 unsigned long *vcpu_bitmap)
246 {
247 struct kvm_vcpu *vcpu;
248 struct cpumask *cpus;
249 int i, me;
250 bool called;
251
252 me = get_cpu();
253
254 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
255 cpumask_clear(cpus);
256
257 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
258 vcpu = kvm_get_vcpu(kvm, i);
259 if (!vcpu)
260 continue;
261 kvm_make_vcpu_request(vcpu, req, cpus, me);
262 }
263
264 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
265 put_cpu();
266
267 return called;
268 }
269
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)270 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
271 {
272 struct kvm_vcpu *vcpu;
273 struct cpumask *cpus;
274 unsigned long i;
275 bool called;
276 int me;
277
278 me = get_cpu();
279
280 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
281 cpumask_clear(cpus);
282
283 kvm_for_each_vcpu(i, vcpu, kvm)
284 kvm_make_vcpu_request(vcpu, req, cpus, me);
285
286 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
287 put_cpu();
288
289 return called;
290 }
291 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
292
kvm_flush_remote_tlbs(struct kvm * kvm)293 void kvm_flush_remote_tlbs(struct kvm *kvm)
294 {
295 ++kvm->stat.generic.remote_tlb_flush_requests;
296
297 /*
298 * We want to publish modifications to the page tables before reading
299 * mode. Pairs with a memory barrier in arch-specific code.
300 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
301 * and smp_mb in walk_shadow_page_lockless_begin/end.
302 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
303 *
304 * There is already an smp_mb__after_atomic() before
305 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
306 * barrier here.
307 */
308 if (!kvm_arch_flush_remote_tlbs(kvm)
309 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
310 ++kvm->stat.generic.remote_tlb_flush;
311 }
312 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
313
kvm_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)314 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
315 {
316 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
317 return;
318
319 /*
320 * Fall back to a flushing entire TLBs if the architecture range-based
321 * TLB invalidation is unsupported or can't be performed for whatever
322 * reason.
323 */
324 kvm_flush_remote_tlbs(kvm);
325 }
326
kvm_flush_remote_tlbs_memslot(struct kvm * kvm,const struct kvm_memory_slot * memslot)327 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
328 const struct kvm_memory_slot *memslot)
329 {
330 /*
331 * All current use cases for flushing the TLBs for a specific memslot
332 * are related to dirty logging, and many do the TLB flush out of
333 * mmu_lock. The interaction between the various operations on memslot
334 * must be serialized by slots_locks to ensure the TLB flush from one
335 * operation is observed by any other operation on the same memslot.
336 */
337 lockdep_assert_held(&kvm->slots_lock);
338 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
339 }
340
kvm_flush_shadow_all(struct kvm * kvm)341 static void kvm_flush_shadow_all(struct kvm *kvm)
342 {
343 kvm_arch_flush_shadow_all(kvm);
344 kvm_arch_guest_memory_reclaimed(kvm);
345 }
346
347 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache * mc,gfp_t gfp_flags)348 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
349 gfp_t gfp_flags)
350 {
351 void *page;
352
353 gfp_flags |= mc->gfp_zero;
354
355 if (mc->kmem_cache)
356 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
357
358 page = (void *)__get_free_page(gfp_flags);
359 if (page && mc->init_value)
360 memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
361 return page;
362 }
363
__kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int capacity,int min)364 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
365 {
366 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
367 void *obj;
368
369 if (mc->nobjs >= min)
370 return 0;
371
372 if (unlikely(!mc->objects)) {
373 if (WARN_ON_ONCE(!capacity))
374 return -EIO;
375
376 /*
377 * Custom init values can be used only for page allocations,
378 * and obviously conflict with __GFP_ZERO.
379 */
380 if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
381 return -EIO;
382
383 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
384 if (!mc->objects)
385 return -ENOMEM;
386
387 mc->capacity = capacity;
388 }
389
390 /* It is illegal to request a different capacity across topups. */
391 if (WARN_ON_ONCE(mc->capacity != capacity))
392 return -EIO;
393
394 while (mc->nobjs < mc->capacity) {
395 obj = mmu_memory_cache_alloc_obj(mc, gfp);
396 if (!obj)
397 return mc->nobjs >= min ? 0 : -ENOMEM;
398 mc->objects[mc->nobjs++] = obj;
399 }
400 return 0;
401 }
402
kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int min)403 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
404 {
405 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
406 }
407
kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache * mc)408 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
409 {
410 return mc->nobjs;
411 }
412
kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)413 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
414 {
415 while (mc->nobjs) {
416 if (mc->kmem_cache)
417 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
418 else
419 free_page((unsigned long)mc->objects[--mc->nobjs]);
420 }
421
422 kvfree(mc->objects);
423
424 mc->objects = NULL;
425 mc->capacity = 0;
426 }
427
kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)428 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
429 {
430 void *p;
431
432 if (WARN_ON(!mc->nobjs))
433 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
434 else
435 p = mc->objects[--mc->nobjs];
436 BUG_ON(!p);
437 return p;
438 }
439 #endif
440
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)441 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
442 {
443 mutex_init(&vcpu->mutex);
444 vcpu->cpu = -1;
445 vcpu->kvm = kvm;
446 vcpu->vcpu_id = id;
447 vcpu->pid = NULL;
448 rwlock_init(&vcpu->pid_lock);
449 #ifndef __KVM_HAVE_ARCH_WQP
450 rcuwait_init(&vcpu->wait);
451 #endif
452 kvm_async_pf_vcpu_init(vcpu);
453
454 kvm_vcpu_set_in_spin_loop(vcpu, false);
455 kvm_vcpu_set_dy_eligible(vcpu, false);
456 vcpu->preempted = false;
457 vcpu->ready = false;
458 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
459 vcpu->last_used_slot = NULL;
460
461 /* Fill the stats id string for the vcpu */
462 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
463 task_pid_nr(current), id);
464 }
465
kvm_vcpu_destroy(struct kvm_vcpu * vcpu)466 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
467 {
468 kvm_arch_vcpu_destroy(vcpu);
469 kvm_dirty_ring_free(&vcpu->dirty_ring);
470
471 /*
472 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
473 * the vcpu->pid pointer, and at destruction time all file descriptors
474 * are already gone.
475 */
476 put_pid(vcpu->pid);
477
478 free_page((unsigned long)vcpu->run);
479 kmem_cache_free(kvm_vcpu_cache, vcpu);
480 }
481
kvm_destroy_vcpus(struct kvm * kvm)482 void kvm_destroy_vcpus(struct kvm *kvm)
483 {
484 unsigned long i;
485 struct kvm_vcpu *vcpu;
486
487 kvm_for_each_vcpu(i, vcpu, kvm) {
488 kvm_vcpu_destroy(vcpu);
489 xa_erase(&kvm->vcpu_array, i);
490
491 /*
492 * Assert that the vCPU isn't visible in any way, to ensure KVM
493 * doesn't trigger a use-after-free if destroying vCPUs results
494 * in VM-wide request, e.g. to flush remote TLBs when tearing
495 * down MMUs, or to mark the VM dead if a KVM_BUG_ON() fires.
496 */
497 WARN_ON_ONCE(xa_load(&kvm->vcpu_array, i) || kvm_get_vcpu(kvm, i));
498 }
499
500 atomic_set(&kvm->online_vcpus, 0);
501 }
502 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
503
504 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
mmu_notifier_to_kvm(struct mmu_notifier * mn)505 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
506 {
507 return container_of(mn, struct kvm, mmu_notifier);
508 }
509
510 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
511
512 typedef void (*on_lock_fn_t)(struct kvm *kvm);
513
514 struct kvm_mmu_notifier_range {
515 /*
516 * 64-bit addresses, as KVM notifiers can operate on host virtual
517 * addresses (unsigned long) and guest physical addresses (64-bit).
518 */
519 u64 start;
520 u64 end;
521 union kvm_mmu_notifier_arg arg;
522 gfn_handler_t handler;
523 on_lock_fn_t on_lock;
524 bool flush_on_ret;
525 bool may_block;
526 bool lockless;
527 };
528
529 /*
530 * The inner-most helper returns a tuple containing the return value from the
531 * arch- and action-specific handler, plus a flag indicating whether or not at
532 * least one memslot was found, i.e. if the handler found guest memory.
533 *
534 * Note, most notifiers are averse to booleans, so even though KVM tracks the
535 * return from arch code as a bool, outer helpers will cast it to an int. :-(
536 */
537 typedef struct kvm_mmu_notifier_return {
538 bool ret;
539 bool found_memslot;
540 } kvm_mn_ret_t;
541
542 /*
543 * Use a dedicated stub instead of NULL to indicate that there is no callback
544 * function/handler. The compiler technically can't guarantee that a real
545 * function will have a non-zero address, and so it will generate code to
546 * check for !NULL, whereas comparing against a stub will be elided at compile
547 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
548 */
kvm_null_fn(void)549 static void kvm_null_fn(void)
550 {
551
552 }
553 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
554
555 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
556 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
557 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
558 node; \
559 node = interval_tree_iter_next(node, start, last)) \
560
kvm_handle_hva_range(struct kvm * kvm,const struct kvm_mmu_notifier_range * range)561 static __always_inline kvm_mn_ret_t kvm_handle_hva_range(struct kvm *kvm,
562 const struct kvm_mmu_notifier_range *range)
563 {
564 struct kvm_mmu_notifier_return r = {
565 .ret = false,
566 .found_memslot = false,
567 };
568 struct kvm_gfn_range gfn_range;
569 struct kvm_memory_slot *slot;
570 struct kvm_memslots *slots;
571 int i, idx;
572
573 if (WARN_ON_ONCE(range->end <= range->start))
574 return r;
575
576 /* A null handler is allowed if and only if on_lock() is provided. */
577 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
578 IS_KVM_NULL_FN(range->handler)))
579 return r;
580
581 /* on_lock will never be called for lockless walks */
582 if (WARN_ON_ONCE(range->lockless && !IS_KVM_NULL_FN(range->on_lock)))
583 return r;
584
585 idx = srcu_read_lock(&kvm->srcu);
586
587 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
588 struct interval_tree_node *node;
589
590 slots = __kvm_memslots(kvm, i);
591 kvm_for_each_memslot_in_hva_range(node, slots,
592 range->start, range->end - 1) {
593 unsigned long hva_start, hva_end;
594
595 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
596 hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
597 hva_end = min_t(unsigned long, range->end,
598 slot->userspace_addr + (slot->npages << PAGE_SHIFT));
599
600 /*
601 * To optimize for the likely case where the address
602 * range is covered by zero or one memslots, don't
603 * bother making these conditional (to avoid writes on
604 * the second or later invocation of the handler).
605 */
606 gfn_range.arg = range->arg;
607 gfn_range.may_block = range->may_block;
608 /*
609 * HVA-based notifications aren't relevant to private
610 * mappings as they don't have a userspace mapping.
611 */
612 gfn_range.attr_filter = KVM_FILTER_SHARED;
613
614 /*
615 * {gfn(page) | page intersects with [hva_start, hva_end)} =
616 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
617 */
618 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
619 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
620 gfn_range.slot = slot;
621 gfn_range.lockless = range->lockless;
622
623 if (!r.found_memslot) {
624 r.found_memslot = true;
625 if (!range->lockless) {
626 KVM_MMU_LOCK(kvm);
627 if (!IS_KVM_NULL_FN(range->on_lock))
628 range->on_lock(kvm);
629
630 if (IS_KVM_NULL_FN(range->handler))
631 goto mmu_unlock;
632 }
633 }
634 r.ret |= range->handler(kvm, &gfn_range);
635 }
636 }
637
638 if (range->flush_on_ret && r.ret)
639 kvm_flush_remote_tlbs(kvm);
640
641 mmu_unlock:
642 if (r.found_memslot && !range->lockless)
643 KVM_MMU_UNLOCK(kvm);
644
645 srcu_read_unlock(&kvm->srcu, idx);
646
647 return r;
648 }
649
kvm_age_hva_range(struct mmu_notifier * mn,unsigned long start,unsigned long end,gfn_handler_t handler,bool flush_on_ret)650 static __always_inline int kvm_age_hva_range(struct mmu_notifier *mn,
651 unsigned long start,
652 unsigned long end,
653 gfn_handler_t handler,
654 bool flush_on_ret)
655 {
656 struct kvm *kvm = mmu_notifier_to_kvm(mn);
657 const struct kvm_mmu_notifier_range range = {
658 .start = start,
659 .end = end,
660 .handler = handler,
661 .on_lock = (void *)kvm_null_fn,
662 .flush_on_ret = flush_on_ret,
663 .may_block = false,
664 .lockless = IS_ENABLED(CONFIG_KVM_MMU_LOCKLESS_AGING),
665 };
666
667 return kvm_handle_hva_range(kvm, &range).ret;
668 }
669
kvm_age_hva_range_no_flush(struct mmu_notifier * mn,unsigned long start,unsigned long end,gfn_handler_t handler)670 static __always_inline int kvm_age_hva_range_no_flush(struct mmu_notifier *mn,
671 unsigned long start,
672 unsigned long end,
673 gfn_handler_t handler)
674 {
675 return kvm_age_hva_range(mn, start, end, handler, false);
676 }
677
kvm_mmu_invalidate_begin(struct kvm * kvm)678 void kvm_mmu_invalidate_begin(struct kvm *kvm)
679 {
680 lockdep_assert_held_write(&kvm->mmu_lock);
681 /*
682 * The count increase must become visible at unlock time as no
683 * spte can be established without taking the mmu_lock and
684 * count is also read inside the mmu_lock critical section.
685 */
686 kvm->mmu_invalidate_in_progress++;
687
688 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
689 kvm->mmu_invalidate_range_start = INVALID_GPA;
690 kvm->mmu_invalidate_range_end = INVALID_GPA;
691 }
692 }
693
kvm_mmu_invalidate_range_add(struct kvm * kvm,gfn_t start,gfn_t end)694 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
695 {
696 lockdep_assert_held_write(&kvm->mmu_lock);
697
698 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
699
700 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
701 kvm->mmu_invalidate_range_start = start;
702 kvm->mmu_invalidate_range_end = end;
703 } else {
704 /*
705 * Fully tracking multiple concurrent ranges has diminishing
706 * returns. Keep things simple and just find the minimal range
707 * which includes the current and new ranges. As there won't be
708 * enough information to subtract a range after its invalidate
709 * completes, any ranges invalidated concurrently will
710 * accumulate and persist until all outstanding invalidates
711 * complete.
712 */
713 kvm->mmu_invalidate_range_start =
714 min(kvm->mmu_invalidate_range_start, start);
715 kvm->mmu_invalidate_range_end =
716 max(kvm->mmu_invalidate_range_end, end);
717 }
718 }
719
kvm_mmu_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)720 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
721 {
722 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
723 return kvm_unmap_gfn_range(kvm, range);
724 }
725
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,const struct mmu_notifier_range * range)726 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
727 const struct mmu_notifier_range *range)
728 {
729 struct kvm *kvm = mmu_notifier_to_kvm(mn);
730 const struct kvm_mmu_notifier_range hva_range = {
731 .start = range->start,
732 .end = range->end,
733 .handler = kvm_mmu_unmap_gfn_range,
734 .on_lock = kvm_mmu_invalidate_begin,
735 .flush_on_ret = true,
736 .may_block = mmu_notifier_range_blockable(range),
737 };
738
739 trace_kvm_unmap_hva_range(range->start, range->end);
740
741 /*
742 * Prevent memslot modification between range_start() and range_end()
743 * so that conditionally locking provides the same result in both
744 * functions. Without that guarantee, the mmu_invalidate_in_progress
745 * adjustments will be imbalanced.
746 *
747 * Pairs with the decrement in range_end().
748 */
749 spin_lock(&kvm->mn_invalidate_lock);
750 kvm->mn_active_invalidate_count++;
751 spin_unlock(&kvm->mn_invalidate_lock);
752
753 /*
754 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
755 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
756 * each cache's lock. There are relatively few caches in existence at
757 * any given time, and the caches themselves can check for hva overlap,
758 * i.e. don't need to rely on memslot overlap checks for performance.
759 * Because this runs without holding mmu_lock, the pfn caches must use
760 * mn_active_invalidate_count (see above) instead of
761 * mmu_invalidate_in_progress.
762 */
763 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
764
765 /*
766 * If one or more memslots were found and thus zapped, notify arch code
767 * that guest memory has been reclaimed. This needs to be done *after*
768 * dropping mmu_lock, as x86's reclaim path is slooooow.
769 */
770 if (kvm_handle_hva_range(kvm, &hva_range).found_memslot)
771 kvm_arch_guest_memory_reclaimed(kvm);
772
773 return 0;
774 }
775
kvm_mmu_invalidate_end(struct kvm * kvm)776 void kvm_mmu_invalidate_end(struct kvm *kvm)
777 {
778 lockdep_assert_held_write(&kvm->mmu_lock);
779
780 /*
781 * This sequence increase will notify the kvm page fault that
782 * the page that is going to be mapped in the spte could have
783 * been freed.
784 */
785 kvm->mmu_invalidate_seq++;
786 smp_wmb();
787 /*
788 * The above sequence increase must be visible before the
789 * below count decrease, which is ensured by the smp_wmb above
790 * in conjunction with the smp_rmb in mmu_invalidate_retry().
791 */
792 kvm->mmu_invalidate_in_progress--;
793 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
794
795 /*
796 * Assert that at least one range was added between start() and end().
797 * Not adding a range isn't fatal, but it is a KVM bug.
798 */
799 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
800 }
801
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,const struct mmu_notifier_range * range)802 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
803 const struct mmu_notifier_range *range)
804 {
805 struct kvm *kvm = mmu_notifier_to_kvm(mn);
806 const struct kvm_mmu_notifier_range hva_range = {
807 .start = range->start,
808 .end = range->end,
809 .handler = (void *)kvm_null_fn,
810 .on_lock = kvm_mmu_invalidate_end,
811 .flush_on_ret = false,
812 .may_block = mmu_notifier_range_blockable(range),
813 };
814 bool wake;
815
816 kvm_handle_hva_range(kvm, &hva_range);
817
818 /* Pairs with the increment in range_start(). */
819 spin_lock(&kvm->mn_invalidate_lock);
820 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
821 --kvm->mn_active_invalidate_count;
822 wake = !kvm->mn_active_invalidate_count;
823 spin_unlock(&kvm->mn_invalidate_lock);
824
825 /*
826 * There can only be one waiter, since the wait happens under
827 * slots_lock.
828 */
829 if (wake)
830 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
831 }
832
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)833 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
834 struct mm_struct *mm,
835 unsigned long start,
836 unsigned long end)
837 {
838 trace_kvm_age_hva(start, end);
839
840 return kvm_age_hva_range(mn, start, end, kvm_age_gfn,
841 !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG));
842 }
843
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)844 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
845 struct mm_struct *mm,
846 unsigned long start,
847 unsigned long end)
848 {
849 trace_kvm_age_hva(start, end);
850
851 /*
852 * Even though we do not flush TLB, this will still adversely
853 * affect performance on pre-Haswell Intel EPT, where there is
854 * no EPT Access Bit to clear so that we have to tear down EPT
855 * tables instead. If we find this unacceptable, we can always
856 * add a parameter to kvm_age_hva so that it effectively doesn't
857 * do anything on clear_young.
858 *
859 * Also note that currently we never issue secondary TLB flushes
860 * from clear_young, leaving this job up to the regular system
861 * cadence. If we find this inaccurate, we might come up with a
862 * more sophisticated heuristic later.
863 */
864 return kvm_age_hva_range_no_flush(mn, start, end, kvm_age_gfn);
865 }
866
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)867 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
868 struct mm_struct *mm,
869 unsigned long address)
870 {
871 trace_kvm_test_age_hva(address);
872
873 return kvm_age_hva_range_no_flush(mn, address, address + 1,
874 kvm_test_age_gfn);
875 }
876
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)877 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
878 struct mm_struct *mm)
879 {
880 struct kvm *kvm = mmu_notifier_to_kvm(mn);
881 int idx;
882
883 idx = srcu_read_lock(&kvm->srcu);
884 kvm_flush_shadow_all(kvm);
885 srcu_read_unlock(&kvm->srcu, idx);
886 }
887
888 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
889 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
890 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
891 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
892 .clear_young = kvm_mmu_notifier_clear_young,
893 .test_young = kvm_mmu_notifier_test_young,
894 .release = kvm_mmu_notifier_release,
895 };
896
kvm_init_mmu_notifier(struct kvm * kvm)897 static int kvm_init_mmu_notifier(struct kvm *kvm)
898 {
899 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
900 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
901 }
902
903 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
904
kvm_init_mmu_notifier(struct kvm * kvm)905 static int kvm_init_mmu_notifier(struct kvm *kvm)
906 {
907 return 0;
908 }
909
910 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
911
912 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_pm_notifier_call(struct notifier_block * bl,unsigned long state,void * unused)913 static int kvm_pm_notifier_call(struct notifier_block *bl,
914 unsigned long state,
915 void *unused)
916 {
917 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
918
919 return kvm_arch_pm_notifier(kvm, state);
920 }
921
kvm_init_pm_notifier(struct kvm * kvm)922 static void kvm_init_pm_notifier(struct kvm *kvm)
923 {
924 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
925 /* Suspend KVM before we suspend ftrace, RCU, etc. */
926 kvm->pm_notifier.priority = INT_MAX;
927 register_pm_notifier(&kvm->pm_notifier);
928 }
929
kvm_destroy_pm_notifier(struct kvm * kvm)930 static void kvm_destroy_pm_notifier(struct kvm *kvm)
931 {
932 unregister_pm_notifier(&kvm->pm_notifier);
933 }
934 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
kvm_init_pm_notifier(struct kvm * kvm)935 static void kvm_init_pm_notifier(struct kvm *kvm)
936 {
937 }
938
kvm_destroy_pm_notifier(struct kvm * kvm)939 static void kvm_destroy_pm_notifier(struct kvm *kvm)
940 {
941 }
942 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
943
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)944 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
945 {
946 if (!memslot->dirty_bitmap)
947 return;
948
949 vfree(memslot->dirty_bitmap);
950 memslot->dirty_bitmap = NULL;
951 }
952
953 /* This does not remove the slot from struct kvm_memslots data structures */
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)954 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
955 {
956 if (slot->flags & KVM_MEM_GUEST_MEMFD)
957 kvm_gmem_unbind(slot);
958
959 kvm_destroy_dirty_bitmap(slot);
960
961 kvm_arch_free_memslot(kvm, slot);
962
963 kfree(slot);
964 }
965
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)966 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
967 {
968 struct hlist_node *idnode;
969 struct kvm_memory_slot *memslot;
970 int bkt;
971
972 /*
973 * The same memslot objects live in both active and inactive sets,
974 * arbitrarily free using index '1' so the second invocation of this
975 * function isn't operating over a structure with dangling pointers
976 * (even though this function isn't actually touching them).
977 */
978 if (!slots->node_idx)
979 return;
980
981 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
982 kvm_free_memslot(kvm, memslot);
983 }
984
kvm_stats_debugfs_mode(const struct _kvm_stats_desc * pdesc)985 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
986 {
987 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
988 case KVM_STATS_TYPE_INSTANT:
989 return 0444;
990 case KVM_STATS_TYPE_CUMULATIVE:
991 case KVM_STATS_TYPE_PEAK:
992 default:
993 return 0644;
994 }
995 }
996
997
kvm_destroy_vm_debugfs(struct kvm * kvm)998 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
999 {
1000 int i;
1001 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1002 kvm_vcpu_stats_header.num_desc;
1003
1004 if (IS_ERR(kvm->debugfs_dentry))
1005 return;
1006
1007 debugfs_remove_recursive(kvm->debugfs_dentry);
1008
1009 if (kvm->debugfs_stat_data) {
1010 for (i = 0; i < kvm_debugfs_num_entries; i++)
1011 kfree(kvm->debugfs_stat_data[i]);
1012 kfree(kvm->debugfs_stat_data);
1013 }
1014 }
1015
kvm_create_vm_debugfs(struct kvm * kvm,const char * fdname)1016 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1017 {
1018 static DEFINE_MUTEX(kvm_debugfs_lock);
1019 struct dentry *dent;
1020 char dir_name[ITOA_MAX_LEN * 2];
1021 struct kvm_stat_data *stat_data;
1022 const struct _kvm_stats_desc *pdesc;
1023 int i, ret = -ENOMEM;
1024 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1025 kvm_vcpu_stats_header.num_desc;
1026
1027 if (!debugfs_initialized())
1028 return 0;
1029
1030 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1031 mutex_lock(&kvm_debugfs_lock);
1032 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1033 if (dent) {
1034 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1035 dput(dent);
1036 mutex_unlock(&kvm_debugfs_lock);
1037 return 0;
1038 }
1039 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1040 mutex_unlock(&kvm_debugfs_lock);
1041 if (IS_ERR(dent))
1042 return 0;
1043
1044 kvm->debugfs_dentry = dent;
1045 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1046 sizeof(*kvm->debugfs_stat_data),
1047 GFP_KERNEL_ACCOUNT);
1048 if (!kvm->debugfs_stat_data)
1049 goto out_err;
1050
1051 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1052 pdesc = &kvm_vm_stats_desc[i];
1053 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1054 if (!stat_data)
1055 goto out_err;
1056
1057 stat_data->kvm = kvm;
1058 stat_data->desc = pdesc;
1059 stat_data->kind = KVM_STAT_VM;
1060 kvm->debugfs_stat_data[i] = stat_data;
1061 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1062 kvm->debugfs_dentry, stat_data,
1063 &stat_fops_per_vm);
1064 }
1065
1066 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1067 pdesc = &kvm_vcpu_stats_desc[i];
1068 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1069 if (!stat_data)
1070 goto out_err;
1071
1072 stat_data->kvm = kvm;
1073 stat_data->desc = pdesc;
1074 stat_data->kind = KVM_STAT_VCPU;
1075 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1076 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1077 kvm->debugfs_dentry, stat_data,
1078 &stat_fops_per_vm);
1079 }
1080
1081 kvm_arch_create_vm_debugfs(kvm);
1082 return 0;
1083 out_err:
1084 kvm_destroy_vm_debugfs(kvm);
1085 return ret;
1086 }
1087
1088 /*
1089 * Called just after removing the VM from the vm_list, but before doing any
1090 * other destruction.
1091 */
kvm_arch_pre_destroy_vm(struct kvm * kvm)1092 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1093 {
1094 }
1095
1096 /*
1097 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1098 * be setup already, so we can create arch-specific debugfs entries under it.
1099 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1100 * a per-arch destroy interface is not needed.
1101 */
kvm_arch_create_vm_debugfs(struct kvm * kvm)1102 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1103 {
1104 }
1105
kvm_create_vm(unsigned long type,const char * fdname)1106 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1107 {
1108 struct kvm *kvm = kvm_arch_alloc_vm();
1109 struct kvm_memslots *slots;
1110 int r, i, j;
1111
1112 if (!kvm)
1113 return ERR_PTR(-ENOMEM);
1114
1115 KVM_MMU_LOCK_INIT(kvm);
1116 mmgrab(current->mm);
1117 kvm->mm = current->mm;
1118 kvm_eventfd_init(kvm);
1119 mutex_init(&kvm->lock);
1120 mutex_init(&kvm->irq_lock);
1121 mutex_init(&kvm->slots_lock);
1122 mutex_init(&kvm->slots_arch_lock);
1123 spin_lock_init(&kvm->mn_invalidate_lock);
1124 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1125 xa_init(&kvm->vcpu_array);
1126 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1127 xa_init(&kvm->mem_attr_array);
1128 #endif
1129
1130 INIT_LIST_HEAD(&kvm->gpc_list);
1131 spin_lock_init(&kvm->gpc_lock);
1132
1133 INIT_LIST_HEAD(&kvm->devices);
1134 kvm->max_vcpus = KVM_MAX_VCPUS;
1135
1136 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1137
1138 /*
1139 * Force subsequent debugfs file creations to fail if the VM directory
1140 * is not created (by kvm_create_vm_debugfs()).
1141 */
1142 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1143
1144 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1145 task_pid_nr(current));
1146
1147 r = -ENOMEM;
1148 if (init_srcu_struct(&kvm->srcu))
1149 goto out_err_no_srcu;
1150 if (init_srcu_struct(&kvm->irq_srcu))
1151 goto out_err_no_irq_srcu;
1152
1153 r = kvm_init_irq_routing(kvm);
1154 if (r)
1155 goto out_err_no_irq_routing;
1156
1157 refcount_set(&kvm->users_count, 1);
1158
1159 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1160 for (j = 0; j < 2; j++) {
1161 slots = &kvm->__memslots[i][j];
1162
1163 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1164 slots->hva_tree = RB_ROOT_CACHED;
1165 slots->gfn_tree = RB_ROOT;
1166 hash_init(slots->id_hash);
1167 slots->node_idx = j;
1168
1169 /* Generations must be different for each address space. */
1170 slots->generation = i;
1171 }
1172
1173 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1174 }
1175
1176 r = -ENOMEM;
1177 for (i = 0; i < KVM_NR_BUSES; i++) {
1178 rcu_assign_pointer(kvm->buses[i],
1179 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1180 if (!kvm->buses[i])
1181 goto out_err_no_arch_destroy_vm;
1182 }
1183
1184 r = kvm_arch_init_vm(kvm, type);
1185 if (r)
1186 goto out_err_no_arch_destroy_vm;
1187
1188 r = kvm_enable_virtualization();
1189 if (r)
1190 goto out_err_no_disable;
1191
1192 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1193 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1194 #endif
1195
1196 r = kvm_init_mmu_notifier(kvm);
1197 if (r)
1198 goto out_err_no_mmu_notifier;
1199
1200 r = kvm_coalesced_mmio_init(kvm);
1201 if (r < 0)
1202 goto out_no_coalesced_mmio;
1203
1204 r = kvm_create_vm_debugfs(kvm, fdname);
1205 if (r)
1206 goto out_err_no_debugfs;
1207
1208 mutex_lock(&kvm_lock);
1209 list_add(&kvm->vm_list, &vm_list);
1210 mutex_unlock(&kvm_lock);
1211
1212 preempt_notifier_inc();
1213 kvm_init_pm_notifier(kvm);
1214
1215 return kvm;
1216
1217 out_err_no_debugfs:
1218 kvm_coalesced_mmio_free(kvm);
1219 out_no_coalesced_mmio:
1220 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1221 if (kvm->mmu_notifier.ops)
1222 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1223 #endif
1224 out_err_no_mmu_notifier:
1225 kvm_disable_virtualization();
1226 out_err_no_disable:
1227 kvm_arch_destroy_vm(kvm);
1228 out_err_no_arch_destroy_vm:
1229 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1230 for (i = 0; i < KVM_NR_BUSES; i++)
1231 kfree(kvm_get_bus(kvm, i));
1232 kvm_free_irq_routing(kvm);
1233 out_err_no_irq_routing:
1234 cleanup_srcu_struct(&kvm->irq_srcu);
1235 out_err_no_irq_srcu:
1236 cleanup_srcu_struct(&kvm->srcu);
1237 out_err_no_srcu:
1238 kvm_arch_free_vm(kvm);
1239 mmdrop(current->mm);
1240 return ERR_PTR(r);
1241 }
1242
kvm_destroy_devices(struct kvm * kvm)1243 static void kvm_destroy_devices(struct kvm *kvm)
1244 {
1245 struct kvm_device *dev, *tmp;
1246
1247 /*
1248 * We do not need to take the kvm->lock here, because nobody else
1249 * has a reference to the struct kvm at this point and therefore
1250 * cannot access the devices list anyhow.
1251 *
1252 * The device list is generally managed as an rculist, but list_del()
1253 * is used intentionally here. If a bug in KVM introduced a reader that
1254 * was not backed by a reference on the kvm struct, the hope is that
1255 * it'd consume the poisoned forward pointer instead of suffering a
1256 * use-after-free, even though this cannot be guaranteed.
1257 */
1258 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1259 list_del(&dev->vm_node);
1260 dev->ops->destroy(dev);
1261 }
1262 }
1263
kvm_destroy_vm(struct kvm * kvm)1264 static void kvm_destroy_vm(struct kvm *kvm)
1265 {
1266 int i;
1267 struct mm_struct *mm = kvm->mm;
1268
1269 kvm_destroy_pm_notifier(kvm);
1270 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1271 kvm_destroy_vm_debugfs(kvm);
1272 mutex_lock(&kvm_lock);
1273 list_del(&kvm->vm_list);
1274 mutex_unlock(&kvm_lock);
1275 kvm_arch_pre_destroy_vm(kvm);
1276
1277 kvm_free_irq_routing(kvm);
1278 for (i = 0; i < KVM_NR_BUSES; i++) {
1279 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1280
1281 if (bus)
1282 kvm_io_bus_destroy(bus);
1283 kvm->buses[i] = NULL;
1284 }
1285 kvm_coalesced_mmio_free(kvm);
1286 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1287 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1288 /*
1289 * At this point, pending calls to invalidate_range_start()
1290 * have completed but no more MMU notifiers will run, so
1291 * mn_active_invalidate_count may remain unbalanced.
1292 * No threads can be waiting in kvm_swap_active_memslots() as the
1293 * last reference on KVM has been dropped, but freeing
1294 * memslots would deadlock without this manual intervention.
1295 *
1296 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1297 * notifier between a start() and end(), then there shouldn't be any
1298 * in-progress invalidations.
1299 */
1300 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1301 if (kvm->mn_active_invalidate_count)
1302 kvm->mn_active_invalidate_count = 0;
1303 else
1304 WARN_ON(kvm->mmu_invalidate_in_progress);
1305 #else
1306 kvm_flush_shadow_all(kvm);
1307 #endif
1308 kvm_arch_destroy_vm(kvm);
1309 kvm_destroy_devices(kvm);
1310 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1311 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1312 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1313 }
1314 cleanup_srcu_struct(&kvm->irq_srcu);
1315 cleanup_srcu_struct(&kvm->srcu);
1316 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1317 xa_destroy(&kvm->mem_attr_array);
1318 #endif
1319 kvm_arch_free_vm(kvm);
1320 preempt_notifier_dec();
1321 kvm_disable_virtualization();
1322 mmdrop(mm);
1323 }
1324
kvm_get_kvm(struct kvm * kvm)1325 void kvm_get_kvm(struct kvm *kvm)
1326 {
1327 refcount_inc(&kvm->users_count);
1328 }
1329 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1330
1331 /*
1332 * Make sure the vm is not during destruction, which is a safe version of
1333 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1334 */
kvm_get_kvm_safe(struct kvm * kvm)1335 bool kvm_get_kvm_safe(struct kvm *kvm)
1336 {
1337 return refcount_inc_not_zero(&kvm->users_count);
1338 }
1339 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1340
kvm_put_kvm(struct kvm * kvm)1341 void kvm_put_kvm(struct kvm *kvm)
1342 {
1343 if (refcount_dec_and_test(&kvm->users_count))
1344 kvm_destroy_vm(kvm);
1345 }
1346 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1347
1348 /*
1349 * Used to put a reference that was taken on behalf of an object associated
1350 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1351 * of the new file descriptor fails and the reference cannot be transferred to
1352 * its final owner. In such cases, the caller is still actively using @kvm and
1353 * will fail miserably if the refcount unexpectedly hits zero.
1354 */
kvm_put_kvm_no_destroy(struct kvm * kvm)1355 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1356 {
1357 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1360
kvm_vm_release(struct inode * inode,struct file * filp)1361 static int kvm_vm_release(struct inode *inode, struct file *filp)
1362 {
1363 struct kvm *kvm = filp->private_data;
1364
1365 kvm_irqfd_release(kvm);
1366
1367 kvm_put_kvm(kvm);
1368 return 0;
1369 }
1370
kvm_trylock_all_vcpus(struct kvm * kvm)1371 int kvm_trylock_all_vcpus(struct kvm *kvm)
1372 {
1373 struct kvm_vcpu *vcpu;
1374 unsigned long i, j;
1375
1376 lockdep_assert_held(&kvm->lock);
1377
1378 kvm_for_each_vcpu(i, vcpu, kvm)
1379 if (!mutex_trylock_nest_lock(&vcpu->mutex, &kvm->lock))
1380 goto out_unlock;
1381 return 0;
1382
1383 out_unlock:
1384 kvm_for_each_vcpu(j, vcpu, kvm) {
1385 if (i == j)
1386 break;
1387 mutex_unlock(&vcpu->mutex);
1388 }
1389 return -EINTR;
1390 }
1391 EXPORT_SYMBOL_GPL(kvm_trylock_all_vcpus);
1392
kvm_lock_all_vcpus(struct kvm * kvm)1393 int kvm_lock_all_vcpus(struct kvm *kvm)
1394 {
1395 struct kvm_vcpu *vcpu;
1396 unsigned long i, j;
1397 int r;
1398
1399 lockdep_assert_held(&kvm->lock);
1400
1401 kvm_for_each_vcpu(i, vcpu, kvm) {
1402 r = mutex_lock_killable_nest_lock(&vcpu->mutex, &kvm->lock);
1403 if (r)
1404 goto out_unlock;
1405 }
1406 return 0;
1407
1408 out_unlock:
1409 kvm_for_each_vcpu(j, vcpu, kvm) {
1410 if (i == j)
1411 break;
1412 mutex_unlock(&vcpu->mutex);
1413 }
1414 return r;
1415 }
1416 EXPORT_SYMBOL_GPL(kvm_lock_all_vcpus);
1417
kvm_unlock_all_vcpus(struct kvm * kvm)1418 void kvm_unlock_all_vcpus(struct kvm *kvm)
1419 {
1420 struct kvm_vcpu *vcpu;
1421 unsigned long i;
1422
1423 lockdep_assert_held(&kvm->lock);
1424
1425 kvm_for_each_vcpu(i, vcpu, kvm)
1426 mutex_unlock(&vcpu->mutex);
1427 }
1428 EXPORT_SYMBOL_GPL(kvm_unlock_all_vcpus);
1429
1430 /*
1431 * Allocation size is twice as large as the actual dirty bitmap size.
1432 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1433 */
kvm_alloc_dirty_bitmap(struct kvm_memory_slot * memslot)1434 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1435 {
1436 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1437
1438 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1439 if (!memslot->dirty_bitmap)
1440 return -ENOMEM;
1441
1442 return 0;
1443 }
1444
kvm_get_inactive_memslots(struct kvm * kvm,int as_id)1445 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1446 {
1447 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1448 int node_idx_inactive = active->node_idx ^ 1;
1449
1450 return &kvm->__memslots[as_id][node_idx_inactive];
1451 }
1452
1453 /*
1454 * Helper to get the address space ID when one of memslot pointers may be NULL.
1455 * This also serves as a sanity that at least one of the pointers is non-NULL,
1456 * and that their address space IDs don't diverge.
1457 */
kvm_memslots_get_as_id(struct kvm_memory_slot * a,struct kvm_memory_slot * b)1458 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1459 struct kvm_memory_slot *b)
1460 {
1461 if (WARN_ON_ONCE(!a && !b))
1462 return 0;
1463
1464 if (!a)
1465 return b->as_id;
1466 if (!b)
1467 return a->as_id;
1468
1469 WARN_ON_ONCE(a->as_id != b->as_id);
1470 return a->as_id;
1471 }
1472
kvm_insert_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * slot)1473 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1474 struct kvm_memory_slot *slot)
1475 {
1476 struct rb_root *gfn_tree = &slots->gfn_tree;
1477 struct rb_node **node, *parent;
1478 int idx = slots->node_idx;
1479
1480 parent = NULL;
1481 for (node = &gfn_tree->rb_node; *node; ) {
1482 struct kvm_memory_slot *tmp;
1483
1484 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1485 parent = *node;
1486 if (slot->base_gfn < tmp->base_gfn)
1487 node = &(*node)->rb_left;
1488 else if (slot->base_gfn > tmp->base_gfn)
1489 node = &(*node)->rb_right;
1490 else
1491 BUG();
1492 }
1493
1494 rb_link_node(&slot->gfn_node[idx], parent, node);
1495 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1496 }
1497
kvm_erase_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * slot)1498 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1499 struct kvm_memory_slot *slot)
1500 {
1501 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1502 }
1503
kvm_replace_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1504 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1505 struct kvm_memory_slot *old,
1506 struct kvm_memory_slot *new)
1507 {
1508 int idx = slots->node_idx;
1509
1510 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1511
1512 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1513 &slots->gfn_tree);
1514 }
1515
1516 /*
1517 * Replace @old with @new in the inactive memslots.
1518 *
1519 * With NULL @old this simply adds @new.
1520 * With NULL @new this simply removes @old.
1521 *
1522 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1523 * appropriately.
1524 */
kvm_replace_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1525 static void kvm_replace_memslot(struct kvm *kvm,
1526 struct kvm_memory_slot *old,
1527 struct kvm_memory_slot *new)
1528 {
1529 int as_id = kvm_memslots_get_as_id(old, new);
1530 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1531 int idx = slots->node_idx;
1532
1533 if (old) {
1534 hash_del(&old->id_node[idx]);
1535 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1536
1537 if ((long)old == atomic_long_read(&slots->last_used_slot))
1538 atomic_long_set(&slots->last_used_slot, (long)new);
1539
1540 if (!new) {
1541 kvm_erase_gfn_node(slots, old);
1542 return;
1543 }
1544 }
1545
1546 /*
1547 * Initialize @new's hva range. Do this even when replacing an @old
1548 * slot, kvm_copy_memslot() deliberately does not touch node data.
1549 */
1550 new->hva_node[idx].start = new->userspace_addr;
1551 new->hva_node[idx].last = new->userspace_addr +
1552 (new->npages << PAGE_SHIFT) - 1;
1553
1554 /*
1555 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1556 * hva_node needs to be swapped with remove+insert even though hva can't
1557 * change when replacing an existing slot.
1558 */
1559 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1560 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1561
1562 /*
1563 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1564 * switch the node in the gfn tree instead of removing the old and
1565 * inserting the new as two separate operations. Replacement is a
1566 * single O(1) operation versus two O(log(n)) operations for
1567 * remove+insert.
1568 */
1569 if (old && old->base_gfn == new->base_gfn) {
1570 kvm_replace_gfn_node(slots, old, new);
1571 } else {
1572 if (old)
1573 kvm_erase_gfn_node(slots, old);
1574 kvm_insert_gfn_node(slots, new);
1575 }
1576 }
1577
1578 /*
1579 * Flags that do not access any of the extra space of struct
1580 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1581 * only allows these.
1582 */
1583 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1584 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1585
check_memory_region_flags(struct kvm * kvm,const struct kvm_userspace_memory_region2 * mem)1586 static int check_memory_region_flags(struct kvm *kvm,
1587 const struct kvm_userspace_memory_region2 *mem)
1588 {
1589 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1590
1591 if (kvm_arch_has_private_mem(kvm))
1592 valid_flags |= KVM_MEM_GUEST_MEMFD;
1593
1594 /* Dirty logging private memory is not currently supported. */
1595 if (mem->flags & KVM_MEM_GUEST_MEMFD)
1596 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1597
1598 /*
1599 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1600 * read-only memslots have emulated MMIO, not page fault, semantics,
1601 * and KVM doesn't allow emulated MMIO for private memory.
1602 */
1603 if (kvm_arch_has_readonly_mem(kvm) &&
1604 !(mem->flags & KVM_MEM_GUEST_MEMFD))
1605 valid_flags |= KVM_MEM_READONLY;
1606
1607 if (mem->flags & ~valid_flags)
1608 return -EINVAL;
1609
1610 return 0;
1611 }
1612
kvm_swap_active_memslots(struct kvm * kvm,int as_id)1613 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1614 {
1615 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1616
1617 /* Grab the generation from the activate memslots. */
1618 u64 gen = __kvm_memslots(kvm, as_id)->generation;
1619
1620 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1621 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1622
1623 /*
1624 * Do not store the new memslots while there are invalidations in
1625 * progress, otherwise the locking in invalidate_range_start and
1626 * invalidate_range_end will be unbalanced.
1627 */
1628 spin_lock(&kvm->mn_invalidate_lock);
1629 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1630 while (kvm->mn_active_invalidate_count) {
1631 set_current_state(TASK_UNINTERRUPTIBLE);
1632 spin_unlock(&kvm->mn_invalidate_lock);
1633 schedule();
1634 spin_lock(&kvm->mn_invalidate_lock);
1635 }
1636 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1637 rcu_assign_pointer(kvm->memslots[as_id], slots);
1638 spin_unlock(&kvm->mn_invalidate_lock);
1639
1640 /*
1641 * Acquired in kvm_set_memslot. Must be released before synchronize
1642 * SRCU below in order to avoid deadlock with another thread
1643 * acquiring the slots_arch_lock in an srcu critical section.
1644 */
1645 mutex_unlock(&kvm->slots_arch_lock);
1646
1647 synchronize_srcu_expedited(&kvm->srcu);
1648
1649 /*
1650 * Increment the new memslot generation a second time, dropping the
1651 * update in-progress flag and incrementing the generation based on
1652 * the number of address spaces. This provides a unique and easily
1653 * identifiable generation number while the memslots are in flux.
1654 */
1655 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1656
1657 /*
1658 * Generations must be unique even across address spaces. We do not need
1659 * a global counter for that, instead the generation space is evenly split
1660 * across address spaces. For example, with two address spaces, address
1661 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1662 * use generations 1, 3, 5, ...
1663 */
1664 gen += kvm_arch_nr_memslot_as_ids(kvm);
1665
1666 kvm_arch_memslots_updated(kvm, gen);
1667
1668 slots->generation = gen;
1669 }
1670
kvm_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1671 static int kvm_prepare_memory_region(struct kvm *kvm,
1672 const struct kvm_memory_slot *old,
1673 struct kvm_memory_slot *new,
1674 enum kvm_mr_change change)
1675 {
1676 int r;
1677
1678 /*
1679 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1680 * will be freed on "commit". If logging is enabled in both old and
1681 * new, reuse the existing bitmap. If logging is enabled only in the
1682 * new and KVM isn't using a ring buffer, allocate and initialize a
1683 * new bitmap.
1684 */
1685 if (change != KVM_MR_DELETE) {
1686 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1687 new->dirty_bitmap = NULL;
1688 else if (old && old->dirty_bitmap)
1689 new->dirty_bitmap = old->dirty_bitmap;
1690 else if (kvm_use_dirty_bitmap(kvm)) {
1691 r = kvm_alloc_dirty_bitmap(new);
1692 if (r)
1693 return r;
1694
1695 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1696 bitmap_set(new->dirty_bitmap, 0, new->npages);
1697 }
1698 }
1699
1700 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1701
1702 /* Free the bitmap on failure if it was allocated above. */
1703 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1704 kvm_destroy_dirty_bitmap(new);
1705
1706 return r;
1707 }
1708
kvm_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1709 static void kvm_commit_memory_region(struct kvm *kvm,
1710 struct kvm_memory_slot *old,
1711 const struct kvm_memory_slot *new,
1712 enum kvm_mr_change change)
1713 {
1714 int old_flags = old ? old->flags : 0;
1715 int new_flags = new ? new->flags : 0;
1716 /*
1717 * Update the total number of memslot pages before calling the arch
1718 * hook so that architectures can consume the result directly.
1719 */
1720 if (change == KVM_MR_DELETE)
1721 kvm->nr_memslot_pages -= old->npages;
1722 else if (change == KVM_MR_CREATE)
1723 kvm->nr_memslot_pages += new->npages;
1724
1725 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1726 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1727 atomic_set(&kvm->nr_memslots_dirty_logging,
1728 atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1729 }
1730
1731 kvm_arch_commit_memory_region(kvm, old, new, change);
1732
1733 switch (change) {
1734 case KVM_MR_CREATE:
1735 /* Nothing more to do. */
1736 break;
1737 case KVM_MR_DELETE:
1738 /* Free the old memslot and all its metadata. */
1739 kvm_free_memslot(kvm, old);
1740 break;
1741 case KVM_MR_MOVE:
1742 case KVM_MR_FLAGS_ONLY:
1743 /*
1744 * Free the dirty bitmap as needed; the below check encompasses
1745 * both the flags and whether a ring buffer is being used)
1746 */
1747 if (old->dirty_bitmap && !new->dirty_bitmap)
1748 kvm_destroy_dirty_bitmap(old);
1749
1750 /*
1751 * The final quirk. Free the detached, old slot, but only its
1752 * memory, not any metadata. Metadata, including arch specific
1753 * data, may be reused by @new.
1754 */
1755 kfree(old);
1756 break;
1757 default:
1758 BUG();
1759 }
1760 }
1761
1762 /*
1763 * Activate @new, which must be installed in the inactive slots by the caller,
1764 * by swapping the active slots and then propagating @new to @old once @old is
1765 * unreachable and can be safely modified.
1766 *
1767 * With NULL @old this simply adds @new to @active (while swapping the sets).
1768 * With NULL @new this simply removes @old from @active and frees it
1769 * (while also swapping the sets).
1770 */
kvm_activate_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1771 static void kvm_activate_memslot(struct kvm *kvm,
1772 struct kvm_memory_slot *old,
1773 struct kvm_memory_slot *new)
1774 {
1775 int as_id = kvm_memslots_get_as_id(old, new);
1776
1777 kvm_swap_active_memslots(kvm, as_id);
1778
1779 /* Propagate the new memslot to the now inactive memslots. */
1780 kvm_replace_memslot(kvm, old, new);
1781 }
1782
kvm_copy_memslot(struct kvm_memory_slot * dest,const struct kvm_memory_slot * src)1783 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1784 const struct kvm_memory_slot *src)
1785 {
1786 dest->base_gfn = src->base_gfn;
1787 dest->npages = src->npages;
1788 dest->dirty_bitmap = src->dirty_bitmap;
1789 dest->arch = src->arch;
1790 dest->userspace_addr = src->userspace_addr;
1791 dest->flags = src->flags;
1792 dest->id = src->id;
1793 dest->as_id = src->as_id;
1794 }
1795
kvm_invalidate_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * invalid_slot)1796 static void kvm_invalidate_memslot(struct kvm *kvm,
1797 struct kvm_memory_slot *old,
1798 struct kvm_memory_slot *invalid_slot)
1799 {
1800 /*
1801 * Mark the current slot INVALID. As with all memslot modifications,
1802 * this must be done on an unreachable slot to avoid modifying the
1803 * current slot in the active tree.
1804 */
1805 kvm_copy_memslot(invalid_slot, old);
1806 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1807 kvm_replace_memslot(kvm, old, invalid_slot);
1808
1809 /*
1810 * Activate the slot that is now marked INVALID, but don't propagate
1811 * the slot to the now inactive slots. The slot is either going to be
1812 * deleted or recreated as a new slot.
1813 */
1814 kvm_swap_active_memslots(kvm, old->as_id);
1815
1816 /*
1817 * From this point no new shadow pages pointing to a deleted, or moved,
1818 * memslot will be created. Validation of sp->gfn happens in:
1819 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1820 * - kvm_is_visible_gfn (mmu_check_root)
1821 */
1822 kvm_arch_flush_shadow_memslot(kvm, old);
1823 kvm_arch_guest_memory_reclaimed(kvm);
1824
1825 /* Was released by kvm_swap_active_memslots(), reacquire. */
1826 mutex_lock(&kvm->slots_arch_lock);
1827
1828 /*
1829 * Copy the arch-specific field of the newly-installed slot back to the
1830 * old slot as the arch data could have changed between releasing
1831 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1832 * above. Writers are required to retrieve memslots *after* acquiring
1833 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1834 */
1835 old->arch = invalid_slot->arch;
1836 }
1837
kvm_create_memslot(struct kvm * kvm,struct kvm_memory_slot * new)1838 static void kvm_create_memslot(struct kvm *kvm,
1839 struct kvm_memory_slot *new)
1840 {
1841 /* Add the new memslot to the inactive set and activate. */
1842 kvm_replace_memslot(kvm, NULL, new);
1843 kvm_activate_memslot(kvm, NULL, new);
1844 }
1845
kvm_delete_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * invalid_slot)1846 static void kvm_delete_memslot(struct kvm *kvm,
1847 struct kvm_memory_slot *old,
1848 struct kvm_memory_slot *invalid_slot)
1849 {
1850 /*
1851 * Remove the old memslot (in the inactive memslots) by passing NULL as
1852 * the "new" slot, and for the invalid version in the active slots.
1853 */
1854 kvm_replace_memslot(kvm, old, NULL);
1855 kvm_activate_memslot(kvm, invalid_slot, NULL);
1856 }
1857
kvm_move_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,struct kvm_memory_slot * invalid_slot)1858 static void kvm_move_memslot(struct kvm *kvm,
1859 struct kvm_memory_slot *old,
1860 struct kvm_memory_slot *new,
1861 struct kvm_memory_slot *invalid_slot)
1862 {
1863 /*
1864 * Replace the old memslot in the inactive slots, and then swap slots
1865 * and replace the current INVALID with the new as well.
1866 */
1867 kvm_replace_memslot(kvm, old, new);
1868 kvm_activate_memslot(kvm, invalid_slot, new);
1869 }
1870
kvm_update_flags_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1871 static void kvm_update_flags_memslot(struct kvm *kvm,
1872 struct kvm_memory_slot *old,
1873 struct kvm_memory_slot *new)
1874 {
1875 /*
1876 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1877 * an intermediate step. Instead, the old memslot is simply replaced
1878 * with a new, updated copy in both memslot sets.
1879 */
1880 kvm_replace_memslot(kvm, old, new);
1881 kvm_activate_memslot(kvm, old, new);
1882 }
1883
kvm_set_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1884 static int kvm_set_memslot(struct kvm *kvm,
1885 struct kvm_memory_slot *old,
1886 struct kvm_memory_slot *new,
1887 enum kvm_mr_change change)
1888 {
1889 struct kvm_memory_slot *invalid_slot;
1890 int r;
1891
1892 /*
1893 * Released in kvm_swap_active_memslots().
1894 *
1895 * Must be held from before the current memslots are copied until after
1896 * the new memslots are installed with rcu_assign_pointer, then
1897 * released before the synchronize srcu in kvm_swap_active_memslots().
1898 *
1899 * When modifying memslots outside of the slots_lock, must be held
1900 * before reading the pointer to the current memslots until after all
1901 * changes to those memslots are complete.
1902 *
1903 * These rules ensure that installing new memslots does not lose
1904 * changes made to the previous memslots.
1905 */
1906 mutex_lock(&kvm->slots_arch_lock);
1907
1908 /*
1909 * Invalidate the old slot if it's being deleted or moved. This is
1910 * done prior to actually deleting/moving the memslot to allow vCPUs to
1911 * continue running by ensuring there are no mappings or shadow pages
1912 * for the memslot when it is deleted/moved. Without pre-invalidation
1913 * (and without a lock), a window would exist between effecting the
1914 * delete/move and committing the changes in arch code where KVM or a
1915 * guest could access a non-existent memslot.
1916 *
1917 * Modifications are done on a temporary, unreachable slot. The old
1918 * slot needs to be preserved in case a later step fails and the
1919 * invalidation needs to be reverted.
1920 */
1921 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1922 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1923 if (!invalid_slot) {
1924 mutex_unlock(&kvm->slots_arch_lock);
1925 return -ENOMEM;
1926 }
1927 kvm_invalidate_memslot(kvm, old, invalid_slot);
1928 }
1929
1930 r = kvm_prepare_memory_region(kvm, old, new, change);
1931 if (r) {
1932 /*
1933 * For DELETE/MOVE, revert the above INVALID change. No
1934 * modifications required since the original slot was preserved
1935 * in the inactive slots. Changing the active memslots also
1936 * release slots_arch_lock.
1937 */
1938 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1939 kvm_activate_memslot(kvm, invalid_slot, old);
1940 kfree(invalid_slot);
1941 } else {
1942 mutex_unlock(&kvm->slots_arch_lock);
1943 }
1944 return r;
1945 }
1946
1947 /*
1948 * For DELETE and MOVE, the working slot is now active as the INVALID
1949 * version of the old slot. MOVE is particularly special as it reuses
1950 * the old slot and returns a copy of the old slot (in working_slot).
1951 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1952 * old slot is detached but otherwise preserved.
1953 */
1954 if (change == KVM_MR_CREATE)
1955 kvm_create_memslot(kvm, new);
1956 else if (change == KVM_MR_DELETE)
1957 kvm_delete_memslot(kvm, old, invalid_slot);
1958 else if (change == KVM_MR_MOVE)
1959 kvm_move_memslot(kvm, old, new, invalid_slot);
1960 else if (change == KVM_MR_FLAGS_ONLY)
1961 kvm_update_flags_memslot(kvm, old, new);
1962 else
1963 BUG();
1964
1965 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1966 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1967 kfree(invalid_slot);
1968
1969 /*
1970 * No need to refresh new->arch, changes after dropping slots_arch_lock
1971 * will directly hit the final, active memslot. Architectures are
1972 * responsible for knowing that new->arch may be stale.
1973 */
1974 kvm_commit_memory_region(kvm, old, new, change);
1975
1976 return 0;
1977 }
1978
kvm_check_memslot_overlap(struct kvm_memslots * slots,int id,gfn_t start,gfn_t end)1979 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1980 gfn_t start, gfn_t end)
1981 {
1982 struct kvm_memslot_iter iter;
1983
1984 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1985 if (iter.slot->id != id)
1986 return true;
1987 }
1988
1989 return false;
1990 }
1991
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region2 * mem)1992 static int kvm_set_memory_region(struct kvm *kvm,
1993 const struct kvm_userspace_memory_region2 *mem)
1994 {
1995 struct kvm_memory_slot *old, *new;
1996 struct kvm_memslots *slots;
1997 enum kvm_mr_change change;
1998 unsigned long npages;
1999 gfn_t base_gfn;
2000 int as_id, id;
2001 int r;
2002
2003 lockdep_assert_held(&kvm->slots_lock);
2004
2005 r = check_memory_region_flags(kvm, mem);
2006 if (r)
2007 return r;
2008
2009 as_id = mem->slot >> 16;
2010 id = (u16)mem->slot;
2011
2012 /* General sanity checks */
2013 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2014 (mem->memory_size != (unsigned long)mem->memory_size))
2015 return -EINVAL;
2016 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2017 return -EINVAL;
2018 /* We can read the guest memory with __xxx_user() later on. */
2019 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2020 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2021 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2022 mem->memory_size))
2023 return -EINVAL;
2024 if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2025 (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2026 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2027 return -EINVAL;
2028 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2029 return -EINVAL;
2030 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2031 return -EINVAL;
2032
2033 /*
2034 * The size of userspace-defined memory regions is restricted in order
2035 * to play nice with dirty bitmap operations, which are indexed with an
2036 * "unsigned int". KVM's internal memory regions don't support dirty
2037 * logging, and so are exempt.
2038 */
2039 if (id < KVM_USER_MEM_SLOTS &&
2040 (mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2041 return -EINVAL;
2042
2043 slots = __kvm_memslots(kvm, as_id);
2044
2045 /*
2046 * Note, the old memslot (and the pointer itself!) may be invalidated
2047 * and/or destroyed by kvm_set_memslot().
2048 */
2049 old = id_to_memslot(slots, id);
2050
2051 if (!mem->memory_size) {
2052 if (!old || !old->npages)
2053 return -EINVAL;
2054
2055 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2056 return -EIO;
2057
2058 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2059 }
2060
2061 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2062 npages = (mem->memory_size >> PAGE_SHIFT);
2063
2064 if (!old || !old->npages) {
2065 change = KVM_MR_CREATE;
2066
2067 /*
2068 * To simplify KVM internals, the total number of pages across
2069 * all memslots must fit in an unsigned long.
2070 */
2071 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2072 return -EINVAL;
2073 } else { /* Modify an existing slot. */
2074 /* Private memslots are immutable, they can only be deleted. */
2075 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2076 return -EINVAL;
2077 if ((mem->userspace_addr != old->userspace_addr) ||
2078 (npages != old->npages) ||
2079 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2080 return -EINVAL;
2081
2082 if (base_gfn != old->base_gfn)
2083 change = KVM_MR_MOVE;
2084 else if (mem->flags != old->flags)
2085 change = KVM_MR_FLAGS_ONLY;
2086 else /* Nothing to change. */
2087 return 0;
2088 }
2089
2090 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2091 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2092 return -EEXIST;
2093
2094 /* Allocate a slot that will persist in the memslot. */
2095 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2096 if (!new)
2097 return -ENOMEM;
2098
2099 new->as_id = as_id;
2100 new->id = id;
2101 new->base_gfn = base_gfn;
2102 new->npages = npages;
2103 new->flags = mem->flags;
2104 new->userspace_addr = mem->userspace_addr;
2105 if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2106 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2107 if (r)
2108 goto out;
2109 }
2110
2111 r = kvm_set_memslot(kvm, old, new, change);
2112 if (r)
2113 goto out_unbind;
2114
2115 return 0;
2116
2117 out_unbind:
2118 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2119 kvm_gmem_unbind(new);
2120 out:
2121 kfree(new);
2122 return r;
2123 }
2124
kvm_set_internal_memslot(struct kvm * kvm,const struct kvm_userspace_memory_region2 * mem)2125 int kvm_set_internal_memslot(struct kvm *kvm,
2126 const struct kvm_userspace_memory_region2 *mem)
2127 {
2128 if (WARN_ON_ONCE(mem->slot < KVM_USER_MEM_SLOTS))
2129 return -EINVAL;
2130
2131 if (WARN_ON_ONCE(mem->flags))
2132 return -EINVAL;
2133
2134 return kvm_set_memory_region(kvm, mem);
2135 }
2136 EXPORT_SYMBOL_GPL(kvm_set_internal_memslot);
2137
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region2 * mem)2138 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2139 struct kvm_userspace_memory_region2 *mem)
2140 {
2141 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2142 return -EINVAL;
2143
2144 guard(mutex)(&kvm->slots_lock);
2145 return kvm_set_memory_region(kvm, mem);
2146 }
2147
2148 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2149 /**
2150 * kvm_get_dirty_log - get a snapshot of dirty pages
2151 * @kvm: pointer to kvm instance
2152 * @log: slot id and address to which we copy the log
2153 * @is_dirty: set to '1' if any dirty pages were found
2154 * @memslot: set to the associated memslot, always valid on success
2155 */
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty,struct kvm_memory_slot ** memslot)2156 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2157 int *is_dirty, struct kvm_memory_slot **memslot)
2158 {
2159 struct kvm_memslots *slots;
2160 int i, as_id, id;
2161 unsigned long n;
2162 unsigned long any = 0;
2163
2164 /* Dirty ring tracking may be exclusive to dirty log tracking */
2165 if (!kvm_use_dirty_bitmap(kvm))
2166 return -ENXIO;
2167
2168 *memslot = NULL;
2169 *is_dirty = 0;
2170
2171 as_id = log->slot >> 16;
2172 id = (u16)log->slot;
2173 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2174 return -EINVAL;
2175
2176 slots = __kvm_memslots(kvm, as_id);
2177 *memslot = id_to_memslot(slots, id);
2178 if (!(*memslot) || !(*memslot)->dirty_bitmap)
2179 return -ENOENT;
2180
2181 kvm_arch_sync_dirty_log(kvm, *memslot);
2182
2183 n = kvm_dirty_bitmap_bytes(*memslot);
2184
2185 for (i = 0; !any && i < n/sizeof(long); ++i)
2186 any = (*memslot)->dirty_bitmap[i];
2187
2188 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2189 return -EFAULT;
2190
2191 if (any)
2192 *is_dirty = 1;
2193 return 0;
2194 }
2195 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2196
2197 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2198 /**
2199 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2200 * and reenable dirty page tracking for the corresponding pages.
2201 * @kvm: pointer to kvm instance
2202 * @log: slot id and address to which we copy the log
2203 *
2204 * We need to keep it in mind that VCPU threads can write to the bitmap
2205 * concurrently. So, to avoid losing track of dirty pages we keep the
2206 * following order:
2207 *
2208 * 1. Take a snapshot of the bit and clear it if needed.
2209 * 2. Write protect the corresponding page.
2210 * 3. Copy the snapshot to the userspace.
2211 * 4. Upon return caller flushes TLB's if needed.
2212 *
2213 * Between 2 and 4, the guest may write to the page using the remaining TLB
2214 * entry. This is not a problem because the page is reported dirty using
2215 * the snapshot taken before and step 4 ensures that writes done after
2216 * exiting to userspace will be logged for the next call.
2217 *
2218 */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log)2219 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2220 {
2221 struct kvm_memslots *slots;
2222 struct kvm_memory_slot *memslot;
2223 int i, as_id, id;
2224 unsigned long n;
2225 unsigned long *dirty_bitmap;
2226 unsigned long *dirty_bitmap_buffer;
2227 bool flush;
2228
2229 /* Dirty ring tracking may be exclusive to dirty log tracking */
2230 if (!kvm_use_dirty_bitmap(kvm))
2231 return -ENXIO;
2232
2233 as_id = log->slot >> 16;
2234 id = (u16)log->slot;
2235 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2236 return -EINVAL;
2237
2238 slots = __kvm_memslots(kvm, as_id);
2239 memslot = id_to_memslot(slots, id);
2240 if (!memslot || !memslot->dirty_bitmap)
2241 return -ENOENT;
2242
2243 dirty_bitmap = memslot->dirty_bitmap;
2244
2245 kvm_arch_sync_dirty_log(kvm, memslot);
2246
2247 n = kvm_dirty_bitmap_bytes(memslot);
2248 flush = false;
2249 if (kvm->manual_dirty_log_protect) {
2250 /*
2251 * Unlike kvm_get_dirty_log, we always return false in *flush,
2252 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2253 * is some code duplication between this function and
2254 * kvm_get_dirty_log, but hopefully all architecture
2255 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2256 * can be eliminated.
2257 */
2258 dirty_bitmap_buffer = dirty_bitmap;
2259 } else {
2260 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2261 memset(dirty_bitmap_buffer, 0, n);
2262
2263 KVM_MMU_LOCK(kvm);
2264 for (i = 0; i < n / sizeof(long); i++) {
2265 unsigned long mask;
2266 gfn_t offset;
2267
2268 if (!dirty_bitmap[i])
2269 continue;
2270
2271 flush = true;
2272 mask = xchg(&dirty_bitmap[i], 0);
2273 dirty_bitmap_buffer[i] = mask;
2274
2275 offset = i * BITS_PER_LONG;
2276 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2277 offset, mask);
2278 }
2279 KVM_MMU_UNLOCK(kvm);
2280 }
2281
2282 if (flush)
2283 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2284
2285 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2286 return -EFAULT;
2287 return 0;
2288 }
2289
2290
2291 /**
2292 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2293 * @kvm: kvm instance
2294 * @log: slot id and address to which we copy the log
2295 *
2296 * Steps 1-4 below provide general overview of dirty page logging. See
2297 * kvm_get_dirty_log_protect() function description for additional details.
2298 *
2299 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2300 * always flush the TLB (step 4) even if previous step failed and the dirty
2301 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2302 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2303 * writes will be marked dirty for next log read.
2304 *
2305 * 1. Take a snapshot of the bit and clear it if needed.
2306 * 2. Write protect the corresponding page.
2307 * 3. Copy the snapshot to the userspace.
2308 * 4. Flush TLB's if needed.
2309 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)2310 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2311 struct kvm_dirty_log *log)
2312 {
2313 int r;
2314
2315 mutex_lock(&kvm->slots_lock);
2316
2317 r = kvm_get_dirty_log_protect(kvm, log);
2318
2319 mutex_unlock(&kvm->slots_lock);
2320 return r;
2321 }
2322
2323 /**
2324 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2325 * and reenable dirty page tracking for the corresponding pages.
2326 * @kvm: pointer to kvm instance
2327 * @log: slot id and address from which to fetch the bitmap of dirty pages
2328 */
kvm_clear_dirty_log_protect(struct kvm * kvm,struct kvm_clear_dirty_log * log)2329 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2330 struct kvm_clear_dirty_log *log)
2331 {
2332 struct kvm_memslots *slots;
2333 struct kvm_memory_slot *memslot;
2334 int as_id, id;
2335 gfn_t offset;
2336 unsigned long i, n;
2337 unsigned long *dirty_bitmap;
2338 unsigned long *dirty_bitmap_buffer;
2339 bool flush;
2340
2341 /* Dirty ring tracking may be exclusive to dirty log tracking */
2342 if (!kvm_use_dirty_bitmap(kvm))
2343 return -ENXIO;
2344
2345 as_id = log->slot >> 16;
2346 id = (u16)log->slot;
2347 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2348 return -EINVAL;
2349
2350 if (log->first_page & 63)
2351 return -EINVAL;
2352
2353 slots = __kvm_memslots(kvm, as_id);
2354 memslot = id_to_memslot(slots, id);
2355 if (!memslot || !memslot->dirty_bitmap)
2356 return -ENOENT;
2357
2358 dirty_bitmap = memslot->dirty_bitmap;
2359
2360 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2361
2362 if (log->first_page > memslot->npages ||
2363 log->num_pages > memslot->npages - log->first_page ||
2364 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2365 return -EINVAL;
2366
2367 kvm_arch_sync_dirty_log(kvm, memslot);
2368
2369 flush = false;
2370 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2371 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2372 return -EFAULT;
2373
2374 KVM_MMU_LOCK(kvm);
2375 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2376 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2377 i++, offset += BITS_PER_LONG) {
2378 unsigned long mask = *dirty_bitmap_buffer++;
2379 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2380 if (!mask)
2381 continue;
2382
2383 mask &= atomic_long_fetch_andnot(mask, p);
2384
2385 /*
2386 * mask contains the bits that really have been cleared. This
2387 * never includes any bits beyond the length of the memslot (if
2388 * the length is not aligned to 64 pages), therefore it is not
2389 * a problem if userspace sets them in log->dirty_bitmap.
2390 */
2391 if (mask) {
2392 flush = true;
2393 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2394 offset, mask);
2395 }
2396 }
2397 KVM_MMU_UNLOCK(kvm);
2398
2399 if (flush)
2400 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2401
2402 return 0;
2403 }
2404
kvm_vm_ioctl_clear_dirty_log(struct kvm * kvm,struct kvm_clear_dirty_log * log)2405 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2406 struct kvm_clear_dirty_log *log)
2407 {
2408 int r;
2409
2410 mutex_lock(&kvm->slots_lock);
2411
2412 r = kvm_clear_dirty_log_protect(kvm, log);
2413
2414 mutex_unlock(&kvm->slots_lock);
2415 return r;
2416 }
2417 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2418
2419 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_supported_mem_attributes(struct kvm * kvm)2420 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2421 {
2422 if (!kvm || kvm_arch_has_private_mem(kvm))
2423 return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2424
2425 return 0;
2426 }
2427
2428 /*
2429 * Returns true if _all_ gfns in the range [@start, @end) have attributes
2430 * such that the bits in @mask match @attrs.
2431 */
kvm_range_has_memory_attributes(struct kvm * kvm,gfn_t start,gfn_t end,unsigned long mask,unsigned long attrs)2432 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2433 unsigned long mask, unsigned long attrs)
2434 {
2435 XA_STATE(xas, &kvm->mem_attr_array, start);
2436 unsigned long index;
2437 void *entry;
2438
2439 mask &= kvm_supported_mem_attributes(kvm);
2440 if (attrs & ~mask)
2441 return false;
2442
2443 if (end == start + 1)
2444 return (kvm_get_memory_attributes(kvm, start) & mask) == attrs;
2445
2446 guard(rcu)();
2447 if (!attrs)
2448 return !xas_find(&xas, end - 1);
2449
2450 for (index = start; index < end; index++) {
2451 do {
2452 entry = xas_next(&xas);
2453 } while (xas_retry(&xas, entry));
2454
2455 if (xas.xa_index != index ||
2456 (xa_to_value(entry) & mask) != attrs)
2457 return false;
2458 }
2459
2460 return true;
2461 }
2462
kvm_handle_gfn_range(struct kvm * kvm,struct kvm_mmu_notifier_range * range)2463 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2464 struct kvm_mmu_notifier_range *range)
2465 {
2466 struct kvm_gfn_range gfn_range;
2467 struct kvm_memory_slot *slot;
2468 struct kvm_memslots *slots;
2469 struct kvm_memslot_iter iter;
2470 bool found_memslot = false;
2471 bool ret = false;
2472 int i;
2473
2474 gfn_range.arg = range->arg;
2475 gfn_range.may_block = range->may_block;
2476
2477 /*
2478 * If/when KVM supports more attributes beyond private .vs shared, this
2479 * _could_ set KVM_FILTER_{SHARED,PRIVATE} appropriately if the entire target
2480 * range already has the desired private vs. shared state (it's unclear
2481 * if that is a net win). For now, KVM reaches this point if and only
2482 * if the private flag is being toggled, i.e. all mappings are in play.
2483 */
2484
2485 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2486 slots = __kvm_memslots(kvm, i);
2487
2488 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2489 slot = iter.slot;
2490 gfn_range.slot = slot;
2491
2492 gfn_range.start = max(range->start, slot->base_gfn);
2493 gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2494 if (gfn_range.start >= gfn_range.end)
2495 continue;
2496
2497 if (!found_memslot) {
2498 found_memslot = true;
2499 KVM_MMU_LOCK(kvm);
2500 if (!IS_KVM_NULL_FN(range->on_lock))
2501 range->on_lock(kvm);
2502 }
2503
2504 ret |= range->handler(kvm, &gfn_range);
2505 }
2506 }
2507
2508 if (range->flush_on_ret && ret)
2509 kvm_flush_remote_tlbs(kvm);
2510
2511 if (found_memslot)
2512 KVM_MMU_UNLOCK(kvm);
2513 }
2514
kvm_pre_set_memory_attributes(struct kvm * kvm,struct kvm_gfn_range * range)2515 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2516 struct kvm_gfn_range *range)
2517 {
2518 /*
2519 * Unconditionally add the range to the invalidation set, regardless of
2520 * whether or not the arch callback actually needs to zap SPTEs. E.g.
2521 * if KVM supports RWX attributes in the future and the attributes are
2522 * going from R=>RW, zapping isn't strictly necessary. Unconditionally
2523 * adding the range allows KVM to require that MMU invalidations add at
2524 * least one range between begin() and end(), e.g. allows KVM to detect
2525 * bugs where the add() is missed. Relaxing the rule *might* be safe,
2526 * but it's not obvious that allowing new mappings while the attributes
2527 * are in flux is desirable or worth the complexity.
2528 */
2529 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2530
2531 return kvm_arch_pre_set_memory_attributes(kvm, range);
2532 }
2533
2534 /* Set @attributes for the gfn range [@start, @end). */
kvm_vm_set_mem_attributes(struct kvm * kvm,gfn_t start,gfn_t end,unsigned long attributes)2535 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2536 unsigned long attributes)
2537 {
2538 struct kvm_mmu_notifier_range pre_set_range = {
2539 .start = start,
2540 .end = end,
2541 .arg.attributes = attributes,
2542 .handler = kvm_pre_set_memory_attributes,
2543 .on_lock = kvm_mmu_invalidate_begin,
2544 .flush_on_ret = true,
2545 .may_block = true,
2546 };
2547 struct kvm_mmu_notifier_range post_set_range = {
2548 .start = start,
2549 .end = end,
2550 .arg.attributes = attributes,
2551 .handler = kvm_arch_post_set_memory_attributes,
2552 .on_lock = kvm_mmu_invalidate_end,
2553 .may_block = true,
2554 };
2555 unsigned long i;
2556 void *entry;
2557 int r = 0;
2558
2559 entry = attributes ? xa_mk_value(attributes) : NULL;
2560
2561 mutex_lock(&kvm->slots_lock);
2562
2563 /* Nothing to do if the entire range as the desired attributes. */
2564 if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes))
2565 goto out_unlock;
2566
2567 /*
2568 * Reserve memory ahead of time to avoid having to deal with failures
2569 * partway through setting the new attributes.
2570 */
2571 for (i = start; i < end; i++) {
2572 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2573 if (r)
2574 goto out_unlock;
2575
2576 cond_resched();
2577 }
2578
2579 kvm_handle_gfn_range(kvm, &pre_set_range);
2580
2581 for (i = start; i < end; i++) {
2582 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2583 GFP_KERNEL_ACCOUNT));
2584 KVM_BUG_ON(r, kvm);
2585 cond_resched();
2586 }
2587
2588 kvm_handle_gfn_range(kvm, &post_set_range);
2589
2590 out_unlock:
2591 mutex_unlock(&kvm->slots_lock);
2592
2593 return r;
2594 }
kvm_vm_ioctl_set_mem_attributes(struct kvm * kvm,struct kvm_memory_attributes * attrs)2595 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2596 struct kvm_memory_attributes *attrs)
2597 {
2598 gfn_t start, end;
2599
2600 /* flags is currently not used. */
2601 if (attrs->flags)
2602 return -EINVAL;
2603 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2604 return -EINVAL;
2605 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2606 return -EINVAL;
2607 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2608 return -EINVAL;
2609
2610 start = attrs->address >> PAGE_SHIFT;
2611 end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2612
2613 /*
2614 * xarray tracks data using "unsigned long", and as a result so does
2615 * KVM. For simplicity, supports generic attributes only on 64-bit
2616 * architectures.
2617 */
2618 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2619
2620 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2621 }
2622 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2623
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)2624 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2625 {
2626 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2627 }
2628 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2629
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)2630 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2631 {
2632 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2633 u64 gen = slots->generation;
2634 struct kvm_memory_slot *slot;
2635
2636 /*
2637 * This also protects against using a memslot from a different address space,
2638 * since different address spaces have different generation numbers.
2639 */
2640 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2641 vcpu->last_used_slot = NULL;
2642 vcpu->last_used_slot_gen = gen;
2643 }
2644
2645 slot = try_get_memslot(vcpu->last_used_slot, gfn);
2646 if (slot)
2647 return slot;
2648
2649 /*
2650 * Fall back to searching all memslots. We purposely use
2651 * search_memslots() instead of __gfn_to_memslot() to avoid
2652 * thrashing the VM-wide last_used_slot in kvm_memslots.
2653 */
2654 slot = search_memslots(slots, gfn, false);
2655 if (slot) {
2656 vcpu->last_used_slot = slot;
2657 return slot;
2658 }
2659
2660 return NULL;
2661 }
2662
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)2663 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2664 {
2665 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2666
2667 return kvm_is_visible_memslot(memslot);
2668 }
2669 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2670
kvm_vcpu_is_visible_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)2671 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2672 {
2673 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2674
2675 return kvm_is_visible_memslot(memslot);
2676 }
2677 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2678
kvm_host_page_size(struct kvm_vcpu * vcpu,gfn_t gfn)2679 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2680 {
2681 struct vm_area_struct *vma;
2682 unsigned long addr, size;
2683
2684 size = PAGE_SIZE;
2685
2686 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2687 if (kvm_is_error_hva(addr))
2688 return PAGE_SIZE;
2689
2690 mmap_read_lock(current->mm);
2691 vma = find_vma(current->mm, addr);
2692 if (!vma)
2693 goto out;
2694
2695 size = vma_kernel_pagesize(vma);
2696
2697 out:
2698 mmap_read_unlock(current->mm);
2699
2700 return size;
2701 }
2702
memslot_is_readonly(const struct kvm_memory_slot * slot)2703 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2704 {
2705 return slot->flags & KVM_MEM_READONLY;
2706 }
2707
__gfn_to_hva_many(const struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)2708 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2709 gfn_t *nr_pages, bool write)
2710 {
2711 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2712 return KVM_HVA_ERR_BAD;
2713
2714 if (memslot_is_readonly(slot) && write)
2715 return KVM_HVA_ERR_RO_BAD;
2716
2717 if (nr_pages)
2718 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2719
2720 return __gfn_to_hva_memslot(slot, gfn);
2721 }
2722
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)2723 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2724 gfn_t *nr_pages)
2725 {
2726 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2727 }
2728
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)2729 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2730 gfn_t gfn)
2731 {
2732 return gfn_to_hva_many(slot, gfn, NULL);
2733 }
2734 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2735
gfn_to_hva(struct kvm * kvm,gfn_t gfn)2736 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2737 {
2738 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2739 }
2740 EXPORT_SYMBOL_GPL(gfn_to_hva);
2741
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)2742 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2743 {
2744 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2745 }
2746 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2747
2748 /*
2749 * Return the hva of a @gfn and the R/W attribute if possible.
2750 *
2751 * @slot: the kvm_memory_slot which contains @gfn
2752 * @gfn: the gfn to be translated
2753 * @writable: used to return the read/write attribute of the @slot if the hva
2754 * is valid and @writable is not NULL
2755 */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)2756 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2757 gfn_t gfn, bool *writable)
2758 {
2759 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2760
2761 if (!kvm_is_error_hva(hva) && writable)
2762 *writable = !memslot_is_readonly(slot);
2763
2764 return hva;
2765 }
2766
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)2767 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2768 {
2769 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2770
2771 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2772 }
2773
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)2774 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2775 {
2776 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2777
2778 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2779 }
2780
kvm_is_ad_tracked_page(struct page * page)2781 static bool kvm_is_ad_tracked_page(struct page *page)
2782 {
2783 /*
2784 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2785 * touched (e.g. set dirty) except by its owner".
2786 */
2787 return !PageReserved(page);
2788 }
2789
kvm_set_page_dirty(struct page * page)2790 static void kvm_set_page_dirty(struct page *page)
2791 {
2792 if (kvm_is_ad_tracked_page(page))
2793 SetPageDirty(page);
2794 }
2795
kvm_set_page_accessed(struct page * page)2796 static void kvm_set_page_accessed(struct page *page)
2797 {
2798 if (kvm_is_ad_tracked_page(page))
2799 mark_page_accessed(page);
2800 }
2801
kvm_release_page_clean(struct page * page)2802 void kvm_release_page_clean(struct page *page)
2803 {
2804 if (!page)
2805 return;
2806
2807 kvm_set_page_accessed(page);
2808 put_page(page);
2809 }
2810 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2811
kvm_release_page_dirty(struct page * page)2812 void kvm_release_page_dirty(struct page *page)
2813 {
2814 if (!page)
2815 return;
2816
2817 kvm_set_page_dirty(page);
2818 kvm_release_page_clean(page);
2819 }
2820 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2821
kvm_resolve_pfn(struct kvm_follow_pfn * kfp,struct page * page,struct follow_pfnmap_args * map,bool writable)2822 static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page,
2823 struct follow_pfnmap_args *map, bool writable)
2824 {
2825 kvm_pfn_t pfn;
2826
2827 WARN_ON_ONCE(!!page == !!map);
2828
2829 if (kfp->map_writable)
2830 *kfp->map_writable = writable;
2831
2832 if (map)
2833 pfn = map->pfn;
2834 else
2835 pfn = page_to_pfn(page);
2836
2837 *kfp->refcounted_page = page;
2838
2839 return pfn;
2840 }
2841
2842 /*
2843 * The fast path to get the writable pfn which will be stored in @pfn,
2844 * true indicates success, otherwise false is returned.
2845 */
hva_to_pfn_fast(struct kvm_follow_pfn * kfp,kvm_pfn_t * pfn)2846 static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2847 {
2848 struct page *page;
2849 bool r;
2850
2851 /*
2852 * Try the fast-only path when the caller wants to pin/get the page for
2853 * writing. If the caller only wants to read the page, KVM must go
2854 * down the full, slow path in order to avoid racing an operation that
2855 * breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing
2856 * at the old, read-only page while mm/ points at a new, writable page.
2857 */
2858 if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable))
2859 return false;
2860
2861 if (kfp->pin)
2862 r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1;
2863 else
2864 r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page);
2865
2866 if (r) {
2867 *pfn = kvm_resolve_pfn(kfp, page, NULL, true);
2868 return true;
2869 }
2870
2871 return false;
2872 }
2873
2874 /*
2875 * The slow path to get the pfn of the specified host virtual address,
2876 * 1 indicates success, -errno is returned if error is detected.
2877 */
hva_to_pfn_slow(struct kvm_follow_pfn * kfp,kvm_pfn_t * pfn)2878 static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2879 {
2880 /*
2881 * When a VCPU accesses a page that is not mapped into the secondary
2882 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2883 * make progress. We always want to honor NUMA hinting faults in that
2884 * case, because GUP usage corresponds to memory accesses from the VCPU.
2885 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2886 * mapped into the secondary MMU and gets accessed by a VCPU.
2887 *
2888 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2889 * implicitly honor NUMA hinting faults and don't need this flag.
2890 */
2891 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags;
2892 struct page *page, *wpage;
2893 int npages;
2894
2895 if (kfp->pin)
2896 npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags);
2897 else
2898 npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags);
2899 if (npages != 1)
2900 return npages;
2901
2902 /*
2903 * Pinning is mutually exclusive with opportunistically mapping a read
2904 * fault as writable, as KVM should never pin pages when mapping memory
2905 * into the guest (pinning is only for direct accesses from KVM).
2906 */
2907 if (WARN_ON_ONCE(kfp->map_writable && kfp->pin))
2908 goto out;
2909
2910 /* map read fault as writable if possible */
2911 if (!(flags & FOLL_WRITE) && kfp->map_writable &&
2912 get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) {
2913 put_page(page);
2914 page = wpage;
2915 flags |= FOLL_WRITE;
2916 }
2917
2918 out:
2919 *pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE);
2920 return npages;
2921 }
2922
vma_is_valid(struct vm_area_struct * vma,bool write_fault)2923 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2924 {
2925 if (unlikely(!(vma->vm_flags & VM_READ)))
2926 return false;
2927
2928 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2929 return false;
2930
2931 return true;
2932 }
2933
hva_to_pfn_remapped(struct vm_area_struct * vma,struct kvm_follow_pfn * kfp,kvm_pfn_t * p_pfn)2934 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2935 struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn)
2936 {
2937 struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva };
2938 bool write_fault = kfp->flags & FOLL_WRITE;
2939 int r;
2940
2941 /*
2942 * Remapped memory cannot be pinned in any meaningful sense. Bail if
2943 * the caller wants to pin the page, i.e. access the page outside of
2944 * MMU notifier protection, and unsafe umappings are disallowed.
2945 */
2946 if (kfp->pin && !allow_unsafe_mappings)
2947 return -EINVAL;
2948
2949 r = follow_pfnmap_start(&args);
2950 if (r) {
2951 /*
2952 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2953 * not call the fault handler, so do it here.
2954 */
2955 bool unlocked = false;
2956 r = fixup_user_fault(current->mm, kfp->hva,
2957 (write_fault ? FAULT_FLAG_WRITE : 0),
2958 &unlocked);
2959 if (unlocked)
2960 return -EAGAIN;
2961 if (r)
2962 return r;
2963
2964 r = follow_pfnmap_start(&args);
2965 if (r)
2966 return r;
2967 }
2968
2969 if (write_fault && !args.writable) {
2970 *p_pfn = KVM_PFN_ERR_RO_FAULT;
2971 goto out;
2972 }
2973
2974 *p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable);
2975 out:
2976 follow_pfnmap_end(&args);
2977 return r;
2978 }
2979
hva_to_pfn(struct kvm_follow_pfn * kfp)2980 kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp)
2981 {
2982 struct vm_area_struct *vma;
2983 kvm_pfn_t pfn;
2984 int npages, r;
2985
2986 might_sleep();
2987
2988 if (WARN_ON_ONCE(!kfp->refcounted_page))
2989 return KVM_PFN_ERR_FAULT;
2990
2991 if (hva_to_pfn_fast(kfp, &pfn))
2992 return pfn;
2993
2994 npages = hva_to_pfn_slow(kfp, &pfn);
2995 if (npages == 1)
2996 return pfn;
2997 if (npages == -EINTR || npages == -EAGAIN)
2998 return KVM_PFN_ERR_SIGPENDING;
2999 if (npages == -EHWPOISON)
3000 return KVM_PFN_ERR_HWPOISON;
3001
3002 mmap_read_lock(current->mm);
3003 retry:
3004 vma = vma_lookup(current->mm, kfp->hva);
3005
3006 if (vma == NULL)
3007 pfn = KVM_PFN_ERR_FAULT;
3008 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3009 r = hva_to_pfn_remapped(vma, kfp, &pfn);
3010 if (r == -EAGAIN)
3011 goto retry;
3012 if (r < 0)
3013 pfn = KVM_PFN_ERR_FAULT;
3014 } else {
3015 if ((kfp->flags & FOLL_NOWAIT) &&
3016 vma_is_valid(vma, kfp->flags & FOLL_WRITE))
3017 pfn = KVM_PFN_ERR_NEEDS_IO;
3018 else
3019 pfn = KVM_PFN_ERR_FAULT;
3020 }
3021 mmap_read_unlock(current->mm);
3022 return pfn;
3023 }
3024
kvm_follow_pfn(struct kvm_follow_pfn * kfp)3025 static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp)
3026 {
3027 kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL,
3028 kfp->flags & FOLL_WRITE);
3029
3030 if (kfp->hva == KVM_HVA_ERR_RO_BAD)
3031 return KVM_PFN_ERR_RO_FAULT;
3032
3033 if (kvm_is_error_hva(kfp->hva))
3034 return KVM_PFN_NOSLOT;
3035
3036 if (memslot_is_readonly(kfp->slot) && kfp->map_writable) {
3037 *kfp->map_writable = false;
3038 kfp->map_writable = NULL;
3039 }
3040
3041 return hva_to_pfn(kfp);
3042 }
3043
__kvm_faultin_pfn(const struct kvm_memory_slot * slot,gfn_t gfn,unsigned int foll,bool * writable,struct page ** refcounted_page)3044 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
3045 unsigned int foll, bool *writable,
3046 struct page **refcounted_page)
3047 {
3048 struct kvm_follow_pfn kfp = {
3049 .slot = slot,
3050 .gfn = gfn,
3051 .flags = foll,
3052 .map_writable = writable,
3053 .refcounted_page = refcounted_page,
3054 };
3055
3056 if (WARN_ON_ONCE(!writable || !refcounted_page))
3057 return KVM_PFN_ERR_FAULT;
3058
3059 *writable = false;
3060 *refcounted_page = NULL;
3061
3062 return kvm_follow_pfn(&kfp);
3063 }
3064 EXPORT_SYMBOL_GPL(__kvm_faultin_pfn);
3065
kvm_prefetch_pages(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)3066 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
3067 struct page **pages, int nr_pages)
3068 {
3069 unsigned long addr;
3070 gfn_t entry = 0;
3071
3072 addr = gfn_to_hva_many(slot, gfn, &entry);
3073 if (kvm_is_error_hva(addr))
3074 return -1;
3075
3076 if (entry < nr_pages)
3077 return 0;
3078
3079 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3080 }
3081 EXPORT_SYMBOL_GPL(kvm_prefetch_pages);
3082
3083 /*
3084 * Don't use this API unless you are absolutely, positively certain that KVM
3085 * needs to get a struct page, e.g. to pin the page for firmware DMA.
3086 *
3087 * FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate
3088 * its refcount.
3089 */
__gfn_to_page(struct kvm * kvm,gfn_t gfn,bool write)3090 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write)
3091 {
3092 struct page *refcounted_page = NULL;
3093 struct kvm_follow_pfn kfp = {
3094 .slot = gfn_to_memslot(kvm, gfn),
3095 .gfn = gfn,
3096 .flags = write ? FOLL_WRITE : 0,
3097 .refcounted_page = &refcounted_page,
3098 };
3099
3100 (void)kvm_follow_pfn(&kfp);
3101 return refcounted_page;
3102 }
3103 EXPORT_SYMBOL_GPL(__gfn_to_page);
3104
__kvm_vcpu_map(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map,bool writable)3105 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
3106 bool writable)
3107 {
3108 struct kvm_follow_pfn kfp = {
3109 .slot = gfn_to_memslot(vcpu->kvm, gfn),
3110 .gfn = gfn,
3111 .flags = writable ? FOLL_WRITE : 0,
3112 .refcounted_page = &map->pinned_page,
3113 .pin = true,
3114 };
3115
3116 map->pinned_page = NULL;
3117 map->page = NULL;
3118 map->hva = NULL;
3119 map->gfn = gfn;
3120 map->writable = writable;
3121
3122 map->pfn = kvm_follow_pfn(&kfp);
3123 if (is_error_noslot_pfn(map->pfn))
3124 return -EINVAL;
3125
3126 if (pfn_valid(map->pfn)) {
3127 map->page = pfn_to_page(map->pfn);
3128 map->hva = kmap(map->page);
3129 #ifdef CONFIG_HAS_IOMEM
3130 } else {
3131 map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB);
3132 #endif
3133 }
3134
3135 return map->hva ? 0 : -EFAULT;
3136 }
3137 EXPORT_SYMBOL_GPL(__kvm_vcpu_map);
3138
kvm_vcpu_unmap(struct kvm_vcpu * vcpu,struct kvm_host_map * map)3139 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map)
3140 {
3141 if (!map->hva)
3142 return;
3143
3144 if (map->page)
3145 kunmap(map->page);
3146 #ifdef CONFIG_HAS_IOMEM
3147 else
3148 memunmap(map->hva);
3149 #endif
3150
3151 if (map->writable)
3152 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3153
3154 if (map->pinned_page) {
3155 if (map->writable)
3156 kvm_set_page_dirty(map->pinned_page);
3157 kvm_set_page_accessed(map->pinned_page);
3158 unpin_user_page(map->pinned_page);
3159 }
3160
3161 map->hva = NULL;
3162 map->page = NULL;
3163 map->pinned_page = NULL;
3164 }
3165 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3166
next_segment(unsigned long len,int offset)3167 static int next_segment(unsigned long len, int offset)
3168 {
3169 if (len > PAGE_SIZE - offset)
3170 return PAGE_SIZE - offset;
3171 else
3172 return len;
3173 }
3174
3175 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)3176 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3177 void *data, int offset, int len)
3178 {
3179 int r;
3180 unsigned long addr;
3181
3182 if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3183 return -EFAULT;
3184
3185 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3186 if (kvm_is_error_hva(addr))
3187 return -EFAULT;
3188 r = __copy_from_user(data, (void __user *)addr + offset, len);
3189 if (r)
3190 return -EFAULT;
3191 return 0;
3192 }
3193
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)3194 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3195 int len)
3196 {
3197 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3198
3199 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3200 }
3201 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3202
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)3203 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3204 int offset, int len)
3205 {
3206 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3207
3208 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3209 }
3210 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3211
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)3212 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3213 {
3214 gfn_t gfn = gpa >> PAGE_SHIFT;
3215 int seg;
3216 int offset = offset_in_page(gpa);
3217 int ret;
3218
3219 while ((seg = next_segment(len, offset)) != 0) {
3220 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3221 if (ret < 0)
3222 return ret;
3223 offset = 0;
3224 len -= seg;
3225 data += seg;
3226 ++gfn;
3227 }
3228 return 0;
3229 }
3230 EXPORT_SYMBOL_GPL(kvm_read_guest);
3231
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)3232 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3233 {
3234 gfn_t gfn = gpa >> PAGE_SHIFT;
3235 int seg;
3236 int offset = offset_in_page(gpa);
3237 int ret;
3238
3239 while ((seg = next_segment(len, offset)) != 0) {
3240 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3241 if (ret < 0)
3242 return ret;
3243 offset = 0;
3244 len -= seg;
3245 data += seg;
3246 ++gfn;
3247 }
3248 return 0;
3249 }
3250 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3251
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)3252 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3253 void *data, int offset, unsigned long len)
3254 {
3255 int r;
3256 unsigned long addr;
3257
3258 if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3259 return -EFAULT;
3260
3261 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3262 if (kvm_is_error_hva(addr))
3263 return -EFAULT;
3264 pagefault_disable();
3265 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3266 pagefault_enable();
3267 if (r)
3268 return -EFAULT;
3269 return 0;
3270 }
3271
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)3272 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3273 void *data, unsigned long len)
3274 {
3275 gfn_t gfn = gpa >> PAGE_SHIFT;
3276 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3277 int offset = offset_in_page(gpa);
3278
3279 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3280 }
3281 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3282
3283 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
__kvm_write_guest_page(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)3284 static int __kvm_write_guest_page(struct kvm *kvm,
3285 struct kvm_memory_slot *memslot, gfn_t gfn,
3286 const void *data, int offset, int len)
3287 {
3288 int r;
3289 unsigned long addr;
3290
3291 if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3292 return -EFAULT;
3293
3294 addr = gfn_to_hva_memslot(memslot, gfn);
3295 if (kvm_is_error_hva(addr))
3296 return -EFAULT;
3297 r = __copy_to_user((void __user *)addr + offset, data, len);
3298 if (r)
3299 return -EFAULT;
3300 mark_page_dirty_in_slot(kvm, memslot, gfn);
3301 return 0;
3302 }
3303
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)3304 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3305 const void *data, int offset, int len)
3306 {
3307 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3308
3309 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3310 }
3311 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3312
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)3313 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3314 const void *data, int offset, int len)
3315 {
3316 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3317
3318 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3319 }
3320 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3321
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)3322 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3323 unsigned long len)
3324 {
3325 gfn_t gfn = gpa >> PAGE_SHIFT;
3326 int seg;
3327 int offset = offset_in_page(gpa);
3328 int ret;
3329
3330 while ((seg = next_segment(len, offset)) != 0) {
3331 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3332 if (ret < 0)
3333 return ret;
3334 offset = 0;
3335 len -= seg;
3336 data += seg;
3337 ++gfn;
3338 }
3339 return 0;
3340 }
3341 EXPORT_SYMBOL_GPL(kvm_write_guest);
3342
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)3343 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3344 unsigned long len)
3345 {
3346 gfn_t gfn = gpa >> PAGE_SHIFT;
3347 int seg;
3348 int offset = offset_in_page(gpa);
3349 int ret;
3350
3351 while ((seg = next_segment(len, offset)) != 0) {
3352 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3353 if (ret < 0)
3354 return ret;
3355 offset = 0;
3356 len -= seg;
3357 data += seg;
3358 ++gfn;
3359 }
3360 return 0;
3361 }
3362 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3363
__kvm_gfn_to_hva_cache_init(struct kvm_memslots * slots,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3364 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3365 struct gfn_to_hva_cache *ghc,
3366 gpa_t gpa, unsigned long len)
3367 {
3368 int offset = offset_in_page(gpa);
3369 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3370 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3371 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3372 gfn_t nr_pages_avail;
3373
3374 /* Update ghc->generation before performing any error checks. */
3375 ghc->generation = slots->generation;
3376
3377 if (start_gfn > end_gfn) {
3378 ghc->hva = KVM_HVA_ERR_BAD;
3379 return -EINVAL;
3380 }
3381
3382 /*
3383 * If the requested region crosses two memslots, we still
3384 * verify that the entire region is valid here.
3385 */
3386 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3387 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3388 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3389 &nr_pages_avail);
3390 if (kvm_is_error_hva(ghc->hva))
3391 return -EFAULT;
3392 }
3393
3394 /* Use the slow path for cross page reads and writes. */
3395 if (nr_pages_needed == 1)
3396 ghc->hva += offset;
3397 else
3398 ghc->memslot = NULL;
3399
3400 ghc->gpa = gpa;
3401 ghc->len = len;
3402 return 0;
3403 }
3404
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3405 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3406 gpa_t gpa, unsigned long len)
3407 {
3408 struct kvm_memslots *slots = kvm_memslots(kvm);
3409 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3410 }
3411 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3412
kvm_write_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3413 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3414 void *data, unsigned int offset,
3415 unsigned long len)
3416 {
3417 struct kvm_memslots *slots = kvm_memslots(kvm);
3418 int r;
3419 gpa_t gpa = ghc->gpa + offset;
3420
3421 if (WARN_ON_ONCE(len + offset > ghc->len))
3422 return -EINVAL;
3423
3424 if (slots->generation != ghc->generation) {
3425 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3426 return -EFAULT;
3427 }
3428
3429 if (kvm_is_error_hva(ghc->hva))
3430 return -EFAULT;
3431
3432 if (unlikely(!ghc->memslot))
3433 return kvm_write_guest(kvm, gpa, data, len);
3434
3435 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3436 if (r)
3437 return -EFAULT;
3438 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3439
3440 return 0;
3441 }
3442 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3443
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3444 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3445 void *data, unsigned long len)
3446 {
3447 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3448 }
3449 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3450
kvm_read_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3451 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3452 void *data, unsigned int offset,
3453 unsigned long len)
3454 {
3455 struct kvm_memslots *slots = kvm_memslots(kvm);
3456 int r;
3457 gpa_t gpa = ghc->gpa + offset;
3458
3459 if (WARN_ON_ONCE(len + offset > ghc->len))
3460 return -EINVAL;
3461
3462 if (slots->generation != ghc->generation) {
3463 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3464 return -EFAULT;
3465 }
3466
3467 if (kvm_is_error_hva(ghc->hva))
3468 return -EFAULT;
3469
3470 if (unlikely(!ghc->memslot))
3471 return kvm_read_guest(kvm, gpa, data, len);
3472
3473 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3474 if (r)
3475 return -EFAULT;
3476
3477 return 0;
3478 }
3479 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3480
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3481 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3482 void *data, unsigned long len)
3483 {
3484 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3485 }
3486 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3487
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)3488 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3489 {
3490 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3491 gfn_t gfn = gpa >> PAGE_SHIFT;
3492 int seg;
3493 int offset = offset_in_page(gpa);
3494 int ret;
3495
3496 while ((seg = next_segment(len, offset)) != 0) {
3497 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg);
3498 if (ret < 0)
3499 return ret;
3500 offset = 0;
3501 len -= seg;
3502 ++gfn;
3503 }
3504 return 0;
3505 }
3506 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3507
mark_page_dirty_in_slot(struct kvm * kvm,const struct kvm_memory_slot * memslot,gfn_t gfn)3508 void mark_page_dirty_in_slot(struct kvm *kvm,
3509 const struct kvm_memory_slot *memslot,
3510 gfn_t gfn)
3511 {
3512 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3513
3514 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3515 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3516 return;
3517
3518 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3519 #endif
3520
3521 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3522 unsigned long rel_gfn = gfn - memslot->base_gfn;
3523 u32 slot = (memslot->as_id << 16) | memslot->id;
3524
3525 if (kvm->dirty_ring_size && vcpu)
3526 kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3527 else if (memslot->dirty_bitmap)
3528 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3529 }
3530 }
3531 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3532
mark_page_dirty(struct kvm * kvm,gfn_t gfn)3533 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3534 {
3535 struct kvm_memory_slot *memslot;
3536
3537 memslot = gfn_to_memslot(kvm, gfn);
3538 mark_page_dirty_in_slot(kvm, memslot, gfn);
3539 }
3540 EXPORT_SYMBOL_GPL(mark_page_dirty);
3541
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)3542 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3543 {
3544 struct kvm_memory_slot *memslot;
3545
3546 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3547 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3548 }
3549 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3550
kvm_sigset_activate(struct kvm_vcpu * vcpu)3551 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3552 {
3553 if (!vcpu->sigset_active)
3554 return;
3555
3556 /*
3557 * This does a lockless modification of ->real_blocked, which is fine
3558 * because, only current can change ->real_blocked and all readers of
3559 * ->real_blocked don't care as long ->real_blocked is always a subset
3560 * of ->blocked.
3561 */
3562 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
3563 }
3564
kvm_sigset_deactivate(struct kvm_vcpu * vcpu)3565 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3566 {
3567 if (!vcpu->sigset_active)
3568 return;
3569
3570 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
3571 sigemptyset(¤t->real_blocked);
3572 }
3573
grow_halt_poll_ns(struct kvm_vcpu * vcpu)3574 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3575 {
3576 unsigned int old, val, grow, grow_start;
3577
3578 old = val = vcpu->halt_poll_ns;
3579 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3580 grow = READ_ONCE(halt_poll_ns_grow);
3581 if (!grow)
3582 goto out;
3583
3584 val *= grow;
3585 if (val < grow_start)
3586 val = grow_start;
3587
3588 vcpu->halt_poll_ns = val;
3589 out:
3590 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3591 }
3592
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)3593 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3594 {
3595 unsigned int old, val, shrink, grow_start;
3596
3597 old = val = vcpu->halt_poll_ns;
3598 shrink = READ_ONCE(halt_poll_ns_shrink);
3599 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3600 if (shrink == 0)
3601 val = 0;
3602 else
3603 val /= shrink;
3604
3605 if (val < grow_start)
3606 val = 0;
3607
3608 vcpu->halt_poll_ns = val;
3609 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3610 }
3611
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)3612 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3613 {
3614 int ret = -EINTR;
3615 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3616
3617 if (kvm_arch_vcpu_runnable(vcpu))
3618 goto out;
3619 if (kvm_cpu_has_pending_timer(vcpu))
3620 goto out;
3621 if (signal_pending(current))
3622 goto out;
3623 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3624 goto out;
3625
3626 ret = 0;
3627 out:
3628 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3629 return ret;
3630 }
3631
3632 /*
3633 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3634 * pending. This is mostly used when halting a vCPU, but may also be used
3635 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3636 */
kvm_vcpu_block(struct kvm_vcpu * vcpu)3637 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3638 {
3639 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3640 bool waited = false;
3641
3642 vcpu->stat.generic.blocking = 1;
3643
3644 preempt_disable();
3645 kvm_arch_vcpu_blocking(vcpu);
3646 prepare_to_rcuwait(wait);
3647 preempt_enable();
3648
3649 for (;;) {
3650 set_current_state(TASK_INTERRUPTIBLE);
3651
3652 if (kvm_vcpu_check_block(vcpu) < 0)
3653 break;
3654
3655 waited = true;
3656 schedule();
3657 }
3658
3659 preempt_disable();
3660 finish_rcuwait(wait);
3661 kvm_arch_vcpu_unblocking(vcpu);
3662 preempt_enable();
3663
3664 vcpu->stat.generic.blocking = 0;
3665
3666 return waited;
3667 }
3668
update_halt_poll_stats(struct kvm_vcpu * vcpu,ktime_t start,ktime_t end,bool success)3669 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3670 ktime_t end, bool success)
3671 {
3672 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3673 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3674
3675 ++vcpu->stat.generic.halt_attempted_poll;
3676
3677 if (success) {
3678 ++vcpu->stat.generic.halt_successful_poll;
3679
3680 if (!vcpu_valid_wakeup(vcpu))
3681 ++vcpu->stat.generic.halt_poll_invalid;
3682
3683 stats->halt_poll_success_ns += poll_ns;
3684 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3685 } else {
3686 stats->halt_poll_fail_ns += poll_ns;
3687 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3688 }
3689 }
3690
kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu * vcpu)3691 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3692 {
3693 struct kvm *kvm = vcpu->kvm;
3694
3695 if (kvm->override_halt_poll_ns) {
3696 /*
3697 * Ensure kvm->max_halt_poll_ns is not read before
3698 * kvm->override_halt_poll_ns.
3699 *
3700 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3701 */
3702 smp_rmb();
3703 return READ_ONCE(kvm->max_halt_poll_ns);
3704 }
3705
3706 return READ_ONCE(halt_poll_ns);
3707 }
3708
3709 /*
3710 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3711 * polling is enabled, busy wait for a short time before blocking to avoid the
3712 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3713 * is halted.
3714 */
kvm_vcpu_halt(struct kvm_vcpu * vcpu)3715 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3716 {
3717 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3718 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3719 ktime_t start, cur, poll_end;
3720 bool waited = false;
3721 bool do_halt_poll;
3722 u64 halt_ns;
3723
3724 if (vcpu->halt_poll_ns > max_halt_poll_ns)
3725 vcpu->halt_poll_ns = max_halt_poll_ns;
3726
3727 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3728
3729 start = cur = poll_end = ktime_get();
3730 if (do_halt_poll) {
3731 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3732
3733 do {
3734 if (kvm_vcpu_check_block(vcpu) < 0)
3735 goto out;
3736 cpu_relax();
3737 poll_end = cur = ktime_get();
3738 } while (kvm_vcpu_can_poll(cur, stop));
3739 }
3740
3741 waited = kvm_vcpu_block(vcpu);
3742
3743 cur = ktime_get();
3744 if (waited) {
3745 vcpu->stat.generic.halt_wait_ns +=
3746 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3747 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3748 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3749 }
3750 out:
3751 /* The total time the vCPU was "halted", including polling time. */
3752 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3753
3754 /*
3755 * Note, halt-polling is considered successful so long as the vCPU was
3756 * never actually scheduled out, i.e. even if the wake event arrived
3757 * after of the halt-polling loop itself, but before the full wait.
3758 */
3759 if (do_halt_poll)
3760 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3761
3762 if (halt_poll_allowed) {
3763 /* Recompute the max halt poll time in case it changed. */
3764 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3765
3766 if (!vcpu_valid_wakeup(vcpu)) {
3767 shrink_halt_poll_ns(vcpu);
3768 } else if (max_halt_poll_ns) {
3769 if (halt_ns <= vcpu->halt_poll_ns)
3770 ;
3771 /* we had a long block, shrink polling */
3772 else if (vcpu->halt_poll_ns &&
3773 halt_ns > max_halt_poll_ns)
3774 shrink_halt_poll_ns(vcpu);
3775 /* we had a short halt and our poll time is too small */
3776 else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3777 halt_ns < max_halt_poll_ns)
3778 grow_halt_poll_ns(vcpu);
3779 } else {
3780 vcpu->halt_poll_ns = 0;
3781 }
3782 }
3783
3784 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3785 }
3786 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3787
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)3788 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3789 {
3790 if (__kvm_vcpu_wake_up(vcpu)) {
3791 WRITE_ONCE(vcpu->ready, true);
3792 ++vcpu->stat.generic.halt_wakeup;
3793 return true;
3794 }
3795
3796 return false;
3797 }
3798 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3799
3800 #ifndef CONFIG_S390
3801 /*
3802 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3803 */
__kvm_vcpu_kick(struct kvm_vcpu * vcpu,bool wait)3804 void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait)
3805 {
3806 int me, cpu;
3807
3808 if (kvm_vcpu_wake_up(vcpu))
3809 return;
3810
3811 me = get_cpu();
3812 /*
3813 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3814 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3815 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3816 * within the vCPU thread itself.
3817 */
3818 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3819 if (vcpu->mode == IN_GUEST_MODE)
3820 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3821 goto out;
3822 }
3823
3824 /*
3825 * Note, the vCPU could get migrated to a different pCPU at any point
3826 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3827 * IPI to the previous pCPU. But, that's ok because the purpose of the
3828 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3829 * vCPU also requires it to leave IN_GUEST_MODE.
3830 */
3831 if (kvm_arch_vcpu_should_kick(vcpu)) {
3832 cpu = READ_ONCE(vcpu->cpu);
3833 if (cpu != me && (unsigned int)cpu < nr_cpu_ids && cpu_online(cpu)) {
3834 /*
3835 * Use a reschedule IPI to kick the vCPU if the caller
3836 * doesn't need to wait for a response, as KVM allows
3837 * kicking vCPUs while IRQs are disabled, but using the
3838 * SMP function call framework with IRQs disabled can
3839 * deadlock due to taking cross-CPU locks.
3840 */
3841 if (wait)
3842 smp_call_function_single(cpu, ack_kick, NULL, wait);
3843 else
3844 smp_send_reschedule(cpu);
3845 }
3846 }
3847 out:
3848 put_cpu();
3849 }
3850 EXPORT_SYMBOL_GPL(__kvm_vcpu_kick);
3851 #endif /* !CONFIG_S390 */
3852
kvm_vcpu_yield_to(struct kvm_vcpu * target)3853 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3854 {
3855 struct task_struct *task = NULL;
3856 int ret;
3857
3858 if (!read_trylock(&target->pid_lock))
3859 return 0;
3860
3861 if (target->pid)
3862 task = get_pid_task(target->pid, PIDTYPE_PID);
3863
3864 read_unlock(&target->pid_lock);
3865
3866 if (!task)
3867 return 0;
3868 ret = yield_to(task, 1);
3869 put_task_struct(task);
3870
3871 return ret;
3872 }
3873 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3874
3875 /*
3876 * Helper that checks whether a VCPU is eligible for directed yield.
3877 * Most eligible candidate to yield is decided by following heuristics:
3878 *
3879 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3880 * (preempted lock holder), indicated by @in_spin_loop.
3881 * Set at the beginning and cleared at the end of interception/PLE handler.
3882 *
3883 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3884 * chance last time (mostly it has become eligible now since we have probably
3885 * yielded to lockholder in last iteration. This is done by toggling
3886 * @dy_eligible each time a VCPU checked for eligibility.)
3887 *
3888 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3889 * to preempted lock-holder could result in wrong VCPU selection and CPU
3890 * burning. Giving priority for a potential lock-holder increases lock
3891 * progress.
3892 *
3893 * Since algorithm is based on heuristics, accessing another VCPU data without
3894 * locking does not harm. It may result in trying to yield to same VCPU, fail
3895 * and continue with next VCPU and so on.
3896 */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)3897 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3898 {
3899 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3900 bool eligible;
3901
3902 eligible = !vcpu->spin_loop.in_spin_loop ||
3903 vcpu->spin_loop.dy_eligible;
3904
3905 if (vcpu->spin_loop.in_spin_loop)
3906 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3907
3908 return eligible;
3909 #else
3910 return true;
3911 #endif
3912 }
3913
3914 /*
3915 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3916 * a vcpu_load/vcpu_put pair. However, for most architectures
3917 * kvm_arch_vcpu_runnable does not require vcpu_load.
3918 */
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)3919 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3920 {
3921 return kvm_arch_vcpu_runnable(vcpu);
3922 }
3923
vcpu_dy_runnable(struct kvm_vcpu * vcpu)3924 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3925 {
3926 if (kvm_arch_dy_runnable(vcpu))
3927 return true;
3928
3929 #ifdef CONFIG_KVM_ASYNC_PF
3930 if (!list_empty_careful(&vcpu->async_pf.done))
3931 return true;
3932 #endif
3933
3934 return false;
3935 }
3936
3937 /*
3938 * By default, simply query the target vCPU's current mode when checking if a
3939 * vCPU was preempted in kernel mode. All architectures except x86 (or more
3940 * specifical, except VMX) allow querying whether or not a vCPU is in kernel
3941 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
3942 * directly for cross-vCPU checks is functionally correct and accurate.
3943 */
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)3944 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
3945 {
3946 return kvm_arch_vcpu_in_kernel(vcpu);
3947 }
3948
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)3949 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3950 {
3951 return false;
3952 }
3953
kvm_vcpu_on_spin(struct kvm_vcpu * me,bool yield_to_kernel_mode)3954 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3955 {
3956 int nr_vcpus, start, i, idx, yielded;
3957 struct kvm *kvm = me->kvm;
3958 struct kvm_vcpu *vcpu;
3959 int try = 3;
3960
3961 nr_vcpus = atomic_read(&kvm->online_vcpus);
3962 if (nr_vcpus < 2)
3963 return;
3964
3965 /* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */
3966 smp_rmb();
3967
3968 kvm_vcpu_set_in_spin_loop(me, true);
3969
3970 /*
3971 * The current vCPU ("me") is spinning in kernel mode, i.e. is likely
3972 * waiting for a resource to become available. Attempt to yield to a
3973 * vCPU that is runnable, but not currently running, e.g. because the
3974 * vCPU was preempted by a higher priority task. With luck, the vCPU
3975 * that was preempted is holding a lock or some other resource that the
3976 * current vCPU is waiting to acquire, and yielding to the other vCPU
3977 * will allow it to make forward progress and release the lock (or kick
3978 * the spinning vCPU, etc).
3979 *
3980 * Since KVM has no insight into what exactly the guest is doing,
3981 * approximate a round-robin selection by iterating over all vCPUs,
3982 * starting at the last boosted vCPU. I.e. if N=kvm->last_boosted_vcpu,
3983 * iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed.
3984 *
3985 * Note, this is inherently racy, e.g. if multiple vCPUs are spinning,
3986 * they may all try to yield to the same vCPU(s). But as above, this
3987 * is all best effort due to KVM's lack of visibility into the guest.
3988 */
3989 start = READ_ONCE(kvm->last_boosted_vcpu) + 1;
3990 for (i = 0; i < nr_vcpus; i++) {
3991 idx = (start + i) % nr_vcpus;
3992 if (idx == me->vcpu_idx)
3993 continue;
3994
3995 vcpu = xa_load(&kvm->vcpu_array, idx);
3996 if (!READ_ONCE(vcpu->ready))
3997 continue;
3998 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3999 continue;
4000
4001 /*
4002 * Treat the target vCPU as being in-kernel if it has a pending
4003 * interrupt, as the vCPU trying to yield may be spinning
4004 * waiting on IPI delivery, i.e. the target vCPU is in-kernel
4005 * for the purposes of directed yield.
4006 */
4007 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4008 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4009 !kvm_arch_vcpu_preempted_in_kernel(vcpu))
4010 continue;
4011
4012 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4013 continue;
4014
4015 yielded = kvm_vcpu_yield_to(vcpu);
4016 if (yielded > 0) {
4017 WRITE_ONCE(kvm->last_boosted_vcpu, i);
4018 break;
4019 } else if (yielded < 0 && !--try) {
4020 break;
4021 }
4022 }
4023 kvm_vcpu_set_in_spin_loop(me, false);
4024
4025 /* Ensure vcpu is not eligible during next spinloop */
4026 kvm_vcpu_set_dy_eligible(me, false);
4027 }
4028 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4029
kvm_page_in_dirty_ring(struct kvm * kvm,unsigned long pgoff)4030 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4031 {
4032 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4033 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4034 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4035 kvm->dirty_ring_size / PAGE_SIZE);
4036 #else
4037 return false;
4038 #endif
4039 }
4040
kvm_vcpu_fault(struct vm_fault * vmf)4041 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4042 {
4043 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4044 struct page *page;
4045
4046 if (vmf->pgoff == 0)
4047 page = virt_to_page(vcpu->run);
4048 #ifdef CONFIG_X86
4049 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4050 page = virt_to_page(vcpu->arch.pio_data);
4051 #endif
4052 #ifdef CONFIG_KVM_MMIO
4053 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4054 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4055 #endif
4056 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4057 page = kvm_dirty_ring_get_page(
4058 &vcpu->dirty_ring,
4059 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4060 else
4061 return kvm_arch_vcpu_fault(vcpu, vmf);
4062 get_page(page);
4063 vmf->page = page;
4064 return 0;
4065 }
4066
4067 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4068 .fault = kvm_vcpu_fault,
4069 };
4070
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)4071 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4072 {
4073 struct kvm_vcpu *vcpu = file->private_data;
4074 unsigned long pages = vma_pages(vma);
4075
4076 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4077 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4078 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4079 return -EINVAL;
4080
4081 vma->vm_ops = &kvm_vcpu_vm_ops;
4082 return 0;
4083 }
4084
kvm_vcpu_release(struct inode * inode,struct file * filp)4085 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4086 {
4087 struct kvm_vcpu *vcpu = filp->private_data;
4088
4089 kvm_put_kvm(vcpu->kvm);
4090 return 0;
4091 }
4092
4093 static struct file_operations kvm_vcpu_fops = {
4094 .release = kvm_vcpu_release,
4095 .unlocked_ioctl = kvm_vcpu_ioctl,
4096 .mmap = kvm_vcpu_mmap,
4097 .llseek = noop_llseek,
4098 KVM_COMPAT(kvm_vcpu_compat_ioctl),
4099 };
4100
4101 /*
4102 * Allocates an inode for the vcpu.
4103 */
create_vcpu_fd(struct kvm_vcpu * vcpu)4104 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4105 {
4106 char name[8 + 1 + ITOA_MAX_LEN + 1];
4107
4108 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4109 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4110 }
4111
4112 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
vcpu_get_pid(void * data,u64 * val)4113 static int vcpu_get_pid(void *data, u64 *val)
4114 {
4115 struct kvm_vcpu *vcpu = data;
4116
4117 read_lock(&vcpu->pid_lock);
4118 *val = pid_nr(vcpu->pid);
4119 read_unlock(&vcpu->pid_lock);
4120 return 0;
4121 }
4122
4123 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4124
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)4125 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4126 {
4127 struct dentry *debugfs_dentry;
4128 char dir_name[ITOA_MAX_LEN * 2];
4129
4130 if (!debugfs_initialized())
4131 return;
4132
4133 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4134 debugfs_dentry = debugfs_create_dir(dir_name,
4135 vcpu->kvm->debugfs_dentry);
4136 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4137 &vcpu_get_pid_fops);
4138
4139 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4140 }
4141 #endif
4142
4143 /*
4144 * Creates some virtual cpus. Good luck creating more than one.
4145 */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,unsigned long id)4146 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id)
4147 {
4148 int r;
4149 struct kvm_vcpu *vcpu;
4150 struct page *page;
4151
4152 /*
4153 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject
4154 * too-large values instead of silently truncating.
4155 *
4156 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first
4157 * changing the storage type (at the very least, IDs should be tracked
4158 * as unsigned ints).
4159 */
4160 BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX);
4161 if (id >= KVM_MAX_VCPU_IDS)
4162 return -EINVAL;
4163
4164 mutex_lock(&kvm->lock);
4165 if (kvm->created_vcpus >= kvm->max_vcpus) {
4166 mutex_unlock(&kvm->lock);
4167 return -EINVAL;
4168 }
4169
4170 r = kvm_arch_vcpu_precreate(kvm, id);
4171 if (r) {
4172 mutex_unlock(&kvm->lock);
4173 return r;
4174 }
4175
4176 kvm->created_vcpus++;
4177 mutex_unlock(&kvm->lock);
4178
4179 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4180 if (!vcpu) {
4181 r = -ENOMEM;
4182 goto vcpu_decrement;
4183 }
4184
4185 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4186 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4187 if (!page) {
4188 r = -ENOMEM;
4189 goto vcpu_free;
4190 }
4191 vcpu->run = page_address(page);
4192
4193 kvm_vcpu_init(vcpu, kvm, id);
4194
4195 r = kvm_arch_vcpu_create(vcpu);
4196 if (r)
4197 goto vcpu_free_run_page;
4198
4199 if (kvm->dirty_ring_size) {
4200 r = kvm_dirty_ring_alloc(kvm, &vcpu->dirty_ring,
4201 id, kvm->dirty_ring_size);
4202 if (r)
4203 goto arch_vcpu_destroy;
4204 }
4205
4206 mutex_lock(&kvm->lock);
4207
4208 if (kvm_get_vcpu_by_id(kvm, id)) {
4209 r = -EEXIST;
4210 goto unlock_vcpu_destroy;
4211 }
4212
4213 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4214 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
4215 WARN_ON_ONCE(r == -EBUSY);
4216 if (r)
4217 goto unlock_vcpu_destroy;
4218
4219 /*
4220 * Now it's all set up, let userspace reach it. Grab the vCPU's mutex
4221 * so that userspace can't invoke vCPU ioctl()s until the vCPU is fully
4222 * visible (per online_vcpus), e.g. so that KVM doesn't get tricked
4223 * into a NULL-pointer dereference because KVM thinks the _current_
4224 * vCPU doesn't exist. As a bonus, taking vcpu->mutex ensures lockdep
4225 * knows it's taken *inside* kvm->lock.
4226 */
4227 mutex_lock(&vcpu->mutex);
4228 kvm_get_kvm(kvm);
4229 r = create_vcpu_fd(vcpu);
4230 if (r < 0)
4231 goto kvm_put_xa_erase;
4232
4233 /*
4234 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
4235 * pointer before kvm->online_vcpu's incremented value.
4236 */
4237 smp_wmb();
4238 atomic_inc(&kvm->online_vcpus);
4239 mutex_unlock(&vcpu->mutex);
4240
4241 mutex_unlock(&kvm->lock);
4242 kvm_arch_vcpu_postcreate(vcpu);
4243 kvm_create_vcpu_debugfs(vcpu);
4244 return r;
4245
4246 kvm_put_xa_erase:
4247 mutex_unlock(&vcpu->mutex);
4248 kvm_put_kvm_no_destroy(kvm);
4249 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
4250 unlock_vcpu_destroy:
4251 mutex_unlock(&kvm->lock);
4252 kvm_dirty_ring_free(&vcpu->dirty_ring);
4253 arch_vcpu_destroy:
4254 kvm_arch_vcpu_destroy(vcpu);
4255 vcpu_free_run_page:
4256 free_page((unsigned long)vcpu->run);
4257 vcpu_free:
4258 kmem_cache_free(kvm_vcpu_cache, vcpu);
4259 vcpu_decrement:
4260 mutex_lock(&kvm->lock);
4261 kvm->created_vcpus--;
4262 mutex_unlock(&kvm->lock);
4263 return r;
4264 }
4265
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)4266 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4267 {
4268 if (sigset) {
4269 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4270 vcpu->sigset_active = 1;
4271 vcpu->sigset = *sigset;
4272 } else
4273 vcpu->sigset_active = 0;
4274 return 0;
4275 }
4276
kvm_vcpu_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)4277 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4278 size_t size, loff_t *offset)
4279 {
4280 struct kvm_vcpu *vcpu = file->private_data;
4281
4282 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4283 &kvm_vcpu_stats_desc[0], &vcpu->stat,
4284 sizeof(vcpu->stat), user_buffer, size, offset);
4285 }
4286
kvm_vcpu_stats_release(struct inode * inode,struct file * file)4287 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4288 {
4289 struct kvm_vcpu *vcpu = file->private_data;
4290
4291 kvm_put_kvm(vcpu->kvm);
4292 return 0;
4293 }
4294
4295 static const struct file_operations kvm_vcpu_stats_fops = {
4296 .owner = THIS_MODULE,
4297 .read = kvm_vcpu_stats_read,
4298 .release = kvm_vcpu_stats_release,
4299 .llseek = noop_llseek,
4300 };
4301
kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu * vcpu)4302 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4303 {
4304 int fd;
4305 struct file *file;
4306 char name[15 + ITOA_MAX_LEN + 1];
4307
4308 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4309
4310 fd = get_unused_fd_flags(O_CLOEXEC);
4311 if (fd < 0)
4312 return fd;
4313
4314 file = anon_inode_getfile_fmode(name, &kvm_vcpu_stats_fops, vcpu,
4315 O_RDONLY, FMODE_PREAD);
4316 if (IS_ERR(file)) {
4317 put_unused_fd(fd);
4318 return PTR_ERR(file);
4319 }
4320
4321 kvm_get_kvm(vcpu->kvm);
4322 fd_install(fd, file);
4323
4324 return fd;
4325 }
4326
4327 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
kvm_vcpu_pre_fault_memory(struct kvm_vcpu * vcpu,struct kvm_pre_fault_memory * range)4328 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4329 struct kvm_pre_fault_memory *range)
4330 {
4331 int idx;
4332 long r;
4333 u64 full_size;
4334
4335 if (range->flags)
4336 return -EINVAL;
4337
4338 if (!PAGE_ALIGNED(range->gpa) ||
4339 !PAGE_ALIGNED(range->size) ||
4340 range->gpa + range->size <= range->gpa)
4341 return -EINVAL;
4342
4343 vcpu_load(vcpu);
4344 idx = srcu_read_lock(&vcpu->kvm->srcu);
4345
4346 full_size = range->size;
4347 do {
4348 if (signal_pending(current)) {
4349 r = -EINTR;
4350 break;
4351 }
4352
4353 r = kvm_arch_vcpu_pre_fault_memory(vcpu, range);
4354 if (WARN_ON_ONCE(r == 0 || r == -EIO))
4355 break;
4356
4357 if (r < 0)
4358 break;
4359
4360 range->size -= r;
4361 range->gpa += r;
4362 cond_resched();
4363 } while (range->size);
4364
4365 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4366 vcpu_put(vcpu);
4367
4368 /* Return success if at least one page was mapped successfully. */
4369 return full_size == range->size ? r : 0;
4370 }
4371 #endif
4372
kvm_wait_for_vcpu_online(struct kvm_vcpu * vcpu)4373 static int kvm_wait_for_vcpu_online(struct kvm_vcpu *vcpu)
4374 {
4375 struct kvm *kvm = vcpu->kvm;
4376
4377 /*
4378 * In practice, this happy path will always be taken, as a well-behaved
4379 * VMM will never invoke a vCPU ioctl() before KVM_CREATE_VCPU returns.
4380 */
4381 if (likely(vcpu->vcpu_idx < atomic_read(&kvm->online_vcpus)))
4382 return 0;
4383
4384 /*
4385 * Acquire and release the vCPU's mutex to wait for vCPU creation to
4386 * complete (kvm_vm_ioctl_create_vcpu() holds the mutex until the vCPU
4387 * is fully online).
4388 */
4389 if (mutex_lock_killable(&vcpu->mutex))
4390 return -EINTR;
4391
4392 mutex_unlock(&vcpu->mutex);
4393
4394 if (WARN_ON_ONCE(!kvm_get_vcpu(kvm, vcpu->vcpu_idx)))
4395 return -EIO;
4396
4397 return 0;
4398 }
4399
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4400 static long kvm_vcpu_ioctl(struct file *filp,
4401 unsigned int ioctl, unsigned long arg)
4402 {
4403 struct kvm_vcpu *vcpu = filp->private_data;
4404 void __user *argp = (void __user *)arg;
4405 int r;
4406 struct kvm_fpu *fpu = NULL;
4407 struct kvm_sregs *kvm_sregs = NULL;
4408
4409 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4410 return -EIO;
4411
4412 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4413 return -EINVAL;
4414
4415 /*
4416 * Wait for the vCPU to be online before handling the ioctl(), as KVM
4417 * assumes the vCPU is reachable via vcpu_array, i.e. may dereference
4418 * a NULL pointer if userspace invokes an ioctl() before KVM is ready.
4419 */
4420 r = kvm_wait_for_vcpu_online(vcpu);
4421 if (r)
4422 return r;
4423
4424 /*
4425 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4426 * execution; mutex_lock() would break them.
4427 */
4428 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4429 if (r != -ENOIOCTLCMD)
4430 return r;
4431
4432 if (mutex_lock_killable(&vcpu->mutex))
4433 return -EINTR;
4434 switch (ioctl) {
4435 case KVM_RUN: {
4436 struct pid *oldpid;
4437 r = -EINVAL;
4438 if (arg)
4439 goto out;
4440
4441 /*
4442 * Note, vcpu->pid is primarily protected by vcpu->mutex. The
4443 * dedicated r/w lock allows other tasks, e.g. other vCPUs, to
4444 * read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield
4445 * directly to this vCPU
4446 */
4447 oldpid = vcpu->pid;
4448 if (unlikely(oldpid != task_pid(current))) {
4449 /* The thread running this VCPU changed. */
4450 struct pid *newpid;
4451
4452 r = kvm_arch_vcpu_run_pid_change(vcpu);
4453 if (r)
4454 break;
4455
4456 newpid = get_task_pid(current, PIDTYPE_PID);
4457 write_lock(&vcpu->pid_lock);
4458 vcpu->pid = newpid;
4459 write_unlock(&vcpu->pid_lock);
4460
4461 put_pid(oldpid);
4462 }
4463 vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe);
4464 r = kvm_arch_vcpu_ioctl_run(vcpu);
4465 vcpu->wants_to_run = false;
4466
4467 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4468 break;
4469 }
4470 case KVM_GET_REGS: {
4471 struct kvm_regs *kvm_regs;
4472
4473 r = -ENOMEM;
4474 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
4475 if (!kvm_regs)
4476 goto out;
4477 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4478 if (r)
4479 goto out_free1;
4480 r = -EFAULT;
4481 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4482 goto out_free1;
4483 r = 0;
4484 out_free1:
4485 kfree(kvm_regs);
4486 break;
4487 }
4488 case KVM_SET_REGS: {
4489 struct kvm_regs *kvm_regs;
4490
4491 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4492 if (IS_ERR(kvm_regs)) {
4493 r = PTR_ERR(kvm_regs);
4494 goto out;
4495 }
4496 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4497 kfree(kvm_regs);
4498 break;
4499 }
4500 case KVM_GET_SREGS: {
4501 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
4502 r = -ENOMEM;
4503 if (!kvm_sregs)
4504 goto out;
4505 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4506 if (r)
4507 goto out;
4508 r = -EFAULT;
4509 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4510 goto out;
4511 r = 0;
4512 break;
4513 }
4514 case KVM_SET_SREGS: {
4515 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4516 if (IS_ERR(kvm_sregs)) {
4517 r = PTR_ERR(kvm_sregs);
4518 kvm_sregs = NULL;
4519 goto out;
4520 }
4521 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4522 break;
4523 }
4524 case KVM_GET_MP_STATE: {
4525 struct kvm_mp_state mp_state;
4526
4527 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4528 if (r)
4529 goto out;
4530 r = -EFAULT;
4531 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4532 goto out;
4533 r = 0;
4534 break;
4535 }
4536 case KVM_SET_MP_STATE: {
4537 struct kvm_mp_state mp_state;
4538
4539 r = -EFAULT;
4540 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4541 goto out;
4542 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4543 break;
4544 }
4545 case KVM_TRANSLATE: {
4546 struct kvm_translation tr;
4547
4548 r = -EFAULT;
4549 if (copy_from_user(&tr, argp, sizeof(tr)))
4550 goto out;
4551 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4552 if (r)
4553 goto out;
4554 r = -EFAULT;
4555 if (copy_to_user(argp, &tr, sizeof(tr)))
4556 goto out;
4557 r = 0;
4558 break;
4559 }
4560 case KVM_SET_GUEST_DEBUG: {
4561 struct kvm_guest_debug dbg;
4562
4563 r = -EFAULT;
4564 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4565 goto out;
4566 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4567 break;
4568 }
4569 case KVM_SET_SIGNAL_MASK: {
4570 struct kvm_signal_mask __user *sigmask_arg = argp;
4571 struct kvm_signal_mask kvm_sigmask;
4572 sigset_t sigset, *p;
4573
4574 p = NULL;
4575 if (argp) {
4576 r = -EFAULT;
4577 if (copy_from_user(&kvm_sigmask, argp,
4578 sizeof(kvm_sigmask)))
4579 goto out;
4580 r = -EINVAL;
4581 if (kvm_sigmask.len != sizeof(sigset))
4582 goto out;
4583 r = -EFAULT;
4584 if (copy_from_user(&sigset, sigmask_arg->sigset,
4585 sizeof(sigset)))
4586 goto out;
4587 p = &sigset;
4588 }
4589 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4590 break;
4591 }
4592 case KVM_GET_FPU: {
4593 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
4594 r = -ENOMEM;
4595 if (!fpu)
4596 goto out;
4597 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4598 if (r)
4599 goto out;
4600 r = -EFAULT;
4601 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4602 goto out;
4603 r = 0;
4604 break;
4605 }
4606 case KVM_SET_FPU: {
4607 fpu = memdup_user(argp, sizeof(*fpu));
4608 if (IS_ERR(fpu)) {
4609 r = PTR_ERR(fpu);
4610 fpu = NULL;
4611 goto out;
4612 }
4613 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4614 break;
4615 }
4616 case KVM_GET_STATS_FD: {
4617 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4618 break;
4619 }
4620 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4621 case KVM_PRE_FAULT_MEMORY: {
4622 struct kvm_pre_fault_memory range;
4623
4624 r = -EFAULT;
4625 if (copy_from_user(&range, argp, sizeof(range)))
4626 break;
4627 r = kvm_vcpu_pre_fault_memory(vcpu, &range);
4628 /* Pass back leftover range. */
4629 if (copy_to_user(argp, &range, sizeof(range)))
4630 r = -EFAULT;
4631 break;
4632 }
4633 #endif
4634 default:
4635 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4636 }
4637 out:
4638 mutex_unlock(&vcpu->mutex);
4639 kfree(fpu);
4640 kfree(kvm_sregs);
4641 return r;
4642 }
4643
4644 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4645 static long kvm_vcpu_compat_ioctl(struct file *filp,
4646 unsigned int ioctl, unsigned long arg)
4647 {
4648 struct kvm_vcpu *vcpu = filp->private_data;
4649 void __user *argp = compat_ptr(arg);
4650 int r;
4651
4652 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4653 return -EIO;
4654
4655 switch (ioctl) {
4656 case KVM_SET_SIGNAL_MASK: {
4657 struct kvm_signal_mask __user *sigmask_arg = argp;
4658 struct kvm_signal_mask kvm_sigmask;
4659 sigset_t sigset;
4660
4661 if (argp) {
4662 r = -EFAULT;
4663 if (copy_from_user(&kvm_sigmask, argp,
4664 sizeof(kvm_sigmask)))
4665 goto out;
4666 r = -EINVAL;
4667 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4668 goto out;
4669 r = -EFAULT;
4670 if (get_compat_sigset(&sigset,
4671 (compat_sigset_t __user *)sigmask_arg->sigset))
4672 goto out;
4673 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4674 } else
4675 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4676 break;
4677 }
4678 default:
4679 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4680 }
4681
4682 out:
4683 return r;
4684 }
4685 #endif
4686
kvm_device_mmap(struct file * filp,struct vm_area_struct * vma)4687 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4688 {
4689 struct kvm_device *dev = filp->private_data;
4690
4691 if (dev->ops->mmap)
4692 return dev->ops->mmap(dev, vma);
4693
4694 return -ENODEV;
4695 }
4696
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)4697 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4698 int (*accessor)(struct kvm_device *dev,
4699 struct kvm_device_attr *attr),
4700 unsigned long arg)
4701 {
4702 struct kvm_device_attr attr;
4703
4704 if (!accessor)
4705 return -EPERM;
4706
4707 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4708 return -EFAULT;
4709
4710 return accessor(dev, &attr);
4711 }
4712
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4713 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4714 unsigned long arg)
4715 {
4716 struct kvm_device *dev = filp->private_data;
4717
4718 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4719 return -EIO;
4720
4721 switch (ioctl) {
4722 case KVM_SET_DEVICE_ATTR:
4723 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4724 case KVM_GET_DEVICE_ATTR:
4725 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4726 case KVM_HAS_DEVICE_ATTR:
4727 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4728 default:
4729 if (dev->ops->ioctl)
4730 return dev->ops->ioctl(dev, ioctl, arg);
4731
4732 return -ENOTTY;
4733 }
4734 }
4735
kvm_device_release(struct inode * inode,struct file * filp)4736 static int kvm_device_release(struct inode *inode, struct file *filp)
4737 {
4738 struct kvm_device *dev = filp->private_data;
4739 struct kvm *kvm = dev->kvm;
4740
4741 if (dev->ops->release) {
4742 mutex_lock(&kvm->lock);
4743 list_del_rcu(&dev->vm_node);
4744 synchronize_rcu();
4745 dev->ops->release(dev);
4746 mutex_unlock(&kvm->lock);
4747 }
4748
4749 kvm_put_kvm(kvm);
4750 return 0;
4751 }
4752
4753 static struct file_operations kvm_device_fops = {
4754 .unlocked_ioctl = kvm_device_ioctl,
4755 .release = kvm_device_release,
4756 KVM_COMPAT(kvm_device_ioctl),
4757 .mmap = kvm_device_mmap,
4758 };
4759
kvm_device_from_filp(struct file * filp)4760 struct kvm_device *kvm_device_from_filp(struct file *filp)
4761 {
4762 if (filp->f_op != &kvm_device_fops)
4763 return NULL;
4764
4765 return filp->private_data;
4766 }
4767
4768 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4769 #ifdef CONFIG_KVM_MPIC
4770 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4771 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4772 #endif
4773 };
4774
kvm_register_device_ops(const struct kvm_device_ops * ops,u32 type)4775 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4776 {
4777 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4778 return -ENOSPC;
4779
4780 if (kvm_device_ops_table[type] != NULL)
4781 return -EEXIST;
4782
4783 kvm_device_ops_table[type] = ops;
4784 return 0;
4785 }
4786
kvm_unregister_device_ops(u32 type)4787 void kvm_unregister_device_ops(u32 type)
4788 {
4789 if (kvm_device_ops_table[type] != NULL)
4790 kvm_device_ops_table[type] = NULL;
4791 }
4792
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)4793 static int kvm_ioctl_create_device(struct kvm *kvm,
4794 struct kvm_create_device *cd)
4795 {
4796 const struct kvm_device_ops *ops;
4797 struct kvm_device *dev;
4798 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4799 int type;
4800 int ret;
4801
4802 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4803 return -ENODEV;
4804
4805 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4806 ops = kvm_device_ops_table[type];
4807 if (ops == NULL)
4808 return -ENODEV;
4809
4810 if (test)
4811 return 0;
4812
4813 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4814 if (!dev)
4815 return -ENOMEM;
4816
4817 dev->ops = ops;
4818 dev->kvm = kvm;
4819
4820 mutex_lock(&kvm->lock);
4821 ret = ops->create(dev, type);
4822 if (ret < 0) {
4823 mutex_unlock(&kvm->lock);
4824 kfree(dev);
4825 return ret;
4826 }
4827 list_add_rcu(&dev->vm_node, &kvm->devices);
4828 mutex_unlock(&kvm->lock);
4829
4830 if (ops->init)
4831 ops->init(dev);
4832
4833 kvm_get_kvm(kvm);
4834 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4835 if (ret < 0) {
4836 kvm_put_kvm_no_destroy(kvm);
4837 mutex_lock(&kvm->lock);
4838 list_del_rcu(&dev->vm_node);
4839 synchronize_rcu();
4840 if (ops->release)
4841 ops->release(dev);
4842 mutex_unlock(&kvm->lock);
4843 if (ops->destroy)
4844 ops->destroy(dev);
4845 return ret;
4846 }
4847
4848 cd->fd = ret;
4849 return 0;
4850 }
4851
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)4852 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4853 {
4854 switch (arg) {
4855 case KVM_CAP_USER_MEMORY:
4856 case KVM_CAP_USER_MEMORY2:
4857 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4858 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4859 case KVM_CAP_INTERNAL_ERROR_DATA:
4860 #ifdef CONFIG_HAVE_KVM_MSI
4861 case KVM_CAP_SIGNAL_MSI:
4862 #endif
4863 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4864 case KVM_CAP_IRQFD:
4865 #endif
4866 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4867 case KVM_CAP_CHECK_EXTENSION_VM:
4868 case KVM_CAP_ENABLE_CAP_VM:
4869 case KVM_CAP_HALT_POLL:
4870 return 1;
4871 #ifdef CONFIG_KVM_MMIO
4872 case KVM_CAP_COALESCED_MMIO:
4873 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4874 case KVM_CAP_COALESCED_PIO:
4875 return 1;
4876 #endif
4877 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4878 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4879 return KVM_DIRTY_LOG_MANUAL_CAPS;
4880 #endif
4881 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4882 case KVM_CAP_IRQ_ROUTING:
4883 return KVM_MAX_IRQ_ROUTES;
4884 #endif
4885 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4886 case KVM_CAP_MULTI_ADDRESS_SPACE:
4887 if (kvm)
4888 return kvm_arch_nr_memslot_as_ids(kvm);
4889 return KVM_MAX_NR_ADDRESS_SPACES;
4890 #endif
4891 case KVM_CAP_NR_MEMSLOTS:
4892 return KVM_USER_MEM_SLOTS;
4893 case KVM_CAP_DIRTY_LOG_RING:
4894 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4895 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4896 #else
4897 return 0;
4898 #endif
4899 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4900 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4901 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4902 #else
4903 return 0;
4904 #endif
4905 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4906 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4907 #endif
4908 case KVM_CAP_BINARY_STATS_FD:
4909 case KVM_CAP_SYSTEM_EVENT_DATA:
4910 case KVM_CAP_DEVICE_CTRL:
4911 return 1;
4912 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4913 case KVM_CAP_MEMORY_ATTRIBUTES:
4914 return kvm_supported_mem_attributes(kvm);
4915 #endif
4916 #ifdef CONFIG_KVM_PRIVATE_MEM
4917 case KVM_CAP_GUEST_MEMFD:
4918 return !kvm || kvm_arch_has_private_mem(kvm);
4919 #endif
4920 default:
4921 break;
4922 }
4923 return kvm_vm_ioctl_check_extension(kvm, arg);
4924 }
4925
kvm_vm_ioctl_enable_dirty_log_ring(struct kvm * kvm,u32 size)4926 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4927 {
4928 int r;
4929
4930 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4931 return -EINVAL;
4932
4933 /* the size should be power of 2 */
4934 if (!size || (size & (size - 1)))
4935 return -EINVAL;
4936
4937 /* Should be bigger to keep the reserved entries, or a page */
4938 if (size < kvm_dirty_ring_get_rsvd_entries(kvm) *
4939 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4940 return -EINVAL;
4941
4942 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4943 sizeof(struct kvm_dirty_gfn))
4944 return -E2BIG;
4945
4946 /* We only allow it to set once */
4947 if (kvm->dirty_ring_size)
4948 return -EINVAL;
4949
4950 mutex_lock(&kvm->lock);
4951
4952 if (kvm->created_vcpus) {
4953 /* We don't allow to change this value after vcpu created */
4954 r = -EINVAL;
4955 } else {
4956 kvm->dirty_ring_size = size;
4957 r = 0;
4958 }
4959
4960 mutex_unlock(&kvm->lock);
4961 return r;
4962 }
4963
kvm_vm_ioctl_reset_dirty_pages(struct kvm * kvm)4964 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4965 {
4966 unsigned long i;
4967 struct kvm_vcpu *vcpu;
4968 int cleared = 0;
4969
4970 if (!kvm->dirty_ring_size)
4971 return -EINVAL;
4972
4973 mutex_lock(&kvm->slots_lock);
4974
4975 kvm_for_each_vcpu(i, vcpu, kvm)
4976 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4977
4978 mutex_unlock(&kvm->slots_lock);
4979
4980 if (cleared)
4981 kvm_flush_remote_tlbs(kvm);
4982
4983 return cleared;
4984 }
4985
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)4986 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4987 struct kvm_enable_cap *cap)
4988 {
4989 return -EINVAL;
4990 }
4991
kvm_are_all_memslots_empty(struct kvm * kvm)4992 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4993 {
4994 int i;
4995
4996 lockdep_assert_held(&kvm->slots_lock);
4997
4998 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4999 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
5000 return false;
5001 }
5002
5003 return true;
5004 }
5005 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
5006
kvm_vm_ioctl_enable_cap_generic(struct kvm * kvm,struct kvm_enable_cap * cap)5007 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
5008 struct kvm_enable_cap *cap)
5009 {
5010 switch (cap->cap) {
5011 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5012 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
5013 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
5014
5015 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
5016 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
5017
5018 if (cap->flags || (cap->args[0] & ~allowed_options))
5019 return -EINVAL;
5020 kvm->manual_dirty_log_protect = cap->args[0];
5021 return 0;
5022 }
5023 #endif
5024 case KVM_CAP_HALT_POLL: {
5025 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
5026 return -EINVAL;
5027
5028 kvm->max_halt_poll_ns = cap->args[0];
5029
5030 /*
5031 * Ensure kvm->override_halt_poll_ns does not become visible
5032 * before kvm->max_halt_poll_ns.
5033 *
5034 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5035 */
5036 smp_wmb();
5037 kvm->override_halt_poll_ns = true;
5038
5039 return 0;
5040 }
5041 case KVM_CAP_DIRTY_LOG_RING:
5042 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5043 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5044 return -EINVAL;
5045
5046 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5047 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5048 int r = -EINVAL;
5049
5050 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5051 !kvm->dirty_ring_size || cap->flags)
5052 return r;
5053
5054 mutex_lock(&kvm->slots_lock);
5055
5056 /*
5057 * For simplicity, allow enabling ring+bitmap if and only if
5058 * there are no memslots, e.g. to ensure all memslots allocate
5059 * a bitmap after the capability is enabled.
5060 */
5061 if (kvm_are_all_memslots_empty(kvm)) {
5062 kvm->dirty_ring_with_bitmap = true;
5063 r = 0;
5064 }
5065
5066 mutex_unlock(&kvm->slots_lock);
5067
5068 return r;
5069 }
5070 default:
5071 return kvm_vm_ioctl_enable_cap(kvm, cap);
5072 }
5073 }
5074
kvm_vm_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)5075 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5076 size_t size, loff_t *offset)
5077 {
5078 struct kvm *kvm = file->private_data;
5079
5080 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5081 &kvm_vm_stats_desc[0], &kvm->stat,
5082 sizeof(kvm->stat), user_buffer, size, offset);
5083 }
5084
kvm_vm_stats_release(struct inode * inode,struct file * file)5085 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5086 {
5087 struct kvm *kvm = file->private_data;
5088
5089 kvm_put_kvm(kvm);
5090 return 0;
5091 }
5092
5093 static const struct file_operations kvm_vm_stats_fops = {
5094 .owner = THIS_MODULE,
5095 .read = kvm_vm_stats_read,
5096 .release = kvm_vm_stats_release,
5097 .llseek = noop_llseek,
5098 };
5099
kvm_vm_ioctl_get_stats_fd(struct kvm * kvm)5100 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5101 {
5102 int fd;
5103 struct file *file;
5104
5105 fd = get_unused_fd_flags(O_CLOEXEC);
5106 if (fd < 0)
5107 return fd;
5108
5109 file = anon_inode_getfile_fmode("kvm-vm-stats",
5110 &kvm_vm_stats_fops, kvm, O_RDONLY, FMODE_PREAD);
5111 if (IS_ERR(file)) {
5112 put_unused_fd(fd);
5113 return PTR_ERR(file);
5114 }
5115
5116 kvm_get_kvm(kvm);
5117 fd_install(fd, file);
5118
5119 return fd;
5120 }
5121
5122 #define SANITY_CHECK_MEM_REGION_FIELD(field) \
5123 do { \
5124 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \
5125 offsetof(struct kvm_userspace_memory_region2, field)); \
5126 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \
5127 sizeof_field(struct kvm_userspace_memory_region2, field)); \
5128 } while (0)
5129
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5130 static long kvm_vm_ioctl(struct file *filp,
5131 unsigned int ioctl, unsigned long arg)
5132 {
5133 struct kvm *kvm = filp->private_data;
5134 void __user *argp = (void __user *)arg;
5135 int r;
5136
5137 if (kvm->mm != current->mm || kvm->vm_dead)
5138 return -EIO;
5139 switch (ioctl) {
5140 case KVM_CREATE_VCPU:
5141 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5142 break;
5143 case KVM_ENABLE_CAP: {
5144 struct kvm_enable_cap cap;
5145
5146 r = -EFAULT;
5147 if (copy_from_user(&cap, argp, sizeof(cap)))
5148 goto out;
5149 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5150 break;
5151 }
5152 case KVM_SET_USER_MEMORY_REGION2:
5153 case KVM_SET_USER_MEMORY_REGION: {
5154 struct kvm_userspace_memory_region2 mem;
5155 unsigned long size;
5156
5157 if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5158 /*
5159 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5160 * accessed, but avoid leaking kernel memory in case of a bug.
5161 */
5162 memset(&mem, 0, sizeof(mem));
5163 size = sizeof(struct kvm_userspace_memory_region);
5164 } else {
5165 size = sizeof(struct kvm_userspace_memory_region2);
5166 }
5167
5168 /* Ensure the common parts of the two structs are identical. */
5169 SANITY_CHECK_MEM_REGION_FIELD(slot);
5170 SANITY_CHECK_MEM_REGION_FIELD(flags);
5171 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5172 SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5173 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5174
5175 r = -EFAULT;
5176 if (copy_from_user(&mem, argp, size))
5177 goto out;
5178
5179 r = -EINVAL;
5180 if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5181 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5182 goto out;
5183
5184 r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5185 break;
5186 }
5187 case KVM_GET_DIRTY_LOG: {
5188 struct kvm_dirty_log log;
5189
5190 r = -EFAULT;
5191 if (copy_from_user(&log, argp, sizeof(log)))
5192 goto out;
5193 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5194 break;
5195 }
5196 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5197 case KVM_CLEAR_DIRTY_LOG: {
5198 struct kvm_clear_dirty_log log;
5199
5200 r = -EFAULT;
5201 if (copy_from_user(&log, argp, sizeof(log)))
5202 goto out;
5203 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5204 break;
5205 }
5206 #endif
5207 #ifdef CONFIG_KVM_MMIO
5208 case KVM_REGISTER_COALESCED_MMIO: {
5209 struct kvm_coalesced_mmio_zone zone;
5210
5211 r = -EFAULT;
5212 if (copy_from_user(&zone, argp, sizeof(zone)))
5213 goto out;
5214 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5215 break;
5216 }
5217 case KVM_UNREGISTER_COALESCED_MMIO: {
5218 struct kvm_coalesced_mmio_zone zone;
5219
5220 r = -EFAULT;
5221 if (copy_from_user(&zone, argp, sizeof(zone)))
5222 goto out;
5223 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5224 break;
5225 }
5226 #endif
5227 case KVM_IRQFD: {
5228 struct kvm_irqfd data;
5229
5230 r = -EFAULT;
5231 if (copy_from_user(&data, argp, sizeof(data)))
5232 goto out;
5233 r = kvm_irqfd(kvm, &data);
5234 break;
5235 }
5236 case KVM_IOEVENTFD: {
5237 struct kvm_ioeventfd data;
5238
5239 r = -EFAULT;
5240 if (copy_from_user(&data, argp, sizeof(data)))
5241 goto out;
5242 r = kvm_ioeventfd(kvm, &data);
5243 break;
5244 }
5245 #ifdef CONFIG_HAVE_KVM_MSI
5246 case KVM_SIGNAL_MSI: {
5247 struct kvm_msi msi;
5248
5249 r = -EFAULT;
5250 if (copy_from_user(&msi, argp, sizeof(msi)))
5251 goto out;
5252 r = kvm_send_userspace_msi(kvm, &msi);
5253 break;
5254 }
5255 #endif
5256 #ifdef __KVM_HAVE_IRQ_LINE
5257 case KVM_IRQ_LINE_STATUS:
5258 case KVM_IRQ_LINE: {
5259 struct kvm_irq_level irq_event;
5260
5261 r = -EFAULT;
5262 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5263 goto out;
5264
5265 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5266 ioctl == KVM_IRQ_LINE_STATUS);
5267 if (r)
5268 goto out;
5269
5270 r = -EFAULT;
5271 if (ioctl == KVM_IRQ_LINE_STATUS) {
5272 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5273 goto out;
5274 }
5275
5276 r = 0;
5277 break;
5278 }
5279 #endif
5280 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5281 case KVM_SET_GSI_ROUTING: {
5282 struct kvm_irq_routing routing;
5283 struct kvm_irq_routing __user *urouting;
5284 struct kvm_irq_routing_entry *entries = NULL;
5285
5286 r = -EFAULT;
5287 if (copy_from_user(&routing, argp, sizeof(routing)))
5288 goto out;
5289 r = -EINVAL;
5290 if (!kvm_arch_can_set_irq_routing(kvm))
5291 goto out;
5292 if (routing.nr > KVM_MAX_IRQ_ROUTES)
5293 goto out;
5294 if (routing.flags)
5295 goto out;
5296 if (routing.nr) {
5297 urouting = argp;
5298 entries = vmemdup_array_user(urouting->entries,
5299 routing.nr, sizeof(*entries));
5300 if (IS_ERR(entries)) {
5301 r = PTR_ERR(entries);
5302 goto out;
5303 }
5304 }
5305 r = kvm_set_irq_routing(kvm, entries, routing.nr,
5306 routing.flags);
5307 kvfree(entries);
5308 break;
5309 }
5310 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5311 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5312 case KVM_SET_MEMORY_ATTRIBUTES: {
5313 struct kvm_memory_attributes attrs;
5314
5315 r = -EFAULT;
5316 if (copy_from_user(&attrs, argp, sizeof(attrs)))
5317 goto out;
5318
5319 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5320 break;
5321 }
5322 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5323 case KVM_CREATE_DEVICE: {
5324 struct kvm_create_device cd;
5325
5326 r = -EFAULT;
5327 if (copy_from_user(&cd, argp, sizeof(cd)))
5328 goto out;
5329
5330 r = kvm_ioctl_create_device(kvm, &cd);
5331 if (r)
5332 goto out;
5333
5334 r = -EFAULT;
5335 if (copy_to_user(argp, &cd, sizeof(cd)))
5336 goto out;
5337
5338 r = 0;
5339 break;
5340 }
5341 case KVM_CHECK_EXTENSION:
5342 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5343 break;
5344 case KVM_RESET_DIRTY_RINGS:
5345 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5346 break;
5347 case KVM_GET_STATS_FD:
5348 r = kvm_vm_ioctl_get_stats_fd(kvm);
5349 break;
5350 #ifdef CONFIG_KVM_PRIVATE_MEM
5351 case KVM_CREATE_GUEST_MEMFD: {
5352 struct kvm_create_guest_memfd guest_memfd;
5353
5354 r = -EFAULT;
5355 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5356 goto out;
5357
5358 r = kvm_gmem_create(kvm, &guest_memfd);
5359 break;
5360 }
5361 #endif
5362 default:
5363 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5364 }
5365 out:
5366 return r;
5367 }
5368
5369 #ifdef CONFIG_KVM_COMPAT
5370 struct compat_kvm_dirty_log {
5371 __u32 slot;
5372 __u32 padding1;
5373 union {
5374 compat_uptr_t dirty_bitmap; /* one bit per page */
5375 __u64 padding2;
5376 };
5377 };
5378
5379 struct compat_kvm_clear_dirty_log {
5380 __u32 slot;
5381 __u32 num_pages;
5382 __u64 first_page;
5383 union {
5384 compat_uptr_t dirty_bitmap; /* one bit per page */
5385 __u64 padding2;
5386 };
5387 };
5388
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5389 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5390 unsigned long arg)
5391 {
5392 return -ENOTTY;
5393 }
5394
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5395 static long kvm_vm_compat_ioctl(struct file *filp,
5396 unsigned int ioctl, unsigned long arg)
5397 {
5398 struct kvm *kvm = filp->private_data;
5399 int r;
5400
5401 if (kvm->mm != current->mm || kvm->vm_dead)
5402 return -EIO;
5403
5404 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5405 if (r != -ENOTTY)
5406 return r;
5407
5408 switch (ioctl) {
5409 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5410 case KVM_CLEAR_DIRTY_LOG: {
5411 struct compat_kvm_clear_dirty_log compat_log;
5412 struct kvm_clear_dirty_log log;
5413
5414 if (copy_from_user(&compat_log, (void __user *)arg,
5415 sizeof(compat_log)))
5416 return -EFAULT;
5417 log.slot = compat_log.slot;
5418 log.num_pages = compat_log.num_pages;
5419 log.first_page = compat_log.first_page;
5420 log.padding2 = compat_log.padding2;
5421 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5422
5423 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5424 break;
5425 }
5426 #endif
5427 case KVM_GET_DIRTY_LOG: {
5428 struct compat_kvm_dirty_log compat_log;
5429 struct kvm_dirty_log log;
5430
5431 if (copy_from_user(&compat_log, (void __user *)arg,
5432 sizeof(compat_log)))
5433 return -EFAULT;
5434 log.slot = compat_log.slot;
5435 log.padding1 = compat_log.padding1;
5436 log.padding2 = compat_log.padding2;
5437 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5438
5439 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5440 break;
5441 }
5442 default:
5443 r = kvm_vm_ioctl(filp, ioctl, arg);
5444 }
5445 return r;
5446 }
5447 #endif
5448
5449 static struct file_operations kvm_vm_fops = {
5450 .release = kvm_vm_release,
5451 .unlocked_ioctl = kvm_vm_ioctl,
5452 .llseek = noop_llseek,
5453 KVM_COMPAT(kvm_vm_compat_ioctl),
5454 };
5455
file_is_kvm(struct file * file)5456 bool file_is_kvm(struct file *file)
5457 {
5458 return file && file->f_op == &kvm_vm_fops;
5459 }
5460 EXPORT_SYMBOL_GPL(file_is_kvm);
5461
kvm_dev_ioctl_create_vm(unsigned long type)5462 static int kvm_dev_ioctl_create_vm(unsigned long type)
5463 {
5464 char fdname[ITOA_MAX_LEN + 1];
5465 int r, fd;
5466 struct kvm *kvm;
5467 struct file *file;
5468
5469 fd = get_unused_fd_flags(O_CLOEXEC);
5470 if (fd < 0)
5471 return fd;
5472
5473 snprintf(fdname, sizeof(fdname), "%d", fd);
5474
5475 kvm = kvm_create_vm(type, fdname);
5476 if (IS_ERR(kvm)) {
5477 r = PTR_ERR(kvm);
5478 goto put_fd;
5479 }
5480
5481 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5482 if (IS_ERR(file)) {
5483 r = PTR_ERR(file);
5484 goto put_kvm;
5485 }
5486
5487 /*
5488 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5489 * already set, with ->release() being kvm_vm_release(). In error
5490 * cases it will be called by the final fput(file) and will take
5491 * care of doing kvm_put_kvm(kvm).
5492 */
5493 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5494
5495 fd_install(fd, file);
5496 return fd;
5497
5498 put_kvm:
5499 kvm_put_kvm(kvm);
5500 put_fd:
5501 put_unused_fd(fd);
5502 return r;
5503 }
5504
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5505 static long kvm_dev_ioctl(struct file *filp,
5506 unsigned int ioctl, unsigned long arg)
5507 {
5508 int r = -EINVAL;
5509
5510 switch (ioctl) {
5511 case KVM_GET_API_VERSION:
5512 if (arg)
5513 goto out;
5514 r = KVM_API_VERSION;
5515 break;
5516 case KVM_CREATE_VM:
5517 r = kvm_dev_ioctl_create_vm(arg);
5518 break;
5519 case KVM_CHECK_EXTENSION:
5520 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5521 break;
5522 case KVM_GET_VCPU_MMAP_SIZE:
5523 if (arg)
5524 goto out;
5525 r = PAGE_SIZE; /* struct kvm_run */
5526 #ifdef CONFIG_X86
5527 r += PAGE_SIZE; /* pio data page */
5528 #endif
5529 #ifdef CONFIG_KVM_MMIO
5530 r += PAGE_SIZE; /* coalesced mmio ring page */
5531 #endif
5532 break;
5533 default:
5534 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5535 }
5536 out:
5537 return r;
5538 }
5539
5540 static struct file_operations kvm_chardev_ops = {
5541 .unlocked_ioctl = kvm_dev_ioctl,
5542 .llseek = noop_llseek,
5543 KVM_COMPAT(kvm_dev_ioctl),
5544 };
5545
5546 static struct miscdevice kvm_dev = {
5547 KVM_MINOR,
5548 "kvm",
5549 &kvm_chardev_ops,
5550 };
5551
5552 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5553 bool enable_virt_at_load = true;
5554 module_param(enable_virt_at_load, bool, 0444);
5555 EXPORT_SYMBOL_GPL(enable_virt_at_load);
5556
5557 __visible bool kvm_rebooting;
5558 EXPORT_SYMBOL_GPL(kvm_rebooting);
5559
5560 static DEFINE_PER_CPU(bool, virtualization_enabled);
5561 static DEFINE_MUTEX(kvm_usage_lock);
5562 static int kvm_usage_count;
5563
kvm_arch_enable_virtualization(void)5564 __weak void kvm_arch_enable_virtualization(void)
5565 {
5566
5567 }
5568
kvm_arch_disable_virtualization(void)5569 __weak void kvm_arch_disable_virtualization(void)
5570 {
5571
5572 }
5573
kvm_enable_virtualization_cpu(void)5574 static int kvm_enable_virtualization_cpu(void)
5575 {
5576 if (__this_cpu_read(virtualization_enabled))
5577 return 0;
5578
5579 if (kvm_arch_enable_virtualization_cpu()) {
5580 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5581 raw_smp_processor_id());
5582 return -EIO;
5583 }
5584
5585 __this_cpu_write(virtualization_enabled, true);
5586 return 0;
5587 }
5588
kvm_online_cpu(unsigned int cpu)5589 static int kvm_online_cpu(unsigned int cpu)
5590 {
5591 /*
5592 * Abort the CPU online process if hardware virtualization cannot
5593 * be enabled. Otherwise running VMs would encounter unrecoverable
5594 * errors when scheduled to this CPU.
5595 */
5596 return kvm_enable_virtualization_cpu();
5597 }
5598
kvm_disable_virtualization_cpu(void * ign)5599 static void kvm_disable_virtualization_cpu(void *ign)
5600 {
5601 if (!__this_cpu_read(virtualization_enabled))
5602 return;
5603
5604 kvm_arch_disable_virtualization_cpu();
5605
5606 __this_cpu_write(virtualization_enabled, false);
5607 }
5608
kvm_offline_cpu(unsigned int cpu)5609 static int kvm_offline_cpu(unsigned int cpu)
5610 {
5611 kvm_disable_virtualization_cpu(NULL);
5612 return 0;
5613 }
5614
kvm_shutdown(void)5615 static void kvm_shutdown(void)
5616 {
5617 /*
5618 * Disable hardware virtualization and set kvm_rebooting to indicate
5619 * that KVM has asynchronously disabled hardware virtualization, i.e.
5620 * that relevant errors and exceptions aren't entirely unexpected.
5621 * Some flavors of hardware virtualization need to be disabled before
5622 * transferring control to firmware (to perform shutdown/reboot), e.g.
5623 * on x86, virtualization can block INIT interrupts, which are used by
5624 * firmware to pull APs back under firmware control. Note, this path
5625 * is used for both shutdown and reboot scenarios, i.e. neither name is
5626 * 100% comprehensive.
5627 */
5628 pr_info("kvm: exiting hardware virtualization\n");
5629 kvm_rebooting = true;
5630 on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1);
5631 }
5632
kvm_suspend(void)5633 static int kvm_suspend(void)
5634 {
5635 /*
5636 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5637 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage
5638 * count is stable. Assert that kvm_usage_lock is not held to ensure
5639 * the system isn't suspended while KVM is enabling hardware. Hardware
5640 * enabling can be preempted, but the task cannot be frozen until it has
5641 * dropped all locks (userspace tasks are frozen via a fake signal).
5642 */
5643 lockdep_assert_not_held(&kvm_usage_lock);
5644 lockdep_assert_irqs_disabled();
5645
5646 kvm_disable_virtualization_cpu(NULL);
5647 return 0;
5648 }
5649
kvm_resume(void)5650 static void kvm_resume(void)
5651 {
5652 lockdep_assert_not_held(&kvm_usage_lock);
5653 lockdep_assert_irqs_disabled();
5654
5655 WARN_ON_ONCE(kvm_enable_virtualization_cpu());
5656 }
5657
5658 static struct syscore_ops kvm_syscore_ops = {
5659 .suspend = kvm_suspend,
5660 .resume = kvm_resume,
5661 .shutdown = kvm_shutdown,
5662 };
5663
kvm_enable_virtualization(void)5664 int kvm_enable_virtualization(void)
5665 {
5666 int r;
5667
5668 guard(mutex)(&kvm_usage_lock);
5669
5670 if (kvm_usage_count++)
5671 return 0;
5672
5673 kvm_arch_enable_virtualization();
5674
5675 r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5676 kvm_online_cpu, kvm_offline_cpu);
5677 if (r)
5678 goto err_cpuhp;
5679
5680 register_syscore_ops(&kvm_syscore_ops);
5681
5682 /*
5683 * Undo virtualization enabling and bail if the system is going down.
5684 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5685 * possible for an in-flight operation to enable virtualization after
5686 * syscore_shutdown() is called, i.e. without kvm_shutdown() being
5687 * invoked. Note, this relies on system_state being set _before_
5688 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked
5689 * or this CPU observes the impending shutdown. Which is why KVM uses
5690 * a syscore ops hook instead of registering a dedicated reboot
5691 * notifier (the latter runs before system_state is updated).
5692 */
5693 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5694 system_state == SYSTEM_RESTART) {
5695 r = -EBUSY;
5696 goto err_rebooting;
5697 }
5698
5699 return 0;
5700
5701 err_rebooting:
5702 unregister_syscore_ops(&kvm_syscore_ops);
5703 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5704 err_cpuhp:
5705 kvm_arch_disable_virtualization();
5706 --kvm_usage_count;
5707 return r;
5708 }
5709 EXPORT_SYMBOL_GPL(kvm_enable_virtualization);
5710
kvm_disable_virtualization(void)5711 void kvm_disable_virtualization(void)
5712 {
5713 guard(mutex)(&kvm_usage_lock);
5714
5715 if (--kvm_usage_count)
5716 return;
5717
5718 unregister_syscore_ops(&kvm_syscore_ops);
5719 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5720 kvm_arch_disable_virtualization();
5721 }
5722 EXPORT_SYMBOL_GPL(kvm_disable_virtualization);
5723
kvm_init_virtualization(void)5724 static int kvm_init_virtualization(void)
5725 {
5726 if (enable_virt_at_load)
5727 return kvm_enable_virtualization();
5728
5729 return 0;
5730 }
5731
kvm_uninit_virtualization(void)5732 static void kvm_uninit_virtualization(void)
5733 {
5734 if (enable_virt_at_load)
5735 kvm_disable_virtualization();
5736 }
5737 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
kvm_init_virtualization(void)5738 static int kvm_init_virtualization(void)
5739 {
5740 return 0;
5741 }
5742
kvm_uninit_virtualization(void)5743 static void kvm_uninit_virtualization(void)
5744 {
5745
5746 }
5747 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5748
kvm_iodevice_destructor(struct kvm_io_device * dev)5749 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5750 {
5751 if (dev->ops->destructor)
5752 dev->ops->destructor(dev);
5753 }
5754
kvm_io_bus_destroy(struct kvm_io_bus * bus)5755 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5756 {
5757 int i;
5758
5759 for (i = 0; i < bus->dev_count; i++) {
5760 struct kvm_io_device *pos = bus->range[i].dev;
5761
5762 kvm_iodevice_destructor(pos);
5763 }
5764 kfree(bus);
5765 }
5766
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)5767 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5768 const struct kvm_io_range *r2)
5769 {
5770 gpa_t addr1 = r1->addr;
5771 gpa_t addr2 = r2->addr;
5772
5773 if (addr1 < addr2)
5774 return -1;
5775
5776 /* If r2->len == 0, match the exact address. If r2->len != 0,
5777 * accept any overlapping write. Any order is acceptable for
5778 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5779 * we process all of them.
5780 */
5781 if (r2->len) {
5782 addr1 += r1->len;
5783 addr2 += r2->len;
5784 }
5785
5786 if (addr1 > addr2)
5787 return 1;
5788
5789 return 0;
5790 }
5791
kvm_io_bus_sort_cmp(const void * p1,const void * p2)5792 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5793 {
5794 return kvm_io_bus_cmp(p1, p2);
5795 }
5796
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)5797 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5798 gpa_t addr, int len)
5799 {
5800 struct kvm_io_range *range, key;
5801 int off;
5802
5803 key = (struct kvm_io_range) {
5804 .addr = addr,
5805 .len = len,
5806 };
5807
5808 range = bsearch(&key, bus->range, bus->dev_count,
5809 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5810 if (range == NULL)
5811 return -ENOENT;
5812
5813 off = range - bus->range;
5814
5815 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5816 off--;
5817
5818 return off;
5819 }
5820
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)5821 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5822 struct kvm_io_range *range, const void *val)
5823 {
5824 int idx;
5825
5826 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5827 if (idx < 0)
5828 return -EOPNOTSUPP;
5829
5830 while (idx < bus->dev_count &&
5831 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5832 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5833 range->len, val))
5834 return idx;
5835 idx++;
5836 }
5837
5838 return -EOPNOTSUPP;
5839 }
5840
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)5841 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5842 int len, const void *val)
5843 {
5844 struct kvm_io_bus *bus;
5845 struct kvm_io_range range;
5846 int r;
5847
5848 range = (struct kvm_io_range) {
5849 .addr = addr,
5850 .len = len,
5851 };
5852
5853 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5854 if (!bus)
5855 return -ENOMEM;
5856 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5857 return r < 0 ? r : 0;
5858 }
5859 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5860
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)5861 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5862 gpa_t addr, int len, const void *val, long cookie)
5863 {
5864 struct kvm_io_bus *bus;
5865 struct kvm_io_range range;
5866
5867 range = (struct kvm_io_range) {
5868 .addr = addr,
5869 .len = len,
5870 };
5871
5872 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5873 if (!bus)
5874 return -ENOMEM;
5875
5876 /* First try the device referenced by cookie. */
5877 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5878 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5879 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5880 val))
5881 return cookie;
5882
5883 /*
5884 * cookie contained garbage; fall back to search and return the
5885 * correct cookie value.
5886 */
5887 return __kvm_io_bus_write(vcpu, bus, &range, val);
5888 }
5889
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)5890 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5891 struct kvm_io_range *range, void *val)
5892 {
5893 int idx;
5894
5895 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5896 if (idx < 0)
5897 return -EOPNOTSUPP;
5898
5899 while (idx < bus->dev_count &&
5900 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5901 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5902 range->len, val))
5903 return idx;
5904 idx++;
5905 }
5906
5907 return -EOPNOTSUPP;
5908 }
5909
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)5910 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5911 int len, void *val)
5912 {
5913 struct kvm_io_bus *bus;
5914 struct kvm_io_range range;
5915 int r;
5916
5917 range = (struct kvm_io_range) {
5918 .addr = addr,
5919 .len = len,
5920 };
5921
5922 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5923 if (!bus)
5924 return -ENOMEM;
5925 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5926 return r < 0 ? r : 0;
5927 }
5928 EXPORT_SYMBOL_GPL(kvm_io_bus_read);
5929
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)5930 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5931 int len, struct kvm_io_device *dev)
5932 {
5933 int i;
5934 struct kvm_io_bus *new_bus, *bus;
5935 struct kvm_io_range range;
5936
5937 lockdep_assert_held(&kvm->slots_lock);
5938
5939 bus = kvm_get_bus(kvm, bus_idx);
5940 if (!bus)
5941 return -ENOMEM;
5942
5943 /* exclude ioeventfd which is limited by maximum fd */
5944 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5945 return -ENOSPC;
5946
5947 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5948 GFP_KERNEL_ACCOUNT);
5949 if (!new_bus)
5950 return -ENOMEM;
5951
5952 range = (struct kvm_io_range) {
5953 .addr = addr,
5954 .len = len,
5955 .dev = dev,
5956 };
5957
5958 for (i = 0; i < bus->dev_count; i++)
5959 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5960 break;
5961
5962 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5963 new_bus->dev_count++;
5964 new_bus->range[i] = range;
5965 memcpy(new_bus->range + i + 1, bus->range + i,
5966 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5967 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5968 synchronize_srcu_expedited(&kvm->srcu);
5969 kfree(bus);
5970
5971 return 0;
5972 }
5973
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)5974 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5975 struct kvm_io_device *dev)
5976 {
5977 int i;
5978 struct kvm_io_bus *new_bus, *bus;
5979
5980 lockdep_assert_held(&kvm->slots_lock);
5981
5982 bus = kvm_get_bus(kvm, bus_idx);
5983 if (!bus)
5984 return 0;
5985
5986 for (i = 0; i < bus->dev_count; i++) {
5987 if (bus->range[i].dev == dev) {
5988 break;
5989 }
5990 }
5991
5992 if (i == bus->dev_count)
5993 return 0;
5994
5995 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5996 GFP_KERNEL_ACCOUNT);
5997 if (new_bus) {
5998 memcpy(new_bus, bus, struct_size(bus, range, i));
5999 new_bus->dev_count--;
6000 memcpy(new_bus->range + i, bus->range + i + 1,
6001 flex_array_size(new_bus, range, new_bus->dev_count - i));
6002 }
6003
6004 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
6005 synchronize_srcu_expedited(&kvm->srcu);
6006
6007 /*
6008 * If NULL bus is installed, destroy the old bus, including all the
6009 * attached devices. Otherwise, destroy the caller's device only.
6010 */
6011 if (!new_bus) {
6012 pr_err("kvm: failed to shrink bus, removing it completely\n");
6013 kvm_io_bus_destroy(bus);
6014 return -ENOMEM;
6015 }
6016
6017 kvm_iodevice_destructor(dev);
6018 kfree(bus);
6019 return 0;
6020 }
6021
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)6022 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6023 gpa_t addr)
6024 {
6025 struct kvm_io_bus *bus;
6026 int dev_idx, srcu_idx;
6027 struct kvm_io_device *iodev = NULL;
6028
6029 srcu_idx = srcu_read_lock(&kvm->srcu);
6030
6031 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
6032 if (!bus)
6033 goto out_unlock;
6034
6035 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6036 if (dev_idx < 0)
6037 goto out_unlock;
6038
6039 iodev = bus->range[dev_idx].dev;
6040
6041 out_unlock:
6042 srcu_read_unlock(&kvm->srcu, srcu_idx);
6043
6044 return iodev;
6045 }
6046 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6047
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)6048 static int kvm_debugfs_open(struct inode *inode, struct file *file,
6049 int (*get)(void *, u64 *), int (*set)(void *, u64),
6050 const char *fmt)
6051 {
6052 int ret;
6053 struct kvm_stat_data *stat_data = inode->i_private;
6054
6055 /*
6056 * The debugfs files are a reference to the kvm struct which
6057 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
6058 * avoids the race between open and the removal of the debugfs directory.
6059 */
6060 if (!kvm_get_kvm_safe(stat_data->kvm))
6061 return -ENOENT;
6062
6063 ret = simple_attr_open(inode, file, get,
6064 kvm_stats_debugfs_mode(stat_data->desc) & 0222
6065 ? set : NULL, fmt);
6066 if (ret)
6067 kvm_put_kvm(stat_data->kvm);
6068
6069 return ret;
6070 }
6071
kvm_debugfs_release(struct inode * inode,struct file * file)6072 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6073 {
6074 struct kvm_stat_data *stat_data = inode->i_private;
6075
6076 simple_attr_release(inode, file);
6077 kvm_put_kvm(stat_data->kvm);
6078
6079 return 0;
6080 }
6081
kvm_get_stat_per_vm(struct kvm * kvm,size_t offset,u64 * val)6082 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6083 {
6084 *val = *(u64 *)((void *)(&kvm->stat) + offset);
6085
6086 return 0;
6087 }
6088
kvm_clear_stat_per_vm(struct kvm * kvm,size_t offset)6089 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6090 {
6091 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
6092
6093 return 0;
6094 }
6095
kvm_get_stat_per_vcpu(struct kvm * kvm,size_t offset,u64 * val)6096 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6097 {
6098 unsigned long i;
6099 struct kvm_vcpu *vcpu;
6100
6101 *val = 0;
6102
6103 kvm_for_each_vcpu(i, vcpu, kvm)
6104 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
6105
6106 return 0;
6107 }
6108
kvm_clear_stat_per_vcpu(struct kvm * kvm,size_t offset)6109 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6110 {
6111 unsigned long i;
6112 struct kvm_vcpu *vcpu;
6113
6114 kvm_for_each_vcpu(i, vcpu, kvm)
6115 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6116
6117 return 0;
6118 }
6119
kvm_stat_data_get(void * data,u64 * val)6120 static int kvm_stat_data_get(void *data, u64 *val)
6121 {
6122 int r = -EFAULT;
6123 struct kvm_stat_data *stat_data = data;
6124
6125 switch (stat_data->kind) {
6126 case KVM_STAT_VM:
6127 r = kvm_get_stat_per_vm(stat_data->kvm,
6128 stat_data->desc->desc.offset, val);
6129 break;
6130 case KVM_STAT_VCPU:
6131 r = kvm_get_stat_per_vcpu(stat_data->kvm,
6132 stat_data->desc->desc.offset, val);
6133 break;
6134 }
6135
6136 return r;
6137 }
6138
kvm_stat_data_clear(void * data,u64 val)6139 static int kvm_stat_data_clear(void *data, u64 val)
6140 {
6141 int r = -EFAULT;
6142 struct kvm_stat_data *stat_data = data;
6143
6144 if (val)
6145 return -EINVAL;
6146
6147 switch (stat_data->kind) {
6148 case KVM_STAT_VM:
6149 r = kvm_clear_stat_per_vm(stat_data->kvm,
6150 stat_data->desc->desc.offset);
6151 break;
6152 case KVM_STAT_VCPU:
6153 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6154 stat_data->desc->desc.offset);
6155 break;
6156 }
6157
6158 return r;
6159 }
6160
kvm_stat_data_open(struct inode * inode,struct file * file)6161 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6162 {
6163 __simple_attr_check_format("%llu\n", 0ull);
6164 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6165 kvm_stat_data_clear, "%llu\n");
6166 }
6167
6168 static const struct file_operations stat_fops_per_vm = {
6169 .owner = THIS_MODULE,
6170 .open = kvm_stat_data_open,
6171 .release = kvm_debugfs_release,
6172 .read = simple_attr_read,
6173 .write = simple_attr_write,
6174 };
6175
vm_stat_get(void * _offset,u64 * val)6176 static int vm_stat_get(void *_offset, u64 *val)
6177 {
6178 unsigned offset = (long)_offset;
6179 struct kvm *kvm;
6180 u64 tmp_val;
6181
6182 *val = 0;
6183 mutex_lock(&kvm_lock);
6184 list_for_each_entry(kvm, &vm_list, vm_list) {
6185 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6186 *val += tmp_val;
6187 }
6188 mutex_unlock(&kvm_lock);
6189 return 0;
6190 }
6191
vm_stat_clear(void * _offset,u64 val)6192 static int vm_stat_clear(void *_offset, u64 val)
6193 {
6194 unsigned offset = (long)_offset;
6195 struct kvm *kvm;
6196
6197 if (val)
6198 return -EINVAL;
6199
6200 mutex_lock(&kvm_lock);
6201 list_for_each_entry(kvm, &vm_list, vm_list) {
6202 kvm_clear_stat_per_vm(kvm, offset);
6203 }
6204 mutex_unlock(&kvm_lock);
6205
6206 return 0;
6207 }
6208
6209 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6210 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6211
vcpu_stat_get(void * _offset,u64 * val)6212 static int vcpu_stat_get(void *_offset, u64 *val)
6213 {
6214 unsigned offset = (long)_offset;
6215 struct kvm *kvm;
6216 u64 tmp_val;
6217
6218 *val = 0;
6219 mutex_lock(&kvm_lock);
6220 list_for_each_entry(kvm, &vm_list, vm_list) {
6221 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6222 *val += tmp_val;
6223 }
6224 mutex_unlock(&kvm_lock);
6225 return 0;
6226 }
6227
vcpu_stat_clear(void * _offset,u64 val)6228 static int vcpu_stat_clear(void *_offset, u64 val)
6229 {
6230 unsigned offset = (long)_offset;
6231 struct kvm *kvm;
6232
6233 if (val)
6234 return -EINVAL;
6235
6236 mutex_lock(&kvm_lock);
6237 list_for_each_entry(kvm, &vm_list, vm_list) {
6238 kvm_clear_stat_per_vcpu(kvm, offset);
6239 }
6240 mutex_unlock(&kvm_lock);
6241
6242 return 0;
6243 }
6244
6245 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6246 "%llu\n");
6247 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6248
kvm_uevent_notify_change(unsigned int type,struct kvm * kvm)6249 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6250 {
6251 struct kobj_uevent_env *env;
6252 unsigned long long created, active;
6253
6254 if (!kvm_dev.this_device || !kvm)
6255 return;
6256
6257 mutex_lock(&kvm_lock);
6258 if (type == KVM_EVENT_CREATE_VM) {
6259 kvm_createvm_count++;
6260 kvm_active_vms++;
6261 } else if (type == KVM_EVENT_DESTROY_VM) {
6262 kvm_active_vms--;
6263 }
6264 created = kvm_createvm_count;
6265 active = kvm_active_vms;
6266 mutex_unlock(&kvm_lock);
6267
6268 env = kzalloc(sizeof(*env), GFP_KERNEL);
6269 if (!env)
6270 return;
6271
6272 add_uevent_var(env, "CREATED=%llu", created);
6273 add_uevent_var(env, "COUNT=%llu", active);
6274
6275 if (type == KVM_EVENT_CREATE_VM) {
6276 add_uevent_var(env, "EVENT=create");
6277 kvm->userspace_pid = task_pid_nr(current);
6278 } else if (type == KVM_EVENT_DESTROY_VM) {
6279 add_uevent_var(env, "EVENT=destroy");
6280 }
6281 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6282
6283 if (!IS_ERR(kvm->debugfs_dentry)) {
6284 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
6285
6286 if (p) {
6287 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6288 if (!IS_ERR(tmp))
6289 add_uevent_var(env, "STATS_PATH=%s", tmp);
6290 kfree(p);
6291 }
6292 }
6293 /* no need for checks, since we are adding at most only 5 keys */
6294 env->envp[env->envp_idx++] = NULL;
6295 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6296 kfree(env);
6297 }
6298
kvm_init_debug(void)6299 static void kvm_init_debug(void)
6300 {
6301 const struct file_operations *fops;
6302 const struct _kvm_stats_desc *pdesc;
6303 int i;
6304
6305 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6306
6307 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6308 pdesc = &kvm_vm_stats_desc[i];
6309 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6310 fops = &vm_stat_fops;
6311 else
6312 fops = &vm_stat_readonly_fops;
6313 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6314 kvm_debugfs_dir,
6315 (void *)(long)pdesc->desc.offset, fops);
6316 }
6317
6318 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6319 pdesc = &kvm_vcpu_stats_desc[i];
6320 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6321 fops = &vcpu_stat_fops;
6322 else
6323 fops = &vcpu_stat_readonly_fops;
6324 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6325 kvm_debugfs_dir,
6326 (void *)(long)pdesc->desc.offset, fops);
6327 }
6328 }
6329
6330 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)6331 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6332 {
6333 return container_of(pn, struct kvm_vcpu, preempt_notifier);
6334 }
6335
kvm_sched_in(struct preempt_notifier * pn,int cpu)6336 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6337 {
6338 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6339
6340 WRITE_ONCE(vcpu->preempted, false);
6341 WRITE_ONCE(vcpu->ready, false);
6342
6343 __this_cpu_write(kvm_running_vcpu, vcpu);
6344 kvm_arch_vcpu_load(vcpu, cpu);
6345
6346 WRITE_ONCE(vcpu->scheduled_out, false);
6347 }
6348
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)6349 static void kvm_sched_out(struct preempt_notifier *pn,
6350 struct task_struct *next)
6351 {
6352 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6353
6354 WRITE_ONCE(vcpu->scheduled_out, true);
6355
6356 if (task_is_runnable(current) && vcpu->wants_to_run) {
6357 WRITE_ONCE(vcpu->preempted, true);
6358 WRITE_ONCE(vcpu->ready, true);
6359 }
6360 kvm_arch_vcpu_put(vcpu);
6361 __this_cpu_write(kvm_running_vcpu, NULL);
6362 }
6363
6364 /**
6365 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6366 *
6367 * We can disable preemption locally around accessing the per-CPU variable,
6368 * and use the resolved vcpu pointer after enabling preemption again,
6369 * because even if the current thread is migrated to another CPU, reading
6370 * the per-CPU value later will give us the same value as we update the
6371 * per-CPU variable in the preempt notifier handlers.
6372 */
kvm_get_running_vcpu(void)6373 struct kvm_vcpu *kvm_get_running_vcpu(void)
6374 {
6375 struct kvm_vcpu *vcpu;
6376
6377 preempt_disable();
6378 vcpu = __this_cpu_read(kvm_running_vcpu);
6379 preempt_enable();
6380
6381 return vcpu;
6382 }
6383 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6384
6385 /**
6386 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6387 */
kvm_get_running_vcpus(void)6388 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6389 {
6390 return &kvm_running_vcpu;
6391 }
6392
6393 #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_guest_state(void)6394 static unsigned int kvm_guest_state(void)
6395 {
6396 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6397 unsigned int state;
6398
6399 if (!kvm_arch_pmi_in_guest(vcpu))
6400 return 0;
6401
6402 state = PERF_GUEST_ACTIVE;
6403 if (!kvm_arch_vcpu_in_kernel(vcpu))
6404 state |= PERF_GUEST_USER;
6405
6406 return state;
6407 }
6408
kvm_guest_get_ip(void)6409 static unsigned long kvm_guest_get_ip(void)
6410 {
6411 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6412
6413 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6414 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6415 return 0;
6416
6417 return kvm_arch_vcpu_get_ip(vcpu);
6418 }
6419
6420 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6421 .state = kvm_guest_state,
6422 .get_ip = kvm_guest_get_ip,
6423 .handle_intel_pt_intr = NULL,
6424 };
6425
kvm_register_perf_callbacks(unsigned int (* pt_intr_handler)(void))6426 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6427 {
6428 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6429 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6430 }
kvm_unregister_perf_callbacks(void)6431 void kvm_unregister_perf_callbacks(void)
6432 {
6433 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6434 }
6435 #endif
6436
kvm_init(unsigned vcpu_size,unsigned vcpu_align,struct module * module)6437 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6438 {
6439 int r;
6440 int cpu;
6441
6442 /* A kmem cache lets us meet the alignment requirements of fx_save. */
6443 if (!vcpu_align)
6444 vcpu_align = __alignof__(struct kvm_vcpu);
6445 kvm_vcpu_cache =
6446 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6447 SLAB_ACCOUNT,
6448 offsetof(struct kvm_vcpu, arch),
6449 offsetofend(struct kvm_vcpu, stats_id)
6450 - offsetof(struct kvm_vcpu, arch),
6451 NULL);
6452 if (!kvm_vcpu_cache)
6453 return -ENOMEM;
6454
6455 for_each_possible_cpu(cpu) {
6456 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6457 GFP_KERNEL, cpu_to_node(cpu))) {
6458 r = -ENOMEM;
6459 goto err_cpu_kick_mask;
6460 }
6461 }
6462
6463 r = kvm_irqfd_init();
6464 if (r)
6465 goto err_irqfd;
6466
6467 r = kvm_async_pf_init();
6468 if (r)
6469 goto err_async_pf;
6470
6471 kvm_chardev_ops.owner = module;
6472 kvm_vm_fops.owner = module;
6473 kvm_vcpu_fops.owner = module;
6474 kvm_device_fops.owner = module;
6475
6476 kvm_preempt_ops.sched_in = kvm_sched_in;
6477 kvm_preempt_ops.sched_out = kvm_sched_out;
6478
6479 kvm_init_debug();
6480
6481 r = kvm_vfio_ops_init();
6482 if (WARN_ON_ONCE(r))
6483 goto err_vfio;
6484
6485 kvm_gmem_init(module);
6486
6487 r = kvm_init_virtualization();
6488 if (r)
6489 goto err_virt;
6490
6491 /*
6492 * Registration _must_ be the very last thing done, as this exposes
6493 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6494 */
6495 r = misc_register(&kvm_dev);
6496 if (r) {
6497 pr_err("kvm: misc device register failed\n");
6498 goto err_register;
6499 }
6500
6501 return 0;
6502
6503 err_register:
6504 kvm_uninit_virtualization();
6505 err_virt:
6506 kvm_vfio_ops_exit();
6507 err_vfio:
6508 kvm_async_pf_deinit();
6509 err_async_pf:
6510 kvm_irqfd_exit();
6511 err_irqfd:
6512 err_cpu_kick_mask:
6513 for_each_possible_cpu(cpu)
6514 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6515 kmem_cache_destroy(kvm_vcpu_cache);
6516 return r;
6517 }
6518 EXPORT_SYMBOL_GPL(kvm_init);
6519
kvm_exit(void)6520 void kvm_exit(void)
6521 {
6522 int cpu;
6523
6524 /*
6525 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6526 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6527 * to KVM while the module is being stopped.
6528 */
6529 misc_deregister(&kvm_dev);
6530
6531 kvm_uninit_virtualization();
6532
6533 debugfs_remove_recursive(kvm_debugfs_dir);
6534 for_each_possible_cpu(cpu)
6535 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6536 kmem_cache_destroy(kvm_vcpu_cache);
6537 kvm_vfio_ops_exit();
6538 kvm_async_pf_deinit();
6539 kvm_irqfd_exit();
6540 }
6541 EXPORT_SYMBOL_GPL(kvm_exit);
6542