xref: /linux/virt/kvm/kvm_main.c (revision adc4fb9c814b5d5cc6021022900fd5eb0b3c8165)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine (KVM) Hypervisor
4  *
5  * Copyright (C) 2006 Qumranet, Inc.
6  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7  *
8  * Authors:
9  *   Avi Kivity   <avi@qumranet.com>
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  */
12 
13 #include <kvm/iodev.h>
14 
15 #include <linux/kvm_host.h>
16 #include <linux/kvm.h>
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/percpu.h>
20 #include <linux/mm.h>
21 #include <linux/miscdevice.h>
22 #include <linux/vmalloc.h>
23 #include <linux/reboot.h>
24 #include <linux/debugfs.h>
25 #include <linux/highmem.h>
26 #include <linux/file.h>
27 #include <linux/syscore_ops.h>
28 #include <linux/cpu.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/stat.h>
32 #include <linux/cpumask.h>
33 #include <linux/smp.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/profile.h>
36 #include <linux/kvm_para.h>
37 #include <linux/pagemap.h>
38 #include <linux/mman.h>
39 #include <linux/swap.h>
40 #include <linux/bitops.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/srcu.h>
44 #include <linux/hugetlb.h>
45 #include <linux/slab.h>
46 #include <linux/sort.h>
47 #include <linux/bsearch.h>
48 #include <linux/io.h>
49 #include <linux/lockdep.h>
50 #include <linux/kthread.h>
51 #include <linux/suspend.h>
52 
53 #include <asm/processor.h>
54 #include <asm/ioctl.h>
55 #include <linux/uaccess.h>
56 
57 #include "coalesced_mmio.h"
58 #include "async_pf.h"
59 #include "kvm_mm.h"
60 #include "vfio.h"
61 
62 #include <trace/events/ipi.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66 
67 #include <linux/kvm_dirty_ring.h>
68 
69 
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72 
73 MODULE_AUTHOR("Qumranet");
74 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor");
75 MODULE_LICENSE("GPL");
76 
77 /* Architectures should define their poll value according to the halt latency */
78 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
79 module_param(halt_poll_ns, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns);
81 
82 /* Default doubles per-vcpu halt_poll_ns. */
83 unsigned int halt_poll_ns_grow = 2;
84 module_param(halt_poll_ns_grow, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
86 
87 /* The start value to grow halt_poll_ns from */
88 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
89 module_param(halt_poll_ns_grow_start, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
91 
92 /* Default halves per-vcpu halt_poll_ns. */
93 unsigned int halt_poll_ns_shrink = 2;
94 module_param(halt_poll_ns_shrink, uint, 0644);
95 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
96 
97 /*
98  * Allow direct access (from KVM or the CPU) without MMU notifier protection
99  * to unpinned pages.
100  */
101 static bool allow_unsafe_mappings;
102 module_param(allow_unsafe_mappings, bool, 0444);
103 
104 /*
105  * Ordering of locks:
106  *
107  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
108  */
109 
110 DEFINE_MUTEX(kvm_lock);
111 LIST_HEAD(vm_list);
112 
113 static struct kmem_cache *kvm_vcpu_cache;
114 
115 static __read_mostly struct preempt_ops kvm_preempt_ops;
116 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
117 
118 static struct dentry *kvm_debugfs_dir;
119 
120 static const struct file_operations stat_fops_per_vm;
121 
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123 			   unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126 				  unsigned long arg);
127 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
128 #else
129 /*
130  * For architectures that don't implement a compat infrastructure,
131  * adopt a double line of defense:
132  * - Prevent a compat task from opening /dev/kvm
133  * - If the open has been done by a 64bit task, and the KVM fd
134  *   passed to a compat task, let the ioctls fail.
135  */
kvm_no_compat_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137 				unsigned long arg) { return -EINVAL; }
138 
kvm_no_compat_open(struct inode * inode,struct file * file)139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141 	return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
144 			.open		= kvm_no_compat_open
145 #endif
146 static int kvm_enable_virtualization(void);
147 static void kvm_disable_virtualization(void);
148 
149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150 
151 #define KVM_EVENT_CREATE_VM 0
152 #define KVM_EVENT_DESTROY_VM 1
153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154 static unsigned long long kvm_createvm_count;
155 static unsigned long long kvm_active_vms;
156 
157 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
158 
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)159 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
160 {
161 }
162 
163 /*
164  * Switches to specified vcpu, until a matching vcpu_put()
165  */
vcpu_load(struct kvm_vcpu * vcpu)166 void vcpu_load(struct kvm_vcpu *vcpu)
167 {
168 	int cpu = get_cpu();
169 
170 	__this_cpu_write(kvm_running_vcpu, vcpu);
171 	preempt_notifier_register(&vcpu->preempt_notifier);
172 	kvm_arch_vcpu_load(vcpu, cpu);
173 	put_cpu();
174 }
175 EXPORT_SYMBOL_GPL(vcpu_load);
176 
vcpu_put(struct kvm_vcpu * vcpu)177 void vcpu_put(struct kvm_vcpu *vcpu)
178 {
179 	preempt_disable();
180 	kvm_arch_vcpu_put(vcpu);
181 	preempt_notifier_unregister(&vcpu->preempt_notifier);
182 	__this_cpu_write(kvm_running_vcpu, NULL);
183 	preempt_enable();
184 }
185 EXPORT_SYMBOL_GPL(vcpu_put);
186 
187 /* TODO: merge with kvm_arch_vcpu_should_kick */
kvm_request_needs_ipi(struct kvm_vcpu * vcpu,unsigned req)188 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
189 {
190 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
191 
192 	/*
193 	 * We need to wait for the VCPU to reenable interrupts and get out of
194 	 * READING_SHADOW_PAGE_TABLES mode.
195 	 */
196 	if (req & KVM_REQUEST_WAIT)
197 		return mode != OUTSIDE_GUEST_MODE;
198 
199 	/*
200 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
201 	 */
202 	return mode == IN_GUEST_MODE;
203 }
204 
ack_kick(void * _completed)205 static void ack_kick(void *_completed)
206 {
207 }
208 
kvm_kick_many_cpus(struct cpumask * cpus,bool wait)209 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
210 {
211 	if (cpumask_empty(cpus))
212 		return false;
213 
214 	smp_call_function_many(cpus, ack_kick, NULL, wait);
215 	return true;
216 }
217 
kvm_make_vcpu_request(struct kvm_vcpu * vcpu,unsigned int req,struct cpumask * tmp,int current_cpu)218 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
219 				  struct cpumask *tmp, int current_cpu)
220 {
221 	int cpu;
222 
223 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
224 		__kvm_make_request(req, vcpu);
225 
226 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
227 		return;
228 
229 	/*
230 	 * Note, the vCPU could get migrated to a different pCPU at any point
231 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
232 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
233 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
234 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
235 	 * after this point is also OK, as the requirement is only that KVM wait
236 	 * for vCPUs that were reading SPTEs _before_ any changes were
237 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
238 	 */
239 	if (kvm_request_needs_ipi(vcpu, req)) {
240 		cpu = READ_ONCE(vcpu->cpu);
241 		if (cpu != -1 && cpu != current_cpu)
242 			__cpumask_set_cpu(cpu, tmp);
243 	}
244 }
245 
kvm_make_vcpus_request_mask(struct kvm * kvm,unsigned int req,unsigned long * vcpu_bitmap)246 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
247 				 unsigned long *vcpu_bitmap)
248 {
249 	struct kvm_vcpu *vcpu;
250 	struct cpumask *cpus;
251 	int i, me;
252 	bool called;
253 
254 	me = get_cpu();
255 
256 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
257 	cpumask_clear(cpus);
258 
259 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
260 		vcpu = kvm_get_vcpu(kvm, i);
261 		if (!vcpu)
262 			continue;
263 		kvm_make_vcpu_request(vcpu, req, cpus, me);
264 	}
265 
266 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
267 	put_cpu();
268 
269 	return called;
270 }
271 
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)272 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
273 {
274 	struct kvm_vcpu *vcpu;
275 	struct cpumask *cpus;
276 	unsigned long i;
277 	bool called;
278 	int me;
279 
280 	me = get_cpu();
281 
282 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
283 	cpumask_clear(cpus);
284 
285 	kvm_for_each_vcpu(i, vcpu, kvm)
286 		kvm_make_vcpu_request(vcpu, req, cpus, me);
287 
288 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
289 	put_cpu();
290 
291 	return called;
292 }
293 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
294 
kvm_flush_remote_tlbs(struct kvm * kvm)295 void kvm_flush_remote_tlbs(struct kvm *kvm)
296 {
297 	++kvm->stat.generic.remote_tlb_flush_requests;
298 
299 	/*
300 	 * We want to publish modifications to the page tables before reading
301 	 * mode. Pairs with a memory barrier in arch-specific code.
302 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
303 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
304 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
305 	 *
306 	 * There is already an smp_mb__after_atomic() before
307 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
308 	 * barrier here.
309 	 */
310 	if (!kvm_arch_flush_remote_tlbs(kvm)
311 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
312 		++kvm->stat.generic.remote_tlb_flush;
313 }
314 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
315 
kvm_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)316 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
317 {
318 	if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
319 		return;
320 
321 	/*
322 	 * Fall back to a flushing entire TLBs if the architecture range-based
323 	 * TLB invalidation is unsupported or can't be performed for whatever
324 	 * reason.
325 	 */
326 	kvm_flush_remote_tlbs(kvm);
327 }
328 
kvm_flush_remote_tlbs_memslot(struct kvm * kvm,const struct kvm_memory_slot * memslot)329 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
330 				   const struct kvm_memory_slot *memslot)
331 {
332 	/*
333 	 * All current use cases for flushing the TLBs for a specific memslot
334 	 * are related to dirty logging, and many do the TLB flush out of
335 	 * mmu_lock. The interaction between the various operations on memslot
336 	 * must be serialized by slots_locks to ensure the TLB flush from one
337 	 * operation is observed by any other operation on the same memslot.
338 	 */
339 	lockdep_assert_held(&kvm->slots_lock);
340 	kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
341 }
342 
kvm_flush_shadow_all(struct kvm * kvm)343 static void kvm_flush_shadow_all(struct kvm *kvm)
344 {
345 	kvm_arch_flush_shadow_all(kvm);
346 	kvm_arch_guest_memory_reclaimed(kvm);
347 }
348 
349 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache * mc,gfp_t gfp_flags)350 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
351 					       gfp_t gfp_flags)
352 {
353 	void *page;
354 
355 	gfp_flags |= mc->gfp_zero;
356 
357 	if (mc->kmem_cache)
358 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
359 
360 	page = (void *)__get_free_page(gfp_flags);
361 	if (page && mc->init_value)
362 		memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
363 	return page;
364 }
365 
__kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int capacity,int min)366 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
367 {
368 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
369 	void *obj;
370 
371 	if (mc->nobjs >= min)
372 		return 0;
373 
374 	if (unlikely(!mc->objects)) {
375 		if (WARN_ON_ONCE(!capacity))
376 			return -EIO;
377 
378 		/*
379 		 * Custom init values can be used only for page allocations,
380 		 * and obviously conflict with __GFP_ZERO.
381 		 */
382 		if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
383 			return -EIO;
384 
385 		mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
386 		if (!mc->objects)
387 			return -ENOMEM;
388 
389 		mc->capacity = capacity;
390 	}
391 
392 	/* It is illegal to request a different capacity across topups. */
393 	if (WARN_ON_ONCE(mc->capacity != capacity))
394 		return -EIO;
395 
396 	while (mc->nobjs < mc->capacity) {
397 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
398 		if (!obj)
399 			return mc->nobjs >= min ? 0 : -ENOMEM;
400 		mc->objects[mc->nobjs++] = obj;
401 	}
402 	return 0;
403 }
404 
kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int min)405 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
406 {
407 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
408 }
409 
kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache * mc)410 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
411 {
412 	return mc->nobjs;
413 }
414 
kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)415 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
416 {
417 	while (mc->nobjs) {
418 		if (mc->kmem_cache)
419 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
420 		else
421 			free_page((unsigned long)mc->objects[--mc->nobjs]);
422 	}
423 
424 	kvfree(mc->objects);
425 
426 	mc->objects = NULL;
427 	mc->capacity = 0;
428 }
429 
kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)430 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
431 {
432 	void *p;
433 
434 	if (WARN_ON(!mc->nobjs))
435 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
436 	else
437 		p = mc->objects[--mc->nobjs];
438 	BUG_ON(!p);
439 	return p;
440 }
441 #endif
442 
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)443 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
444 {
445 	mutex_init(&vcpu->mutex);
446 	vcpu->cpu = -1;
447 	vcpu->kvm = kvm;
448 	vcpu->vcpu_id = id;
449 	vcpu->pid = NULL;
450 	rwlock_init(&vcpu->pid_lock);
451 #ifndef __KVM_HAVE_ARCH_WQP
452 	rcuwait_init(&vcpu->wait);
453 #endif
454 	kvm_async_pf_vcpu_init(vcpu);
455 
456 	kvm_vcpu_set_in_spin_loop(vcpu, false);
457 	kvm_vcpu_set_dy_eligible(vcpu, false);
458 	vcpu->preempted = false;
459 	vcpu->ready = false;
460 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
461 	vcpu->last_used_slot = NULL;
462 
463 	/* Fill the stats id string for the vcpu */
464 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
465 		 task_pid_nr(current), id);
466 }
467 
kvm_vcpu_destroy(struct kvm_vcpu * vcpu)468 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
469 {
470 	kvm_arch_vcpu_destroy(vcpu);
471 	kvm_dirty_ring_free(&vcpu->dirty_ring);
472 
473 	/*
474 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
475 	 * the vcpu->pid pointer, and at destruction time all file descriptors
476 	 * are already gone.
477 	 */
478 	put_pid(vcpu->pid);
479 
480 	free_page((unsigned long)vcpu->run);
481 	kmem_cache_free(kvm_vcpu_cache, vcpu);
482 }
483 
kvm_destroy_vcpus(struct kvm * kvm)484 void kvm_destroy_vcpus(struct kvm *kvm)
485 {
486 	unsigned long i;
487 	struct kvm_vcpu *vcpu;
488 
489 	kvm_for_each_vcpu(i, vcpu, kvm) {
490 		kvm_vcpu_destroy(vcpu);
491 		xa_erase(&kvm->vcpu_array, i);
492 
493 		/*
494 		 * Assert that the vCPU isn't visible in any way, to ensure KVM
495 		 * doesn't trigger a use-after-free if destroying vCPUs results
496 		 * in VM-wide request, e.g. to flush remote TLBs when tearing
497 		 * down MMUs, or to mark the VM dead if a KVM_BUG_ON() fires.
498 		 */
499 		WARN_ON_ONCE(xa_load(&kvm->vcpu_array, i) || kvm_get_vcpu(kvm, i));
500 	}
501 
502 	atomic_set(&kvm->online_vcpus, 0);
503 }
504 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
505 
506 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
mmu_notifier_to_kvm(struct mmu_notifier * mn)507 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
508 {
509 	return container_of(mn, struct kvm, mmu_notifier);
510 }
511 
512 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
513 
514 typedef void (*on_lock_fn_t)(struct kvm *kvm);
515 
516 struct kvm_mmu_notifier_range {
517 	/*
518 	 * 64-bit addresses, as KVM notifiers can operate on host virtual
519 	 * addresses (unsigned long) and guest physical addresses (64-bit).
520 	 */
521 	u64 start;
522 	u64 end;
523 	union kvm_mmu_notifier_arg arg;
524 	gfn_handler_t handler;
525 	on_lock_fn_t on_lock;
526 	bool flush_on_ret;
527 	bool may_block;
528 	bool lockless;
529 };
530 
531 /*
532  * The inner-most helper returns a tuple containing the return value from the
533  * arch- and action-specific handler, plus a flag indicating whether or not at
534  * least one memslot was found, i.e. if the handler found guest memory.
535  *
536  * Note, most notifiers are averse to booleans, so even though KVM tracks the
537  * return from arch code as a bool, outer helpers will cast it to an int. :-(
538  */
539 typedef struct kvm_mmu_notifier_return {
540 	bool ret;
541 	bool found_memslot;
542 } kvm_mn_ret_t;
543 
544 /*
545  * Use a dedicated stub instead of NULL to indicate that there is no callback
546  * function/handler.  The compiler technically can't guarantee that a real
547  * function will have a non-zero address, and so it will generate code to
548  * check for !NULL, whereas comparing against a stub will be elided at compile
549  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
550  */
kvm_null_fn(void)551 static void kvm_null_fn(void)
552 {
553 
554 }
555 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
556 
557 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
558 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
559 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
560 	     node;							     \
561 	     node = interval_tree_iter_next(node, start, last))	     \
562 
kvm_handle_hva_range(struct kvm * kvm,const struct kvm_mmu_notifier_range * range)563 static __always_inline kvm_mn_ret_t kvm_handle_hva_range(struct kvm *kvm,
564 							 const struct kvm_mmu_notifier_range *range)
565 {
566 	struct kvm_mmu_notifier_return r = {
567 		.ret = false,
568 		.found_memslot = false,
569 	};
570 	struct kvm_gfn_range gfn_range;
571 	struct kvm_memory_slot *slot;
572 	struct kvm_memslots *slots;
573 	int i, idx;
574 
575 	if (WARN_ON_ONCE(range->end <= range->start))
576 		return r;
577 
578 	/* A null handler is allowed if and only if on_lock() is provided. */
579 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
580 			 IS_KVM_NULL_FN(range->handler)))
581 		return r;
582 
583 	/* on_lock will never be called for lockless walks */
584 	if (WARN_ON_ONCE(range->lockless && !IS_KVM_NULL_FN(range->on_lock)))
585 		return r;
586 
587 	idx = srcu_read_lock(&kvm->srcu);
588 
589 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
590 		struct interval_tree_node *node;
591 
592 		slots = __kvm_memslots(kvm, i);
593 		kvm_for_each_memslot_in_hva_range(node, slots,
594 						  range->start, range->end - 1) {
595 			unsigned long hva_start, hva_end;
596 
597 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
598 			hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
599 			hva_end = min_t(unsigned long, range->end,
600 					slot->userspace_addr + (slot->npages << PAGE_SHIFT));
601 
602 			/*
603 			 * To optimize for the likely case where the address
604 			 * range is covered by zero or one memslots, don't
605 			 * bother making these conditional (to avoid writes on
606 			 * the second or later invocation of the handler).
607 			 */
608 			gfn_range.arg = range->arg;
609 			gfn_range.may_block = range->may_block;
610 			/*
611 			 * HVA-based notifications aren't relevant to private
612 			 * mappings as they don't have a userspace mapping.
613 			 */
614 			gfn_range.attr_filter = KVM_FILTER_SHARED;
615 
616 			/*
617 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
618 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
619 			 */
620 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
621 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
622 			gfn_range.slot = slot;
623 			gfn_range.lockless = range->lockless;
624 
625 			if (!r.found_memslot) {
626 				r.found_memslot = true;
627 				if (!range->lockless) {
628 					KVM_MMU_LOCK(kvm);
629 					if (!IS_KVM_NULL_FN(range->on_lock))
630 						range->on_lock(kvm);
631 
632 					if (IS_KVM_NULL_FN(range->handler))
633 						goto mmu_unlock;
634 				}
635 			}
636 			r.ret |= range->handler(kvm, &gfn_range);
637 		}
638 	}
639 
640 	if (range->flush_on_ret && r.ret)
641 		kvm_flush_remote_tlbs(kvm);
642 
643 mmu_unlock:
644 	if (r.found_memslot && !range->lockless)
645 		KVM_MMU_UNLOCK(kvm);
646 
647 	srcu_read_unlock(&kvm->srcu, idx);
648 
649 	return r;
650 }
651 
kvm_age_hva_range(struct mmu_notifier * mn,unsigned long start,unsigned long end,gfn_handler_t handler,bool flush_on_ret)652 static __always_inline int kvm_age_hva_range(struct mmu_notifier *mn,
653 						unsigned long start,
654 						unsigned long end,
655 						gfn_handler_t handler,
656 						bool flush_on_ret)
657 {
658 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
659 	const struct kvm_mmu_notifier_range range = {
660 		.start		= start,
661 		.end		= end,
662 		.handler	= handler,
663 		.on_lock	= (void *)kvm_null_fn,
664 		.flush_on_ret	= flush_on_ret,
665 		.may_block	= false,
666 		.lockless	= IS_ENABLED(CONFIG_KVM_MMU_LOCKLESS_AGING),
667 	};
668 
669 	return kvm_handle_hva_range(kvm, &range).ret;
670 }
671 
kvm_age_hva_range_no_flush(struct mmu_notifier * mn,unsigned long start,unsigned long end,gfn_handler_t handler)672 static __always_inline int kvm_age_hva_range_no_flush(struct mmu_notifier *mn,
673 						      unsigned long start,
674 						      unsigned long end,
675 						      gfn_handler_t handler)
676 {
677 	return kvm_age_hva_range(mn, start, end, handler, false);
678 }
679 
kvm_mmu_invalidate_begin(struct kvm * kvm)680 void kvm_mmu_invalidate_begin(struct kvm *kvm)
681 {
682 	lockdep_assert_held_write(&kvm->mmu_lock);
683 	/*
684 	 * The count increase must become visible at unlock time as no
685 	 * spte can be established without taking the mmu_lock and
686 	 * count is also read inside the mmu_lock critical section.
687 	 */
688 	kvm->mmu_invalidate_in_progress++;
689 
690 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
691 		kvm->mmu_invalidate_range_start = INVALID_GPA;
692 		kvm->mmu_invalidate_range_end = INVALID_GPA;
693 	}
694 }
695 
kvm_mmu_invalidate_range_add(struct kvm * kvm,gfn_t start,gfn_t end)696 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
697 {
698 	lockdep_assert_held_write(&kvm->mmu_lock);
699 
700 	WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
701 
702 	if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
703 		kvm->mmu_invalidate_range_start = start;
704 		kvm->mmu_invalidate_range_end = end;
705 	} else {
706 		/*
707 		 * Fully tracking multiple concurrent ranges has diminishing
708 		 * returns. Keep things simple and just find the minimal range
709 		 * which includes the current and new ranges. As there won't be
710 		 * enough information to subtract a range after its invalidate
711 		 * completes, any ranges invalidated concurrently will
712 		 * accumulate and persist until all outstanding invalidates
713 		 * complete.
714 		 */
715 		kvm->mmu_invalidate_range_start =
716 			min(kvm->mmu_invalidate_range_start, start);
717 		kvm->mmu_invalidate_range_end =
718 			max(kvm->mmu_invalidate_range_end, end);
719 	}
720 }
721 
kvm_mmu_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)722 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
723 {
724 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
725 	return kvm_unmap_gfn_range(kvm, range);
726 }
727 
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,const struct mmu_notifier_range * range)728 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
729 					const struct mmu_notifier_range *range)
730 {
731 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
732 	const struct kvm_mmu_notifier_range hva_range = {
733 		.start		= range->start,
734 		.end		= range->end,
735 		.handler	= kvm_mmu_unmap_gfn_range,
736 		.on_lock	= kvm_mmu_invalidate_begin,
737 		.flush_on_ret	= true,
738 		.may_block	= mmu_notifier_range_blockable(range),
739 	};
740 
741 	trace_kvm_unmap_hva_range(range->start, range->end);
742 
743 	/*
744 	 * Prevent memslot modification between range_start() and range_end()
745 	 * so that conditionally locking provides the same result in both
746 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
747 	 * adjustments will be imbalanced.
748 	 *
749 	 * Pairs with the decrement in range_end().
750 	 */
751 	spin_lock(&kvm->mn_invalidate_lock);
752 	kvm->mn_active_invalidate_count++;
753 	spin_unlock(&kvm->mn_invalidate_lock);
754 
755 	/*
756 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
757 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
758 	 * each cache's lock.  There are relatively few caches in existence at
759 	 * any given time, and the caches themselves can check for hva overlap,
760 	 * i.e. don't need to rely on memslot overlap checks for performance.
761 	 * Because this runs without holding mmu_lock, the pfn caches must use
762 	 * mn_active_invalidate_count (see above) instead of
763 	 * mmu_invalidate_in_progress.
764 	 */
765 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
766 
767 	/*
768 	 * If one or more memslots were found and thus zapped, notify arch code
769 	 * that guest memory has been reclaimed.  This needs to be done *after*
770 	 * dropping mmu_lock, as x86's reclaim path is slooooow.
771 	 */
772 	if (kvm_handle_hva_range(kvm, &hva_range).found_memslot)
773 		kvm_arch_guest_memory_reclaimed(kvm);
774 
775 	return 0;
776 }
777 
kvm_mmu_invalidate_end(struct kvm * kvm)778 void kvm_mmu_invalidate_end(struct kvm *kvm)
779 {
780 	lockdep_assert_held_write(&kvm->mmu_lock);
781 
782 	/*
783 	 * This sequence increase will notify the kvm page fault that
784 	 * the page that is going to be mapped in the spte could have
785 	 * been freed.
786 	 */
787 	kvm->mmu_invalidate_seq++;
788 	smp_wmb();
789 	/*
790 	 * The above sequence increase must be visible before the
791 	 * below count decrease, which is ensured by the smp_wmb above
792 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
793 	 */
794 	kvm->mmu_invalidate_in_progress--;
795 	KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
796 
797 	/*
798 	 * Assert that at least one range was added between start() and end().
799 	 * Not adding a range isn't fatal, but it is a KVM bug.
800 	 */
801 	WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
802 }
803 
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,const struct mmu_notifier_range * range)804 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
805 					const struct mmu_notifier_range *range)
806 {
807 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
808 	const struct kvm_mmu_notifier_range hva_range = {
809 		.start		= range->start,
810 		.end		= range->end,
811 		.handler	= (void *)kvm_null_fn,
812 		.on_lock	= kvm_mmu_invalidate_end,
813 		.flush_on_ret	= false,
814 		.may_block	= mmu_notifier_range_blockable(range),
815 	};
816 	bool wake;
817 
818 	kvm_handle_hva_range(kvm, &hva_range);
819 
820 	/* Pairs with the increment in range_start(). */
821 	spin_lock(&kvm->mn_invalidate_lock);
822 	if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
823 		--kvm->mn_active_invalidate_count;
824 	wake = !kvm->mn_active_invalidate_count;
825 	spin_unlock(&kvm->mn_invalidate_lock);
826 
827 	/*
828 	 * There can only be one waiter, since the wait happens under
829 	 * slots_lock.
830 	 */
831 	if (wake)
832 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
833 }
834 
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)835 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
836 					      struct mm_struct *mm,
837 					      unsigned long start,
838 					      unsigned long end)
839 {
840 	trace_kvm_age_hva(start, end);
841 
842 	return kvm_age_hva_range(mn, start, end, kvm_age_gfn,
843 				 !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG));
844 }
845 
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)846 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
847 					struct mm_struct *mm,
848 					unsigned long start,
849 					unsigned long end)
850 {
851 	trace_kvm_age_hva(start, end);
852 
853 	/*
854 	 * Even though we do not flush TLB, this will still adversely
855 	 * affect performance on pre-Haswell Intel EPT, where there is
856 	 * no EPT Access Bit to clear so that we have to tear down EPT
857 	 * tables instead. If we find this unacceptable, we can always
858 	 * add a parameter to kvm_age_hva so that it effectively doesn't
859 	 * do anything on clear_young.
860 	 *
861 	 * Also note that currently we never issue secondary TLB flushes
862 	 * from clear_young, leaving this job up to the regular system
863 	 * cadence. If we find this inaccurate, we might come up with a
864 	 * more sophisticated heuristic later.
865 	 */
866 	return kvm_age_hva_range_no_flush(mn, start, end, kvm_age_gfn);
867 }
868 
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)869 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
870 				       struct mm_struct *mm,
871 				       unsigned long address)
872 {
873 	trace_kvm_test_age_hva(address);
874 
875 	return kvm_age_hva_range_no_flush(mn, address, address + 1,
876 					  kvm_test_age_gfn);
877 }
878 
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)879 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
880 				     struct mm_struct *mm)
881 {
882 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
883 	int idx;
884 
885 	idx = srcu_read_lock(&kvm->srcu);
886 	kvm_flush_shadow_all(kvm);
887 	srcu_read_unlock(&kvm->srcu, idx);
888 }
889 
890 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
891 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
892 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
893 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
894 	.clear_young		= kvm_mmu_notifier_clear_young,
895 	.test_young		= kvm_mmu_notifier_test_young,
896 	.release		= kvm_mmu_notifier_release,
897 };
898 
kvm_init_mmu_notifier(struct kvm * kvm)899 static int kvm_init_mmu_notifier(struct kvm *kvm)
900 {
901 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
902 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
903 }
904 
905 #else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
906 
kvm_init_mmu_notifier(struct kvm * kvm)907 static int kvm_init_mmu_notifier(struct kvm *kvm)
908 {
909 	return 0;
910 }
911 
912 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
913 
914 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_pm_notifier_call(struct notifier_block * bl,unsigned long state,void * unused)915 static int kvm_pm_notifier_call(struct notifier_block *bl,
916 				unsigned long state,
917 				void *unused)
918 {
919 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
920 
921 	return kvm_arch_pm_notifier(kvm, state);
922 }
923 
kvm_init_pm_notifier(struct kvm * kvm)924 static void kvm_init_pm_notifier(struct kvm *kvm)
925 {
926 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
927 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
928 	kvm->pm_notifier.priority = INT_MAX;
929 	register_pm_notifier(&kvm->pm_notifier);
930 }
931 
kvm_destroy_pm_notifier(struct kvm * kvm)932 static void kvm_destroy_pm_notifier(struct kvm *kvm)
933 {
934 	unregister_pm_notifier(&kvm->pm_notifier);
935 }
936 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
kvm_init_pm_notifier(struct kvm * kvm)937 static void kvm_init_pm_notifier(struct kvm *kvm)
938 {
939 }
940 
kvm_destroy_pm_notifier(struct kvm * kvm)941 static void kvm_destroy_pm_notifier(struct kvm *kvm)
942 {
943 }
944 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
945 
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)946 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
947 {
948 	if (!memslot->dirty_bitmap)
949 		return;
950 
951 	vfree(memslot->dirty_bitmap);
952 	memslot->dirty_bitmap = NULL;
953 }
954 
955 /* This does not remove the slot from struct kvm_memslots data structures */
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)956 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
957 {
958 	if (slot->flags & KVM_MEM_GUEST_MEMFD)
959 		kvm_gmem_unbind(slot);
960 
961 	kvm_destroy_dirty_bitmap(slot);
962 
963 	kvm_arch_free_memslot(kvm, slot);
964 
965 	kfree(slot);
966 }
967 
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)968 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
969 {
970 	struct hlist_node *idnode;
971 	struct kvm_memory_slot *memslot;
972 	int bkt;
973 
974 	/*
975 	 * The same memslot objects live in both active and inactive sets,
976 	 * arbitrarily free using index '1' so the second invocation of this
977 	 * function isn't operating over a structure with dangling pointers
978 	 * (even though this function isn't actually touching them).
979 	 */
980 	if (!slots->node_idx)
981 		return;
982 
983 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
984 		kvm_free_memslot(kvm, memslot);
985 }
986 
kvm_stats_debugfs_mode(const struct _kvm_stats_desc * pdesc)987 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
988 {
989 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
990 	case KVM_STATS_TYPE_INSTANT:
991 		return 0444;
992 	case KVM_STATS_TYPE_CUMULATIVE:
993 	case KVM_STATS_TYPE_PEAK:
994 	default:
995 		return 0644;
996 	}
997 }
998 
999 
kvm_destroy_vm_debugfs(struct kvm * kvm)1000 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1001 {
1002 	int i;
1003 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1004 				      kvm_vcpu_stats_header.num_desc;
1005 
1006 	if (IS_ERR(kvm->debugfs_dentry))
1007 		return;
1008 
1009 	debugfs_remove_recursive(kvm->debugfs_dentry);
1010 
1011 	if (kvm->debugfs_stat_data) {
1012 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1013 			kfree(kvm->debugfs_stat_data[i]);
1014 		kfree(kvm->debugfs_stat_data);
1015 	}
1016 }
1017 
kvm_create_vm_debugfs(struct kvm * kvm,const char * fdname)1018 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1019 {
1020 	static DEFINE_MUTEX(kvm_debugfs_lock);
1021 	struct dentry *dent;
1022 	char dir_name[ITOA_MAX_LEN * 2];
1023 	struct kvm_stat_data *stat_data;
1024 	const struct _kvm_stats_desc *pdesc;
1025 	int i, ret = -ENOMEM;
1026 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1027 				      kvm_vcpu_stats_header.num_desc;
1028 
1029 	if (!debugfs_initialized())
1030 		return 0;
1031 
1032 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1033 	mutex_lock(&kvm_debugfs_lock);
1034 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1035 	if (dent) {
1036 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1037 		dput(dent);
1038 		mutex_unlock(&kvm_debugfs_lock);
1039 		return 0;
1040 	}
1041 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1042 	mutex_unlock(&kvm_debugfs_lock);
1043 	if (IS_ERR(dent))
1044 		return 0;
1045 
1046 	kvm->debugfs_dentry = dent;
1047 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1048 					 sizeof(*kvm->debugfs_stat_data),
1049 					 GFP_KERNEL_ACCOUNT);
1050 	if (!kvm->debugfs_stat_data)
1051 		goto out_err;
1052 
1053 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1054 		pdesc = &kvm_vm_stats_desc[i];
1055 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1056 		if (!stat_data)
1057 			goto out_err;
1058 
1059 		stat_data->kvm = kvm;
1060 		stat_data->desc = pdesc;
1061 		stat_data->kind = KVM_STAT_VM;
1062 		kvm->debugfs_stat_data[i] = stat_data;
1063 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1064 				    kvm->debugfs_dentry, stat_data,
1065 				    &stat_fops_per_vm);
1066 	}
1067 
1068 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1069 		pdesc = &kvm_vcpu_stats_desc[i];
1070 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1071 		if (!stat_data)
1072 			goto out_err;
1073 
1074 		stat_data->kvm = kvm;
1075 		stat_data->desc = pdesc;
1076 		stat_data->kind = KVM_STAT_VCPU;
1077 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1078 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1079 				    kvm->debugfs_dentry, stat_data,
1080 				    &stat_fops_per_vm);
1081 	}
1082 
1083 	kvm_arch_create_vm_debugfs(kvm);
1084 	return 0;
1085 out_err:
1086 	kvm_destroy_vm_debugfs(kvm);
1087 	return ret;
1088 }
1089 
1090 /*
1091  * Called just after removing the VM from the vm_list, but before doing any
1092  * other destruction.
1093  */
kvm_arch_pre_destroy_vm(struct kvm * kvm)1094 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1095 {
1096 }
1097 
1098 /*
1099  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1100  * be setup already, so we can create arch-specific debugfs entries under it.
1101  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1102  * a per-arch destroy interface is not needed.
1103  */
kvm_arch_create_vm_debugfs(struct kvm * kvm)1104 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1105 {
1106 }
1107 
kvm_create_vm(unsigned long type,const char * fdname)1108 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1109 {
1110 	struct kvm *kvm = kvm_arch_alloc_vm();
1111 	struct kvm_memslots *slots;
1112 	int r, i, j;
1113 
1114 	if (!kvm)
1115 		return ERR_PTR(-ENOMEM);
1116 
1117 	KVM_MMU_LOCK_INIT(kvm);
1118 	mmgrab(current->mm);
1119 	kvm->mm = current->mm;
1120 	kvm_eventfd_init(kvm);
1121 	mutex_init(&kvm->lock);
1122 	mutex_init(&kvm->irq_lock);
1123 	mutex_init(&kvm->slots_lock);
1124 	mutex_init(&kvm->slots_arch_lock);
1125 	spin_lock_init(&kvm->mn_invalidate_lock);
1126 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1127 	xa_init(&kvm->vcpu_array);
1128 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1129 	xa_init(&kvm->mem_attr_array);
1130 #endif
1131 
1132 	INIT_LIST_HEAD(&kvm->gpc_list);
1133 	spin_lock_init(&kvm->gpc_lock);
1134 
1135 	INIT_LIST_HEAD(&kvm->devices);
1136 	kvm->max_vcpus = KVM_MAX_VCPUS;
1137 
1138 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1139 
1140 	/*
1141 	 * Force subsequent debugfs file creations to fail if the VM directory
1142 	 * is not created (by kvm_create_vm_debugfs()).
1143 	 */
1144 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1145 
1146 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1147 		 task_pid_nr(current));
1148 
1149 	r = -ENOMEM;
1150 	if (init_srcu_struct(&kvm->srcu))
1151 		goto out_err_no_srcu;
1152 	if (init_srcu_struct(&kvm->irq_srcu))
1153 		goto out_err_no_irq_srcu;
1154 
1155 	r = kvm_init_irq_routing(kvm);
1156 	if (r)
1157 		goto out_err_no_irq_routing;
1158 
1159 	refcount_set(&kvm->users_count, 1);
1160 
1161 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1162 		for (j = 0; j < 2; j++) {
1163 			slots = &kvm->__memslots[i][j];
1164 
1165 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1166 			slots->hva_tree = RB_ROOT_CACHED;
1167 			slots->gfn_tree = RB_ROOT;
1168 			hash_init(slots->id_hash);
1169 			slots->node_idx = j;
1170 
1171 			/* Generations must be different for each address space. */
1172 			slots->generation = i;
1173 		}
1174 
1175 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1176 	}
1177 
1178 	r = -ENOMEM;
1179 	for (i = 0; i < KVM_NR_BUSES; i++) {
1180 		rcu_assign_pointer(kvm->buses[i],
1181 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1182 		if (!kvm->buses[i])
1183 			goto out_err_no_arch_destroy_vm;
1184 	}
1185 
1186 	r = kvm_arch_init_vm(kvm, type);
1187 	if (r)
1188 		goto out_err_no_arch_destroy_vm;
1189 
1190 	r = kvm_enable_virtualization();
1191 	if (r)
1192 		goto out_err_no_disable;
1193 
1194 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1195 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1196 #endif
1197 
1198 	r = kvm_init_mmu_notifier(kvm);
1199 	if (r)
1200 		goto out_err_no_mmu_notifier;
1201 
1202 	r = kvm_coalesced_mmio_init(kvm);
1203 	if (r < 0)
1204 		goto out_no_coalesced_mmio;
1205 
1206 	r = kvm_create_vm_debugfs(kvm, fdname);
1207 	if (r)
1208 		goto out_err_no_debugfs;
1209 
1210 	mutex_lock(&kvm_lock);
1211 	list_add(&kvm->vm_list, &vm_list);
1212 	mutex_unlock(&kvm_lock);
1213 
1214 	preempt_notifier_inc();
1215 	kvm_init_pm_notifier(kvm);
1216 
1217 	return kvm;
1218 
1219 out_err_no_debugfs:
1220 	kvm_coalesced_mmio_free(kvm);
1221 out_no_coalesced_mmio:
1222 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1223 	if (kvm->mmu_notifier.ops)
1224 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1225 #endif
1226 out_err_no_mmu_notifier:
1227 	kvm_disable_virtualization();
1228 out_err_no_disable:
1229 	kvm_arch_destroy_vm(kvm);
1230 out_err_no_arch_destroy_vm:
1231 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1232 	for (i = 0; i < KVM_NR_BUSES; i++)
1233 		kfree(kvm_get_bus(kvm, i));
1234 	kvm_free_irq_routing(kvm);
1235 out_err_no_irq_routing:
1236 	cleanup_srcu_struct(&kvm->irq_srcu);
1237 out_err_no_irq_srcu:
1238 	cleanup_srcu_struct(&kvm->srcu);
1239 out_err_no_srcu:
1240 	kvm_arch_free_vm(kvm);
1241 	mmdrop(current->mm);
1242 	return ERR_PTR(r);
1243 }
1244 
kvm_destroy_devices(struct kvm * kvm)1245 static void kvm_destroy_devices(struct kvm *kvm)
1246 {
1247 	struct kvm_device *dev, *tmp;
1248 
1249 	/*
1250 	 * We do not need to take the kvm->lock here, because nobody else
1251 	 * has a reference to the struct kvm at this point and therefore
1252 	 * cannot access the devices list anyhow.
1253 	 *
1254 	 * The device list is generally managed as an rculist, but list_del()
1255 	 * is used intentionally here. If a bug in KVM introduced a reader that
1256 	 * was not backed by a reference on the kvm struct, the hope is that
1257 	 * it'd consume the poisoned forward pointer instead of suffering a
1258 	 * use-after-free, even though this cannot be guaranteed.
1259 	 */
1260 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1261 		list_del(&dev->vm_node);
1262 		dev->ops->destroy(dev);
1263 	}
1264 }
1265 
kvm_destroy_vm(struct kvm * kvm)1266 static void kvm_destroy_vm(struct kvm *kvm)
1267 {
1268 	int i;
1269 	struct mm_struct *mm = kvm->mm;
1270 
1271 	kvm_destroy_pm_notifier(kvm);
1272 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1273 	kvm_destroy_vm_debugfs(kvm);
1274 	mutex_lock(&kvm_lock);
1275 	list_del(&kvm->vm_list);
1276 	mutex_unlock(&kvm_lock);
1277 	kvm_arch_pre_destroy_vm(kvm);
1278 
1279 	kvm_free_irq_routing(kvm);
1280 	for (i = 0; i < KVM_NR_BUSES; i++) {
1281 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1282 
1283 		if (bus)
1284 			kvm_io_bus_destroy(bus);
1285 		kvm->buses[i] = NULL;
1286 	}
1287 	kvm_coalesced_mmio_free(kvm);
1288 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1289 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1290 	/*
1291 	 * At this point, pending calls to invalidate_range_start()
1292 	 * have completed but no more MMU notifiers will run, so
1293 	 * mn_active_invalidate_count may remain unbalanced.
1294 	 * No threads can be waiting in kvm_swap_active_memslots() as the
1295 	 * last reference on KVM has been dropped, but freeing
1296 	 * memslots would deadlock without this manual intervention.
1297 	 *
1298 	 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1299 	 * notifier between a start() and end(), then there shouldn't be any
1300 	 * in-progress invalidations.
1301 	 */
1302 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1303 	if (kvm->mn_active_invalidate_count)
1304 		kvm->mn_active_invalidate_count = 0;
1305 	else
1306 		WARN_ON(kvm->mmu_invalidate_in_progress);
1307 #else
1308 	kvm_flush_shadow_all(kvm);
1309 #endif
1310 	kvm_arch_destroy_vm(kvm);
1311 	kvm_destroy_devices(kvm);
1312 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1313 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1314 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1315 	}
1316 	cleanup_srcu_struct(&kvm->irq_srcu);
1317 	cleanup_srcu_struct(&kvm->srcu);
1318 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1319 	xa_destroy(&kvm->mem_attr_array);
1320 #endif
1321 	kvm_arch_free_vm(kvm);
1322 	preempt_notifier_dec();
1323 	kvm_disable_virtualization();
1324 	mmdrop(mm);
1325 }
1326 
kvm_get_kvm(struct kvm * kvm)1327 void kvm_get_kvm(struct kvm *kvm)
1328 {
1329 	refcount_inc(&kvm->users_count);
1330 }
1331 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1332 
1333 /*
1334  * Make sure the vm is not during destruction, which is a safe version of
1335  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1336  */
kvm_get_kvm_safe(struct kvm * kvm)1337 bool kvm_get_kvm_safe(struct kvm *kvm)
1338 {
1339 	return refcount_inc_not_zero(&kvm->users_count);
1340 }
1341 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1342 
kvm_put_kvm(struct kvm * kvm)1343 void kvm_put_kvm(struct kvm *kvm)
1344 {
1345 	if (refcount_dec_and_test(&kvm->users_count))
1346 		kvm_destroy_vm(kvm);
1347 }
1348 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1349 
1350 /*
1351  * Used to put a reference that was taken on behalf of an object associated
1352  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1353  * of the new file descriptor fails and the reference cannot be transferred to
1354  * its final owner.  In such cases, the caller is still actively using @kvm and
1355  * will fail miserably if the refcount unexpectedly hits zero.
1356  */
kvm_put_kvm_no_destroy(struct kvm * kvm)1357 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1358 {
1359 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1360 }
1361 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1362 
kvm_vm_release(struct inode * inode,struct file * filp)1363 static int kvm_vm_release(struct inode *inode, struct file *filp)
1364 {
1365 	struct kvm *kvm = filp->private_data;
1366 
1367 	kvm_irqfd_release(kvm);
1368 
1369 	kvm_put_kvm(kvm);
1370 	return 0;
1371 }
1372 
1373 /*
1374  * Allocation size is twice as large as the actual dirty bitmap size.
1375  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1376  */
kvm_alloc_dirty_bitmap(struct kvm_memory_slot * memslot)1377 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1378 {
1379 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1380 
1381 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1382 	if (!memslot->dirty_bitmap)
1383 		return -ENOMEM;
1384 
1385 	return 0;
1386 }
1387 
kvm_get_inactive_memslots(struct kvm * kvm,int as_id)1388 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1389 {
1390 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1391 	int node_idx_inactive = active->node_idx ^ 1;
1392 
1393 	return &kvm->__memslots[as_id][node_idx_inactive];
1394 }
1395 
1396 /*
1397  * Helper to get the address space ID when one of memslot pointers may be NULL.
1398  * This also serves as a sanity that at least one of the pointers is non-NULL,
1399  * and that their address space IDs don't diverge.
1400  */
kvm_memslots_get_as_id(struct kvm_memory_slot * a,struct kvm_memory_slot * b)1401 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1402 				  struct kvm_memory_slot *b)
1403 {
1404 	if (WARN_ON_ONCE(!a && !b))
1405 		return 0;
1406 
1407 	if (!a)
1408 		return b->as_id;
1409 	if (!b)
1410 		return a->as_id;
1411 
1412 	WARN_ON_ONCE(a->as_id != b->as_id);
1413 	return a->as_id;
1414 }
1415 
kvm_insert_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * slot)1416 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1417 				struct kvm_memory_slot *slot)
1418 {
1419 	struct rb_root *gfn_tree = &slots->gfn_tree;
1420 	struct rb_node **node, *parent;
1421 	int idx = slots->node_idx;
1422 
1423 	parent = NULL;
1424 	for (node = &gfn_tree->rb_node; *node; ) {
1425 		struct kvm_memory_slot *tmp;
1426 
1427 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1428 		parent = *node;
1429 		if (slot->base_gfn < tmp->base_gfn)
1430 			node = &(*node)->rb_left;
1431 		else if (slot->base_gfn > tmp->base_gfn)
1432 			node = &(*node)->rb_right;
1433 		else
1434 			BUG();
1435 	}
1436 
1437 	rb_link_node(&slot->gfn_node[idx], parent, node);
1438 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1439 }
1440 
kvm_erase_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * slot)1441 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1442 			       struct kvm_memory_slot *slot)
1443 {
1444 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1445 }
1446 
kvm_replace_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1447 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1448 				 struct kvm_memory_slot *old,
1449 				 struct kvm_memory_slot *new)
1450 {
1451 	int idx = slots->node_idx;
1452 
1453 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1454 
1455 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1456 			&slots->gfn_tree);
1457 }
1458 
1459 /*
1460  * Replace @old with @new in the inactive memslots.
1461  *
1462  * With NULL @old this simply adds @new.
1463  * With NULL @new this simply removes @old.
1464  *
1465  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1466  * appropriately.
1467  */
kvm_replace_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1468 static void kvm_replace_memslot(struct kvm *kvm,
1469 				struct kvm_memory_slot *old,
1470 				struct kvm_memory_slot *new)
1471 {
1472 	int as_id = kvm_memslots_get_as_id(old, new);
1473 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1474 	int idx = slots->node_idx;
1475 
1476 	if (old) {
1477 		hash_del(&old->id_node[idx]);
1478 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1479 
1480 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1481 			atomic_long_set(&slots->last_used_slot, (long)new);
1482 
1483 		if (!new) {
1484 			kvm_erase_gfn_node(slots, old);
1485 			return;
1486 		}
1487 	}
1488 
1489 	/*
1490 	 * Initialize @new's hva range.  Do this even when replacing an @old
1491 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1492 	 */
1493 	new->hva_node[idx].start = new->userspace_addr;
1494 	new->hva_node[idx].last = new->userspace_addr +
1495 				  (new->npages << PAGE_SHIFT) - 1;
1496 
1497 	/*
1498 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1499 	 * hva_node needs to be swapped with remove+insert even though hva can't
1500 	 * change when replacing an existing slot.
1501 	 */
1502 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1503 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1504 
1505 	/*
1506 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1507 	 * switch the node in the gfn tree instead of removing the old and
1508 	 * inserting the new as two separate operations. Replacement is a
1509 	 * single O(1) operation versus two O(log(n)) operations for
1510 	 * remove+insert.
1511 	 */
1512 	if (old && old->base_gfn == new->base_gfn) {
1513 		kvm_replace_gfn_node(slots, old, new);
1514 	} else {
1515 		if (old)
1516 			kvm_erase_gfn_node(slots, old);
1517 		kvm_insert_gfn_node(slots, new);
1518 	}
1519 }
1520 
1521 /*
1522  * Flags that do not access any of the extra space of struct
1523  * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1524  * only allows these.
1525  */
1526 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1527 	(KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1528 
check_memory_region_flags(struct kvm * kvm,const struct kvm_userspace_memory_region2 * mem)1529 static int check_memory_region_flags(struct kvm *kvm,
1530 				     const struct kvm_userspace_memory_region2 *mem)
1531 {
1532 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1533 
1534 	if (kvm_arch_has_private_mem(kvm))
1535 		valid_flags |= KVM_MEM_GUEST_MEMFD;
1536 
1537 	/* Dirty logging private memory is not currently supported. */
1538 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
1539 		valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1540 
1541 	/*
1542 	 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1543 	 * read-only memslots have emulated MMIO, not page fault, semantics,
1544 	 * and KVM doesn't allow emulated MMIO for private memory.
1545 	 */
1546 	if (kvm_arch_has_readonly_mem(kvm) &&
1547 	    !(mem->flags & KVM_MEM_GUEST_MEMFD))
1548 		valid_flags |= KVM_MEM_READONLY;
1549 
1550 	if (mem->flags & ~valid_flags)
1551 		return -EINVAL;
1552 
1553 	return 0;
1554 }
1555 
kvm_swap_active_memslots(struct kvm * kvm,int as_id)1556 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1557 {
1558 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1559 
1560 	/* Grab the generation from the activate memslots. */
1561 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1562 
1563 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1564 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1565 
1566 	/*
1567 	 * Do not store the new memslots while there are invalidations in
1568 	 * progress, otherwise the locking in invalidate_range_start and
1569 	 * invalidate_range_end will be unbalanced.
1570 	 */
1571 	spin_lock(&kvm->mn_invalidate_lock);
1572 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1573 	while (kvm->mn_active_invalidate_count) {
1574 		set_current_state(TASK_UNINTERRUPTIBLE);
1575 		spin_unlock(&kvm->mn_invalidate_lock);
1576 		schedule();
1577 		spin_lock(&kvm->mn_invalidate_lock);
1578 	}
1579 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1580 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1581 	spin_unlock(&kvm->mn_invalidate_lock);
1582 
1583 	/*
1584 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1585 	 * SRCU below in order to avoid deadlock with another thread
1586 	 * acquiring the slots_arch_lock in an srcu critical section.
1587 	 */
1588 	mutex_unlock(&kvm->slots_arch_lock);
1589 
1590 	synchronize_srcu_expedited(&kvm->srcu);
1591 
1592 	/*
1593 	 * Increment the new memslot generation a second time, dropping the
1594 	 * update in-progress flag and incrementing the generation based on
1595 	 * the number of address spaces.  This provides a unique and easily
1596 	 * identifiable generation number while the memslots are in flux.
1597 	 */
1598 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1599 
1600 	/*
1601 	 * Generations must be unique even across address spaces.  We do not need
1602 	 * a global counter for that, instead the generation space is evenly split
1603 	 * across address spaces.  For example, with two address spaces, address
1604 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1605 	 * use generations 1, 3, 5, ...
1606 	 */
1607 	gen += kvm_arch_nr_memslot_as_ids(kvm);
1608 
1609 	kvm_arch_memslots_updated(kvm, gen);
1610 
1611 	slots->generation = gen;
1612 }
1613 
kvm_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1614 static int kvm_prepare_memory_region(struct kvm *kvm,
1615 				     const struct kvm_memory_slot *old,
1616 				     struct kvm_memory_slot *new,
1617 				     enum kvm_mr_change change)
1618 {
1619 	int r;
1620 
1621 	/*
1622 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1623 	 * will be freed on "commit".  If logging is enabled in both old and
1624 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1625 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1626 	 * new bitmap.
1627 	 */
1628 	if (change != KVM_MR_DELETE) {
1629 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1630 			new->dirty_bitmap = NULL;
1631 		else if (old && old->dirty_bitmap)
1632 			new->dirty_bitmap = old->dirty_bitmap;
1633 		else if (kvm_use_dirty_bitmap(kvm)) {
1634 			r = kvm_alloc_dirty_bitmap(new);
1635 			if (r)
1636 				return r;
1637 
1638 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1639 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1640 		}
1641 	}
1642 
1643 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1644 
1645 	/* Free the bitmap on failure if it was allocated above. */
1646 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1647 		kvm_destroy_dirty_bitmap(new);
1648 
1649 	return r;
1650 }
1651 
kvm_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1652 static void kvm_commit_memory_region(struct kvm *kvm,
1653 				     struct kvm_memory_slot *old,
1654 				     const struct kvm_memory_slot *new,
1655 				     enum kvm_mr_change change)
1656 {
1657 	int old_flags = old ? old->flags : 0;
1658 	int new_flags = new ? new->flags : 0;
1659 	/*
1660 	 * Update the total number of memslot pages before calling the arch
1661 	 * hook so that architectures can consume the result directly.
1662 	 */
1663 	if (change == KVM_MR_DELETE)
1664 		kvm->nr_memslot_pages -= old->npages;
1665 	else if (change == KVM_MR_CREATE)
1666 		kvm->nr_memslot_pages += new->npages;
1667 
1668 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1669 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1670 		atomic_set(&kvm->nr_memslots_dirty_logging,
1671 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1672 	}
1673 
1674 	kvm_arch_commit_memory_region(kvm, old, new, change);
1675 
1676 	switch (change) {
1677 	case KVM_MR_CREATE:
1678 		/* Nothing more to do. */
1679 		break;
1680 	case KVM_MR_DELETE:
1681 		/* Free the old memslot and all its metadata. */
1682 		kvm_free_memslot(kvm, old);
1683 		break;
1684 	case KVM_MR_MOVE:
1685 	case KVM_MR_FLAGS_ONLY:
1686 		/*
1687 		 * Free the dirty bitmap as needed; the below check encompasses
1688 		 * both the flags and whether a ring buffer is being used)
1689 		 */
1690 		if (old->dirty_bitmap && !new->dirty_bitmap)
1691 			kvm_destroy_dirty_bitmap(old);
1692 
1693 		/*
1694 		 * The final quirk.  Free the detached, old slot, but only its
1695 		 * memory, not any metadata.  Metadata, including arch specific
1696 		 * data, may be reused by @new.
1697 		 */
1698 		kfree(old);
1699 		break;
1700 	default:
1701 		BUG();
1702 	}
1703 }
1704 
1705 /*
1706  * Activate @new, which must be installed in the inactive slots by the caller,
1707  * by swapping the active slots and then propagating @new to @old once @old is
1708  * unreachable and can be safely modified.
1709  *
1710  * With NULL @old this simply adds @new to @active (while swapping the sets).
1711  * With NULL @new this simply removes @old from @active and frees it
1712  * (while also swapping the sets).
1713  */
kvm_activate_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1714 static void kvm_activate_memslot(struct kvm *kvm,
1715 				 struct kvm_memory_slot *old,
1716 				 struct kvm_memory_slot *new)
1717 {
1718 	int as_id = kvm_memslots_get_as_id(old, new);
1719 
1720 	kvm_swap_active_memslots(kvm, as_id);
1721 
1722 	/* Propagate the new memslot to the now inactive memslots. */
1723 	kvm_replace_memslot(kvm, old, new);
1724 }
1725 
kvm_copy_memslot(struct kvm_memory_slot * dest,const struct kvm_memory_slot * src)1726 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1727 			     const struct kvm_memory_slot *src)
1728 {
1729 	dest->base_gfn = src->base_gfn;
1730 	dest->npages = src->npages;
1731 	dest->dirty_bitmap = src->dirty_bitmap;
1732 	dest->arch = src->arch;
1733 	dest->userspace_addr = src->userspace_addr;
1734 	dest->flags = src->flags;
1735 	dest->id = src->id;
1736 	dest->as_id = src->as_id;
1737 }
1738 
kvm_invalidate_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * invalid_slot)1739 static void kvm_invalidate_memslot(struct kvm *kvm,
1740 				   struct kvm_memory_slot *old,
1741 				   struct kvm_memory_slot *invalid_slot)
1742 {
1743 	/*
1744 	 * Mark the current slot INVALID.  As with all memslot modifications,
1745 	 * this must be done on an unreachable slot to avoid modifying the
1746 	 * current slot in the active tree.
1747 	 */
1748 	kvm_copy_memslot(invalid_slot, old);
1749 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1750 	kvm_replace_memslot(kvm, old, invalid_slot);
1751 
1752 	/*
1753 	 * Activate the slot that is now marked INVALID, but don't propagate
1754 	 * the slot to the now inactive slots. The slot is either going to be
1755 	 * deleted or recreated as a new slot.
1756 	 */
1757 	kvm_swap_active_memslots(kvm, old->as_id);
1758 
1759 	/*
1760 	 * From this point no new shadow pages pointing to a deleted, or moved,
1761 	 * memslot will be created.  Validation of sp->gfn happens in:
1762 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1763 	 *	- kvm_is_visible_gfn (mmu_check_root)
1764 	 */
1765 	kvm_arch_flush_shadow_memslot(kvm, old);
1766 	kvm_arch_guest_memory_reclaimed(kvm);
1767 
1768 	/* Was released by kvm_swap_active_memslots(), reacquire. */
1769 	mutex_lock(&kvm->slots_arch_lock);
1770 
1771 	/*
1772 	 * Copy the arch-specific field of the newly-installed slot back to the
1773 	 * old slot as the arch data could have changed between releasing
1774 	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1775 	 * above.  Writers are required to retrieve memslots *after* acquiring
1776 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1777 	 */
1778 	old->arch = invalid_slot->arch;
1779 }
1780 
kvm_create_memslot(struct kvm * kvm,struct kvm_memory_slot * new)1781 static void kvm_create_memslot(struct kvm *kvm,
1782 			       struct kvm_memory_slot *new)
1783 {
1784 	/* Add the new memslot to the inactive set and activate. */
1785 	kvm_replace_memslot(kvm, NULL, new);
1786 	kvm_activate_memslot(kvm, NULL, new);
1787 }
1788 
kvm_delete_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * invalid_slot)1789 static void kvm_delete_memslot(struct kvm *kvm,
1790 			       struct kvm_memory_slot *old,
1791 			       struct kvm_memory_slot *invalid_slot)
1792 {
1793 	/*
1794 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1795 	 * the "new" slot, and for the invalid version in the active slots.
1796 	 */
1797 	kvm_replace_memslot(kvm, old, NULL);
1798 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1799 }
1800 
kvm_move_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,struct kvm_memory_slot * invalid_slot)1801 static void kvm_move_memslot(struct kvm *kvm,
1802 			     struct kvm_memory_slot *old,
1803 			     struct kvm_memory_slot *new,
1804 			     struct kvm_memory_slot *invalid_slot)
1805 {
1806 	/*
1807 	 * Replace the old memslot in the inactive slots, and then swap slots
1808 	 * and replace the current INVALID with the new as well.
1809 	 */
1810 	kvm_replace_memslot(kvm, old, new);
1811 	kvm_activate_memslot(kvm, invalid_slot, new);
1812 }
1813 
kvm_update_flags_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1814 static void kvm_update_flags_memslot(struct kvm *kvm,
1815 				     struct kvm_memory_slot *old,
1816 				     struct kvm_memory_slot *new)
1817 {
1818 	/*
1819 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1820 	 * an intermediate step. Instead, the old memslot is simply replaced
1821 	 * with a new, updated copy in both memslot sets.
1822 	 */
1823 	kvm_replace_memslot(kvm, old, new);
1824 	kvm_activate_memslot(kvm, old, new);
1825 }
1826 
kvm_set_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1827 static int kvm_set_memslot(struct kvm *kvm,
1828 			   struct kvm_memory_slot *old,
1829 			   struct kvm_memory_slot *new,
1830 			   enum kvm_mr_change change)
1831 {
1832 	struct kvm_memory_slot *invalid_slot;
1833 	int r;
1834 
1835 	/*
1836 	 * Released in kvm_swap_active_memslots().
1837 	 *
1838 	 * Must be held from before the current memslots are copied until after
1839 	 * the new memslots are installed with rcu_assign_pointer, then
1840 	 * released before the synchronize srcu in kvm_swap_active_memslots().
1841 	 *
1842 	 * When modifying memslots outside of the slots_lock, must be held
1843 	 * before reading the pointer to the current memslots until after all
1844 	 * changes to those memslots are complete.
1845 	 *
1846 	 * These rules ensure that installing new memslots does not lose
1847 	 * changes made to the previous memslots.
1848 	 */
1849 	mutex_lock(&kvm->slots_arch_lock);
1850 
1851 	/*
1852 	 * Invalidate the old slot if it's being deleted or moved.  This is
1853 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1854 	 * continue running by ensuring there are no mappings or shadow pages
1855 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1856 	 * (and without a lock), a window would exist between effecting the
1857 	 * delete/move and committing the changes in arch code where KVM or a
1858 	 * guest could access a non-existent memslot.
1859 	 *
1860 	 * Modifications are done on a temporary, unreachable slot.  The old
1861 	 * slot needs to be preserved in case a later step fails and the
1862 	 * invalidation needs to be reverted.
1863 	 */
1864 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1865 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1866 		if (!invalid_slot) {
1867 			mutex_unlock(&kvm->slots_arch_lock);
1868 			return -ENOMEM;
1869 		}
1870 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1871 	}
1872 
1873 	r = kvm_prepare_memory_region(kvm, old, new, change);
1874 	if (r) {
1875 		/*
1876 		 * For DELETE/MOVE, revert the above INVALID change.  No
1877 		 * modifications required since the original slot was preserved
1878 		 * in the inactive slots.  Changing the active memslots also
1879 		 * release slots_arch_lock.
1880 		 */
1881 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1882 			kvm_activate_memslot(kvm, invalid_slot, old);
1883 			kfree(invalid_slot);
1884 		} else {
1885 			mutex_unlock(&kvm->slots_arch_lock);
1886 		}
1887 		return r;
1888 	}
1889 
1890 	/*
1891 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1892 	 * version of the old slot.  MOVE is particularly special as it reuses
1893 	 * the old slot and returns a copy of the old slot (in working_slot).
1894 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1895 	 * old slot is detached but otherwise preserved.
1896 	 */
1897 	if (change == KVM_MR_CREATE)
1898 		kvm_create_memslot(kvm, new);
1899 	else if (change == KVM_MR_DELETE)
1900 		kvm_delete_memslot(kvm, old, invalid_slot);
1901 	else if (change == KVM_MR_MOVE)
1902 		kvm_move_memslot(kvm, old, new, invalid_slot);
1903 	else if (change == KVM_MR_FLAGS_ONLY)
1904 		kvm_update_flags_memslot(kvm, old, new);
1905 	else
1906 		BUG();
1907 
1908 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1909 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1910 		kfree(invalid_slot);
1911 
1912 	/*
1913 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1914 	 * will directly hit the final, active memslot.  Architectures are
1915 	 * responsible for knowing that new->arch may be stale.
1916 	 */
1917 	kvm_commit_memory_region(kvm, old, new, change);
1918 
1919 	return 0;
1920 }
1921 
kvm_check_memslot_overlap(struct kvm_memslots * slots,int id,gfn_t start,gfn_t end)1922 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1923 				      gfn_t start, gfn_t end)
1924 {
1925 	struct kvm_memslot_iter iter;
1926 
1927 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1928 		if (iter.slot->id != id)
1929 			return true;
1930 	}
1931 
1932 	return false;
1933 }
1934 
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region2 * mem)1935 static int kvm_set_memory_region(struct kvm *kvm,
1936 				 const struct kvm_userspace_memory_region2 *mem)
1937 {
1938 	struct kvm_memory_slot *old, *new;
1939 	struct kvm_memslots *slots;
1940 	enum kvm_mr_change change;
1941 	unsigned long npages;
1942 	gfn_t base_gfn;
1943 	int as_id, id;
1944 	int r;
1945 
1946 	lockdep_assert_held(&kvm->slots_lock);
1947 
1948 	r = check_memory_region_flags(kvm, mem);
1949 	if (r)
1950 		return r;
1951 
1952 	as_id = mem->slot >> 16;
1953 	id = (u16)mem->slot;
1954 
1955 	/* General sanity checks */
1956 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1957 	    (mem->memory_size != (unsigned long)mem->memory_size))
1958 		return -EINVAL;
1959 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1960 		return -EINVAL;
1961 	/* We can read the guest memory with __xxx_user() later on. */
1962 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1963 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1964 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1965 			mem->memory_size))
1966 		return -EINVAL;
1967 	if (mem->flags & KVM_MEM_GUEST_MEMFD &&
1968 	    (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
1969 	     mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
1970 		return -EINVAL;
1971 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
1972 		return -EINVAL;
1973 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1974 		return -EINVAL;
1975 
1976 	/*
1977 	 * The size of userspace-defined memory regions is restricted in order
1978 	 * to play nice with dirty bitmap operations, which are indexed with an
1979 	 * "unsigned int".  KVM's internal memory regions don't support dirty
1980 	 * logging, and so are exempt.
1981 	 */
1982 	if (id < KVM_USER_MEM_SLOTS &&
1983 	    (mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1984 		return -EINVAL;
1985 
1986 	slots = __kvm_memslots(kvm, as_id);
1987 
1988 	/*
1989 	 * Note, the old memslot (and the pointer itself!) may be invalidated
1990 	 * and/or destroyed by kvm_set_memslot().
1991 	 */
1992 	old = id_to_memslot(slots, id);
1993 
1994 	if (!mem->memory_size) {
1995 		if (!old || !old->npages)
1996 			return -EINVAL;
1997 
1998 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1999 			return -EIO;
2000 
2001 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2002 	}
2003 
2004 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2005 	npages = (mem->memory_size >> PAGE_SHIFT);
2006 
2007 	if (!old || !old->npages) {
2008 		change = KVM_MR_CREATE;
2009 
2010 		/*
2011 		 * To simplify KVM internals, the total number of pages across
2012 		 * all memslots must fit in an unsigned long.
2013 		 */
2014 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2015 			return -EINVAL;
2016 	} else { /* Modify an existing slot. */
2017 		/* Private memslots are immutable, they can only be deleted. */
2018 		if (mem->flags & KVM_MEM_GUEST_MEMFD)
2019 			return -EINVAL;
2020 		if ((mem->userspace_addr != old->userspace_addr) ||
2021 		    (npages != old->npages) ||
2022 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2023 			return -EINVAL;
2024 
2025 		if (base_gfn != old->base_gfn)
2026 			change = KVM_MR_MOVE;
2027 		else if (mem->flags != old->flags)
2028 			change = KVM_MR_FLAGS_ONLY;
2029 		else /* Nothing to change. */
2030 			return 0;
2031 	}
2032 
2033 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2034 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2035 		return -EEXIST;
2036 
2037 	/* Allocate a slot that will persist in the memslot. */
2038 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2039 	if (!new)
2040 		return -ENOMEM;
2041 
2042 	new->as_id = as_id;
2043 	new->id = id;
2044 	new->base_gfn = base_gfn;
2045 	new->npages = npages;
2046 	new->flags = mem->flags;
2047 	new->userspace_addr = mem->userspace_addr;
2048 	if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2049 		r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2050 		if (r)
2051 			goto out;
2052 	}
2053 
2054 	r = kvm_set_memslot(kvm, old, new, change);
2055 	if (r)
2056 		goto out_unbind;
2057 
2058 	return 0;
2059 
2060 out_unbind:
2061 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
2062 		kvm_gmem_unbind(new);
2063 out:
2064 	kfree(new);
2065 	return r;
2066 }
2067 
kvm_set_internal_memslot(struct kvm * kvm,const struct kvm_userspace_memory_region2 * mem)2068 int kvm_set_internal_memslot(struct kvm *kvm,
2069 			     const struct kvm_userspace_memory_region2 *mem)
2070 {
2071 	if (WARN_ON_ONCE(mem->slot < KVM_USER_MEM_SLOTS))
2072 		return -EINVAL;
2073 
2074 	if (WARN_ON_ONCE(mem->flags))
2075 		return -EINVAL;
2076 
2077 	return kvm_set_memory_region(kvm, mem);
2078 }
2079 EXPORT_SYMBOL_GPL(kvm_set_internal_memslot);
2080 
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region2 * mem)2081 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2082 					  struct kvm_userspace_memory_region2 *mem)
2083 {
2084 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2085 		return -EINVAL;
2086 
2087 	guard(mutex)(&kvm->slots_lock);
2088 	return kvm_set_memory_region(kvm, mem);
2089 }
2090 
2091 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2092 /**
2093  * kvm_get_dirty_log - get a snapshot of dirty pages
2094  * @kvm:	pointer to kvm instance
2095  * @log:	slot id and address to which we copy the log
2096  * @is_dirty:	set to '1' if any dirty pages were found
2097  * @memslot:	set to the associated memslot, always valid on success
2098  */
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty,struct kvm_memory_slot ** memslot)2099 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2100 		      int *is_dirty, struct kvm_memory_slot **memslot)
2101 {
2102 	struct kvm_memslots *slots;
2103 	int i, as_id, id;
2104 	unsigned long n;
2105 	unsigned long any = 0;
2106 
2107 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2108 	if (!kvm_use_dirty_bitmap(kvm))
2109 		return -ENXIO;
2110 
2111 	*memslot = NULL;
2112 	*is_dirty = 0;
2113 
2114 	as_id = log->slot >> 16;
2115 	id = (u16)log->slot;
2116 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2117 		return -EINVAL;
2118 
2119 	slots = __kvm_memslots(kvm, as_id);
2120 	*memslot = id_to_memslot(slots, id);
2121 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2122 		return -ENOENT;
2123 
2124 	kvm_arch_sync_dirty_log(kvm, *memslot);
2125 
2126 	n = kvm_dirty_bitmap_bytes(*memslot);
2127 
2128 	for (i = 0; !any && i < n/sizeof(long); ++i)
2129 		any = (*memslot)->dirty_bitmap[i];
2130 
2131 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2132 		return -EFAULT;
2133 
2134 	if (any)
2135 		*is_dirty = 1;
2136 	return 0;
2137 }
2138 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2139 
2140 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2141 /**
2142  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2143  *	and reenable dirty page tracking for the corresponding pages.
2144  * @kvm:	pointer to kvm instance
2145  * @log:	slot id and address to which we copy the log
2146  *
2147  * We need to keep it in mind that VCPU threads can write to the bitmap
2148  * concurrently. So, to avoid losing track of dirty pages we keep the
2149  * following order:
2150  *
2151  *    1. Take a snapshot of the bit and clear it if needed.
2152  *    2. Write protect the corresponding page.
2153  *    3. Copy the snapshot to the userspace.
2154  *    4. Upon return caller flushes TLB's if needed.
2155  *
2156  * Between 2 and 4, the guest may write to the page using the remaining TLB
2157  * entry.  This is not a problem because the page is reported dirty using
2158  * the snapshot taken before and step 4 ensures that writes done after
2159  * exiting to userspace will be logged for the next call.
2160  *
2161  */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log)2162 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2163 {
2164 	struct kvm_memslots *slots;
2165 	struct kvm_memory_slot *memslot;
2166 	int i, as_id, id;
2167 	unsigned long n;
2168 	unsigned long *dirty_bitmap;
2169 	unsigned long *dirty_bitmap_buffer;
2170 	bool flush;
2171 
2172 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2173 	if (!kvm_use_dirty_bitmap(kvm))
2174 		return -ENXIO;
2175 
2176 	as_id = log->slot >> 16;
2177 	id = (u16)log->slot;
2178 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2179 		return -EINVAL;
2180 
2181 	slots = __kvm_memslots(kvm, as_id);
2182 	memslot = id_to_memslot(slots, id);
2183 	if (!memslot || !memslot->dirty_bitmap)
2184 		return -ENOENT;
2185 
2186 	dirty_bitmap = memslot->dirty_bitmap;
2187 
2188 	kvm_arch_sync_dirty_log(kvm, memslot);
2189 
2190 	n = kvm_dirty_bitmap_bytes(memslot);
2191 	flush = false;
2192 	if (kvm->manual_dirty_log_protect) {
2193 		/*
2194 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2195 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2196 		 * is some code duplication between this function and
2197 		 * kvm_get_dirty_log, but hopefully all architecture
2198 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2199 		 * can be eliminated.
2200 		 */
2201 		dirty_bitmap_buffer = dirty_bitmap;
2202 	} else {
2203 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2204 		memset(dirty_bitmap_buffer, 0, n);
2205 
2206 		KVM_MMU_LOCK(kvm);
2207 		for (i = 0; i < n / sizeof(long); i++) {
2208 			unsigned long mask;
2209 			gfn_t offset;
2210 
2211 			if (!dirty_bitmap[i])
2212 				continue;
2213 
2214 			flush = true;
2215 			mask = xchg(&dirty_bitmap[i], 0);
2216 			dirty_bitmap_buffer[i] = mask;
2217 
2218 			offset = i * BITS_PER_LONG;
2219 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2220 								offset, mask);
2221 		}
2222 		KVM_MMU_UNLOCK(kvm);
2223 	}
2224 
2225 	if (flush)
2226 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2227 
2228 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2229 		return -EFAULT;
2230 	return 0;
2231 }
2232 
2233 
2234 /**
2235  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2236  * @kvm: kvm instance
2237  * @log: slot id and address to which we copy the log
2238  *
2239  * Steps 1-4 below provide general overview of dirty page logging. See
2240  * kvm_get_dirty_log_protect() function description for additional details.
2241  *
2242  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2243  * always flush the TLB (step 4) even if previous step failed  and the dirty
2244  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2245  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2246  * writes will be marked dirty for next log read.
2247  *
2248  *   1. Take a snapshot of the bit and clear it if needed.
2249  *   2. Write protect the corresponding page.
2250  *   3. Copy the snapshot to the userspace.
2251  *   4. Flush TLB's if needed.
2252  */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)2253 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2254 				      struct kvm_dirty_log *log)
2255 {
2256 	int r;
2257 
2258 	mutex_lock(&kvm->slots_lock);
2259 
2260 	r = kvm_get_dirty_log_protect(kvm, log);
2261 
2262 	mutex_unlock(&kvm->slots_lock);
2263 	return r;
2264 }
2265 
2266 /**
2267  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2268  *	and reenable dirty page tracking for the corresponding pages.
2269  * @kvm:	pointer to kvm instance
2270  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2271  */
kvm_clear_dirty_log_protect(struct kvm * kvm,struct kvm_clear_dirty_log * log)2272 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2273 				       struct kvm_clear_dirty_log *log)
2274 {
2275 	struct kvm_memslots *slots;
2276 	struct kvm_memory_slot *memslot;
2277 	int as_id, id;
2278 	gfn_t offset;
2279 	unsigned long i, n;
2280 	unsigned long *dirty_bitmap;
2281 	unsigned long *dirty_bitmap_buffer;
2282 	bool flush;
2283 
2284 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2285 	if (!kvm_use_dirty_bitmap(kvm))
2286 		return -ENXIO;
2287 
2288 	as_id = log->slot >> 16;
2289 	id = (u16)log->slot;
2290 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2291 		return -EINVAL;
2292 
2293 	if (log->first_page & 63)
2294 		return -EINVAL;
2295 
2296 	slots = __kvm_memslots(kvm, as_id);
2297 	memslot = id_to_memslot(slots, id);
2298 	if (!memslot || !memslot->dirty_bitmap)
2299 		return -ENOENT;
2300 
2301 	dirty_bitmap = memslot->dirty_bitmap;
2302 
2303 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2304 
2305 	if (log->first_page > memslot->npages ||
2306 	    log->num_pages > memslot->npages - log->first_page ||
2307 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2308 	    return -EINVAL;
2309 
2310 	kvm_arch_sync_dirty_log(kvm, memslot);
2311 
2312 	flush = false;
2313 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2314 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2315 		return -EFAULT;
2316 
2317 	KVM_MMU_LOCK(kvm);
2318 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2319 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2320 	     i++, offset += BITS_PER_LONG) {
2321 		unsigned long mask = *dirty_bitmap_buffer++;
2322 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2323 		if (!mask)
2324 			continue;
2325 
2326 		mask &= atomic_long_fetch_andnot(mask, p);
2327 
2328 		/*
2329 		 * mask contains the bits that really have been cleared.  This
2330 		 * never includes any bits beyond the length of the memslot (if
2331 		 * the length is not aligned to 64 pages), therefore it is not
2332 		 * a problem if userspace sets them in log->dirty_bitmap.
2333 		*/
2334 		if (mask) {
2335 			flush = true;
2336 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2337 								offset, mask);
2338 		}
2339 	}
2340 	KVM_MMU_UNLOCK(kvm);
2341 
2342 	if (flush)
2343 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2344 
2345 	return 0;
2346 }
2347 
kvm_vm_ioctl_clear_dirty_log(struct kvm * kvm,struct kvm_clear_dirty_log * log)2348 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2349 					struct kvm_clear_dirty_log *log)
2350 {
2351 	int r;
2352 
2353 	mutex_lock(&kvm->slots_lock);
2354 
2355 	r = kvm_clear_dirty_log_protect(kvm, log);
2356 
2357 	mutex_unlock(&kvm->slots_lock);
2358 	return r;
2359 }
2360 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2361 
2362 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_supported_mem_attributes(struct kvm * kvm)2363 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2364 {
2365 	if (!kvm || kvm_arch_has_private_mem(kvm))
2366 		return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2367 
2368 	return 0;
2369 }
2370 
2371 /*
2372  * Returns true if _all_ gfns in the range [@start, @end) have attributes
2373  * such that the bits in @mask match @attrs.
2374  */
kvm_range_has_memory_attributes(struct kvm * kvm,gfn_t start,gfn_t end,unsigned long mask,unsigned long attrs)2375 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2376 				     unsigned long mask, unsigned long attrs)
2377 {
2378 	XA_STATE(xas, &kvm->mem_attr_array, start);
2379 	unsigned long index;
2380 	void *entry;
2381 
2382 	mask &= kvm_supported_mem_attributes(kvm);
2383 	if (attrs & ~mask)
2384 		return false;
2385 
2386 	if (end == start + 1)
2387 		return (kvm_get_memory_attributes(kvm, start) & mask) == attrs;
2388 
2389 	guard(rcu)();
2390 	if (!attrs)
2391 		return !xas_find(&xas, end - 1);
2392 
2393 	for (index = start; index < end; index++) {
2394 		do {
2395 			entry = xas_next(&xas);
2396 		} while (xas_retry(&xas, entry));
2397 
2398 		if (xas.xa_index != index ||
2399 		    (xa_to_value(entry) & mask) != attrs)
2400 			return false;
2401 	}
2402 
2403 	return true;
2404 }
2405 
kvm_handle_gfn_range(struct kvm * kvm,struct kvm_mmu_notifier_range * range)2406 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2407 						 struct kvm_mmu_notifier_range *range)
2408 {
2409 	struct kvm_gfn_range gfn_range;
2410 	struct kvm_memory_slot *slot;
2411 	struct kvm_memslots *slots;
2412 	struct kvm_memslot_iter iter;
2413 	bool found_memslot = false;
2414 	bool ret = false;
2415 	int i;
2416 
2417 	gfn_range.arg = range->arg;
2418 	gfn_range.may_block = range->may_block;
2419 
2420 	/*
2421 	 * If/when KVM supports more attributes beyond private .vs shared, this
2422 	 * _could_ set KVM_FILTER_{SHARED,PRIVATE} appropriately if the entire target
2423 	 * range already has the desired private vs. shared state (it's unclear
2424 	 * if that is a net win).  For now, KVM reaches this point if and only
2425 	 * if the private flag is being toggled, i.e. all mappings are in play.
2426 	 */
2427 
2428 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2429 		slots = __kvm_memslots(kvm, i);
2430 
2431 		kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2432 			slot = iter.slot;
2433 			gfn_range.slot = slot;
2434 
2435 			gfn_range.start = max(range->start, slot->base_gfn);
2436 			gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2437 			if (gfn_range.start >= gfn_range.end)
2438 				continue;
2439 
2440 			if (!found_memslot) {
2441 				found_memslot = true;
2442 				KVM_MMU_LOCK(kvm);
2443 				if (!IS_KVM_NULL_FN(range->on_lock))
2444 					range->on_lock(kvm);
2445 			}
2446 
2447 			ret |= range->handler(kvm, &gfn_range);
2448 		}
2449 	}
2450 
2451 	if (range->flush_on_ret && ret)
2452 		kvm_flush_remote_tlbs(kvm);
2453 
2454 	if (found_memslot)
2455 		KVM_MMU_UNLOCK(kvm);
2456 }
2457 
kvm_pre_set_memory_attributes(struct kvm * kvm,struct kvm_gfn_range * range)2458 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2459 					  struct kvm_gfn_range *range)
2460 {
2461 	/*
2462 	 * Unconditionally add the range to the invalidation set, regardless of
2463 	 * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2464 	 * if KVM supports RWX attributes in the future and the attributes are
2465 	 * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2466 	 * adding the range allows KVM to require that MMU invalidations add at
2467 	 * least one range between begin() and end(), e.g. allows KVM to detect
2468 	 * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2469 	 * but it's not obvious that allowing new mappings while the attributes
2470 	 * are in flux is desirable or worth the complexity.
2471 	 */
2472 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2473 
2474 	return kvm_arch_pre_set_memory_attributes(kvm, range);
2475 }
2476 
2477 /* Set @attributes for the gfn range [@start, @end). */
kvm_vm_set_mem_attributes(struct kvm * kvm,gfn_t start,gfn_t end,unsigned long attributes)2478 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2479 				     unsigned long attributes)
2480 {
2481 	struct kvm_mmu_notifier_range pre_set_range = {
2482 		.start = start,
2483 		.end = end,
2484 		.arg.attributes = attributes,
2485 		.handler = kvm_pre_set_memory_attributes,
2486 		.on_lock = kvm_mmu_invalidate_begin,
2487 		.flush_on_ret = true,
2488 		.may_block = true,
2489 	};
2490 	struct kvm_mmu_notifier_range post_set_range = {
2491 		.start = start,
2492 		.end = end,
2493 		.arg.attributes = attributes,
2494 		.handler = kvm_arch_post_set_memory_attributes,
2495 		.on_lock = kvm_mmu_invalidate_end,
2496 		.may_block = true,
2497 	};
2498 	unsigned long i;
2499 	void *entry;
2500 	int r = 0;
2501 
2502 	entry = attributes ? xa_mk_value(attributes) : NULL;
2503 
2504 	mutex_lock(&kvm->slots_lock);
2505 
2506 	/* Nothing to do if the entire range as the desired attributes. */
2507 	if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes))
2508 		goto out_unlock;
2509 
2510 	/*
2511 	 * Reserve memory ahead of time to avoid having to deal with failures
2512 	 * partway through setting the new attributes.
2513 	 */
2514 	for (i = start; i < end; i++) {
2515 		r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2516 		if (r)
2517 			goto out_unlock;
2518 	}
2519 
2520 	kvm_handle_gfn_range(kvm, &pre_set_range);
2521 
2522 	for (i = start; i < end; i++) {
2523 		r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2524 				    GFP_KERNEL_ACCOUNT));
2525 		KVM_BUG_ON(r, kvm);
2526 	}
2527 
2528 	kvm_handle_gfn_range(kvm, &post_set_range);
2529 
2530 out_unlock:
2531 	mutex_unlock(&kvm->slots_lock);
2532 
2533 	return r;
2534 }
kvm_vm_ioctl_set_mem_attributes(struct kvm * kvm,struct kvm_memory_attributes * attrs)2535 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2536 					   struct kvm_memory_attributes *attrs)
2537 {
2538 	gfn_t start, end;
2539 
2540 	/* flags is currently not used. */
2541 	if (attrs->flags)
2542 		return -EINVAL;
2543 	if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2544 		return -EINVAL;
2545 	if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2546 		return -EINVAL;
2547 	if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2548 		return -EINVAL;
2549 
2550 	start = attrs->address >> PAGE_SHIFT;
2551 	end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2552 
2553 	/*
2554 	 * xarray tracks data using "unsigned long", and as a result so does
2555 	 * KVM.  For simplicity, supports generic attributes only on 64-bit
2556 	 * architectures.
2557 	 */
2558 	BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2559 
2560 	return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2561 }
2562 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2563 
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)2564 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2565 {
2566 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2567 }
2568 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2569 
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)2570 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2571 {
2572 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2573 	u64 gen = slots->generation;
2574 	struct kvm_memory_slot *slot;
2575 
2576 	/*
2577 	 * This also protects against using a memslot from a different address space,
2578 	 * since different address spaces have different generation numbers.
2579 	 */
2580 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2581 		vcpu->last_used_slot = NULL;
2582 		vcpu->last_used_slot_gen = gen;
2583 	}
2584 
2585 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2586 	if (slot)
2587 		return slot;
2588 
2589 	/*
2590 	 * Fall back to searching all memslots. We purposely use
2591 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2592 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2593 	 */
2594 	slot = search_memslots(slots, gfn, false);
2595 	if (slot) {
2596 		vcpu->last_used_slot = slot;
2597 		return slot;
2598 	}
2599 
2600 	return NULL;
2601 }
2602 
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)2603 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2604 {
2605 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2606 
2607 	return kvm_is_visible_memslot(memslot);
2608 }
2609 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2610 
kvm_vcpu_is_visible_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)2611 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2612 {
2613 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2614 
2615 	return kvm_is_visible_memslot(memslot);
2616 }
2617 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2618 
kvm_host_page_size(struct kvm_vcpu * vcpu,gfn_t gfn)2619 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2620 {
2621 	struct vm_area_struct *vma;
2622 	unsigned long addr, size;
2623 
2624 	size = PAGE_SIZE;
2625 
2626 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2627 	if (kvm_is_error_hva(addr))
2628 		return PAGE_SIZE;
2629 
2630 	mmap_read_lock(current->mm);
2631 	vma = find_vma(current->mm, addr);
2632 	if (!vma)
2633 		goto out;
2634 
2635 	size = vma_kernel_pagesize(vma);
2636 
2637 out:
2638 	mmap_read_unlock(current->mm);
2639 
2640 	return size;
2641 }
2642 
memslot_is_readonly(const struct kvm_memory_slot * slot)2643 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2644 {
2645 	return slot->flags & KVM_MEM_READONLY;
2646 }
2647 
__gfn_to_hva_many(const struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)2648 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2649 				       gfn_t *nr_pages, bool write)
2650 {
2651 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2652 		return KVM_HVA_ERR_BAD;
2653 
2654 	if (memslot_is_readonly(slot) && write)
2655 		return KVM_HVA_ERR_RO_BAD;
2656 
2657 	if (nr_pages)
2658 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2659 
2660 	return __gfn_to_hva_memslot(slot, gfn);
2661 }
2662 
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)2663 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2664 				     gfn_t *nr_pages)
2665 {
2666 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2667 }
2668 
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)2669 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2670 					gfn_t gfn)
2671 {
2672 	return gfn_to_hva_many(slot, gfn, NULL);
2673 }
2674 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2675 
gfn_to_hva(struct kvm * kvm,gfn_t gfn)2676 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2677 {
2678 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2679 }
2680 EXPORT_SYMBOL_GPL(gfn_to_hva);
2681 
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)2682 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2683 {
2684 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2685 }
2686 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2687 
2688 /*
2689  * Return the hva of a @gfn and the R/W attribute if possible.
2690  *
2691  * @slot: the kvm_memory_slot which contains @gfn
2692  * @gfn: the gfn to be translated
2693  * @writable: used to return the read/write attribute of the @slot if the hva
2694  * is valid and @writable is not NULL
2695  */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)2696 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2697 				      gfn_t gfn, bool *writable)
2698 {
2699 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2700 
2701 	if (!kvm_is_error_hva(hva) && writable)
2702 		*writable = !memslot_is_readonly(slot);
2703 
2704 	return hva;
2705 }
2706 
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)2707 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2708 {
2709 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2710 
2711 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2712 }
2713 
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)2714 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2715 {
2716 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2717 
2718 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2719 }
2720 
kvm_is_ad_tracked_page(struct page * page)2721 static bool kvm_is_ad_tracked_page(struct page *page)
2722 {
2723 	/*
2724 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2725 	 * touched (e.g. set dirty) except by its owner".
2726 	 */
2727 	return !PageReserved(page);
2728 }
2729 
kvm_set_page_dirty(struct page * page)2730 static void kvm_set_page_dirty(struct page *page)
2731 {
2732 	if (kvm_is_ad_tracked_page(page))
2733 		SetPageDirty(page);
2734 }
2735 
kvm_set_page_accessed(struct page * page)2736 static void kvm_set_page_accessed(struct page *page)
2737 {
2738 	if (kvm_is_ad_tracked_page(page))
2739 		mark_page_accessed(page);
2740 }
2741 
kvm_release_page_clean(struct page * page)2742 void kvm_release_page_clean(struct page *page)
2743 {
2744 	if (!page)
2745 		return;
2746 
2747 	kvm_set_page_accessed(page);
2748 	put_page(page);
2749 }
2750 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2751 
kvm_release_page_dirty(struct page * page)2752 void kvm_release_page_dirty(struct page *page)
2753 {
2754 	if (!page)
2755 		return;
2756 
2757 	kvm_set_page_dirty(page);
2758 	kvm_release_page_clean(page);
2759 }
2760 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2761 
kvm_resolve_pfn(struct kvm_follow_pfn * kfp,struct page * page,struct follow_pfnmap_args * map,bool writable)2762 static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page,
2763 				 struct follow_pfnmap_args *map, bool writable)
2764 {
2765 	kvm_pfn_t pfn;
2766 
2767 	WARN_ON_ONCE(!!page == !!map);
2768 
2769 	if (kfp->map_writable)
2770 		*kfp->map_writable = writable;
2771 
2772 	if (map)
2773 		pfn = map->pfn;
2774 	else
2775 		pfn = page_to_pfn(page);
2776 
2777 	*kfp->refcounted_page = page;
2778 
2779 	return pfn;
2780 }
2781 
2782 /*
2783  * The fast path to get the writable pfn which will be stored in @pfn,
2784  * true indicates success, otherwise false is returned.
2785  */
hva_to_pfn_fast(struct kvm_follow_pfn * kfp,kvm_pfn_t * pfn)2786 static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2787 {
2788 	struct page *page;
2789 	bool r;
2790 
2791 	/*
2792 	 * Try the fast-only path when the caller wants to pin/get the page for
2793 	 * writing.  If the caller only wants to read the page, KVM must go
2794 	 * down the full, slow path in order to avoid racing an operation that
2795 	 * breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing
2796 	 * at the old, read-only page while mm/ points at a new, writable page.
2797 	 */
2798 	if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable))
2799 		return false;
2800 
2801 	if (kfp->pin)
2802 		r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1;
2803 	else
2804 		r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page);
2805 
2806 	if (r) {
2807 		*pfn = kvm_resolve_pfn(kfp, page, NULL, true);
2808 		return true;
2809 	}
2810 
2811 	return false;
2812 }
2813 
2814 /*
2815  * The slow path to get the pfn of the specified host virtual address,
2816  * 1 indicates success, -errno is returned if error is detected.
2817  */
hva_to_pfn_slow(struct kvm_follow_pfn * kfp,kvm_pfn_t * pfn)2818 static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2819 {
2820 	/*
2821 	 * When a VCPU accesses a page that is not mapped into the secondary
2822 	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2823 	 * make progress. We always want to honor NUMA hinting faults in that
2824 	 * case, because GUP usage corresponds to memory accesses from the VCPU.
2825 	 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2826 	 * mapped into the secondary MMU and gets accessed by a VCPU.
2827 	 *
2828 	 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2829 	 * implicitly honor NUMA hinting faults and don't need this flag.
2830 	 */
2831 	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags;
2832 	struct page *page, *wpage;
2833 	int npages;
2834 
2835 	if (kfp->pin)
2836 		npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags);
2837 	else
2838 		npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags);
2839 	if (npages != 1)
2840 		return npages;
2841 
2842 	/*
2843 	 * Pinning is mutually exclusive with opportunistically mapping a read
2844 	 * fault as writable, as KVM should never pin pages when mapping memory
2845 	 * into the guest (pinning is only for direct accesses from KVM).
2846 	 */
2847 	if (WARN_ON_ONCE(kfp->map_writable && kfp->pin))
2848 		goto out;
2849 
2850 	/* map read fault as writable if possible */
2851 	if (!(flags & FOLL_WRITE) && kfp->map_writable &&
2852 	    get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) {
2853 		put_page(page);
2854 		page = wpage;
2855 		flags |= FOLL_WRITE;
2856 	}
2857 
2858 out:
2859 	*pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE);
2860 	return npages;
2861 }
2862 
vma_is_valid(struct vm_area_struct * vma,bool write_fault)2863 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2864 {
2865 	if (unlikely(!(vma->vm_flags & VM_READ)))
2866 		return false;
2867 
2868 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2869 		return false;
2870 
2871 	return true;
2872 }
2873 
hva_to_pfn_remapped(struct vm_area_struct * vma,struct kvm_follow_pfn * kfp,kvm_pfn_t * p_pfn)2874 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2875 			       struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn)
2876 {
2877 	struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva };
2878 	bool write_fault = kfp->flags & FOLL_WRITE;
2879 	int r;
2880 
2881 	/*
2882 	 * Remapped memory cannot be pinned in any meaningful sense.  Bail if
2883 	 * the caller wants to pin the page, i.e. access the page outside of
2884 	 * MMU notifier protection, and unsafe umappings are disallowed.
2885 	 */
2886 	if (kfp->pin && !allow_unsafe_mappings)
2887 		return -EINVAL;
2888 
2889 	r = follow_pfnmap_start(&args);
2890 	if (r) {
2891 		/*
2892 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2893 		 * not call the fault handler, so do it here.
2894 		 */
2895 		bool unlocked = false;
2896 		r = fixup_user_fault(current->mm, kfp->hva,
2897 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2898 				     &unlocked);
2899 		if (unlocked)
2900 			return -EAGAIN;
2901 		if (r)
2902 			return r;
2903 
2904 		r = follow_pfnmap_start(&args);
2905 		if (r)
2906 			return r;
2907 	}
2908 
2909 	if (write_fault && !args.writable) {
2910 		*p_pfn = KVM_PFN_ERR_RO_FAULT;
2911 		goto out;
2912 	}
2913 
2914 	*p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable);
2915 out:
2916 	follow_pfnmap_end(&args);
2917 	return r;
2918 }
2919 
hva_to_pfn(struct kvm_follow_pfn * kfp)2920 kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp)
2921 {
2922 	struct vm_area_struct *vma;
2923 	kvm_pfn_t pfn;
2924 	int npages, r;
2925 
2926 	might_sleep();
2927 
2928 	if (WARN_ON_ONCE(!kfp->refcounted_page))
2929 		return KVM_PFN_ERR_FAULT;
2930 
2931 	if (hva_to_pfn_fast(kfp, &pfn))
2932 		return pfn;
2933 
2934 	npages = hva_to_pfn_slow(kfp, &pfn);
2935 	if (npages == 1)
2936 		return pfn;
2937 	if (npages == -EINTR || npages == -EAGAIN)
2938 		return KVM_PFN_ERR_SIGPENDING;
2939 	if (npages == -EHWPOISON)
2940 		return KVM_PFN_ERR_HWPOISON;
2941 
2942 	mmap_read_lock(current->mm);
2943 retry:
2944 	vma = vma_lookup(current->mm, kfp->hva);
2945 
2946 	if (vma == NULL)
2947 		pfn = KVM_PFN_ERR_FAULT;
2948 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2949 		r = hva_to_pfn_remapped(vma, kfp, &pfn);
2950 		if (r == -EAGAIN)
2951 			goto retry;
2952 		if (r < 0)
2953 			pfn = KVM_PFN_ERR_FAULT;
2954 	} else {
2955 		if ((kfp->flags & FOLL_NOWAIT) &&
2956 		    vma_is_valid(vma, kfp->flags & FOLL_WRITE))
2957 			pfn = KVM_PFN_ERR_NEEDS_IO;
2958 		else
2959 			pfn = KVM_PFN_ERR_FAULT;
2960 	}
2961 	mmap_read_unlock(current->mm);
2962 	return pfn;
2963 }
2964 
kvm_follow_pfn(struct kvm_follow_pfn * kfp)2965 static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp)
2966 {
2967 	kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL,
2968 				     kfp->flags & FOLL_WRITE);
2969 
2970 	if (kfp->hva == KVM_HVA_ERR_RO_BAD)
2971 		return KVM_PFN_ERR_RO_FAULT;
2972 
2973 	if (kvm_is_error_hva(kfp->hva))
2974 		return KVM_PFN_NOSLOT;
2975 
2976 	if (memslot_is_readonly(kfp->slot) && kfp->map_writable) {
2977 		*kfp->map_writable = false;
2978 		kfp->map_writable = NULL;
2979 	}
2980 
2981 	return hva_to_pfn(kfp);
2982 }
2983 
__kvm_faultin_pfn(const struct kvm_memory_slot * slot,gfn_t gfn,unsigned int foll,bool * writable,struct page ** refcounted_page)2984 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
2985 			    unsigned int foll, bool *writable,
2986 			    struct page **refcounted_page)
2987 {
2988 	struct kvm_follow_pfn kfp = {
2989 		.slot = slot,
2990 		.gfn = gfn,
2991 		.flags = foll,
2992 		.map_writable = writable,
2993 		.refcounted_page = refcounted_page,
2994 	};
2995 
2996 	if (WARN_ON_ONCE(!writable || !refcounted_page))
2997 		return KVM_PFN_ERR_FAULT;
2998 
2999 	*writable = false;
3000 	*refcounted_page = NULL;
3001 
3002 	return kvm_follow_pfn(&kfp);
3003 }
3004 EXPORT_SYMBOL_GPL(__kvm_faultin_pfn);
3005 
kvm_prefetch_pages(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)3006 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
3007 		       struct page **pages, int nr_pages)
3008 {
3009 	unsigned long addr;
3010 	gfn_t entry = 0;
3011 
3012 	addr = gfn_to_hva_many(slot, gfn, &entry);
3013 	if (kvm_is_error_hva(addr))
3014 		return -1;
3015 
3016 	if (entry < nr_pages)
3017 		return 0;
3018 
3019 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3020 }
3021 EXPORT_SYMBOL_GPL(kvm_prefetch_pages);
3022 
3023 /*
3024  * Don't use this API unless you are absolutely, positively certain that KVM
3025  * needs to get a struct page, e.g. to pin the page for firmware DMA.
3026  *
3027  * FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate
3028  *	  its refcount.
3029  */
__gfn_to_page(struct kvm * kvm,gfn_t gfn,bool write)3030 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write)
3031 {
3032 	struct page *refcounted_page = NULL;
3033 	struct kvm_follow_pfn kfp = {
3034 		.slot = gfn_to_memslot(kvm, gfn),
3035 		.gfn = gfn,
3036 		.flags = write ? FOLL_WRITE : 0,
3037 		.refcounted_page = &refcounted_page,
3038 	};
3039 
3040 	(void)kvm_follow_pfn(&kfp);
3041 	return refcounted_page;
3042 }
3043 EXPORT_SYMBOL_GPL(__gfn_to_page);
3044 
__kvm_vcpu_map(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map,bool writable)3045 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
3046 		   bool writable)
3047 {
3048 	struct kvm_follow_pfn kfp = {
3049 		.slot = gfn_to_memslot(vcpu->kvm, gfn),
3050 		.gfn = gfn,
3051 		.flags = writable ? FOLL_WRITE : 0,
3052 		.refcounted_page = &map->pinned_page,
3053 		.pin = true,
3054 	};
3055 
3056 	map->pinned_page = NULL;
3057 	map->page = NULL;
3058 	map->hva = NULL;
3059 	map->gfn = gfn;
3060 	map->writable = writable;
3061 
3062 	map->pfn = kvm_follow_pfn(&kfp);
3063 	if (is_error_noslot_pfn(map->pfn))
3064 		return -EINVAL;
3065 
3066 	if (pfn_valid(map->pfn)) {
3067 		map->page = pfn_to_page(map->pfn);
3068 		map->hva = kmap(map->page);
3069 #ifdef CONFIG_HAS_IOMEM
3070 	} else {
3071 		map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB);
3072 #endif
3073 	}
3074 
3075 	return map->hva ? 0 : -EFAULT;
3076 }
3077 EXPORT_SYMBOL_GPL(__kvm_vcpu_map);
3078 
kvm_vcpu_unmap(struct kvm_vcpu * vcpu,struct kvm_host_map * map)3079 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map)
3080 {
3081 	if (!map->hva)
3082 		return;
3083 
3084 	if (map->page)
3085 		kunmap(map->page);
3086 #ifdef CONFIG_HAS_IOMEM
3087 	else
3088 		memunmap(map->hva);
3089 #endif
3090 
3091 	if (map->writable)
3092 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3093 
3094 	if (map->pinned_page) {
3095 		if (map->writable)
3096 			kvm_set_page_dirty(map->pinned_page);
3097 		kvm_set_page_accessed(map->pinned_page);
3098 		unpin_user_page(map->pinned_page);
3099 	}
3100 
3101 	map->hva = NULL;
3102 	map->page = NULL;
3103 	map->pinned_page = NULL;
3104 }
3105 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3106 
next_segment(unsigned long len,int offset)3107 static int next_segment(unsigned long len, int offset)
3108 {
3109 	if (len > PAGE_SIZE - offset)
3110 		return PAGE_SIZE - offset;
3111 	else
3112 		return len;
3113 }
3114 
3115 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)3116 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3117 				 void *data, int offset, int len)
3118 {
3119 	int r;
3120 	unsigned long addr;
3121 
3122 	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3123 		return -EFAULT;
3124 
3125 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3126 	if (kvm_is_error_hva(addr))
3127 		return -EFAULT;
3128 	r = __copy_from_user(data, (void __user *)addr + offset, len);
3129 	if (r)
3130 		return -EFAULT;
3131 	return 0;
3132 }
3133 
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)3134 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3135 			int len)
3136 {
3137 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3138 
3139 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3140 }
3141 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3142 
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)3143 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3144 			     int offset, int len)
3145 {
3146 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3147 
3148 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3149 }
3150 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3151 
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)3152 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3153 {
3154 	gfn_t gfn = gpa >> PAGE_SHIFT;
3155 	int seg;
3156 	int offset = offset_in_page(gpa);
3157 	int ret;
3158 
3159 	while ((seg = next_segment(len, offset)) != 0) {
3160 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3161 		if (ret < 0)
3162 			return ret;
3163 		offset = 0;
3164 		len -= seg;
3165 		data += seg;
3166 		++gfn;
3167 	}
3168 	return 0;
3169 }
3170 EXPORT_SYMBOL_GPL(kvm_read_guest);
3171 
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)3172 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3173 {
3174 	gfn_t gfn = gpa >> PAGE_SHIFT;
3175 	int seg;
3176 	int offset = offset_in_page(gpa);
3177 	int ret;
3178 
3179 	while ((seg = next_segment(len, offset)) != 0) {
3180 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3181 		if (ret < 0)
3182 			return ret;
3183 		offset = 0;
3184 		len -= seg;
3185 		data += seg;
3186 		++gfn;
3187 	}
3188 	return 0;
3189 }
3190 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3191 
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)3192 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3193 			           void *data, int offset, unsigned long len)
3194 {
3195 	int r;
3196 	unsigned long addr;
3197 
3198 	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3199 		return -EFAULT;
3200 
3201 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3202 	if (kvm_is_error_hva(addr))
3203 		return -EFAULT;
3204 	pagefault_disable();
3205 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3206 	pagefault_enable();
3207 	if (r)
3208 		return -EFAULT;
3209 	return 0;
3210 }
3211 
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)3212 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3213 			       void *data, unsigned long len)
3214 {
3215 	gfn_t gfn = gpa >> PAGE_SHIFT;
3216 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3217 	int offset = offset_in_page(gpa);
3218 
3219 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3220 }
3221 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3222 
3223 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
__kvm_write_guest_page(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)3224 static int __kvm_write_guest_page(struct kvm *kvm,
3225 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3226 			          const void *data, int offset, int len)
3227 {
3228 	int r;
3229 	unsigned long addr;
3230 
3231 	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3232 		return -EFAULT;
3233 
3234 	addr = gfn_to_hva_memslot(memslot, gfn);
3235 	if (kvm_is_error_hva(addr))
3236 		return -EFAULT;
3237 	r = __copy_to_user((void __user *)addr + offset, data, len);
3238 	if (r)
3239 		return -EFAULT;
3240 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3241 	return 0;
3242 }
3243 
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)3244 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3245 			 const void *data, int offset, int len)
3246 {
3247 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3248 
3249 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3250 }
3251 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3252 
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)3253 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3254 			      const void *data, int offset, int len)
3255 {
3256 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3257 
3258 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3259 }
3260 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3261 
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)3262 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3263 		    unsigned long len)
3264 {
3265 	gfn_t gfn = gpa >> PAGE_SHIFT;
3266 	int seg;
3267 	int offset = offset_in_page(gpa);
3268 	int ret;
3269 
3270 	while ((seg = next_segment(len, offset)) != 0) {
3271 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3272 		if (ret < 0)
3273 			return ret;
3274 		offset = 0;
3275 		len -= seg;
3276 		data += seg;
3277 		++gfn;
3278 	}
3279 	return 0;
3280 }
3281 EXPORT_SYMBOL_GPL(kvm_write_guest);
3282 
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)3283 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3284 		         unsigned long len)
3285 {
3286 	gfn_t gfn = gpa >> PAGE_SHIFT;
3287 	int seg;
3288 	int offset = offset_in_page(gpa);
3289 	int ret;
3290 
3291 	while ((seg = next_segment(len, offset)) != 0) {
3292 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3293 		if (ret < 0)
3294 			return ret;
3295 		offset = 0;
3296 		len -= seg;
3297 		data += seg;
3298 		++gfn;
3299 	}
3300 	return 0;
3301 }
3302 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3303 
__kvm_gfn_to_hva_cache_init(struct kvm_memslots * slots,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3304 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3305 				       struct gfn_to_hva_cache *ghc,
3306 				       gpa_t gpa, unsigned long len)
3307 {
3308 	int offset = offset_in_page(gpa);
3309 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3310 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3311 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3312 	gfn_t nr_pages_avail;
3313 
3314 	/* Update ghc->generation before performing any error checks. */
3315 	ghc->generation = slots->generation;
3316 
3317 	if (start_gfn > end_gfn) {
3318 		ghc->hva = KVM_HVA_ERR_BAD;
3319 		return -EINVAL;
3320 	}
3321 
3322 	/*
3323 	 * If the requested region crosses two memslots, we still
3324 	 * verify that the entire region is valid here.
3325 	 */
3326 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3327 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3328 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3329 					   &nr_pages_avail);
3330 		if (kvm_is_error_hva(ghc->hva))
3331 			return -EFAULT;
3332 	}
3333 
3334 	/* Use the slow path for cross page reads and writes. */
3335 	if (nr_pages_needed == 1)
3336 		ghc->hva += offset;
3337 	else
3338 		ghc->memslot = NULL;
3339 
3340 	ghc->gpa = gpa;
3341 	ghc->len = len;
3342 	return 0;
3343 }
3344 
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3345 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3346 			      gpa_t gpa, unsigned long len)
3347 {
3348 	struct kvm_memslots *slots = kvm_memslots(kvm);
3349 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3350 }
3351 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3352 
kvm_write_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3353 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3354 				  void *data, unsigned int offset,
3355 				  unsigned long len)
3356 {
3357 	struct kvm_memslots *slots = kvm_memslots(kvm);
3358 	int r;
3359 	gpa_t gpa = ghc->gpa + offset;
3360 
3361 	if (WARN_ON_ONCE(len + offset > ghc->len))
3362 		return -EINVAL;
3363 
3364 	if (slots->generation != ghc->generation) {
3365 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3366 			return -EFAULT;
3367 	}
3368 
3369 	if (kvm_is_error_hva(ghc->hva))
3370 		return -EFAULT;
3371 
3372 	if (unlikely(!ghc->memslot))
3373 		return kvm_write_guest(kvm, gpa, data, len);
3374 
3375 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3376 	if (r)
3377 		return -EFAULT;
3378 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3379 
3380 	return 0;
3381 }
3382 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3383 
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3384 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3385 			   void *data, unsigned long len)
3386 {
3387 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3388 }
3389 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3390 
kvm_read_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3391 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3392 				 void *data, unsigned int offset,
3393 				 unsigned long len)
3394 {
3395 	struct kvm_memslots *slots = kvm_memslots(kvm);
3396 	int r;
3397 	gpa_t gpa = ghc->gpa + offset;
3398 
3399 	if (WARN_ON_ONCE(len + offset > ghc->len))
3400 		return -EINVAL;
3401 
3402 	if (slots->generation != ghc->generation) {
3403 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3404 			return -EFAULT;
3405 	}
3406 
3407 	if (kvm_is_error_hva(ghc->hva))
3408 		return -EFAULT;
3409 
3410 	if (unlikely(!ghc->memslot))
3411 		return kvm_read_guest(kvm, gpa, data, len);
3412 
3413 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3414 	if (r)
3415 		return -EFAULT;
3416 
3417 	return 0;
3418 }
3419 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3420 
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3421 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3422 			  void *data, unsigned long len)
3423 {
3424 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3425 }
3426 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3427 
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)3428 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3429 {
3430 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3431 	gfn_t gfn = gpa >> PAGE_SHIFT;
3432 	int seg;
3433 	int offset = offset_in_page(gpa);
3434 	int ret;
3435 
3436 	while ((seg = next_segment(len, offset)) != 0) {
3437 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg);
3438 		if (ret < 0)
3439 			return ret;
3440 		offset = 0;
3441 		len -= seg;
3442 		++gfn;
3443 	}
3444 	return 0;
3445 }
3446 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3447 
mark_page_dirty_in_slot(struct kvm * kvm,const struct kvm_memory_slot * memslot,gfn_t gfn)3448 void mark_page_dirty_in_slot(struct kvm *kvm,
3449 			     const struct kvm_memory_slot *memslot,
3450 		 	     gfn_t gfn)
3451 {
3452 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3453 
3454 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3455 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3456 		return;
3457 
3458 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3459 #endif
3460 
3461 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3462 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3463 		u32 slot = (memslot->as_id << 16) | memslot->id;
3464 
3465 		if (kvm->dirty_ring_size && vcpu)
3466 			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3467 		else if (memslot->dirty_bitmap)
3468 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3469 	}
3470 }
3471 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3472 
mark_page_dirty(struct kvm * kvm,gfn_t gfn)3473 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3474 {
3475 	struct kvm_memory_slot *memslot;
3476 
3477 	memslot = gfn_to_memslot(kvm, gfn);
3478 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3479 }
3480 EXPORT_SYMBOL_GPL(mark_page_dirty);
3481 
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)3482 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3483 {
3484 	struct kvm_memory_slot *memslot;
3485 
3486 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3487 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3488 }
3489 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3490 
kvm_sigset_activate(struct kvm_vcpu * vcpu)3491 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3492 {
3493 	if (!vcpu->sigset_active)
3494 		return;
3495 
3496 	/*
3497 	 * This does a lockless modification of ->real_blocked, which is fine
3498 	 * because, only current can change ->real_blocked and all readers of
3499 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3500 	 * of ->blocked.
3501 	 */
3502 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3503 }
3504 
kvm_sigset_deactivate(struct kvm_vcpu * vcpu)3505 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3506 {
3507 	if (!vcpu->sigset_active)
3508 		return;
3509 
3510 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3511 	sigemptyset(&current->real_blocked);
3512 }
3513 
grow_halt_poll_ns(struct kvm_vcpu * vcpu)3514 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3515 {
3516 	unsigned int old, val, grow, grow_start;
3517 
3518 	old = val = vcpu->halt_poll_ns;
3519 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3520 	grow = READ_ONCE(halt_poll_ns_grow);
3521 	if (!grow)
3522 		goto out;
3523 
3524 	val *= grow;
3525 	if (val < grow_start)
3526 		val = grow_start;
3527 
3528 	vcpu->halt_poll_ns = val;
3529 out:
3530 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3531 }
3532 
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)3533 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3534 {
3535 	unsigned int old, val, shrink, grow_start;
3536 
3537 	old = val = vcpu->halt_poll_ns;
3538 	shrink = READ_ONCE(halt_poll_ns_shrink);
3539 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3540 	if (shrink == 0)
3541 		val = 0;
3542 	else
3543 		val /= shrink;
3544 
3545 	if (val < grow_start)
3546 		val = 0;
3547 
3548 	vcpu->halt_poll_ns = val;
3549 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3550 }
3551 
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)3552 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3553 {
3554 	int ret = -EINTR;
3555 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3556 
3557 	if (kvm_arch_vcpu_runnable(vcpu))
3558 		goto out;
3559 	if (kvm_cpu_has_pending_timer(vcpu))
3560 		goto out;
3561 	if (signal_pending(current))
3562 		goto out;
3563 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3564 		goto out;
3565 
3566 	ret = 0;
3567 out:
3568 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3569 	return ret;
3570 }
3571 
3572 /*
3573  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3574  * pending.  This is mostly used when halting a vCPU, but may also be used
3575  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3576  */
kvm_vcpu_block(struct kvm_vcpu * vcpu)3577 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3578 {
3579 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3580 	bool waited = false;
3581 
3582 	vcpu->stat.generic.blocking = 1;
3583 
3584 	preempt_disable();
3585 	kvm_arch_vcpu_blocking(vcpu);
3586 	prepare_to_rcuwait(wait);
3587 	preempt_enable();
3588 
3589 	for (;;) {
3590 		set_current_state(TASK_INTERRUPTIBLE);
3591 
3592 		if (kvm_vcpu_check_block(vcpu) < 0)
3593 			break;
3594 
3595 		waited = true;
3596 		schedule();
3597 	}
3598 
3599 	preempt_disable();
3600 	finish_rcuwait(wait);
3601 	kvm_arch_vcpu_unblocking(vcpu);
3602 	preempt_enable();
3603 
3604 	vcpu->stat.generic.blocking = 0;
3605 
3606 	return waited;
3607 }
3608 
update_halt_poll_stats(struct kvm_vcpu * vcpu,ktime_t start,ktime_t end,bool success)3609 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3610 					  ktime_t end, bool success)
3611 {
3612 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3613 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3614 
3615 	++vcpu->stat.generic.halt_attempted_poll;
3616 
3617 	if (success) {
3618 		++vcpu->stat.generic.halt_successful_poll;
3619 
3620 		if (!vcpu_valid_wakeup(vcpu))
3621 			++vcpu->stat.generic.halt_poll_invalid;
3622 
3623 		stats->halt_poll_success_ns += poll_ns;
3624 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3625 	} else {
3626 		stats->halt_poll_fail_ns += poll_ns;
3627 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3628 	}
3629 }
3630 
kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu * vcpu)3631 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3632 {
3633 	struct kvm *kvm = vcpu->kvm;
3634 
3635 	if (kvm->override_halt_poll_ns) {
3636 		/*
3637 		 * Ensure kvm->max_halt_poll_ns is not read before
3638 		 * kvm->override_halt_poll_ns.
3639 		 *
3640 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3641 		 */
3642 		smp_rmb();
3643 		return READ_ONCE(kvm->max_halt_poll_ns);
3644 	}
3645 
3646 	return READ_ONCE(halt_poll_ns);
3647 }
3648 
3649 /*
3650  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3651  * polling is enabled, busy wait for a short time before blocking to avoid the
3652  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3653  * is halted.
3654  */
kvm_vcpu_halt(struct kvm_vcpu * vcpu)3655 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3656 {
3657 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3658 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3659 	ktime_t start, cur, poll_end;
3660 	bool waited = false;
3661 	bool do_halt_poll;
3662 	u64 halt_ns;
3663 
3664 	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3665 		vcpu->halt_poll_ns = max_halt_poll_ns;
3666 
3667 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3668 
3669 	start = cur = poll_end = ktime_get();
3670 	if (do_halt_poll) {
3671 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3672 
3673 		do {
3674 			if (kvm_vcpu_check_block(vcpu) < 0)
3675 				goto out;
3676 			cpu_relax();
3677 			poll_end = cur = ktime_get();
3678 		} while (kvm_vcpu_can_poll(cur, stop));
3679 	}
3680 
3681 	waited = kvm_vcpu_block(vcpu);
3682 
3683 	cur = ktime_get();
3684 	if (waited) {
3685 		vcpu->stat.generic.halt_wait_ns +=
3686 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3687 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3688 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3689 	}
3690 out:
3691 	/* The total time the vCPU was "halted", including polling time. */
3692 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3693 
3694 	/*
3695 	 * Note, halt-polling is considered successful so long as the vCPU was
3696 	 * never actually scheduled out, i.e. even if the wake event arrived
3697 	 * after of the halt-polling loop itself, but before the full wait.
3698 	 */
3699 	if (do_halt_poll)
3700 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3701 
3702 	if (halt_poll_allowed) {
3703 		/* Recompute the max halt poll time in case it changed. */
3704 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3705 
3706 		if (!vcpu_valid_wakeup(vcpu)) {
3707 			shrink_halt_poll_ns(vcpu);
3708 		} else if (max_halt_poll_ns) {
3709 			if (halt_ns <= vcpu->halt_poll_ns)
3710 				;
3711 			/* we had a long block, shrink polling */
3712 			else if (vcpu->halt_poll_ns &&
3713 				 halt_ns > max_halt_poll_ns)
3714 				shrink_halt_poll_ns(vcpu);
3715 			/* we had a short halt and our poll time is too small */
3716 			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3717 				 halt_ns < max_halt_poll_ns)
3718 				grow_halt_poll_ns(vcpu);
3719 		} else {
3720 			vcpu->halt_poll_ns = 0;
3721 		}
3722 	}
3723 
3724 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3725 }
3726 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3727 
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)3728 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3729 {
3730 	if (__kvm_vcpu_wake_up(vcpu)) {
3731 		WRITE_ONCE(vcpu->ready, true);
3732 		++vcpu->stat.generic.halt_wakeup;
3733 		return true;
3734 	}
3735 
3736 	return false;
3737 }
3738 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3739 
3740 #ifndef CONFIG_S390
3741 /*
3742  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3743  */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)3744 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3745 {
3746 	int me, cpu;
3747 
3748 	if (kvm_vcpu_wake_up(vcpu))
3749 		return;
3750 
3751 	me = get_cpu();
3752 	/*
3753 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3754 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3755 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3756 	 * within the vCPU thread itself.
3757 	 */
3758 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3759 		if (vcpu->mode == IN_GUEST_MODE)
3760 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3761 		goto out;
3762 	}
3763 
3764 	/*
3765 	 * Note, the vCPU could get migrated to a different pCPU at any point
3766 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3767 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3768 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3769 	 * vCPU also requires it to leave IN_GUEST_MODE.
3770 	 */
3771 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3772 		cpu = READ_ONCE(vcpu->cpu);
3773 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3774 			smp_send_reschedule(cpu);
3775 	}
3776 out:
3777 	put_cpu();
3778 }
3779 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3780 #endif /* !CONFIG_S390 */
3781 
kvm_vcpu_yield_to(struct kvm_vcpu * target)3782 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3783 {
3784 	struct task_struct *task = NULL;
3785 	int ret;
3786 
3787 	if (!read_trylock(&target->pid_lock))
3788 		return 0;
3789 
3790 	if (target->pid)
3791 		task = get_pid_task(target->pid, PIDTYPE_PID);
3792 
3793 	read_unlock(&target->pid_lock);
3794 
3795 	if (!task)
3796 		return 0;
3797 	ret = yield_to(task, 1);
3798 	put_task_struct(task);
3799 
3800 	return ret;
3801 }
3802 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3803 
3804 /*
3805  * Helper that checks whether a VCPU is eligible for directed yield.
3806  * Most eligible candidate to yield is decided by following heuristics:
3807  *
3808  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3809  *  (preempted lock holder), indicated by @in_spin_loop.
3810  *  Set at the beginning and cleared at the end of interception/PLE handler.
3811  *
3812  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3813  *  chance last time (mostly it has become eligible now since we have probably
3814  *  yielded to lockholder in last iteration. This is done by toggling
3815  *  @dy_eligible each time a VCPU checked for eligibility.)
3816  *
3817  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3818  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3819  *  burning. Giving priority for a potential lock-holder increases lock
3820  *  progress.
3821  *
3822  *  Since algorithm is based on heuristics, accessing another VCPU data without
3823  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3824  *  and continue with next VCPU and so on.
3825  */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)3826 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3827 {
3828 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3829 	bool eligible;
3830 
3831 	eligible = !vcpu->spin_loop.in_spin_loop ||
3832 		    vcpu->spin_loop.dy_eligible;
3833 
3834 	if (vcpu->spin_loop.in_spin_loop)
3835 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3836 
3837 	return eligible;
3838 #else
3839 	return true;
3840 #endif
3841 }
3842 
3843 /*
3844  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3845  * a vcpu_load/vcpu_put pair.  However, for most architectures
3846  * kvm_arch_vcpu_runnable does not require vcpu_load.
3847  */
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)3848 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3849 {
3850 	return kvm_arch_vcpu_runnable(vcpu);
3851 }
3852 
vcpu_dy_runnable(struct kvm_vcpu * vcpu)3853 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3854 {
3855 	if (kvm_arch_dy_runnable(vcpu))
3856 		return true;
3857 
3858 #ifdef CONFIG_KVM_ASYNC_PF
3859 	if (!list_empty_careful(&vcpu->async_pf.done))
3860 		return true;
3861 #endif
3862 
3863 	return false;
3864 }
3865 
3866 /*
3867  * By default, simply query the target vCPU's current mode when checking if a
3868  * vCPU was preempted in kernel mode.  All architectures except x86 (or more
3869  * specifical, except VMX) allow querying whether or not a vCPU is in kernel
3870  * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
3871  * directly for cross-vCPU checks is functionally correct and accurate.
3872  */
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)3873 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
3874 {
3875 	return kvm_arch_vcpu_in_kernel(vcpu);
3876 }
3877 
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)3878 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3879 {
3880 	return false;
3881 }
3882 
kvm_vcpu_on_spin(struct kvm_vcpu * me,bool yield_to_kernel_mode)3883 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3884 {
3885 	int nr_vcpus, start, i, idx, yielded;
3886 	struct kvm *kvm = me->kvm;
3887 	struct kvm_vcpu *vcpu;
3888 	int try = 3;
3889 
3890 	nr_vcpus = atomic_read(&kvm->online_vcpus);
3891 	if (nr_vcpus < 2)
3892 		return;
3893 
3894 	/* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */
3895 	smp_rmb();
3896 
3897 	kvm_vcpu_set_in_spin_loop(me, true);
3898 
3899 	/*
3900 	 * The current vCPU ("me") is spinning in kernel mode, i.e. is likely
3901 	 * waiting for a resource to become available.  Attempt to yield to a
3902 	 * vCPU that is runnable, but not currently running, e.g. because the
3903 	 * vCPU was preempted by a higher priority task.  With luck, the vCPU
3904 	 * that was preempted is holding a lock or some other resource that the
3905 	 * current vCPU is waiting to acquire, and yielding to the other vCPU
3906 	 * will allow it to make forward progress and release the lock (or kick
3907 	 * the spinning vCPU, etc).
3908 	 *
3909 	 * Since KVM has no insight into what exactly the guest is doing,
3910 	 * approximate a round-robin selection by iterating over all vCPUs,
3911 	 * starting at the last boosted vCPU.  I.e. if N=kvm->last_boosted_vcpu,
3912 	 * iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed.
3913 	 *
3914 	 * Note, this is inherently racy, e.g. if multiple vCPUs are spinning,
3915 	 * they may all try to yield to the same vCPU(s).  But as above, this
3916 	 * is all best effort due to KVM's lack of visibility into the guest.
3917 	 */
3918 	start = READ_ONCE(kvm->last_boosted_vcpu) + 1;
3919 	for (i = 0; i < nr_vcpus; i++) {
3920 		idx = (start + i) % nr_vcpus;
3921 		if (idx == me->vcpu_idx)
3922 			continue;
3923 
3924 		vcpu = xa_load(&kvm->vcpu_array, idx);
3925 		if (!READ_ONCE(vcpu->ready))
3926 			continue;
3927 		if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3928 			continue;
3929 
3930 		/*
3931 		 * Treat the target vCPU as being in-kernel if it has a pending
3932 		 * interrupt, as the vCPU trying to yield may be spinning
3933 		 * waiting on IPI delivery, i.e. the target vCPU is in-kernel
3934 		 * for the purposes of directed yield.
3935 		 */
3936 		if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3937 		    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3938 		    !kvm_arch_vcpu_preempted_in_kernel(vcpu))
3939 			continue;
3940 
3941 		if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3942 			continue;
3943 
3944 		yielded = kvm_vcpu_yield_to(vcpu);
3945 		if (yielded > 0) {
3946 			WRITE_ONCE(kvm->last_boosted_vcpu, i);
3947 			break;
3948 		} else if (yielded < 0 && !--try) {
3949 			break;
3950 		}
3951 	}
3952 	kvm_vcpu_set_in_spin_loop(me, false);
3953 
3954 	/* Ensure vcpu is not eligible during next spinloop */
3955 	kvm_vcpu_set_dy_eligible(me, false);
3956 }
3957 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3958 
kvm_page_in_dirty_ring(struct kvm * kvm,unsigned long pgoff)3959 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3960 {
3961 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3962 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3963 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3964 	     kvm->dirty_ring_size / PAGE_SIZE);
3965 #else
3966 	return false;
3967 #endif
3968 }
3969 
kvm_vcpu_fault(struct vm_fault * vmf)3970 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3971 {
3972 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3973 	struct page *page;
3974 
3975 	if (vmf->pgoff == 0)
3976 		page = virt_to_page(vcpu->run);
3977 #ifdef CONFIG_X86
3978 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3979 		page = virt_to_page(vcpu->arch.pio_data);
3980 #endif
3981 #ifdef CONFIG_KVM_MMIO
3982 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3983 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3984 #endif
3985 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3986 		page = kvm_dirty_ring_get_page(
3987 		    &vcpu->dirty_ring,
3988 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3989 	else
3990 		return kvm_arch_vcpu_fault(vcpu, vmf);
3991 	get_page(page);
3992 	vmf->page = page;
3993 	return 0;
3994 }
3995 
3996 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3997 	.fault = kvm_vcpu_fault,
3998 };
3999 
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)4000 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4001 {
4002 	struct kvm_vcpu *vcpu = file->private_data;
4003 	unsigned long pages = vma_pages(vma);
4004 
4005 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4006 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4007 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4008 		return -EINVAL;
4009 
4010 	vma->vm_ops = &kvm_vcpu_vm_ops;
4011 	return 0;
4012 }
4013 
kvm_vcpu_release(struct inode * inode,struct file * filp)4014 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4015 {
4016 	struct kvm_vcpu *vcpu = filp->private_data;
4017 
4018 	kvm_put_kvm(vcpu->kvm);
4019 	return 0;
4020 }
4021 
4022 static struct file_operations kvm_vcpu_fops = {
4023 	.release        = kvm_vcpu_release,
4024 	.unlocked_ioctl = kvm_vcpu_ioctl,
4025 	.mmap           = kvm_vcpu_mmap,
4026 	.llseek		= noop_llseek,
4027 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
4028 };
4029 
4030 /*
4031  * Allocates an inode for the vcpu.
4032  */
create_vcpu_fd(struct kvm_vcpu * vcpu)4033 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4034 {
4035 	char name[8 + 1 + ITOA_MAX_LEN + 1];
4036 
4037 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4038 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4039 }
4040 
4041 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
vcpu_get_pid(void * data,u64 * val)4042 static int vcpu_get_pid(void *data, u64 *val)
4043 {
4044 	struct kvm_vcpu *vcpu = data;
4045 
4046 	read_lock(&vcpu->pid_lock);
4047 	*val = pid_nr(vcpu->pid);
4048 	read_unlock(&vcpu->pid_lock);
4049 	return 0;
4050 }
4051 
4052 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4053 
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)4054 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4055 {
4056 	struct dentry *debugfs_dentry;
4057 	char dir_name[ITOA_MAX_LEN * 2];
4058 
4059 	if (!debugfs_initialized())
4060 		return;
4061 
4062 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4063 	debugfs_dentry = debugfs_create_dir(dir_name,
4064 					    vcpu->kvm->debugfs_dentry);
4065 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4066 			    &vcpu_get_pid_fops);
4067 
4068 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4069 }
4070 #endif
4071 
4072 /*
4073  * Creates some virtual cpus.  Good luck creating more than one.
4074  */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,unsigned long id)4075 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id)
4076 {
4077 	int r;
4078 	struct kvm_vcpu *vcpu;
4079 	struct page *page;
4080 
4081 	/*
4082 	 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject
4083 	 * too-large values instead of silently truncating.
4084 	 *
4085 	 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first
4086 	 * changing the storage type (at the very least, IDs should be tracked
4087 	 * as unsigned ints).
4088 	 */
4089 	BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX);
4090 	if (id >= KVM_MAX_VCPU_IDS)
4091 		return -EINVAL;
4092 
4093 	mutex_lock(&kvm->lock);
4094 	if (kvm->created_vcpus >= kvm->max_vcpus) {
4095 		mutex_unlock(&kvm->lock);
4096 		return -EINVAL;
4097 	}
4098 
4099 	r = kvm_arch_vcpu_precreate(kvm, id);
4100 	if (r) {
4101 		mutex_unlock(&kvm->lock);
4102 		return r;
4103 	}
4104 
4105 	kvm->created_vcpus++;
4106 	mutex_unlock(&kvm->lock);
4107 
4108 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4109 	if (!vcpu) {
4110 		r = -ENOMEM;
4111 		goto vcpu_decrement;
4112 	}
4113 
4114 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4115 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4116 	if (!page) {
4117 		r = -ENOMEM;
4118 		goto vcpu_free;
4119 	}
4120 	vcpu->run = page_address(page);
4121 
4122 	kvm_vcpu_init(vcpu, kvm, id);
4123 
4124 	r = kvm_arch_vcpu_create(vcpu);
4125 	if (r)
4126 		goto vcpu_free_run_page;
4127 
4128 	if (kvm->dirty_ring_size) {
4129 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4130 					 id, kvm->dirty_ring_size);
4131 		if (r)
4132 			goto arch_vcpu_destroy;
4133 	}
4134 
4135 	mutex_lock(&kvm->lock);
4136 
4137 	if (kvm_get_vcpu_by_id(kvm, id)) {
4138 		r = -EEXIST;
4139 		goto unlock_vcpu_destroy;
4140 	}
4141 
4142 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4143 	r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
4144 	WARN_ON_ONCE(r == -EBUSY);
4145 	if (r)
4146 		goto unlock_vcpu_destroy;
4147 
4148 	/*
4149 	 * Now it's all set up, let userspace reach it.  Grab the vCPU's mutex
4150 	 * so that userspace can't invoke vCPU ioctl()s until the vCPU is fully
4151 	 * visible (per online_vcpus), e.g. so that KVM doesn't get tricked
4152 	 * into a NULL-pointer dereference because KVM thinks the _current_
4153 	 * vCPU doesn't exist.  As a bonus, taking vcpu->mutex ensures lockdep
4154 	 * knows it's taken *inside* kvm->lock.
4155 	 */
4156 	mutex_lock(&vcpu->mutex);
4157 	kvm_get_kvm(kvm);
4158 	r = create_vcpu_fd(vcpu);
4159 	if (r < 0)
4160 		goto kvm_put_xa_erase;
4161 
4162 	/*
4163 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4164 	 * pointer before kvm->online_vcpu's incremented value.
4165 	 */
4166 	smp_wmb();
4167 	atomic_inc(&kvm->online_vcpus);
4168 	mutex_unlock(&vcpu->mutex);
4169 
4170 	mutex_unlock(&kvm->lock);
4171 	kvm_arch_vcpu_postcreate(vcpu);
4172 	kvm_create_vcpu_debugfs(vcpu);
4173 	return r;
4174 
4175 kvm_put_xa_erase:
4176 	mutex_unlock(&vcpu->mutex);
4177 	kvm_put_kvm_no_destroy(kvm);
4178 	xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
4179 unlock_vcpu_destroy:
4180 	mutex_unlock(&kvm->lock);
4181 	kvm_dirty_ring_free(&vcpu->dirty_ring);
4182 arch_vcpu_destroy:
4183 	kvm_arch_vcpu_destroy(vcpu);
4184 vcpu_free_run_page:
4185 	free_page((unsigned long)vcpu->run);
4186 vcpu_free:
4187 	kmem_cache_free(kvm_vcpu_cache, vcpu);
4188 vcpu_decrement:
4189 	mutex_lock(&kvm->lock);
4190 	kvm->created_vcpus--;
4191 	mutex_unlock(&kvm->lock);
4192 	return r;
4193 }
4194 
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)4195 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4196 {
4197 	if (sigset) {
4198 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4199 		vcpu->sigset_active = 1;
4200 		vcpu->sigset = *sigset;
4201 	} else
4202 		vcpu->sigset_active = 0;
4203 	return 0;
4204 }
4205 
kvm_vcpu_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)4206 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4207 			      size_t size, loff_t *offset)
4208 {
4209 	struct kvm_vcpu *vcpu = file->private_data;
4210 
4211 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4212 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4213 			sizeof(vcpu->stat), user_buffer, size, offset);
4214 }
4215 
kvm_vcpu_stats_release(struct inode * inode,struct file * file)4216 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4217 {
4218 	struct kvm_vcpu *vcpu = file->private_data;
4219 
4220 	kvm_put_kvm(vcpu->kvm);
4221 	return 0;
4222 }
4223 
4224 static const struct file_operations kvm_vcpu_stats_fops = {
4225 	.owner = THIS_MODULE,
4226 	.read = kvm_vcpu_stats_read,
4227 	.release = kvm_vcpu_stats_release,
4228 	.llseek = noop_llseek,
4229 };
4230 
kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu * vcpu)4231 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4232 {
4233 	int fd;
4234 	struct file *file;
4235 	char name[15 + ITOA_MAX_LEN + 1];
4236 
4237 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4238 
4239 	fd = get_unused_fd_flags(O_CLOEXEC);
4240 	if (fd < 0)
4241 		return fd;
4242 
4243 	file = anon_inode_getfile_fmode(name, &kvm_vcpu_stats_fops, vcpu,
4244 					O_RDONLY, FMODE_PREAD);
4245 	if (IS_ERR(file)) {
4246 		put_unused_fd(fd);
4247 		return PTR_ERR(file);
4248 	}
4249 
4250 	kvm_get_kvm(vcpu->kvm);
4251 	fd_install(fd, file);
4252 
4253 	return fd;
4254 }
4255 
4256 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
kvm_vcpu_pre_fault_memory(struct kvm_vcpu * vcpu,struct kvm_pre_fault_memory * range)4257 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4258 				     struct kvm_pre_fault_memory *range)
4259 {
4260 	int idx;
4261 	long r;
4262 	u64 full_size;
4263 
4264 	if (range->flags)
4265 		return -EINVAL;
4266 
4267 	if (!PAGE_ALIGNED(range->gpa) ||
4268 	    !PAGE_ALIGNED(range->size) ||
4269 	    range->gpa + range->size <= range->gpa)
4270 		return -EINVAL;
4271 
4272 	vcpu_load(vcpu);
4273 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4274 
4275 	full_size = range->size;
4276 	do {
4277 		if (signal_pending(current)) {
4278 			r = -EINTR;
4279 			break;
4280 		}
4281 
4282 		r = kvm_arch_vcpu_pre_fault_memory(vcpu, range);
4283 		if (WARN_ON_ONCE(r == 0 || r == -EIO))
4284 			break;
4285 
4286 		if (r < 0)
4287 			break;
4288 
4289 		range->size -= r;
4290 		range->gpa += r;
4291 		cond_resched();
4292 	} while (range->size);
4293 
4294 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4295 	vcpu_put(vcpu);
4296 
4297 	/* Return success if at least one page was mapped successfully.  */
4298 	return full_size == range->size ? r : 0;
4299 }
4300 #endif
4301 
kvm_wait_for_vcpu_online(struct kvm_vcpu * vcpu)4302 static int kvm_wait_for_vcpu_online(struct kvm_vcpu *vcpu)
4303 {
4304 	struct kvm *kvm = vcpu->kvm;
4305 
4306 	/*
4307 	 * In practice, this happy path will always be taken, as a well-behaved
4308 	 * VMM will never invoke a vCPU ioctl() before KVM_CREATE_VCPU returns.
4309 	 */
4310 	if (likely(vcpu->vcpu_idx < atomic_read(&kvm->online_vcpus)))
4311 		return 0;
4312 
4313 	/*
4314 	 * Acquire and release the vCPU's mutex to wait for vCPU creation to
4315 	 * complete (kvm_vm_ioctl_create_vcpu() holds the mutex until the vCPU
4316 	 * is fully online).
4317 	 */
4318 	if (mutex_lock_killable(&vcpu->mutex))
4319 		return -EINTR;
4320 
4321 	mutex_unlock(&vcpu->mutex);
4322 
4323 	if (WARN_ON_ONCE(!kvm_get_vcpu(kvm, vcpu->vcpu_idx)))
4324 		return -EIO;
4325 
4326 	return 0;
4327 }
4328 
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4329 static long kvm_vcpu_ioctl(struct file *filp,
4330 			   unsigned int ioctl, unsigned long arg)
4331 {
4332 	struct kvm_vcpu *vcpu = filp->private_data;
4333 	void __user *argp = (void __user *)arg;
4334 	int r;
4335 	struct kvm_fpu *fpu = NULL;
4336 	struct kvm_sregs *kvm_sregs = NULL;
4337 
4338 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4339 		return -EIO;
4340 
4341 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4342 		return -EINVAL;
4343 
4344 	/*
4345 	 * Wait for the vCPU to be online before handling the ioctl(), as KVM
4346 	 * assumes the vCPU is reachable via vcpu_array, i.e. may dereference
4347 	 * a NULL pointer if userspace invokes an ioctl() before KVM is ready.
4348 	 */
4349 	r = kvm_wait_for_vcpu_online(vcpu);
4350 	if (r)
4351 		return r;
4352 
4353 	/*
4354 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4355 	 * execution; mutex_lock() would break them.
4356 	 */
4357 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4358 	if (r != -ENOIOCTLCMD)
4359 		return r;
4360 
4361 	if (mutex_lock_killable(&vcpu->mutex))
4362 		return -EINTR;
4363 	switch (ioctl) {
4364 	case KVM_RUN: {
4365 		struct pid *oldpid;
4366 		r = -EINVAL;
4367 		if (arg)
4368 			goto out;
4369 
4370 		/*
4371 		 * Note, vcpu->pid is primarily protected by vcpu->mutex. The
4372 		 * dedicated r/w lock allows other tasks, e.g. other vCPUs, to
4373 		 * read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield
4374 		 * directly to this vCPU
4375 		 */
4376 		oldpid = vcpu->pid;
4377 		if (unlikely(oldpid != task_pid(current))) {
4378 			/* The thread running this VCPU changed. */
4379 			struct pid *newpid;
4380 
4381 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4382 			if (r)
4383 				break;
4384 
4385 			newpid = get_task_pid(current, PIDTYPE_PID);
4386 			write_lock(&vcpu->pid_lock);
4387 			vcpu->pid = newpid;
4388 			write_unlock(&vcpu->pid_lock);
4389 
4390 			put_pid(oldpid);
4391 		}
4392 		vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe);
4393 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4394 		vcpu->wants_to_run = false;
4395 
4396 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4397 		break;
4398 	}
4399 	case KVM_GET_REGS: {
4400 		struct kvm_regs *kvm_regs;
4401 
4402 		r = -ENOMEM;
4403 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
4404 		if (!kvm_regs)
4405 			goto out;
4406 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4407 		if (r)
4408 			goto out_free1;
4409 		r = -EFAULT;
4410 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4411 			goto out_free1;
4412 		r = 0;
4413 out_free1:
4414 		kfree(kvm_regs);
4415 		break;
4416 	}
4417 	case KVM_SET_REGS: {
4418 		struct kvm_regs *kvm_regs;
4419 
4420 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4421 		if (IS_ERR(kvm_regs)) {
4422 			r = PTR_ERR(kvm_regs);
4423 			goto out;
4424 		}
4425 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4426 		kfree(kvm_regs);
4427 		break;
4428 	}
4429 	case KVM_GET_SREGS: {
4430 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
4431 		r = -ENOMEM;
4432 		if (!kvm_sregs)
4433 			goto out;
4434 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4435 		if (r)
4436 			goto out;
4437 		r = -EFAULT;
4438 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4439 			goto out;
4440 		r = 0;
4441 		break;
4442 	}
4443 	case KVM_SET_SREGS: {
4444 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4445 		if (IS_ERR(kvm_sregs)) {
4446 			r = PTR_ERR(kvm_sregs);
4447 			kvm_sregs = NULL;
4448 			goto out;
4449 		}
4450 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4451 		break;
4452 	}
4453 	case KVM_GET_MP_STATE: {
4454 		struct kvm_mp_state mp_state;
4455 
4456 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4457 		if (r)
4458 			goto out;
4459 		r = -EFAULT;
4460 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4461 			goto out;
4462 		r = 0;
4463 		break;
4464 	}
4465 	case KVM_SET_MP_STATE: {
4466 		struct kvm_mp_state mp_state;
4467 
4468 		r = -EFAULT;
4469 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4470 			goto out;
4471 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4472 		break;
4473 	}
4474 	case KVM_TRANSLATE: {
4475 		struct kvm_translation tr;
4476 
4477 		r = -EFAULT;
4478 		if (copy_from_user(&tr, argp, sizeof(tr)))
4479 			goto out;
4480 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4481 		if (r)
4482 			goto out;
4483 		r = -EFAULT;
4484 		if (copy_to_user(argp, &tr, sizeof(tr)))
4485 			goto out;
4486 		r = 0;
4487 		break;
4488 	}
4489 	case KVM_SET_GUEST_DEBUG: {
4490 		struct kvm_guest_debug dbg;
4491 
4492 		r = -EFAULT;
4493 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4494 			goto out;
4495 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4496 		break;
4497 	}
4498 	case KVM_SET_SIGNAL_MASK: {
4499 		struct kvm_signal_mask __user *sigmask_arg = argp;
4500 		struct kvm_signal_mask kvm_sigmask;
4501 		sigset_t sigset, *p;
4502 
4503 		p = NULL;
4504 		if (argp) {
4505 			r = -EFAULT;
4506 			if (copy_from_user(&kvm_sigmask, argp,
4507 					   sizeof(kvm_sigmask)))
4508 				goto out;
4509 			r = -EINVAL;
4510 			if (kvm_sigmask.len != sizeof(sigset))
4511 				goto out;
4512 			r = -EFAULT;
4513 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4514 					   sizeof(sigset)))
4515 				goto out;
4516 			p = &sigset;
4517 		}
4518 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4519 		break;
4520 	}
4521 	case KVM_GET_FPU: {
4522 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
4523 		r = -ENOMEM;
4524 		if (!fpu)
4525 			goto out;
4526 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4527 		if (r)
4528 			goto out;
4529 		r = -EFAULT;
4530 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4531 			goto out;
4532 		r = 0;
4533 		break;
4534 	}
4535 	case KVM_SET_FPU: {
4536 		fpu = memdup_user(argp, sizeof(*fpu));
4537 		if (IS_ERR(fpu)) {
4538 			r = PTR_ERR(fpu);
4539 			fpu = NULL;
4540 			goto out;
4541 		}
4542 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4543 		break;
4544 	}
4545 	case KVM_GET_STATS_FD: {
4546 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4547 		break;
4548 	}
4549 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4550 	case KVM_PRE_FAULT_MEMORY: {
4551 		struct kvm_pre_fault_memory range;
4552 
4553 		r = -EFAULT;
4554 		if (copy_from_user(&range, argp, sizeof(range)))
4555 			break;
4556 		r = kvm_vcpu_pre_fault_memory(vcpu, &range);
4557 		/* Pass back leftover range. */
4558 		if (copy_to_user(argp, &range, sizeof(range)))
4559 			r = -EFAULT;
4560 		break;
4561 	}
4562 #endif
4563 	default:
4564 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4565 	}
4566 out:
4567 	mutex_unlock(&vcpu->mutex);
4568 	kfree(fpu);
4569 	kfree(kvm_sregs);
4570 	return r;
4571 }
4572 
4573 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4574 static long kvm_vcpu_compat_ioctl(struct file *filp,
4575 				  unsigned int ioctl, unsigned long arg)
4576 {
4577 	struct kvm_vcpu *vcpu = filp->private_data;
4578 	void __user *argp = compat_ptr(arg);
4579 	int r;
4580 
4581 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4582 		return -EIO;
4583 
4584 	switch (ioctl) {
4585 	case KVM_SET_SIGNAL_MASK: {
4586 		struct kvm_signal_mask __user *sigmask_arg = argp;
4587 		struct kvm_signal_mask kvm_sigmask;
4588 		sigset_t sigset;
4589 
4590 		if (argp) {
4591 			r = -EFAULT;
4592 			if (copy_from_user(&kvm_sigmask, argp,
4593 					   sizeof(kvm_sigmask)))
4594 				goto out;
4595 			r = -EINVAL;
4596 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4597 				goto out;
4598 			r = -EFAULT;
4599 			if (get_compat_sigset(&sigset,
4600 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4601 				goto out;
4602 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4603 		} else
4604 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4605 		break;
4606 	}
4607 	default:
4608 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4609 	}
4610 
4611 out:
4612 	return r;
4613 }
4614 #endif
4615 
kvm_device_mmap(struct file * filp,struct vm_area_struct * vma)4616 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4617 {
4618 	struct kvm_device *dev = filp->private_data;
4619 
4620 	if (dev->ops->mmap)
4621 		return dev->ops->mmap(dev, vma);
4622 
4623 	return -ENODEV;
4624 }
4625 
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)4626 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4627 				 int (*accessor)(struct kvm_device *dev,
4628 						 struct kvm_device_attr *attr),
4629 				 unsigned long arg)
4630 {
4631 	struct kvm_device_attr attr;
4632 
4633 	if (!accessor)
4634 		return -EPERM;
4635 
4636 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4637 		return -EFAULT;
4638 
4639 	return accessor(dev, &attr);
4640 }
4641 
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4642 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4643 			     unsigned long arg)
4644 {
4645 	struct kvm_device *dev = filp->private_data;
4646 
4647 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4648 		return -EIO;
4649 
4650 	switch (ioctl) {
4651 	case KVM_SET_DEVICE_ATTR:
4652 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4653 	case KVM_GET_DEVICE_ATTR:
4654 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4655 	case KVM_HAS_DEVICE_ATTR:
4656 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4657 	default:
4658 		if (dev->ops->ioctl)
4659 			return dev->ops->ioctl(dev, ioctl, arg);
4660 
4661 		return -ENOTTY;
4662 	}
4663 }
4664 
kvm_device_release(struct inode * inode,struct file * filp)4665 static int kvm_device_release(struct inode *inode, struct file *filp)
4666 {
4667 	struct kvm_device *dev = filp->private_data;
4668 	struct kvm *kvm = dev->kvm;
4669 
4670 	if (dev->ops->release) {
4671 		mutex_lock(&kvm->lock);
4672 		list_del_rcu(&dev->vm_node);
4673 		synchronize_rcu();
4674 		dev->ops->release(dev);
4675 		mutex_unlock(&kvm->lock);
4676 	}
4677 
4678 	kvm_put_kvm(kvm);
4679 	return 0;
4680 }
4681 
4682 static struct file_operations kvm_device_fops = {
4683 	.unlocked_ioctl = kvm_device_ioctl,
4684 	.release = kvm_device_release,
4685 	KVM_COMPAT(kvm_device_ioctl),
4686 	.mmap = kvm_device_mmap,
4687 };
4688 
kvm_device_from_filp(struct file * filp)4689 struct kvm_device *kvm_device_from_filp(struct file *filp)
4690 {
4691 	if (filp->f_op != &kvm_device_fops)
4692 		return NULL;
4693 
4694 	return filp->private_data;
4695 }
4696 
4697 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4698 #ifdef CONFIG_KVM_MPIC
4699 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4700 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4701 #endif
4702 };
4703 
kvm_register_device_ops(const struct kvm_device_ops * ops,u32 type)4704 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4705 {
4706 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4707 		return -ENOSPC;
4708 
4709 	if (kvm_device_ops_table[type] != NULL)
4710 		return -EEXIST;
4711 
4712 	kvm_device_ops_table[type] = ops;
4713 	return 0;
4714 }
4715 
kvm_unregister_device_ops(u32 type)4716 void kvm_unregister_device_ops(u32 type)
4717 {
4718 	if (kvm_device_ops_table[type] != NULL)
4719 		kvm_device_ops_table[type] = NULL;
4720 }
4721 
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)4722 static int kvm_ioctl_create_device(struct kvm *kvm,
4723 				   struct kvm_create_device *cd)
4724 {
4725 	const struct kvm_device_ops *ops;
4726 	struct kvm_device *dev;
4727 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4728 	int type;
4729 	int ret;
4730 
4731 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4732 		return -ENODEV;
4733 
4734 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4735 	ops = kvm_device_ops_table[type];
4736 	if (ops == NULL)
4737 		return -ENODEV;
4738 
4739 	if (test)
4740 		return 0;
4741 
4742 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4743 	if (!dev)
4744 		return -ENOMEM;
4745 
4746 	dev->ops = ops;
4747 	dev->kvm = kvm;
4748 
4749 	mutex_lock(&kvm->lock);
4750 	ret = ops->create(dev, type);
4751 	if (ret < 0) {
4752 		mutex_unlock(&kvm->lock);
4753 		kfree(dev);
4754 		return ret;
4755 	}
4756 	list_add_rcu(&dev->vm_node, &kvm->devices);
4757 	mutex_unlock(&kvm->lock);
4758 
4759 	if (ops->init)
4760 		ops->init(dev);
4761 
4762 	kvm_get_kvm(kvm);
4763 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4764 	if (ret < 0) {
4765 		kvm_put_kvm_no_destroy(kvm);
4766 		mutex_lock(&kvm->lock);
4767 		list_del_rcu(&dev->vm_node);
4768 		synchronize_rcu();
4769 		if (ops->release)
4770 			ops->release(dev);
4771 		mutex_unlock(&kvm->lock);
4772 		if (ops->destroy)
4773 			ops->destroy(dev);
4774 		return ret;
4775 	}
4776 
4777 	cd->fd = ret;
4778 	return 0;
4779 }
4780 
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)4781 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4782 {
4783 	switch (arg) {
4784 	case KVM_CAP_USER_MEMORY:
4785 	case KVM_CAP_USER_MEMORY2:
4786 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4787 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4788 	case KVM_CAP_INTERNAL_ERROR_DATA:
4789 #ifdef CONFIG_HAVE_KVM_MSI
4790 	case KVM_CAP_SIGNAL_MSI:
4791 #endif
4792 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4793 	case KVM_CAP_IRQFD:
4794 #endif
4795 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4796 	case KVM_CAP_CHECK_EXTENSION_VM:
4797 	case KVM_CAP_ENABLE_CAP_VM:
4798 	case KVM_CAP_HALT_POLL:
4799 		return 1;
4800 #ifdef CONFIG_KVM_MMIO
4801 	case KVM_CAP_COALESCED_MMIO:
4802 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4803 	case KVM_CAP_COALESCED_PIO:
4804 		return 1;
4805 #endif
4806 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4807 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4808 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4809 #endif
4810 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4811 	case KVM_CAP_IRQ_ROUTING:
4812 		return KVM_MAX_IRQ_ROUTES;
4813 #endif
4814 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4815 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4816 		if (kvm)
4817 			return kvm_arch_nr_memslot_as_ids(kvm);
4818 		return KVM_MAX_NR_ADDRESS_SPACES;
4819 #endif
4820 	case KVM_CAP_NR_MEMSLOTS:
4821 		return KVM_USER_MEM_SLOTS;
4822 	case KVM_CAP_DIRTY_LOG_RING:
4823 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4824 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4825 #else
4826 		return 0;
4827 #endif
4828 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4829 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4830 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4831 #else
4832 		return 0;
4833 #endif
4834 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4835 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4836 #endif
4837 	case KVM_CAP_BINARY_STATS_FD:
4838 	case KVM_CAP_SYSTEM_EVENT_DATA:
4839 	case KVM_CAP_DEVICE_CTRL:
4840 		return 1;
4841 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4842 	case KVM_CAP_MEMORY_ATTRIBUTES:
4843 		return kvm_supported_mem_attributes(kvm);
4844 #endif
4845 #ifdef CONFIG_KVM_PRIVATE_MEM
4846 	case KVM_CAP_GUEST_MEMFD:
4847 		return !kvm || kvm_arch_has_private_mem(kvm);
4848 #endif
4849 	default:
4850 		break;
4851 	}
4852 	return kvm_vm_ioctl_check_extension(kvm, arg);
4853 }
4854 
kvm_vm_ioctl_enable_dirty_log_ring(struct kvm * kvm,u32 size)4855 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4856 {
4857 	int r;
4858 
4859 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4860 		return -EINVAL;
4861 
4862 	/* the size should be power of 2 */
4863 	if (!size || (size & (size - 1)))
4864 		return -EINVAL;
4865 
4866 	/* Should be bigger to keep the reserved entries, or a page */
4867 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4868 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4869 		return -EINVAL;
4870 
4871 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4872 	    sizeof(struct kvm_dirty_gfn))
4873 		return -E2BIG;
4874 
4875 	/* We only allow it to set once */
4876 	if (kvm->dirty_ring_size)
4877 		return -EINVAL;
4878 
4879 	mutex_lock(&kvm->lock);
4880 
4881 	if (kvm->created_vcpus) {
4882 		/* We don't allow to change this value after vcpu created */
4883 		r = -EINVAL;
4884 	} else {
4885 		kvm->dirty_ring_size = size;
4886 		r = 0;
4887 	}
4888 
4889 	mutex_unlock(&kvm->lock);
4890 	return r;
4891 }
4892 
kvm_vm_ioctl_reset_dirty_pages(struct kvm * kvm)4893 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4894 {
4895 	unsigned long i;
4896 	struct kvm_vcpu *vcpu;
4897 	int cleared = 0;
4898 
4899 	if (!kvm->dirty_ring_size)
4900 		return -EINVAL;
4901 
4902 	mutex_lock(&kvm->slots_lock);
4903 
4904 	kvm_for_each_vcpu(i, vcpu, kvm)
4905 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4906 
4907 	mutex_unlock(&kvm->slots_lock);
4908 
4909 	if (cleared)
4910 		kvm_flush_remote_tlbs(kvm);
4911 
4912 	return cleared;
4913 }
4914 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)4915 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4916 						  struct kvm_enable_cap *cap)
4917 {
4918 	return -EINVAL;
4919 }
4920 
kvm_are_all_memslots_empty(struct kvm * kvm)4921 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4922 {
4923 	int i;
4924 
4925 	lockdep_assert_held(&kvm->slots_lock);
4926 
4927 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4928 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4929 			return false;
4930 	}
4931 
4932 	return true;
4933 }
4934 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4935 
kvm_vm_ioctl_enable_cap_generic(struct kvm * kvm,struct kvm_enable_cap * cap)4936 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4937 					   struct kvm_enable_cap *cap)
4938 {
4939 	switch (cap->cap) {
4940 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4941 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4942 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4943 
4944 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4945 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4946 
4947 		if (cap->flags || (cap->args[0] & ~allowed_options))
4948 			return -EINVAL;
4949 		kvm->manual_dirty_log_protect = cap->args[0];
4950 		return 0;
4951 	}
4952 #endif
4953 	case KVM_CAP_HALT_POLL: {
4954 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4955 			return -EINVAL;
4956 
4957 		kvm->max_halt_poll_ns = cap->args[0];
4958 
4959 		/*
4960 		 * Ensure kvm->override_halt_poll_ns does not become visible
4961 		 * before kvm->max_halt_poll_ns.
4962 		 *
4963 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4964 		 */
4965 		smp_wmb();
4966 		kvm->override_halt_poll_ns = true;
4967 
4968 		return 0;
4969 	}
4970 	case KVM_CAP_DIRTY_LOG_RING:
4971 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4972 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4973 			return -EINVAL;
4974 
4975 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4976 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4977 		int r = -EINVAL;
4978 
4979 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4980 		    !kvm->dirty_ring_size || cap->flags)
4981 			return r;
4982 
4983 		mutex_lock(&kvm->slots_lock);
4984 
4985 		/*
4986 		 * For simplicity, allow enabling ring+bitmap if and only if
4987 		 * there are no memslots, e.g. to ensure all memslots allocate
4988 		 * a bitmap after the capability is enabled.
4989 		 */
4990 		if (kvm_are_all_memslots_empty(kvm)) {
4991 			kvm->dirty_ring_with_bitmap = true;
4992 			r = 0;
4993 		}
4994 
4995 		mutex_unlock(&kvm->slots_lock);
4996 
4997 		return r;
4998 	}
4999 	default:
5000 		return kvm_vm_ioctl_enable_cap(kvm, cap);
5001 	}
5002 }
5003 
kvm_vm_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)5004 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5005 			      size_t size, loff_t *offset)
5006 {
5007 	struct kvm *kvm = file->private_data;
5008 
5009 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5010 				&kvm_vm_stats_desc[0], &kvm->stat,
5011 				sizeof(kvm->stat), user_buffer, size, offset);
5012 }
5013 
kvm_vm_stats_release(struct inode * inode,struct file * file)5014 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5015 {
5016 	struct kvm *kvm = file->private_data;
5017 
5018 	kvm_put_kvm(kvm);
5019 	return 0;
5020 }
5021 
5022 static const struct file_operations kvm_vm_stats_fops = {
5023 	.owner = THIS_MODULE,
5024 	.read = kvm_vm_stats_read,
5025 	.release = kvm_vm_stats_release,
5026 	.llseek = noop_llseek,
5027 };
5028 
kvm_vm_ioctl_get_stats_fd(struct kvm * kvm)5029 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5030 {
5031 	int fd;
5032 	struct file *file;
5033 
5034 	fd = get_unused_fd_flags(O_CLOEXEC);
5035 	if (fd < 0)
5036 		return fd;
5037 
5038 	file = anon_inode_getfile_fmode("kvm-vm-stats",
5039 			&kvm_vm_stats_fops, kvm, O_RDONLY, FMODE_PREAD);
5040 	if (IS_ERR(file)) {
5041 		put_unused_fd(fd);
5042 		return PTR_ERR(file);
5043 	}
5044 
5045 	kvm_get_kvm(kvm);
5046 	fd_install(fd, file);
5047 
5048 	return fd;
5049 }
5050 
5051 #define SANITY_CHECK_MEM_REGION_FIELD(field)					\
5052 do {										\
5053 	BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=		\
5054 		     offsetof(struct kvm_userspace_memory_region2, field));	\
5055 	BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=		\
5056 		     sizeof_field(struct kvm_userspace_memory_region2, field));	\
5057 } while (0)
5058 
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5059 static long kvm_vm_ioctl(struct file *filp,
5060 			   unsigned int ioctl, unsigned long arg)
5061 {
5062 	struct kvm *kvm = filp->private_data;
5063 	void __user *argp = (void __user *)arg;
5064 	int r;
5065 
5066 	if (kvm->mm != current->mm || kvm->vm_dead)
5067 		return -EIO;
5068 	switch (ioctl) {
5069 	case KVM_CREATE_VCPU:
5070 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5071 		break;
5072 	case KVM_ENABLE_CAP: {
5073 		struct kvm_enable_cap cap;
5074 
5075 		r = -EFAULT;
5076 		if (copy_from_user(&cap, argp, sizeof(cap)))
5077 			goto out;
5078 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5079 		break;
5080 	}
5081 	case KVM_SET_USER_MEMORY_REGION2:
5082 	case KVM_SET_USER_MEMORY_REGION: {
5083 		struct kvm_userspace_memory_region2 mem;
5084 		unsigned long size;
5085 
5086 		if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5087 			/*
5088 			 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5089 			 * accessed, but avoid leaking kernel memory in case of a bug.
5090 			 */
5091 			memset(&mem, 0, sizeof(mem));
5092 			size = sizeof(struct kvm_userspace_memory_region);
5093 		} else {
5094 			size = sizeof(struct kvm_userspace_memory_region2);
5095 		}
5096 
5097 		/* Ensure the common parts of the two structs are identical. */
5098 		SANITY_CHECK_MEM_REGION_FIELD(slot);
5099 		SANITY_CHECK_MEM_REGION_FIELD(flags);
5100 		SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5101 		SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5102 		SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5103 
5104 		r = -EFAULT;
5105 		if (copy_from_user(&mem, argp, size))
5106 			goto out;
5107 
5108 		r = -EINVAL;
5109 		if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5110 		    (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5111 			goto out;
5112 
5113 		r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5114 		break;
5115 	}
5116 	case KVM_GET_DIRTY_LOG: {
5117 		struct kvm_dirty_log log;
5118 
5119 		r = -EFAULT;
5120 		if (copy_from_user(&log, argp, sizeof(log)))
5121 			goto out;
5122 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5123 		break;
5124 	}
5125 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5126 	case KVM_CLEAR_DIRTY_LOG: {
5127 		struct kvm_clear_dirty_log log;
5128 
5129 		r = -EFAULT;
5130 		if (copy_from_user(&log, argp, sizeof(log)))
5131 			goto out;
5132 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5133 		break;
5134 	}
5135 #endif
5136 #ifdef CONFIG_KVM_MMIO
5137 	case KVM_REGISTER_COALESCED_MMIO: {
5138 		struct kvm_coalesced_mmio_zone zone;
5139 
5140 		r = -EFAULT;
5141 		if (copy_from_user(&zone, argp, sizeof(zone)))
5142 			goto out;
5143 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5144 		break;
5145 	}
5146 	case KVM_UNREGISTER_COALESCED_MMIO: {
5147 		struct kvm_coalesced_mmio_zone zone;
5148 
5149 		r = -EFAULT;
5150 		if (copy_from_user(&zone, argp, sizeof(zone)))
5151 			goto out;
5152 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5153 		break;
5154 	}
5155 #endif
5156 	case KVM_IRQFD: {
5157 		struct kvm_irqfd data;
5158 
5159 		r = -EFAULT;
5160 		if (copy_from_user(&data, argp, sizeof(data)))
5161 			goto out;
5162 		r = kvm_irqfd(kvm, &data);
5163 		break;
5164 	}
5165 	case KVM_IOEVENTFD: {
5166 		struct kvm_ioeventfd data;
5167 
5168 		r = -EFAULT;
5169 		if (copy_from_user(&data, argp, sizeof(data)))
5170 			goto out;
5171 		r = kvm_ioeventfd(kvm, &data);
5172 		break;
5173 	}
5174 #ifdef CONFIG_HAVE_KVM_MSI
5175 	case KVM_SIGNAL_MSI: {
5176 		struct kvm_msi msi;
5177 
5178 		r = -EFAULT;
5179 		if (copy_from_user(&msi, argp, sizeof(msi)))
5180 			goto out;
5181 		r = kvm_send_userspace_msi(kvm, &msi);
5182 		break;
5183 	}
5184 #endif
5185 #ifdef __KVM_HAVE_IRQ_LINE
5186 	case KVM_IRQ_LINE_STATUS:
5187 	case KVM_IRQ_LINE: {
5188 		struct kvm_irq_level irq_event;
5189 
5190 		r = -EFAULT;
5191 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5192 			goto out;
5193 
5194 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5195 					ioctl == KVM_IRQ_LINE_STATUS);
5196 		if (r)
5197 			goto out;
5198 
5199 		r = -EFAULT;
5200 		if (ioctl == KVM_IRQ_LINE_STATUS) {
5201 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5202 				goto out;
5203 		}
5204 
5205 		r = 0;
5206 		break;
5207 	}
5208 #endif
5209 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5210 	case KVM_SET_GSI_ROUTING: {
5211 		struct kvm_irq_routing routing;
5212 		struct kvm_irq_routing __user *urouting;
5213 		struct kvm_irq_routing_entry *entries = NULL;
5214 
5215 		r = -EFAULT;
5216 		if (copy_from_user(&routing, argp, sizeof(routing)))
5217 			goto out;
5218 		r = -EINVAL;
5219 		if (!kvm_arch_can_set_irq_routing(kvm))
5220 			goto out;
5221 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
5222 			goto out;
5223 		if (routing.flags)
5224 			goto out;
5225 		if (routing.nr) {
5226 			urouting = argp;
5227 			entries = vmemdup_array_user(urouting->entries,
5228 						     routing.nr, sizeof(*entries));
5229 			if (IS_ERR(entries)) {
5230 				r = PTR_ERR(entries);
5231 				goto out;
5232 			}
5233 		}
5234 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
5235 					routing.flags);
5236 		kvfree(entries);
5237 		break;
5238 	}
5239 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5240 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5241 	case KVM_SET_MEMORY_ATTRIBUTES: {
5242 		struct kvm_memory_attributes attrs;
5243 
5244 		r = -EFAULT;
5245 		if (copy_from_user(&attrs, argp, sizeof(attrs)))
5246 			goto out;
5247 
5248 		r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5249 		break;
5250 	}
5251 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5252 	case KVM_CREATE_DEVICE: {
5253 		struct kvm_create_device cd;
5254 
5255 		r = -EFAULT;
5256 		if (copy_from_user(&cd, argp, sizeof(cd)))
5257 			goto out;
5258 
5259 		r = kvm_ioctl_create_device(kvm, &cd);
5260 		if (r)
5261 			goto out;
5262 
5263 		r = -EFAULT;
5264 		if (copy_to_user(argp, &cd, sizeof(cd)))
5265 			goto out;
5266 
5267 		r = 0;
5268 		break;
5269 	}
5270 	case KVM_CHECK_EXTENSION:
5271 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5272 		break;
5273 	case KVM_RESET_DIRTY_RINGS:
5274 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5275 		break;
5276 	case KVM_GET_STATS_FD:
5277 		r = kvm_vm_ioctl_get_stats_fd(kvm);
5278 		break;
5279 #ifdef CONFIG_KVM_PRIVATE_MEM
5280 	case KVM_CREATE_GUEST_MEMFD: {
5281 		struct kvm_create_guest_memfd guest_memfd;
5282 
5283 		r = -EFAULT;
5284 		if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5285 			goto out;
5286 
5287 		r = kvm_gmem_create(kvm, &guest_memfd);
5288 		break;
5289 	}
5290 #endif
5291 	default:
5292 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5293 	}
5294 out:
5295 	return r;
5296 }
5297 
5298 #ifdef CONFIG_KVM_COMPAT
5299 struct compat_kvm_dirty_log {
5300 	__u32 slot;
5301 	__u32 padding1;
5302 	union {
5303 		compat_uptr_t dirty_bitmap; /* one bit per page */
5304 		__u64 padding2;
5305 	};
5306 };
5307 
5308 struct compat_kvm_clear_dirty_log {
5309 	__u32 slot;
5310 	__u32 num_pages;
5311 	__u64 first_page;
5312 	union {
5313 		compat_uptr_t dirty_bitmap; /* one bit per page */
5314 		__u64 padding2;
5315 	};
5316 };
5317 
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5318 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5319 				     unsigned long arg)
5320 {
5321 	return -ENOTTY;
5322 }
5323 
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5324 static long kvm_vm_compat_ioctl(struct file *filp,
5325 			   unsigned int ioctl, unsigned long arg)
5326 {
5327 	struct kvm *kvm = filp->private_data;
5328 	int r;
5329 
5330 	if (kvm->mm != current->mm || kvm->vm_dead)
5331 		return -EIO;
5332 
5333 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5334 	if (r != -ENOTTY)
5335 		return r;
5336 
5337 	switch (ioctl) {
5338 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5339 	case KVM_CLEAR_DIRTY_LOG: {
5340 		struct compat_kvm_clear_dirty_log compat_log;
5341 		struct kvm_clear_dirty_log log;
5342 
5343 		if (copy_from_user(&compat_log, (void __user *)arg,
5344 				   sizeof(compat_log)))
5345 			return -EFAULT;
5346 		log.slot	 = compat_log.slot;
5347 		log.num_pages	 = compat_log.num_pages;
5348 		log.first_page	 = compat_log.first_page;
5349 		log.padding2	 = compat_log.padding2;
5350 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5351 
5352 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5353 		break;
5354 	}
5355 #endif
5356 	case KVM_GET_DIRTY_LOG: {
5357 		struct compat_kvm_dirty_log compat_log;
5358 		struct kvm_dirty_log log;
5359 
5360 		if (copy_from_user(&compat_log, (void __user *)arg,
5361 				   sizeof(compat_log)))
5362 			return -EFAULT;
5363 		log.slot	 = compat_log.slot;
5364 		log.padding1	 = compat_log.padding1;
5365 		log.padding2	 = compat_log.padding2;
5366 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5367 
5368 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5369 		break;
5370 	}
5371 	default:
5372 		r = kvm_vm_ioctl(filp, ioctl, arg);
5373 	}
5374 	return r;
5375 }
5376 #endif
5377 
5378 static struct file_operations kvm_vm_fops = {
5379 	.release        = kvm_vm_release,
5380 	.unlocked_ioctl = kvm_vm_ioctl,
5381 	.llseek		= noop_llseek,
5382 	KVM_COMPAT(kvm_vm_compat_ioctl),
5383 };
5384 
file_is_kvm(struct file * file)5385 bool file_is_kvm(struct file *file)
5386 {
5387 	return file && file->f_op == &kvm_vm_fops;
5388 }
5389 EXPORT_SYMBOL_GPL(file_is_kvm);
5390 
kvm_dev_ioctl_create_vm(unsigned long type)5391 static int kvm_dev_ioctl_create_vm(unsigned long type)
5392 {
5393 	char fdname[ITOA_MAX_LEN + 1];
5394 	int r, fd;
5395 	struct kvm *kvm;
5396 	struct file *file;
5397 
5398 	fd = get_unused_fd_flags(O_CLOEXEC);
5399 	if (fd < 0)
5400 		return fd;
5401 
5402 	snprintf(fdname, sizeof(fdname), "%d", fd);
5403 
5404 	kvm = kvm_create_vm(type, fdname);
5405 	if (IS_ERR(kvm)) {
5406 		r = PTR_ERR(kvm);
5407 		goto put_fd;
5408 	}
5409 
5410 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5411 	if (IS_ERR(file)) {
5412 		r = PTR_ERR(file);
5413 		goto put_kvm;
5414 	}
5415 
5416 	/*
5417 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5418 	 * already set, with ->release() being kvm_vm_release().  In error
5419 	 * cases it will be called by the final fput(file) and will take
5420 	 * care of doing kvm_put_kvm(kvm).
5421 	 */
5422 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5423 
5424 	fd_install(fd, file);
5425 	return fd;
5426 
5427 put_kvm:
5428 	kvm_put_kvm(kvm);
5429 put_fd:
5430 	put_unused_fd(fd);
5431 	return r;
5432 }
5433 
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5434 static long kvm_dev_ioctl(struct file *filp,
5435 			  unsigned int ioctl, unsigned long arg)
5436 {
5437 	int r = -EINVAL;
5438 
5439 	switch (ioctl) {
5440 	case KVM_GET_API_VERSION:
5441 		if (arg)
5442 			goto out;
5443 		r = KVM_API_VERSION;
5444 		break;
5445 	case KVM_CREATE_VM:
5446 		r = kvm_dev_ioctl_create_vm(arg);
5447 		break;
5448 	case KVM_CHECK_EXTENSION:
5449 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5450 		break;
5451 	case KVM_GET_VCPU_MMAP_SIZE:
5452 		if (arg)
5453 			goto out;
5454 		r = PAGE_SIZE;     /* struct kvm_run */
5455 #ifdef CONFIG_X86
5456 		r += PAGE_SIZE;    /* pio data page */
5457 #endif
5458 #ifdef CONFIG_KVM_MMIO
5459 		r += PAGE_SIZE;    /* coalesced mmio ring page */
5460 #endif
5461 		break;
5462 	default:
5463 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5464 	}
5465 out:
5466 	return r;
5467 }
5468 
5469 static struct file_operations kvm_chardev_ops = {
5470 	.unlocked_ioctl = kvm_dev_ioctl,
5471 	.llseek		= noop_llseek,
5472 	KVM_COMPAT(kvm_dev_ioctl),
5473 };
5474 
5475 static struct miscdevice kvm_dev = {
5476 	KVM_MINOR,
5477 	"kvm",
5478 	&kvm_chardev_ops,
5479 };
5480 
5481 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5482 static bool enable_virt_at_load = true;
5483 module_param(enable_virt_at_load, bool, 0444);
5484 
5485 __visible bool kvm_rebooting;
5486 EXPORT_SYMBOL_GPL(kvm_rebooting);
5487 
5488 static DEFINE_PER_CPU(bool, virtualization_enabled);
5489 static DEFINE_MUTEX(kvm_usage_lock);
5490 static int kvm_usage_count;
5491 
kvm_arch_enable_virtualization(void)5492 __weak void kvm_arch_enable_virtualization(void)
5493 {
5494 
5495 }
5496 
kvm_arch_disable_virtualization(void)5497 __weak void kvm_arch_disable_virtualization(void)
5498 {
5499 
5500 }
5501 
kvm_enable_virtualization_cpu(void)5502 static int kvm_enable_virtualization_cpu(void)
5503 {
5504 	if (__this_cpu_read(virtualization_enabled))
5505 		return 0;
5506 
5507 	if (kvm_arch_enable_virtualization_cpu()) {
5508 		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5509 			raw_smp_processor_id());
5510 		return -EIO;
5511 	}
5512 
5513 	__this_cpu_write(virtualization_enabled, true);
5514 	return 0;
5515 }
5516 
kvm_online_cpu(unsigned int cpu)5517 static int kvm_online_cpu(unsigned int cpu)
5518 {
5519 	/*
5520 	 * Abort the CPU online process if hardware virtualization cannot
5521 	 * be enabled. Otherwise running VMs would encounter unrecoverable
5522 	 * errors when scheduled to this CPU.
5523 	 */
5524 	return kvm_enable_virtualization_cpu();
5525 }
5526 
kvm_disable_virtualization_cpu(void * ign)5527 static void kvm_disable_virtualization_cpu(void *ign)
5528 {
5529 	if (!__this_cpu_read(virtualization_enabled))
5530 		return;
5531 
5532 	kvm_arch_disable_virtualization_cpu();
5533 
5534 	__this_cpu_write(virtualization_enabled, false);
5535 }
5536 
kvm_offline_cpu(unsigned int cpu)5537 static int kvm_offline_cpu(unsigned int cpu)
5538 {
5539 	kvm_disable_virtualization_cpu(NULL);
5540 	return 0;
5541 }
5542 
kvm_shutdown(void)5543 static void kvm_shutdown(void)
5544 {
5545 	/*
5546 	 * Disable hardware virtualization and set kvm_rebooting to indicate
5547 	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5548 	 * that relevant errors and exceptions aren't entirely unexpected.
5549 	 * Some flavors of hardware virtualization need to be disabled before
5550 	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5551 	 * on x86, virtualization can block INIT interrupts, which are used by
5552 	 * firmware to pull APs back under firmware control.  Note, this path
5553 	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5554 	 * 100% comprehensive.
5555 	 */
5556 	pr_info("kvm: exiting hardware virtualization\n");
5557 	kvm_rebooting = true;
5558 	on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1);
5559 }
5560 
kvm_suspend(void)5561 static int kvm_suspend(void)
5562 {
5563 	/*
5564 	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5565 	 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage
5566 	 * count is stable.  Assert that kvm_usage_lock is not held to ensure
5567 	 * the system isn't suspended while KVM is enabling hardware.  Hardware
5568 	 * enabling can be preempted, but the task cannot be frozen until it has
5569 	 * dropped all locks (userspace tasks are frozen via a fake signal).
5570 	 */
5571 	lockdep_assert_not_held(&kvm_usage_lock);
5572 	lockdep_assert_irqs_disabled();
5573 
5574 	kvm_disable_virtualization_cpu(NULL);
5575 	return 0;
5576 }
5577 
kvm_resume(void)5578 static void kvm_resume(void)
5579 {
5580 	lockdep_assert_not_held(&kvm_usage_lock);
5581 	lockdep_assert_irqs_disabled();
5582 
5583 	WARN_ON_ONCE(kvm_enable_virtualization_cpu());
5584 }
5585 
5586 static struct syscore_ops kvm_syscore_ops = {
5587 	.suspend = kvm_suspend,
5588 	.resume = kvm_resume,
5589 	.shutdown = kvm_shutdown,
5590 };
5591 
kvm_enable_virtualization(void)5592 static int kvm_enable_virtualization(void)
5593 {
5594 	int r;
5595 
5596 	guard(mutex)(&kvm_usage_lock);
5597 
5598 	if (kvm_usage_count++)
5599 		return 0;
5600 
5601 	kvm_arch_enable_virtualization();
5602 
5603 	r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5604 			      kvm_online_cpu, kvm_offline_cpu);
5605 	if (r)
5606 		goto err_cpuhp;
5607 
5608 	register_syscore_ops(&kvm_syscore_ops);
5609 
5610 	/*
5611 	 * Undo virtualization enabling and bail if the system is going down.
5612 	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5613 	 * possible for an in-flight operation to enable virtualization after
5614 	 * syscore_shutdown() is called, i.e. without kvm_shutdown() being
5615 	 * invoked.  Note, this relies on system_state being set _before_
5616 	 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked
5617 	 * or this CPU observes the impending shutdown.  Which is why KVM uses
5618 	 * a syscore ops hook instead of registering a dedicated reboot
5619 	 * notifier (the latter runs before system_state is updated).
5620 	 */
5621 	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5622 	    system_state == SYSTEM_RESTART) {
5623 		r = -EBUSY;
5624 		goto err_rebooting;
5625 	}
5626 
5627 	return 0;
5628 
5629 err_rebooting:
5630 	unregister_syscore_ops(&kvm_syscore_ops);
5631 	cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5632 err_cpuhp:
5633 	kvm_arch_disable_virtualization();
5634 	--kvm_usage_count;
5635 	return r;
5636 }
5637 
kvm_disable_virtualization(void)5638 static void kvm_disable_virtualization(void)
5639 {
5640 	guard(mutex)(&kvm_usage_lock);
5641 
5642 	if (--kvm_usage_count)
5643 		return;
5644 
5645 	unregister_syscore_ops(&kvm_syscore_ops);
5646 	cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5647 	kvm_arch_disable_virtualization();
5648 }
5649 
kvm_init_virtualization(void)5650 static int kvm_init_virtualization(void)
5651 {
5652 	if (enable_virt_at_load)
5653 		return kvm_enable_virtualization();
5654 
5655 	return 0;
5656 }
5657 
kvm_uninit_virtualization(void)5658 static void kvm_uninit_virtualization(void)
5659 {
5660 	if (enable_virt_at_load)
5661 		kvm_disable_virtualization();
5662 }
5663 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
kvm_enable_virtualization(void)5664 static int kvm_enable_virtualization(void)
5665 {
5666 	return 0;
5667 }
5668 
kvm_init_virtualization(void)5669 static int kvm_init_virtualization(void)
5670 {
5671 	return 0;
5672 }
5673 
kvm_disable_virtualization(void)5674 static void kvm_disable_virtualization(void)
5675 {
5676 
5677 }
5678 
kvm_uninit_virtualization(void)5679 static void kvm_uninit_virtualization(void)
5680 {
5681 
5682 }
5683 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5684 
kvm_iodevice_destructor(struct kvm_io_device * dev)5685 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5686 {
5687 	if (dev->ops->destructor)
5688 		dev->ops->destructor(dev);
5689 }
5690 
kvm_io_bus_destroy(struct kvm_io_bus * bus)5691 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5692 {
5693 	int i;
5694 
5695 	for (i = 0; i < bus->dev_count; i++) {
5696 		struct kvm_io_device *pos = bus->range[i].dev;
5697 
5698 		kvm_iodevice_destructor(pos);
5699 	}
5700 	kfree(bus);
5701 }
5702 
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)5703 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5704 				 const struct kvm_io_range *r2)
5705 {
5706 	gpa_t addr1 = r1->addr;
5707 	gpa_t addr2 = r2->addr;
5708 
5709 	if (addr1 < addr2)
5710 		return -1;
5711 
5712 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5713 	 * accept any overlapping write.  Any order is acceptable for
5714 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5715 	 * we process all of them.
5716 	 */
5717 	if (r2->len) {
5718 		addr1 += r1->len;
5719 		addr2 += r2->len;
5720 	}
5721 
5722 	if (addr1 > addr2)
5723 		return 1;
5724 
5725 	return 0;
5726 }
5727 
kvm_io_bus_sort_cmp(const void * p1,const void * p2)5728 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5729 {
5730 	return kvm_io_bus_cmp(p1, p2);
5731 }
5732 
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)5733 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5734 			     gpa_t addr, int len)
5735 {
5736 	struct kvm_io_range *range, key;
5737 	int off;
5738 
5739 	key = (struct kvm_io_range) {
5740 		.addr = addr,
5741 		.len = len,
5742 	};
5743 
5744 	range = bsearch(&key, bus->range, bus->dev_count,
5745 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5746 	if (range == NULL)
5747 		return -ENOENT;
5748 
5749 	off = range - bus->range;
5750 
5751 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5752 		off--;
5753 
5754 	return off;
5755 }
5756 
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)5757 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5758 			      struct kvm_io_range *range, const void *val)
5759 {
5760 	int idx;
5761 
5762 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5763 	if (idx < 0)
5764 		return -EOPNOTSUPP;
5765 
5766 	while (idx < bus->dev_count &&
5767 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5768 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5769 					range->len, val))
5770 			return idx;
5771 		idx++;
5772 	}
5773 
5774 	return -EOPNOTSUPP;
5775 }
5776 
5777 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)5778 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5779 		     int len, const void *val)
5780 {
5781 	struct kvm_io_bus *bus;
5782 	struct kvm_io_range range;
5783 	int r;
5784 
5785 	range = (struct kvm_io_range) {
5786 		.addr = addr,
5787 		.len = len,
5788 	};
5789 
5790 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5791 	if (!bus)
5792 		return -ENOMEM;
5793 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5794 	return r < 0 ? r : 0;
5795 }
5796 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5797 
5798 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)5799 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5800 			    gpa_t addr, int len, const void *val, long cookie)
5801 {
5802 	struct kvm_io_bus *bus;
5803 	struct kvm_io_range range;
5804 
5805 	range = (struct kvm_io_range) {
5806 		.addr = addr,
5807 		.len = len,
5808 	};
5809 
5810 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5811 	if (!bus)
5812 		return -ENOMEM;
5813 
5814 	/* First try the device referenced by cookie. */
5815 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5816 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5817 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5818 					val))
5819 			return cookie;
5820 
5821 	/*
5822 	 * cookie contained garbage; fall back to search and return the
5823 	 * correct cookie value.
5824 	 */
5825 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5826 }
5827 
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)5828 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5829 			     struct kvm_io_range *range, void *val)
5830 {
5831 	int idx;
5832 
5833 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5834 	if (idx < 0)
5835 		return -EOPNOTSUPP;
5836 
5837 	while (idx < bus->dev_count &&
5838 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5839 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5840 				       range->len, val))
5841 			return idx;
5842 		idx++;
5843 	}
5844 
5845 	return -EOPNOTSUPP;
5846 }
5847 
5848 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)5849 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5850 		    int len, void *val)
5851 {
5852 	struct kvm_io_bus *bus;
5853 	struct kvm_io_range range;
5854 	int r;
5855 
5856 	range = (struct kvm_io_range) {
5857 		.addr = addr,
5858 		.len = len,
5859 	};
5860 
5861 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5862 	if (!bus)
5863 		return -ENOMEM;
5864 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5865 	return r < 0 ? r : 0;
5866 }
5867 
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)5868 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5869 			    int len, struct kvm_io_device *dev)
5870 {
5871 	int i;
5872 	struct kvm_io_bus *new_bus, *bus;
5873 	struct kvm_io_range range;
5874 
5875 	lockdep_assert_held(&kvm->slots_lock);
5876 
5877 	bus = kvm_get_bus(kvm, bus_idx);
5878 	if (!bus)
5879 		return -ENOMEM;
5880 
5881 	/* exclude ioeventfd which is limited by maximum fd */
5882 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5883 		return -ENOSPC;
5884 
5885 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5886 			  GFP_KERNEL_ACCOUNT);
5887 	if (!new_bus)
5888 		return -ENOMEM;
5889 
5890 	range = (struct kvm_io_range) {
5891 		.addr = addr,
5892 		.len = len,
5893 		.dev = dev,
5894 	};
5895 
5896 	for (i = 0; i < bus->dev_count; i++)
5897 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5898 			break;
5899 
5900 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5901 	new_bus->dev_count++;
5902 	new_bus->range[i] = range;
5903 	memcpy(new_bus->range + i + 1, bus->range + i,
5904 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5905 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5906 	synchronize_srcu_expedited(&kvm->srcu);
5907 	kfree(bus);
5908 
5909 	return 0;
5910 }
5911 
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)5912 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5913 			      struct kvm_io_device *dev)
5914 {
5915 	int i;
5916 	struct kvm_io_bus *new_bus, *bus;
5917 
5918 	lockdep_assert_held(&kvm->slots_lock);
5919 
5920 	bus = kvm_get_bus(kvm, bus_idx);
5921 	if (!bus)
5922 		return 0;
5923 
5924 	for (i = 0; i < bus->dev_count; i++) {
5925 		if (bus->range[i].dev == dev) {
5926 			break;
5927 		}
5928 	}
5929 
5930 	if (i == bus->dev_count)
5931 		return 0;
5932 
5933 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5934 			  GFP_KERNEL_ACCOUNT);
5935 	if (new_bus) {
5936 		memcpy(new_bus, bus, struct_size(bus, range, i));
5937 		new_bus->dev_count--;
5938 		memcpy(new_bus->range + i, bus->range + i + 1,
5939 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5940 	}
5941 
5942 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5943 	synchronize_srcu_expedited(&kvm->srcu);
5944 
5945 	/*
5946 	 * If NULL bus is installed, destroy the old bus, including all the
5947 	 * attached devices. Otherwise, destroy the caller's device only.
5948 	 */
5949 	if (!new_bus) {
5950 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5951 		kvm_io_bus_destroy(bus);
5952 		return -ENOMEM;
5953 	}
5954 
5955 	kvm_iodevice_destructor(dev);
5956 	kfree(bus);
5957 	return 0;
5958 }
5959 
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)5960 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5961 					 gpa_t addr)
5962 {
5963 	struct kvm_io_bus *bus;
5964 	int dev_idx, srcu_idx;
5965 	struct kvm_io_device *iodev = NULL;
5966 
5967 	srcu_idx = srcu_read_lock(&kvm->srcu);
5968 
5969 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5970 	if (!bus)
5971 		goto out_unlock;
5972 
5973 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5974 	if (dev_idx < 0)
5975 		goto out_unlock;
5976 
5977 	iodev = bus->range[dev_idx].dev;
5978 
5979 out_unlock:
5980 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5981 
5982 	return iodev;
5983 }
5984 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5985 
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)5986 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5987 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5988 			   const char *fmt)
5989 {
5990 	int ret;
5991 	struct kvm_stat_data *stat_data = inode->i_private;
5992 
5993 	/*
5994 	 * The debugfs files are a reference to the kvm struct which
5995         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5996         * avoids the race between open and the removal of the debugfs directory.
5997 	 */
5998 	if (!kvm_get_kvm_safe(stat_data->kvm))
5999 		return -ENOENT;
6000 
6001 	ret = simple_attr_open(inode, file, get,
6002 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
6003 			       ? set : NULL, fmt);
6004 	if (ret)
6005 		kvm_put_kvm(stat_data->kvm);
6006 
6007 	return ret;
6008 }
6009 
kvm_debugfs_release(struct inode * inode,struct file * file)6010 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6011 {
6012 	struct kvm_stat_data *stat_data = inode->i_private;
6013 
6014 	simple_attr_release(inode, file);
6015 	kvm_put_kvm(stat_data->kvm);
6016 
6017 	return 0;
6018 }
6019 
kvm_get_stat_per_vm(struct kvm * kvm,size_t offset,u64 * val)6020 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6021 {
6022 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
6023 
6024 	return 0;
6025 }
6026 
kvm_clear_stat_per_vm(struct kvm * kvm,size_t offset)6027 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6028 {
6029 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
6030 
6031 	return 0;
6032 }
6033 
kvm_get_stat_per_vcpu(struct kvm * kvm,size_t offset,u64 * val)6034 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6035 {
6036 	unsigned long i;
6037 	struct kvm_vcpu *vcpu;
6038 
6039 	*val = 0;
6040 
6041 	kvm_for_each_vcpu(i, vcpu, kvm)
6042 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
6043 
6044 	return 0;
6045 }
6046 
kvm_clear_stat_per_vcpu(struct kvm * kvm,size_t offset)6047 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6048 {
6049 	unsigned long i;
6050 	struct kvm_vcpu *vcpu;
6051 
6052 	kvm_for_each_vcpu(i, vcpu, kvm)
6053 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6054 
6055 	return 0;
6056 }
6057 
kvm_stat_data_get(void * data,u64 * val)6058 static int kvm_stat_data_get(void *data, u64 *val)
6059 {
6060 	int r = -EFAULT;
6061 	struct kvm_stat_data *stat_data = data;
6062 
6063 	switch (stat_data->kind) {
6064 	case KVM_STAT_VM:
6065 		r = kvm_get_stat_per_vm(stat_data->kvm,
6066 					stat_data->desc->desc.offset, val);
6067 		break;
6068 	case KVM_STAT_VCPU:
6069 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
6070 					  stat_data->desc->desc.offset, val);
6071 		break;
6072 	}
6073 
6074 	return r;
6075 }
6076 
kvm_stat_data_clear(void * data,u64 val)6077 static int kvm_stat_data_clear(void *data, u64 val)
6078 {
6079 	int r = -EFAULT;
6080 	struct kvm_stat_data *stat_data = data;
6081 
6082 	if (val)
6083 		return -EINVAL;
6084 
6085 	switch (stat_data->kind) {
6086 	case KVM_STAT_VM:
6087 		r = kvm_clear_stat_per_vm(stat_data->kvm,
6088 					  stat_data->desc->desc.offset);
6089 		break;
6090 	case KVM_STAT_VCPU:
6091 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6092 					    stat_data->desc->desc.offset);
6093 		break;
6094 	}
6095 
6096 	return r;
6097 }
6098 
kvm_stat_data_open(struct inode * inode,struct file * file)6099 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6100 {
6101 	__simple_attr_check_format("%llu\n", 0ull);
6102 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6103 				kvm_stat_data_clear, "%llu\n");
6104 }
6105 
6106 static const struct file_operations stat_fops_per_vm = {
6107 	.owner = THIS_MODULE,
6108 	.open = kvm_stat_data_open,
6109 	.release = kvm_debugfs_release,
6110 	.read = simple_attr_read,
6111 	.write = simple_attr_write,
6112 };
6113 
vm_stat_get(void * _offset,u64 * val)6114 static int vm_stat_get(void *_offset, u64 *val)
6115 {
6116 	unsigned offset = (long)_offset;
6117 	struct kvm *kvm;
6118 	u64 tmp_val;
6119 
6120 	*val = 0;
6121 	mutex_lock(&kvm_lock);
6122 	list_for_each_entry(kvm, &vm_list, vm_list) {
6123 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6124 		*val += tmp_val;
6125 	}
6126 	mutex_unlock(&kvm_lock);
6127 	return 0;
6128 }
6129 
vm_stat_clear(void * _offset,u64 val)6130 static int vm_stat_clear(void *_offset, u64 val)
6131 {
6132 	unsigned offset = (long)_offset;
6133 	struct kvm *kvm;
6134 
6135 	if (val)
6136 		return -EINVAL;
6137 
6138 	mutex_lock(&kvm_lock);
6139 	list_for_each_entry(kvm, &vm_list, vm_list) {
6140 		kvm_clear_stat_per_vm(kvm, offset);
6141 	}
6142 	mutex_unlock(&kvm_lock);
6143 
6144 	return 0;
6145 }
6146 
6147 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6148 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6149 
vcpu_stat_get(void * _offset,u64 * val)6150 static int vcpu_stat_get(void *_offset, u64 *val)
6151 {
6152 	unsigned offset = (long)_offset;
6153 	struct kvm *kvm;
6154 	u64 tmp_val;
6155 
6156 	*val = 0;
6157 	mutex_lock(&kvm_lock);
6158 	list_for_each_entry(kvm, &vm_list, vm_list) {
6159 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6160 		*val += tmp_val;
6161 	}
6162 	mutex_unlock(&kvm_lock);
6163 	return 0;
6164 }
6165 
vcpu_stat_clear(void * _offset,u64 val)6166 static int vcpu_stat_clear(void *_offset, u64 val)
6167 {
6168 	unsigned offset = (long)_offset;
6169 	struct kvm *kvm;
6170 
6171 	if (val)
6172 		return -EINVAL;
6173 
6174 	mutex_lock(&kvm_lock);
6175 	list_for_each_entry(kvm, &vm_list, vm_list) {
6176 		kvm_clear_stat_per_vcpu(kvm, offset);
6177 	}
6178 	mutex_unlock(&kvm_lock);
6179 
6180 	return 0;
6181 }
6182 
6183 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6184 			"%llu\n");
6185 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6186 
kvm_uevent_notify_change(unsigned int type,struct kvm * kvm)6187 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6188 {
6189 	struct kobj_uevent_env *env;
6190 	unsigned long long created, active;
6191 
6192 	if (!kvm_dev.this_device || !kvm)
6193 		return;
6194 
6195 	mutex_lock(&kvm_lock);
6196 	if (type == KVM_EVENT_CREATE_VM) {
6197 		kvm_createvm_count++;
6198 		kvm_active_vms++;
6199 	} else if (type == KVM_EVENT_DESTROY_VM) {
6200 		kvm_active_vms--;
6201 	}
6202 	created = kvm_createvm_count;
6203 	active = kvm_active_vms;
6204 	mutex_unlock(&kvm_lock);
6205 
6206 	env = kzalloc(sizeof(*env), GFP_KERNEL);
6207 	if (!env)
6208 		return;
6209 
6210 	add_uevent_var(env, "CREATED=%llu", created);
6211 	add_uevent_var(env, "COUNT=%llu", active);
6212 
6213 	if (type == KVM_EVENT_CREATE_VM) {
6214 		add_uevent_var(env, "EVENT=create");
6215 		kvm->userspace_pid = task_pid_nr(current);
6216 	} else if (type == KVM_EVENT_DESTROY_VM) {
6217 		add_uevent_var(env, "EVENT=destroy");
6218 	}
6219 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6220 
6221 	if (!IS_ERR(kvm->debugfs_dentry)) {
6222 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
6223 
6224 		if (p) {
6225 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6226 			if (!IS_ERR(tmp))
6227 				add_uevent_var(env, "STATS_PATH=%s", tmp);
6228 			kfree(p);
6229 		}
6230 	}
6231 	/* no need for checks, since we are adding at most only 5 keys */
6232 	env->envp[env->envp_idx++] = NULL;
6233 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6234 	kfree(env);
6235 }
6236 
kvm_init_debug(void)6237 static void kvm_init_debug(void)
6238 {
6239 	const struct file_operations *fops;
6240 	const struct _kvm_stats_desc *pdesc;
6241 	int i;
6242 
6243 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6244 
6245 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6246 		pdesc = &kvm_vm_stats_desc[i];
6247 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6248 			fops = &vm_stat_fops;
6249 		else
6250 			fops = &vm_stat_readonly_fops;
6251 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6252 				kvm_debugfs_dir,
6253 				(void *)(long)pdesc->desc.offset, fops);
6254 	}
6255 
6256 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6257 		pdesc = &kvm_vcpu_stats_desc[i];
6258 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6259 			fops = &vcpu_stat_fops;
6260 		else
6261 			fops = &vcpu_stat_readonly_fops;
6262 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6263 				kvm_debugfs_dir,
6264 				(void *)(long)pdesc->desc.offset, fops);
6265 	}
6266 }
6267 
6268 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)6269 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6270 {
6271 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
6272 }
6273 
kvm_sched_in(struct preempt_notifier * pn,int cpu)6274 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6275 {
6276 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6277 
6278 	WRITE_ONCE(vcpu->preempted, false);
6279 	WRITE_ONCE(vcpu->ready, false);
6280 
6281 	__this_cpu_write(kvm_running_vcpu, vcpu);
6282 	kvm_arch_vcpu_load(vcpu, cpu);
6283 
6284 	WRITE_ONCE(vcpu->scheduled_out, false);
6285 }
6286 
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)6287 static void kvm_sched_out(struct preempt_notifier *pn,
6288 			  struct task_struct *next)
6289 {
6290 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6291 
6292 	WRITE_ONCE(vcpu->scheduled_out, true);
6293 
6294 	if (task_is_runnable(current) && vcpu->wants_to_run) {
6295 		WRITE_ONCE(vcpu->preempted, true);
6296 		WRITE_ONCE(vcpu->ready, true);
6297 	}
6298 	kvm_arch_vcpu_put(vcpu);
6299 	__this_cpu_write(kvm_running_vcpu, NULL);
6300 }
6301 
6302 /**
6303  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6304  *
6305  * We can disable preemption locally around accessing the per-CPU variable,
6306  * and use the resolved vcpu pointer after enabling preemption again,
6307  * because even if the current thread is migrated to another CPU, reading
6308  * the per-CPU value later will give us the same value as we update the
6309  * per-CPU variable in the preempt notifier handlers.
6310  */
kvm_get_running_vcpu(void)6311 struct kvm_vcpu *kvm_get_running_vcpu(void)
6312 {
6313 	struct kvm_vcpu *vcpu;
6314 
6315 	preempt_disable();
6316 	vcpu = __this_cpu_read(kvm_running_vcpu);
6317 	preempt_enable();
6318 
6319 	return vcpu;
6320 }
6321 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6322 
6323 /**
6324  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6325  */
kvm_get_running_vcpus(void)6326 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6327 {
6328         return &kvm_running_vcpu;
6329 }
6330 
6331 #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_guest_state(void)6332 static unsigned int kvm_guest_state(void)
6333 {
6334 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6335 	unsigned int state;
6336 
6337 	if (!kvm_arch_pmi_in_guest(vcpu))
6338 		return 0;
6339 
6340 	state = PERF_GUEST_ACTIVE;
6341 	if (!kvm_arch_vcpu_in_kernel(vcpu))
6342 		state |= PERF_GUEST_USER;
6343 
6344 	return state;
6345 }
6346 
kvm_guest_get_ip(void)6347 static unsigned long kvm_guest_get_ip(void)
6348 {
6349 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6350 
6351 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6352 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6353 		return 0;
6354 
6355 	return kvm_arch_vcpu_get_ip(vcpu);
6356 }
6357 
6358 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6359 	.state			= kvm_guest_state,
6360 	.get_ip			= kvm_guest_get_ip,
6361 	.handle_intel_pt_intr	= NULL,
6362 };
6363 
kvm_register_perf_callbacks(unsigned int (* pt_intr_handler)(void))6364 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6365 {
6366 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6367 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6368 }
kvm_unregister_perf_callbacks(void)6369 void kvm_unregister_perf_callbacks(void)
6370 {
6371 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6372 }
6373 #endif
6374 
kvm_init(unsigned vcpu_size,unsigned vcpu_align,struct module * module)6375 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6376 {
6377 	int r;
6378 	int cpu;
6379 
6380 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6381 	if (!vcpu_align)
6382 		vcpu_align = __alignof__(struct kvm_vcpu);
6383 	kvm_vcpu_cache =
6384 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6385 					   SLAB_ACCOUNT,
6386 					   offsetof(struct kvm_vcpu, arch),
6387 					   offsetofend(struct kvm_vcpu, stats_id)
6388 					   - offsetof(struct kvm_vcpu, arch),
6389 					   NULL);
6390 	if (!kvm_vcpu_cache)
6391 		return -ENOMEM;
6392 
6393 	for_each_possible_cpu(cpu) {
6394 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6395 					    GFP_KERNEL, cpu_to_node(cpu))) {
6396 			r = -ENOMEM;
6397 			goto err_cpu_kick_mask;
6398 		}
6399 	}
6400 
6401 	r = kvm_irqfd_init();
6402 	if (r)
6403 		goto err_irqfd;
6404 
6405 	r = kvm_async_pf_init();
6406 	if (r)
6407 		goto err_async_pf;
6408 
6409 	kvm_chardev_ops.owner = module;
6410 	kvm_vm_fops.owner = module;
6411 	kvm_vcpu_fops.owner = module;
6412 	kvm_device_fops.owner = module;
6413 
6414 	kvm_preempt_ops.sched_in = kvm_sched_in;
6415 	kvm_preempt_ops.sched_out = kvm_sched_out;
6416 
6417 	kvm_init_debug();
6418 
6419 	r = kvm_vfio_ops_init();
6420 	if (WARN_ON_ONCE(r))
6421 		goto err_vfio;
6422 
6423 	kvm_gmem_init(module);
6424 
6425 	r = kvm_init_virtualization();
6426 	if (r)
6427 		goto err_virt;
6428 
6429 	/*
6430 	 * Registration _must_ be the very last thing done, as this exposes
6431 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6432 	 */
6433 	r = misc_register(&kvm_dev);
6434 	if (r) {
6435 		pr_err("kvm: misc device register failed\n");
6436 		goto err_register;
6437 	}
6438 
6439 	return 0;
6440 
6441 err_register:
6442 	kvm_uninit_virtualization();
6443 err_virt:
6444 	kvm_vfio_ops_exit();
6445 err_vfio:
6446 	kvm_async_pf_deinit();
6447 err_async_pf:
6448 	kvm_irqfd_exit();
6449 err_irqfd:
6450 err_cpu_kick_mask:
6451 	for_each_possible_cpu(cpu)
6452 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6453 	kmem_cache_destroy(kvm_vcpu_cache);
6454 	return r;
6455 }
6456 EXPORT_SYMBOL_GPL(kvm_init);
6457 
kvm_exit(void)6458 void kvm_exit(void)
6459 {
6460 	int cpu;
6461 
6462 	/*
6463 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6464 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6465 	 * to KVM while the module is being stopped.
6466 	 */
6467 	misc_deregister(&kvm_dev);
6468 
6469 	kvm_uninit_virtualization();
6470 
6471 	debugfs_remove_recursive(kvm_debugfs_dir);
6472 	for_each_possible_cpu(cpu)
6473 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6474 	kmem_cache_destroy(kvm_vcpu_cache);
6475 	kvm_vfio_ops_exit();
6476 	kvm_async_pf_deinit();
6477 	kvm_irqfd_exit();
6478 }
6479 EXPORT_SYMBOL_GPL(kvm_exit);
6480