1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/cpu_pm.h> 9 #include <linux/errno.h> 10 #include <linux/err.h> 11 #include <linux/kvm_host.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/vmalloc.h> 15 #include <linux/fs.h> 16 #include <linux/mman.h> 17 #include <linux/sched.h> 18 #include <linux/kvm.h> 19 #include <linux/kvm_irqfd.h> 20 #include <linux/irqbypass.h> 21 #include <linux/sched/stat.h> 22 #include <linux/psci.h> 23 #include <trace/events/kvm.h> 24 25 #define CREATE_TRACE_POINTS 26 #include "trace_arm.h" 27 28 #include <linux/uaccess.h> 29 #include <asm/ptrace.h> 30 #include <asm/mman.h> 31 #include <asm/tlbflush.h> 32 #include <asm/cacheflush.h> 33 #include <asm/cpufeature.h> 34 #include <asm/virt.h> 35 #include <asm/kvm_arm.h> 36 #include <asm/kvm_asm.h> 37 #include <asm/kvm_emulate.h> 38 #include <asm/kvm_mmu.h> 39 #include <asm/kvm_nested.h> 40 #include <asm/kvm_pkvm.h> 41 #include <asm/kvm_ptrauth.h> 42 #include <asm/sections.h> 43 44 #include <kvm/arm_hypercalls.h> 45 #include <kvm/arm_pmu.h> 46 #include <kvm/arm_psci.h> 47 48 #include "sys_regs.h" 49 50 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT; 51 52 enum kvm_wfx_trap_policy { 53 KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */ 54 KVM_WFX_NOTRAP, 55 KVM_WFX_TRAP, 56 }; 57 58 static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; 59 static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; 60 61 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); 62 63 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_base); 64 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); 65 66 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 67 68 static bool vgic_present, kvm_arm_initialised; 69 70 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized); 71 72 bool is_kvm_arm_initialised(void) 73 { 74 return kvm_arm_initialised; 75 } 76 77 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 78 { 79 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 80 } 81 82 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 83 struct kvm_enable_cap *cap) 84 { 85 int r = -EINVAL; 86 87 if (cap->flags) 88 return -EINVAL; 89 90 if (kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(cap->cap)) 91 return -EINVAL; 92 93 switch (cap->cap) { 94 case KVM_CAP_ARM_NISV_TO_USER: 95 r = 0; 96 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER, 97 &kvm->arch.flags); 98 break; 99 case KVM_CAP_ARM_MTE: 100 mutex_lock(&kvm->lock); 101 if (system_supports_mte() && !kvm->created_vcpus) { 102 r = 0; 103 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags); 104 } 105 mutex_unlock(&kvm->lock); 106 break; 107 case KVM_CAP_ARM_SYSTEM_SUSPEND: 108 r = 0; 109 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags); 110 break; 111 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 112 mutex_lock(&kvm->slots_lock); 113 /* 114 * To keep things simple, allow changing the chunk 115 * size only when no memory slots have been created. 116 */ 117 if (kvm_are_all_memslots_empty(kvm)) { 118 u64 new_cap = cap->args[0]; 119 120 if (!new_cap || kvm_is_block_size_supported(new_cap)) { 121 r = 0; 122 kvm->arch.mmu.split_page_chunk_size = new_cap; 123 } 124 } 125 mutex_unlock(&kvm->slots_lock); 126 break; 127 case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS: 128 mutex_lock(&kvm->lock); 129 if (!kvm->created_vcpus) { 130 r = 0; 131 set_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags); 132 } 133 mutex_unlock(&kvm->lock); 134 break; 135 case KVM_CAP_ARM_SEA_TO_USER: 136 r = 0; 137 set_bit(KVM_ARCH_FLAG_EXIT_SEA, &kvm->arch.flags); 138 break; 139 default: 140 break; 141 } 142 143 return r; 144 } 145 146 static int kvm_arm_default_max_vcpus(void) 147 { 148 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 149 } 150 151 /** 152 * kvm_arch_init_vm - initializes a VM data structure 153 * @kvm: pointer to the KVM struct 154 * @type: kvm device type 155 */ 156 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 157 { 158 int ret; 159 160 mutex_init(&kvm->arch.config_lock); 161 162 #ifdef CONFIG_LOCKDEP 163 /* Clue in lockdep that the config_lock must be taken inside kvm->lock */ 164 mutex_lock(&kvm->lock); 165 mutex_lock(&kvm->arch.config_lock); 166 mutex_unlock(&kvm->arch.config_lock); 167 mutex_unlock(&kvm->lock); 168 #endif 169 170 kvm_init_nested(kvm); 171 172 ret = kvm_share_hyp(kvm, kvm + 1); 173 if (ret) 174 return ret; 175 176 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) { 177 ret = -ENOMEM; 178 goto err_unshare_kvm; 179 } 180 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask); 181 182 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type); 183 if (ret) 184 goto err_free_cpumask; 185 186 if (is_protected_kvm_enabled()) { 187 /* 188 * If any failures occur after this is successful, make sure to 189 * call __pkvm_unreserve_vm to unreserve the VM in hyp. 190 */ 191 ret = pkvm_init_host_vm(kvm); 192 if (ret) 193 goto err_free_cpumask; 194 } 195 196 kvm_vgic_early_init(kvm); 197 198 kvm_timer_init_vm(kvm); 199 200 /* The maximum number of VCPUs is limited by the host's GIC model */ 201 kvm->max_vcpus = kvm_arm_default_max_vcpus(); 202 203 kvm_arm_init_hypercalls(kvm); 204 205 bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES); 206 207 return 0; 208 209 err_free_cpumask: 210 free_cpumask_var(kvm->arch.supported_cpus); 211 err_unshare_kvm: 212 kvm_unshare_hyp(kvm, kvm + 1); 213 return ret; 214 } 215 216 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 217 { 218 return VM_FAULT_SIGBUS; 219 } 220 221 void kvm_arch_create_vm_debugfs(struct kvm *kvm) 222 { 223 kvm_sys_regs_create_debugfs(kvm); 224 kvm_s2_ptdump_create_debugfs(kvm); 225 } 226 227 static void kvm_destroy_mpidr_data(struct kvm *kvm) 228 { 229 struct kvm_mpidr_data *data; 230 231 mutex_lock(&kvm->arch.config_lock); 232 233 data = rcu_dereference_protected(kvm->arch.mpidr_data, 234 lockdep_is_held(&kvm->arch.config_lock)); 235 if (data) { 236 rcu_assign_pointer(kvm->arch.mpidr_data, NULL); 237 synchronize_rcu(); 238 kfree(data); 239 } 240 241 mutex_unlock(&kvm->arch.config_lock); 242 } 243 244 /** 245 * kvm_arch_destroy_vm - destroy the VM data structure 246 * @kvm: pointer to the KVM struct 247 */ 248 void kvm_arch_destroy_vm(struct kvm *kvm) 249 { 250 bitmap_free(kvm->arch.pmu_filter); 251 free_cpumask_var(kvm->arch.supported_cpus); 252 253 kvm_vgic_destroy(kvm); 254 255 if (is_protected_kvm_enabled()) 256 pkvm_destroy_hyp_vm(kvm); 257 258 kvm_destroy_mpidr_data(kvm); 259 260 kfree(kvm->arch.sysreg_masks); 261 kvm_destroy_vcpus(kvm); 262 263 kvm_unshare_hyp(kvm, kvm + 1); 264 265 kvm_arm_teardown_hypercalls(kvm); 266 } 267 268 static bool kvm_has_full_ptr_auth(void) 269 { 270 bool apa, gpa, api, gpi, apa3, gpa3; 271 u64 isar1, isar2, val; 272 273 /* 274 * Check that: 275 * 276 * - both Address and Generic auth are implemented for a given 277 * algorithm (Q5, IMPDEF or Q3) 278 * - only a single algorithm is implemented. 279 */ 280 if (!system_has_full_ptr_auth()) 281 return false; 282 283 isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 284 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 285 286 apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1); 287 val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1); 288 gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP); 289 290 api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1); 291 val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1); 292 gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP); 293 294 apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2); 295 val = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2); 296 gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP); 297 298 return (apa == gpa && api == gpi && apa3 == gpa3 && 299 (apa + api + apa3) == 1); 300 } 301 302 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 303 { 304 int r; 305 306 if (kvm && kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(ext)) 307 return 0; 308 309 switch (ext) { 310 case KVM_CAP_IRQCHIP: 311 r = vgic_present; 312 break; 313 case KVM_CAP_IOEVENTFD: 314 case KVM_CAP_USER_MEMORY: 315 case KVM_CAP_SYNC_MMU: 316 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 317 case KVM_CAP_ONE_REG: 318 case KVM_CAP_ARM_PSCI: 319 case KVM_CAP_ARM_PSCI_0_2: 320 case KVM_CAP_READONLY_MEM: 321 case KVM_CAP_MP_STATE: 322 case KVM_CAP_IMMEDIATE_EXIT: 323 case KVM_CAP_VCPU_EVENTS: 324 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: 325 case KVM_CAP_ARM_NISV_TO_USER: 326 case KVM_CAP_ARM_INJECT_EXT_DABT: 327 case KVM_CAP_SET_GUEST_DEBUG: 328 case KVM_CAP_VCPU_ATTRIBUTES: 329 case KVM_CAP_PTP_KVM: 330 case KVM_CAP_ARM_SYSTEM_SUSPEND: 331 case KVM_CAP_IRQFD_RESAMPLE: 332 case KVM_CAP_COUNTER_OFFSET: 333 case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS: 334 case KVM_CAP_ARM_SEA_TO_USER: 335 r = 1; 336 break; 337 case KVM_CAP_SET_GUEST_DEBUG2: 338 return KVM_GUESTDBG_VALID_MASK; 339 case KVM_CAP_ARM_SET_DEVICE_ADDR: 340 r = 1; 341 break; 342 case KVM_CAP_NR_VCPUS: 343 /* 344 * ARM64 treats KVM_CAP_NR_CPUS differently from all other 345 * architectures, as it does not always bound it to 346 * KVM_CAP_MAX_VCPUS. It should not matter much because 347 * this is just an advisory value. 348 */ 349 r = min_t(unsigned int, num_online_cpus(), 350 kvm_arm_default_max_vcpus()); 351 break; 352 case KVM_CAP_MAX_VCPUS: 353 case KVM_CAP_MAX_VCPU_ID: 354 if (kvm) 355 r = kvm->max_vcpus; 356 else 357 r = kvm_arm_default_max_vcpus(); 358 break; 359 case KVM_CAP_MSI_DEVID: 360 if (!kvm) 361 r = -EINVAL; 362 else 363 r = kvm->arch.vgic.msis_require_devid; 364 break; 365 case KVM_CAP_ARM_USER_IRQ: 366 /* 367 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 368 * (bump this number if adding more devices) 369 */ 370 r = 1; 371 break; 372 case KVM_CAP_ARM_MTE: 373 r = system_supports_mte(); 374 break; 375 case KVM_CAP_STEAL_TIME: 376 r = kvm_arm_pvtime_supported(); 377 break; 378 case KVM_CAP_ARM_EL1_32BIT: 379 r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1); 380 break; 381 case KVM_CAP_ARM_EL2: 382 r = cpus_have_final_cap(ARM64_HAS_NESTED_VIRT); 383 break; 384 case KVM_CAP_ARM_EL2_E2H0: 385 r = cpus_have_final_cap(ARM64_HAS_HCR_NV1); 386 break; 387 case KVM_CAP_GUEST_DEBUG_HW_BPS: 388 r = get_num_brps(); 389 break; 390 case KVM_CAP_GUEST_DEBUG_HW_WPS: 391 r = get_num_wrps(); 392 break; 393 case KVM_CAP_ARM_PMU_V3: 394 r = kvm_supports_guest_pmuv3(); 395 break; 396 case KVM_CAP_ARM_INJECT_SERROR_ESR: 397 r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN); 398 break; 399 case KVM_CAP_ARM_VM_IPA_SIZE: 400 r = get_kvm_ipa_limit(); 401 break; 402 case KVM_CAP_ARM_SVE: 403 r = system_supports_sve(); 404 break; 405 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 406 case KVM_CAP_ARM_PTRAUTH_GENERIC: 407 r = kvm_has_full_ptr_auth(); 408 break; 409 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 410 if (kvm) 411 r = kvm->arch.mmu.split_page_chunk_size; 412 else 413 r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; 414 break; 415 case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES: 416 r = kvm_supported_block_sizes(); 417 break; 418 case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES: 419 r = BIT(0); 420 break; 421 case KVM_CAP_ARM_CACHEABLE_PFNMAP_SUPPORTED: 422 if (!kvm) 423 r = -EINVAL; 424 else 425 r = kvm_supports_cacheable_pfnmap(); 426 break; 427 428 default: 429 r = 0; 430 } 431 432 return r; 433 } 434 435 long kvm_arch_dev_ioctl(struct file *filp, 436 unsigned int ioctl, unsigned long arg) 437 { 438 return -EINVAL; 439 } 440 441 struct kvm *kvm_arch_alloc_vm(void) 442 { 443 size_t sz = sizeof(struct kvm); 444 445 if (!has_vhe()) 446 return kzalloc(sz, GFP_KERNEL_ACCOUNT); 447 448 return kvzalloc(sz, GFP_KERNEL_ACCOUNT); 449 } 450 451 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 452 { 453 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 454 return -EBUSY; 455 456 if (id >= kvm->max_vcpus) 457 return -EINVAL; 458 459 return 0; 460 } 461 462 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 463 { 464 int err; 465 466 spin_lock_init(&vcpu->arch.mp_state_lock); 467 468 #ifdef CONFIG_LOCKDEP 469 /* Inform lockdep that the config_lock is acquired after vcpu->mutex */ 470 mutex_lock(&vcpu->mutex); 471 mutex_lock(&vcpu->kvm->arch.config_lock); 472 mutex_unlock(&vcpu->kvm->arch.config_lock); 473 mutex_unlock(&vcpu->mutex); 474 #endif 475 476 /* Force users to call KVM_ARM_VCPU_INIT */ 477 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 478 479 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; 480 481 /* Set up the timer */ 482 kvm_timer_vcpu_init(vcpu); 483 484 kvm_pmu_vcpu_init(vcpu); 485 486 kvm_arm_pvtime_vcpu_init(&vcpu->arch); 487 488 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; 489 490 /* 491 * This vCPU may have been created after mpidr_data was initialized. 492 * Throw out the pre-computed mappings if that is the case which forces 493 * KVM to fall back to iteratively searching the vCPUs. 494 */ 495 kvm_destroy_mpidr_data(vcpu->kvm); 496 497 err = kvm_vgic_vcpu_init(vcpu); 498 if (err) 499 return err; 500 501 err = kvm_share_hyp(vcpu, vcpu + 1); 502 if (err) 503 kvm_vgic_vcpu_destroy(vcpu); 504 505 return err; 506 } 507 508 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 509 { 510 } 511 512 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 513 { 514 if (!is_protected_kvm_enabled()) 515 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 516 else 517 free_hyp_memcache(&vcpu->arch.pkvm_memcache); 518 kvm_timer_vcpu_terminate(vcpu); 519 kvm_pmu_vcpu_destroy(vcpu); 520 kvm_vgic_vcpu_destroy(vcpu); 521 kvm_arm_vcpu_destroy(vcpu); 522 } 523 524 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 525 { 526 527 } 528 529 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 530 { 531 532 } 533 534 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu) 535 { 536 if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) { 537 /* 538 * Either we're running an L2 guest, and the API/APK bits come 539 * from L1's HCR_EL2, or API/APK are both set. 540 */ 541 if (unlikely(is_nested_ctxt(vcpu))) { 542 u64 val; 543 544 val = __vcpu_sys_reg(vcpu, HCR_EL2); 545 val &= (HCR_API | HCR_APK); 546 vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK); 547 vcpu->arch.hcr_el2 |= val; 548 } else { 549 vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK); 550 } 551 552 /* 553 * Save the host keys if there is any chance for the guest 554 * to use pauth, as the entry code will reload the guest 555 * keys in that case. 556 */ 557 if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) { 558 struct kvm_cpu_context *ctxt; 559 560 ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt); 561 ptrauth_save_keys(ctxt); 562 } 563 } 564 } 565 566 static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu) 567 { 568 if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) 569 return kvm_wfi_trap_policy == KVM_WFX_NOTRAP; 570 571 return single_task_running() && 572 vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 && 573 (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) || 574 vcpu->kvm->arch.vgic.nassgireq); 575 } 576 577 static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu) 578 { 579 if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) 580 return kvm_wfe_trap_policy == KVM_WFX_NOTRAP; 581 582 return single_task_running(); 583 } 584 585 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 586 { 587 struct kvm_s2_mmu *mmu; 588 int *last_ran; 589 590 if (is_protected_kvm_enabled()) 591 goto nommu; 592 593 if (vcpu_has_nv(vcpu)) 594 kvm_vcpu_load_hw_mmu(vcpu); 595 596 mmu = vcpu->arch.hw_mmu; 597 last_ran = this_cpu_ptr(mmu->last_vcpu_ran); 598 599 /* 600 * Ensure a VMID is allocated for the MMU before programming VTTBR_EL2, 601 * which happens eagerly in VHE. 602 * 603 * Also, the VMID allocator only preserves VMIDs that are active at the 604 * time of rollover, so KVM might need to grab a new VMID for the MMU if 605 * this is called from kvm_sched_in(). 606 */ 607 kvm_arm_vmid_update(&mmu->vmid); 608 609 /* 610 * We guarantee that both TLBs and I-cache are private to each 611 * vcpu. If detecting that a vcpu from the same VM has 612 * previously run on the same physical CPU, call into the 613 * hypervisor code to nuke the relevant contexts. 614 * 615 * We might get preempted before the vCPU actually runs, but 616 * over-invalidation doesn't affect correctness. 617 */ 618 if (*last_ran != vcpu->vcpu_idx) { 619 kvm_call_hyp(__kvm_flush_cpu_context, mmu); 620 *last_ran = vcpu->vcpu_idx; 621 } 622 623 nommu: 624 vcpu->cpu = cpu; 625 626 /* 627 * The timer must be loaded before the vgic to correctly set up physical 628 * interrupt deactivation in nested state (e.g. timer interrupt). 629 */ 630 kvm_timer_vcpu_load(vcpu); 631 kvm_vgic_load(vcpu); 632 kvm_vcpu_load_debug(vcpu); 633 kvm_vcpu_load_fgt(vcpu); 634 if (has_vhe()) 635 kvm_vcpu_load_vhe(vcpu); 636 kvm_arch_vcpu_load_fp(vcpu); 637 kvm_vcpu_pmu_restore_guest(vcpu); 638 if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) 639 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); 640 641 if (kvm_vcpu_should_clear_twe(vcpu)) 642 vcpu->arch.hcr_el2 &= ~HCR_TWE; 643 else 644 vcpu->arch.hcr_el2 |= HCR_TWE; 645 646 if (kvm_vcpu_should_clear_twi(vcpu)) 647 vcpu->arch.hcr_el2 &= ~HCR_TWI; 648 else 649 vcpu->arch.hcr_el2 |= HCR_TWI; 650 651 vcpu_set_pauth_traps(vcpu); 652 653 if (is_protected_kvm_enabled()) { 654 kvm_call_hyp_nvhe(__pkvm_vcpu_load, 655 vcpu->kvm->arch.pkvm.handle, 656 vcpu->vcpu_idx, vcpu->arch.hcr_el2); 657 kvm_call_hyp(__vgic_v3_restore_vmcr_aprs, 658 &vcpu->arch.vgic_cpu.vgic_v3); 659 } 660 661 if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus)) 662 vcpu_set_on_unsupported_cpu(vcpu); 663 } 664 665 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 666 { 667 if (is_protected_kvm_enabled()) { 668 kvm_call_hyp(__vgic_v3_save_aprs, &vcpu->arch.vgic_cpu.vgic_v3); 669 kvm_call_hyp_nvhe(__pkvm_vcpu_put); 670 } 671 672 kvm_vcpu_put_debug(vcpu); 673 kvm_arch_vcpu_put_fp(vcpu); 674 if (has_vhe()) 675 kvm_vcpu_put_vhe(vcpu); 676 kvm_timer_vcpu_put(vcpu); 677 kvm_vgic_put(vcpu); 678 kvm_vcpu_pmu_restore_host(vcpu); 679 if (vcpu_has_nv(vcpu)) 680 kvm_vcpu_put_hw_mmu(vcpu); 681 kvm_arm_vmid_clear_active(); 682 683 vcpu_clear_on_unsupported_cpu(vcpu); 684 vcpu->cpu = -1; 685 } 686 687 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 688 { 689 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); 690 kvm_make_request(KVM_REQ_SLEEP, vcpu); 691 kvm_vcpu_kick(vcpu); 692 } 693 694 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 695 { 696 spin_lock(&vcpu->arch.mp_state_lock); 697 __kvm_arm_vcpu_power_off(vcpu); 698 spin_unlock(&vcpu->arch.mp_state_lock); 699 } 700 701 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu) 702 { 703 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED; 704 } 705 706 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu) 707 { 708 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED); 709 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 710 kvm_vcpu_kick(vcpu); 711 } 712 713 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu) 714 { 715 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED; 716 } 717 718 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 719 struct kvm_mp_state *mp_state) 720 { 721 *mp_state = READ_ONCE(vcpu->arch.mp_state); 722 723 return 0; 724 } 725 726 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 727 struct kvm_mp_state *mp_state) 728 { 729 int ret = 0; 730 731 spin_lock(&vcpu->arch.mp_state_lock); 732 733 switch (mp_state->mp_state) { 734 case KVM_MP_STATE_RUNNABLE: 735 WRITE_ONCE(vcpu->arch.mp_state, *mp_state); 736 break; 737 case KVM_MP_STATE_STOPPED: 738 __kvm_arm_vcpu_power_off(vcpu); 739 break; 740 case KVM_MP_STATE_SUSPENDED: 741 kvm_arm_vcpu_suspend(vcpu); 742 break; 743 default: 744 ret = -EINVAL; 745 } 746 747 spin_unlock(&vcpu->arch.mp_state_lock); 748 749 return ret; 750 } 751 752 /** 753 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 754 * @v: The VCPU pointer 755 * 756 * If the guest CPU is not waiting for interrupts or an interrupt line is 757 * asserted, the CPU is by definition runnable. 758 */ 759 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 760 { 761 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF | HCR_VSE); 762 763 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) 764 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause); 765 } 766 767 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 768 { 769 return vcpu_mode_priv(vcpu); 770 } 771 772 #ifdef CONFIG_GUEST_PERF_EVENTS 773 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 774 { 775 return *vcpu_pc(vcpu); 776 } 777 #endif 778 779 static void kvm_init_mpidr_data(struct kvm *kvm) 780 { 781 struct kvm_mpidr_data *data = NULL; 782 unsigned long c, mask, nr_entries; 783 u64 aff_set = 0, aff_clr = ~0UL; 784 struct kvm_vcpu *vcpu; 785 786 mutex_lock(&kvm->arch.config_lock); 787 788 if (rcu_access_pointer(kvm->arch.mpidr_data) || 789 atomic_read(&kvm->online_vcpus) == 1) 790 goto out; 791 792 kvm_for_each_vcpu(c, vcpu, kvm) { 793 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 794 aff_set |= aff; 795 aff_clr &= aff; 796 } 797 798 /* 799 * A significant bit can be either 0 or 1, and will only appear in 800 * aff_set. Use aff_clr to weed out the useless stuff. 801 */ 802 mask = aff_set ^ aff_clr; 803 nr_entries = BIT_ULL(hweight_long(mask)); 804 805 /* 806 * Don't let userspace fool us. If we need more than a single page 807 * to describe the compressed MPIDR array, just fall back to the 808 * iterative method. Single vcpu VMs do not need this either. 809 */ 810 if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE) 811 data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries), 812 GFP_KERNEL_ACCOUNT); 813 814 if (!data) 815 goto out; 816 817 data->mpidr_mask = mask; 818 819 kvm_for_each_vcpu(c, vcpu, kvm) { 820 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 821 u16 index = kvm_mpidr_index(data, aff); 822 823 data->cmpidr_to_idx[index] = c; 824 } 825 826 rcu_assign_pointer(kvm->arch.mpidr_data, data); 827 out: 828 mutex_unlock(&kvm->arch.config_lock); 829 } 830 831 /* 832 * Handle both the initialisation that is being done when the vcpu is 833 * run for the first time, as well as the updates that must be 834 * performed each time we get a new thread dealing with this vcpu. 835 */ 836 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 837 { 838 struct kvm *kvm = vcpu->kvm; 839 int ret; 840 841 if (!kvm_vcpu_initialized(vcpu)) 842 return -ENOEXEC; 843 844 if (!kvm_arm_vcpu_is_finalized(vcpu)) 845 return -EPERM; 846 847 if (likely(vcpu_has_run_once(vcpu))) 848 return 0; 849 850 kvm_init_mpidr_data(kvm); 851 852 if (likely(irqchip_in_kernel(kvm))) { 853 /* 854 * Map the VGIC hardware resources before running a vcpu the 855 * first time on this VM. 856 */ 857 ret = kvm_vgic_map_resources(kvm); 858 if (ret) 859 return ret; 860 } 861 862 ret = kvm_finalize_sys_regs(vcpu); 863 if (ret) 864 return ret; 865 866 if (vcpu_has_nv(vcpu)) { 867 ret = kvm_vcpu_allocate_vncr_tlb(vcpu); 868 if (ret) 869 return ret; 870 871 ret = kvm_vgic_vcpu_nv_init(vcpu); 872 if (ret) 873 return ret; 874 } 875 876 /* 877 * This needs to happen after any restriction has been applied 878 * to the feature set. 879 */ 880 kvm_calculate_traps(vcpu); 881 882 ret = kvm_timer_enable(vcpu); 883 if (ret) 884 return ret; 885 886 if (kvm_vcpu_has_pmu(vcpu)) { 887 ret = kvm_arm_pmu_v3_enable(vcpu); 888 if (ret) 889 return ret; 890 } 891 892 if (is_protected_kvm_enabled()) { 893 ret = pkvm_create_hyp_vm(kvm); 894 if (ret) 895 return ret; 896 897 ret = pkvm_create_hyp_vcpu(vcpu); 898 if (ret) 899 return ret; 900 } 901 902 mutex_lock(&kvm->arch.config_lock); 903 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags); 904 mutex_unlock(&kvm->arch.config_lock); 905 906 return ret; 907 } 908 909 bool kvm_arch_intc_initialized(struct kvm *kvm) 910 { 911 return vgic_initialized(kvm); 912 } 913 914 void kvm_arm_halt_guest(struct kvm *kvm) 915 { 916 unsigned long i; 917 struct kvm_vcpu *vcpu; 918 919 kvm_for_each_vcpu(i, vcpu, kvm) 920 vcpu->arch.pause = true; 921 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 922 } 923 924 void kvm_arm_resume_guest(struct kvm *kvm) 925 { 926 unsigned long i; 927 struct kvm_vcpu *vcpu; 928 929 kvm_for_each_vcpu(i, vcpu, kvm) { 930 vcpu->arch.pause = false; 931 __kvm_vcpu_wake_up(vcpu); 932 } 933 } 934 935 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu) 936 { 937 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 938 939 rcuwait_wait_event(wait, 940 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause), 941 TASK_INTERRUPTIBLE); 942 943 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) { 944 /* Awaken to handle a signal, request we sleep again later. */ 945 kvm_make_request(KVM_REQ_SLEEP, vcpu); 946 } 947 948 /* 949 * Make sure we will observe a potential reset request if we've 950 * observed a change to the power state. Pairs with the smp_wmb() in 951 * kvm_psci_vcpu_on(). 952 */ 953 smp_rmb(); 954 } 955 956 /** 957 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior 958 * @vcpu: The VCPU pointer 959 * 960 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until 961 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending 962 * on when a wake event arrives, e.g. there may already be a pending wake event. 963 */ 964 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu) 965 { 966 /* 967 * Sync back the state of the GIC CPU interface so that we have 968 * the latest PMR and group enables. This ensures that 969 * kvm_arch_vcpu_runnable has up-to-date data to decide whether 970 * we have pending interrupts, e.g. when determining if the 971 * vCPU should block. 972 * 973 * For the same reason, we want to tell GICv4 that we need 974 * doorbells to be signalled, should an interrupt become pending. 975 */ 976 preempt_disable(); 977 vcpu_set_flag(vcpu, IN_WFI); 978 kvm_vgic_put(vcpu); 979 preempt_enable(); 980 981 kvm_vcpu_halt(vcpu); 982 vcpu_clear_flag(vcpu, IN_WFIT); 983 984 preempt_disable(); 985 vcpu_clear_flag(vcpu, IN_WFI); 986 kvm_vgic_load(vcpu); 987 preempt_enable(); 988 } 989 990 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu) 991 { 992 if (!kvm_arm_vcpu_suspended(vcpu)) 993 return 1; 994 995 kvm_vcpu_wfi(vcpu); 996 997 /* 998 * The suspend state is sticky; we do not leave it until userspace 999 * explicitly marks the vCPU as runnable. Request that we suspend again 1000 * later. 1001 */ 1002 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 1003 1004 /* 1005 * Check to make sure the vCPU is actually runnable. If so, exit to 1006 * userspace informing it of the wakeup condition. 1007 */ 1008 if (kvm_arch_vcpu_runnable(vcpu)) { 1009 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); 1010 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP; 1011 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 1012 return 0; 1013 } 1014 1015 /* 1016 * Otherwise, we were unblocked to process a different event, such as a 1017 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to 1018 * process the event. 1019 */ 1020 return 1; 1021 } 1022 1023 /** 1024 * check_vcpu_requests - check and handle pending vCPU requests 1025 * @vcpu: the VCPU pointer 1026 * 1027 * Return: 1 if we should enter the guest 1028 * 0 if we should exit to userspace 1029 * < 0 if we should exit to userspace, where the return value indicates 1030 * an error 1031 */ 1032 static int check_vcpu_requests(struct kvm_vcpu *vcpu) 1033 { 1034 if (kvm_request_pending(vcpu)) { 1035 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) 1036 return -EIO; 1037 1038 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 1039 kvm_vcpu_sleep(vcpu); 1040 1041 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1042 kvm_reset_vcpu(vcpu); 1043 1044 /* 1045 * Clear IRQ_PENDING requests that were made to guarantee 1046 * that a VCPU sees new virtual interrupts. 1047 */ 1048 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 1049 1050 /* Process interrupts deactivated through a trap */ 1051 if (kvm_check_request(KVM_REQ_VGIC_PROCESS_UPDATE, vcpu)) 1052 kvm_vgic_process_async_update(vcpu); 1053 1054 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) 1055 kvm_update_stolen_time(vcpu); 1056 1057 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { 1058 /* The distributor enable bits were changed */ 1059 preempt_disable(); 1060 vgic_v4_put(vcpu); 1061 vgic_v4_load(vcpu); 1062 preempt_enable(); 1063 } 1064 1065 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu)) 1066 kvm_vcpu_reload_pmu(vcpu); 1067 1068 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu)) 1069 kvm_vcpu_pmu_restore_guest(vcpu); 1070 1071 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu)) 1072 return kvm_vcpu_suspend(vcpu); 1073 1074 if (kvm_dirty_ring_check_request(vcpu)) 1075 return 0; 1076 1077 check_nested_vcpu_requests(vcpu); 1078 } 1079 1080 return 1; 1081 } 1082 1083 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu) 1084 { 1085 if (likely(!vcpu_mode_is_32bit(vcpu))) 1086 return false; 1087 1088 if (vcpu_has_nv(vcpu)) 1089 return true; 1090 1091 return !kvm_supports_32bit_el0(); 1092 } 1093 1094 /** 1095 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest 1096 * @vcpu: The VCPU pointer 1097 * @ret: Pointer to write optional return code 1098 * 1099 * Returns: true if the VCPU needs to return to a preemptible + interruptible 1100 * and skip guest entry. 1101 * 1102 * This function disambiguates between two different types of exits: exits to a 1103 * preemptible + interruptible kernel context and exits to userspace. For an 1104 * exit to userspace, this function will write the return code to ret and return 1105 * true. For an exit to preemptible + interruptible kernel context (i.e. check 1106 * for pending work and re-enter), return true without writing to ret. 1107 */ 1108 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret) 1109 { 1110 struct kvm_run *run = vcpu->run; 1111 1112 /* 1113 * If we're using a userspace irqchip, then check if we need 1114 * to tell a userspace irqchip about timer or PMU level 1115 * changes and if so, exit to userspace (the actual level 1116 * state gets updated in kvm_timer_update_run and 1117 * kvm_pmu_update_run below). 1118 */ 1119 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 1120 if (kvm_timer_should_notify_user(vcpu) || 1121 kvm_pmu_should_notify_user(vcpu)) { 1122 *ret = -EINTR; 1123 run->exit_reason = KVM_EXIT_INTR; 1124 return true; 1125 } 1126 } 1127 1128 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) { 1129 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 1130 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED; 1131 run->fail_entry.cpu = smp_processor_id(); 1132 *ret = 0; 1133 return true; 1134 } 1135 1136 return kvm_request_pending(vcpu) || 1137 xfer_to_guest_mode_work_pending(); 1138 } 1139 1140 /* 1141 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while 1142 * the vCPU is running. 1143 * 1144 * This must be noinstr as instrumentation may make use of RCU, and this is not 1145 * safe during the EQS. 1146 */ 1147 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 1148 { 1149 int ret; 1150 1151 guest_state_enter_irqoff(); 1152 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); 1153 guest_state_exit_irqoff(); 1154 1155 return ret; 1156 } 1157 1158 /** 1159 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 1160 * @vcpu: The VCPU pointer 1161 * 1162 * This function is called through the VCPU_RUN ioctl called from user space. It 1163 * will execute VM code in a loop until the time slice for the process is used 1164 * or some emulation is needed from user space in which case the function will 1165 * return with return value 0 and with the kvm_run structure filled in with the 1166 * required data for the requested emulation. 1167 */ 1168 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1169 { 1170 struct kvm_run *run = vcpu->run; 1171 int ret; 1172 1173 if (run->exit_reason == KVM_EXIT_MMIO) { 1174 ret = kvm_handle_mmio_return(vcpu); 1175 if (ret <= 0) 1176 return ret; 1177 } 1178 1179 vcpu_load(vcpu); 1180 1181 if (!vcpu->wants_to_run) { 1182 ret = -EINTR; 1183 goto out; 1184 } 1185 1186 kvm_sigset_activate(vcpu); 1187 1188 ret = 1; 1189 run->exit_reason = KVM_EXIT_UNKNOWN; 1190 run->flags = 0; 1191 while (ret > 0) { 1192 /* 1193 * Check conditions before entering the guest 1194 */ 1195 ret = kvm_xfer_to_guest_mode_handle_work(vcpu); 1196 if (!ret) 1197 ret = 1; 1198 1199 if (ret > 0) 1200 ret = check_vcpu_requests(vcpu); 1201 1202 /* 1203 * Preparing the interrupts to be injected also 1204 * involves poking the GIC, which must be done in a 1205 * non-preemptible context. 1206 */ 1207 preempt_disable(); 1208 1209 kvm_nested_flush_hwstate(vcpu); 1210 1211 if (kvm_vcpu_has_pmu(vcpu)) 1212 kvm_pmu_flush_hwstate(vcpu); 1213 1214 local_irq_disable(); 1215 1216 kvm_vgic_flush_hwstate(vcpu); 1217 1218 kvm_pmu_update_vcpu_events(vcpu); 1219 1220 /* 1221 * Ensure we set mode to IN_GUEST_MODE after we disable 1222 * interrupts and before the final VCPU requests check. 1223 * See the comment in kvm_vcpu_exiting_guest_mode() and 1224 * Documentation/virt/kvm/vcpu-requests.rst 1225 */ 1226 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 1227 1228 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) { 1229 vcpu->mode = OUTSIDE_GUEST_MODE; 1230 isb(); /* Ensure work in x_flush_hwstate is committed */ 1231 if (kvm_vcpu_has_pmu(vcpu)) 1232 kvm_pmu_sync_hwstate(vcpu); 1233 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) 1234 kvm_timer_sync_user(vcpu); 1235 kvm_vgic_sync_hwstate(vcpu); 1236 local_irq_enable(); 1237 preempt_enable(); 1238 continue; 1239 } 1240 1241 kvm_arch_vcpu_ctxflush_fp(vcpu); 1242 1243 /************************************************************** 1244 * Enter the guest 1245 */ 1246 trace_kvm_entry(*vcpu_pc(vcpu)); 1247 guest_timing_enter_irqoff(); 1248 1249 ret = kvm_arm_vcpu_enter_exit(vcpu); 1250 1251 vcpu->mode = OUTSIDE_GUEST_MODE; 1252 vcpu->stat.exits++; 1253 /* 1254 * Back from guest 1255 *************************************************************/ 1256 1257 /* 1258 * We must sync the PMU state before the vgic state so 1259 * that the vgic can properly sample the updated state of the 1260 * interrupt line. 1261 */ 1262 if (kvm_vcpu_has_pmu(vcpu)) 1263 kvm_pmu_sync_hwstate(vcpu); 1264 1265 /* 1266 * Sync the vgic state before syncing the timer state because 1267 * the timer code needs to know if the virtual timer 1268 * interrupts are active. 1269 */ 1270 kvm_vgic_sync_hwstate(vcpu); 1271 1272 /* 1273 * Sync the timer hardware state before enabling interrupts as 1274 * we don't want vtimer interrupts to race with syncing the 1275 * timer virtual interrupt state. 1276 */ 1277 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) 1278 kvm_timer_sync_user(vcpu); 1279 1280 if (is_hyp_ctxt(vcpu)) 1281 kvm_timer_sync_nested(vcpu); 1282 1283 kvm_arch_vcpu_ctxsync_fp(vcpu); 1284 1285 /* 1286 * We must ensure that any pending interrupts are taken before 1287 * we exit guest timing so that timer ticks are accounted as 1288 * guest time. Transiently unmask interrupts so that any 1289 * pending interrupts are taken. 1290 * 1291 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other 1292 * context synchronization event) is necessary to ensure that 1293 * pending interrupts are taken. 1294 */ 1295 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) { 1296 local_irq_enable(); 1297 isb(); 1298 local_irq_disable(); 1299 } 1300 1301 guest_timing_exit_irqoff(); 1302 1303 local_irq_enable(); 1304 1305 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 1306 1307 /* Exit types that need handling before we can be preempted */ 1308 handle_exit_early(vcpu, ret); 1309 1310 kvm_nested_sync_hwstate(vcpu); 1311 1312 preempt_enable(); 1313 1314 /* 1315 * The ARMv8 architecture doesn't give the hypervisor 1316 * a mechanism to prevent a guest from dropping to AArch32 EL0 1317 * if implemented by the CPU. If we spot the guest in such 1318 * state and that we decided it wasn't supposed to do so (like 1319 * with the asymmetric AArch32 case), return to userspace with 1320 * a fatal error. 1321 */ 1322 if (vcpu_mode_is_bad_32bit(vcpu)) { 1323 /* 1324 * As we have caught the guest red-handed, decide that 1325 * it isn't fit for purpose anymore by making the vcpu 1326 * invalid. The VMM can try and fix it by issuing a 1327 * KVM_ARM_VCPU_INIT if it really wants to. 1328 */ 1329 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 1330 ret = ARM_EXCEPTION_IL; 1331 } 1332 1333 ret = handle_exit(vcpu, ret); 1334 } 1335 1336 /* Tell userspace about in-kernel device output levels */ 1337 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 1338 kvm_timer_update_run(vcpu); 1339 kvm_pmu_update_run(vcpu); 1340 } 1341 1342 kvm_sigset_deactivate(vcpu); 1343 1344 out: 1345 /* 1346 * In the unlikely event that we are returning to userspace 1347 * with pending exceptions or PC adjustment, commit these 1348 * adjustments in order to give userspace a consistent view of 1349 * the vcpu state. Note that this relies on __kvm_adjust_pc() 1350 * being preempt-safe on VHE. 1351 */ 1352 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) || 1353 vcpu_get_flag(vcpu, INCREMENT_PC))) 1354 kvm_call_hyp(__kvm_adjust_pc, vcpu); 1355 1356 vcpu_put(vcpu); 1357 return ret; 1358 } 1359 1360 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 1361 { 1362 int bit_index; 1363 bool set; 1364 unsigned long *hcr; 1365 1366 if (number == KVM_ARM_IRQ_CPU_IRQ) 1367 bit_index = __ffs(HCR_VI); 1368 else /* KVM_ARM_IRQ_CPU_FIQ */ 1369 bit_index = __ffs(HCR_VF); 1370 1371 hcr = vcpu_hcr(vcpu); 1372 if (level) 1373 set = test_and_set_bit(bit_index, hcr); 1374 else 1375 set = test_and_clear_bit(bit_index, hcr); 1376 1377 /* 1378 * If we didn't change anything, no need to wake up or kick other CPUs 1379 */ 1380 if (set == level) 1381 return 0; 1382 1383 /* 1384 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 1385 * trigger a world-switch round on the running physical CPU to set the 1386 * virtual IRQ/FIQ fields in the HCR appropriately. 1387 */ 1388 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 1389 kvm_vcpu_kick(vcpu); 1390 1391 return 0; 1392 } 1393 1394 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1395 bool line_status) 1396 { 1397 u32 irq = irq_level->irq; 1398 unsigned int irq_type, vcpu_id, irq_num; 1399 struct kvm_vcpu *vcpu = NULL; 1400 bool level = irq_level->level; 1401 1402 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 1403 vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 1404 vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); 1405 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 1406 1407 trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level); 1408 1409 switch (irq_type) { 1410 case KVM_ARM_IRQ_TYPE_CPU: 1411 if (irqchip_in_kernel(kvm)) 1412 return -ENXIO; 1413 1414 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1415 if (!vcpu) 1416 return -EINVAL; 1417 1418 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 1419 return -EINVAL; 1420 1421 return vcpu_interrupt_line(vcpu, irq_num, level); 1422 case KVM_ARM_IRQ_TYPE_PPI: 1423 if (!irqchip_in_kernel(kvm)) 1424 return -ENXIO; 1425 1426 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1427 if (!vcpu) 1428 return -EINVAL; 1429 1430 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 1431 return -EINVAL; 1432 1433 return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL); 1434 case KVM_ARM_IRQ_TYPE_SPI: 1435 if (!irqchip_in_kernel(kvm)) 1436 return -ENXIO; 1437 1438 if (irq_num < VGIC_NR_PRIVATE_IRQS) 1439 return -EINVAL; 1440 1441 return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL); 1442 } 1443 1444 return -EINVAL; 1445 } 1446 1447 static unsigned long system_supported_vcpu_features(void) 1448 { 1449 unsigned long features = KVM_VCPU_VALID_FEATURES; 1450 1451 if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1)) 1452 clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features); 1453 1454 if (!kvm_supports_guest_pmuv3()) 1455 clear_bit(KVM_ARM_VCPU_PMU_V3, &features); 1456 1457 if (!system_supports_sve()) 1458 clear_bit(KVM_ARM_VCPU_SVE, &features); 1459 1460 if (!kvm_has_full_ptr_auth()) { 1461 clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features); 1462 clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features); 1463 } 1464 1465 if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT)) 1466 clear_bit(KVM_ARM_VCPU_HAS_EL2, &features); 1467 1468 return features; 1469 } 1470 1471 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu, 1472 const struct kvm_vcpu_init *init) 1473 { 1474 unsigned long features = init->features[0]; 1475 int i; 1476 1477 if (features & ~KVM_VCPU_VALID_FEATURES) 1478 return -ENOENT; 1479 1480 for (i = 1; i < ARRAY_SIZE(init->features); i++) { 1481 if (init->features[i]) 1482 return -ENOENT; 1483 } 1484 1485 if (features & ~system_supported_vcpu_features()) 1486 return -EINVAL; 1487 1488 /* 1489 * For now make sure that both address/generic pointer authentication 1490 * features are requested by the userspace together. 1491 */ 1492 if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) != 1493 test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features)) 1494 return -EINVAL; 1495 1496 if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features)) 1497 return 0; 1498 1499 /* MTE is incompatible with AArch32 */ 1500 if (kvm_has_mte(vcpu->kvm)) 1501 return -EINVAL; 1502 1503 /* NV is incompatible with AArch32 */ 1504 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features)) 1505 return -EINVAL; 1506 1507 return 0; 1508 } 1509 1510 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu, 1511 const struct kvm_vcpu_init *init) 1512 { 1513 unsigned long features = init->features[0]; 1514 1515 return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features, 1516 KVM_VCPU_MAX_FEATURES); 1517 } 1518 1519 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu) 1520 { 1521 struct kvm *kvm = vcpu->kvm; 1522 int ret = 0; 1523 1524 /* 1525 * When the vCPU has a PMU, but no PMU is set for the guest 1526 * yet, set the default one. 1527 */ 1528 if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu) 1529 ret = kvm_arm_set_default_pmu(kvm); 1530 1531 /* Prepare for nested if required */ 1532 if (!ret && vcpu_has_nv(vcpu)) 1533 ret = kvm_vcpu_init_nested(vcpu); 1534 1535 return ret; 1536 } 1537 1538 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1539 const struct kvm_vcpu_init *init) 1540 { 1541 unsigned long features = init->features[0]; 1542 struct kvm *kvm = vcpu->kvm; 1543 int ret = -EINVAL; 1544 1545 mutex_lock(&kvm->arch.config_lock); 1546 1547 if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) && 1548 kvm_vcpu_init_changed(vcpu, init)) 1549 goto out_unlock; 1550 1551 bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES); 1552 1553 ret = kvm_setup_vcpu(vcpu); 1554 if (ret) 1555 goto out_unlock; 1556 1557 /* Now we know what it is, we can reset it. */ 1558 kvm_reset_vcpu(vcpu); 1559 1560 set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags); 1561 vcpu_set_flag(vcpu, VCPU_INITIALIZED); 1562 ret = 0; 1563 out_unlock: 1564 mutex_unlock(&kvm->arch.config_lock); 1565 return ret; 1566 } 1567 1568 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1569 const struct kvm_vcpu_init *init) 1570 { 1571 int ret; 1572 1573 if (init->target != KVM_ARM_TARGET_GENERIC_V8 && 1574 init->target != kvm_target_cpu()) 1575 return -EINVAL; 1576 1577 ret = kvm_vcpu_init_check_features(vcpu, init); 1578 if (ret) 1579 return ret; 1580 1581 if (!kvm_vcpu_initialized(vcpu)) 1582 return __kvm_vcpu_set_target(vcpu, init); 1583 1584 if (kvm_vcpu_init_changed(vcpu, init)) 1585 return -EINVAL; 1586 1587 kvm_reset_vcpu(vcpu); 1588 return 0; 1589 } 1590 1591 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 1592 struct kvm_vcpu_init *init) 1593 { 1594 bool power_off = false; 1595 int ret; 1596 1597 /* 1598 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid 1599 * reflecting it in the finalized feature set, thus limiting its scope 1600 * to a single KVM_ARM_VCPU_INIT call. 1601 */ 1602 if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) { 1603 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF); 1604 power_off = true; 1605 } 1606 1607 ret = kvm_vcpu_set_target(vcpu, init); 1608 if (ret) 1609 return ret; 1610 1611 /* 1612 * Ensure a rebooted VM will fault in RAM pages and detect if the 1613 * guest MMU is turned off and flush the caches as needed. 1614 * 1615 * S2FWB enforces all memory accesses to RAM being cacheable, 1616 * ensuring that the data side is always coherent. We still 1617 * need to invalidate the I-cache though, as FWB does *not* 1618 * imply CTR_EL0.DIC. 1619 */ 1620 if (vcpu_has_run_once(vcpu)) { 1621 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 1622 stage2_unmap_vm(vcpu->kvm); 1623 else 1624 icache_inval_all_pou(); 1625 } 1626 1627 vcpu_reset_hcr(vcpu); 1628 1629 /* 1630 * Handle the "start in power-off" case. 1631 */ 1632 spin_lock(&vcpu->arch.mp_state_lock); 1633 1634 if (power_off) 1635 __kvm_arm_vcpu_power_off(vcpu); 1636 else 1637 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); 1638 1639 spin_unlock(&vcpu->arch.mp_state_lock); 1640 1641 return 0; 1642 } 1643 1644 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 1645 struct kvm_device_attr *attr) 1646 { 1647 int ret = -ENXIO; 1648 1649 switch (attr->group) { 1650 default: 1651 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 1652 break; 1653 } 1654 1655 return ret; 1656 } 1657 1658 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 1659 struct kvm_device_attr *attr) 1660 { 1661 int ret = -ENXIO; 1662 1663 switch (attr->group) { 1664 default: 1665 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 1666 break; 1667 } 1668 1669 return ret; 1670 } 1671 1672 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 1673 struct kvm_device_attr *attr) 1674 { 1675 int ret = -ENXIO; 1676 1677 switch (attr->group) { 1678 default: 1679 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 1680 break; 1681 } 1682 1683 return ret; 1684 } 1685 1686 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1687 struct kvm_vcpu_events *events) 1688 { 1689 memset(events, 0, sizeof(*events)); 1690 1691 return __kvm_arm_vcpu_get_events(vcpu, events); 1692 } 1693 1694 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1695 struct kvm_vcpu_events *events) 1696 { 1697 int i; 1698 1699 /* check whether the reserved field is zero */ 1700 for (i = 0; i < ARRAY_SIZE(events->reserved); i++) 1701 if (events->reserved[i]) 1702 return -EINVAL; 1703 1704 /* check whether the pad field is zero */ 1705 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) 1706 if (events->exception.pad[i]) 1707 return -EINVAL; 1708 1709 return __kvm_arm_vcpu_set_events(vcpu, events); 1710 } 1711 1712 long kvm_arch_vcpu_ioctl(struct file *filp, 1713 unsigned int ioctl, unsigned long arg) 1714 { 1715 struct kvm_vcpu *vcpu = filp->private_data; 1716 void __user *argp = (void __user *)arg; 1717 struct kvm_device_attr attr; 1718 long r; 1719 1720 switch (ioctl) { 1721 case KVM_ARM_VCPU_INIT: { 1722 struct kvm_vcpu_init init; 1723 1724 r = -EFAULT; 1725 if (copy_from_user(&init, argp, sizeof(init))) 1726 break; 1727 1728 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 1729 break; 1730 } 1731 case KVM_SET_ONE_REG: 1732 case KVM_GET_ONE_REG: { 1733 struct kvm_one_reg reg; 1734 1735 r = -ENOEXEC; 1736 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1737 break; 1738 1739 r = -EFAULT; 1740 if (copy_from_user(®, argp, sizeof(reg))) 1741 break; 1742 1743 /* 1744 * We could owe a reset due to PSCI. Handle the pending reset 1745 * here to ensure userspace register accesses are ordered after 1746 * the reset. 1747 */ 1748 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1749 kvm_reset_vcpu(vcpu); 1750 1751 if (ioctl == KVM_SET_ONE_REG) 1752 r = kvm_arm_set_reg(vcpu, ®); 1753 else 1754 r = kvm_arm_get_reg(vcpu, ®); 1755 break; 1756 } 1757 case KVM_GET_REG_LIST: { 1758 struct kvm_reg_list __user *user_list = argp; 1759 struct kvm_reg_list reg_list; 1760 unsigned n; 1761 1762 r = -ENOEXEC; 1763 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1764 break; 1765 1766 r = -EPERM; 1767 if (!kvm_arm_vcpu_is_finalized(vcpu)) 1768 break; 1769 1770 r = -EFAULT; 1771 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1772 break; 1773 n = reg_list.n; 1774 reg_list.n = kvm_arm_num_regs(vcpu); 1775 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1776 break; 1777 r = -E2BIG; 1778 if (n < reg_list.n) 1779 break; 1780 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1781 break; 1782 } 1783 case KVM_SET_DEVICE_ATTR: { 1784 r = -EFAULT; 1785 if (copy_from_user(&attr, argp, sizeof(attr))) 1786 break; 1787 r = kvm_arm_vcpu_set_attr(vcpu, &attr); 1788 break; 1789 } 1790 case KVM_GET_DEVICE_ATTR: { 1791 r = -EFAULT; 1792 if (copy_from_user(&attr, argp, sizeof(attr))) 1793 break; 1794 r = kvm_arm_vcpu_get_attr(vcpu, &attr); 1795 break; 1796 } 1797 case KVM_HAS_DEVICE_ATTR: { 1798 r = -EFAULT; 1799 if (copy_from_user(&attr, argp, sizeof(attr))) 1800 break; 1801 r = kvm_arm_vcpu_has_attr(vcpu, &attr); 1802 break; 1803 } 1804 case KVM_GET_VCPU_EVENTS: { 1805 struct kvm_vcpu_events events; 1806 1807 if (!kvm_vcpu_initialized(vcpu)) 1808 return -ENOEXEC; 1809 1810 if (kvm_arm_vcpu_get_events(vcpu, &events)) 1811 return -EINVAL; 1812 1813 if (copy_to_user(argp, &events, sizeof(events))) 1814 return -EFAULT; 1815 1816 return 0; 1817 } 1818 case KVM_SET_VCPU_EVENTS: { 1819 struct kvm_vcpu_events events; 1820 1821 if (!kvm_vcpu_initialized(vcpu)) 1822 return -ENOEXEC; 1823 1824 if (copy_from_user(&events, argp, sizeof(events))) 1825 return -EFAULT; 1826 1827 return kvm_arm_vcpu_set_events(vcpu, &events); 1828 } 1829 case KVM_ARM_VCPU_FINALIZE: { 1830 int what; 1831 1832 if (!kvm_vcpu_initialized(vcpu)) 1833 return -ENOEXEC; 1834 1835 if (get_user(what, (const int __user *)argp)) 1836 return -EFAULT; 1837 1838 return kvm_arm_vcpu_finalize(vcpu, what); 1839 } 1840 default: 1841 r = -EINVAL; 1842 } 1843 1844 return r; 1845 } 1846 1847 long kvm_arch_vcpu_unlocked_ioctl(struct file *filp, unsigned int ioctl, 1848 unsigned long arg) 1849 { 1850 return -ENOIOCTLCMD; 1851 } 1852 1853 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 1854 { 1855 1856 } 1857 1858 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1859 struct kvm_arm_device_addr *dev_addr) 1860 { 1861 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) { 1862 case KVM_ARM_DEVICE_VGIC_V2: 1863 if (!vgic_present) 1864 return -ENXIO; 1865 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr); 1866 default: 1867 return -ENODEV; 1868 } 1869 } 1870 1871 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1872 { 1873 switch (attr->group) { 1874 case KVM_ARM_VM_SMCCC_CTRL: 1875 return kvm_vm_smccc_has_attr(kvm, attr); 1876 default: 1877 return -ENXIO; 1878 } 1879 } 1880 1881 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1882 { 1883 switch (attr->group) { 1884 case KVM_ARM_VM_SMCCC_CTRL: 1885 return kvm_vm_smccc_set_attr(kvm, attr); 1886 default: 1887 return -ENXIO; 1888 } 1889 } 1890 1891 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 1892 { 1893 struct kvm *kvm = filp->private_data; 1894 void __user *argp = (void __user *)arg; 1895 struct kvm_device_attr attr; 1896 1897 switch (ioctl) { 1898 case KVM_CREATE_IRQCHIP: { 1899 int ret; 1900 if (!vgic_present) 1901 return -ENXIO; 1902 mutex_lock(&kvm->lock); 1903 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1904 mutex_unlock(&kvm->lock); 1905 return ret; 1906 } 1907 case KVM_ARM_SET_DEVICE_ADDR: { 1908 struct kvm_arm_device_addr dev_addr; 1909 1910 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1911 return -EFAULT; 1912 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1913 } 1914 case KVM_ARM_PREFERRED_TARGET: { 1915 struct kvm_vcpu_init init = { 1916 .target = KVM_ARM_TARGET_GENERIC_V8, 1917 }; 1918 1919 if (copy_to_user(argp, &init, sizeof(init))) 1920 return -EFAULT; 1921 1922 return 0; 1923 } 1924 case KVM_ARM_MTE_COPY_TAGS: { 1925 struct kvm_arm_copy_mte_tags copy_tags; 1926 1927 if (copy_from_user(©_tags, argp, sizeof(copy_tags))) 1928 return -EFAULT; 1929 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags); 1930 } 1931 case KVM_ARM_SET_COUNTER_OFFSET: { 1932 struct kvm_arm_counter_offset offset; 1933 1934 if (copy_from_user(&offset, argp, sizeof(offset))) 1935 return -EFAULT; 1936 return kvm_vm_ioctl_set_counter_offset(kvm, &offset); 1937 } 1938 case KVM_HAS_DEVICE_ATTR: { 1939 if (copy_from_user(&attr, argp, sizeof(attr))) 1940 return -EFAULT; 1941 1942 return kvm_vm_has_attr(kvm, &attr); 1943 } 1944 case KVM_SET_DEVICE_ATTR: { 1945 if (copy_from_user(&attr, argp, sizeof(attr))) 1946 return -EFAULT; 1947 1948 return kvm_vm_set_attr(kvm, &attr); 1949 } 1950 case KVM_ARM_GET_REG_WRITABLE_MASKS: { 1951 struct reg_mask_range range; 1952 1953 if (copy_from_user(&range, argp, sizeof(range))) 1954 return -EFAULT; 1955 return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range); 1956 } 1957 default: 1958 return -EINVAL; 1959 } 1960 } 1961 1962 static unsigned long nvhe_percpu_size(void) 1963 { 1964 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - 1965 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); 1966 } 1967 1968 static unsigned long nvhe_percpu_order(void) 1969 { 1970 unsigned long size = nvhe_percpu_size(); 1971 1972 return size ? get_order(size) : 0; 1973 } 1974 1975 static size_t pkvm_host_sve_state_order(void) 1976 { 1977 return get_order(pkvm_host_sve_state_size()); 1978 } 1979 1980 /* A lookup table holding the hypervisor VA for each vector slot */ 1981 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]; 1982 1983 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot) 1984 { 1985 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot); 1986 } 1987 1988 static int kvm_init_vector_slots(void) 1989 { 1990 int err; 1991 void *base; 1992 1993 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 1994 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT); 1995 1996 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); 1997 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT); 1998 1999 if (kvm_system_needs_idmapped_vectors() && 2000 !is_protected_kvm_enabled()) { 2001 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs), 2002 __BP_HARDEN_HYP_VECS_SZ, &base); 2003 if (err) 2004 return err; 2005 } 2006 2007 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT); 2008 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT); 2009 return 0; 2010 } 2011 2012 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits) 2013 { 2014 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 2015 unsigned long tcr; 2016 2017 /* 2018 * Calculate the raw per-cpu offset without a translation from the 2019 * kernel's mapping to the linear mapping, and store it in tpidr_el2 2020 * so that we can use adr_l to access per-cpu variables in EL2. 2021 * Also drop the KASAN tag which gets in the way... 2022 */ 2023 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) - 2024 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); 2025 2026 params->mair_el2 = read_sysreg(mair_el1); 2027 2028 tcr = read_sysreg(tcr_el1); 2029 if (cpus_have_final_cap(ARM64_KVM_HVHE)) { 2030 tcr &= ~(TCR_HD | TCR_HA | TCR_A1 | TCR_T0SZ_MASK); 2031 tcr |= TCR_EPD1_MASK; 2032 } else { 2033 unsigned long ips = FIELD_GET(TCR_IPS_MASK, tcr); 2034 2035 tcr &= TCR_EL2_MASK; 2036 tcr |= TCR_EL2_RES1 | FIELD_PREP(TCR_EL2_PS_MASK, ips); 2037 if (lpa2_is_enabled()) 2038 tcr |= TCR_EL2_DS; 2039 } 2040 tcr |= TCR_T0SZ(hyp_va_bits); 2041 params->tcr_el2 = tcr; 2042 2043 params->pgd_pa = kvm_mmu_get_httbr(); 2044 if (is_protected_kvm_enabled()) 2045 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS; 2046 else 2047 params->hcr_el2 = HCR_HOST_NVHE_FLAGS; 2048 if (cpus_have_final_cap(ARM64_KVM_HVHE)) 2049 params->hcr_el2 |= HCR_E2H; 2050 params->vttbr = params->vtcr = 0; 2051 2052 /* 2053 * Flush the init params from the data cache because the struct will 2054 * be read while the MMU is off. 2055 */ 2056 kvm_flush_dcache_to_poc(params, sizeof(*params)); 2057 } 2058 2059 static void hyp_install_host_vector(void) 2060 { 2061 struct kvm_nvhe_init_params *params; 2062 struct arm_smccc_res res; 2063 2064 /* Switch from the HYP stub to our own HYP init vector */ 2065 __hyp_set_vectors(kvm_get_idmap_vector()); 2066 2067 /* 2068 * Call initialization code, and switch to the full blown HYP code. 2069 * If the cpucaps haven't been finalized yet, something has gone very 2070 * wrong, and hyp will crash and burn when it uses any 2071 * cpus_have_*_cap() wrapper. 2072 */ 2073 BUG_ON(!system_capabilities_finalized()); 2074 params = this_cpu_ptr_nvhe_sym(kvm_init_params); 2075 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res); 2076 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); 2077 } 2078 2079 static void cpu_init_hyp_mode(void) 2080 { 2081 hyp_install_host_vector(); 2082 2083 /* 2084 * Disabling SSBD on a non-VHE system requires us to enable SSBS 2085 * at EL2. 2086 */ 2087 if (this_cpu_has_cap(ARM64_SSBS) && 2088 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { 2089 kvm_call_hyp_nvhe(__kvm_enable_ssbs); 2090 } 2091 } 2092 2093 static void cpu_hyp_reset(void) 2094 { 2095 if (!is_kernel_in_hyp_mode()) 2096 __hyp_reset_vectors(); 2097 } 2098 2099 /* 2100 * EL2 vectors can be mapped and rerouted in a number of ways, 2101 * depending on the kernel configuration and CPU present: 2102 * 2103 * - If the CPU is affected by Spectre-v2, the hardening sequence is 2104 * placed in one of the vector slots, which is executed before jumping 2105 * to the real vectors. 2106 * 2107 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot 2108 * containing the hardening sequence is mapped next to the idmap page, 2109 * and executed before jumping to the real vectors. 2110 * 2111 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an 2112 * empty slot is selected, mapped next to the idmap page, and 2113 * executed before jumping to the real vectors. 2114 * 2115 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with 2116 * VHE, as we don't have hypervisor-specific mappings. If the system 2117 * is VHE and yet selects this capability, it will be ignored. 2118 */ 2119 static void cpu_set_hyp_vector(void) 2120 { 2121 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data); 2122 void *vector = hyp_spectre_vector_selector[data->slot]; 2123 2124 if (!is_protected_kvm_enabled()) 2125 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector; 2126 else 2127 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot); 2128 } 2129 2130 static void cpu_hyp_init_context(void) 2131 { 2132 kvm_init_host_cpu_context(host_data_ptr(host_ctxt)); 2133 kvm_init_host_debug_data(); 2134 2135 if (!is_kernel_in_hyp_mode()) 2136 cpu_init_hyp_mode(); 2137 } 2138 2139 static void cpu_hyp_init_features(void) 2140 { 2141 cpu_set_hyp_vector(); 2142 2143 if (is_kernel_in_hyp_mode()) { 2144 kvm_timer_init_vhe(); 2145 kvm_debug_init_vhe(); 2146 } 2147 2148 if (vgic_present) 2149 kvm_vgic_init_cpu_hardware(); 2150 } 2151 2152 static void cpu_hyp_reinit(void) 2153 { 2154 cpu_hyp_reset(); 2155 cpu_hyp_init_context(); 2156 cpu_hyp_init_features(); 2157 } 2158 2159 static void cpu_hyp_init(void *discard) 2160 { 2161 if (!__this_cpu_read(kvm_hyp_initialized)) { 2162 cpu_hyp_reinit(); 2163 __this_cpu_write(kvm_hyp_initialized, 1); 2164 } 2165 } 2166 2167 static void cpu_hyp_uninit(void *discard) 2168 { 2169 if (!is_protected_kvm_enabled() && __this_cpu_read(kvm_hyp_initialized)) { 2170 cpu_hyp_reset(); 2171 __this_cpu_write(kvm_hyp_initialized, 0); 2172 } 2173 } 2174 2175 int kvm_arch_enable_virtualization_cpu(void) 2176 { 2177 /* 2178 * Most calls to this function are made with migration 2179 * disabled, but not with preemption disabled. The former is 2180 * enough to ensure correctness, but most of the helpers 2181 * expect the later and will throw a tantrum otherwise. 2182 */ 2183 preempt_disable(); 2184 2185 cpu_hyp_init(NULL); 2186 2187 kvm_vgic_cpu_up(); 2188 kvm_timer_cpu_up(); 2189 2190 preempt_enable(); 2191 2192 return 0; 2193 } 2194 2195 void kvm_arch_disable_virtualization_cpu(void) 2196 { 2197 kvm_timer_cpu_down(); 2198 kvm_vgic_cpu_down(); 2199 2200 if (!is_protected_kvm_enabled()) 2201 cpu_hyp_uninit(NULL); 2202 } 2203 2204 #ifdef CONFIG_CPU_PM 2205 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 2206 unsigned long cmd, 2207 void *v) 2208 { 2209 /* 2210 * kvm_hyp_initialized is left with its old value over 2211 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 2212 * re-enable hyp. 2213 */ 2214 switch (cmd) { 2215 case CPU_PM_ENTER: 2216 if (__this_cpu_read(kvm_hyp_initialized)) 2217 /* 2218 * don't update kvm_hyp_initialized here 2219 * so that the hyp will be re-enabled 2220 * when we resume. See below. 2221 */ 2222 cpu_hyp_reset(); 2223 2224 return NOTIFY_OK; 2225 case CPU_PM_ENTER_FAILED: 2226 case CPU_PM_EXIT: 2227 if (__this_cpu_read(kvm_hyp_initialized)) 2228 /* The hyp was enabled before suspend. */ 2229 cpu_hyp_reinit(); 2230 2231 return NOTIFY_OK; 2232 2233 default: 2234 return NOTIFY_DONE; 2235 } 2236 } 2237 2238 static struct notifier_block hyp_init_cpu_pm_nb = { 2239 .notifier_call = hyp_init_cpu_pm_notifier, 2240 }; 2241 2242 static void __init hyp_cpu_pm_init(void) 2243 { 2244 if (!is_protected_kvm_enabled()) 2245 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 2246 } 2247 static void __init hyp_cpu_pm_exit(void) 2248 { 2249 if (!is_protected_kvm_enabled()) 2250 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 2251 } 2252 #else 2253 static inline void __init hyp_cpu_pm_init(void) 2254 { 2255 } 2256 static inline void __init hyp_cpu_pm_exit(void) 2257 { 2258 } 2259 #endif 2260 2261 static void __init init_cpu_logical_map(void) 2262 { 2263 unsigned int cpu; 2264 2265 /* 2266 * Copy the MPIDR <-> logical CPU ID mapping to hyp. 2267 * Only copy the set of online CPUs whose features have been checked 2268 * against the finalized system capabilities. The hypervisor will not 2269 * allow any other CPUs from the `possible` set to boot. 2270 */ 2271 for_each_online_cpu(cpu) 2272 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu); 2273 } 2274 2275 #define init_psci_0_1_impl_state(config, what) \ 2276 config.psci_0_1_ ## what ## _implemented = psci_ops.what 2277 2278 static bool __init init_psci_relay(void) 2279 { 2280 /* 2281 * If PSCI has not been initialized, protected KVM cannot install 2282 * itself on newly booted CPUs. 2283 */ 2284 if (!psci_ops.get_version) { 2285 kvm_err("Cannot initialize protected mode without PSCI\n"); 2286 return false; 2287 } 2288 2289 kvm_host_psci_config.version = psci_ops.get_version(); 2290 kvm_host_psci_config.smccc_version = arm_smccc_get_version(); 2291 2292 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) { 2293 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids(); 2294 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend); 2295 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on); 2296 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off); 2297 init_psci_0_1_impl_state(kvm_host_psci_config, migrate); 2298 } 2299 return true; 2300 } 2301 2302 static int __init init_subsystems(void) 2303 { 2304 int err = 0; 2305 2306 /* 2307 * Enable hardware so that subsystem initialisation can access EL2. 2308 */ 2309 on_each_cpu(cpu_hyp_init, NULL, 1); 2310 2311 /* 2312 * Register CPU lower-power notifier 2313 */ 2314 hyp_cpu_pm_init(); 2315 2316 /* 2317 * Init HYP view of VGIC 2318 */ 2319 err = kvm_vgic_hyp_init(); 2320 switch (err) { 2321 case 0: 2322 vgic_present = true; 2323 break; 2324 case -ENODEV: 2325 case -ENXIO: 2326 /* 2327 * No VGIC? No pKVM for you. 2328 * 2329 * Protected mode assumes that VGICv3 is present, so no point 2330 * in trying to hobble along if vgic initialization fails. 2331 */ 2332 if (is_protected_kvm_enabled()) 2333 goto out; 2334 2335 /* 2336 * Otherwise, userspace could choose to implement a GIC for its 2337 * guest on non-cooperative hardware. 2338 */ 2339 vgic_present = false; 2340 err = 0; 2341 break; 2342 default: 2343 goto out; 2344 } 2345 2346 if (kvm_mode == KVM_MODE_NV && 2347 !(vgic_present && (kvm_vgic_global_state.type == VGIC_V3 || 2348 kvm_vgic_global_state.has_gcie_v3_compat))) { 2349 kvm_err("NV support requires GICv3 or GICv5 with legacy support, giving up\n"); 2350 err = -EINVAL; 2351 goto out; 2352 } 2353 2354 /* 2355 * Init HYP architected timer support 2356 */ 2357 err = kvm_timer_hyp_init(vgic_present); 2358 if (err) 2359 goto out; 2360 2361 kvm_register_perf_callbacks(NULL); 2362 2363 out: 2364 if (err) 2365 hyp_cpu_pm_exit(); 2366 2367 if (err || !is_protected_kvm_enabled()) 2368 on_each_cpu(cpu_hyp_uninit, NULL, 1); 2369 2370 return err; 2371 } 2372 2373 static void __init teardown_subsystems(void) 2374 { 2375 kvm_unregister_perf_callbacks(); 2376 hyp_cpu_pm_exit(); 2377 } 2378 2379 static void __init teardown_hyp_mode(void) 2380 { 2381 bool free_sve = system_supports_sve() && is_protected_kvm_enabled(); 2382 int cpu; 2383 2384 free_hyp_pgds(); 2385 for_each_possible_cpu(cpu) { 2386 if (per_cpu(kvm_hyp_initialized, cpu)) 2387 continue; 2388 2389 free_pages(per_cpu(kvm_arm_hyp_stack_base, cpu), NVHE_STACK_SHIFT - PAGE_SHIFT); 2390 2391 if (!kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]) 2392 continue; 2393 2394 if (free_sve) { 2395 struct cpu_sve_state *sve_state; 2396 2397 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2398 free_pages((unsigned long) sve_state, pkvm_host_sve_state_order()); 2399 } 2400 2401 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order()); 2402 2403 } 2404 } 2405 2406 static int __init do_pkvm_init(u32 hyp_va_bits) 2407 { 2408 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)); 2409 int ret; 2410 2411 preempt_disable(); 2412 cpu_hyp_init_context(); 2413 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size, 2414 num_possible_cpus(), kern_hyp_va(per_cpu_base), 2415 hyp_va_bits); 2416 cpu_hyp_init_features(); 2417 2418 /* 2419 * The stub hypercalls are now disabled, so set our local flag to 2420 * prevent a later re-init attempt in kvm_arch_enable_virtualization_cpu(). 2421 */ 2422 __this_cpu_write(kvm_hyp_initialized, 1); 2423 preempt_enable(); 2424 2425 return ret; 2426 } 2427 2428 static u64 get_hyp_id_aa64pfr0_el1(void) 2429 { 2430 /* 2431 * Track whether the system isn't affected by spectre/meltdown in the 2432 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs. 2433 * Although this is per-CPU, we make it global for simplicity, e.g., not 2434 * to have to worry about vcpu migration. 2435 * 2436 * Unlike for non-protected VMs, userspace cannot override this for 2437 * protected VMs. 2438 */ 2439 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 2440 2441 val &= ~(ID_AA64PFR0_EL1_CSV2 | 2442 ID_AA64PFR0_EL1_CSV3); 2443 2444 val |= FIELD_PREP(ID_AA64PFR0_EL1_CSV2, 2445 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED); 2446 val |= FIELD_PREP(ID_AA64PFR0_EL1_CSV3, 2447 arm64_get_meltdown_state() == SPECTRE_UNAFFECTED); 2448 2449 return val; 2450 } 2451 2452 static void kvm_hyp_init_symbols(void) 2453 { 2454 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1(); 2455 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1); 2456 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1); 2457 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 2458 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 2459 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 2460 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 2461 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1); 2462 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1); 2463 kvm_nvhe_sym(__icache_flags) = __icache_flags; 2464 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits; 2465 2466 /* Propagate the FGT state to the nVHE side */ 2467 kvm_nvhe_sym(hfgrtr_masks) = hfgrtr_masks; 2468 kvm_nvhe_sym(hfgwtr_masks) = hfgwtr_masks; 2469 kvm_nvhe_sym(hfgitr_masks) = hfgitr_masks; 2470 kvm_nvhe_sym(hdfgrtr_masks) = hdfgrtr_masks; 2471 kvm_nvhe_sym(hdfgwtr_masks) = hdfgwtr_masks; 2472 kvm_nvhe_sym(hafgrtr_masks) = hafgrtr_masks; 2473 kvm_nvhe_sym(hfgrtr2_masks) = hfgrtr2_masks; 2474 kvm_nvhe_sym(hfgwtr2_masks) = hfgwtr2_masks; 2475 kvm_nvhe_sym(hfgitr2_masks) = hfgitr2_masks; 2476 kvm_nvhe_sym(hdfgrtr2_masks)= hdfgrtr2_masks; 2477 kvm_nvhe_sym(hdfgwtr2_masks)= hdfgwtr2_masks; 2478 2479 /* 2480 * Flush entire BSS since part of its data containing init symbols is read 2481 * while the MMU is off. 2482 */ 2483 kvm_flush_dcache_to_poc(kvm_ksym_ref(__hyp_bss_start), 2484 kvm_ksym_ref(__hyp_bss_end) - kvm_ksym_ref(__hyp_bss_start)); 2485 } 2486 2487 static int __init kvm_hyp_init_protection(u32 hyp_va_bits) 2488 { 2489 void *addr = phys_to_virt(hyp_mem_base); 2490 int ret; 2491 2492 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP); 2493 if (ret) 2494 return ret; 2495 2496 ret = do_pkvm_init(hyp_va_bits); 2497 if (ret) 2498 return ret; 2499 2500 free_hyp_pgds(); 2501 2502 return 0; 2503 } 2504 2505 static int init_pkvm_host_sve_state(void) 2506 { 2507 int cpu; 2508 2509 if (!system_supports_sve()) 2510 return 0; 2511 2512 /* Allocate pages for host sve state in protected mode. */ 2513 for_each_possible_cpu(cpu) { 2514 struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order()); 2515 2516 if (!page) 2517 return -ENOMEM; 2518 2519 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page); 2520 } 2521 2522 /* 2523 * Don't map the pages in hyp since these are only used in protected 2524 * mode, which will (re)create its own mapping when initialized. 2525 */ 2526 2527 return 0; 2528 } 2529 2530 /* 2531 * Finalizes the initialization of hyp mode, once everything else is initialized 2532 * and the initialziation process cannot fail. 2533 */ 2534 static void finalize_init_hyp_mode(void) 2535 { 2536 int cpu; 2537 2538 if (system_supports_sve() && is_protected_kvm_enabled()) { 2539 for_each_possible_cpu(cpu) { 2540 struct cpu_sve_state *sve_state; 2541 2542 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2543 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = 2544 kern_hyp_va(sve_state); 2545 } 2546 } 2547 } 2548 2549 static void pkvm_hyp_init_ptrauth(void) 2550 { 2551 struct kvm_cpu_context *hyp_ctxt; 2552 int cpu; 2553 2554 for_each_possible_cpu(cpu) { 2555 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu); 2556 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long(); 2557 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long(); 2558 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long(); 2559 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long(); 2560 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long(); 2561 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long(); 2562 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long(); 2563 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long(); 2564 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long(); 2565 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long(); 2566 } 2567 } 2568 2569 /* Inits Hyp-mode on all online CPUs */ 2570 static int __init init_hyp_mode(void) 2571 { 2572 u32 hyp_va_bits; 2573 int cpu; 2574 int err = -ENOMEM; 2575 2576 /* 2577 * The protected Hyp-mode cannot be initialized if the memory pool 2578 * allocation has failed. 2579 */ 2580 if (is_protected_kvm_enabled() && !hyp_mem_base) 2581 goto out_err; 2582 2583 /* 2584 * Allocate Hyp PGD and setup Hyp identity mapping 2585 */ 2586 err = kvm_mmu_init(&hyp_va_bits); 2587 if (err) 2588 goto out_err; 2589 2590 /* 2591 * Allocate stack pages for Hypervisor-mode 2592 */ 2593 for_each_possible_cpu(cpu) { 2594 unsigned long stack_base; 2595 2596 stack_base = __get_free_pages(GFP_KERNEL, NVHE_STACK_SHIFT - PAGE_SHIFT); 2597 if (!stack_base) { 2598 err = -ENOMEM; 2599 goto out_err; 2600 } 2601 2602 per_cpu(kvm_arm_hyp_stack_base, cpu) = stack_base; 2603 } 2604 2605 /* 2606 * Allocate and initialize pages for Hypervisor-mode percpu regions. 2607 */ 2608 for_each_possible_cpu(cpu) { 2609 struct page *page; 2610 void *page_addr; 2611 2612 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); 2613 if (!page) { 2614 err = -ENOMEM; 2615 goto out_err; 2616 } 2617 2618 page_addr = page_address(page); 2619 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); 2620 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr; 2621 } 2622 2623 /* 2624 * Map the Hyp-code called directly from the host 2625 */ 2626 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 2627 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 2628 if (err) { 2629 kvm_err("Cannot map world-switch code\n"); 2630 goto out_err; 2631 } 2632 2633 err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_start), 2634 kvm_ksym_ref(__hyp_data_end), PAGE_HYP); 2635 if (err) { 2636 kvm_err("Cannot map .hyp.data section\n"); 2637 goto out_err; 2638 } 2639 2640 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start), 2641 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO); 2642 if (err) { 2643 kvm_err("Cannot map .hyp.rodata section\n"); 2644 goto out_err; 2645 } 2646 2647 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 2648 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 2649 if (err) { 2650 kvm_err("Cannot map rodata section\n"); 2651 goto out_err; 2652 } 2653 2654 /* 2655 * .hyp.bss is guaranteed to be placed at the beginning of the .bss 2656 * section thanks to an assertion in the linker script. Map it RW and 2657 * the rest of .bss RO. 2658 */ 2659 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start), 2660 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP); 2661 if (err) { 2662 kvm_err("Cannot map hyp bss section: %d\n", err); 2663 goto out_err; 2664 } 2665 2666 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end), 2667 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 2668 if (err) { 2669 kvm_err("Cannot map bss section\n"); 2670 goto out_err; 2671 } 2672 2673 /* 2674 * Map the Hyp stack pages 2675 */ 2676 for_each_possible_cpu(cpu) { 2677 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 2678 char *stack_base = (char *)per_cpu(kvm_arm_hyp_stack_base, cpu); 2679 2680 err = create_hyp_stack(__pa(stack_base), ¶ms->stack_hyp_va); 2681 if (err) { 2682 kvm_err("Cannot map hyp stack\n"); 2683 goto out_err; 2684 } 2685 2686 /* 2687 * Save the stack PA in nvhe_init_params. This will be needed 2688 * to recreate the stack mapping in protected nVHE mode. 2689 * __hyp_pa() won't do the right thing there, since the stack 2690 * has been mapped in the flexible private VA space. 2691 */ 2692 params->stack_pa = __pa(stack_base); 2693 } 2694 2695 for_each_possible_cpu(cpu) { 2696 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]; 2697 char *percpu_end = percpu_begin + nvhe_percpu_size(); 2698 2699 /* Map Hyp percpu pages */ 2700 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); 2701 if (err) { 2702 kvm_err("Cannot map hyp percpu region\n"); 2703 goto out_err; 2704 } 2705 2706 /* Prepare the CPU initialization parameters */ 2707 cpu_prepare_hyp_mode(cpu, hyp_va_bits); 2708 } 2709 2710 kvm_hyp_init_symbols(); 2711 2712 if (is_protected_kvm_enabled()) { 2713 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) && 2714 cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH)) 2715 pkvm_hyp_init_ptrauth(); 2716 2717 init_cpu_logical_map(); 2718 2719 if (!init_psci_relay()) { 2720 err = -ENODEV; 2721 goto out_err; 2722 } 2723 2724 err = init_pkvm_host_sve_state(); 2725 if (err) 2726 goto out_err; 2727 2728 err = kvm_hyp_init_protection(hyp_va_bits); 2729 if (err) { 2730 kvm_err("Failed to init hyp memory protection\n"); 2731 goto out_err; 2732 } 2733 } 2734 2735 return 0; 2736 2737 out_err: 2738 teardown_hyp_mode(); 2739 kvm_err("error initializing Hyp mode: %d\n", err); 2740 return err; 2741 } 2742 2743 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 2744 { 2745 struct kvm_vcpu *vcpu = NULL; 2746 struct kvm_mpidr_data *data; 2747 unsigned long i; 2748 2749 mpidr &= MPIDR_HWID_BITMASK; 2750 2751 rcu_read_lock(); 2752 data = rcu_dereference(kvm->arch.mpidr_data); 2753 2754 if (data) { 2755 u16 idx = kvm_mpidr_index(data, mpidr); 2756 2757 vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]); 2758 if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu)) 2759 vcpu = NULL; 2760 } 2761 2762 rcu_read_unlock(); 2763 2764 if (vcpu) 2765 return vcpu; 2766 2767 kvm_for_each_vcpu(i, vcpu, kvm) { 2768 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 2769 return vcpu; 2770 } 2771 return NULL; 2772 } 2773 2774 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 2775 { 2776 return irqchip_in_kernel(kvm); 2777 } 2778 2779 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 2780 struct irq_bypass_producer *prod) 2781 { 2782 struct kvm_kernel_irqfd *irqfd = 2783 container_of(cons, struct kvm_kernel_irqfd, consumer); 2784 struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry; 2785 2786 /* 2787 * The only thing we have a chance of directly-injecting is LPIs. Maybe 2788 * one day... 2789 */ 2790 if (irq_entry->type != KVM_IRQ_ROUTING_MSI) 2791 return 0; 2792 2793 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 2794 &irqfd->irq_entry); 2795 } 2796 2797 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 2798 struct irq_bypass_producer *prod) 2799 { 2800 struct kvm_kernel_irqfd *irqfd = 2801 container_of(cons, struct kvm_kernel_irqfd, consumer); 2802 struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry; 2803 2804 if (irq_entry->type != KVM_IRQ_ROUTING_MSI) 2805 return; 2806 2807 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq); 2808 } 2809 2810 void kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd *irqfd, 2811 struct kvm_kernel_irq_routing_entry *old, 2812 struct kvm_kernel_irq_routing_entry *new) 2813 { 2814 if (old->type == KVM_IRQ_ROUTING_MSI && 2815 new->type == KVM_IRQ_ROUTING_MSI && 2816 !memcmp(&old->msi, &new->msi, sizeof(new->msi))) 2817 return; 2818 2819 /* 2820 * Remapping the vLPI requires taking the its_lock mutex to resolve 2821 * the new translation. We're in spinlock land at this point, so no 2822 * chance of resolving the translation. 2823 * 2824 * Unmap the vLPI and fall back to software LPI injection. 2825 */ 2826 return kvm_vgic_v4_unset_forwarding(irqfd->kvm, irqfd->producer->irq); 2827 } 2828 2829 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 2830 { 2831 struct kvm_kernel_irqfd *irqfd = 2832 container_of(cons, struct kvm_kernel_irqfd, consumer); 2833 2834 kvm_arm_halt_guest(irqfd->kvm); 2835 } 2836 2837 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 2838 { 2839 struct kvm_kernel_irqfd *irqfd = 2840 container_of(cons, struct kvm_kernel_irqfd, consumer); 2841 2842 kvm_arm_resume_guest(irqfd->kvm); 2843 } 2844 2845 /* Initialize Hyp-mode and memory mappings on all CPUs */ 2846 static __init int kvm_arm_init(void) 2847 { 2848 int err; 2849 bool in_hyp_mode; 2850 2851 if (!is_hyp_mode_available()) { 2852 kvm_info("HYP mode not available\n"); 2853 return -ENODEV; 2854 } 2855 2856 if (kvm_get_mode() == KVM_MODE_NONE) { 2857 kvm_info("KVM disabled from command line\n"); 2858 return -ENODEV; 2859 } 2860 2861 err = kvm_sys_reg_table_init(); 2862 if (err) { 2863 kvm_info("Error initializing system register tables"); 2864 return err; 2865 } 2866 2867 in_hyp_mode = is_kernel_in_hyp_mode(); 2868 2869 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || 2870 cpus_have_final_cap(ARM64_WORKAROUND_1508412)) 2871 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ 2872 "Only trusted guests should be used on this system.\n"); 2873 2874 err = kvm_set_ipa_limit(); 2875 if (err) 2876 return err; 2877 2878 err = kvm_arm_init_sve(); 2879 if (err) 2880 return err; 2881 2882 err = kvm_arm_vmid_alloc_init(); 2883 if (err) { 2884 kvm_err("Failed to initialize VMID allocator.\n"); 2885 return err; 2886 } 2887 2888 if (!in_hyp_mode) { 2889 err = init_hyp_mode(); 2890 if (err) 2891 goto out_err; 2892 } 2893 2894 err = kvm_init_vector_slots(); 2895 if (err) { 2896 kvm_err("Cannot initialise vector slots\n"); 2897 goto out_hyp; 2898 } 2899 2900 err = init_subsystems(); 2901 if (err) 2902 goto out_hyp; 2903 2904 kvm_info("%s%sVHE%s mode initialized successfully\n", 2905 in_hyp_mode ? "" : (is_protected_kvm_enabled() ? 2906 "Protected " : "Hyp "), 2907 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ? 2908 "h" : "n"), 2909 cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) ? "+NV2": ""); 2910 2911 /* 2912 * FIXME: Do something reasonable if kvm_init() fails after pKVM 2913 * hypervisor protection is finalized. 2914 */ 2915 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 2916 if (err) 2917 goto out_subs; 2918 2919 /* 2920 * This should be called after initialization is done and failure isn't 2921 * possible anymore. 2922 */ 2923 if (!in_hyp_mode) 2924 finalize_init_hyp_mode(); 2925 2926 kvm_arm_initialised = true; 2927 2928 return 0; 2929 2930 out_subs: 2931 teardown_subsystems(); 2932 out_hyp: 2933 if (!in_hyp_mode) 2934 teardown_hyp_mode(); 2935 out_err: 2936 kvm_arm_vmid_alloc_free(); 2937 return err; 2938 } 2939 2940 static int __init early_kvm_mode_cfg(char *arg) 2941 { 2942 if (!arg) 2943 return -EINVAL; 2944 2945 if (strcmp(arg, "none") == 0) { 2946 kvm_mode = KVM_MODE_NONE; 2947 return 0; 2948 } 2949 2950 if (!is_hyp_mode_available()) { 2951 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n"); 2952 return 0; 2953 } 2954 2955 if (strcmp(arg, "protected") == 0) { 2956 if (!is_kernel_in_hyp_mode()) 2957 kvm_mode = KVM_MODE_PROTECTED; 2958 else 2959 pr_warn_once("Protected KVM not available with VHE\n"); 2960 2961 return 0; 2962 } 2963 2964 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) { 2965 kvm_mode = KVM_MODE_DEFAULT; 2966 return 0; 2967 } 2968 2969 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) { 2970 kvm_mode = KVM_MODE_NV; 2971 return 0; 2972 } 2973 2974 return -EINVAL; 2975 } 2976 early_param("kvm-arm.mode", early_kvm_mode_cfg); 2977 2978 static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p) 2979 { 2980 if (!arg) 2981 return -EINVAL; 2982 2983 if (strcmp(arg, "trap") == 0) { 2984 *p = KVM_WFX_TRAP; 2985 return 0; 2986 } 2987 2988 if (strcmp(arg, "notrap") == 0) { 2989 *p = KVM_WFX_NOTRAP; 2990 return 0; 2991 } 2992 2993 return -EINVAL; 2994 } 2995 2996 static int __init early_kvm_wfi_trap_policy_cfg(char *arg) 2997 { 2998 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy); 2999 } 3000 early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg); 3001 3002 static int __init early_kvm_wfe_trap_policy_cfg(char *arg) 3003 { 3004 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy); 3005 } 3006 early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg); 3007 3008 enum kvm_mode kvm_get_mode(void) 3009 { 3010 return kvm_mode; 3011 } 3012 3013 module_init(kvm_arm_init); 3014