1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include "mmu.h"
5 #include "mmu_internal.h"
6 #include "mmutrace.h"
7 #include "tdp_iter.h"
8 #include "tdp_mmu.h"
9 #include "spte.h"
10
11 #include <asm/cmpxchg.h>
12 #include <trace/events/kvm.h>
13
14 /* Initializes the TDP MMU for the VM, if enabled. */
kvm_mmu_init_tdp_mmu(struct kvm * kvm)15 void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
16 {
17 INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
18 spin_lock_init(&kvm->arch.tdp_mmu_pages_lock);
19 }
20
21 /* Arbitrarily returns true so that this may be used in if statements. */
kvm_lockdep_assert_mmu_lock_held(struct kvm * kvm,bool shared)22 static __always_inline bool kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm,
23 bool shared)
24 {
25 if (shared)
26 lockdep_assert_held_read(&kvm->mmu_lock);
27 else
28 lockdep_assert_held_write(&kvm->mmu_lock);
29
30 return true;
31 }
32
kvm_mmu_uninit_tdp_mmu(struct kvm * kvm)33 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
34 {
35 /*
36 * Invalidate all roots, which besides the obvious, schedules all roots
37 * for zapping and thus puts the TDP MMU's reference to each root, i.e.
38 * ultimately frees all roots.
39 */
40 kvm_tdp_mmu_invalidate_roots(kvm, KVM_VALID_ROOTS);
41 kvm_tdp_mmu_zap_invalidated_roots(kvm, false);
42
43 #ifdef CONFIG_KVM_PROVE_MMU
44 KVM_MMU_WARN_ON(atomic64_read(&kvm->arch.tdp_mmu_pages));
45 #endif
46 WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
47
48 /*
49 * Ensure that all the outstanding RCU callbacks to free shadow pages
50 * can run before the VM is torn down. Putting the last reference to
51 * zapped roots will create new callbacks.
52 */
53 rcu_barrier();
54 }
55
tdp_mmu_free_sp(struct kvm_mmu_page * sp)56 static void tdp_mmu_free_sp(struct kvm_mmu_page *sp)
57 {
58 free_page((unsigned long)sp->external_spt);
59 free_page((unsigned long)sp->spt);
60 kmem_cache_free(mmu_page_header_cache, sp);
61 }
62
63 /*
64 * This is called through call_rcu in order to free TDP page table memory
65 * safely with respect to other kernel threads that may be operating on
66 * the memory.
67 * By only accessing TDP MMU page table memory in an RCU read critical
68 * section, and freeing it after a grace period, lockless access to that
69 * memory won't use it after it is freed.
70 */
tdp_mmu_free_sp_rcu_callback(struct rcu_head * head)71 static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head)
72 {
73 struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page,
74 rcu_head);
75
76 tdp_mmu_free_sp(sp);
77 }
78
kvm_tdp_mmu_put_root(struct kvm * kvm,struct kvm_mmu_page * root)79 void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root)
80 {
81 if (!refcount_dec_and_test(&root->tdp_mmu_root_count))
82 return;
83
84 /*
85 * The TDP MMU itself holds a reference to each root until the root is
86 * explicitly invalidated, i.e. the final reference should be never be
87 * put for a valid root.
88 */
89 KVM_BUG_ON(!is_tdp_mmu_page(root) || !root->role.invalid, kvm);
90
91 spin_lock(&kvm->arch.tdp_mmu_pages_lock);
92 list_del_rcu(&root->link);
93 spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
94 call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback);
95 }
96
tdp_mmu_root_match(struct kvm_mmu_page * root,enum kvm_tdp_mmu_root_types types)97 static bool tdp_mmu_root_match(struct kvm_mmu_page *root,
98 enum kvm_tdp_mmu_root_types types)
99 {
100 if (WARN_ON_ONCE(!(types & KVM_VALID_ROOTS)))
101 return false;
102
103 if (root->role.invalid && !(types & KVM_INVALID_ROOTS))
104 return false;
105
106 if (likely(!is_mirror_sp(root)))
107 return types & KVM_DIRECT_ROOTS;
108 return types & KVM_MIRROR_ROOTS;
109 }
110
111 /*
112 * Returns the next root after @prev_root (or the first root if @prev_root is
113 * NULL) that matches with @types. A reference to the returned root is
114 * acquired, and the reference to @prev_root is released (the caller obviously
115 * must hold a reference to @prev_root if it's non-NULL).
116 *
117 * Roots that doesn't match with @types are skipped.
118 *
119 * Returns NULL if the end of tdp_mmu_roots was reached.
120 */
tdp_mmu_next_root(struct kvm * kvm,struct kvm_mmu_page * prev_root,enum kvm_tdp_mmu_root_types types)121 static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
122 struct kvm_mmu_page *prev_root,
123 enum kvm_tdp_mmu_root_types types)
124 {
125 struct kvm_mmu_page *next_root;
126
127 /*
128 * While the roots themselves are RCU-protected, fields such as
129 * role.invalid are protected by mmu_lock.
130 */
131 lockdep_assert_held(&kvm->mmu_lock);
132
133 rcu_read_lock();
134
135 if (prev_root)
136 next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
137 &prev_root->link,
138 typeof(*prev_root), link);
139 else
140 next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots,
141 typeof(*next_root), link);
142
143 while (next_root) {
144 if (tdp_mmu_root_match(next_root, types) &&
145 kvm_tdp_mmu_get_root(next_root))
146 break;
147
148 next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
149 &next_root->link, typeof(*next_root), link);
150 }
151
152 rcu_read_unlock();
153
154 if (prev_root)
155 kvm_tdp_mmu_put_root(kvm, prev_root);
156
157 return next_root;
158 }
159
160 /*
161 * Note: this iterator gets and puts references to the roots it iterates over.
162 * This makes it safe to release the MMU lock and yield within the loop, but
163 * if exiting the loop early, the caller must drop the reference to the most
164 * recent root. (Unless keeping a live reference is desirable.)
165 *
166 * If shared is set, this function is operating under the MMU lock in read
167 * mode.
168 */
169 #define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _types) \
170 for (_root = tdp_mmu_next_root(_kvm, NULL, _types); \
171 ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root; \
172 _root = tdp_mmu_next_root(_kvm, _root, _types)) \
173 if (_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) { \
174 } else
175
176 #define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id) \
177 __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, KVM_VALID_ROOTS)
178
179 #define for_each_tdp_mmu_root_yield_safe(_kvm, _root) \
180 for (_root = tdp_mmu_next_root(_kvm, NULL, KVM_ALL_ROOTS); \
181 ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root; \
182 _root = tdp_mmu_next_root(_kvm, _root, KVM_ALL_ROOTS))
183
184 /*
185 * Iterate over all TDP MMU roots. Requires that mmu_lock be held for write,
186 * the implication being that any flow that holds mmu_lock for read is
187 * inherently yield-friendly and should use the yield-safe variant above.
188 * Holding mmu_lock for write obviates the need for RCU protection as the list
189 * is guaranteed to be stable.
190 */
191 #define __for_each_tdp_mmu_root(_kvm, _root, _as_id, _types) \
192 list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link) \
193 if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) && \
194 ((_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) || \
195 !tdp_mmu_root_match((_root), (_types)))) { \
196 } else
197
198 /*
199 * Iterate over all TDP MMU roots in an RCU read-side critical section.
200 * It is safe to iterate over the SPTEs under the root, but their values will
201 * be unstable, so all writes must be atomic. As this routine is meant to be
202 * used without holding the mmu_lock at all, any bits that are flipped must
203 * be reflected in kvm_tdp_mmu_spte_need_atomic_write().
204 */
205 #define for_each_tdp_mmu_root_rcu(_kvm, _root, _as_id, _types) \
206 list_for_each_entry_rcu(_root, &_kvm->arch.tdp_mmu_roots, link) \
207 if ((_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) || \
208 !tdp_mmu_root_match((_root), (_types))) { \
209 } else
210
211 #define for_each_valid_tdp_mmu_root(_kvm, _root, _as_id) \
212 __for_each_tdp_mmu_root(_kvm, _root, _as_id, KVM_VALID_ROOTS)
213
tdp_mmu_alloc_sp(struct kvm_vcpu * vcpu)214 static struct kvm_mmu_page *tdp_mmu_alloc_sp(struct kvm_vcpu *vcpu)
215 {
216 struct kvm_mmu_page *sp;
217
218 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
219 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
220
221 return sp;
222 }
223
tdp_mmu_init_sp(struct kvm_mmu_page * sp,tdp_ptep_t sptep,gfn_t gfn,union kvm_mmu_page_role role)224 static void tdp_mmu_init_sp(struct kvm_mmu_page *sp, tdp_ptep_t sptep,
225 gfn_t gfn, union kvm_mmu_page_role role)
226 {
227 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
228
229 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
230
231 sp->role = role;
232 sp->gfn = gfn;
233 sp->ptep = sptep;
234 sp->tdp_mmu_page = true;
235
236 trace_kvm_mmu_get_page(sp, true);
237 }
238
tdp_mmu_init_child_sp(struct kvm_mmu_page * child_sp,struct tdp_iter * iter)239 static void tdp_mmu_init_child_sp(struct kvm_mmu_page *child_sp,
240 struct tdp_iter *iter)
241 {
242 struct kvm_mmu_page *parent_sp;
243 union kvm_mmu_page_role role;
244
245 parent_sp = sptep_to_sp(rcu_dereference(iter->sptep));
246
247 role = parent_sp->role;
248 role.level--;
249
250 tdp_mmu_init_sp(child_sp, iter->sptep, iter->gfn, role);
251 }
252
kvm_tdp_mmu_alloc_root(struct kvm_vcpu * vcpu,bool mirror)253 void kvm_tdp_mmu_alloc_root(struct kvm_vcpu *vcpu, bool mirror)
254 {
255 struct kvm_mmu *mmu = vcpu->arch.mmu;
256 union kvm_mmu_page_role role = mmu->root_role;
257 int as_id = kvm_mmu_role_as_id(role);
258 struct kvm *kvm = vcpu->kvm;
259 struct kvm_mmu_page *root;
260
261 if (mirror)
262 role.is_mirror = true;
263
264 /*
265 * Check for an existing root before acquiring the pages lock to avoid
266 * unnecessary serialization if multiple vCPUs are loading a new root.
267 * E.g. when bringing up secondary vCPUs, KVM will already have created
268 * a valid root on behalf of the primary vCPU.
269 */
270 read_lock(&kvm->mmu_lock);
271
272 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, as_id) {
273 if (root->role.word == role.word)
274 goto out_read_unlock;
275 }
276
277 spin_lock(&kvm->arch.tdp_mmu_pages_lock);
278
279 /*
280 * Recheck for an existing root after acquiring the pages lock, another
281 * vCPU may have raced ahead and created a new usable root. Manually
282 * walk the list of roots as the standard macros assume that the pages
283 * lock is *not* held. WARN if grabbing a reference to a usable root
284 * fails, as the last reference to a root can only be put *after* the
285 * root has been invalidated, which requires holding mmu_lock for write.
286 */
287 list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) {
288 if (root->role.word == role.word &&
289 !WARN_ON_ONCE(!kvm_tdp_mmu_get_root(root)))
290 goto out_spin_unlock;
291 }
292
293 root = tdp_mmu_alloc_sp(vcpu);
294 tdp_mmu_init_sp(root, NULL, 0, role);
295
296 /*
297 * TDP MMU roots are kept until they are explicitly invalidated, either
298 * by a memslot update or by the destruction of the VM. Initialize the
299 * refcount to two; one reference for the vCPU, and one reference for
300 * the TDP MMU itself, which is held until the root is invalidated and
301 * is ultimately put by kvm_tdp_mmu_zap_invalidated_roots().
302 */
303 refcount_set(&root->tdp_mmu_root_count, 2);
304 list_add_rcu(&root->link, &kvm->arch.tdp_mmu_roots);
305
306 out_spin_unlock:
307 spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
308 out_read_unlock:
309 read_unlock(&kvm->mmu_lock);
310 /*
311 * Note, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS will prevent entering the guest
312 * and actually consuming the root if it's invalidated after dropping
313 * mmu_lock, and the root can't be freed as this vCPU holds a reference.
314 */
315 if (mirror) {
316 mmu->mirror_root_hpa = __pa(root->spt);
317 } else {
318 mmu->root.hpa = __pa(root->spt);
319 mmu->root.pgd = 0;
320 }
321 }
322
323 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
324 u64 old_spte, u64 new_spte, int level,
325 bool shared);
326
tdp_account_mmu_page(struct kvm * kvm,struct kvm_mmu_page * sp)327 static void tdp_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
328 {
329 kvm_account_pgtable_pages((void *)sp->spt, +1);
330 #ifdef CONFIG_KVM_PROVE_MMU
331 atomic64_inc(&kvm->arch.tdp_mmu_pages);
332 #endif
333 }
334
tdp_unaccount_mmu_page(struct kvm * kvm,struct kvm_mmu_page * sp)335 static void tdp_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
336 {
337 kvm_account_pgtable_pages((void *)sp->spt, -1);
338 #ifdef CONFIG_KVM_PROVE_MMU
339 atomic64_dec(&kvm->arch.tdp_mmu_pages);
340 #endif
341 }
342
343 /**
344 * tdp_mmu_unlink_sp() - Remove a shadow page from the list of used pages
345 *
346 * @kvm: kvm instance
347 * @sp: the page to be removed
348 */
tdp_mmu_unlink_sp(struct kvm * kvm,struct kvm_mmu_page * sp)349 static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
350 {
351 tdp_unaccount_mmu_page(kvm, sp);
352
353 if (!sp->nx_huge_page_disallowed)
354 return;
355
356 spin_lock(&kvm->arch.tdp_mmu_pages_lock);
357 sp->nx_huge_page_disallowed = false;
358 untrack_possible_nx_huge_page(kvm, sp);
359 spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
360 }
361
remove_external_spte(struct kvm * kvm,gfn_t gfn,u64 old_spte,int level)362 static void remove_external_spte(struct kvm *kvm, gfn_t gfn, u64 old_spte,
363 int level)
364 {
365 kvm_pfn_t old_pfn = spte_to_pfn(old_spte);
366 int ret;
367
368 /*
369 * External (TDX) SPTEs are limited to PG_LEVEL_4K, and external
370 * PTs are removed in a special order, involving free_external_spt().
371 * But remove_external_spte() will be called on non-leaf PTEs via
372 * __tdp_mmu_zap_root(), so avoid the error the former would return
373 * in this case.
374 */
375 if (!is_last_spte(old_spte, level))
376 return;
377
378 /* Zapping leaf spte is allowed only when write lock is held. */
379 lockdep_assert_held_write(&kvm->mmu_lock);
380 /* Because write lock is held, operation should success. */
381 ret = kvm_x86_call(remove_external_spte)(kvm, gfn, level, old_pfn);
382 KVM_BUG_ON(ret, kvm);
383 }
384
385 /**
386 * handle_removed_pt() - handle a page table removed from the TDP structure
387 *
388 * @kvm: kvm instance
389 * @pt: the page removed from the paging structure
390 * @shared: This operation may not be running under the exclusive use
391 * of the MMU lock and the operation must synchronize with other
392 * threads that might be modifying SPTEs.
393 *
394 * Given a page table that has been removed from the TDP paging structure,
395 * iterates through the page table to clear SPTEs and free child page tables.
396 *
397 * Note that pt is passed in as a tdp_ptep_t, but it does not need RCU
398 * protection. Since this thread removed it from the paging structure,
399 * this thread will be responsible for ensuring the page is freed. Hence the
400 * early rcu_dereferences in the function.
401 */
handle_removed_pt(struct kvm * kvm,tdp_ptep_t pt,bool shared)402 static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
403 {
404 struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt));
405 int level = sp->role.level;
406 gfn_t base_gfn = sp->gfn;
407 int i;
408
409 trace_kvm_mmu_prepare_zap_page(sp);
410
411 tdp_mmu_unlink_sp(kvm, sp);
412
413 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
414 tdp_ptep_t sptep = pt + i;
415 gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level);
416 u64 old_spte;
417
418 if (shared) {
419 /*
420 * Set the SPTE to a nonpresent value that other
421 * threads will not overwrite. If the SPTE was
422 * already marked as frozen then another thread
423 * handling a page fault could overwrite it, so
424 * set the SPTE until it is set from some other
425 * value to the frozen SPTE value.
426 */
427 for (;;) {
428 old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, FROZEN_SPTE);
429 if (!is_frozen_spte(old_spte))
430 break;
431 cpu_relax();
432 }
433 } else {
434 /*
435 * If the SPTE is not MMU-present, there is no backing
436 * page associated with the SPTE and so no side effects
437 * that need to be recorded, and exclusive ownership of
438 * mmu_lock ensures the SPTE can't be made present.
439 * Note, zapping MMIO SPTEs is also unnecessary as they
440 * are guarded by the memslots generation, not by being
441 * unreachable.
442 */
443 old_spte = kvm_tdp_mmu_read_spte(sptep);
444 if (!is_shadow_present_pte(old_spte))
445 continue;
446
447 /*
448 * Use the common helper instead of a raw WRITE_ONCE as
449 * the SPTE needs to be updated atomically if it can be
450 * modified by a different vCPU outside of mmu_lock.
451 * Even though the parent SPTE is !PRESENT, the TLB
452 * hasn't yet been flushed, and both Intel and AMD
453 * document that A/D assists can use upper-level PxE
454 * entries that are cached in the TLB, i.e. the CPU can
455 * still access the page and mark it dirty.
456 *
457 * No retry is needed in the atomic update path as the
458 * sole concern is dropping a Dirty bit, i.e. no other
459 * task can zap/remove the SPTE as mmu_lock is held for
460 * write. Marking the SPTE as a frozen SPTE is not
461 * strictly necessary for the same reason, but using
462 * the frozen SPTE value keeps the shared/exclusive
463 * paths consistent and allows the handle_changed_spte()
464 * call below to hardcode the new value to FROZEN_SPTE.
465 *
466 * Note, even though dropping a Dirty bit is the only
467 * scenario where a non-atomic update could result in a
468 * functional bug, simply checking the Dirty bit isn't
469 * sufficient as a fast page fault could read the upper
470 * level SPTE before it is zapped, and then make this
471 * target SPTE writable, resume the guest, and set the
472 * Dirty bit between reading the SPTE above and writing
473 * it here.
474 */
475 old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte,
476 FROZEN_SPTE, level);
477 }
478 handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn,
479 old_spte, FROZEN_SPTE, level, shared);
480
481 if (is_mirror_sp(sp)) {
482 KVM_BUG_ON(shared, kvm);
483 remove_external_spte(kvm, gfn, old_spte, level);
484 }
485 }
486
487 if (is_mirror_sp(sp) &&
488 WARN_ON(kvm_x86_call(free_external_spt)(kvm, base_gfn, sp->role.level,
489 sp->external_spt))) {
490 /*
491 * Failed to free page table page in mirror page table and
492 * there is nothing to do further.
493 * Intentionally leak the page to prevent the kernel from
494 * accessing the encrypted page.
495 */
496 sp->external_spt = NULL;
497 }
498
499 call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback);
500 }
501
get_external_spt(gfn_t gfn,u64 new_spte,int level)502 static void *get_external_spt(gfn_t gfn, u64 new_spte, int level)
503 {
504 if (is_shadow_present_pte(new_spte) && !is_last_spte(new_spte, level)) {
505 struct kvm_mmu_page *sp = spte_to_child_sp(new_spte);
506
507 WARN_ON_ONCE(sp->role.level + 1 != level);
508 WARN_ON_ONCE(sp->gfn != gfn);
509 return sp->external_spt;
510 }
511
512 return NULL;
513 }
514
set_external_spte_present(struct kvm * kvm,tdp_ptep_t sptep,gfn_t gfn,u64 old_spte,u64 new_spte,int level)515 static int __must_check set_external_spte_present(struct kvm *kvm, tdp_ptep_t sptep,
516 gfn_t gfn, u64 old_spte,
517 u64 new_spte, int level)
518 {
519 bool was_present = is_shadow_present_pte(old_spte);
520 bool is_present = is_shadow_present_pte(new_spte);
521 bool is_leaf = is_present && is_last_spte(new_spte, level);
522 kvm_pfn_t new_pfn = spte_to_pfn(new_spte);
523 int ret = 0;
524
525 KVM_BUG_ON(was_present, kvm);
526
527 lockdep_assert_held(&kvm->mmu_lock);
528 /*
529 * We need to lock out other updates to the SPTE until the external
530 * page table has been modified. Use FROZEN_SPTE similar to
531 * the zapping case.
532 */
533 if (!try_cmpxchg64(rcu_dereference(sptep), &old_spte, FROZEN_SPTE))
534 return -EBUSY;
535
536 /*
537 * Use different call to either set up middle level
538 * external page table, or leaf.
539 */
540 if (is_leaf) {
541 ret = kvm_x86_call(set_external_spte)(kvm, gfn, level, new_pfn);
542 } else {
543 void *external_spt = get_external_spt(gfn, new_spte, level);
544
545 KVM_BUG_ON(!external_spt, kvm);
546 ret = kvm_x86_call(link_external_spt)(kvm, gfn, level, external_spt);
547 }
548 if (ret)
549 __kvm_tdp_mmu_write_spte(sptep, old_spte);
550 else
551 __kvm_tdp_mmu_write_spte(sptep, new_spte);
552 return ret;
553 }
554
555 /**
556 * handle_changed_spte - handle bookkeeping associated with an SPTE change
557 * @kvm: kvm instance
558 * @as_id: the address space of the paging structure the SPTE was a part of
559 * @gfn: the base GFN that was mapped by the SPTE
560 * @old_spte: The value of the SPTE before the change
561 * @new_spte: The value of the SPTE after the change
562 * @level: the level of the PT the SPTE is part of in the paging structure
563 * @shared: This operation may not be running under the exclusive use of
564 * the MMU lock and the operation must synchronize with other
565 * threads that might be modifying SPTEs.
566 *
567 * Handle bookkeeping that might result from the modification of a SPTE. Note,
568 * dirty logging updates are handled in common code, not here (see make_spte()
569 * and fast_pf_fix_direct_spte()).
570 */
handle_changed_spte(struct kvm * kvm,int as_id,gfn_t gfn,u64 old_spte,u64 new_spte,int level,bool shared)571 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
572 u64 old_spte, u64 new_spte, int level,
573 bool shared)
574 {
575 bool was_present = is_shadow_present_pte(old_spte);
576 bool is_present = is_shadow_present_pte(new_spte);
577 bool was_leaf = was_present && is_last_spte(old_spte, level);
578 bool is_leaf = is_present && is_last_spte(new_spte, level);
579 bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
580
581 WARN_ON_ONCE(level > PT64_ROOT_MAX_LEVEL);
582 WARN_ON_ONCE(level < PG_LEVEL_4K);
583 WARN_ON_ONCE(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
584
585 /*
586 * If this warning were to trigger it would indicate that there was a
587 * missing MMU notifier or a race with some notifier handler.
588 * A present, leaf SPTE should never be directly replaced with another
589 * present leaf SPTE pointing to a different PFN. A notifier handler
590 * should be zapping the SPTE before the main MM's page table is
591 * changed, or the SPTE should be zeroed, and the TLBs flushed by the
592 * thread before replacement.
593 */
594 if (was_leaf && is_leaf && pfn_changed) {
595 pr_err("Invalid SPTE change: cannot replace a present leaf\n"
596 "SPTE with another present leaf SPTE mapping a\n"
597 "different PFN!\n"
598 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
599 as_id, gfn, old_spte, new_spte, level);
600
601 /*
602 * Crash the host to prevent error propagation and guest data
603 * corruption.
604 */
605 BUG();
606 }
607
608 if (old_spte == new_spte)
609 return;
610
611 trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte);
612
613 if (is_leaf)
614 check_spte_writable_invariants(new_spte);
615
616 /*
617 * The only times a SPTE should be changed from a non-present to
618 * non-present state is when an MMIO entry is installed/modified/
619 * removed. In that case, there is nothing to do here.
620 */
621 if (!was_present && !is_present) {
622 /*
623 * If this change does not involve a MMIO SPTE or frozen SPTE,
624 * it is unexpected. Log the change, though it should not
625 * impact the guest since both the former and current SPTEs
626 * are nonpresent.
627 */
628 if (WARN_ON_ONCE(!is_mmio_spte(kvm, old_spte) &&
629 !is_mmio_spte(kvm, new_spte) &&
630 !is_frozen_spte(new_spte)))
631 pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
632 "should not be replaced with another,\n"
633 "different nonpresent SPTE, unless one or both\n"
634 "are MMIO SPTEs, or the new SPTE is\n"
635 "a temporary frozen SPTE.\n"
636 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
637 as_id, gfn, old_spte, new_spte, level);
638 return;
639 }
640
641 if (is_leaf != was_leaf)
642 kvm_update_page_stats(kvm, level, is_leaf ? 1 : -1);
643
644 /*
645 * Recursively handle child PTs if the change removed a subtree from
646 * the paging structure. Note the WARN on the PFN changing without the
647 * SPTE being converted to a hugepage (leaf) or being zapped. Shadow
648 * pages are kernel allocations and should never be migrated.
649 */
650 if (was_present && !was_leaf &&
651 (is_leaf || !is_present || WARN_ON_ONCE(pfn_changed)))
652 handle_removed_pt(kvm, spte_to_child_pt(old_spte, level), shared);
653 }
654
__tdp_mmu_set_spte_atomic(struct kvm * kvm,struct tdp_iter * iter,u64 new_spte)655 static inline int __must_check __tdp_mmu_set_spte_atomic(struct kvm *kvm,
656 struct tdp_iter *iter,
657 u64 new_spte)
658 {
659 /*
660 * The caller is responsible for ensuring the old SPTE is not a FROZEN
661 * SPTE. KVM should never attempt to zap or manipulate a FROZEN SPTE,
662 * and pre-checking before inserting a new SPTE is advantageous as it
663 * avoids unnecessary work.
664 */
665 WARN_ON_ONCE(iter->yielded || is_frozen_spte(iter->old_spte));
666
667 if (is_mirror_sptep(iter->sptep) && !is_frozen_spte(new_spte)) {
668 int ret;
669
670 /*
671 * Users of atomic zapping don't operate on mirror roots,
672 * so don't handle it and bug the VM if it's seen.
673 */
674 if (KVM_BUG_ON(!is_shadow_present_pte(new_spte), kvm))
675 return -EBUSY;
676
677 ret = set_external_spte_present(kvm, iter->sptep, iter->gfn,
678 iter->old_spte, new_spte, iter->level);
679 if (ret)
680 return ret;
681 } else {
682 u64 *sptep = rcu_dereference(iter->sptep);
683
684 /*
685 * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs
686 * and does not hold the mmu_lock. On failure, i.e. if a
687 * different logical CPU modified the SPTE, try_cmpxchg64()
688 * updates iter->old_spte with the current value, so the caller
689 * operates on fresh data, e.g. if it retries
690 * tdp_mmu_set_spte_atomic()
691 */
692 if (!try_cmpxchg64(sptep, &iter->old_spte, new_spte))
693 return -EBUSY;
694 }
695
696 return 0;
697 }
698
699 /*
700 * tdp_mmu_set_spte_atomic - Set a TDP MMU SPTE atomically
701 * and handle the associated bookkeeping. Do not mark the page dirty
702 * in KVM's dirty bitmaps.
703 *
704 * If setting the SPTE fails because it has changed, iter->old_spte will be
705 * refreshed to the current value of the spte.
706 *
707 * @kvm: kvm instance
708 * @iter: a tdp_iter instance currently on the SPTE that should be set
709 * @new_spte: The value the SPTE should be set to
710 * Return:
711 * * 0 - If the SPTE was set.
712 * * -EBUSY - If the SPTE cannot be set. In this case this function will have
713 * no side-effects other than setting iter->old_spte to the last
714 * known value of the spte.
715 */
tdp_mmu_set_spte_atomic(struct kvm * kvm,struct tdp_iter * iter,u64 new_spte)716 static inline int __must_check tdp_mmu_set_spte_atomic(struct kvm *kvm,
717 struct tdp_iter *iter,
718 u64 new_spte)
719 {
720 int ret;
721
722 lockdep_assert_held_read(&kvm->mmu_lock);
723
724 ret = __tdp_mmu_set_spte_atomic(kvm, iter, new_spte);
725 if (ret)
726 return ret;
727
728 handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte,
729 new_spte, iter->level, true);
730
731 return 0;
732 }
733
734 /*
735 * tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping
736 * @kvm: KVM instance
737 * @as_id: Address space ID, i.e. regular vs. SMM
738 * @sptep: Pointer to the SPTE
739 * @old_spte: The current value of the SPTE
740 * @new_spte: The new value that will be set for the SPTE
741 * @gfn: The base GFN that was (or will be) mapped by the SPTE
742 * @level: The level _containing_ the SPTE (its parent PT's level)
743 *
744 * Returns the old SPTE value, which _may_ be different than @old_spte if the
745 * SPTE had voldatile bits.
746 */
tdp_mmu_set_spte(struct kvm * kvm,int as_id,tdp_ptep_t sptep,u64 old_spte,u64 new_spte,gfn_t gfn,int level)747 static u64 tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
748 u64 old_spte, u64 new_spte, gfn_t gfn, int level)
749 {
750 lockdep_assert_held_write(&kvm->mmu_lock);
751
752 /*
753 * No thread should be using this function to set SPTEs to or from the
754 * temporary frozen SPTE value.
755 * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic
756 * should be used. If operating under the MMU lock in write mode, the
757 * use of the frozen SPTE should not be necessary.
758 */
759 WARN_ON_ONCE(is_frozen_spte(old_spte) || is_frozen_spte(new_spte));
760
761 old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level);
762
763 handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false);
764
765 /*
766 * Users that do non-atomic setting of PTEs don't operate on mirror
767 * roots, so don't handle it and bug the VM if it's seen.
768 */
769 if (is_mirror_sptep(sptep)) {
770 KVM_BUG_ON(is_shadow_present_pte(new_spte), kvm);
771 remove_external_spte(kvm, gfn, old_spte, level);
772 }
773
774 return old_spte;
775 }
776
tdp_mmu_iter_set_spte(struct kvm * kvm,struct tdp_iter * iter,u64 new_spte)777 static inline void tdp_mmu_iter_set_spte(struct kvm *kvm, struct tdp_iter *iter,
778 u64 new_spte)
779 {
780 WARN_ON_ONCE(iter->yielded);
781 iter->old_spte = tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep,
782 iter->old_spte, new_spte,
783 iter->gfn, iter->level);
784 }
785
786 #define tdp_root_for_each_pte(_iter, _kvm, _root, _start, _end) \
787 for_each_tdp_pte(_iter, _kvm, _root, _start, _end)
788
789 #define tdp_root_for_each_leaf_pte(_iter, _kvm, _root, _start, _end) \
790 tdp_root_for_each_pte(_iter, _kvm, _root, _start, _end) \
791 if (!is_shadow_present_pte(_iter.old_spte) || \
792 !is_last_spte(_iter.old_spte, _iter.level)) \
793 continue; \
794 else
795
tdp_mmu_iter_need_resched(struct kvm * kvm,struct tdp_iter * iter)796 static inline bool __must_check tdp_mmu_iter_need_resched(struct kvm *kvm,
797 struct tdp_iter *iter)
798 {
799 if (!need_resched() && !rwlock_needbreak(&kvm->mmu_lock))
800 return false;
801
802 /* Ensure forward progress has been made before yielding. */
803 return iter->next_last_level_gfn != iter->yielded_gfn;
804 }
805
806 /*
807 * Yield if the MMU lock is contended or this thread needs to return control
808 * to the scheduler.
809 *
810 * If this function should yield and flush is set, it will perform a remote
811 * TLB flush before yielding.
812 *
813 * If this function yields, iter->yielded is set and the caller must skip to
814 * the next iteration, where tdp_iter_next() will reset the tdp_iter's walk
815 * over the paging structures to allow the iterator to continue its traversal
816 * from the paging structure root.
817 *
818 * Returns true if this function yielded.
819 */
tdp_mmu_iter_cond_resched(struct kvm * kvm,struct tdp_iter * iter,bool flush,bool shared)820 static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm,
821 struct tdp_iter *iter,
822 bool flush, bool shared)
823 {
824 KVM_MMU_WARN_ON(iter->yielded);
825
826 if (!tdp_mmu_iter_need_resched(kvm, iter))
827 return false;
828
829 if (flush)
830 kvm_flush_remote_tlbs(kvm);
831
832 rcu_read_unlock();
833
834 if (shared)
835 cond_resched_rwlock_read(&kvm->mmu_lock);
836 else
837 cond_resched_rwlock_write(&kvm->mmu_lock);
838
839 rcu_read_lock();
840
841 WARN_ON_ONCE(iter->gfn > iter->next_last_level_gfn);
842
843 iter->yielded = true;
844 return true;
845 }
846
tdp_mmu_max_gfn_exclusive(void)847 static inline gfn_t tdp_mmu_max_gfn_exclusive(void)
848 {
849 /*
850 * Bound TDP MMU walks at host.MAXPHYADDR. KVM disallows memslots with
851 * a gpa range that would exceed the max gfn, and KVM does not create
852 * MMIO SPTEs for "impossible" gfns, instead sending such accesses down
853 * the slow emulation path every time.
854 */
855 return kvm_mmu_max_gfn() + 1;
856 }
857
__tdp_mmu_zap_root(struct kvm * kvm,struct kvm_mmu_page * root,bool shared,int zap_level)858 static void __tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
859 bool shared, int zap_level)
860 {
861 struct tdp_iter iter;
862
863 for_each_tdp_pte_min_level_all(iter, root, zap_level) {
864 retry:
865 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
866 continue;
867
868 if (!is_shadow_present_pte(iter.old_spte))
869 continue;
870
871 if (iter.level > zap_level)
872 continue;
873
874 if (!shared)
875 tdp_mmu_iter_set_spte(kvm, &iter, SHADOW_NONPRESENT_VALUE);
876 else if (tdp_mmu_set_spte_atomic(kvm, &iter, SHADOW_NONPRESENT_VALUE))
877 goto retry;
878 }
879 }
880
tdp_mmu_zap_root(struct kvm * kvm,struct kvm_mmu_page * root,bool shared)881 static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
882 bool shared)
883 {
884
885 /*
886 * The root must have an elevated refcount so that it's reachable via
887 * mmu_notifier callbacks, which allows this path to yield and drop
888 * mmu_lock. When handling an unmap/release mmu_notifier command, KVM
889 * must drop all references to relevant pages prior to completing the
890 * callback. Dropping mmu_lock with an unreachable root would result
891 * in zapping SPTEs after a relevant mmu_notifier callback completes
892 * and lead to use-after-free as zapping a SPTE triggers "writeback" of
893 * dirty accessed bits to the SPTE's associated struct page.
894 */
895 WARN_ON_ONCE(!refcount_read(&root->tdp_mmu_root_count));
896
897 kvm_lockdep_assert_mmu_lock_held(kvm, shared);
898
899 rcu_read_lock();
900
901 /*
902 * Zap roots in multiple passes of decreasing granularity, i.e. zap at
903 * 4KiB=>2MiB=>1GiB=>root, in order to better honor need_resched() (all
904 * preempt models) or mmu_lock contention (full or real-time models).
905 * Zapping at finer granularity marginally increases the total time of
906 * the zap, but in most cases the zap itself isn't latency sensitive.
907 *
908 * If KVM is configured to prove the MMU, skip the 4KiB and 2MiB zaps
909 * in order to mimic the page fault path, which can replace a 1GiB page
910 * table with an equivalent 1GiB hugepage, i.e. can get saddled with
911 * zapping a 1GiB region that's fully populated with 4KiB SPTEs. This
912 * allows verifying that KVM can safely zap 1GiB regions, e.g. without
913 * inducing RCU stalls, without relying on a relatively rare event
914 * (zapping roots is orders of magnitude more common). Note, because
915 * zapping a SP recurses on its children, stepping down to PG_LEVEL_4K
916 * in the iterator itself is unnecessary.
917 */
918 if (!IS_ENABLED(CONFIG_KVM_PROVE_MMU)) {
919 __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_4K);
920 __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_2M);
921 }
922 __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_1G);
923 __tdp_mmu_zap_root(kvm, root, shared, root->role.level);
924
925 rcu_read_unlock();
926 }
927
kvm_tdp_mmu_zap_sp(struct kvm * kvm,struct kvm_mmu_page * sp)928 bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
929 {
930 u64 old_spte;
931
932 /*
933 * This helper intentionally doesn't allow zapping a root shadow page,
934 * which doesn't have a parent page table and thus no associated entry.
935 */
936 if (WARN_ON_ONCE(!sp->ptep))
937 return false;
938
939 old_spte = kvm_tdp_mmu_read_spte(sp->ptep);
940 if (WARN_ON_ONCE(!is_shadow_present_pte(old_spte)))
941 return false;
942
943 tdp_mmu_set_spte(kvm, kvm_mmu_page_as_id(sp), sp->ptep, old_spte,
944 SHADOW_NONPRESENT_VALUE, sp->gfn, sp->role.level + 1);
945
946 return true;
947 }
948
949 /*
950 * If can_yield is true, will release the MMU lock and reschedule if the
951 * scheduler needs the CPU or there is contention on the MMU lock. If this
952 * function cannot yield, it will not release the MMU lock or reschedule and
953 * the caller must ensure it does not supply too large a GFN range, or the
954 * operation can cause a soft lockup.
955 */
tdp_mmu_zap_leafs(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t start,gfn_t end,bool can_yield,bool flush)956 static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root,
957 gfn_t start, gfn_t end, bool can_yield, bool flush)
958 {
959 struct tdp_iter iter;
960
961 end = min(end, tdp_mmu_max_gfn_exclusive());
962
963 lockdep_assert_held_write(&kvm->mmu_lock);
964
965 rcu_read_lock();
966
967 for_each_tdp_pte_min_level(iter, kvm, root, PG_LEVEL_4K, start, end) {
968 if (can_yield &&
969 tdp_mmu_iter_cond_resched(kvm, &iter, flush, false)) {
970 flush = false;
971 continue;
972 }
973
974 if (!is_shadow_present_pte(iter.old_spte) ||
975 !is_last_spte(iter.old_spte, iter.level))
976 continue;
977
978 tdp_mmu_iter_set_spte(kvm, &iter, SHADOW_NONPRESENT_VALUE);
979
980 /*
981 * Zappings SPTEs in invalid roots doesn't require a TLB flush,
982 * see kvm_tdp_mmu_zap_invalidated_roots() for details.
983 */
984 if (!root->role.invalid)
985 flush = true;
986 }
987
988 rcu_read_unlock();
989
990 /*
991 * Because this flow zaps _only_ leaf SPTEs, the caller doesn't need
992 * to provide RCU protection as no 'struct kvm_mmu_page' will be freed.
993 */
994 return flush;
995 }
996
997 /*
998 * Zap leaf SPTEs for the range of gfns, [start, end), for all *VALID** roots.
999 * Returns true if a TLB flush is needed before releasing the MMU lock, i.e. if
1000 * one or more SPTEs were zapped since the MMU lock was last acquired.
1001 */
kvm_tdp_mmu_zap_leafs(struct kvm * kvm,gfn_t start,gfn_t end,bool flush)1002 bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, gfn_t start, gfn_t end, bool flush)
1003 {
1004 struct kvm_mmu_page *root;
1005
1006 lockdep_assert_held_write(&kvm->mmu_lock);
1007 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, -1)
1008 flush = tdp_mmu_zap_leafs(kvm, root, start, end, true, flush);
1009
1010 return flush;
1011 }
1012
kvm_tdp_mmu_zap_all(struct kvm * kvm)1013 void kvm_tdp_mmu_zap_all(struct kvm *kvm)
1014 {
1015 struct kvm_mmu_page *root;
1016
1017 /*
1018 * Zap all direct roots, including invalid direct roots, as all direct
1019 * SPTEs must be dropped before returning to the caller. For TDX, mirror
1020 * roots don't need handling in response to the mmu notifier (the caller).
1021 *
1022 * Zap directly even if the root is also being zapped by a concurrent
1023 * "fast zap". Walking zapped top-level SPTEs isn't all that expensive
1024 * and mmu_lock is already held, which means the other thread has yielded.
1025 *
1026 * A TLB flush is unnecessary, KVM zaps everything if and only the VM
1027 * is being destroyed or the userspace VMM has exited. In both cases,
1028 * KVM_RUN is unreachable, i.e. no vCPUs will ever service the request.
1029 */
1030 lockdep_assert_held_write(&kvm->mmu_lock);
1031 __for_each_tdp_mmu_root_yield_safe(kvm, root, -1,
1032 KVM_DIRECT_ROOTS | KVM_INVALID_ROOTS)
1033 tdp_mmu_zap_root(kvm, root, false);
1034 }
1035
1036 /*
1037 * Zap all invalidated roots to ensure all SPTEs are dropped before the "fast
1038 * zap" completes.
1039 */
kvm_tdp_mmu_zap_invalidated_roots(struct kvm * kvm,bool shared)1040 void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm, bool shared)
1041 {
1042 struct kvm_mmu_page *root;
1043
1044 if (shared)
1045 read_lock(&kvm->mmu_lock);
1046 else
1047 write_lock(&kvm->mmu_lock);
1048
1049 for_each_tdp_mmu_root_yield_safe(kvm, root) {
1050 if (!root->tdp_mmu_scheduled_root_to_zap)
1051 continue;
1052
1053 root->tdp_mmu_scheduled_root_to_zap = false;
1054 KVM_BUG_ON(!root->role.invalid, kvm);
1055
1056 /*
1057 * A TLB flush is not necessary as KVM performs a local TLB
1058 * flush when allocating a new root (see kvm_mmu_load()), and
1059 * when migrating a vCPU to a different pCPU. Note, the local
1060 * TLB flush on reuse also invalidates paging-structure-cache
1061 * entries, i.e. TLB entries for intermediate paging structures,
1062 * that may be zapped, as such entries are associated with the
1063 * ASID on both VMX and SVM.
1064 */
1065 tdp_mmu_zap_root(kvm, root, shared);
1066
1067 /*
1068 * The referenced needs to be put *after* zapping the root, as
1069 * the root must be reachable by mmu_notifiers while it's being
1070 * zapped
1071 */
1072 kvm_tdp_mmu_put_root(kvm, root);
1073 }
1074
1075 if (shared)
1076 read_unlock(&kvm->mmu_lock);
1077 else
1078 write_unlock(&kvm->mmu_lock);
1079 }
1080
1081 /*
1082 * Mark each TDP MMU root as invalid to prevent vCPUs from reusing a root that
1083 * is about to be zapped, e.g. in response to a memslots update. The actual
1084 * zapping is done separately so that it happens with mmu_lock with read,
1085 * whereas invalidating roots must be done with mmu_lock held for write (unless
1086 * the VM is being destroyed).
1087 *
1088 * Note, kvm_tdp_mmu_zap_invalidated_roots() is gifted the TDP MMU's reference.
1089 * See kvm_tdp_mmu_alloc_root().
1090 */
kvm_tdp_mmu_invalidate_roots(struct kvm * kvm,enum kvm_tdp_mmu_root_types root_types)1091 void kvm_tdp_mmu_invalidate_roots(struct kvm *kvm,
1092 enum kvm_tdp_mmu_root_types root_types)
1093 {
1094 struct kvm_mmu_page *root;
1095
1096 /*
1097 * Invalidating invalid roots doesn't make sense, prevent developers from
1098 * having to think about it.
1099 */
1100 if (WARN_ON_ONCE(root_types & KVM_INVALID_ROOTS))
1101 root_types &= ~KVM_INVALID_ROOTS;
1102
1103 /*
1104 * mmu_lock must be held for write to ensure that a root doesn't become
1105 * invalid while there are active readers (invalidating a root while
1106 * there are active readers may or may not be problematic in practice,
1107 * but it's uncharted territory and not supported).
1108 *
1109 * Waive the assertion if there are no users of @kvm, i.e. the VM is
1110 * being destroyed after all references have been put, or if no vCPUs
1111 * have been created (which means there are no roots), i.e. the VM is
1112 * being destroyed in an error path of KVM_CREATE_VM.
1113 */
1114 if (IS_ENABLED(CONFIG_PROVE_LOCKING) &&
1115 refcount_read(&kvm->users_count) && kvm->created_vcpus)
1116 lockdep_assert_held_write(&kvm->mmu_lock);
1117
1118 /*
1119 * As above, mmu_lock isn't held when destroying the VM! There can't
1120 * be other references to @kvm, i.e. nothing else can invalidate roots
1121 * or get/put references to roots.
1122 */
1123 list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) {
1124 if (!tdp_mmu_root_match(root, root_types))
1125 continue;
1126
1127 /*
1128 * Note, invalid roots can outlive a memslot update! Invalid
1129 * roots must be *zapped* before the memslot update completes,
1130 * but a different task can acquire a reference and keep the
1131 * root alive after its been zapped.
1132 */
1133 if (!root->role.invalid) {
1134 root->tdp_mmu_scheduled_root_to_zap = true;
1135 root->role.invalid = true;
1136 }
1137 }
1138 }
1139
1140 /*
1141 * Installs a last-level SPTE to handle a TDP page fault.
1142 * (NPT/EPT violation/misconfiguration)
1143 */
tdp_mmu_map_handle_target_level(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,struct tdp_iter * iter)1144 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu,
1145 struct kvm_page_fault *fault,
1146 struct tdp_iter *iter)
1147 {
1148 struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(iter->sptep));
1149 u64 new_spte;
1150 int ret = RET_PF_FIXED;
1151 bool wrprot = false;
1152
1153 if (WARN_ON_ONCE(sp->role.level != fault->goal_level))
1154 return RET_PF_RETRY;
1155
1156 if (is_shadow_present_pte(iter->old_spte) &&
1157 (fault->prefetch || is_access_allowed(fault, iter->old_spte)) &&
1158 is_last_spte(iter->old_spte, iter->level)) {
1159 WARN_ON_ONCE(fault->pfn != spte_to_pfn(iter->old_spte));
1160 return RET_PF_SPURIOUS;
1161 }
1162
1163 if (unlikely(!fault->slot))
1164 new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
1165 else
1166 wrprot = make_spte(vcpu, sp, fault->slot, ACC_ALL, iter->gfn,
1167 fault->pfn, iter->old_spte, fault->prefetch,
1168 false, fault->map_writable, &new_spte);
1169
1170 if (new_spte == iter->old_spte)
1171 ret = RET_PF_SPURIOUS;
1172 else if (tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte))
1173 return RET_PF_RETRY;
1174 else if (is_shadow_present_pte(iter->old_spte) &&
1175 (!is_last_spte(iter->old_spte, iter->level) ||
1176 WARN_ON_ONCE(leaf_spte_change_needs_tlb_flush(iter->old_spte, new_spte))))
1177 kvm_flush_remote_tlbs_gfn(vcpu->kvm, iter->gfn, iter->level);
1178
1179 /*
1180 * If the page fault was caused by a write but the page is write
1181 * protected, emulation is needed. If the emulation was skipped,
1182 * the vCPU would have the same fault again.
1183 */
1184 if (wrprot && fault->write)
1185 ret = RET_PF_WRITE_PROTECTED;
1186
1187 /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
1188 if (unlikely(is_mmio_spte(vcpu->kvm, new_spte))) {
1189 vcpu->stat.pf_mmio_spte_created++;
1190 trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn,
1191 new_spte);
1192 ret = RET_PF_EMULATE;
1193 } else {
1194 trace_kvm_mmu_set_spte(iter->level, iter->gfn,
1195 rcu_dereference(iter->sptep));
1196 }
1197
1198 return ret;
1199 }
1200
1201 /*
1202 * tdp_mmu_link_sp - Replace the given spte with an spte pointing to the
1203 * provided page table.
1204 *
1205 * @kvm: kvm instance
1206 * @iter: a tdp_iter instance currently on the SPTE that should be set
1207 * @sp: The new TDP page table to install.
1208 * @shared: This operation is running under the MMU lock in read mode.
1209 *
1210 * Returns: 0 if the new page table was installed. Non-0 if the page table
1211 * could not be installed (e.g. the atomic compare-exchange failed).
1212 */
tdp_mmu_link_sp(struct kvm * kvm,struct tdp_iter * iter,struct kvm_mmu_page * sp,bool shared)1213 static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter,
1214 struct kvm_mmu_page *sp, bool shared)
1215 {
1216 u64 spte = make_nonleaf_spte(sp->spt, !kvm_ad_enabled);
1217 int ret = 0;
1218
1219 if (shared) {
1220 ret = tdp_mmu_set_spte_atomic(kvm, iter, spte);
1221 if (ret)
1222 return ret;
1223 } else {
1224 tdp_mmu_iter_set_spte(kvm, iter, spte);
1225 }
1226
1227 tdp_account_mmu_page(kvm, sp);
1228
1229 return 0;
1230 }
1231
1232 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter,
1233 struct kvm_mmu_page *sp, bool shared);
1234
1235 /*
1236 * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
1237 * page tables and SPTEs to translate the faulting guest physical address.
1238 */
kvm_tdp_mmu_map(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)1239 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
1240 {
1241 struct kvm_mmu_page *root = tdp_mmu_get_root_for_fault(vcpu, fault);
1242 struct kvm *kvm = vcpu->kvm;
1243 struct tdp_iter iter;
1244 struct kvm_mmu_page *sp;
1245 int ret = RET_PF_RETRY;
1246
1247 kvm_mmu_hugepage_adjust(vcpu, fault);
1248
1249 trace_kvm_mmu_spte_requested(fault);
1250
1251 rcu_read_lock();
1252
1253 for_each_tdp_pte(iter, kvm, root, fault->gfn, fault->gfn + 1) {
1254 int r;
1255
1256 if (fault->nx_huge_page_workaround_enabled)
1257 disallowed_hugepage_adjust(fault, iter.old_spte, iter.level);
1258
1259 /*
1260 * If SPTE has been frozen by another thread, just give up and
1261 * retry, avoiding unnecessary page table allocation and free.
1262 */
1263 if (is_frozen_spte(iter.old_spte))
1264 goto retry;
1265
1266 if (iter.level == fault->goal_level)
1267 goto map_target_level;
1268
1269 /* Step down into the lower level page table if it exists. */
1270 if (is_shadow_present_pte(iter.old_spte) &&
1271 !is_large_pte(iter.old_spte))
1272 continue;
1273
1274 /*
1275 * The SPTE is either non-present or points to a huge page that
1276 * needs to be split.
1277 */
1278 sp = tdp_mmu_alloc_sp(vcpu);
1279 tdp_mmu_init_child_sp(sp, &iter);
1280 if (is_mirror_sp(sp))
1281 kvm_mmu_alloc_external_spt(vcpu, sp);
1282
1283 sp->nx_huge_page_disallowed = fault->huge_page_disallowed;
1284
1285 if (is_shadow_present_pte(iter.old_spte)) {
1286 /* Don't support large page for mirrored roots (TDX) */
1287 KVM_BUG_ON(is_mirror_sptep(iter.sptep), vcpu->kvm);
1288 r = tdp_mmu_split_huge_page(kvm, &iter, sp, true);
1289 } else {
1290 r = tdp_mmu_link_sp(kvm, &iter, sp, true);
1291 }
1292
1293 /*
1294 * Force the guest to retry if installing an upper level SPTE
1295 * failed, e.g. because a different task modified the SPTE.
1296 */
1297 if (r) {
1298 tdp_mmu_free_sp(sp);
1299 goto retry;
1300 }
1301
1302 if (fault->huge_page_disallowed &&
1303 fault->req_level >= iter.level) {
1304 spin_lock(&kvm->arch.tdp_mmu_pages_lock);
1305 if (sp->nx_huge_page_disallowed)
1306 track_possible_nx_huge_page(kvm, sp);
1307 spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
1308 }
1309 }
1310
1311 /*
1312 * The walk aborted before reaching the target level, e.g. because the
1313 * iterator detected an upper level SPTE was frozen during traversal.
1314 */
1315 WARN_ON_ONCE(iter.level == fault->goal_level);
1316 goto retry;
1317
1318 map_target_level:
1319 ret = tdp_mmu_map_handle_target_level(vcpu, fault, &iter);
1320
1321 retry:
1322 rcu_read_unlock();
1323 return ret;
1324 }
1325
1326 /* Used by mmu notifier via kvm_unmap_gfn_range() */
kvm_tdp_mmu_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range,bool flush)1327 bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range,
1328 bool flush)
1329 {
1330 enum kvm_tdp_mmu_root_types types;
1331 struct kvm_mmu_page *root;
1332
1333 types = kvm_gfn_range_filter_to_root_types(kvm, range->attr_filter) | KVM_INVALID_ROOTS;
1334
1335 __for_each_tdp_mmu_root_yield_safe(kvm, root, range->slot->as_id, types)
1336 flush = tdp_mmu_zap_leafs(kvm, root, range->start, range->end,
1337 range->may_block, flush);
1338
1339 return flush;
1340 }
1341
1342 /*
1343 * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
1344 * if any of the GFNs in the range have been accessed.
1345 *
1346 * No need to mark the corresponding PFN as accessed as this call is coming
1347 * from the clear_young() or clear_flush_young() notifier, which uses the
1348 * return value to determine if the page has been accessed.
1349 */
kvm_tdp_mmu_age_spte(struct kvm * kvm,struct tdp_iter * iter)1350 static void kvm_tdp_mmu_age_spte(struct kvm *kvm, struct tdp_iter *iter)
1351 {
1352 u64 new_spte;
1353
1354 if (spte_ad_enabled(iter->old_spte)) {
1355 iter->old_spte = tdp_mmu_clear_spte_bits_atomic(iter->sptep,
1356 shadow_accessed_mask);
1357 new_spte = iter->old_spte & ~shadow_accessed_mask;
1358 } else {
1359 new_spte = mark_spte_for_access_track(iter->old_spte);
1360 /*
1361 * It is safe for the following cmpxchg to fail. Leave the
1362 * Accessed bit set, as the spte is most likely young anyway.
1363 */
1364 if (__tdp_mmu_set_spte_atomic(kvm, iter, new_spte))
1365 return;
1366 }
1367
1368 trace_kvm_tdp_mmu_spte_changed(iter->as_id, iter->gfn, iter->level,
1369 iter->old_spte, new_spte);
1370 }
1371
__kvm_tdp_mmu_age_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range,bool test_only)1372 static bool __kvm_tdp_mmu_age_gfn_range(struct kvm *kvm,
1373 struct kvm_gfn_range *range,
1374 bool test_only)
1375 {
1376 enum kvm_tdp_mmu_root_types types;
1377 struct kvm_mmu_page *root;
1378 struct tdp_iter iter;
1379 bool ret = false;
1380
1381 types = kvm_gfn_range_filter_to_root_types(kvm, range->attr_filter);
1382
1383 /*
1384 * Don't support rescheduling, none of the MMU notifiers that funnel
1385 * into this helper allow blocking; it'd be dead, wasteful code. Note,
1386 * this helper must NOT be used to unmap GFNs, as it processes only
1387 * valid roots!
1388 */
1389 WARN_ON(types & ~KVM_VALID_ROOTS);
1390
1391 guard(rcu)();
1392 for_each_tdp_mmu_root_rcu(kvm, root, range->slot->as_id, types) {
1393 tdp_root_for_each_leaf_pte(iter, kvm, root, range->start, range->end) {
1394 if (!is_accessed_spte(iter.old_spte))
1395 continue;
1396
1397 if (test_only)
1398 return true;
1399
1400 ret = true;
1401 kvm_tdp_mmu_age_spte(kvm, &iter);
1402 }
1403 }
1404
1405 return ret;
1406 }
1407
kvm_tdp_mmu_age_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1408 bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1409 {
1410 return __kvm_tdp_mmu_age_gfn_range(kvm, range, false);
1411 }
1412
kvm_tdp_mmu_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1413 bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1414 {
1415 return __kvm_tdp_mmu_age_gfn_range(kvm, range, true);
1416 }
1417
1418 /*
1419 * Remove write access from all SPTEs at or above min_level that map GFNs
1420 * [start, end). Returns true if an SPTE has been changed and the TLBs need to
1421 * be flushed.
1422 */
wrprot_gfn_range(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t start,gfn_t end,int min_level)1423 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1424 gfn_t start, gfn_t end, int min_level)
1425 {
1426 struct tdp_iter iter;
1427 u64 new_spte;
1428 bool spte_set = false;
1429
1430 rcu_read_lock();
1431
1432 BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
1433
1434 for_each_tdp_pte_min_level(iter, kvm, root, min_level, start, end) {
1435 retry:
1436 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1437 continue;
1438
1439 if (!is_shadow_present_pte(iter.old_spte) ||
1440 !is_last_spte(iter.old_spte, iter.level) ||
1441 !(iter.old_spte & PT_WRITABLE_MASK))
1442 continue;
1443
1444 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1445
1446 if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte))
1447 goto retry;
1448
1449 spte_set = true;
1450 }
1451
1452 rcu_read_unlock();
1453 return spte_set;
1454 }
1455
1456 /*
1457 * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
1458 * only affect leaf SPTEs down to min_level.
1459 * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1460 */
kvm_tdp_mmu_wrprot_slot(struct kvm * kvm,const struct kvm_memory_slot * slot,int min_level)1461 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm,
1462 const struct kvm_memory_slot *slot, int min_level)
1463 {
1464 struct kvm_mmu_page *root;
1465 bool spte_set = false;
1466
1467 lockdep_assert_held_read(&kvm->mmu_lock);
1468
1469 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id)
1470 spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
1471 slot->base_gfn + slot->npages, min_level);
1472
1473 return spte_set;
1474 }
1475
tdp_mmu_alloc_sp_for_split(void)1476 static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(void)
1477 {
1478 struct kvm_mmu_page *sp;
1479
1480 sp = kmem_cache_zalloc(mmu_page_header_cache, GFP_KERNEL_ACCOUNT);
1481 if (!sp)
1482 return NULL;
1483
1484 sp->spt = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
1485 if (!sp->spt) {
1486 kmem_cache_free(mmu_page_header_cache, sp);
1487 return NULL;
1488 }
1489
1490 return sp;
1491 }
1492
1493 /* Note, the caller is responsible for initializing @sp. */
tdp_mmu_split_huge_page(struct kvm * kvm,struct tdp_iter * iter,struct kvm_mmu_page * sp,bool shared)1494 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter,
1495 struct kvm_mmu_page *sp, bool shared)
1496 {
1497 const u64 huge_spte = iter->old_spte;
1498 const int level = iter->level;
1499 int ret, i;
1500
1501 /*
1502 * No need for atomics when writing to sp->spt since the page table has
1503 * not been linked in yet and thus is not reachable from any other CPU.
1504 */
1505 for (i = 0; i < SPTE_ENT_PER_PAGE; i++)
1506 sp->spt[i] = make_small_spte(kvm, huge_spte, sp->role, i);
1507
1508 /*
1509 * Replace the huge spte with a pointer to the populated lower level
1510 * page table. Since we are making this change without a TLB flush vCPUs
1511 * will see a mix of the split mappings and the original huge mapping,
1512 * depending on what's currently in their TLB. This is fine from a
1513 * correctness standpoint since the translation will be the same either
1514 * way.
1515 */
1516 ret = tdp_mmu_link_sp(kvm, iter, sp, shared);
1517 if (ret)
1518 goto out;
1519
1520 /*
1521 * tdp_mmu_link_sp_atomic() will handle subtracting the huge page we
1522 * are overwriting from the page stats. But we have to manually update
1523 * the page stats with the new present child pages.
1524 */
1525 kvm_update_page_stats(kvm, level - 1, SPTE_ENT_PER_PAGE);
1526
1527 out:
1528 trace_kvm_mmu_split_huge_page(iter->gfn, huge_spte, level, ret);
1529 return ret;
1530 }
1531
tdp_mmu_split_huge_pages_root(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t start,gfn_t end,int target_level,bool shared)1532 static int tdp_mmu_split_huge_pages_root(struct kvm *kvm,
1533 struct kvm_mmu_page *root,
1534 gfn_t start, gfn_t end,
1535 int target_level, bool shared)
1536 {
1537 struct kvm_mmu_page *sp = NULL;
1538 struct tdp_iter iter;
1539
1540 rcu_read_lock();
1541
1542 /*
1543 * Traverse the page table splitting all huge pages above the target
1544 * level into one lower level. For example, if we encounter a 1GB page
1545 * we split it into 512 2MB pages.
1546 *
1547 * Since the TDP iterator uses a pre-order traversal, we are guaranteed
1548 * to visit an SPTE before ever visiting its children, which means we
1549 * will correctly recursively split huge pages that are more than one
1550 * level above the target level (e.g. splitting a 1GB to 512 2MB pages,
1551 * and then splitting each of those to 512 4KB pages).
1552 */
1553 for_each_tdp_pte_min_level(iter, kvm, root, target_level + 1, start, end) {
1554 retry:
1555 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
1556 continue;
1557
1558 if (!is_shadow_present_pte(iter.old_spte) || !is_large_pte(iter.old_spte))
1559 continue;
1560
1561 if (!sp) {
1562 rcu_read_unlock();
1563
1564 if (shared)
1565 read_unlock(&kvm->mmu_lock);
1566 else
1567 write_unlock(&kvm->mmu_lock);
1568
1569 sp = tdp_mmu_alloc_sp_for_split();
1570
1571 if (shared)
1572 read_lock(&kvm->mmu_lock);
1573 else
1574 write_lock(&kvm->mmu_lock);
1575
1576 if (!sp) {
1577 trace_kvm_mmu_split_huge_page(iter.gfn,
1578 iter.old_spte,
1579 iter.level, -ENOMEM);
1580 return -ENOMEM;
1581 }
1582
1583 rcu_read_lock();
1584
1585 iter.yielded = true;
1586 continue;
1587 }
1588
1589 tdp_mmu_init_child_sp(sp, &iter);
1590
1591 if (tdp_mmu_split_huge_page(kvm, &iter, sp, shared))
1592 goto retry;
1593
1594 sp = NULL;
1595 }
1596
1597 rcu_read_unlock();
1598
1599 /*
1600 * It's possible to exit the loop having never used the last sp if, for
1601 * example, a vCPU doing HugePage NX splitting wins the race and
1602 * installs its own sp in place of the last sp we tried to split.
1603 */
1604 if (sp)
1605 tdp_mmu_free_sp(sp);
1606
1607 return 0;
1608 }
1609
1610
1611 /*
1612 * Try to split all huge pages mapped by the TDP MMU down to the target level.
1613 */
kvm_tdp_mmu_try_split_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t start,gfn_t end,int target_level,bool shared)1614 void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm,
1615 const struct kvm_memory_slot *slot,
1616 gfn_t start, gfn_t end,
1617 int target_level, bool shared)
1618 {
1619 struct kvm_mmu_page *root;
1620 int r = 0;
1621
1622 kvm_lockdep_assert_mmu_lock_held(kvm, shared);
1623 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) {
1624 r = tdp_mmu_split_huge_pages_root(kvm, root, start, end, target_level, shared);
1625 if (r) {
1626 kvm_tdp_mmu_put_root(kvm, root);
1627 break;
1628 }
1629 }
1630 }
1631
tdp_mmu_need_write_protect(struct kvm * kvm,struct kvm_mmu_page * sp)1632 static bool tdp_mmu_need_write_protect(struct kvm *kvm, struct kvm_mmu_page *sp)
1633 {
1634 /*
1635 * All TDP MMU shadow pages share the same role as their root, aside
1636 * from level, so it is valid to key off any shadow page to determine if
1637 * write protection is needed for an entire tree.
1638 */
1639 return kvm_mmu_page_ad_need_write_protect(kvm, sp) || !kvm_ad_enabled;
1640 }
1641
clear_dirty_gfn_range(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t start,gfn_t end)1642 static void clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1643 gfn_t start, gfn_t end)
1644 {
1645 const u64 dbit = tdp_mmu_need_write_protect(kvm, root) ?
1646 PT_WRITABLE_MASK : shadow_dirty_mask;
1647 struct tdp_iter iter;
1648
1649 rcu_read_lock();
1650
1651 tdp_root_for_each_pte(iter, kvm, root, start, end) {
1652 retry:
1653 if (!is_shadow_present_pte(iter.old_spte) ||
1654 !is_last_spte(iter.old_spte, iter.level))
1655 continue;
1656
1657 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1658 continue;
1659
1660 KVM_MMU_WARN_ON(dbit == shadow_dirty_mask &&
1661 spte_ad_need_write_protect(iter.old_spte));
1662
1663 if (!(iter.old_spte & dbit))
1664 continue;
1665
1666 if (tdp_mmu_set_spte_atomic(kvm, &iter, iter.old_spte & ~dbit))
1667 goto retry;
1668 }
1669
1670 rcu_read_unlock();
1671 }
1672
1673 /*
1674 * Clear the dirty status (D-bit or W-bit) of all the SPTEs mapping GFNs in the
1675 * memslot.
1676 */
kvm_tdp_mmu_clear_dirty_slot(struct kvm * kvm,const struct kvm_memory_slot * slot)1677 void kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm,
1678 const struct kvm_memory_slot *slot)
1679 {
1680 struct kvm_mmu_page *root;
1681
1682 lockdep_assert_held_read(&kvm->mmu_lock);
1683 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id)
1684 clear_dirty_gfn_range(kvm, root, slot->base_gfn,
1685 slot->base_gfn + slot->npages);
1686 }
1687
clear_dirty_pt_masked(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t gfn,unsigned long mask,bool wrprot)1688 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
1689 gfn_t gfn, unsigned long mask, bool wrprot)
1690 {
1691 const u64 dbit = (wrprot || tdp_mmu_need_write_protect(kvm, root)) ?
1692 PT_WRITABLE_MASK : shadow_dirty_mask;
1693 struct tdp_iter iter;
1694
1695 lockdep_assert_held_write(&kvm->mmu_lock);
1696
1697 rcu_read_lock();
1698
1699 tdp_root_for_each_leaf_pte(iter, kvm, root, gfn + __ffs(mask),
1700 gfn + BITS_PER_LONG) {
1701 if (!mask)
1702 break;
1703
1704 KVM_MMU_WARN_ON(dbit == shadow_dirty_mask &&
1705 spte_ad_need_write_protect(iter.old_spte));
1706
1707 if (iter.level > PG_LEVEL_4K ||
1708 !(mask & (1UL << (iter.gfn - gfn))))
1709 continue;
1710
1711 mask &= ~(1UL << (iter.gfn - gfn));
1712
1713 if (!(iter.old_spte & dbit))
1714 continue;
1715
1716 iter.old_spte = tdp_mmu_clear_spte_bits(iter.sptep,
1717 iter.old_spte, dbit,
1718 iter.level);
1719
1720 trace_kvm_tdp_mmu_spte_changed(iter.as_id, iter.gfn, iter.level,
1721 iter.old_spte,
1722 iter.old_spte & ~dbit);
1723 }
1724
1725 rcu_read_unlock();
1726 }
1727
1728 /*
1729 * Clear the dirty status (D-bit or W-bit) of all the 4k SPTEs mapping GFNs for
1730 * which a bit is set in mask, starting at gfn. The given memslot is expected to
1731 * contain all the GFNs represented by set bits in the mask.
1732 */
kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,unsigned long mask,bool wrprot)1733 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1734 struct kvm_memory_slot *slot,
1735 gfn_t gfn, unsigned long mask,
1736 bool wrprot)
1737 {
1738 struct kvm_mmu_page *root;
1739
1740 for_each_valid_tdp_mmu_root(kvm, root, slot->as_id)
1741 clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
1742 }
1743
tdp_mmu_make_huge_spte(struct kvm * kvm,struct tdp_iter * parent,u64 * huge_spte)1744 static int tdp_mmu_make_huge_spte(struct kvm *kvm,
1745 struct tdp_iter *parent,
1746 u64 *huge_spte)
1747 {
1748 struct kvm_mmu_page *root = spte_to_child_sp(parent->old_spte);
1749 gfn_t start = parent->gfn;
1750 gfn_t end = start + KVM_PAGES_PER_HPAGE(parent->level);
1751 struct tdp_iter iter;
1752
1753 tdp_root_for_each_leaf_pte(iter, kvm, root, start, end) {
1754 /*
1755 * Use the parent iterator when checking for forward progress so
1756 * that KVM doesn't get stuck continuously trying to yield (i.e.
1757 * returning -EAGAIN here and then failing the forward progress
1758 * check in the caller ad nauseam).
1759 */
1760 if (tdp_mmu_iter_need_resched(kvm, parent))
1761 return -EAGAIN;
1762
1763 *huge_spte = make_huge_spte(kvm, iter.old_spte, parent->level);
1764 return 0;
1765 }
1766
1767 return -ENOENT;
1768 }
1769
recover_huge_pages_range(struct kvm * kvm,struct kvm_mmu_page * root,const struct kvm_memory_slot * slot)1770 static void recover_huge_pages_range(struct kvm *kvm,
1771 struct kvm_mmu_page *root,
1772 const struct kvm_memory_slot *slot)
1773 {
1774 gfn_t start = slot->base_gfn;
1775 gfn_t end = start + slot->npages;
1776 struct tdp_iter iter;
1777 int max_mapping_level;
1778 bool flush = false;
1779 u64 huge_spte;
1780 int r;
1781
1782 if (WARN_ON_ONCE(kvm_slot_dirty_track_enabled(slot)))
1783 return;
1784
1785 rcu_read_lock();
1786
1787 for_each_tdp_pte_min_level(iter, kvm, root, PG_LEVEL_2M, start, end) {
1788 retry:
1789 if (tdp_mmu_iter_cond_resched(kvm, &iter, flush, true)) {
1790 flush = false;
1791 continue;
1792 }
1793
1794 if (iter.level > KVM_MAX_HUGEPAGE_LEVEL ||
1795 !is_shadow_present_pte(iter.old_spte))
1796 continue;
1797
1798 /*
1799 * Don't zap leaf SPTEs, if a leaf SPTE could be replaced with
1800 * a large page size, then its parent would have been zapped
1801 * instead of stepping down.
1802 */
1803 if (is_last_spte(iter.old_spte, iter.level))
1804 continue;
1805
1806 /*
1807 * If iter.gfn resides outside of the slot, i.e. the page for
1808 * the current level overlaps but is not contained by the slot,
1809 * then the SPTE can't be made huge. More importantly, trying
1810 * to query that info from slot->arch.lpage_info will cause an
1811 * out-of-bounds access.
1812 */
1813 if (iter.gfn < start || iter.gfn >= end)
1814 continue;
1815
1816 max_mapping_level = kvm_mmu_max_mapping_level(kvm, slot, iter.gfn);
1817 if (max_mapping_level < iter.level)
1818 continue;
1819
1820 r = tdp_mmu_make_huge_spte(kvm, &iter, &huge_spte);
1821 if (r == -EAGAIN)
1822 goto retry;
1823 else if (r)
1824 continue;
1825
1826 if (tdp_mmu_set_spte_atomic(kvm, &iter, huge_spte))
1827 goto retry;
1828
1829 flush = true;
1830 }
1831
1832 if (flush)
1833 kvm_flush_remote_tlbs_memslot(kvm, slot);
1834
1835 rcu_read_unlock();
1836 }
1837
1838 /*
1839 * Recover huge page mappings within the slot by replacing non-leaf SPTEs with
1840 * huge SPTEs where possible.
1841 */
kvm_tdp_mmu_recover_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * slot)1842 void kvm_tdp_mmu_recover_huge_pages(struct kvm *kvm,
1843 const struct kvm_memory_slot *slot)
1844 {
1845 struct kvm_mmu_page *root;
1846
1847 lockdep_assert_held_read(&kvm->mmu_lock);
1848 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id)
1849 recover_huge_pages_range(kvm, root, slot);
1850 }
1851
1852 /*
1853 * Removes write access on the last level SPTE mapping this GFN and unsets the
1854 * MMU-writable bit to ensure future writes continue to be intercepted.
1855 * Returns true if an SPTE was set and a TLB flush is needed.
1856 */
write_protect_gfn(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t gfn,int min_level)1857 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
1858 gfn_t gfn, int min_level)
1859 {
1860 struct tdp_iter iter;
1861 u64 new_spte;
1862 bool spte_set = false;
1863
1864 BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
1865
1866 rcu_read_lock();
1867
1868 for_each_tdp_pte_min_level(iter, kvm, root, min_level, gfn, gfn + 1) {
1869 if (!is_shadow_present_pte(iter.old_spte) ||
1870 !is_last_spte(iter.old_spte, iter.level))
1871 continue;
1872
1873 new_spte = iter.old_spte &
1874 ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
1875
1876 if (new_spte == iter.old_spte)
1877 break;
1878
1879 tdp_mmu_iter_set_spte(kvm, &iter, new_spte);
1880 spte_set = true;
1881 }
1882
1883 rcu_read_unlock();
1884
1885 return spte_set;
1886 }
1887
1888 /*
1889 * Removes write access on the last level SPTE mapping this GFN and unsets the
1890 * MMU-writable bit to ensure future writes continue to be intercepted.
1891 * Returns true if an SPTE was set and a TLB flush is needed.
1892 */
kvm_tdp_mmu_write_protect_gfn(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,int min_level)1893 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
1894 struct kvm_memory_slot *slot, gfn_t gfn,
1895 int min_level)
1896 {
1897 struct kvm_mmu_page *root;
1898 bool spte_set = false;
1899
1900 lockdep_assert_held_write(&kvm->mmu_lock);
1901 for_each_valid_tdp_mmu_root(kvm, root, slot->as_id)
1902 spte_set |= write_protect_gfn(kvm, root, gfn, min_level);
1903
1904 return spte_set;
1905 }
1906
1907 /*
1908 * Return the level of the lowest level SPTE added to sptes.
1909 * That SPTE may be non-present.
1910 *
1911 * Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
1912 */
__kvm_tdp_mmu_get_walk(struct kvm_vcpu * vcpu,u64 addr,u64 * sptes,struct kvm_mmu_page * root)1913 static int __kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
1914 struct kvm_mmu_page *root)
1915 {
1916 struct tdp_iter iter;
1917 gfn_t gfn = addr >> PAGE_SHIFT;
1918 int leaf = -1;
1919
1920 for_each_tdp_pte(iter, vcpu->kvm, root, gfn, gfn + 1) {
1921 leaf = iter.level;
1922 sptes[leaf] = iter.old_spte;
1923 }
1924
1925 return leaf;
1926 }
1927
kvm_tdp_mmu_get_walk(struct kvm_vcpu * vcpu,u64 addr,u64 * sptes,int * root_level)1928 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
1929 int *root_level)
1930 {
1931 struct kvm_mmu_page *root = root_to_sp(vcpu->arch.mmu->root.hpa);
1932 *root_level = vcpu->arch.mmu->root_role.level;
1933
1934 return __kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root);
1935 }
1936
kvm_tdp_mmu_gpa_is_mapped(struct kvm_vcpu * vcpu,u64 gpa)1937 bool kvm_tdp_mmu_gpa_is_mapped(struct kvm_vcpu *vcpu, u64 gpa)
1938 {
1939 struct kvm *kvm = vcpu->kvm;
1940 bool is_direct = kvm_is_addr_direct(kvm, gpa);
1941 hpa_t root = is_direct ? vcpu->arch.mmu->root.hpa :
1942 vcpu->arch.mmu->mirror_root_hpa;
1943 u64 sptes[PT64_ROOT_MAX_LEVEL + 1], spte;
1944 int leaf;
1945
1946 lockdep_assert_held(&kvm->mmu_lock);
1947 rcu_read_lock();
1948 leaf = __kvm_tdp_mmu_get_walk(vcpu, gpa, sptes, root_to_sp(root));
1949 rcu_read_unlock();
1950 if (leaf < 0)
1951 return false;
1952
1953 spte = sptes[leaf];
1954 return is_shadow_present_pte(spte) && is_last_spte(spte, leaf);
1955 }
1956 EXPORT_SYMBOL_GPL(kvm_tdp_mmu_gpa_is_mapped);
1957
1958 /*
1959 * Returns the last level spte pointer of the shadow page walk for the given
1960 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
1961 * walk could be performed, returns NULL and *spte does not contain valid data.
1962 *
1963 * Contract:
1964 * - Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
1965 * - The returned sptep must not be used after kvm_tdp_mmu_walk_lockless_end.
1966 *
1967 * WARNING: This function is only intended to be called during fast_page_fault.
1968 */
kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu * vcpu,gfn_t gfn,u64 * spte)1969 u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gfn_t gfn,
1970 u64 *spte)
1971 {
1972 /* Fast pf is not supported for mirrored roots */
1973 struct kvm_mmu_page *root = tdp_mmu_get_root(vcpu, KVM_DIRECT_ROOTS);
1974 struct tdp_iter iter;
1975 tdp_ptep_t sptep = NULL;
1976
1977 for_each_tdp_pte(iter, vcpu->kvm, root, gfn, gfn + 1) {
1978 *spte = iter.old_spte;
1979 sptep = iter.sptep;
1980 }
1981
1982 /*
1983 * Perform the rcu_dereference to get the raw spte pointer value since
1984 * we are passing it up to fast_page_fault, which is shared with the
1985 * legacy MMU and thus does not retain the TDP MMU-specific __rcu
1986 * annotation.
1987 *
1988 * This is safe since fast_page_fault obeys the contracts of this
1989 * function as well as all TDP MMU contracts around modifying SPTEs
1990 * outside of mmu_lock.
1991 */
1992 return rcu_dereference(sptep);
1993 }
1994