1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Linaro Ltd.
4 * Author: Shannon Zhao <shannon.zhao@linaro.org>
5 */
6
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list.h>
11 #include <linux/perf_event.h>
12 #include <linux/perf/arm_pmu.h>
13 #include <linux/uaccess.h>
14 #include <asm/kvm_emulate.h>
15 #include <kvm/arm_pmu.h>
16 #include <kvm/arm_vgic.h>
17
18 #define PERF_ATTR_CFG1_COUNTER_64BIT BIT(0)
19
20 static LIST_HEAD(arm_pmus);
21 static DEFINE_MUTEX(arm_pmus_lock);
22
23 static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc);
24 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc);
25 static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc);
26
kvm_supports_guest_pmuv3(void)27 bool kvm_supports_guest_pmuv3(void)
28 {
29 guard(mutex)(&arm_pmus_lock);
30 return !list_empty(&arm_pmus);
31 }
32
kvm_pmc_to_vcpu(const struct kvm_pmc * pmc)33 static struct kvm_vcpu *kvm_pmc_to_vcpu(const struct kvm_pmc *pmc)
34 {
35 return container_of(pmc, struct kvm_vcpu, arch.pmu.pmc[pmc->idx]);
36 }
37
kvm_vcpu_idx_to_pmc(struct kvm_vcpu * vcpu,int cnt_idx)38 static struct kvm_pmc *kvm_vcpu_idx_to_pmc(struct kvm_vcpu *vcpu, int cnt_idx)
39 {
40 return &vcpu->arch.pmu.pmc[cnt_idx];
41 }
42
__kvm_pmu_event_mask(unsigned int pmuver)43 static u32 __kvm_pmu_event_mask(unsigned int pmuver)
44 {
45 switch (pmuver) {
46 case ID_AA64DFR0_EL1_PMUVer_IMP:
47 return GENMASK(9, 0);
48 case ID_AA64DFR0_EL1_PMUVer_V3P1:
49 case ID_AA64DFR0_EL1_PMUVer_V3P4:
50 case ID_AA64DFR0_EL1_PMUVer_V3P5:
51 case ID_AA64DFR0_EL1_PMUVer_V3P7:
52 return GENMASK(15, 0);
53 default: /* Shouldn't be here, just for sanity */
54 WARN_ONCE(1, "Unknown PMU version %d\n", pmuver);
55 return 0;
56 }
57 }
58
kvm_pmu_event_mask(struct kvm * kvm)59 static u32 kvm_pmu_event_mask(struct kvm *kvm)
60 {
61 u64 dfr0 = kvm_read_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1);
62 u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, dfr0);
63
64 return __kvm_pmu_event_mask(pmuver);
65 }
66
kvm_pmu_evtyper_mask(struct kvm * kvm)67 u64 kvm_pmu_evtyper_mask(struct kvm *kvm)
68 {
69 u64 mask = ARMV8_PMU_EXCLUDE_EL1 | ARMV8_PMU_EXCLUDE_EL0 |
70 kvm_pmu_event_mask(kvm);
71
72 if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL2, IMP))
73 mask |= ARMV8_PMU_INCLUDE_EL2;
74
75 if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL3, IMP))
76 mask |= ARMV8_PMU_EXCLUDE_NS_EL0 |
77 ARMV8_PMU_EXCLUDE_NS_EL1 |
78 ARMV8_PMU_EXCLUDE_EL3;
79
80 return mask;
81 }
82
83 /**
84 * kvm_pmc_is_64bit - determine if counter is 64bit
85 * @pmc: counter context
86 */
kvm_pmc_is_64bit(struct kvm_pmc * pmc)87 static bool kvm_pmc_is_64bit(struct kvm_pmc *pmc)
88 {
89 struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
90
91 return (pmc->idx == ARMV8_PMU_CYCLE_IDX ||
92 kvm_has_feat(vcpu->kvm, ID_AA64DFR0_EL1, PMUVer, V3P5));
93 }
94
kvm_pmc_has_64bit_overflow(struct kvm_pmc * pmc)95 static bool kvm_pmc_has_64bit_overflow(struct kvm_pmc *pmc)
96 {
97 struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
98 u64 val = kvm_vcpu_read_pmcr(vcpu);
99
100 if (kvm_pmu_counter_is_hyp(vcpu, pmc->idx))
101 return __vcpu_sys_reg(vcpu, MDCR_EL2) & MDCR_EL2_HLP;
102
103 return (pmc->idx < ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LP)) ||
104 (pmc->idx == ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LC));
105 }
106
kvm_pmu_counter_can_chain(struct kvm_pmc * pmc)107 static bool kvm_pmu_counter_can_chain(struct kvm_pmc *pmc)
108 {
109 return (!(pmc->idx & 1) && (pmc->idx + 1) < ARMV8_PMU_CYCLE_IDX &&
110 !kvm_pmc_has_64bit_overflow(pmc));
111 }
112
counter_index_to_reg(u64 idx)113 static u32 counter_index_to_reg(u64 idx)
114 {
115 return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + idx;
116 }
117
counter_index_to_evtreg(u64 idx)118 static u32 counter_index_to_evtreg(u64 idx)
119 {
120 return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + idx;
121 }
122
kvm_pmc_read_evtreg(const struct kvm_pmc * pmc)123 static u64 kvm_pmc_read_evtreg(const struct kvm_pmc *pmc)
124 {
125 return __vcpu_sys_reg(kvm_pmc_to_vcpu(pmc), counter_index_to_evtreg(pmc->idx));
126 }
127
kvm_pmu_get_pmc_value(struct kvm_pmc * pmc)128 static u64 kvm_pmu_get_pmc_value(struct kvm_pmc *pmc)
129 {
130 struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
131 u64 counter, reg, enabled, running;
132
133 reg = counter_index_to_reg(pmc->idx);
134 counter = __vcpu_sys_reg(vcpu, reg);
135
136 /*
137 * The real counter value is equal to the value of counter register plus
138 * the value perf event counts.
139 */
140 if (pmc->perf_event)
141 counter += perf_event_read_value(pmc->perf_event, &enabled,
142 &running);
143
144 if (!kvm_pmc_is_64bit(pmc))
145 counter = lower_32_bits(counter);
146
147 return counter;
148 }
149
150 /**
151 * kvm_pmu_get_counter_value - get PMU counter value
152 * @vcpu: The vcpu pointer
153 * @select_idx: The counter index
154 */
kvm_pmu_get_counter_value(struct kvm_vcpu * vcpu,u64 select_idx)155 u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
156 {
157 return kvm_pmu_get_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx));
158 }
159
kvm_pmu_set_pmc_value(struct kvm_pmc * pmc,u64 val,bool force)160 static void kvm_pmu_set_pmc_value(struct kvm_pmc *pmc, u64 val, bool force)
161 {
162 struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
163 u64 reg;
164
165 kvm_pmu_release_perf_event(pmc);
166
167 reg = counter_index_to_reg(pmc->idx);
168
169 if (vcpu_mode_is_32bit(vcpu) && pmc->idx != ARMV8_PMU_CYCLE_IDX &&
170 !force) {
171 /*
172 * Even with PMUv3p5, AArch32 cannot write to the top
173 * 32bit of the counters. The only possible course of
174 * action is to use PMCR.P, which will reset them to
175 * 0 (the only use of the 'force' parameter).
176 */
177 val = __vcpu_sys_reg(vcpu, reg) & GENMASK(63, 32);
178 val |= lower_32_bits(val);
179 }
180
181 __vcpu_assign_sys_reg(vcpu, reg, val);
182
183 /* Recreate the perf event to reflect the updated sample_period */
184 kvm_pmu_create_perf_event(pmc);
185 }
186
187 /**
188 * kvm_pmu_set_counter_value - set PMU counter value
189 * @vcpu: The vcpu pointer
190 * @select_idx: The counter index
191 * @val: The counter value
192 */
kvm_pmu_set_counter_value(struct kvm_vcpu * vcpu,u64 select_idx,u64 val)193 void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
194 {
195 kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx), val, false);
196 }
197
198 /**
199 * kvm_pmu_set_counter_value_user - set PMU counter value from user
200 * @vcpu: The vcpu pointer
201 * @select_idx: The counter index
202 * @val: The counter value
203 */
kvm_pmu_set_counter_value_user(struct kvm_vcpu * vcpu,u64 select_idx,u64 val)204 void kvm_pmu_set_counter_value_user(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
205 {
206 kvm_pmu_release_perf_event(kvm_vcpu_idx_to_pmc(vcpu, select_idx));
207 __vcpu_assign_sys_reg(vcpu, counter_index_to_reg(select_idx), val);
208 kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
209 }
210
211 /**
212 * kvm_pmu_release_perf_event - remove the perf event
213 * @pmc: The PMU counter pointer
214 */
kvm_pmu_release_perf_event(struct kvm_pmc * pmc)215 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
216 {
217 if (pmc->perf_event) {
218 perf_event_disable(pmc->perf_event);
219 perf_event_release_kernel(pmc->perf_event);
220 pmc->perf_event = NULL;
221 }
222 }
223
224 /**
225 * kvm_pmu_stop_counter - stop PMU counter
226 * @pmc: The PMU counter pointer
227 *
228 * If this counter has been configured to monitor some event, release it here.
229 */
kvm_pmu_stop_counter(struct kvm_pmc * pmc)230 static void kvm_pmu_stop_counter(struct kvm_pmc *pmc)
231 {
232 struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
233 u64 reg, val;
234
235 if (!pmc->perf_event)
236 return;
237
238 val = kvm_pmu_get_pmc_value(pmc);
239
240 reg = counter_index_to_reg(pmc->idx);
241
242 __vcpu_assign_sys_reg(vcpu, reg, val);
243
244 kvm_pmu_release_perf_event(pmc);
245 }
246
247 /**
248 * kvm_pmu_vcpu_init - assign pmu counter idx for cpu
249 * @vcpu: The vcpu pointer
250 *
251 */
kvm_pmu_vcpu_init(struct kvm_vcpu * vcpu)252 void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
253 {
254 int i;
255 struct kvm_pmu *pmu = &vcpu->arch.pmu;
256
257 for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++)
258 pmu->pmc[i].idx = i;
259 }
260
261 /**
262 * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
263 * @vcpu: The vcpu pointer
264 *
265 */
kvm_pmu_vcpu_destroy(struct kvm_vcpu * vcpu)266 void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
267 {
268 int i;
269
270 for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++)
271 kvm_pmu_release_perf_event(kvm_vcpu_idx_to_pmc(vcpu, i));
272 irq_work_sync(&vcpu->arch.pmu.overflow_work);
273 }
274
kvm_pmu_hyp_counter_mask(struct kvm_vcpu * vcpu)275 static u64 kvm_pmu_hyp_counter_mask(struct kvm_vcpu *vcpu)
276 {
277 unsigned int hpmn, n;
278
279 if (!vcpu_has_nv(vcpu))
280 return 0;
281
282 hpmn = SYS_FIELD_GET(MDCR_EL2, HPMN, __vcpu_sys_reg(vcpu, MDCR_EL2));
283 n = vcpu->kvm->arch.nr_pmu_counters;
284
285 /*
286 * Programming HPMN to a value greater than PMCR_EL0.N is
287 * CONSTRAINED UNPREDICTABLE. Make the implementation choice that an
288 * UNKNOWN number of counters (in our case, zero) are reserved for EL2.
289 */
290 if (hpmn >= n)
291 return 0;
292
293 /*
294 * Programming HPMN=0 is CONSTRAINED UNPREDICTABLE if FEAT_HPMN0 isn't
295 * implemented. Since KVM's ability to emulate HPMN=0 does not directly
296 * depend on hardware (all PMU registers are trapped), make the
297 * implementation choice that all counters are included in the second
298 * range reserved for EL2/EL3.
299 */
300 return GENMASK(n - 1, hpmn);
301 }
302
kvm_pmu_counter_is_hyp(struct kvm_vcpu * vcpu,unsigned int idx)303 bool kvm_pmu_counter_is_hyp(struct kvm_vcpu *vcpu, unsigned int idx)
304 {
305 return kvm_pmu_hyp_counter_mask(vcpu) & BIT(idx);
306 }
307
kvm_pmu_accessible_counter_mask(struct kvm_vcpu * vcpu)308 u64 kvm_pmu_accessible_counter_mask(struct kvm_vcpu *vcpu)
309 {
310 u64 mask = kvm_pmu_implemented_counter_mask(vcpu);
311
312 if (!vcpu_has_nv(vcpu) || vcpu_is_el2(vcpu))
313 return mask;
314
315 return mask & ~kvm_pmu_hyp_counter_mask(vcpu);
316 }
317
kvm_pmu_implemented_counter_mask(struct kvm_vcpu * vcpu)318 u64 kvm_pmu_implemented_counter_mask(struct kvm_vcpu *vcpu)
319 {
320 u64 val = FIELD_GET(ARMV8_PMU_PMCR_N, kvm_vcpu_read_pmcr(vcpu));
321
322 if (val == 0)
323 return BIT(ARMV8_PMU_CYCLE_IDX);
324 else
325 return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
326 }
327
kvm_pmc_enable_perf_event(struct kvm_pmc * pmc)328 static void kvm_pmc_enable_perf_event(struct kvm_pmc *pmc)
329 {
330 if (!pmc->perf_event) {
331 kvm_pmu_create_perf_event(pmc);
332 return;
333 }
334
335 perf_event_enable(pmc->perf_event);
336 if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
337 kvm_debug("fail to enable perf event\n");
338 }
339
kvm_pmc_disable_perf_event(struct kvm_pmc * pmc)340 static void kvm_pmc_disable_perf_event(struct kvm_pmc *pmc)
341 {
342 if (pmc->perf_event)
343 perf_event_disable(pmc->perf_event);
344 }
345
kvm_pmu_reprogram_counter_mask(struct kvm_vcpu * vcpu,u64 val)346 void kvm_pmu_reprogram_counter_mask(struct kvm_vcpu *vcpu, u64 val)
347 {
348 int i;
349
350 if (!val)
351 return;
352
353 for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++) {
354 struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
355
356 if (!(val & BIT(i)))
357 continue;
358
359 if (kvm_pmu_counter_is_enabled(pmc))
360 kvm_pmc_enable_perf_event(pmc);
361 else
362 kvm_pmc_disable_perf_event(pmc);
363 }
364
365 kvm_vcpu_pmu_restore_guest(vcpu);
366 }
367
368 /*
369 * Returns the PMU overflow state, which is true if there exists an event
370 * counter where the values of the global enable control, PMOVSSET_EL0[n], and
371 * PMINTENSET_EL1[n] are all 1.
372 */
kvm_pmu_overflow_status(struct kvm_vcpu * vcpu)373 static bool kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
374 {
375 u64 reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
376
377 reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
378
379 /*
380 * PMCR_EL0.E is the global enable control for event counters available
381 * to EL0 and EL1.
382 */
383 if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E))
384 reg &= kvm_pmu_hyp_counter_mask(vcpu);
385
386 /*
387 * Otherwise, MDCR_EL2.HPME is the global enable control for event
388 * counters reserved for EL2.
389 */
390 if (!(vcpu_read_sys_reg(vcpu, MDCR_EL2) & MDCR_EL2_HPME))
391 reg &= ~kvm_pmu_hyp_counter_mask(vcpu);
392
393 return reg;
394 }
395
kvm_pmu_update_state(struct kvm_vcpu * vcpu)396 static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
397 {
398 struct kvm_pmu *pmu = &vcpu->arch.pmu;
399 bool overflow;
400
401 overflow = kvm_pmu_overflow_status(vcpu);
402 if (pmu->irq_level == overflow)
403 return;
404
405 pmu->irq_level = overflow;
406
407 if (likely(irqchip_in_kernel(vcpu->kvm))) {
408 int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu,
409 pmu->irq_num, overflow, pmu);
410 WARN_ON(ret);
411 }
412 }
413
kvm_pmu_should_notify_user(struct kvm_vcpu * vcpu)414 bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
415 {
416 struct kvm_pmu *pmu = &vcpu->arch.pmu;
417 struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
418 bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
419
420 if (likely(irqchip_in_kernel(vcpu->kvm)))
421 return false;
422
423 return pmu->irq_level != run_level;
424 }
425
426 /*
427 * Reflect the PMU overflow interrupt output level into the kvm_run structure
428 */
kvm_pmu_update_run(struct kvm_vcpu * vcpu)429 void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
430 {
431 struct kvm_sync_regs *regs = &vcpu->run->s.regs;
432
433 /* Populate the timer bitmap for user space */
434 regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
435 if (vcpu->arch.pmu.irq_level)
436 regs->device_irq_level |= KVM_ARM_DEV_PMU;
437 }
438
439 /**
440 * kvm_pmu_flush_hwstate - flush pmu state to cpu
441 * @vcpu: The vcpu pointer
442 *
443 * Check if the PMU has overflowed while we were running in the host, and inject
444 * an interrupt if that was the case.
445 */
kvm_pmu_flush_hwstate(struct kvm_vcpu * vcpu)446 void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
447 {
448 kvm_pmu_update_state(vcpu);
449 }
450
451 /**
452 * kvm_pmu_sync_hwstate - sync pmu state from cpu
453 * @vcpu: The vcpu pointer
454 *
455 * Check if the PMU has overflowed while we were running in the guest, and
456 * inject an interrupt if that was the case.
457 */
kvm_pmu_sync_hwstate(struct kvm_vcpu * vcpu)458 void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
459 {
460 kvm_pmu_update_state(vcpu);
461 }
462
463 /*
464 * When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding
465 * to the event.
466 * This is why we need a callback to do it once outside of the NMI context.
467 */
kvm_pmu_perf_overflow_notify_vcpu(struct irq_work * work)468 static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
469 {
470 struct kvm_vcpu *vcpu;
471
472 vcpu = container_of(work, struct kvm_vcpu, arch.pmu.overflow_work);
473 kvm_vcpu_kick(vcpu);
474 }
475
476 /*
477 * Perform an increment on any of the counters described in @mask,
478 * generating the overflow if required, and propagate it as a chained
479 * event if possible.
480 */
kvm_pmu_counter_increment(struct kvm_vcpu * vcpu,unsigned long mask,u32 event)481 static void kvm_pmu_counter_increment(struct kvm_vcpu *vcpu,
482 unsigned long mask, u32 event)
483 {
484 int i;
485
486 if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E))
487 return;
488
489 /* Weed out disabled counters */
490 mask &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
491
492 for_each_set_bit(i, &mask, ARMV8_PMU_CYCLE_IDX) {
493 struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
494 u64 type, reg;
495
496 /* Filter on event type */
497 type = __vcpu_sys_reg(vcpu, counter_index_to_evtreg(i));
498 type &= kvm_pmu_event_mask(vcpu->kvm);
499 if (type != event)
500 continue;
501
502 /* Increment this counter */
503 reg = __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) + 1;
504 if (!kvm_pmc_is_64bit(pmc))
505 reg = lower_32_bits(reg);
506 __vcpu_assign_sys_reg(vcpu, counter_index_to_reg(i), reg);
507
508 /* No overflow? move on */
509 if (kvm_pmc_has_64bit_overflow(pmc) ? reg : lower_32_bits(reg))
510 continue;
511
512 /* Mark overflow */
513 __vcpu_rmw_sys_reg(vcpu, PMOVSSET_EL0, |=, BIT(i));
514
515 if (kvm_pmu_counter_can_chain(pmc))
516 kvm_pmu_counter_increment(vcpu, BIT(i + 1),
517 ARMV8_PMUV3_PERFCTR_CHAIN);
518 }
519 }
520
521 /* Compute the sample period for a given counter value */
compute_period(struct kvm_pmc * pmc,u64 counter)522 static u64 compute_period(struct kvm_pmc *pmc, u64 counter)
523 {
524 u64 val;
525
526 if (kvm_pmc_is_64bit(pmc) && kvm_pmc_has_64bit_overflow(pmc))
527 val = (-counter) & GENMASK(63, 0);
528 else
529 val = (-counter) & GENMASK(31, 0);
530
531 return val;
532 }
533
534 /*
535 * When the perf event overflows, set the overflow status and inform the vcpu.
536 */
kvm_pmu_perf_overflow(struct perf_event * perf_event,struct perf_sample_data * data,struct pt_regs * regs)537 static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
538 struct perf_sample_data *data,
539 struct pt_regs *regs)
540 {
541 struct kvm_pmc *pmc = perf_event->overflow_handler_context;
542 struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
543 struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
544 int idx = pmc->idx;
545 u64 period;
546
547 cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
548
549 /*
550 * Reset the sample period to the architectural limit,
551 * i.e. the point where the counter overflows.
552 */
553 period = compute_period(pmc, local64_read(&perf_event->count));
554
555 local64_set(&perf_event->hw.period_left, 0);
556 perf_event->attr.sample_period = period;
557 perf_event->hw.sample_period = period;
558
559 __vcpu_rmw_sys_reg(vcpu, PMOVSSET_EL0, |=, BIT(idx));
560
561 if (kvm_pmu_counter_can_chain(pmc))
562 kvm_pmu_counter_increment(vcpu, BIT(idx + 1),
563 ARMV8_PMUV3_PERFCTR_CHAIN);
564
565 if (kvm_pmu_overflow_status(vcpu)) {
566 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
567
568 if (!in_nmi())
569 kvm_vcpu_kick(vcpu);
570 else
571 irq_work_queue(&vcpu->arch.pmu.overflow_work);
572 }
573
574 cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
575 }
576
577 /**
578 * kvm_pmu_software_increment - do software increment
579 * @vcpu: The vcpu pointer
580 * @val: the value guest writes to PMSWINC register
581 */
kvm_pmu_software_increment(struct kvm_vcpu * vcpu,u64 val)582 void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
583 {
584 kvm_pmu_counter_increment(vcpu, val, ARMV8_PMUV3_PERFCTR_SW_INCR);
585 }
586
587 /**
588 * kvm_pmu_handle_pmcr - handle PMCR register
589 * @vcpu: The vcpu pointer
590 * @val: the value guest writes to PMCR register
591 */
kvm_pmu_handle_pmcr(struct kvm_vcpu * vcpu,u64 val)592 void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
593 {
594 int i;
595
596 /* Fixup PMCR_EL0 to reconcile the PMU version and the LP bit */
597 if (!kvm_has_feat(vcpu->kvm, ID_AA64DFR0_EL1, PMUVer, V3P5))
598 val &= ~ARMV8_PMU_PMCR_LP;
599
600 /* Request a reload of the PMU to enable/disable affected counters */
601 if ((__vcpu_sys_reg(vcpu, PMCR_EL0) ^ val) & ARMV8_PMU_PMCR_E)
602 kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
603
604 /* The reset bits don't indicate any state, and shouldn't be saved. */
605 __vcpu_assign_sys_reg(vcpu, PMCR_EL0, (val & ~(ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_P)));
606
607 if (val & ARMV8_PMU_PMCR_C)
608 kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
609
610 if (val & ARMV8_PMU_PMCR_P) {
611 unsigned long mask = kvm_pmu_implemented_counter_mask(vcpu) &
612 ~BIT(ARMV8_PMU_CYCLE_IDX);
613
614 if (!vcpu_is_el2(vcpu))
615 mask &= ~kvm_pmu_hyp_counter_mask(vcpu);
616
617 for_each_set_bit(i, &mask, 32)
618 kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, i), 0, true);
619 }
620 }
621
kvm_pmu_counter_is_enabled(struct kvm_pmc * pmc)622 static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc)
623 {
624 struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
625 unsigned int mdcr = __vcpu_sys_reg(vcpu, MDCR_EL2);
626
627 if (!(__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(pmc->idx)))
628 return false;
629
630 if (kvm_pmu_counter_is_hyp(vcpu, pmc->idx))
631 return mdcr & MDCR_EL2_HPME;
632
633 return kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E;
634 }
635
kvm_pmc_counts_at_el0(struct kvm_pmc * pmc)636 static bool kvm_pmc_counts_at_el0(struct kvm_pmc *pmc)
637 {
638 u64 evtreg = kvm_pmc_read_evtreg(pmc);
639 bool nsu = evtreg & ARMV8_PMU_EXCLUDE_NS_EL0;
640 bool u = evtreg & ARMV8_PMU_EXCLUDE_EL0;
641
642 return u == nsu;
643 }
644
kvm_pmc_counts_at_el1(struct kvm_pmc * pmc)645 static bool kvm_pmc_counts_at_el1(struct kvm_pmc *pmc)
646 {
647 u64 evtreg = kvm_pmc_read_evtreg(pmc);
648 bool nsk = evtreg & ARMV8_PMU_EXCLUDE_NS_EL1;
649 bool p = evtreg & ARMV8_PMU_EXCLUDE_EL1;
650
651 return p == nsk;
652 }
653
kvm_pmc_counts_at_el2(struct kvm_pmc * pmc)654 static bool kvm_pmc_counts_at_el2(struct kvm_pmc *pmc)
655 {
656 struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
657 u64 mdcr = __vcpu_sys_reg(vcpu, MDCR_EL2);
658
659 if (!kvm_pmu_counter_is_hyp(vcpu, pmc->idx) && (mdcr & MDCR_EL2_HPMD))
660 return false;
661
662 return kvm_pmc_read_evtreg(pmc) & ARMV8_PMU_INCLUDE_EL2;
663 }
664
kvm_map_pmu_event(struct kvm * kvm,unsigned int eventsel)665 static int kvm_map_pmu_event(struct kvm *kvm, unsigned int eventsel)
666 {
667 struct arm_pmu *pmu = kvm->arch.arm_pmu;
668
669 /*
670 * The CPU PMU likely isn't PMUv3; let the driver provide a mapping
671 * for the guest's PMUv3 event ID.
672 */
673 if (unlikely(pmu->map_pmuv3_event))
674 return pmu->map_pmuv3_event(eventsel);
675
676 return eventsel;
677 }
678
679 /**
680 * kvm_pmu_create_perf_event - create a perf event for a counter
681 * @pmc: Counter context
682 */
kvm_pmu_create_perf_event(struct kvm_pmc * pmc)683 static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc)
684 {
685 struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
686 struct arm_pmu *arm_pmu = vcpu->kvm->arch.arm_pmu;
687 struct perf_event *event;
688 struct perf_event_attr attr;
689 int eventsel;
690 u64 evtreg;
691
692 evtreg = kvm_pmc_read_evtreg(pmc);
693
694 kvm_pmu_stop_counter(pmc);
695 if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
696 eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
697 else
698 eventsel = evtreg & kvm_pmu_event_mask(vcpu->kvm);
699
700 /*
701 * Neither SW increment nor chained events need to be backed
702 * by a perf event.
703 */
704 if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR ||
705 eventsel == ARMV8_PMUV3_PERFCTR_CHAIN)
706 return;
707
708 /*
709 * If we have a filter in place and that the event isn't allowed, do
710 * not install a perf event either.
711 */
712 if (vcpu->kvm->arch.pmu_filter &&
713 !test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
714 return;
715
716 /*
717 * Don't create an event if we're running on hardware that requires
718 * PMUv3 event translation and we couldn't find a valid mapping.
719 */
720 eventsel = kvm_map_pmu_event(vcpu->kvm, eventsel);
721 if (eventsel < 0)
722 return;
723
724 memset(&attr, 0, sizeof(struct perf_event_attr));
725 attr.type = arm_pmu->pmu.type;
726 attr.size = sizeof(attr);
727 attr.pinned = 1;
728 attr.disabled = !kvm_pmu_counter_is_enabled(pmc);
729 attr.exclude_user = !kvm_pmc_counts_at_el0(pmc);
730 attr.exclude_hv = 1; /* Don't count EL2 events */
731 attr.exclude_host = 1; /* Don't count host events */
732 attr.config = eventsel;
733
734 /*
735 * Filter events at EL1 (i.e. vEL2) when in a hyp context based on the
736 * guest's EL2 filter.
737 */
738 if (unlikely(is_hyp_ctxt(vcpu)))
739 attr.exclude_kernel = !kvm_pmc_counts_at_el2(pmc);
740 else
741 attr.exclude_kernel = !kvm_pmc_counts_at_el1(pmc);
742
743 /*
744 * If counting with a 64bit counter, advertise it to the perf
745 * code, carefully dealing with the initial sample period
746 * which also depends on the overflow.
747 */
748 if (kvm_pmc_is_64bit(pmc))
749 attr.config1 |= PERF_ATTR_CFG1_COUNTER_64BIT;
750
751 attr.sample_period = compute_period(pmc, kvm_pmu_get_pmc_value(pmc));
752
753 event = perf_event_create_kernel_counter(&attr, -1, current,
754 kvm_pmu_perf_overflow, pmc);
755
756 if (IS_ERR(event)) {
757 pr_err_once("kvm: pmu event creation failed %ld\n",
758 PTR_ERR(event));
759 return;
760 }
761
762 pmc->perf_event = event;
763 }
764
765 /**
766 * kvm_pmu_set_counter_event_type - set selected counter to monitor some event
767 * @vcpu: The vcpu pointer
768 * @data: The data guest writes to PMXEVTYPER_EL0
769 * @select_idx: The number of selected counter
770 *
771 * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
772 * event with given hardware event number. Here we call perf_event API to
773 * emulate this action and create a kernel perf event for it.
774 */
kvm_pmu_set_counter_event_type(struct kvm_vcpu * vcpu,u64 data,u64 select_idx)775 void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
776 u64 select_idx)
777 {
778 struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, select_idx);
779 u64 reg;
780
781 reg = counter_index_to_evtreg(pmc->idx);
782 __vcpu_assign_sys_reg(vcpu, reg, (data & kvm_pmu_evtyper_mask(vcpu->kvm)));
783
784 kvm_pmu_create_perf_event(pmc);
785 }
786
kvm_host_pmu_init(struct arm_pmu * pmu)787 void kvm_host_pmu_init(struct arm_pmu *pmu)
788 {
789 struct arm_pmu_entry *entry;
790
791 /*
792 * Check the sanitised PMU version for the system, as KVM does not
793 * support implementations where PMUv3 exists on a subset of CPUs.
794 */
795 if (!pmuv3_implemented(kvm_arm_pmu_get_pmuver_limit()))
796 return;
797
798 guard(mutex)(&arm_pmus_lock);
799
800 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
801 if (!entry)
802 return;
803
804 entry->arm_pmu = pmu;
805 list_add_tail(&entry->entry, &arm_pmus);
806 }
807
kvm_pmu_probe_armpmu(void)808 static struct arm_pmu *kvm_pmu_probe_armpmu(void)
809 {
810 struct arm_pmu_entry *entry;
811 struct arm_pmu *pmu;
812 int cpu;
813
814 guard(mutex)(&arm_pmus_lock);
815
816 /*
817 * It is safe to use a stale cpu to iterate the list of PMUs so long as
818 * the same value is used for the entirety of the loop. Given this, and
819 * the fact that no percpu data is used for the lookup there is no need
820 * to disable preemption.
821 *
822 * It is still necessary to get a valid cpu, though, to probe for the
823 * default PMU instance as userspace is not required to specify a PMU
824 * type. In order to uphold the preexisting behavior KVM selects the
825 * PMU instance for the core during vcpu init. A dependent use
826 * case would be a user with disdain of all things big.LITTLE that
827 * affines the VMM to a particular cluster of cores.
828 *
829 * In any case, userspace should just do the sane thing and use the UAPI
830 * to select a PMU type directly. But, be wary of the baggage being
831 * carried here.
832 */
833 cpu = raw_smp_processor_id();
834 list_for_each_entry(entry, &arm_pmus, entry) {
835 pmu = entry->arm_pmu;
836
837 if (cpumask_test_cpu(cpu, &pmu->supported_cpus))
838 return pmu;
839 }
840
841 return NULL;
842 }
843
__compute_pmceid(struct arm_pmu * pmu,bool pmceid1)844 static u64 __compute_pmceid(struct arm_pmu *pmu, bool pmceid1)
845 {
846 u32 hi[2], lo[2];
847
848 bitmap_to_arr32(lo, pmu->pmceid_bitmap, ARMV8_PMUV3_MAX_COMMON_EVENTS);
849 bitmap_to_arr32(hi, pmu->pmceid_ext_bitmap, ARMV8_PMUV3_MAX_COMMON_EVENTS);
850
851 return ((u64)hi[pmceid1] << 32) | lo[pmceid1];
852 }
853
compute_pmceid0(struct arm_pmu * pmu)854 static u64 compute_pmceid0(struct arm_pmu *pmu)
855 {
856 u64 val = __compute_pmceid(pmu, 0);
857
858 /* always support SW_INCR */
859 val |= BIT(ARMV8_PMUV3_PERFCTR_SW_INCR);
860 /* always support CHAIN */
861 val |= BIT(ARMV8_PMUV3_PERFCTR_CHAIN);
862 return val;
863 }
864
compute_pmceid1(struct arm_pmu * pmu)865 static u64 compute_pmceid1(struct arm_pmu *pmu)
866 {
867 u64 val = __compute_pmceid(pmu, 1);
868
869 /*
870 * Don't advertise STALL_SLOT*, as PMMIR_EL0 is handled
871 * as RAZ
872 */
873 val &= ~(BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32) |
874 BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND - 32) |
875 BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND - 32));
876 return val;
877 }
878
kvm_pmu_get_pmceid(struct kvm_vcpu * vcpu,bool pmceid1)879 u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
880 {
881 struct arm_pmu *cpu_pmu = vcpu->kvm->arch.arm_pmu;
882 unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
883 u64 val, mask = 0;
884 int base, i, nr_events;
885
886 if (!pmceid1) {
887 val = compute_pmceid0(cpu_pmu);
888 base = 0;
889 } else {
890 val = compute_pmceid1(cpu_pmu);
891 base = 32;
892 }
893
894 if (!bmap)
895 return val;
896
897 nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
898
899 for (i = 0; i < 32; i += 8) {
900 u64 byte;
901
902 byte = bitmap_get_value8(bmap, base + i);
903 mask |= byte << i;
904 if (nr_events >= (0x4000 + base + 32)) {
905 byte = bitmap_get_value8(bmap, 0x4000 + base + i);
906 mask |= byte << (32 + i);
907 }
908 }
909
910 return val & mask;
911 }
912
kvm_vcpu_reload_pmu(struct kvm_vcpu * vcpu)913 void kvm_vcpu_reload_pmu(struct kvm_vcpu *vcpu)
914 {
915 u64 mask = kvm_pmu_implemented_counter_mask(vcpu);
916
917 __vcpu_rmw_sys_reg(vcpu, PMOVSSET_EL0, &=, mask);
918 __vcpu_rmw_sys_reg(vcpu, PMINTENSET_EL1, &=, mask);
919 __vcpu_rmw_sys_reg(vcpu, PMCNTENSET_EL0, &=, mask);
920
921 kvm_pmu_reprogram_counter_mask(vcpu, mask);
922 }
923
kvm_arm_pmu_v3_enable(struct kvm_vcpu * vcpu)924 int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
925 {
926 if (!vcpu->arch.pmu.created)
927 return -EINVAL;
928
929 /*
930 * A valid interrupt configuration for the PMU is either to have a
931 * properly configured interrupt number and using an in-kernel
932 * irqchip, or to not have an in-kernel GIC and not set an IRQ.
933 */
934 if (irqchip_in_kernel(vcpu->kvm)) {
935 int irq = vcpu->arch.pmu.irq_num;
936 /*
937 * If we are using an in-kernel vgic, at this point we know
938 * the vgic will be initialized, so we can check the PMU irq
939 * number against the dimensions of the vgic and make sure
940 * it's valid.
941 */
942 if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
943 return -EINVAL;
944 } else if (kvm_arm_pmu_irq_initialized(vcpu)) {
945 return -EINVAL;
946 }
947
948 return 0;
949 }
950
kvm_arm_pmu_v3_init(struct kvm_vcpu * vcpu)951 static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
952 {
953 if (irqchip_in_kernel(vcpu->kvm)) {
954 int ret;
955
956 /*
957 * If using the PMU with an in-kernel virtual GIC
958 * implementation, we require the GIC to be already
959 * initialized when initializing the PMU.
960 */
961 if (!vgic_initialized(vcpu->kvm))
962 return -ENODEV;
963
964 if (!kvm_arm_pmu_irq_initialized(vcpu))
965 return -ENXIO;
966
967 ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
968 &vcpu->arch.pmu);
969 if (ret)
970 return ret;
971 }
972
973 init_irq_work(&vcpu->arch.pmu.overflow_work,
974 kvm_pmu_perf_overflow_notify_vcpu);
975
976 vcpu->arch.pmu.created = true;
977 return 0;
978 }
979
980 /*
981 * For one VM the interrupt type must be same for each vcpu.
982 * As a PPI, the interrupt number is the same for all vcpus,
983 * while as an SPI it must be a separate number per vcpu.
984 */
pmu_irq_is_valid(struct kvm * kvm,int irq)985 static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
986 {
987 unsigned long i;
988 struct kvm_vcpu *vcpu;
989
990 kvm_for_each_vcpu(i, vcpu, kvm) {
991 if (!kvm_arm_pmu_irq_initialized(vcpu))
992 continue;
993
994 if (irq_is_ppi(irq)) {
995 if (vcpu->arch.pmu.irq_num != irq)
996 return false;
997 } else {
998 if (vcpu->arch.pmu.irq_num == irq)
999 return false;
1000 }
1001 }
1002
1003 return true;
1004 }
1005
1006 /**
1007 * kvm_arm_pmu_get_max_counters - Return the max number of PMU counters.
1008 * @kvm: The kvm pointer
1009 */
kvm_arm_pmu_get_max_counters(struct kvm * kvm)1010 u8 kvm_arm_pmu_get_max_counters(struct kvm *kvm)
1011 {
1012 struct arm_pmu *arm_pmu = kvm->arch.arm_pmu;
1013
1014 /*
1015 * PMUv3 requires that all event counters are capable of counting any
1016 * event, though the same may not be true of non-PMUv3 hardware.
1017 */
1018 if (cpus_have_final_cap(ARM64_WORKAROUND_PMUV3_IMPDEF_TRAPS))
1019 return 1;
1020
1021 /*
1022 * The arm_pmu->cntr_mask considers the fixed counter(s) as well.
1023 * Ignore those and return only the general-purpose counters.
1024 */
1025 return bitmap_weight(arm_pmu->cntr_mask, ARMV8_PMU_MAX_GENERAL_COUNTERS);
1026 }
1027
kvm_arm_set_nr_counters(struct kvm * kvm,unsigned int nr)1028 static void kvm_arm_set_nr_counters(struct kvm *kvm, unsigned int nr)
1029 {
1030 kvm->arch.nr_pmu_counters = nr;
1031
1032 /* Reset MDCR_EL2.HPMN behind the vcpus' back... */
1033 if (test_bit(KVM_ARM_VCPU_HAS_EL2, kvm->arch.vcpu_features)) {
1034 struct kvm_vcpu *vcpu;
1035 unsigned long i;
1036
1037 kvm_for_each_vcpu(i, vcpu, kvm) {
1038 u64 val = __vcpu_sys_reg(vcpu, MDCR_EL2);
1039 val &= ~MDCR_EL2_HPMN;
1040 val |= FIELD_PREP(MDCR_EL2_HPMN, kvm->arch.nr_pmu_counters);
1041 __vcpu_assign_sys_reg(vcpu, MDCR_EL2, val);
1042 }
1043 }
1044 }
1045
kvm_arm_set_pmu(struct kvm * kvm,struct arm_pmu * arm_pmu)1046 static void kvm_arm_set_pmu(struct kvm *kvm, struct arm_pmu *arm_pmu)
1047 {
1048 lockdep_assert_held(&kvm->arch.config_lock);
1049
1050 kvm->arch.arm_pmu = arm_pmu;
1051 kvm_arm_set_nr_counters(kvm, kvm_arm_pmu_get_max_counters(kvm));
1052 }
1053
1054 /**
1055 * kvm_arm_set_default_pmu - No PMU set, get the default one.
1056 * @kvm: The kvm pointer
1057 *
1058 * The observant among you will notice that the supported_cpus
1059 * mask does not get updated for the default PMU even though it
1060 * is quite possible the selected instance supports only a
1061 * subset of cores in the system. This is intentional, and
1062 * upholds the preexisting behavior on heterogeneous systems
1063 * where vCPUs can be scheduled on any core but the guest
1064 * counters could stop working.
1065 */
kvm_arm_set_default_pmu(struct kvm * kvm)1066 int kvm_arm_set_default_pmu(struct kvm *kvm)
1067 {
1068 struct arm_pmu *arm_pmu = kvm_pmu_probe_armpmu();
1069
1070 if (!arm_pmu)
1071 return -ENODEV;
1072
1073 kvm_arm_set_pmu(kvm, arm_pmu);
1074 return 0;
1075 }
1076
kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu * vcpu,int pmu_id)1077 static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id)
1078 {
1079 struct kvm *kvm = vcpu->kvm;
1080 struct arm_pmu_entry *entry;
1081 struct arm_pmu *arm_pmu;
1082 int ret = -ENXIO;
1083
1084 lockdep_assert_held(&kvm->arch.config_lock);
1085 mutex_lock(&arm_pmus_lock);
1086
1087 list_for_each_entry(entry, &arm_pmus, entry) {
1088 arm_pmu = entry->arm_pmu;
1089 if (arm_pmu->pmu.type == pmu_id) {
1090 if (kvm_vm_has_ran_once(kvm) ||
1091 (kvm->arch.pmu_filter && kvm->arch.arm_pmu != arm_pmu)) {
1092 ret = -EBUSY;
1093 break;
1094 }
1095
1096 kvm_arm_set_pmu(kvm, arm_pmu);
1097 cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus);
1098 ret = 0;
1099 break;
1100 }
1101 }
1102
1103 mutex_unlock(&arm_pmus_lock);
1104 return ret;
1105 }
1106
kvm_arm_pmu_v3_set_nr_counters(struct kvm_vcpu * vcpu,unsigned int n)1107 static int kvm_arm_pmu_v3_set_nr_counters(struct kvm_vcpu *vcpu, unsigned int n)
1108 {
1109 struct kvm *kvm = vcpu->kvm;
1110
1111 if (!kvm->arch.arm_pmu)
1112 return -EINVAL;
1113
1114 if (n > kvm_arm_pmu_get_max_counters(kvm))
1115 return -EINVAL;
1116
1117 kvm_arm_set_nr_counters(kvm, n);
1118 return 0;
1119 }
1120
kvm_arm_pmu_v3_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1121 int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1122 {
1123 struct kvm *kvm = vcpu->kvm;
1124
1125 lockdep_assert_held(&kvm->arch.config_lock);
1126
1127 if (!kvm_vcpu_has_pmu(vcpu))
1128 return -ENODEV;
1129
1130 if (vcpu->arch.pmu.created)
1131 return -EBUSY;
1132
1133 switch (attr->attr) {
1134 case KVM_ARM_VCPU_PMU_V3_IRQ: {
1135 int __user *uaddr = (int __user *)(long)attr->addr;
1136 int irq;
1137
1138 if (!irqchip_in_kernel(kvm))
1139 return -EINVAL;
1140
1141 if (get_user(irq, uaddr))
1142 return -EFAULT;
1143
1144 /* The PMU overflow interrupt can be a PPI or a valid SPI. */
1145 if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
1146 return -EINVAL;
1147
1148 if (!pmu_irq_is_valid(kvm, irq))
1149 return -EINVAL;
1150
1151 if (kvm_arm_pmu_irq_initialized(vcpu))
1152 return -EBUSY;
1153
1154 kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
1155 vcpu->arch.pmu.irq_num = irq;
1156 return 0;
1157 }
1158 case KVM_ARM_VCPU_PMU_V3_FILTER: {
1159 u8 pmuver = kvm_arm_pmu_get_pmuver_limit();
1160 struct kvm_pmu_event_filter __user *uaddr;
1161 struct kvm_pmu_event_filter filter;
1162 int nr_events;
1163
1164 /*
1165 * Allow userspace to specify an event filter for the entire
1166 * event range supported by PMUVer of the hardware, rather
1167 * than the guest's PMUVer for KVM backward compatibility.
1168 */
1169 nr_events = __kvm_pmu_event_mask(pmuver) + 1;
1170
1171 uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;
1172
1173 if (copy_from_user(&filter, uaddr, sizeof(filter)))
1174 return -EFAULT;
1175
1176 if (((u32)filter.base_event + filter.nevents) > nr_events ||
1177 (filter.action != KVM_PMU_EVENT_ALLOW &&
1178 filter.action != KVM_PMU_EVENT_DENY))
1179 return -EINVAL;
1180
1181 if (kvm_vm_has_ran_once(kvm))
1182 return -EBUSY;
1183
1184 if (!kvm->arch.pmu_filter) {
1185 kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL_ACCOUNT);
1186 if (!kvm->arch.pmu_filter)
1187 return -ENOMEM;
1188
1189 /*
1190 * The default depends on the first applied filter.
1191 * If it allows events, the default is to deny.
1192 * Conversely, if the first filter denies a set of
1193 * events, the default is to allow.
1194 */
1195 if (filter.action == KVM_PMU_EVENT_ALLOW)
1196 bitmap_zero(kvm->arch.pmu_filter, nr_events);
1197 else
1198 bitmap_fill(kvm->arch.pmu_filter, nr_events);
1199 }
1200
1201 if (filter.action == KVM_PMU_EVENT_ALLOW)
1202 bitmap_set(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1203 else
1204 bitmap_clear(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1205
1206 return 0;
1207 }
1208 case KVM_ARM_VCPU_PMU_V3_SET_PMU: {
1209 int __user *uaddr = (int __user *)(long)attr->addr;
1210 int pmu_id;
1211
1212 if (get_user(pmu_id, uaddr))
1213 return -EFAULT;
1214
1215 return kvm_arm_pmu_v3_set_pmu(vcpu, pmu_id);
1216 }
1217 case KVM_ARM_VCPU_PMU_V3_SET_NR_COUNTERS: {
1218 unsigned int __user *uaddr = (unsigned int __user *)(long)attr->addr;
1219 unsigned int n;
1220
1221 if (get_user(n, uaddr))
1222 return -EFAULT;
1223
1224 return kvm_arm_pmu_v3_set_nr_counters(vcpu, n);
1225 }
1226 case KVM_ARM_VCPU_PMU_V3_INIT:
1227 return kvm_arm_pmu_v3_init(vcpu);
1228 }
1229
1230 return -ENXIO;
1231 }
1232
kvm_arm_pmu_v3_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1233 int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1234 {
1235 switch (attr->attr) {
1236 case KVM_ARM_VCPU_PMU_V3_IRQ: {
1237 int __user *uaddr = (int __user *)(long)attr->addr;
1238 int irq;
1239
1240 if (!irqchip_in_kernel(vcpu->kvm))
1241 return -EINVAL;
1242
1243 if (!kvm_vcpu_has_pmu(vcpu))
1244 return -ENODEV;
1245
1246 if (!kvm_arm_pmu_irq_initialized(vcpu))
1247 return -ENXIO;
1248
1249 irq = vcpu->arch.pmu.irq_num;
1250 return put_user(irq, uaddr);
1251 }
1252 }
1253
1254 return -ENXIO;
1255 }
1256
kvm_arm_pmu_v3_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1257 int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1258 {
1259 switch (attr->attr) {
1260 case KVM_ARM_VCPU_PMU_V3_IRQ:
1261 case KVM_ARM_VCPU_PMU_V3_INIT:
1262 case KVM_ARM_VCPU_PMU_V3_FILTER:
1263 case KVM_ARM_VCPU_PMU_V3_SET_PMU:
1264 case KVM_ARM_VCPU_PMU_V3_SET_NR_COUNTERS:
1265 if (kvm_vcpu_has_pmu(vcpu))
1266 return 0;
1267 }
1268
1269 return -ENXIO;
1270 }
1271
kvm_arm_pmu_get_pmuver_limit(void)1272 u8 kvm_arm_pmu_get_pmuver_limit(void)
1273 {
1274 unsigned int pmuver;
1275
1276 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer,
1277 read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1));
1278
1279 /*
1280 * Spoof a barebones PMUv3 implementation if the system supports IMPDEF
1281 * traps of the PMUv3 sysregs
1282 */
1283 if (cpus_have_final_cap(ARM64_WORKAROUND_PMUV3_IMPDEF_TRAPS))
1284 return ID_AA64DFR0_EL1_PMUVer_IMP;
1285
1286 /*
1287 * Otherwise, treat IMPLEMENTATION DEFINED functionality as
1288 * unimplemented
1289 */
1290 if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1291 return 0;
1292
1293 return min(pmuver, ID_AA64DFR0_EL1_PMUVer_V3P5);
1294 }
1295
1296 /**
1297 * kvm_vcpu_read_pmcr - Read PMCR_EL0 register for the vCPU
1298 * @vcpu: The vcpu pointer
1299 */
kvm_vcpu_read_pmcr(struct kvm_vcpu * vcpu)1300 u64 kvm_vcpu_read_pmcr(struct kvm_vcpu *vcpu)
1301 {
1302 u64 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
1303 u64 n = vcpu->kvm->arch.nr_pmu_counters;
1304
1305 if (vcpu_has_nv(vcpu) && !vcpu_is_el2(vcpu))
1306 n = FIELD_GET(MDCR_EL2_HPMN, __vcpu_sys_reg(vcpu, MDCR_EL2));
1307
1308 return u64_replace_bits(pmcr, n, ARMV8_PMU_PMCR_N);
1309 }
1310
kvm_pmu_nested_transition(struct kvm_vcpu * vcpu)1311 void kvm_pmu_nested_transition(struct kvm_vcpu *vcpu)
1312 {
1313 bool reprogrammed = false;
1314 unsigned long mask;
1315 int i;
1316
1317 mask = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1318 for_each_set_bit(i, &mask, 32) {
1319 struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
1320
1321 /*
1322 * We only need to reconfigure events where the filter is
1323 * different at EL1 vs. EL2, as we're multiplexing the true EL1
1324 * event filter bit for nested.
1325 */
1326 if (kvm_pmc_counts_at_el1(pmc) == kvm_pmc_counts_at_el2(pmc))
1327 continue;
1328
1329 kvm_pmu_create_perf_event(pmc);
1330 reprogrammed = true;
1331 }
1332
1333 if (reprogrammed)
1334 kvm_vcpu_pmu_restore_guest(vcpu);
1335 }
1336