1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * hosting IBM Z kernel virtual machines (s390x)
4 *
5 * Copyright IBM Corp. 2008, 2020
6 *
7 * Author(s): Carsten Otte <cotte@de.ibm.com>
8 * Christian Borntraeger <borntraeger@de.ibm.com>
9 * Christian Ehrhardt <ehrhardt@de.ibm.com>
10 * Jason J. Herne <jjherne@us.ibm.com>
11 */
12
13 #define KMSG_COMPONENT "kvm-s390"
14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
15
16 #include <linux/compiler.h>
17 #include <linux/export.h>
18 #include <linux/err.h>
19 #include <linux/fs.h>
20 #include <linux/hrtimer.h>
21 #include <linux/init.h>
22 #include <linux/kvm.h>
23 #include <linux/kvm_host.h>
24 #include <linux/mman.h>
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/cpufeature.h>
28 #include <linux/random.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/vmalloc.h>
32 #include <linux/bitmap.h>
33 #include <linux/sched/signal.h>
34 #include <linux/string.h>
35 #include <linux/pgtable.h>
36 #include <linux/mmu_notifier.h>
37
38 #include <asm/access-regs.h>
39 #include <asm/asm-offsets.h>
40 #include <asm/lowcore.h>
41 #include <asm/machine.h>
42 #include <asm/stp.h>
43 #include <asm/gmap.h>
44 #include <asm/gmap_helpers.h>
45 #include <asm/nmi.h>
46 #include <asm/isc.h>
47 #include <asm/sclp.h>
48 #include <asm/cpacf.h>
49 #include <asm/timex.h>
50 #include <asm/asm.h>
51 #include <asm/fpu.h>
52 #include <asm/ap.h>
53 #include <asm/uv.h>
54 #include "kvm-s390.h"
55 #include "gaccess.h"
56 #include "pci.h"
57
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60 #include "trace-s390.h"
61
62 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */
63 #define LOCAL_IRQS 32
64 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
65 (KVM_MAX_VCPUS + LOCAL_IRQS))
66
67 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
68 KVM_GENERIC_VM_STATS(),
69 STATS_DESC_COUNTER(VM, inject_io),
70 STATS_DESC_COUNTER(VM, inject_float_mchk),
71 STATS_DESC_COUNTER(VM, inject_pfault_done),
72 STATS_DESC_COUNTER(VM, inject_service_signal),
73 STATS_DESC_COUNTER(VM, inject_virtio),
74 STATS_DESC_COUNTER(VM, aen_forward),
75 STATS_DESC_COUNTER(VM, gmap_shadow_reuse),
76 STATS_DESC_COUNTER(VM, gmap_shadow_create),
77 STATS_DESC_COUNTER(VM, gmap_shadow_r1_entry),
78 STATS_DESC_COUNTER(VM, gmap_shadow_r2_entry),
79 STATS_DESC_COUNTER(VM, gmap_shadow_r3_entry),
80 STATS_DESC_COUNTER(VM, gmap_shadow_sg_entry),
81 STATS_DESC_COUNTER(VM, gmap_shadow_pg_entry),
82 };
83
84 const struct kvm_stats_header kvm_vm_stats_header = {
85 .name_size = KVM_STATS_NAME_SIZE,
86 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
87 .id_offset = sizeof(struct kvm_stats_header),
88 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
89 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
90 sizeof(kvm_vm_stats_desc),
91 };
92
93 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
94 KVM_GENERIC_VCPU_STATS(),
95 STATS_DESC_COUNTER(VCPU, exit_userspace),
96 STATS_DESC_COUNTER(VCPU, exit_null),
97 STATS_DESC_COUNTER(VCPU, exit_external_request),
98 STATS_DESC_COUNTER(VCPU, exit_io_request),
99 STATS_DESC_COUNTER(VCPU, exit_external_interrupt),
100 STATS_DESC_COUNTER(VCPU, exit_stop_request),
101 STATS_DESC_COUNTER(VCPU, exit_validity),
102 STATS_DESC_COUNTER(VCPU, exit_instruction),
103 STATS_DESC_COUNTER(VCPU, exit_pei),
104 STATS_DESC_COUNTER(VCPU, halt_no_poll_steal),
105 STATS_DESC_COUNTER(VCPU, instruction_lctl),
106 STATS_DESC_COUNTER(VCPU, instruction_lctlg),
107 STATS_DESC_COUNTER(VCPU, instruction_stctl),
108 STATS_DESC_COUNTER(VCPU, instruction_stctg),
109 STATS_DESC_COUNTER(VCPU, exit_program_interruption),
110 STATS_DESC_COUNTER(VCPU, exit_instr_and_program),
111 STATS_DESC_COUNTER(VCPU, exit_operation_exception),
112 STATS_DESC_COUNTER(VCPU, deliver_ckc),
113 STATS_DESC_COUNTER(VCPU, deliver_cputm),
114 STATS_DESC_COUNTER(VCPU, deliver_external_call),
115 STATS_DESC_COUNTER(VCPU, deliver_emergency_signal),
116 STATS_DESC_COUNTER(VCPU, deliver_service_signal),
117 STATS_DESC_COUNTER(VCPU, deliver_virtio),
118 STATS_DESC_COUNTER(VCPU, deliver_stop_signal),
119 STATS_DESC_COUNTER(VCPU, deliver_prefix_signal),
120 STATS_DESC_COUNTER(VCPU, deliver_restart_signal),
121 STATS_DESC_COUNTER(VCPU, deliver_program),
122 STATS_DESC_COUNTER(VCPU, deliver_io),
123 STATS_DESC_COUNTER(VCPU, deliver_machine_check),
124 STATS_DESC_COUNTER(VCPU, exit_wait_state),
125 STATS_DESC_COUNTER(VCPU, inject_ckc),
126 STATS_DESC_COUNTER(VCPU, inject_cputm),
127 STATS_DESC_COUNTER(VCPU, inject_external_call),
128 STATS_DESC_COUNTER(VCPU, inject_emergency_signal),
129 STATS_DESC_COUNTER(VCPU, inject_mchk),
130 STATS_DESC_COUNTER(VCPU, inject_pfault_init),
131 STATS_DESC_COUNTER(VCPU, inject_program),
132 STATS_DESC_COUNTER(VCPU, inject_restart),
133 STATS_DESC_COUNTER(VCPU, inject_set_prefix),
134 STATS_DESC_COUNTER(VCPU, inject_stop_signal),
135 STATS_DESC_COUNTER(VCPU, instruction_epsw),
136 STATS_DESC_COUNTER(VCPU, instruction_gs),
137 STATS_DESC_COUNTER(VCPU, instruction_io_other),
138 STATS_DESC_COUNTER(VCPU, instruction_lpsw),
139 STATS_DESC_COUNTER(VCPU, instruction_lpswe),
140 STATS_DESC_COUNTER(VCPU, instruction_lpswey),
141 STATS_DESC_COUNTER(VCPU, instruction_pfmf),
142 STATS_DESC_COUNTER(VCPU, instruction_ptff),
143 STATS_DESC_COUNTER(VCPU, instruction_sck),
144 STATS_DESC_COUNTER(VCPU, instruction_sckpf),
145 STATS_DESC_COUNTER(VCPU, instruction_stidp),
146 STATS_DESC_COUNTER(VCPU, instruction_spx),
147 STATS_DESC_COUNTER(VCPU, instruction_stpx),
148 STATS_DESC_COUNTER(VCPU, instruction_stap),
149 STATS_DESC_COUNTER(VCPU, instruction_iske),
150 STATS_DESC_COUNTER(VCPU, instruction_ri),
151 STATS_DESC_COUNTER(VCPU, instruction_rrbe),
152 STATS_DESC_COUNTER(VCPU, instruction_sske),
153 STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock),
154 STATS_DESC_COUNTER(VCPU, instruction_stsi),
155 STATS_DESC_COUNTER(VCPU, instruction_stfl),
156 STATS_DESC_COUNTER(VCPU, instruction_tb),
157 STATS_DESC_COUNTER(VCPU, instruction_tpi),
158 STATS_DESC_COUNTER(VCPU, instruction_tprot),
159 STATS_DESC_COUNTER(VCPU, instruction_tsch),
160 STATS_DESC_COUNTER(VCPU, instruction_sie),
161 STATS_DESC_COUNTER(VCPU, instruction_essa),
162 STATS_DESC_COUNTER(VCPU, instruction_sthyi),
163 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense),
164 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running),
165 STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call),
166 STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency),
167 STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency),
168 STATS_DESC_COUNTER(VCPU, instruction_sigp_start),
169 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop),
170 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status),
171 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status),
172 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status),
173 STATS_DESC_COUNTER(VCPU, instruction_sigp_arch),
174 STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix),
175 STATS_DESC_COUNTER(VCPU, instruction_sigp_restart),
176 STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset),
177 STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset),
178 STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown),
179 STATS_DESC_COUNTER(VCPU, instruction_diagnose_10),
180 STATS_DESC_COUNTER(VCPU, instruction_diagnose_44),
181 STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c),
182 STATS_DESC_COUNTER(VCPU, diag_9c_ignored),
183 STATS_DESC_COUNTER(VCPU, diag_9c_forward),
184 STATS_DESC_COUNTER(VCPU, instruction_diagnose_258),
185 STATS_DESC_COUNTER(VCPU, instruction_diagnose_308),
186 STATS_DESC_COUNTER(VCPU, instruction_diagnose_500),
187 STATS_DESC_COUNTER(VCPU, instruction_diagnose_other),
188 STATS_DESC_COUNTER(VCPU, pfault_sync)
189 };
190
191 const struct kvm_stats_header kvm_vcpu_stats_header = {
192 .name_size = KVM_STATS_NAME_SIZE,
193 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
194 .id_offset = sizeof(struct kvm_stats_header),
195 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
196 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
197 sizeof(kvm_vcpu_stats_desc),
198 };
199
200 /* allow nested virtualization in KVM (if enabled by user space) */
201 static int nested;
202 module_param(nested, int, S_IRUGO);
203 MODULE_PARM_DESC(nested, "Nested virtualization support");
204
205 /* allow 1m huge page guest backing, if !nested */
206 static int hpage;
207 module_param(hpage, int, 0444);
208 MODULE_PARM_DESC(hpage, "1m huge page backing support");
209
210 /* maximum percentage of steal time for polling. >100 is treated like 100 */
211 static u8 halt_poll_max_steal = 10;
212 module_param(halt_poll_max_steal, byte, 0644);
213 MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling");
214
215 /* if set to true, the GISA will be initialized and used if available */
216 static bool use_gisa = true;
217 module_param(use_gisa, bool, 0644);
218 MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it.");
219
220 /* maximum diag9c forwarding per second */
221 unsigned int diag9c_forwarding_hz;
222 module_param(diag9c_forwarding_hz, uint, 0644);
223 MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off");
224
225 /*
226 * allow asynchronous deinit for protected guests; enable by default since
227 * the feature is opt-in anyway
228 */
229 static int async_destroy = 1;
230 module_param(async_destroy, int, 0444);
231 MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests");
232
233 /*
234 * For now we handle at most 16 double words as this is what the s390 base
235 * kernel handles and stores in the prefix page. If we ever need to go beyond
236 * this, this requires changes to code, but the external uapi can stay.
237 */
238 #define SIZE_INTERNAL 16
239
240 /*
241 * Base feature mask that defines default mask for facilities. Consists of the
242 * defines in FACILITIES_KVM and the non-hypervisor managed bits.
243 */
244 static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM };
245 /*
246 * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL
247 * and defines the facilities that can be enabled via a cpu model.
248 */
249 static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL };
250
kvm_s390_fac_size(void)251 static unsigned long kvm_s390_fac_size(void)
252 {
253 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64);
254 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64);
255 BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) >
256 sizeof(stfle_fac_list));
257
258 return SIZE_INTERNAL;
259 }
260
261 /* available cpu features supported by kvm */
262 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
263 /* available subfunctions indicated via query / "test bit" */
264 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
265
266 static struct gmap_notifier gmap_notifier;
267 static struct gmap_notifier vsie_gmap_notifier;
268 debug_info_t *kvm_s390_dbf;
269 debug_info_t *kvm_s390_dbf_uv;
270
271 /* Section: not file related */
272 /* forward declarations */
273 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
274 unsigned long end);
275 static int sca_switch_to_extended(struct kvm *kvm);
276
kvm_clock_sync_scb(struct kvm_s390_sie_block * scb,u64 delta)277 static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta)
278 {
279 u8 delta_idx = 0;
280
281 /*
282 * The TOD jumps by delta, we have to compensate this by adding
283 * -delta to the epoch.
284 */
285 delta = -delta;
286
287 /* sign-extension - we're adding to signed values below */
288 if ((s64)delta < 0)
289 delta_idx = -1;
290
291 scb->epoch += delta;
292 if (scb->ecd & ECD_MEF) {
293 scb->epdx += delta_idx;
294 if (scb->epoch < delta)
295 scb->epdx += 1;
296 }
297 }
298
299 /*
300 * This callback is executed during stop_machine(). All CPUs are therefore
301 * temporarily stopped. In order not to change guest behavior, we have to
302 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
303 * so a CPU won't be stopped while calculating with the epoch.
304 */
kvm_clock_sync(struct notifier_block * notifier,unsigned long val,void * v)305 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
306 void *v)
307 {
308 struct kvm *kvm;
309 struct kvm_vcpu *vcpu;
310 unsigned long i;
311 unsigned long long *delta = v;
312
313 list_for_each_entry(kvm, &vm_list, vm_list) {
314 kvm_for_each_vcpu(i, vcpu, kvm) {
315 kvm_clock_sync_scb(vcpu->arch.sie_block, *delta);
316 if (i == 0) {
317 kvm->arch.epoch = vcpu->arch.sie_block->epoch;
318 kvm->arch.epdx = vcpu->arch.sie_block->epdx;
319 }
320 if (vcpu->arch.cputm_enabled)
321 vcpu->arch.cputm_start += *delta;
322 if (vcpu->arch.vsie_block)
323 kvm_clock_sync_scb(vcpu->arch.vsie_block,
324 *delta);
325 }
326 }
327 return NOTIFY_OK;
328 }
329
330 static struct notifier_block kvm_clock_notifier = {
331 .notifier_call = kvm_clock_sync,
332 };
333
allow_cpu_feat(unsigned long nr)334 static void allow_cpu_feat(unsigned long nr)
335 {
336 set_bit_inv(nr, kvm_s390_available_cpu_feat);
337 }
338
plo_test_bit(unsigned char nr)339 static inline int plo_test_bit(unsigned char nr)
340 {
341 unsigned long function = (unsigned long)nr | 0x100;
342 int cc;
343
344 asm volatile(
345 " lgr 0,%[function]\n"
346 /* Parameter registers are ignored for "test bit" */
347 " plo 0,0,0,0(0)\n"
348 CC_IPM(cc)
349 : CC_OUT(cc, cc)
350 : [function] "d" (function)
351 : CC_CLOBBER_LIST("0"));
352 return CC_TRANSFORM(cc) == 0;
353 }
354
pfcr_query(u8 (* query)[16])355 static __always_inline void pfcr_query(u8 (*query)[16])
356 {
357 asm volatile(
358 " lghi 0,0\n"
359 " .insn rsy,0xeb0000000016,0,0,%[query]\n"
360 : [query] "=QS" (*query)
361 :
362 : "cc", "0");
363 }
364
__sortl_query(u8 (* query)[32])365 static __always_inline void __sortl_query(u8 (*query)[32])
366 {
367 asm volatile(
368 " lghi 0,0\n"
369 " la 1,%[query]\n"
370 /* Parameter registers are ignored */
371 " .insn rre,0xb9380000,2,4\n"
372 : [query] "=R" (*query)
373 :
374 : "cc", "0", "1");
375 }
376
__dfltcc_query(u8 (* query)[32])377 static __always_inline void __dfltcc_query(u8 (*query)[32])
378 {
379 asm volatile(
380 " lghi 0,0\n"
381 " la 1,%[query]\n"
382 /* Parameter registers are ignored */
383 " .insn rrf,0xb9390000,2,4,6,0\n"
384 : [query] "=R" (*query)
385 :
386 : "cc", "0", "1");
387 }
388
kvm_s390_cpu_feat_init(void)389 static void __init kvm_s390_cpu_feat_init(void)
390 {
391 int i;
392
393 for (i = 0; i < 256; ++i) {
394 if (plo_test_bit(i))
395 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
396 }
397
398 if (test_facility(28)) /* TOD-clock steering */
399 ptff(kvm_s390_available_subfunc.ptff,
400 sizeof(kvm_s390_available_subfunc.ptff),
401 PTFF_QAF);
402
403 if (test_facility(17)) { /* MSA */
404 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *)
405 kvm_s390_available_subfunc.kmac);
406 __cpacf_query(CPACF_KMC, (cpacf_mask_t *)
407 kvm_s390_available_subfunc.kmc);
408 __cpacf_query(CPACF_KM, (cpacf_mask_t *)
409 kvm_s390_available_subfunc.km);
410 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *)
411 kvm_s390_available_subfunc.kimd);
412 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *)
413 kvm_s390_available_subfunc.klmd);
414 }
415 if (test_facility(76)) /* MSA3 */
416 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *)
417 kvm_s390_available_subfunc.pckmo);
418 if (test_facility(77)) { /* MSA4 */
419 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *)
420 kvm_s390_available_subfunc.kmctr);
421 __cpacf_query(CPACF_KMF, (cpacf_mask_t *)
422 kvm_s390_available_subfunc.kmf);
423 __cpacf_query(CPACF_KMO, (cpacf_mask_t *)
424 kvm_s390_available_subfunc.kmo);
425 __cpacf_query(CPACF_PCC, (cpacf_mask_t *)
426 kvm_s390_available_subfunc.pcc);
427 }
428 if (test_facility(57)) /* MSA5 */
429 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *)
430 kvm_s390_available_subfunc.ppno);
431
432 if (test_facility(146)) /* MSA8 */
433 __cpacf_query(CPACF_KMA, (cpacf_mask_t *)
434 kvm_s390_available_subfunc.kma);
435
436 if (test_facility(155)) /* MSA9 */
437 __cpacf_query(CPACF_KDSA, (cpacf_mask_t *)
438 kvm_s390_available_subfunc.kdsa);
439
440 if (test_facility(150)) /* SORTL */
441 __sortl_query(&kvm_s390_available_subfunc.sortl);
442
443 if (test_facility(151)) /* DFLTCC */
444 __dfltcc_query(&kvm_s390_available_subfunc.dfltcc);
445
446 if (test_facility(201)) /* PFCR */
447 pfcr_query(&kvm_s390_available_subfunc.pfcr);
448
449 if (machine_has_esop())
450 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
451 /*
452 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
453 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
454 */
455 if (!sclp.has_sief2 || !machine_has_esop() || !sclp.has_64bscao ||
456 !test_facility(3) || !nested)
457 return;
458 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
459 if (sclp.has_64bscao)
460 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
461 if (sclp.has_siif)
462 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
463 if (sclp.has_gpere)
464 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
465 if (sclp.has_gsls)
466 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
467 if (sclp.has_ib)
468 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
469 if (sclp.has_cei)
470 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
471 if (sclp.has_ibs)
472 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
473 if (sclp.has_kss)
474 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS);
475 /*
476 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
477 * all skey handling functions read/set the skey from the PGSTE
478 * instead of the real storage key.
479 *
480 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
481 * pages being detected as preserved although they are resident.
482 *
483 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
484 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
485 *
486 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
487 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
488 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
489 *
490 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
491 * cannot easily shadow the SCA because of the ipte lock.
492 */
493 }
494
__kvm_s390_init(void)495 static int __init __kvm_s390_init(void)
496 {
497 int rc = -ENOMEM;
498
499 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
500 if (!kvm_s390_dbf)
501 return -ENOMEM;
502
503 kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long));
504 if (!kvm_s390_dbf_uv)
505 goto err_kvm_uv;
506
507 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) ||
508 debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view))
509 goto err_debug_view;
510
511 kvm_s390_cpu_feat_init();
512
513 /* Register floating interrupt controller interface. */
514 rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
515 if (rc) {
516 pr_err("A FLIC registration call failed with rc=%d\n", rc);
517 goto err_flic;
518 }
519
520 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
521 rc = kvm_s390_pci_init();
522 if (rc) {
523 pr_err("Unable to allocate AIFT for PCI\n");
524 goto err_pci;
525 }
526 }
527
528 rc = kvm_s390_gib_init(GAL_ISC);
529 if (rc)
530 goto err_gib;
531
532 gmap_notifier.notifier_call = kvm_gmap_notifier;
533 gmap_register_pte_notifier(&gmap_notifier);
534 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
535 gmap_register_pte_notifier(&vsie_gmap_notifier);
536 atomic_notifier_chain_register(&s390_epoch_delta_notifier,
537 &kvm_clock_notifier);
538
539 return 0;
540
541 err_gib:
542 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
543 kvm_s390_pci_exit();
544 err_pci:
545 err_flic:
546 err_debug_view:
547 debug_unregister(kvm_s390_dbf_uv);
548 err_kvm_uv:
549 debug_unregister(kvm_s390_dbf);
550 return rc;
551 }
552
__kvm_s390_exit(void)553 static void __kvm_s390_exit(void)
554 {
555 gmap_unregister_pte_notifier(&gmap_notifier);
556 gmap_unregister_pte_notifier(&vsie_gmap_notifier);
557 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
558 &kvm_clock_notifier);
559
560 kvm_s390_gib_destroy();
561 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
562 kvm_s390_pci_exit();
563 debug_unregister(kvm_s390_dbf);
564 debug_unregister(kvm_s390_dbf_uv);
565 }
566
567 /* Section: device related */
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)568 long kvm_arch_dev_ioctl(struct file *filp,
569 unsigned int ioctl, unsigned long arg)
570 {
571 if (ioctl == KVM_S390_ENABLE_SIE)
572 return s390_enable_sie();
573 return -EINVAL;
574 }
575
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)576 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
577 {
578 int r;
579
580 switch (ext) {
581 case KVM_CAP_S390_PSW:
582 case KVM_CAP_S390_GMAP:
583 case KVM_CAP_SYNC_MMU:
584 #ifdef CONFIG_KVM_S390_UCONTROL
585 case KVM_CAP_S390_UCONTROL:
586 #endif
587 case KVM_CAP_ASYNC_PF:
588 case KVM_CAP_SYNC_REGS:
589 case KVM_CAP_ONE_REG:
590 case KVM_CAP_ENABLE_CAP:
591 case KVM_CAP_S390_CSS_SUPPORT:
592 case KVM_CAP_IOEVENTFD:
593 case KVM_CAP_S390_IRQCHIP:
594 case KVM_CAP_VM_ATTRIBUTES:
595 case KVM_CAP_MP_STATE:
596 case KVM_CAP_IMMEDIATE_EXIT:
597 case KVM_CAP_S390_INJECT_IRQ:
598 case KVM_CAP_S390_USER_SIGP:
599 case KVM_CAP_S390_USER_STSI:
600 case KVM_CAP_S390_SKEYS:
601 case KVM_CAP_S390_IRQ_STATE:
602 case KVM_CAP_S390_USER_INSTR0:
603 case KVM_CAP_S390_CMMA_MIGRATION:
604 case KVM_CAP_S390_AIS:
605 case KVM_CAP_S390_AIS_MIGRATION:
606 case KVM_CAP_S390_VCPU_RESETS:
607 case KVM_CAP_SET_GUEST_DEBUG:
608 case KVM_CAP_S390_DIAG318:
609 case KVM_CAP_IRQFD_RESAMPLE:
610 r = 1;
611 break;
612 case KVM_CAP_SET_GUEST_DEBUG2:
613 r = KVM_GUESTDBG_VALID_MASK;
614 break;
615 case KVM_CAP_S390_HPAGE_1M:
616 r = 0;
617 if (hpage && !(kvm && kvm_is_ucontrol(kvm)))
618 r = 1;
619 break;
620 case KVM_CAP_S390_MEM_OP:
621 r = MEM_OP_MAX_SIZE;
622 break;
623 case KVM_CAP_S390_MEM_OP_EXTENSION:
624 /*
625 * Flag bits indicating which extensions are supported.
626 * If r > 0, the base extension must also be supported/indicated,
627 * in order to maintain backwards compatibility.
628 */
629 r = KVM_S390_MEMOP_EXTENSION_CAP_BASE |
630 KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG;
631 break;
632 case KVM_CAP_NR_VCPUS:
633 case KVM_CAP_MAX_VCPUS:
634 case KVM_CAP_MAX_VCPU_ID:
635 r = KVM_S390_BSCA_CPU_SLOTS;
636 if (!kvm_s390_use_sca_entries())
637 r = KVM_MAX_VCPUS;
638 else if (sclp.has_esca && sclp.has_64bscao)
639 r = KVM_S390_ESCA_CPU_SLOTS;
640 if (ext == KVM_CAP_NR_VCPUS)
641 r = min_t(unsigned int, num_online_cpus(), r);
642 break;
643 case KVM_CAP_S390_COW:
644 r = machine_has_esop();
645 break;
646 case KVM_CAP_S390_VECTOR_REGISTERS:
647 r = test_facility(129);
648 break;
649 case KVM_CAP_S390_RI:
650 r = test_facility(64);
651 break;
652 case KVM_CAP_S390_GS:
653 r = test_facility(133);
654 break;
655 case KVM_CAP_S390_BPB:
656 r = test_facility(82);
657 break;
658 case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE:
659 r = async_destroy && is_prot_virt_host();
660 break;
661 case KVM_CAP_S390_PROTECTED:
662 r = is_prot_virt_host();
663 break;
664 case KVM_CAP_S390_PROTECTED_DUMP: {
665 u64 pv_cmds_dump[] = {
666 BIT_UVC_CMD_DUMP_INIT,
667 BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE,
668 BIT_UVC_CMD_DUMP_CPU,
669 BIT_UVC_CMD_DUMP_COMPLETE,
670 };
671 int i;
672
673 r = is_prot_virt_host();
674
675 for (i = 0; i < ARRAY_SIZE(pv_cmds_dump); i++) {
676 if (!test_bit_inv(pv_cmds_dump[i],
677 (unsigned long *)&uv_info.inst_calls_list)) {
678 r = 0;
679 break;
680 }
681 }
682 break;
683 }
684 case KVM_CAP_S390_ZPCI_OP:
685 r = kvm_s390_pci_interp_allowed();
686 break;
687 case KVM_CAP_S390_CPU_TOPOLOGY:
688 r = test_facility(11);
689 break;
690 default:
691 r = 0;
692 }
693 return r;
694 }
695
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)696 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
697 {
698 int i;
699 gfn_t cur_gfn, last_gfn;
700 unsigned long gaddr, vmaddr;
701 struct gmap *gmap = kvm->arch.gmap;
702 DECLARE_BITMAP(bitmap, _PAGE_ENTRIES);
703
704 /* Loop over all guest segments */
705 cur_gfn = memslot->base_gfn;
706 last_gfn = memslot->base_gfn + memslot->npages;
707 for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) {
708 gaddr = gfn_to_gpa(cur_gfn);
709 vmaddr = gfn_to_hva_memslot(memslot, cur_gfn);
710 if (kvm_is_error_hva(vmaddr))
711 continue;
712
713 bitmap_zero(bitmap, _PAGE_ENTRIES);
714 gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr);
715 for (i = 0; i < _PAGE_ENTRIES; i++) {
716 if (test_bit(i, bitmap))
717 mark_page_dirty(kvm, cur_gfn + i);
718 }
719
720 if (fatal_signal_pending(current))
721 return;
722 cond_resched();
723 }
724 }
725
726 /* Section: vm related */
727 static void sca_del_vcpu(struct kvm_vcpu *vcpu);
728
729 /*
730 * Get (and clear) the dirty memory log for a memory slot.
731 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)732 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
733 struct kvm_dirty_log *log)
734 {
735 int r;
736 unsigned long n;
737 struct kvm_memory_slot *memslot;
738 int is_dirty;
739
740 if (kvm_is_ucontrol(kvm))
741 return -EINVAL;
742
743 mutex_lock(&kvm->slots_lock);
744
745 r = -EINVAL;
746 if (log->slot >= KVM_USER_MEM_SLOTS)
747 goto out;
748
749 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
750 if (r)
751 goto out;
752
753 /* Clear the dirty log */
754 if (is_dirty) {
755 n = kvm_dirty_bitmap_bytes(memslot);
756 memset(memslot->dirty_bitmap, 0, n);
757 }
758 r = 0;
759 out:
760 mutex_unlock(&kvm->slots_lock);
761 return r;
762 }
763
icpt_operexc_on_all_vcpus(struct kvm * kvm)764 static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
765 {
766 unsigned long i;
767 struct kvm_vcpu *vcpu;
768
769 kvm_for_each_vcpu(i, vcpu, kvm) {
770 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
771 }
772 }
773
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)774 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
775 {
776 int r;
777
778 if (cap->flags)
779 return -EINVAL;
780
781 switch (cap->cap) {
782 case KVM_CAP_S390_IRQCHIP:
783 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
784 kvm->arch.use_irqchip = 1;
785 r = 0;
786 break;
787 case KVM_CAP_S390_USER_SIGP:
788 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
789 kvm->arch.user_sigp = 1;
790 r = 0;
791 break;
792 case KVM_CAP_S390_VECTOR_REGISTERS:
793 mutex_lock(&kvm->lock);
794 if (kvm->created_vcpus) {
795 r = -EBUSY;
796 } else if (cpu_has_vx()) {
797 set_kvm_facility(kvm->arch.model.fac_mask, 129);
798 set_kvm_facility(kvm->arch.model.fac_list, 129);
799 if (test_facility(134)) {
800 set_kvm_facility(kvm->arch.model.fac_mask, 134);
801 set_kvm_facility(kvm->arch.model.fac_list, 134);
802 }
803 if (test_facility(135)) {
804 set_kvm_facility(kvm->arch.model.fac_mask, 135);
805 set_kvm_facility(kvm->arch.model.fac_list, 135);
806 }
807 if (test_facility(148)) {
808 set_kvm_facility(kvm->arch.model.fac_mask, 148);
809 set_kvm_facility(kvm->arch.model.fac_list, 148);
810 }
811 if (test_facility(152)) {
812 set_kvm_facility(kvm->arch.model.fac_mask, 152);
813 set_kvm_facility(kvm->arch.model.fac_list, 152);
814 }
815 if (test_facility(192)) {
816 set_kvm_facility(kvm->arch.model.fac_mask, 192);
817 set_kvm_facility(kvm->arch.model.fac_list, 192);
818 }
819 if (test_facility(198)) {
820 set_kvm_facility(kvm->arch.model.fac_mask, 198);
821 set_kvm_facility(kvm->arch.model.fac_list, 198);
822 }
823 if (test_facility(199)) {
824 set_kvm_facility(kvm->arch.model.fac_mask, 199);
825 set_kvm_facility(kvm->arch.model.fac_list, 199);
826 }
827 r = 0;
828 } else
829 r = -EINVAL;
830 mutex_unlock(&kvm->lock);
831 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
832 r ? "(not available)" : "(success)");
833 break;
834 case KVM_CAP_S390_RI:
835 r = -EINVAL;
836 mutex_lock(&kvm->lock);
837 if (kvm->created_vcpus) {
838 r = -EBUSY;
839 } else if (test_facility(64)) {
840 set_kvm_facility(kvm->arch.model.fac_mask, 64);
841 set_kvm_facility(kvm->arch.model.fac_list, 64);
842 r = 0;
843 }
844 mutex_unlock(&kvm->lock);
845 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
846 r ? "(not available)" : "(success)");
847 break;
848 case KVM_CAP_S390_AIS:
849 mutex_lock(&kvm->lock);
850 if (kvm->created_vcpus) {
851 r = -EBUSY;
852 } else {
853 set_kvm_facility(kvm->arch.model.fac_mask, 72);
854 set_kvm_facility(kvm->arch.model.fac_list, 72);
855 r = 0;
856 }
857 mutex_unlock(&kvm->lock);
858 VM_EVENT(kvm, 3, "ENABLE: AIS %s",
859 r ? "(not available)" : "(success)");
860 break;
861 case KVM_CAP_S390_GS:
862 r = -EINVAL;
863 mutex_lock(&kvm->lock);
864 if (kvm->created_vcpus) {
865 r = -EBUSY;
866 } else if (test_facility(133)) {
867 set_kvm_facility(kvm->arch.model.fac_mask, 133);
868 set_kvm_facility(kvm->arch.model.fac_list, 133);
869 r = 0;
870 }
871 mutex_unlock(&kvm->lock);
872 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s",
873 r ? "(not available)" : "(success)");
874 break;
875 case KVM_CAP_S390_HPAGE_1M:
876 mutex_lock(&kvm->lock);
877 if (kvm->created_vcpus)
878 r = -EBUSY;
879 else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm))
880 r = -EINVAL;
881 else {
882 r = 0;
883 mmap_write_lock(kvm->mm);
884 kvm->mm->context.allow_gmap_hpage_1m = 1;
885 mmap_write_unlock(kvm->mm);
886 /*
887 * We might have to create fake 4k page
888 * tables. To avoid that the hardware works on
889 * stale PGSTEs, we emulate these instructions.
890 */
891 kvm->arch.use_skf = 0;
892 kvm->arch.use_pfmfi = 0;
893 }
894 mutex_unlock(&kvm->lock);
895 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s",
896 r ? "(not available)" : "(success)");
897 break;
898 case KVM_CAP_S390_USER_STSI:
899 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
900 kvm->arch.user_stsi = 1;
901 r = 0;
902 break;
903 case KVM_CAP_S390_USER_INSTR0:
904 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
905 kvm->arch.user_instr0 = 1;
906 icpt_operexc_on_all_vcpus(kvm);
907 r = 0;
908 break;
909 case KVM_CAP_S390_CPU_TOPOLOGY:
910 r = -EINVAL;
911 mutex_lock(&kvm->lock);
912 if (kvm->created_vcpus) {
913 r = -EBUSY;
914 } else if (test_facility(11)) {
915 set_kvm_facility(kvm->arch.model.fac_mask, 11);
916 set_kvm_facility(kvm->arch.model.fac_list, 11);
917 r = 0;
918 }
919 mutex_unlock(&kvm->lock);
920 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_CPU_TOPOLOGY %s",
921 r ? "(not available)" : "(success)");
922 break;
923 default:
924 r = -EINVAL;
925 break;
926 }
927 return r;
928 }
929
kvm_s390_get_mem_control(struct kvm * kvm,struct kvm_device_attr * attr)930 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
931 {
932 int ret;
933
934 switch (attr->attr) {
935 case KVM_S390_VM_MEM_LIMIT_SIZE:
936 ret = 0;
937 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
938 kvm->arch.mem_limit);
939 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
940 ret = -EFAULT;
941 break;
942 default:
943 ret = -ENXIO;
944 break;
945 }
946 return ret;
947 }
948
kvm_s390_set_mem_control(struct kvm * kvm,struct kvm_device_attr * attr)949 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
950 {
951 int ret;
952 unsigned int idx;
953 switch (attr->attr) {
954 case KVM_S390_VM_MEM_ENABLE_CMMA:
955 ret = -ENXIO;
956 if (!sclp.has_cmma)
957 break;
958
959 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
960 mutex_lock(&kvm->lock);
961 if (kvm->created_vcpus)
962 ret = -EBUSY;
963 else if (kvm->mm->context.allow_gmap_hpage_1m)
964 ret = -EINVAL;
965 else {
966 kvm->arch.use_cmma = 1;
967 /* Not compatible with cmma. */
968 kvm->arch.use_pfmfi = 0;
969 ret = 0;
970 }
971 mutex_unlock(&kvm->lock);
972 break;
973 case KVM_S390_VM_MEM_CLR_CMMA:
974 ret = -ENXIO;
975 if (!sclp.has_cmma)
976 break;
977 ret = -EINVAL;
978 if (!kvm->arch.use_cmma)
979 break;
980
981 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
982 mutex_lock(&kvm->lock);
983 idx = srcu_read_lock(&kvm->srcu);
984 s390_reset_cmma(kvm->arch.gmap->mm);
985 srcu_read_unlock(&kvm->srcu, idx);
986 mutex_unlock(&kvm->lock);
987 ret = 0;
988 break;
989 case KVM_S390_VM_MEM_LIMIT_SIZE: {
990 unsigned long new_limit;
991
992 if (kvm_is_ucontrol(kvm))
993 return -EINVAL;
994
995 if (get_user(new_limit, (u64 __user *)attr->addr))
996 return -EFAULT;
997
998 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
999 new_limit > kvm->arch.mem_limit)
1000 return -E2BIG;
1001
1002 if (!new_limit)
1003 return -EINVAL;
1004
1005 /* gmap_create takes last usable address */
1006 if (new_limit != KVM_S390_NO_MEM_LIMIT)
1007 new_limit -= 1;
1008
1009 ret = -EBUSY;
1010 mutex_lock(&kvm->lock);
1011 if (!kvm->created_vcpus) {
1012 /* gmap_create will round the limit up */
1013 struct gmap *new = gmap_create(current->mm, new_limit);
1014
1015 if (!new) {
1016 ret = -ENOMEM;
1017 } else {
1018 gmap_remove(kvm->arch.gmap);
1019 new->private = kvm;
1020 kvm->arch.gmap = new;
1021 ret = 0;
1022 }
1023 }
1024 mutex_unlock(&kvm->lock);
1025 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
1026 VM_EVENT(kvm, 3, "New guest asce: 0x%p",
1027 (void *) kvm->arch.gmap->asce);
1028 break;
1029 }
1030 default:
1031 ret = -ENXIO;
1032 break;
1033 }
1034 return ret;
1035 }
1036
1037 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);
1038
kvm_s390_vcpu_crypto_reset_all(struct kvm * kvm)1039 void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm)
1040 {
1041 struct kvm_vcpu *vcpu;
1042 unsigned long i;
1043
1044 kvm_s390_vcpu_block_all(kvm);
1045
1046 kvm_for_each_vcpu(i, vcpu, kvm) {
1047 kvm_s390_vcpu_crypto_setup(vcpu);
1048 /* recreate the shadow crycb by leaving the VSIE handler */
1049 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
1050 }
1051
1052 kvm_s390_vcpu_unblock_all(kvm);
1053 }
1054
kvm_s390_vm_set_crypto(struct kvm * kvm,struct kvm_device_attr * attr)1055 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
1056 {
1057 mutex_lock(&kvm->lock);
1058 switch (attr->attr) {
1059 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
1060 if (!test_kvm_facility(kvm, 76)) {
1061 mutex_unlock(&kvm->lock);
1062 return -EINVAL;
1063 }
1064 get_random_bytes(
1065 kvm->arch.crypto.crycb->aes_wrapping_key_mask,
1066 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1067 kvm->arch.crypto.aes_kw = 1;
1068 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
1069 break;
1070 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
1071 if (!test_kvm_facility(kvm, 76)) {
1072 mutex_unlock(&kvm->lock);
1073 return -EINVAL;
1074 }
1075 get_random_bytes(
1076 kvm->arch.crypto.crycb->dea_wrapping_key_mask,
1077 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1078 kvm->arch.crypto.dea_kw = 1;
1079 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
1080 break;
1081 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
1082 if (!test_kvm_facility(kvm, 76)) {
1083 mutex_unlock(&kvm->lock);
1084 return -EINVAL;
1085 }
1086 kvm->arch.crypto.aes_kw = 0;
1087 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
1088 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1089 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
1090 break;
1091 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
1092 if (!test_kvm_facility(kvm, 76)) {
1093 mutex_unlock(&kvm->lock);
1094 return -EINVAL;
1095 }
1096 kvm->arch.crypto.dea_kw = 0;
1097 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
1098 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1099 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
1100 break;
1101 case KVM_S390_VM_CRYPTO_ENABLE_APIE:
1102 if (!ap_instructions_available()) {
1103 mutex_unlock(&kvm->lock);
1104 return -EOPNOTSUPP;
1105 }
1106 kvm->arch.crypto.apie = 1;
1107 break;
1108 case KVM_S390_VM_CRYPTO_DISABLE_APIE:
1109 if (!ap_instructions_available()) {
1110 mutex_unlock(&kvm->lock);
1111 return -EOPNOTSUPP;
1112 }
1113 kvm->arch.crypto.apie = 0;
1114 break;
1115 default:
1116 mutex_unlock(&kvm->lock);
1117 return -ENXIO;
1118 }
1119
1120 kvm_s390_vcpu_crypto_reset_all(kvm);
1121 mutex_unlock(&kvm->lock);
1122 return 0;
1123 }
1124
kvm_s390_vcpu_pci_setup(struct kvm_vcpu * vcpu)1125 static void kvm_s390_vcpu_pci_setup(struct kvm_vcpu *vcpu)
1126 {
1127 /* Only set the ECB bits after guest requests zPCI interpretation */
1128 if (!vcpu->kvm->arch.use_zpci_interp)
1129 return;
1130
1131 vcpu->arch.sie_block->ecb2 |= ECB2_ZPCI_LSI;
1132 vcpu->arch.sie_block->ecb3 |= ECB3_AISII + ECB3_AISI;
1133 }
1134
kvm_s390_vcpu_pci_enable_interp(struct kvm * kvm)1135 void kvm_s390_vcpu_pci_enable_interp(struct kvm *kvm)
1136 {
1137 struct kvm_vcpu *vcpu;
1138 unsigned long i;
1139
1140 lockdep_assert_held(&kvm->lock);
1141
1142 if (!kvm_s390_pci_interp_allowed())
1143 return;
1144
1145 /*
1146 * If host is configured for PCI and the necessary facilities are
1147 * available, turn on interpretation for the life of this guest
1148 */
1149 kvm->arch.use_zpci_interp = 1;
1150
1151 kvm_s390_vcpu_block_all(kvm);
1152
1153 kvm_for_each_vcpu(i, vcpu, kvm) {
1154 kvm_s390_vcpu_pci_setup(vcpu);
1155 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
1156 }
1157
1158 kvm_s390_vcpu_unblock_all(kvm);
1159 }
1160
kvm_s390_sync_request_broadcast(struct kvm * kvm,int req)1161 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req)
1162 {
1163 unsigned long cx;
1164 struct kvm_vcpu *vcpu;
1165
1166 kvm_for_each_vcpu(cx, vcpu, kvm)
1167 kvm_s390_sync_request(req, vcpu);
1168 }
1169
1170 /*
1171 * Must be called with kvm->srcu held to avoid races on memslots, and with
1172 * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration.
1173 */
kvm_s390_vm_start_migration(struct kvm * kvm)1174 static int kvm_s390_vm_start_migration(struct kvm *kvm)
1175 {
1176 struct kvm_memory_slot *ms;
1177 struct kvm_memslots *slots;
1178 unsigned long ram_pages = 0;
1179 int bkt;
1180
1181 /* migration mode already enabled */
1182 if (kvm->arch.migration_mode)
1183 return 0;
1184 slots = kvm_memslots(kvm);
1185 if (!slots || kvm_memslots_empty(slots))
1186 return -EINVAL;
1187
1188 if (!kvm->arch.use_cmma) {
1189 kvm->arch.migration_mode = 1;
1190 return 0;
1191 }
1192 /* mark all the pages in active slots as dirty */
1193 kvm_for_each_memslot(ms, bkt, slots) {
1194 if (!ms->dirty_bitmap)
1195 return -EINVAL;
1196 /*
1197 * The second half of the bitmap is only used on x86,
1198 * and would be wasted otherwise, so we put it to good
1199 * use here to keep track of the state of the storage
1200 * attributes.
1201 */
1202 memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms));
1203 ram_pages += ms->npages;
1204 }
1205 atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages);
1206 kvm->arch.migration_mode = 1;
1207 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION);
1208 return 0;
1209 }
1210
1211 /*
1212 * Must be called with kvm->slots_lock to avoid races with ourselves and
1213 * kvm_s390_vm_start_migration.
1214 */
kvm_s390_vm_stop_migration(struct kvm * kvm)1215 static int kvm_s390_vm_stop_migration(struct kvm *kvm)
1216 {
1217 /* migration mode already disabled */
1218 if (!kvm->arch.migration_mode)
1219 return 0;
1220 kvm->arch.migration_mode = 0;
1221 if (kvm->arch.use_cmma)
1222 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION);
1223 return 0;
1224 }
1225
kvm_s390_vm_set_migration(struct kvm * kvm,struct kvm_device_attr * attr)1226 static int kvm_s390_vm_set_migration(struct kvm *kvm,
1227 struct kvm_device_attr *attr)
1228 {
1229 int res = -ENXIO;
1230
1231 mutex_lock(&kvm->slots_lock);
1232 switch (attr->attr) {
1233 case KVM_S390_VM_MIGRATION_START:
1234 res = kvm_s390_vm_start_migration(kvm);
1235 break;
1236 case KVM_S390_VM_MIGRATION_STOP:
1237 res = kvm_s390_vm_stop_migration(kvm);
1238 break;
1239 default:
1240 break;
1241 }
1242 mutex_unlock(&kvm->slots_lock);
1243
1244 return res;
1245 }
1246
kvm_s390_vm_get_migration(struct kvm * kvm,struct kvm_device_attr * attr)1247 static int kvm_s390_vm_get_migration(struct kvm *kvm,
1248 struct kvm_device_attr *attr)
1249 {
1250 u64 mig = kvm->arch.migration_mode;
1251
1252 if (attr->attr != KVM_S390_VM_MIGRATION_STATUS)
1253 return -ENXIO;
1254
1255 if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig)))
1256 return -EFAULT;
1257 return 0;
1258 }
1259
1260 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod);
1261
kvm_s390_set_tod_ext(struct kvm * kvm,struct kvm_device_attr * attr)1262 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
1263 {
1264 struct kvm_s390_vm_tod_clock gtod;
1265
1266 if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod)))
1267 return -EFAULT;
1268
1269 if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx)
1270 return -EINVAL;
1271 __kvm_s390_set_tod_clock(kvm, >od);
1272
1273 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx",
1274 gtod.epoch_idx, gtod.tod);
1275
1276 return 0;
1277 }
1278
kvm_s390_set_tod_high(struct kvm * kvm,struct kvm_device_attr * attr)1279 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
1280 {
1281 u8 gtod_high;
1282
1283 if (copy_from_user(>od_high, (void __user *)attr->addr,
1284 sizeof(gtod_high)))
1285 return -EFAULT;
1286
1287 if (gtod_high != 0)
1288 return -EINVAL;
1289 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
1290
1291 return 0;
1292 }
1293
kvm_s390_set_tod_low(struct kvm * kvm,struct kvm_device_attr * attr)1294 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
1295 {
1296 struct kvm_s390_vm_tod_clock gtod = { 0 };
1297
1298 if (copy_from_user(>od.tod, (void __user *)attr->addr,
1299 sizeof(gtod.tod)))
1300 return -EFAULT;
1301
1302 __kvm_s390_set_tod_clock(kvm, >od);
1303 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod);
1304 return 0;
1305 }
1306
kvm_s390_set_tod(struct kvm * kvm,struct kvm_device_attr * attr)1307 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
1308 {
1309 int ret;
1310
1311 if (attr->flags)
1312 return -EINVAL;
1313
1314 mutex_lock(&kvm->lock);
1315 /*
1316 * For protected guests, the TOD is managed by the ultravisor, so trying
1317 * to change it will never bring the expected results.
1318 */
1319 if (kvm_s390_pv_is_protected(kvm)) {
1320 ret = -EOPNOTSUPP;
1321 goto out_unlock;
1322 }
1323
1324 switch (attr->attr) {
1325 case KVM_S390_VM_TOD_EXT:
1326 ret = kvm_s390_set_tod_ext(kvm, attr);
1327 break;
1328 case KVM_S390_VM_TOD_HIGH:
1329 ret = kvm_s390_set_tod_high(kvm, attr);
1330 break;
1331 case KVM_S390_VM_TOD_LOW:
1332 ret = kvm_s390_set_tod_low(kvm, attr);
1333 break;
1334 default:
1335 ret = -ENXIO;
1336 break;
1337 }
1338
1339 out_unlock:
1340 mutex_unlock(&kvm->lock);
1341 return ret;
1342 }
1343
kvm_s390_get_tod_clock(struct kvm * kvm,struct kvm_s390_vm_tod_clock * gtod)1344 static void kvm_s390_get_tod_clock(struct kvm *kvm,
1345 struct kvm_s390_vm_tod_clock *gtod)
1346 {
1347 union tod_clock clk;
1348
1349 preempt_disable();
1350
1351 store_tod_clock_ext(&clk);
1352
1353 gtod->tod = clk.tod + kvm->arch.epoch;
1354 gtod->epoch_idx = 0;
1355 if (test_kvm_facility(kvm, 139)) {
1356 gtod->epoch_idx = clk.ei + kvm->arch.epdx;
1357 if (gtod->tod < clk.tod)
1358 gtod->epoch_idx += 1;
1359 }
1360
1361 preempt_enable();
1362 }
1363
kvm_s390_get_tod_ext(struct kvm * kvm,struct kvm_device_attr * attr)1364 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
1365 {
1366 struct kvm_s390_vm_tod_clock gtod;
1367
1368 memset(>od, 0, sizeof(gtod));
1369 kvm_s390_get_tod_clock(kvm, >od);
1370 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod)))
1371 return -EFAULT;
1372
1373 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx",
1374 gtod.epoch_idx, gtod.tod);
1375 return 0;
1376 }
1377
kvm_s390_get_tod_high(struct kvm * kvm,struct kvm_device_attr * attr)1378 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
1379 {
1380 u8 gtod_high = 0;
1381
1382 if (copy_to_user((void __user *)attr->addr, >od_high,
1383 sizeof(gtod_high)))
1384 return -EFAULT;
1385 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
1386
1387 return 0;
1388 }
1389
kvm_s390_get_tod_low(struct kvm * kvm,struct kvm_device_attr * attr)1390 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
1391 {
1392 u64 gtod;
1393
1394 gtod = kvm_s390_get_tod_clock_fast(kvm);
1395 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod)))
1396 return -EFAULT;
1397 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
1398
1399 return 0;
1400 }
1401
kvm_s390_get_tod(struct kvm * kvm,struct kvm_device_attr * attr)1402 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
1403 {
1404 int ret;
1405
1406 if (attr->flags)
1407 return -EINVAL;
1408
1409 switch (attr->attr) {
1410 case KVM_S390_VM_TOD_EXT:
1411 ret = kvm_s390_get_tod_ext(kvm, attr);
1412 break;
1413 case KVM_S390_VM_TOD_HIGH:
1414 ret = kvm_s390_get_tod_high(kvm, attr);
1415 break;
1416 case KVM_S390_VM_TOD_LOW:
1417 ret = kvm_s390_get_tod_low(kvm, attr);
1418 break;
1419 default:
1420 ret = -ENXIO;
1421 break;
1422 }
1423 return ret;
1424 }
1425
kvm_s390_set_processor(struct kvm * kvm,struct kvm_device_attr * attr)1426 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
1427 {
1428 struct kvm_s390_vm_cpu_processor *proc;
1429 u16 lowest_ibc, unblocked_ibc;
1430 int ret = 0;
1431
1432 mutex_lock(&kvm->lock);
1433 if (kvm->created_vcpus) {
1434 ret = -EBUSY;
1435 goto out;
1436 }
1437 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT);
1438 if (!proc) {
1439 ret = -ENOMEM;
1440 goto out;
1441 }
1442 if (!copy_from_user(proc, (void __user *)attr->addr,
1443 sizeof(*proc))) {
1444 kvm->arch.model.cpuid = proc->cpuid;
1445 lowest_ibc = sclp.ibc >> 16 & 0xfff;
1446 unblocked_ibc = sclp.ibc & 0xfff;
1447 if (lowest_ibc && proc->ibc) {
1448 if (proc->ibc > unblocked_ibc)
1449 kvm->arch.model.ibc = unblocked_ibc;
1450 else if (proc->ibc < lowest_ibc)
1451 kvm->arch.model.ibc = lowest_ibc;
1452 else
1453 kvm->arch.model.ibc = proc->ibc;
1454 }
1455 memcpy(kvm->arch.model.fac_list, proc->fac_list,
1456 S390_ARCH_FAC_LIST_SIZE_BYTE);
1457 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
1458 kvm->arch.model.ibc,
1459 kvm->arch.model.cpuid);
1460 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1461 kvm->arch.model.fac_list[0],
1462 kvm->arch.model.fac_list[1],
1463 kvm->arch.model.fac_list[2]);
1464 } else
1465 ret = -EFAULT;
1466 kfree(proc);
1467 out:
1468 mutex_unlock(&kvm->lock);
1469 return ret;
1470 }
1471
kvm_s390_set_processor_feat(struct kvm * kvm,struct kvm_device_attr * attr)1472 static int kvm_s390_set_processor_feat(struct kvm *kvm,
1473 struct kvm_device_attr *attr)
1474 {
1475 struct kvm_s390_vm_cpu_feat data;
1476
1477 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
1478 return -EFAULT;
1479 if (!bitmap_subset((unsigned long *) data.feat,
1480 kvm_s390_available_cpu_feat,
1481 KVM_S390_VM_CPU_FEAT_NR_BITS))
1482 return -EINVAL;
1483
1484 mutex_lock(&kvm->lock);
1485 if (kvm->created_vcpus) {
1486 mutex_unlock(&kvm->lock);
1487 return -EBUSY;
1488 }
1489 bitmap_from_arr64(kvm->arch.cpu_feat, data.feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1490 mutex_unlock(&kvm->lock);
1491 VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1492 data.feat[0],
1493 data.feat[1],
1494 data.feat[2]);
1495 return 0;
1496 }
1497
kvm_s390_set_processor_subfunc(struct kvm * kvm,struct kvm_device_attr * attr)1498 static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
1499 struct kvm_device_attr *attr)
1500 {
1501 mutex_lock(&kvm->lock);
1502 if (kvm->created_vcpus) {
1503 mutex_unlock(&kvm->lock);
1504 return -EBUSY;
1505 }
1506
1507 if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr,
1508 sizeof(struct kvm_s390_vm_cpu_subfunc))) {
1509 mutex_unlock(&kvm->lock);
1510 return -EFAULT;
1511 }
1512 mutex_unlock(&kvm->lock);
1513
1514 VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1515 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
1516 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
1517 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
1518 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
1519 VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx",
1520 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
1521 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
1522 VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx",
1523 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
1524 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
1525 VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx",
1526 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
1527 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
1528 VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx",
1529 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
1530 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
1531 VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx",
1532 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
1533 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
1534 VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx",
1535 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
1536 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
1537 VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx",
1538 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
1539 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
1540 VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx",
1541 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
1542 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
1543 VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx",
1544 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
1545 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
1546 VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx",
1547 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
1548 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
1549 VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx",
1550 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
1551 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
1552 VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx",
1553 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
1554 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
1555 VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx",
1556 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
1557 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
1558 VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx",
1559 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
1560 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
1561 VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1562 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
1563 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
1564 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
1565 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
1566 VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1567 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
1568 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
1569 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
1570 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
1571 VM_EVENT(kvm, 3, "GET: guest PFCR subfunc 0x%16.16lx.%16.16lx",
1572 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0],
1573 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]);
1574
1575 return 0;
1576 }
1577
1578 #define KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK \
1579 ( \
1580 ((struct kvm_s390_vm_cpu_uv_feat){ \
1581 .ap = 1, \
1582 .ap_intr = 1, \
1583 }) \
1584 .feat \
1585 )
1586
kvm_s390_set_uv_feat(struct kvm * kvm,struct kvm_device_attr * attr)1587 static int kvm_s390_set_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1588 {
1589 struct kvm_s390_vm_cpu_uv_feat __user *ptr = (void __user *)attr->addr;
1590 unsigned long data, filter;
1591
1592 filter = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK;
1593 if (get_user(data, &ptr->feat))
1594 return -EFAULT;
1595 if (!bitmap_subset(&data, &filter, KVM_S390_VM_CPU_UV_FEAT_NR_BITS))
1596 return -EINVAL;
1597
1598 mutex_lock(&kvm->lock);
1599 if (kvm->created_vcpus) {
1600 mutex_unlock(&kvm->lock);
1601 return -EBUSY;
1602 }
1603 kvm->arch.model.uv_feat_guest.feat = data;
1604 mutex_unlock(&kvm->lock);
1605
1606 VM_EVENT(kvm, 3, "SET: guest UV-feat: 0x%16.16lx", data);
1607
1608 return 0;
1609 }
1610
kvm_s390_set_cpu_model(struct kvm * kvm,struct kvm_device_attr * attr)1611 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
1612 {
1613 int ret = -ENXIO;
1614
1615 switch (attr->attr) {
1616 case KVM_S390_VM_CPU_PROCESSOR:
1617 ret = kvm_s390_set_processor(kvm, attr);
1618 break;
1619 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1620 ret = kvm_s390_set_processor_feat(kvm, attr);
1621 break;
1622 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1623 ret = kvm_s390_set_processor_subfunc(kvm, attr);
1624 break;
1625 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
1626 ret = kvm_s390_set_uv_feat(kvm, attr);
1627 break;
1628 }
1629 return ret;
1630 }
1631
kvm_s390_get_processor(struct kvm * kvm,struct kvm_device_attr * attr)1632 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
1633 {
1634 struct kvm_s390_vm_cpu_processor *proc;
1635 int ret = 0;
1636
1637 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT);
1638 if (!proc) {
1639 ret = -ENOMEM;
1640 goto out;
1641 }
1642 proc->cpuid = kvm->arch.model.cpuid;
1643 proc->ibc = kvm->arch.model.ibc;
1644 memcpy(&proc->fac_list, kvm->arch.model.fac_list,
1645 S390_ARCH_FAC_LIST_SIZE_BYTE);
1646 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
1647 kvm->arch.model.ibc,
1648 kvm->arch.model.cpuid);
1649 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1650 kvm->arch.model.fac_list[0],
1651 kvm->arch.model.fac_list[1],
1652 kvm->arch.model.fac_list[2]);
1653 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
1654 ret = -EFAULT;
1655 kfree(proc);
1656 out:
1657 return ret;
1658 }
1659
kvm_s390_get_machine(struct kvm * kvm,struct kvm_device_attr * attr)1660 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
1661 {
1662 struct kvm_s390_vm_cpu_machine *mach;
1663 int ret = 0;
1664
1665 mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT);
1666 if (!mach) {
1667 ret = -ENOMEM;
1668 goto out;
1669 }
1670 get_cpu_id((struct cpuid *) &mach->cpuid);
1671 mach->ibc = sclp.ibc;
1672 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
1673 S390_ARCH_FAC_LIST_SIZE_BYTE);
1674 memcpy((unsigned long *)&mach->fac_list, stfle_fac_list,
1675 sizeof(stfle_fac_list));
1676 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx",
1677 kvm->arch.model.ibc,
1678 kvm->arch.model.cpuid);
1679 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx",
1680 mach->fac_mask[0],
1681 mach->fac_mask[1],
1682 mach->fac_mask[2]);
1683 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1684 mach->fac_list[0],
1685 mach->fac_list[1],
1686 mach->fac_list[2]);
1687 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
1688 ret = -EFAULT;
1689 kfree(mach);
1690 out:
1691 return ret;
1692 }
1693
kvm_s390_get_processor_feat(struct kvm * kvm,struct kvm_device_attr * attr)1694 static int kvm_s390_get_processor_feat(struct kvm *kvm,
1695 struct kvm_device_attr *attr)
1696 {
1697 struct kvm_s390_vm_cpu_feat data;
1698
1699 bitmap_to_arr64(data.feat, kvm->arch.cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1700 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
1701 return -EFAULT;
1702 VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1703 data.feat[0],
1704 data.feat[1],
1705 data.feat[2]);
1706 return 0;
1707 }
1708
kvm_s390_get_machine_feat(struct kvm * kvm,struct kvm_device_attr * attr)1709 static int kvm_s390_get_machine_feat(struct kvm *kvm,
1710 struct kvm_device_attr *attr)
1711 {
1712 struct kvm_s390_vm_cpu_feat data;
1713
1714 bitmap_to_arr64(data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1715 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
1716 return -EFAULT;
1717 VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1718 data.feat[0],
1719 data.feat[1],
1720 data.feat[2]);
1721 return 0;
1722 }
1723
kvm_s390_get_processor_subfunc(struct kvm * kvm,struct kvm_device_attr * attr)1724 static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
1725 struct kvm_device_attr *attr)
1726 {
1727 if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs,
1728 sizeof(struct kvm_s390_vm_cpu_subfunc)))
1729 return -EFAULT;
1730
1731 VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1732 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
1733 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
1734 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
1735 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
1736 VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx",
1737 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
1738 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
1739 VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx",
1740 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
1741 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
1742 VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx",
1743 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
1744 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
1745 VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx",
1746 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
1747 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
1748 VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx",
1749 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
1750 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
1751 VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx",
1752 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
1753 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
1754 VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx",
1755 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
1756 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
1757 VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx",
1758 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
1759 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
1760 VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx",
1761 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
1762 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
1763 VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx",
1764 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
1765 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
1766 VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx",
1767 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
1768 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
1769 VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx",
1770 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
1771 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
1772 VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx",
1773 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
1774 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
1775 VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx",
1776 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
1777 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
1778 VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1779 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
1780 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
1781 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
1782 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
1783 VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1784 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
1785 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
1786 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
1787 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
1788 VM_EVENT(kvm, 3, "GET: guest PFCR subfunc 0x%16.16lx.%16.16lx",
1789 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0],
1790 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]);
1791
1792 return 0;
1793 }
1794
kvm_s390_get_machine_subfunc(struct kvm * kvm,struct kvm_device_attr * attr)1795 static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
1796 struct kvm_device_attr *attr)
1797 {
1798 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
1799 sizeof(struct kvm_s390_vm_cpu_subfunc)))
1800 return -EFAULT;
1801
1802 VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1803 ((unsigned long *) &kvm_s390_available_subfunc.plo)[0],
1804 ((unsigned long *) &kvm_s390_available_subfunc.plo)[1],
1805 ((unsigned long *) &kvm_s390_available_subfunc.plo)[2],
1806 ((unsigned long *) &kvm_s390_available_subfunc.plo)[3]);
1807 VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx",
1808 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[0],
1809 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]);
1810 VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx",
1811 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[0],
1812 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]);
1813 VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx",
1814 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[0],
1815 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]);
1816 VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx",
1817 ((unsigned long *) &kvm_s390_available_subfunc.km)[0],
1818 ((unsigned long *) &kvm_s390_available_subfunc.km)[1]);
1819 VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx",
1820 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[0],
1821 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]);
1822 VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx",
1823 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[0],
1824 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]);
1825 VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx",
1826 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0],
1827 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]);
1828 VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx",
1829 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0],
1830 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]);
1831 VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx",
1832 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[0],
1833 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]);
1834 VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx",
1835 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[0],
1836 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]);
1837 VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx",
1838 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[0],
1839 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]);
1840 VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx",
1841 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[0],
1842 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]);
1843 VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx",
1844 ((unsigned long *) &kvm_s390_available_subfunc.kma)[0],
1845 ((unsigned long *) &kvm_s390_available_subfunc.kma)[1]);
1846 VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx",
1847 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0],
1848 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]);
1849 VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1850 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[0],
1851 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[1],
1852 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[2],
1853 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]);
1854 VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1855 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0],
1856 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1],
1857 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2],
1858 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]);
1859 VM_EVENT(kvm, 3, "GET: host PFCR subfunc 0x%16.16lx.%16.16lx",
1860 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0],
1861 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]);
1862
1863 return 0;
1864 }
1865
kvm_s390_get_processor_uv_feat(struct kvm * kvm,struct kvm_device_attr * attr)1866 static int kvm_s390_get_processor_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1867 {
1868 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr;
1869 unsigned long feat = kvm->arch.model.uv_feat_guest.feat;
1870
1871 if (put_user(feat, &dst->feat))
1872 return -EFAULT;
1873 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat);
1874
1875 return 0;
1876 }
1877
kvm_s390_get_machine_uv_feat(struct kvm * kvm,struct kvm_device_attr * attr)1878 static int kvm_s390_get_machine_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1879 {
1880 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr;
1881 unsigned long feat;
1882
1883 BUILD_BUG_ON(sizeof(*dst) != sizeof(uv_info.uv_feature_indications));
1884
1885 feat = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK;
1886 if (put_user(feat, &dst->feat))
1887 return -EFAULT;
1888 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat);
1889
1890 return 0;
1891 }
1892
kvm_s390_get_cpu_model(struct kvm * kvm,struct kvm_device_attr * attr)1893 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
1894 {
1895 int ret = -ENXIO;
1896
1897 switch (attr->attr) {
1898 case KVM_S390_VM_CPU_PROCESSOR:
1899 ret = kvm_s390_get_processor(kvm, attr);
1900 break;
1901 case KVM_S390_VM_CPU_MACHINE:
1902 ret = kvm_s390_get_machine(kvm, attr);
1903 break;
1904 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1905 ret = kvm_s390_get_processor_feat(kvm, attr);
1906 break;
1907 case KVM_S390_VM_CPU_MACHINE_FEAT:
1908 ret = kvm_s390_get_machine_feat(kvm, attr);
1909 break;
1910 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1911 ret = kvm_s390_get_processor_subfunc(kvm, attr);
1912 break;
1913 case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1914 ret = kvm_s390_get_machine_subfunc(kvm, attr);
1915 break;
1916 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
1917 ret = kvm_s390_get_processor_uv_feat(kvm, attr);
1918 break;
1919 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST:
1920 ret = kvm_s390_get_machine_uv_feat(kvm, attr);
1921 break;
1922 }
1923 return ret;
1924 }
1925
1926 /**
1927 * kvm_s390_update_topology_change_report - update CPU topology change report
1928 * @kvm: guest KVM description
1929 * @val: set or clear the MTCR bit
1930 *
1931 * Updates the Multiprocessor Topology-Change-Report bit to signal
1932 * the guest with a topology change.
1933 * This is only relevant if the topology facility is present.
1934 *
1935 * The SCA version, bsca or esca, doesn't matter as offset is the same.
1936 */
kvm_s390_update_topology_change_report(struct kvm * kvm,bool val)1937 static void kvm_s390_update_topology_change_report(struct kvm *kvm, bool val)
1938 {
1939 union sca_utility new, old;
1940 struct bsca_block *sca;
1941
1942 read_lock(&kvm->arch.sca_lock);
1943 sca = kvm->arch.sca;
1944 old = READ_ONCE(sca->utility);
1945 do {
1946 new = old;
1947 new.mtcr = val;
1948 } while (!try_cmpxchg(&sca->utility.val, &old.val, new.val));
1949 read_unlock(&kvm->arch.sca_lock);
1950 }
1951
kvm_s390_set_topo_change_indication(struct kvm * kvm,struct kvm_device_attr * attr)1952 static int kvm_s390_set_topo_change_indication(struct kvm *kvm,
1953 struct kvm_device_attr *attr)
1954 {
1955 if (!test_kvm_facility(kvm, 11))
1956 return -ENXIO;
1957
1958 kvm_s390_update_topology_change_report(kvm, !!attr->attr);
1959 return 0;
1960 }
1961
kvm_s390_get_topo_change_indication(struct kvm * kvm,struct kvm_device_attr * attr)1962 static int kvm_s390_get_topo_change_indication(struct kvm *kvm,
1963 struct kvm_device_attr *attr)
1964 {
1965 u8 topo;
1966
1967 if (!test_kvm_facility(kvm, 11))
1968 return -ENXIO;
1969
1970 read_lock(&kvm->arch.sca_lock);
1971 topo = ((struct bsca_block *)kvm->arch.sca)->utility.mtcr;
1972 read_unlock(&kvm->arch.sca_lock);
1973
1974 return put_user(topo, (u8 __user *)attr->addr);
1975 }
1976
kvm_s390_vm_set_attr(struct kvm * kvm,struct kvm_device_attr * attr)1977 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1978 {
1979 int ret;
1980
1981 switch (attr->group) {
1982 case KVM_S390_VM_MEM_CTRL:
1983 ret = kvm_s390_set_mem_control(kvm, attr);
1984 break;
1985 case KVM_S390_VM_TOD:
1986 ret = kvm_s390_set_tod(kvm, attr);
1987 break;
1988 case KVM_S390_VM_CPU_MODEL:
1989 ret = kvm_s390_set_cpu_model(kvm, attr);
1990 break;
1991 case KVM_S390_VM_CRYPTO:
1992 ret = kvm_s390_vm_set_crypto(kvm, attr);
1993 break;
1994 case KVM_S390_VM_MIGRATION:
1995 ret = kvm_s390_vm_set_migration(kvm, attr);
1996 break;
1997 case KVM_S390_VM_CPU_TOPOLOGY:
1998 ret = kvm_s390_set_topo_change_indication(kvm, attr);
1999 break;
2000 default:
2001 ret = -ENXIO;
2002 break;
2003 }
2004
2005 return ret;
2006 }
2007
kvm_s390_vm_get_attr(struct kvm * kvm,struct kvm_device_attr * attr)2008 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
2009 {
2010 int ret;
2011
2012 switch (attr->group) {
2013 case KVM_S390_VM_MEM_CTRL:
2014 ret = kvm_s390_get_mem_control(kvm, attr);
2015 break;
2016 case KVM_S390_VM_TOD:
2017 ret = kvm_s390_get_tod(kvm, attr);
2018 break;
2019 case KVM_S390_VM_CPU_MODEL:
2020 ret = kvm_s390_get_cpu_model(kvm, attr);
2021 break;
2022 case KVM_S390_VM_MIGRATION:
2023 ret = kvm_s390_vm_get_migration(kvm, attr);
2024 break;
2025 case KVM_S390_VM_CPU_TOPOLOGY:
2026 ret = kvm_s390_get_topo_change_indication(kvm, attr);
2027 break;
2028 default:
2029 ret = -ENXIO;
2030 break;
2031 }
2032
2033 return ret;
2034 }
2035
kvm_s390_vm_has_attr(struct kvm * kvm,struct kvm_device_attr * attr)2036 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
2037 {
2038 int ret;
2039
2040 switch (attr->group) {
2041 case KVM_S390_VM_MEM_CTRL:
2042 switch (attr->attr) {
2043 case KVM_S390_VM_MEM_ENABLE_CMMA:
2044 case KVM_S390_VM_MEM_CLR_CMMA:
2045 ret = sclp.has_cmma ? 0 : -ENXIO;
2046 break;
2047 case KVM_S390_VM_MEM_LIMIT_SIZE:
2048 ret = 0;
2049 break;
2050 default:
2051 ret = -ENXIO;
2052 break;
2053 }
2054 break;
2055 case KVM_S390_VM_TOD:
2056 switch (attr->attr) {
2057 case KVM_S390_VM_TOD_LOW:
2058 case KVM_S390_VM_TOD_HIGH:
2059 ret = 0;
2060 break;
2061 default:
2062 ret = -ENXIO;
2063 break;
2064 }
2065 break;
2066 case KVM_S390_VM_CPU_MODEL:
2067 switch (attr->attr) {
2068 case KVM_S390_VM_CPU_PROCESSOR:
2069 case KVM_S390_VM_CPU_MACHINE:
2070 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
2071 case KVM_S390_VM_CPU_MACHINE_FEAT:
2072 case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
2073 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
2074 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST:
2075 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
2076 ret = 0;
2077 break;
2078 default:
2079 ret = -ENXIO;
2080 break;
2081 }
2082 break;
2083 case KVM_S390_VM_CRYPTO:
2084 switch (attr->attr) {
2085 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
2086 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
2087 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
2088 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
2089 ret = 0;
2090 break;
2091 case KVM_S390_VM_CRYPTO_ENABLE_APIE:
2092 case KVM_S390_VM_CRYPTO_DISABLE_APIE:
2093 ret = ap_instructions_available() ? 0 : -ENXIO;
2094 break;
2095 default:
2096 ret = -ENXIO;
2097 break;
2098 }
2099 break;
2100 case KVM_S390_VM_MIGRATION:
2101 ret = 0;
2102 break;
2103 case KVM_S390_VM_CPU_TOPOLOGY:
2104 ret = test_kvm_facility(kvm, 11) ? 0 : -ENXIO;
2105 break;
2106 default:
2107 ret = -ENXIO;
2108 break;
2109 }
2110
2111 return ret;
2112 }
2113
kvm_s390_get_skeys(struct kvm * kvm,struct kvm_s390_skeys * args)2114 static int kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
2115 {
2116 uint8_t *keys;
2117 uint64_t hva;
2118 int srcu_idx, i, r = 0;
2119
2120 if (args->flags != 0)
2121 return -EINVAL;
2122
2123 /* Is this guest using storage keys? */
2124 if (!mm_uses_skeys(current->mm))
2125 return KVM_S390_GET_SKEYS_NONE;
2126
2127 /* Enforce sane limit on memory allocation */
2128 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
2129 return -EINVAL;
2130
2131 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT);
2132 if (!keys)
2133 return -ENOMEM;
2134
2135 mmap_read_lock(current->mm);
2136 srcu_idx = srcu_read_lock(&kvm->srcu);
2137 for (i = 0; i < args->count; i++) {
2138 hva = gfn_to_hva(kvm, args->start_gfn + i);
2139 if (kvm_is_error_hva(hva)) {
2140 r = -EFAULT;
2141 break;
2142 }
2143
2144 r = get_guest_storage_key(current->mm, hva, &keys[i]);
2145 if (r)
2146 break;
2147 }
2148 srcu_read_unlock(&kvm->srcu, srcu_idx);
2149 mmap_read_unlock(current->mm);
2150
2151 if (!r) {
2152 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
2153 sizeof(uint8_t) * args->count);
2154 if (r)
2155 r = -EFAULT;
2156 }
2157
2158 kvfree(keys);
2159 return r;
2160 }
2161
kvm_s390_set_skeys(struct kvm * kvm,struct kvm_s390_skeys * args)2162 static int kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
2163 {
2164 uint8_t *keys;
2165 uint64_t hva;
2166 int srcu_idx, i, r = 0;
2167 bool unlocked;
2168
2169 if (args->flags != 0)
2170 return -EINVAL;
2171
2172 /* Enforce sane limit on memory allocation */
2173 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
2174 return -EINVAL;
2175
2176 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT);
2177 if (!keys)
2178 return -ENOMEM;
2179
2180 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
2181 sizeof(uint8_t) * args->count);
2182 if (r) {
2183 r = -EFAULT;
2184 goto out;
2185 }
2186
2187 /* Enable storage key handling for the guest */
2188 r = s390_enable_skey();
2189 if (r)
2190 goto out;
2191
2192 i = 0;
2193 mmap_read_lock(current->mm);
2194 srcu_idx = srcu_read_lock(&kvm->srcu);
2195 while (i < args->count) {
2196 unlocked = false;
2197 hva = gfn_to_hva(kvm, args->start_gfn + i);
2198 if (kvm_is_error_hva(hva)) {
2199 r = -EFAULT;
2200 break;
2201 }
2202
2203 /* Lowest order bit is reserved */
2204 if (keys[i] & 0x01) {
2205 r = -EINVAL;
2206 break;
2207 }
2208
2209 r = set_guest_storage_key(current->mm, hva, keys[i], 0);
2210 if (r) {
2211 r = fixup_user_fault(current->mm, hva,
2212 FAULT_FLAG_WRITE, &unlocked);
2213 if (r)
2214 break;
2215 }
2216 if (!r)
2217 i++;
2218 }
2219 srcu_read_unlock(&kvm->srcu, srcu_idx);
2220 mmap_read_unlock(current->mm);
2221 out:
2222 kvfree(keys);
2223 return r;
2224 }
2225
2226 /*
2227 * Base address and length must be sent at the start of each block, therefore
2228 * it's cheaper to send some clean data, as long as it's less than the size of
2229 * two longs.
2230 */
2231 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *))
2232 /* for consistency */
2233 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX)
2234
kvm_s390_peek_cmma(struct kvm * kvm,struct kvm_s390_cmma_log * args,u8 * res,unsigned long bufsize)2235 static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
2236 u8 *res, unsigned long bufsize)
2237 {
2238 unsigned long pgstev, hva, cur_gfn = args->start_gfn;
2239
2240 args->count = 0;
2241 while (args->count < bufsize) {
2242 hva = gfn_to_hva(kvm, cur_gfn);
2243 /*
2244 * We return an error if the first value was invalid, but we
2245 * return successfully if at least one value was copied.
2246 */
2247 if (kvm_is_error_hva(hva))
2248 return args->count ? 0 : -EFAULT;
2249 if (get_pgste(kvm->mm, hva, &pgstev) < 0)
2250 pgstev = 0;
2251 res[args->count++] = (pgstev >> 24) & 0x43;
2252 cur_gfn++;
2253 }
2254
2255 return 0;
2256 }
2257
gfn_to_memslot_approx(struct kvm_memslots * slots,gfn_t gfn)2258 static struct kvm_memory_slot *gfn_to_memslot_approx(struct kvm_memslots *slots,
2259 gfn_t gfn)
2260 {
2261 return ____gfn_to_memslot(slots, gfn, true);
2262 }
2263
kvm_s390_next_dirty_cmma(struct kvm_memslots * slots,unsigned long cur_gfn)2264 static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots,
2265 unsigned long cur_gfn)
2266 {
2267 struct kvm_memory_slot *ms = gfn_to_memslot_approx(slots, cur_gfn);
2268 unsigned long ofs = cur_gfn - ms->base_gfn;
2269 struct rb_node *mnode = &ms->gfn_node[slots->node_idx];
2270
2271 if (ms->base_gfn + ms->npages <= cur_gfn) {
2272 mnode = rb_next(mnode);
2273 /* If we are above the highest slot, wrap around */
2274 if (!mnode)
2275 mnode = rb_first(&slots->gfn_tree);
2276
2277 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]);
2278 ofs = 0;
2279 }
2280
2281 if (cur_gfn < ms->base_gfn)
2282 ofs = 0;
2283
2284 ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs);
2285 while (ofs >= ms->npages && (mnode = rb_next(mnode))) {
2286 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]);
2287 ofs = find_first_bit(kvm_second_dirty_bitmap(ms), ms->npages);
2288 }
2289 return ms->base_gfn + ofs;
2290 }
2291
kvm_s390_get_cmma(struct kvm * kvm,struct kvm_s390_cmma_log * args,u8 * res,unsigned long bufsize)2292 static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
2293 u8 *res, unsigned long bufsize)
2294 {
2295 unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev;
2296 struct kvm_memslots *slots = kvm_memslots(kvm);
2297 struct kvm_memory_slot *ms;
2298
2299 if (unlikely(kvm_memslots_empty(slots)))
2300 return 0;
2301
2302 cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn);
2303 ms = gfn_to_memslot(kvm, cur_gfn);
2304 args->count = 0;
2305 args->start_gfn = cur_gfn;
2306 if (!ms)
2307 return 0;
2308 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
2309 mem_end = kvm_s390_get_gfn_end(slots);
2310
2311 while (args->count < bufsize) {
2312 hva = gfn_to_hva(kvm, cur_gfn);
2313 if (kvm_is_error_hva(hva))
2314 return 0;
2315 /* Decrement only if we actually flipped the bit to 0 */
2316 if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms)))
2317 atomic64_dec(&kvm->arch.cmma_dirty_pages);
2318 if (get_pgste(kvm->mm, hva, &pgstev) < 0)
2319 pgstev = 0;
2320 /* Save the value */
2321 res[args->count++] = (pgstev >> 24) & 0x43;
2322 /* If the next bit is too far away, stop. */
2323 if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE)
2324 return 0;
2325 /* If we reached the previous "next", find the next one */
2326 if (cur_gfn == next_gfn)
2327 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
2328 /* Reached the end of memory or of the buffer, stop */
2329 if ((next_gfn >= mem_end) ||
2330 (next_gfn - args->start_gfn >= bufsize))
2331 return 0;
2332 cur_gfn++;
2333 /* Reached the end of the current memslot, take the next one. */
2334 if (cur_gfn - ms->base_gfn >= ms->npages) {
2335 ms = gfn_to_memslot(kvm, cur_gfn);
2336 if (!ms)
2337 return 0;
2338 }
2339 }
2340 return 0;
2341 }
2342
2343 /*
2344 * This function searches for the next page with dirty CMMA attributes, and
2345 * saves the attributes in the buffer up to either the end of the buffer or
2346 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found;
2347 * no trailing clean bytes are saved.
2348 * In case no dirty bits were found, or if CMMA was not enabled or used, the
2349 * output buffer will indicate 0 as length.
2350 */
kvm_s390_get_cmma_bits(struct kvm * kvm,struct kvm_s390_cmma_log * args)2351 static int kvm_s390_get_cmma_bits(struct kvm *kvm,
2352 struct kvm_s390_cmma_log *args)
2353 {
2354 unsigned long bufsize;
2355 int srcu_idx, peek, ret;
2356 u8 *values;
2357
2358 if (!kvm->arch.use_cmma)
2359 return -ENXIO;
2360 /* Invalid/unsupported flags were specified */
2361 if (args->flags & ~KVM_S390_CMMA_PEEK)
2362 return -EINVAL;
2363 /* Migration mode query, and we are not doing a migration */
2364 peek = !!(args->flags & KVM_S390_CMMA_PEEK);
2365 if (!peek && !kvm->arch.migration_mode)
2366 return -EINVAL;
2367 /* CMMA is disabled or was not used, or the buffer has length zero */
2368 bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX);
2369 if (!bufsize || !kvm->mm->context.uses_cmm) {
2370 memset(args, 0, sizeof(*args));
2371 return 0;
2372 }
2373 /* We are not peeking, and there are no dirty pages */
2374 if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) {
2375 memset(args, 0, sizeof(*args));
2376 return 0;
2377 }
2378
2379 values = vmalloc(bufsize);
2380 if (!values)
2381 return -ENOMEM;
2382
2383 mmap_read_lock(kvm->mm);
2384 srcu_idx = srcu_read_lock(&kvm->srcu);
2385 if (peek)
2386 ret = kvm_s390_peek_cmma(kvm, args, values, bufsize);
2387 else
2388 ret = kvm_s390_get_cmma(kvm, args, values, bufsize);
2389 srcu_read_unlock(&kvm->srcu, srcu_idx);
2390 mmap_read_unlock(kvm->mm);
2391
2392 if (kvm->arch.migration_mode)
2393 args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages);
2394 else
2395 args->remaining = 0;
2396
2397 if (copy_to_user((void __user *)args->values, values, args->count))
2398 ret = -EFAULT;
2399
2400 vfree(values);
2401 return ret;
2402 }
2403
2404 /*
2405 * This function sets the CMMA attributes for the given pages. If the input
2406 * buffer has zero length, no action is taken, otherwise the attributes are
2407 * set and the mm->context.uses_cmm flag is set.
2408 */
kvm_s390_set_cmma_bits(struct kvm * kvm,const struct kvm_s390_cmma_log * args)2409 static int kvm_s390_set_cmma_bits(struct kvm *kvm,
2410 const struct kvm_s390_cmma_log *args)
2411 {
2412 unsigned long hva, mask, pgstev, i;
2413 uint8_t *bits;
2414 int srcu_idx, r = 0;
2415
2416 mask = args->mask;
2417
2418 if (!kvm->arch.use_cmma)
2419 return -ENXIO;
2420 /* invalid/unsupported flags */
2421 if (args->flags != 0)
2422 return -EINVAL;
2423 /* Enforce sane limit on memory allocation */
2424 if (args->count > KVM_S390_CMMA_SIZE_MAX)
2425 return -EINVAL;
2426 /* Nothing to do */
2427 if (args->count == 0)
2428 return 0;
2429
2430 bits = vmalloc(array_size(sizeof(*bits), args->count));
2431 if (!bits)
2432 return -ENOMEM;
2433
2434 r = copy_from_user(bits, (void __user *)args->values, args->count);
2435 if (r) {
2436 r = -EFAULT;
2437 goto out;
2438 }
2439
2440 mmap_read_lock(kvm->mm);
2441 srcu_idx = srcu_read_lock(&kvm->srcu);
2442 for (i = 0; i < args->count; i++) {
2443 hva = gfn_to_hva(kvm, args->start_gfn + i);
2444 if (kvm_is_error_hva(hva)) {
2445 r = -EFAULT;
2446 break;
2447 }
2448
2449 pgstev = bits[i];
2450 pgstev = pgstev << 24;
2451 mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT;
2452 set_pgste_bits(kvm->mm, hva, mask, pgstev);
2453 }
2454 srcu_read_unlock(&kvm->srcu, srcu_idx);
2455 mmap_read_unlock(kvm->mm);
2456
2457 if (!kvm->mm->context.uses_cmm) {
2458 mmap_write_lock(kvm->mm);
2459 kvm->mm->context.uses_cmm = 1;
2460 mmap_write_unlock(kvm->mm);
2461 }
2462 out:
2463 vfree(bits);
2464 return r;
2465 }
2466
2467 /**
2468 * kvm_s390_cpus_from_pv - Convert all protected vCPUs in a protected VM to
2469 * non protected.
2470 * @kvm: the VM whose protected vCPUs are to be converted
2471 * @rc: return value for the RC field of the UVC (in case of error)
2472 * @rrc: return value for the RRC field of the UVC (in case of error)
2473 *
2474 * Does not stop in case of error, tries to convert as many
2475 * CPUs as possible. In case of error, the RC and RRC of the last error are
2476 * returned.
2477 *
2478 * Return: 0 in case of success, otherwise -EIO
2479 */
kvm_s390_cpus_from_pv(struct kvm * kvm,u16 * rc,u16 * rrc)2480 int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rc, u16 *rrc)
2481 {
2482 struct kvm_vcpu *vcpu;
2483 unsigned long i;
2484 u16 _rc, _rrc;
2485 int ret = 0;
2486
2487 /*
2488 * We ignore failures and try to destroy as many CPUs as possible.
2489 * At the same time we must not free the assigned resources when
2490 * this fails, as the ultravisor has still access to that memory.
2491 * So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak
2492 * behind.
2493 * We want to return the first failure rc and rrc, though.
2494 */
2495 kvm_for_each_vcpu(i, vcpu, kvm) {
2496 mutex_lock(&vcpu->mutex);
2497 if (kvm_s390_pv_destroy_cpu(vcpu, &_rc, &_rrc) && !ret) {
2498 *rc = _rc;
2499 *rrc = _rrc;
2500 ret = -EIO;
2501 }
2502 mutex_unlock(&vcpu->mutex);
2503 }
2504 /* Ensure that we re-enable gisa if the non-PV guest used it but the PV guest did not. */
2505 if (use_gisa)
2506 kvm_s390_gisa_enable(kvm);
2507 return ret;
2508 }
2509
2510 /**
2511 * kvm_s390_cpus_to_pv - Convert all non-protected vCPUs in a protected VM
2512 * to protected.
2513 * @kvm: the VM whose protected vCPUs are to be converted
2514 * @rc: return value for the RC field of the UVC (in case of error)
2515 * @rrc: return value for the RRC field of the UVC (in case of error)
2516 *
2517 * Tries to undo the conversion in case of error.
2518 *
2519 * Return: 0 in case of success, otherwise -EIO
2520 */
kvm_s390_cpus_to_pv(struct kvm * kvm,u16 * rc,u16 * rrc)2521 static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc)
2522 {
2523 unsigned long i;
2524 int r = 0;
2525 u16 dummy;
2526
2527 struct kvm_vcpu *vcpu;
2528
2529 /* Disable the GISA if the ultravisor does not support AIV. */
2530 if (!uv_has_feature(BIT_UV_FEAT_AIV))
2531 kvm_s390_gisa_disable(kvm);
2532
2533 kvm_for_each_vcpu(i, vcpu, kvm) {
2534 mutex_lock(&vcpu->mutex);
2535 r = kvm_s390_pv_create_cpu(vcpu, rc, rrc);
2536 mutex_unlock(&vcpu->mutex);
2537 if (r)
2538 break;
2539 }
2540 if (r)
2541 kvm_s390_cpus_from_pv(kvm, &dummy, &dummy);
2542 return r;
2543 }
2544
2545 /*
2546 * Here we provide user space with a direct interface to query UV
2547 * related data like UV maxima and available features as well as
2548 * feature specific data.
2549 *
2550 * To facilitate future extension of the data structures we'll try to
2551 * write data up to the maximum requested length.
2552 */
kvm_s390_handle_pv_info(struct kvm_s390_pv_info * info)2553 static ssize_t kvm_s390_handle_pv_info(struct kvm_s390_pv_info *info)
2554 {
2555 ssize_t len_min;
2556
2557 switch (info->header.id) {
2558 case KVM_PV_INFO_VM: {
2559 len_min = sizeof(info->header) + sizeof(info->vm);
2560
2561 if (info->header.len_max < len_min)
2562 return -EINVAL;
2563
2564 memcpy(info->vm.inst_calls_list,
2565 uv_info.inst_calls_list,
2566 sizeof(uv_info.inst_calls_list));
2567
2568 /* It's max cpuid not max cpus, so it's off by one */
2569 info->vm.max_cpus = uv_info.max_guest_cpu_id + 1;
2570 info->vm.max_guests = uv_info.max_num_sec_conf;
2571 info->vm.max_guest_addr = uv_info.max_sec_stor_addr;
2572 info->vm.feature_indication = uv_info.uv_feature_indications;
2573
2574 return len_min;
2575 }
2576 case KVM_PV_INFO_DUMP: {
2577 len_min = sizeof(info->header) + sizeof(info->dump);
2578
2579 if (info->header.len_max < len_min)
2580 return -EINVAL;
2581
2582 info->dump.dump_cpu_buffer_len = uv_info.guest_cpu_stor_len;
2583 info->dump.dump_config_mem_buffer_per_1m = uv_info.conf_dump_storage_state_len;
2584 info->dump.dump_config_finalize_len = uv_info.conf_dump_finalize_len;
2585 return len_min;
2586 }
2587 default:
2588 return -EINVAL;
2589 }
2590 }
2591
kvm_s390_pv_dmp(struct kvm * kvm,struct kvm_pv_cmd * cmd,struct kvm_s390_pv_dmp dmp)2592 static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd,
2593 struct kvm_s390_pv_dmp dmp)
2594 {
2595 int r = -EINVAL;
2596 void __user *result_buff = (void __user *)dmp.buff_addr;
2597
2598 switch (dmp.subcmd) {
2599 case KVM_PV_DUMP_INIT: {
2600 if (kvm->arch.pv.dumping)
2601 break;
2602
2603 /*
2604 * Block SIE entry as concurrent dump UVCs could lead
2605 * to validities.
2606 */
2607 kvm_s390_vcpu_block_all(kvm);
2608
2609 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2610 UVC_CMD_DUMP_INIT, &cmd->rc, &cmd->rrc);
2611 KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP INIT: rc %x rrc %x",
2612 cmd->rc, cmd->rrc);
2613 if (!r) {
2614 kvm->arch.pv.dumping = true;
2615 } else {
2616 kvm_s390_vcpu_unblock_all(kvm);
2617 r = -EINVAL;
2618 }
2619 break;
2620 }
2621 case KVM_PV_DUMP_CONFIG_STOR_STATE: {
2622 if (!kvm->arch.pv.dumping)
2623 break;
2624
2625 /*
2626 * gaddr is an output parameter since we might stop
2627 * early. As dmp will be copied back in our caller, we
2628 * don't need to do it ourselves.
2629 */
2630 r = kvm_s390_pv_dump_stor_state(kvm, result_buff, &dmp.gaddr, dmp.buff_len,
2631 &cmd->rc, &cmd->rrc);
2632 break;
2633 }
2634 case KVM_PV_DUMP_COMPLETE: {
2635 if (!kvm->arch.pv.dumping)
2636 break;
2637
2638 r = -EINVAL;
2639 if (dmp.buff_len < uv_info.conf_dump_finalize_len)
2640 break;
2641
2642 r = kvm_s390_pv_dump_complete(kvm, result_buff,
2643 &cmd->rc, &cmd->rrc);
2644 break;
2645 }
2646 default:
2647 r = -ENOTTY;
2648 break;
2649 }
2650
2651 return r;
2652 }
2653
kvm_s390_handle_pv(struct kvm * kvm,struct kvm_pv_cmd * cmd)2654 static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd)
2655 {
2656 const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM);
2657 void __user *argp = (void __user *)cmd->data;
2658 int r = 0;
2659 u16 dummy;
2660
2661 if (need_lock)
2662 mutex_lock(&kvm->lock);
2663
2664 switch (cmd->cmd) {
2665 case KVM_PV_ENABLE: {
2666 r = -EINVAL;
2667 if (kvm_s390_pv_is_protected(kvm))
2668 break;
2669
2670 /*
2671 * FMT 4 SIE needs esca. As we never switch back to bsca from
2672 * esca, we need no cleanup in the error cases below
2673 */
2674 r = sca_switch_to_extended(kvm);
2675 if (r)
2676 break;
2677
2678 mmap_write_lock(kvm->mm);
2679 r = gmap_helper_disable_cow_sharing();
2680 mmap_write_unlock(kvm->mm);
2681 if (r)
2682 break;
2683
2684 r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc);
2685 if (r)
2686 break;
2687
2688 r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc);
2689 if (r)
2690 kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy);
2691
2692 /* we need to block service interrupts from now on */
2693 set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2694 break;
2695 }
2696 case KVM_PV_ASYNC_CLEANUP_PREPARE:
2697 r = -EINVAL;
2698 if (!kvm_s390_pv_is_protected(kvm) || !async_destroy)
2699 break;
2700
2701 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
2702 /*
2703 * If a CPU could not be destroyed, destroy VM will also fail.
2704 * There is no point in trying to destroy it. Instead return
2705 * the rc and rrc from the first CPU that failed destroying.
2706 */
2707 if (r)
2708 break;
2709 r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc);
2710
2711 /* no need to block service interrupts any more */
2712 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2713 break;
2714 case KVM_PV_ASYNC_CLEANUP_PERFORM:
2715 r = -EINVAL;
2716 if (!async_destroy)
2717 break;
2718 /* kvm->lock must not be held; this is asserted inside the function. */
2719 r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc);
2720 break;
2721 case KVM_PV_DISABLE: {
2722 r = -EINVAL;
2723 if (!kvm_s390_pv_is_protected(kvm))
2724 break;
2725
2726 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
2727 /*
2728 * If a CPU could not be destroyed, destroy VM will also fail.
2729 * There is no point in trying to destroy it. Instead return
2730 * the rc and rrc from the first CPU that failed destroying.
2731 */
2732 if (r)
2733 break;
2734 r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc);
2735
2736 /* no need to block service interrupts any more */
2737 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2738 break;
2739 }
2740 case KVM_PV_SET_SEC_PARMS: {
2741 struct kvm_s390_pv_sec_parm parms = {};
2742 void *hdr;
2743
2744 r = -EINVAL;
2745 if (!kvm_s390_pv_is_protected(kvm))
2746 break;
2747
2748 r = -EFAULT;
2749 if (copy_from_user(&parms, argp, sizeof(parms)))
2750 break;
2751
2752 /* Currently restricted to 8KB */
2753 r = -EINVAL;
2754 if (parms.length > PAGE_SIZE * 2)
2755 break;
2756
2757 r = -ENOMEM;
2758 hdr = vmalloc(parms.length);
2759 if (!hdr)
2760 break;
2761
2762 r = -EFAULT;
2763 if (!copy_from_user(hdr, (void __user *)parms.origin,
2764 parms.length))
2765 r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length,
2766 &cmd->rc, &cmd->rrc);
2767
2768 vfree(hdr);
2769 break;
2770 }
2771 case KVM_PV_UNPACK: {
2772 struct kvm_s390_pv_unp unp = {};
2773
2774 r = -EINVAL;
2775 if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm))
2776 break;
2777
2778 r = -EFAULT;
2779 if (copy_from_user(&unp, argp, sizeof(unp)))
2780 break;
2781
2782 r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak,
2783 &cmd->rc, &cmd->rrc);
2784 break;
2785 }
2786 case KVM_PV_VERIFY: {
2787 r = -EINVAL;
2788 if (!kvm_s390_pv_is_protected(kvm))
2789 break;
2790
2791 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2792 UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc);
2793 KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc,
2794 cmd->rrc);
2795 break;
2796 }
2797 case KVM_PV_PREP_RESET: {
2798 r = -EINVAL;
2799 if (!kvm_s390_pv_is_protected(kvm))
2800 break;
2801
2802 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2803 UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc);
2804 KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x",
2805 cmd->rc, cmd->rrc);
2806 break;
2807 }
2808 case KVM_PV_UNSHARE_ALL: {
2809 r = -EINVAL;
2810 if (!kvm_s390_pv_is_protected(kvm))
2811 break;
2812
2813 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2814 UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc);
2815 KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x",
2816 cmd->rc, cmd->rrc);
2817 break;
2818 }
2819 case KVM_PV_INFO: {
2820 struct kvm_s390_pv_info info = {};
2821 ssize_t data_len;
2822
2823 /*
2824 * No need to check the VM protection here.
2825 *
2826 * Maybe user space wants to query some of the data
2827 * when the VM is still unprotected. If we see the
2828 * need to fence a new data command we can still
2829 * return an error in the info handler.
2830 */
2831
2832 r = -EFAULT;
2833 if (copy_from_user(&info, argp, sizeof(info.header)))
2834 break;
2835
2836 r = -EINVAL;
2837 if (info.header.len_max < sizeof(info.header))
2838 break;
2839
2840 data_len = kvm_s390_handle_pv_info(&info);
2841 if (data_len < 0) {
2842 r = data_len;
2843 break;
2844 }
2845 /*
2846 * If a data command struct is extended (multiple
2847 * times) this can be used to determine how much of it
2848 * is valid.
2849 */
2850 info.header.len_written = data_len;
2851
2852 r = -EFAULT;
2853 if (copy_to_user(argp, &info, data_len))
2854 break;
2855
2856 r = 0;
2857 break;
2858 }
2859 case KVM_PV_DUMP: {
2860 struct kvm_s390_pv_dmp dmp;
2861
2862 r = -EINVAL;
2863 if (!kvm_s390_pv_is_protected(kvm))
2864 break;
2865
2866 r = -EFAULT;
2867 if (copy_from_user(&dmp, argp, sizeof(dmp)))
2868 break;
2869
2870 r = kvm_s390_pv_dmp(kvm, cmd, dmp);
2871 if (r)
2872 break;
2873
2874 if (copy_to_user(argp, &dmp, sizeof(dmp))) {
2875 r = -EFAULT;
2876 break;
2877 }
2878
2879 break;
2880 }
2881 default:
2882 r = -ENOTTY;
2883 }
2884 if (need_lock)
2885 mutex_unlock(&kvm->lock);
2886
2887 return r;
2888 }
2889
mem_op_validate_common(struct kvm_s390_mem_op * mop,u64 supported_flags)2890 static int mem_op_validate_common(struct kvm_s390_mem_op *mop, u64 supported_flags)
2891 {
2892 if (mop->flags & ~supported_flags || !mop->size)
2893 return -EINVAL;
2894 if (mop->size > MEM_OP_MAX_SIZE)
2895 return -E2BIG;
2896 if (mop->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) {
2897 if (mop->key > 0xf)
2898 return -EINVAL;
2899 } else {
2900 mop->key = 0;
2901 }
2902 return 0;
2903 }
2904
kvm_s390_vm_mem_op_abs(struct kvm * kvm,struct kvm_s390_mem_op * mop)2905 static int kvm_s390_vm_mem_op_abs(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2906 {
2907 void __user *uaddr = (void __user *)mop->buf;
2908 enum gacc_mode acc_mode;
2909 void *tmpbuf = NULL;
2910 int r, srcu_idx;
2911
2912 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION |
2913 KVM_S390_MEMOP_F_CHECK_ONLY);
2914 if (r)
2915 return r;
2916
2917 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
2918 tmpbuf = vmalloc(mop->size);
2919 if (!tmpbuf)
2920 return -ENOMEM;
2921 }
2922
2923 srcu_idx = srcu_read_lock(&kvm->srcu);
2924
2925 if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) {
2926 r = PGM_ADDRESSING;
2927 goto out_unlock;
2928 }
2929
2930 acc_mode = mop->op == KVM_S390_MEMOP_ABSOLUTE_READ ? GACC_FETCH : GACC_STORE;
2931 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2932 r = check_gpa_range(kvm, mop->gaddr, mop->size, acc_mode, mop->key);
2933 goto out_unlock;
2934 }
2935 if (acc_mode == GACC_FETCH) {
2936 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf,
2937 mop->size, GACC_FETCH, mop->key);
2938 if (r)
2939 goto out_unlock;
2940 if (copy_to_user(uaddr, tmpbuf, mop->size))
2941 r = -EFAULT;
2942 } else {
2943 if (copy_from_user(tmpbuf, uaddr, mop->size)) {
2944 r = -EFAULT;
2945 goto out_unlock;
2946 }
2947 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf,
2948 mop->size, GACC_STORE, mop->key);
2949 }
2950
2951 out_unlock:
2952 srcu_read_unlock(&kvm->srcu, srcu_idx);
2953
2954 vfree(tmpbuf);
2955 return r;
2956 }
2957
kvm_s390_vm_mem_op_cmpxchg(struct kvm * kvm,struct kvm_s390_mem_op * mop)2958 static int kvm_s390_vm_mem_op_cmpxchg(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2959 {
2960 void __user *uaddr = (void __user *)mop->buf;
2961 void __user *old_addr = (void __user *)mop->old_addr;
2962 union {
2963 __uint128_t quad;
2964 char raw[sizeof(__uint128_t)];
2965 } old = { .quad = 0}, new = { .quad = 0 };
2966 unsigned int off_in_quad = sizeof(new) - mop->size;
2967 int r, srcu_idx;
2968 bool success;
2969
2970 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION);
2971 if (r)
2972 return r;
2973 /*
2974 * This validates off_in_quad. Checking that size is a power
2975 * of two is not necessary, as cmpxchg_guest_abs_with_key
2976 * takes care of that
2977 */
2978 if (mop->size > sizeof(new))
2979 return -EINVAL;
2980 if (copy_from_user(&new.raw[off_in_quad], uaddr, mop->size))
2981 return -EFAULT;
2982 if (copy_from_user(&old.raw[off_in_quad], old_addr, mop->size))
2983 return -EFAULT;
2984
2985 srcu_idx = srcu_read_lock(&kvm->srcu);
2986
2987 if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) {
2988 r = PGM_ADDRESSING;
2989 goto out_unlock;
2990 }
2991
2992 r = cmpxchg_guest_abs_with_key(kvm, mop->gaddr, mop->size, &old.quad,
2993 new.quad, mop->key, &success);
2994 if (!success && copy_to_user(old_addr, &old.raw[off_in_quad], mop->size))
2995 r = -EFAULT;
2996
2997 out_unlock:
2998 srcu_read_unlock(&kvm->srcu, srcu_idx);
2999 return r;
3000 }
3001
kvm_s390_vm_mem_op(struct kvm * kvm,struct kvm_s390_mem_op * mop)3002 static int kvm_s390_vm_mem_op(struct kvm *kvm, struct kvm_s390_mem_op *mop)
3003 {
3004 /*
3005 * This is technically a heuristic only, if the kvm->lock is not
3006 * taken, it is not guaranteed that the vm is/remains non-protected.
3007 * This is ok from a kernel perspective, wrongdoing is detected
3008 * on the access, -EFAULT is returned and the vm may crash the
3009 * next time it accesses the memory in question.
3010 * There is no sane usecase to do switching and a memop on two
3011 * different CPUs at the same time.
3012 */
3013 if (kvm_s390_pv_get_handle(kvm))
3014 return -EINVAL;
3015
3016 switch (mop->op) {
3017 case KVM_S390_MEMOP_ABSOLUTE_READ:
3018 case KVM_S390_MEMOP_ABSOLUTE_WRITE:
3019 return kvm_s390_vm_mem_op_abs(kvm, mop);
3020 case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG:
3021 return kvm_s390_vm_mem_op_cmpxchg(kvm, mop);
3022 default:
3023 return -EINVAL;
3024 }
3025 }
3026
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3027 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
3028 {
3029 struct kvm *kvm = filp->private_data;
3030 void __user *argp = (void __user *)arg;
3031 struct kvm_device_attr attr;
3032 int r;
3033
3034 switch (ioctl) {
3035 case KVM_S390_INTERRUPT: {
3036 struct kvm_s390_interrupt s390int;
3037
3038 r = -EFAULT;
3039 if (copy_from_user(&s390int, argp, sizeof(s390int)))
3040 break;
3041 r = kvm_s390_inject_vm(kvm, &s390int);
3042 break;
3043 }
3044 case KVM_CREATE_IRQCHIP: {
3045 r = -EINVAL;
3046 if (kvm->arch.use_irqchip)
3047 r = 0;
3048 break;
3049 }
3050 case KVM_SET_DEVICE_ATTR: {
3051 r = -EFAULT;
3052 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3053 break;
3054 r = kvm_s390_vm_set_attr(kvm, &attr);
3055 break;
3056 }
3057 case KVM_GET_DEVICE_ATTR: {
3058 r = -EFAULT;
3059 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3060 break;
3061 r = kvm_s390_vm_get_attr(kvm, &attr);
3062 break;
3063 }
3064 case KVM_HAS_DEVICE_ATTR: {
3065 r = -EFAULT;
3066 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3067 break;
3068 r = kvm_s390_vm_has_attr(kvm, &attr);
3069 break;
3070 }
3071 case KVM_S390_GET_SKEYS: {
3072 struct kvm_s390_skeys args;
3073
3074 r = -EFAULT;
3075 if (copy_from_user(&args, argp,
3076 sizeof(struct kvm_s390_skeys)))
3077 break;
3078 r = kvm_s390_get_skeys(kvm, &args);
3079 break;
3080 }
3081 case KVM_S390_SET_SKEYS: {
3082 struct kvm_s390_skeys args;
3083
3084 r = -EFAULT;
3085 if (copy_from_user(&args, argp,
3086 sizeof(struct kvm_s390_skeys)))
3087 break;
3088 r = kvm_s390_set_skeys(kvm, &args);
3089 break;
3090 }
3091 case KVM_S390_GET_CMMA_BITS: {
3092 struct kvm_s390_cmma_log args;
3093
3094 r = -EFAULT;
3095 if (copy_from_user(&args, argp, sizeof(args)))
3096 break;
3097 mutex_lock(&kvm->slots_lock);
3098 r = kvm_s390_get_cmma_bits(kvm, &args);
3099 mutex_unlock(&kvm->slots_lock);
3100 if (!r) {
3101 r = copy_to_user(argp, &args, sizeof(args));
3102 if (r)
3103 r = -EFAULT;
3104 }
3105 break;
3106 }
3107 case KVM_S390_SET_CMMA_BITS: {
3108 struct kvm_s390_cmma_log args;
3109
3110 r = -EFAULT;
3111 if (copy_from_user(&args, argp, sizeof(args)))
3112 break;
3113 mutex_lock(&kvm->slots_lock);
3114 r = kvm_s390_set_cmma_bits(kvm, &args);
3115 mutex_unlock(&kvm->slots_lock);
3116 break;
3117 }
3118 case KVM_S390_PV_COMMAND: {
3119 struct kvm_pv_cmd args;
3120
3121 /* protvirt means user cpu state */
3122 kvm_s390_set_user_cpu_state_ctrl(kvm);
3123 r = 0;
3124 if (!is_prot_virt_host()) {
3125 r = -EINVAL;
3126 break;
3127 }
3128 if (copy_from_user(&args, argp, sizeof(args))) {
3129 r = -EFAULT;
3130 break;
3131 }
3132 if (args.flags) {
3133 r = -EINVAL;
3134 break;
3135 }
3136 /* must be called without kvm->lock */
3137 r = kvm_s390_handle_pv(kvm, &args);
3138 if (copy_to_user(argp, &args, sizeof(args))) {
3139 r = -EFAULT;
3140 break;
3141 }
3142 break;
3143 }
3144 case KVM_S390_MEM_OP: {
3145 struct kvm_s390_mem_op mem_op;
3146
3147 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
3148 r = kvm_s390_vm_mem_op(kvm, &mem_op);
3149 else
3150 r = -EFAULT;
3151 break;
3152 }
3153 case KVM_S390_ZPCI_OP: {
3154 struct kvm_s390_zpci_op args;
3155
3156 r = -EINVAL;
3157 if (!IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
3158 break;
3159 if (copy_from_user(&args, argp, sizeof(args))) {
3160 r = -EFAULT;
3161 break;
3162 }
3163 r = kvm_s390_pci_zpci_op(kvm, &args);
3164 break;
3165 }
3166 default:
3167 r = -ENOTTY;
3168 }
3169
3170 return r;
3171 }
3172
kvm_s390_apxa_installed(void)3173 static int kvm_s390_apxa_installed(void)
3174 {
3175 struct ap_config_info info;
3176
3177 if (ap_instructions_available()) {
3178 if (ap_qci(&info) == 0)
3179 return info.apxa;
3180 }
3181
3182 return 0;
3183 }
3184
3185 /*
3186 * The format of the crypto control block (CRYCB) is specified in the 3 low
3187 * order bits of the CRYCB designation (CRYCBD) field as follows:
3188 * Format 0: Neither the message security assist extension 3 (MSAX3) nor the
3189 * AP extended addressing (APXA) facility are installed.
3190 * Format 1: The APXA facility is not installed but the MSAX3 facility is.
3191 * Format 2: Both the APXA and MSAX3 facilities are installed
3192 */
kvm_s390_set_crycb_format(struct kvm * kvm)3193 static void kvm_s390_set_crycb_format(struct kvm *kvm)
3194 {
3195 kvm->arch.crypto.crycbd = virt_to_phys(kvm->arch.crypto.crycb);
3196
3197 /* Clear the CRYCB format bits - i.e., set format 0 by default */
3198 kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK);
3199
3200 /* Check whether MSAX3 is installed */
3201 if (!test_kvm_facility(kvm, 76))
3202 return;
3203
3204 if (kvm_s390_apxa_installed())
3205 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
3206 else
3207 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
3208 }
3209
3210 /*
3211 * kvm_arch_crypto_set_masks
3212 *
3213 * @kvm: pointer to the target guest's KVM struct containing the crypto masks
3214 * to be set.
3215 * @apm: the mask identifying the accessible AP adapters
3216 * @aqm: the mask identifying the accessible AP domains
3217 * @adm: the mask identifying the accessible AP control domains
3218 *
3219 * Set the masks that identify the adapters, domains and control domains to
3220 * which the KVM guest is granted access.
3221 *
3222 * Note: The kvm->lock mutex must be locked by the caller before invoking this
3223 * function.
3224 */
kvm_arch_crypto_set_masks(struct kvm * kvm,unsigned long * apm,unsigned long * aqm,unsigned long * adm)3225 void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm,
3226 unsigned long *aqm, unsigned long *adm)
3227 {
3228 struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb;
3229
3230 kvm_s390_vcpu_block_all(kvm);
3231
3232 switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) {
3233 case CRYCB_FORMAT2: /* APCB1 use 256 bits */
3234 memcpy(crycb->apcb1.apm, apm, 32);
3235 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx",
3236 apm[0], apm[1], apm[2], apm[3]);
3237 memcpy(crycb->apcb1.aqm, aqm, 32);
3238 VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx",
3239 aqm[0], aqm[1], aqm[2], aqm[3]);
3240 memcpy(crycb->apcb1.adm, adm, 32);
3241 VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx",
3242 adm[0], adm[1], adm[2], adm[3]);
3243 break;
3244 case CRYCB_FORMAT1:
3245 case CRYCB_FORMAT0: /* Fall through both use APCB0 */
3246 memcpy(crycb->apcb0.apm, apm, 8);
3247 memcpy(crycb->apcb0.aqm, aqm, 2);
3248 memcpy(crycb->apcb0.adm, adm, 2);
3249 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x",
3250 apm[0], *((unsigned short *)aqm),
3251 *((unsigned short *)adm));
3252 break;
3253 default: /* Can not happen */
3254 break;
3255 }
3256
3257 /* recreate the shadow crycb for each vcpu */
3258 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
3259 kvm_s390_vcpu_unblock_all(kvm);
3260 }
3261 EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks);
3262
3263 /*
3264 * kvm_arch_crypto_clear_masks
3265 *
3266 * @kvm: pointer to the target guest's KVM struct containing the crypto masks
3267 * to be cleared.
3268 *
3269 * Clear the masks that identify the adapters, domains and control domains to
3270 * which the KVM guest is granted access.
3271 *
3272 * Note: The kvm->lock mutex must be locked by the caller before invoking this
3273 * function.
3274 */
kvm_arch_crypto_clear_masks(struct kvm * kvm)3275 void kvm_arch_crypto_clear_masks(struct kvm *kvm)
3276 {
3277 kvm_s390_vcpu_block_all(kvm);
3278
3279 memset(&kvm->arch.crypto.crycb->apcb0, 0,
3280 sizeof(kvm->arch.crypto.crycb->apcb0));
3281 memset(&kvm->arch.crypto.crycb->apcb1, 0,
3282 sizeof(kvm->arch.crypto.crycb->apcb1));
3283
3284 VM_EVENT(kvm, 3, "%s", "CLR CRYCB:");
3285 /* recreate the shadow crycb for each vcpu */
3286 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
3287 kvm_s390_vcpu_unblock_all(kvm);
3288 }
3289 EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks);
3290
kvm_s390_get_initial_cpuid(void)3291 static u64 kvm_s390_get_initial_cpuid(void)
3292 {
3293 struct cpuid cpuid;
3294
3295 get_cpu_id(&cpuid);
3296 cpuid.version = 0xff;
3297 return *((u64 *) &cpuid);
3298 }
3299
kvm_s390_crypto_init(struct kvm * kvm)3300 static void kvm_s390_crypto_init(struct kvm *kvm)
3301 {
3302 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
3303 kvm_s390_set_crycb_format(kvm);
3304 init_rwsem(&kvm->arch.crypto.pqap_hook_rwsem);
3305
3306 if (!test_kvm_facility(kvm, 76))
3307 return;
3308
3309 /* Enable AES/DEA protected key functions by default */
3310 kvm->arch.crypto.aes_kw = 1;
3311 kvm->arch.crypto.dea_kw = 1;
3312 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
3313 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
3314 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
3315 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
3316 }
3317
sca_dispose(struct kvm * kvm)3318 static void sca_dispose(struct kvm *kvm)
3319 {
3320 if (kvm->arch.use_esca)
3321 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
3322 else
3323 free_page((unsigned long)(kvm->arch.sca));
3324 kvm->arch.sca = NULL;
3325 }
3326
kvm_arch_free_vm(struct kvm * kvm)3327 void kvm_arch_free_vm(struct kvm *kvm)
3328 {
3329 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
3330 kvm_s390_pci_clear_list(kvm);
3331
3332 __kvm_arch_free_vm(kvm);
3333 }
3334
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)3335 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
3336 {
3337 gfp_t alloc_flags = GFP_KERNEL_ACCOUNT;
3338 int i, rc;
3339 char debug_name[16];
3340 static unsigned long sca_offset;
3341
3342 rc = -EINVAL;
3343 #ifdef CONFIG_KVM_S390_UCONTROL
3344 if (type & ~KVM_VM_S390_UCONTROL)
3345 goto out_err;
3346 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
3347 goto out_err;
3348 #else
3349 if (type)
3350 goto out_err;
3351 #endif
3352
3353 rc = s390_enable_sie();
3354 if (rc)
3355 goto out_err;
3356
3357 rc = -ENOMEM;
3358
3359 if (!sclp.has_64bscao)
3360 alloc_flags |= GFP_DMA;
3361 rwlock_init(&kvm->arch.sca_lock);
3362 /* start with basic SCA */
3363 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
3364 if (!kvm->arch.sca)
3365 goto out_err;
3366 mutex_lock(&kvm_lock);
3367 sca_offset += 16;
3368 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
3369 sca_offset = 0;
3370 kvm->arch.sca = (struct bsca_block *)
3371 ((char *) kvm->arch.sca + sca_offset);
3372 mutex_unlock(&kvm_lock);
3373
3374 sprintf(debug_name, "kvm-%u", current->pid);
3375
3376 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
3377 if (!kvm->arch.dbf)
3378 goto out_err;
3379
3380 BUILD_BUG_ON(sizeof(struct sie_page2) != 4096);
3381 kvm->arch.sie_page2 =
3382 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA);
3383 if (!kvm->arch.sie_page2)
3384 goto out_err;
3385
3386 kvm->arch.sie_page2->kvm = kvm;
3387 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
3388
3389 for (i = 0; i < kvm_s390_fac_size(); i++) {
3390 kvm->arch.model.fac_mask[i] = stfle_fac_list[i] &
3391 (kvm_s390_fac_base[i] |
3392 kvm_s390_fac_ext[i]);
3393 kvm->arch.model.fac_list[i] = stfle_fac_list[i] &
3394 kvm_s390_fac_base[i];
3395 }
3396 kvm->arch.model.subfuncs = kvm_s390_available_subfunc;
3397
3398 /* we are always in czam mode - even on pre z14 machines */
3399 set_kvm_facility(kvm->arch.model.fac_mask, 138);
3400 set_kvm_facility(kvm->arch.model.fac_list, 138);
3401 /* we emulate STHYI in kvm */
3402 set_kvm_facility(kvm->arch.model.fac_mask, 74);
3403 set_kvm_facility(kvm->arch.model.fac_list, 74);
3404 if (machine_has_tlb_guest()) {
3405 set_kvm_facility(kvm->arch.model.fac_mask, 147);
3406 set_kvm_facility(kvm->arch.model.fac_list, 147);
3407 }
3408
3409 if (css_general_characteristics.aiv && test_facility(65))
3410 set_kvm_facility(kvm->arch.model.fac_mask, 65);
3411
3412 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
3413 kvm->arch.model.ibc = sclp.ibc & 0x0fff;
3414
3415 kvm->arch.model.uv_feat_guest.feat = 0;
3416
3417 kvm_s390_crypto_init(kvm);
3418
3419 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
3420 mutex_lock(&kvm->lock);
3421 kvm_s390_pci_init_list(kvm);
3422 kvm_s390_vcpu_pci_enable_interp(kvm);
3423 mutex_unlock(&kvm->lock);
3424 }
3425
3426 mutex_init(&kvm->arch.float_int.ais_lock);
3427 spin_lock_init(&kvm->arch.float_int.lock);
3428 for (i = 0; i < FIRQ_LIST_COUNT; i++)
3429 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
3430 init_waitqueue_head(&kvm->arch.ipte_wq);
3431 mutex_init(&kvm->arch.ipte_mutex);
3432
3433 debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
3434 VM_EVENT(kvm, 3, "vm created with type %lu", type);
3435
3436 if (type & KVM_VM_S390_UCONTROL) {
3437 struct kvm_userspace_memory_region2 fake_memslot = {
3438 .slot = KVM_S390_UCONTROL_MEMSLOT,
3439 .guest_phys_addr = 0,
3440 .userspace_addr = 0,
3441 .memory_size = ALIGN_DOWN(TASK_SIZE, _SEGMENT_SIZE),
3442 .flags = 0,
3443 };
3444
3445 kvm->arch.gmap = NULL;
3446 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
3447 /* one flat fake memslot covering the whole address-space */
3448 mutex_lock(&kvm->slots_lock);
3449 KVM_BUG_ON(kvm_set_internal_memslot(kvm, &fake_memslot), kvm);
3450 mutex_unlock(&kvm->slots_lock);
3451 } else {
3452 if (sclp.hamax == U64_MAX)
3453 kvm->arch.mem_limit = TASK_SIZE_MAX;
3454 else
3455 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX,
3456 sclp.hamax + 1);
3457 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
3458 if (!kvm->arch.gmap)
3459 goto out_err;
3460 kvm->arch.gmap->private = kvm;
3461 kvm->arch.gmap->pfault_enabled = 0;
3462 }
3463
3464 kvm->arch.use_pfmfi = sclp.has_pfmfi;
3465 kvm->arch.use_skf = sclp.has_skey;
3466 spin_lock_init(&kvm->arch.start_stop_lock);
3467 kvm_s390_vsie_init(kvm);
3468 if (use_gisa)
3469 kvm_s390_gisa_init(kvm);
3470 INIT_LIST_HEAD(&kvm->arch.pv.need_cleanup);
3471 kvm->arch.pv.set_aside = NULL;
3472 KVM_EVENT(3, "vm 0x%p created by pid %u", kvm, current->pid);
3473
3474 return 0;
3475 out_err:
3476 free_page((unsigned long)kvm->arch.sie_page2);
3477 debug_unregister(kvm->arch.dbf);
3478 sca_dispose(kvm);
3479 KVM_EVENT(3, "creation of vm failed: %d", rc);
3480 return rc;
3481 }
3482
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)3483 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3484 {
3485 u16 rc, rrc;
3486
3487 VCPU_EVENT(vcpu, 3, "%s", "free cpu");
3488 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
3489 kvm_s390_clear_local_irqs(vcpu);
3490 kvm_clear_async_pf_completion_queue(vcpu);
3491 if (!kvm_is_ucontrol(vcpu->kvm))
3492 sca_del_vcpu(vcpu);
3493 kvm_s390_update_topology_change_report(vcpu->kvm, 1);
3494
3495 if (kvm_is_ucontrol(vcpu->kvm))
3496 gmap_remove(vcpu->arch.gmap);
3497
3498 if (vcpu->kvm->arch.use_cmma)
3499 kvm_s390_vcpu_unsetup_cmma(vcpu);
3500 /* We can not hold the vcpu mutex here, we are already dying */
3501 if (kvm_s390_pv_cpu_get_handle(vcpu))
3502 kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc);
3503 free_page((unsigned long)(vcpu->arch.sie_block));
3504 }
3505
kvm_arch_destroy_vm(struct kvm * kvm)3506 void kvm_arch_destroy_vm(struct kvm *kvm)
3507 {
3508 u16 rc, rrc;
3509
3510 kvm_destroy_vcpus(kvm);
3511 sca_dispose(kvm);
3512 kvm_s390_gisa_destroy(kvm);
3513 /*
3514 * We are already at the end of life and kvm->lock is not taken.
3515 * This is ok as the file descriptor is closed by now and nobody
3516 * can mess with the pv state.
3517 */
3518 kvm_s390_pv_deinit_cleanup_all(kvm, &rc, &rrc);
3519 /*
3520 * Remove the mmu notifier only when the whole KVM VM is torn down,
3521 * and only if one was registered to begin with. If the VM is
3522 * currently not protected, but has been previously been protected,
3523 * then it's possible that the notifier is still registered.
3524 */
3525 if (kvm->arch.pv.mmu_notifier.ops)
3526 mmu_notifier_unregister(&kvm->arch.pv.mmu_notifier, kvm->mm);
3527
3528 debug_unregister(kvm->arch.dbf);
3529 free_page((unsigned long)kvm->arch.sie_page2);
3530 if (!kvm_is_ucontrol(kvm))
3531 gmap_remove(kvm->arch.gmap);
3532 kvm_s390_destroy_adapters(kvm);
3533 kvm_s390_clear_float_irqs(kvm);
3534 kvm_s390_vsie_destroy(kvm);
3535 KVM_EVENT(3, "vm 0x%p destroyed", kvm);
3536 }
3537
3538 /* Section: vcpu related */
__kvm_ucontrol_vcpu_init(struct kvm_vcpu * vcpu)3539 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
3540 {
3541 vcpu->arch.gmap = gmap_create(current->mm, -1UL);
3542 if (!vcpu->arch.gmap)
3543 return -ENOMEM;
3544 vcpu->arch.gmap->private = vcpu->kvm;
3545
3546 return 0;
3547 }
3548
sca_del_vcpu(struct kvm_vcpu * vcpu)3549 static void sca_del_vcpu(struct kvm_vcpu *vcpu)
3550 {
3551 if (!kvm_s390_use_sca_entries())
3552 return;
3553 read_lock(&vcpu->kvm->arch.sca_lock);
3554 if (vcpu->kvm->arch.use_esca) {
3555 struct esca_block *sca = vcpu->kvm->arch.sca;
3556
3557 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
3558 sca->cpu[vcpu->vcpu_id].sda = 0;
3559 } else {
3560 struct bsca_block *sca = vcpu->kvm->arch.sca;
3561
3562 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
3563 sca->cpu[vcpu->vcpu_id].sda = 0;
3564 }
3565 read_unlock(&vcpu->kvm->arch.sca_lock);
3566 }
3567
sca_add_vcpu(struct kvm_vcpu * vcpu)3568 static void sca_add_vcpu(struct kvm_vcpu *vcpu)
3569 {
3570 if (!kvm_s390_use_sca_entries()) {
3571 phys_addr_t sca_phys = virt_to_phys(vcpu->kvm->arch.sca);
3572
3573 /* we still need the basic sca for the ipte control */
3574 vcpu->arch.sie_block->scaoh = sca_phys >> 32;
3575 vcpu->arch.sie_block->scaol = sca_phys;
3576 return;
3577 }
3578 read_lock(&vcpu->kvm->arch.sca_lock);
3579 if (vcpu->kvm->arch.use_esca) {
3580 struct esca_block *sca = vcpu->kvm->arch.sca;
3581 phys_addr_t sca_phys = virt_to_phys(sca);
3582
3583 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block);
3584 vcpu->arch.sie_block->scaoh = sca_phys >> 32;
3585 vcpu->arch.sie_block->scaol = sca_phys & ESCA_SCAOL_MASK;
3586 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
3587 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
3588 } else {
3589 struct bsca_block *sca = vcpu->kvm->arch.sca;
3590 phys_addr_t sca_phys = virt_to_phys(sca);
3591
3592 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block);
3593 vcpu->arch.sie_block->scaoh = sca_phys >> 32;
3594 vcpu->arch.sie_block->scaol = sca_phys;
3595 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
3596 }
3597 read_unlock(&vcpu->kvm->arch.sca_lock);
3598 }
3599
3600 /* Basic SCA to Extended SCA data copy routines */
sca_copy_entry(struct esca_entry * d,struct bsca_entry * s)3601 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
3602 {
3603 d->sda = s->sda;
3604 d->sigp_ctrl.c = s->sigp_ctrl.c;
3605 d->sigp_ctrl.scn = s->sigp_ctrl.scn;
3606 }
3607
sca_copy_b_to_e(struct esca_block * d,struct bsca_block * s)3608 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
3609 {
3610 int i;
3611
3612 d->ipte_control = s->ipte_control;
3613 d->mcn[0] = s->mcn;
3614 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
3615 sca_copy_entry(&d->cpu[i], &s->cpu[i]);
3616 }
3617
sca_switch_to_extended(struct kvm * kvm)3618 static int sca_switch_to_extended(struct kvm *kvm)
3619 {
3620 struct bsca_block *old_sca = kvm->arch.sca;
3621 struct esca_block *new_sca;
3622 struct kvm_vcpu *vcpu;
3623 unsigned long vcpu_idx;
3624 u32 scaol, scaoh;
3625 phys_addr_t new_sca_phys;
3626
3627 if (kvm->arch.use_esca)
3628 return 0;
3629
3630 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3631 if (!new_sca)
3632 return -ENOMEM;
3633
3634 new_sca_phys = virt_to_phys(new_sca);
3635 scaoh = new_sca_phys >> 32;
3636 scaol = new_sca_phys & ESCA_SCAOL_MASK;
3637
3638 kvm_s390_vcpu_block_all(kvm);
3639 write_lock(&kvm->arch.sca_lock);
3640
3641 sca_copy_b_to_e(new_sca, old_sca);
3642
3643 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
3644 vcpu->arch.sie_block->scaoh = scaoh;
3645 vcpu->arch.sie_block->scaol = scaol;
3646 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
3647 }
3648 kvm->arch.sca = new_sca;
3649 kvm->arch.use_esca = 1;
3650
3651 write_unlock(&kvm->arch.sca_lock);
3652 kvm_s390_vcpu_unblock_all(kvm);
3653
3654 free_page((unsigned long)old_sca);
3655
3656 VM_EVENT(kvm, 2, "Switched to ESCA (0x%p -> 0x%p)",
3657 old_sca, kvm->arch.sca);
3658 return 0;
3659 }
3660
sca_can_add_vcpu(struct kvm * kvm,unsigned int id)3661 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
3662 {
3663 int rc;
3664
3665 if (!kvm_s390_use_sca_entries()) {
3666 if (id < KVM_MAX_VCPUS)
3667 return true;
3668 return false;
3669 }
3670 if (id < KVM_S390_BSCA_CPU_SLOTS)
3671 return true;
3672 if (!sclp.has_esca || !sclp.has_64bscao)
3673 return false;
3674
3675 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
3676
3677 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
3678 }
3679
3680 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
__start_cpu_timer_accounting(struct kvm_vcpu * vcpu)3681 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3682 {
3683 WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
3684 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3685 vcpu->arch.cputm_start = get_tod_clock_fast();
3686 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3687 }
3688
3689 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
__stop_cpu_timer_accounting(struct kvm_vcpu * vcpu)3690 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3691 {
3692 WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
3693 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3694 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
3695 vcpu->arch.cputm_start = 0;
3696 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3697 }
3698
3699 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
__enable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3700 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3701 {
3702 WARN_ON_ONCE(vcpu->arch.cputm_enabled);
3703 vcpu->arch.cputm_enabled = true;
3704 __start_cpu_timer_accounting(vcpu);
3705 }
3706
3707 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
__disable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3708 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3709 {
3710 WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
3711 __stop_cpu_timer_accounting(vcpu);
3712 vcpu->arch.cputm_enabled = false;
3713 }
3714
enable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3715 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3716 {
3717 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3718 __enable_cpu_timer_accounting(vcpu);
3719 preempt_enable();
3720 }
3721
disable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3722 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3723 {
3724 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3725 __disable_cpu_timer_accounting(vcpu);
3726 preempt_enable();
3727 }
3728
3729 /* set the cpu timer - may only be called from the VCPU thread itself */
kvm_s390_set_cpu_timer(struct kvm_vcpu * vcpu,__u64 cputm)3730 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
3731 {
3732 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3733 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3734 if (vcpu->arch.cputm_enabled)
3735 vcpu->arch.cputm_start = get_tod_clock_fast();
3736 vcpu->arch.sie_block->cputm = cputm;
3737 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3738 preempt_enable();
3739 }
3740
3741 /* update and get the cpu timer - can also be called from other VCPU threads */
kvm_s390_get_cpu_timer(struct kvm_vcpu * vcpu)3742 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
3743 {
3744 unsigned int seq;
3745 __u64 value;
3746
3747 if (unlikely(!vcpu->arch.cputm_enabled))
3748 return vcpu->arch.sie_block->cputm;
3749
3750 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3751 do {
3752 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
3753 /*
3754 * If the writer would ever execute a read in the critical
3755 * section, e.g. in irq context, we have a deadlock.
3756 */
3757 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
3758 value = vcpu->arch.sie_block->cputm;
3759 /* if cputm_start is 0, accounting is being started/stopped */
3760 if (likely(vcpu->arch.cputm_start))
3761 value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
3762 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
3763 preempt_enable();
3764 return value;
3765 }
3766
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)3767 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3768 {
3769
3770 kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING);
3771 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
3772 __start_cpu_timer_accounting(vcpu);
3773 vcpu->cpu = cpu;
3774 }
3775
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)3776 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3777 {
3778 vcpu->cpu = -1;
3779 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
3780 __stop_cpu_timer_accounting(vcpu);
3781 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING);
3782
3783 }
3784
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)3785 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
3786 {
3787 mutex_lock(&vcpu->kvm->lock);
3788 preempt_disable();
3789 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
3790 vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx;
3791 preempt_enable();
3792 mutex_unlock(&vcpu->kvm->lock);
3793 if (!kvm_is_ucontrol(vcpu->kvm)) {
3794 vcpu->arch.gmap = vcpu->kvm->arch.gmap;
3795 sca_add_vcpu(vcpu);
3796 }
3797 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
3798 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
3799 }
3800
kvm_has_pckmo_subfunc(struct kvm * kvm,unsigned long nr)3801 static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr)
3802 {
3803 if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) &&
3804 test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo))
3805 return true;
3806 return false;
3807 }
3808
kvm_has_pckmo_ecc(struct kvm * kvm)3809 static bool kvm_has_pckmo_ecc(struct kvm *kvm)
3810 {
3811 /* At least one ECC subfunction must be present */
3812 return kvm_has_pckmo_subfunc(kvm, 32) ||
3813 kvm_has_pckmo_subfunc(kvm, 33) ||
3814 kvm_has_pckmo_subfunc(kvm, 34) ||
3815 kvm_has_pckmo_subfunc(kvm, 40) ||
3816 kvm_has_pckmo_subfunc(kvm, 41);
3817
3818 }
3819
kvm_has_pckmo_hmac(struct kvm * kvm)3820 static bool kvm_has_pckmo_hmac(struct kvm *kvm)
3821 {
3822 /* At least one HMAC subfunction must be present */
3823 return kvm_has_pckmo_subfunc(kvm, 118) ||
3824 kvm_has_pckmo_subfunc(kvm, 122);
3825 }
3826
kvm_s390_vcpu_crypto_setup(struct kvm_vcpu * vcpu)3827 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
3828 {
3829 /*
3830 * If the AP instructions are not being interpreted and the MSAX3
3831 * facility is not configured for the guest, there is nothing to set up.
3832 */
3833 if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76))
3834 return;
3835
3836 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
3837 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
3838 vcpu->arch.sie_block->eca &= ~ECA_APIE;
3839 vcpu->arch.sie_block->ecd &= ~(ECD_ECC | ECD_HMAC);
3840
3841 if (vcpu->kvm->arch.crypto.apie)
3842 vcpu->arch.sie_block->eca |= ECA_APIE;
3843
3844 /* Set up protected key support */
3845 if (vcpu->kvm->arch.crypto.aes_kw) {
3846 vcpu->arch.sie_block->ecb3 |= ECB3_AES;
3847 /* ecc/hmac is also wrapped with AES key */
3848 if (kvm_has_pckmo_ecc(vcpu->kvm))
3849 vcpu->arch.sie_block->ecd |= ECD_ECC;
3850 if (kvm_has_pckmo_hmac(vcpu->kvm))
3851 vcpu->arch.sie_block->ecd |= ECD_HMAC;
3852 }
3853
3854 if (vcpu->kvm->arch.crypto.dea_kw)
3855 vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
3856 }
3857
kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu * vcpu)3858 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
3859 {
3860 free_page((unsigned long)phys_to_virt(vcpu->arch.sie_block->cbrlo));
3861 vcpu->arch.sie_block->cbrlo = 0;
3862 }
3863
kvm_s390_vcpu_setup_cmma(struct kvm_vcpu * vcpu)3864 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
3865 {
3866 void *cbrlo_page = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3867
3868 if (!cbrlo_page)
3869 return -ENOMEM;
3870
3871 vcpu->arch.sie_block->cbrlo = virt_to_phys(cbrlo_page);
3872 return 0;
3873 }
3874
kvm_s390_vcpu_setup_model(struct kvm_vcpu * vcpu)3875 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
3876 {
3877 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;
3878
3879 vcpu->arch.sie_block->ibc = model->ibc;
3880 if (test_kvm_facility(vcpu->kvm, 7))
3881 vcpu->arch.sie_block->fac = virt_to_phys(model->fac_list);
3882 }
3883
kvm_s390_vcpu_setup(struct kvm_vcpu * vcpu)3884 static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu)
3885 {
3886 int rc = 0;
3887 u16 uvrc, uvrrc;
3888
3889 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
3890 CPUSTAT_SM |
3891 CPUSTAT_STOPPED);
3892
3893 if (test_kvm_facility(vcpu->kvm, 78))
3894 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2);
3895 else if (test_kvm_facility(vcpu->kvm, 8))
3896 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED);
3897
3898 kvm_s390_vcpu_setup_model(vcpu);
3899
3900 /* pgste_set_pte has special handling for !machine_has_esop() */
3901 if (machine_has_esop())
3902 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT;
3903 if (test_kvm_facility(vcpu->kvm, 9))
3904 vcpu->arch.sie_block->ecb |= ECB_SRSI;
3905 if (test_kvm_facility(vcpu->kvm, 11))
3906 vcpu->arch.sie_block->ecb |= ECB_PTF;
3907 if (test_kvm_facility(vcpu->kvm, 73))
3908 vcpu->arch.sie_block->ecb |= ECB_TE;
3909 if (!kvm_is_ucontrol(vcpu->kvm))
3910 vcpu->arch.sie_block->ecb |= ECB_SPECI;
3911
3912 if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi)
3913 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI;
3914 if (test_kvm_facility(vcpu->kvm, 130))
3915 vcpu->arch.sie_block->ecb2 |= ECB2_IEP;
3916 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI;
3917 if (sclp.has_cei)
3918 vcpu->arch.sie_block->eca |= ECA_CEI;
3919 if (sclp.has_ib)
3920 vcpu->arch.sie_block->eca |= ECA_IB;
3921 if (sclp.has_siif)
3922 vcpu->arch.sie_block->eca |= ECA_SII;
3923 if (sclp.has_sigpif)
3924 vcpu->arch.sie_block->eca |= ECA_SIGPI;
3925 if (test_kvm_facility(vcpu->kvm, 129)) {
3926 vcpu->arch.sie_block->eca |= ECA_VX;
3927 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
3928 }
3929 if (test_kvm_facility(vcpu->kvm, 139))
3930 vcpu->arch.sie_block->ecd |= ECD_MEF;
3931 if (test_kvm_facility(vcpu->kvm, 156))
3932 vcpu->arch.sie_block->ecd |= ECD_ETOKENF;
3933 if (vcpu->arch.sie_block->gd) {
3934 vcpu->arch.sie_block->eca |= ECA_AIV;
3935 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
3936 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
3937 }
3938 vcpu->arch.sie_block->sdnxo = virt_to_phys(&vcpu->run->s.regs.sdnx) | SDNXC;
3939 vcpu->arch.sie_block->riccbd = virt_to_phys(&vcpu->run->s.regs.riccb);
3940
3941 if (sclp.has_kss)
3942 kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS);
3943 else
3944 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
3945
3946 if (vcpu->kvm->arch.use_cmma) {
3947 rc = kvm_s390_vcpu_setup_cmma(vcpu);
3948 if (rc)
3949 return rc;
3950 }
3951 hrtimer_setup(&vcpu->arch.ckc_timer, kvm_s390_idle_wakeup, CLOCK_MONOTONIC,
3952 HRTIMER_MODE_REL);
3953
3954 vcpu->arch.sie_block->hpid = HPID_KVM;
3955
3956 kvm_s390_vcpu_crypto_setup(vcpu);
3957
3958 kvm_s390_vcpu_pci_setup(vcpu);
3959
3960 mutex_lock(&vcpu->kvm->lock);
3961 if (kvm_s390_pv_is_protected(vcpu->kvm)) {
3962 rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc);
3963 if (rc)
3964 kvm_s390_vcpu_unsetup_cmma(vcpu);
3965 }
3966 mutex_unlock(&vcpu->kvm->lock);
3967
3968 return rc;
3969 }
3970
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)3971 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
3972 {
3973 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
3974 return -EINVAL;
3975 return 0;
3976 }
3977
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)3978 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
3979 {
3980 struct sie_page *sie_page;
3981 int rc;
3982
3983 BUILD_BUG_ON(sizeof(struct sie_page) != 4096);
3984 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL_ACCOUNT);
3985 if (!sie_page)
3986 return -ENOMEM;
3987
3988 vcpu->arch.sie_block = &sie_page->sie_block;
3989 vcpu->arch.sie_block->itdba = virt_to_phys(&sie_page->itdb);
3990
3991 /* the real guest size will always be smaller than msl */
3992 vcpu->arch.sie_block->mso = 0;
3993 vcpu->arch.sie_block->msl = sclp.hamax;
3994
3995 vcpu->arch.sie_block->icpua = vcpu->vcpu_id;
3996 spin_lock_init(&vcpu->arch.local_int.lock);
3997 vcpu->arch.sie_block->gd = kvm_s390_get_gisa_desc(vcpu->kvm);
3998 seqcount_init(&vcpu->arch.cputm_seqcount);
3999
4000 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
4001 kvm_clear_async_pf_completion_queue(vcpu);
4002 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
4003 KVM_SYNC_GPRS |
4004 KVM_SYNC_ACRS |
4005 KVM_SYNC_CRS |
4006 KVM_SYNC_ARCH0 |
4007 KVM_SYNC_PFAULT |
4008 KVM_SYNC_DIAG318;
4009 vcpu->arch.acrs_loaded = false;
4010 kvm_s390_set_prefix(vcpu, 0);
4011 if (test_kvm_facility(vcpu->kvm, 64))
4012 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
4013 if (test_kvm_facility(vcpu->kvm, 82))
4014 vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC;
4015 if (test_kvm_facility(vcpu->kvm, 133))
4016 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB;
4017 if (test_kvm_facility(vcpu->kvm, 156))
4018 vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN;
4019 /* fprs can be synchronized via vrs, even if the guest has no vx. With
4020 * cpu_has_vx(), (load|store)_fpu_regs() will work with vrs format.
4021 */
4022 if (cpu_has_vx())
4023 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
4024 else
4025 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
4026
4027 if (kvm_is_ucontrol(vcpu->kvm)) {
4028 rc = __kvm_ucontrol_vcpu_init(vcpu);
4029 if (rc)
4030 goto out_free_sie_block;
4031 }
4032
4033 VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%p, sie block at 0x%p",
4034 vcpu->vcpu_id, vcpu, vcpu->arch.sie_block);
4035 trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block);
4036
4037 rc = kvm_s390_vcpu_setup(vcpu);
4038 if (rc)
4039 goto out_ucontrol_uninit;
4040
4041 kvm_s390_update_topology_change_report(vcpu->kvm, 1);
4042 return 0;
4043
4044 out_ucontrol_uninit:
4045 if (kvm_is_ucontrol(vcpu->kvm))
4046 gmap_remove(vcpu->arch.gmap);
4047 out_free_sie_block:
4048 free_page((unsigned long)(vcpu->arch.sie_block));
4049 return rc;
4050 }
4051
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)4052 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4053 {
4054 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask);
4055 return kvm_s390_vcpu_has_irq(vcpu, 0);
4056 }
4057
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)4058 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
4059 {
4060 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE);
4061 }
4062
kvm_s390_vcpu_block(struct kvm_vcpu * vcpu)4063 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
4064 {
4065 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
4066 exit_sie(vcpu);
4067 }
4068
kvm_s390_vcpu_unblock(struct kvm_vcpu * vcpu)4069 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
4070 {
4071 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
4072 }
4073
kvm_s390_vcpu_request(struct kvm_vcpu * vcpu)4074 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
4075 {
4076 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
4077 exit_sie(vcpu);
4078 }
4079
kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu * vcpu)4080 bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu)
4081 {
4082 return atomic_read(&vcpu->arch.sie_block->prog20) &
4083 (PROG_BLOCK_SIE | PROG_REQUEST);
4084 }
4085
kvm_s390_vcpu_request_handled(struct kvm_vcpu * vcpu)4086 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
4087 {
4088 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
4089 }
4090
4091 /*
4092 * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running.
4093 * If the CPU is not running (e.g. waiting as idle) the function will
4094 * return immediately. */
exit_sie(struct kvm_vcpu * vcpu)4095 void exit_sie(struct kvm_vcpu *vcpu)
4096 {
4097 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
4098 kvm_s390_vsie_kick(vcpu);
4099 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
4100 cpu_relax();
4101 }
4102
4103 /* Kick a guest cpu out of SIE to process a request synchronously */
kvm_s390_sync_request(int req,struct kvm_vcpu * vcpu)4104 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
4105 {
4106 __kvm_make_request(req, vcpu);
4107 kvm_s390_vcpu_request(vcpu);
4108 }
4109
kvm_gmap_notifier(struct gmap * gmap,unsigned long start,unsigned long end)4110 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
4111 unsigned long end)
4112 {
4113 struct kvm *kvm = gmap->private;
4114 struct kvm_vcpu *vcpu;
4115 unsigned long prefix;
4116 unsigned long i;
4117
4118 trace_kvm_s390_gmap_notifier(start, end, gmap_is_shadow(gmap));
4119
4120 if (gmap_is_shadow(gmap))
4121 return;
4122 if (start >= 1UL << 31)
4123 /* We are only interested in prefix pages */
4124 return;
4125 kvm_for_each_vcpu(i, vcpu, kvm) {
4126 /* match against both prefix pages */
4127 prefix = kvm_s390_get_prefix(vcpu);
4128 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
4129 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
4130 start, end);
4131 kvm_s390_sync_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu);
4132 }
4133 }
4134 }
4135
kvm_arch_no_poll(struct kvm_vcpu * vcpu)4136 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
4137 {
4138 /* do not poll with more than halt_poll_max_steal percent of steal time */
4139 if (get_lowcore()->avg_steal_timer * 100 / (TICK_USEC << 12) >=
4140 READ_ONCE(halt_poll_max_steal)) {
4141 vcpu->stat.halt_no_poll_steal++;
4142 return true;
4143 }
4144 return false;
4145 }
4146
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)4147 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
4148 {
4149 /* kvm common code refers to this, but never calls it */
4150 BUG();
4151 return 0;
4152 }
4153
kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)4154 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
4155 struct kvm_one_reg *reg)
4156 {
4157 int r = -EINVAL;
4158
4159 switch (reg->id) {
4160 case KVM_REG_S390_TODPR:
4161 r = put_user(vcpu->arch.sie_block->todpr,
4162 (u32 __user *)reg->addr);
4163 break;
4164 case KVM_REG_S390_EPOCHDIFF:
4165 r = put_user(vcpu->arch.sie_block->epoch,
4166 (u64 __user *)reg->addr);
4167 break;
4168 case KVM_REG_S390_CPU_TIMER:
4169 r = put_user(kvm_s390_get_cpu_timer(vcpu),
4170 (u64 __user *)reg->addr);
4171 break;
4172 case KVM_REG_S390_CLOCK_COMP:
4173 r = put_user(vcpu->arch.sie_block->ckc,
4174 (u64 __user *)reg->addr);
4175 break;
4176 case KVM_REG_S390_PFTOKEN:
4177 r = put_user(vcpu->arch.pfault_token,
4178 (u64 __user *)reg->addr);
4179 break;
4180 case KVM_REG_S390_PFCOMPARE:
4181 r = put_user(vcpu->arch.pfault_compare,
4182 (u64 __user *)reg->addr);
4183 break;
4184 case KVM_REG_S390_PFSELECT:
4185 r = put_user(vcpu->arch.pfault_select,
4186 (u64 __user *)reg->addr);
4187 break;
4188 case KVM_REG_S390_PP:
4189 r = put_user(vcpu->arch.sie_block->pp,
4190 (u64 __user *)reg->addr);
4191 break;
4192 case KVM_REG_S390_GBEA:
4193 r = put_user(vcpu->arch.sie_block->gbea,
4194 (u64 __user *)reg->addr);
4195 break;
4196 default:
4197 break;
4198 }
4199
4200 return r;
4201 }
4202
kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)4203 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
4204 struct kvm_one_reg *reg)
4205 {
4206 int r = -EINVAL;
4207 __u64 val;
4208
4209 switch (reg->id) {
4210 case KVM_REG_S390_TODPR:
4211 r = get_user(vcpu->arch.sie_block->todpr,
4212 (u32 __user *)reg->addr);
4213 break;
4214 case KVM_REG_S390_EPOCHDIFF:
4215 r = get_user(vcpu->arch.sie_block->epoch,
4216 (u64 __user *)reg->addr);
4217 break;
4218 case KVM_REG_S390_CPU_TIMER:
4219 r = get_user(val, (u64 __user *)reg->addr);
4220 if (!r)
4221 kvm_s390_set_cpu_timer(vcpu, val);
4222 break;
4223 case KVM_REG_S390_CLOCK_COMP:
4224 r = get_user(vcpu->arch.sie_block->ckc,
4225 (u64 __user *)reg->addr);
4226 break;
4227 case KVM_REG_S390_PFTOKEN:
4228 r = get_user(vcpu->arch.pfault_token,
4229 (u64 __user *)reg->addr);
4230 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
4231 kvm_clear_async_pf_completion_queue(vcpu);
4232 break;
4233 case KVM_REG_S390_PFCOMPARE:
4234 r = get_user(vcpu->arch.pfault_compare,
4235 (u64 __user *)reg->addr);
4236 break;
4237 case KVM_REG_S390_PFSELECT:
4238 r = get_user(vcpu->arch.pfault_select,
4239 (u64 __user *)reg->addr);
4240 break;
4241 case KVM_REG_S390_PP:
4242 r = get_user(vcpu->arch.sie_block->pp,
4243 (u64 __user *)reg->addr);
4244 break;
4245 case KVM_REG_S390_GBEA:
4246 r = get_user(vcpu->arch.sie_block->gbea,
4247 (u64 __user *)reg->addr);
4248 break;
4249 default:
4250 break;
4251 }
4252
4253 return r;
4254 }
4255
kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu * vcpu)4256 static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu)
4257 {
4258 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI;
4259 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
4260 memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb));
4261
4262 kvm_clear_async_pf_completion_queue(vcpu);
4263 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
4264 kvm_s390_vcpu_stop(vcpu);
4265 kvm_s390_clear_local_irqs(vcpu);
4266 }
4267
kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu * vcpu)4268 static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
4269 {
4270 /* Initial reset is a superset of the normal reset */
4271 kvm_arch_vcpu_ioctl_normal_reset(vcpu);
4272
4273 /*
4274 * This equals initial cpu reset in pop, but we don't switch to ESA.
4275 * We do not only reset the internal data, but also ...
4276 */
4277 vcpu->arch.sie_block->gpsw.mask = 0;
4278 vcpu->arch.sie_block->gpsw.addr = 0;
4279 kvm_s390_set_prefix(vcpu, 0);
4280 kvm_s390_set_cpu_timer(vcpu, 0);
4281 vcpu->arch.sie_block->ckc = 0;
4282 memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr));
4283 vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK;
4284 vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK;
4285
4286 /* ... the data in sync regs */
4287 memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs));
4288 vcpu->run->s.regs.ckc = 0;
4289 vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK;
4290 vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK;
4291 vcpu->run->psw_addr = 0;
4292 vcpu->run->psw_mask = 0;
4293 vcpu->run->s.regs.todpr = 0;
4294 vcpu->run->s.regs.cputm = 0;
4295 vcpu->run->s.regs.ckc = 0;
4296 vcpu->run->s.regs.pp = 0;
4297 vcpu->run->s.regs.gbea = 1;
4298 vcpu->run->s.regs.fpc = 0;
4299 /*
4300 * Do not reset these registers in the protected case, as some of
4301 * them are overlaid and they are not accessible in this case
4302 * anyway.
4303 */
4304 if (!kvm_s390_pv_cpu_is_protected(vcpu)) {
4305 vcpu->arch.sie_block->gbea = 1;
4306 vcpu->arch.sie_block->pp = 0;
4307 vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
4308 vcpu->arch.sie_block->todpr = 0;
4309 }
4310 }
4311
kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu * vcpu)4312 static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu)
4313 {
4314 struct kvm_sync_regs *regs = &vcpu->run->s.regs;
4315
4316 /* Clear reset is a superset of the initial reset */
4317 kvm_arch_vcpu_ioctl_initial_reset(vcpu);
4318
4319 memset(®s->gprs, 0, sizeof(regs->gprs));
4320 memset(®s->vrs, 0, sizeof(regs->vrs));
4321 memset(®s->acrs, 0, sizeof(regs->acrs));
4322 memset(®s->gscb, 0, sizeof(regs->gscb));
4323
4324 regs->etoken = 0;
4325 regs->etoken_extension = 0;
4326 }
4327
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)4328 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4329 {
4330 vcpu_load(vcpu);
4331 memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs));
4332 vcpu_put(vcpu);
4333 return 0;
4334 }
4335
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)4336 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4337 {
4338 vcpu_load(vcpu);
4339 memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
4340 vcpu_put(vcpu);
4341 return 0;
4342 }
4343
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)4344 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4345 struct kvm_sregs *sregs)
4346 {
4347 vcpu_load(vcpu);
4348
4349 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
4350 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
4351
4352 vcpu_put(vcpu);
4353 return 0;
4354 }
4355
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)4356 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4357 struct kvm_sregs *sregs)
4358 {
4359 vcpu_load(vcpu);
4360
4361 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
4362 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
4363
4364 vcpu_put(vcpu);
4365 return 0;
4366 }
4367
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)4368 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4369 {
4370 int ret = 0;
4371
4372 vcpu_load(vcpu);
4373
4374 vcpu->run->s.regs.fpc = fpu->fpc;
4375 if (cpu_has_vx())
4376 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs,
4377 (freg_t *) fpu->fprs);
4378 else
4379 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs));
4380
4381 vcpu_put(vcpu);
4382 return ret;
4383 }
4384
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)4385 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4386 {
4387 vcpu_load(vcpu);
4388
4389 if (cpu_has_vx())
4390 convert_vx_to_fp((freg_t *) fpu->fprs,
4391 (__vector128 *) vcpu->run->s.regs.vrs);
4392 else
4393 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs));
4394 fpu->fpc = vcpu->run->s.regs.fpc;
4395
4396 vcpu_put(vcpu);
4397 return 0;
4398 }
4399
kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu * vcpu,psw_t psw)4400 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
4401 {
4402 int rc = 0;
4403
4404 if (!is_vcpu_stopped(vcpu))
4405 rc = -EBUSY;
4406 else {
4407 vcpu->run->psw_mask = psw.mask;
4408 vcpu->run->psw_addr = psw.addr;
4409 }
4410 return rc;
4411 }
4412
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)4413 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4414 struct kvm_translation *tr)
4415 {
4416 return -EINVAL; /* not implemented yet */
4417 }
4418
4419 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
4420 KVM_GUESTDBG_USE_HW_BP | \
4421 KVM_GUESTDBG_ENABLE)
4422
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)4423 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4424 struct kvm_guest_debug *dbg)
4425 {
4426 int rc = 0;
4427
4428 vcpu_load(vcpu);
4429
4430 vcpu->guest_debug = 0;
4431 kvm_s390_clear_bp_data(vcpu);
4432
4433 if (dbg->control & ~VALID_GUESTDBG_FLAGS) {
4434 rc = -EINVAL;
4435 goto out;
4436 }
4437 if (!sclp.has_gpere) {
4438 rc = -EINVAL;
4439 goto out;
4440 }
4441
4442 if (dbg->control & KVM_GUESTDBG_ENABLE) {
4443 vcpu->guest_debug = dbg->control;
4444 /* enforce guest PER */
4445 kvm_s390_set_cpuflags(vcpu, CPUSTAT_P);
4446
4447 if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
4448 rc = kvm_s390_import_bp_data(vcpu, dbg);
4449 } else {
4450 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
4451 vcpu->arch.guestdbg.last_bp = 0;
4452 }
4453
4454 if (rc) {
4455 vcpu->guest_debug = 0;
4456 kvm_s390_clear_bp_data(vcpu);
4457 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
4458 }
4459
4460 out:
4461 vcpu_put(vcpu);
4462 return rc;
4463 }
4464
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)4465 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4466 struct kvm_mp_state *mp_state)
4467 {
4468 int ret;
4469
4470 vcpu_load(vcpu);
4471
4472 /* CHECK_STOP and LOAD are not supported yet */
4473 ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
4474 KVM_MP_STATE_OPERATING;
4475
4476 vcpu_put(vcpu);
4477 return ret;
4478 }
4479
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)4480 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4481 struct kvm_mp_state *mp_state)
4482 {
4483 int rc = 0;
4484
4485 vcpu_load(vcpu);
4486
4487 /* user space knows about this interface - let it control the state */
4488 kvm_s390_set_user_cpu_state_ctrl(vcpu->kvm);
4489
4490 switch (mp_state->mp_state) {
4491 case KVM_MP_STATE_STOPPED:
4492 rc = kvm_s390_vcpu_stop(vcpu);
4493 break;
4494 case KVM_MP_STATE_OPERATING:
4495 rc = kvm_s390_vcpu_start(vcpu);
4496 break;
4497 case KVM_MP_STATE_LOAD:
4498 if (!kvm_s390_pv_cpu_is_protected(vcpu)) {
4499 rc = -ENXIO;
4500 break;
4501 }
4502 rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD);
4503 break;
4504 case KVM_MP_STATE_CHECK_STOP:
4505 fallthrough; /* CHECK_STOP and LOAD are not supported yet */
4506 default:
4507 rc = -ENXIO;
4508 }
4509
4510 vcpu_put(vcpu);
4511 return rc;
4512 }
4513
ibs_enabled(struct kvm_vcpu * vcpu)4514 static bool ibs_enabled(struct kvm_vcpu *vcpu)
4515 {
4516 return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS);
4517 }
4518
__kvm_s390_fixup_fault_sync(struct gmap * gmap,gpa_t gaddr,unsigned int flags)4519 static int __kvm_s390_fixup_fault_sync(struct gmap *gmap, gpa_t gaddr, unsigned int flags)
4520 {
4521 struct kvm *kvm = gmap->private;
4522 gfn_t gfn = gpa_to_gfn(gaddr);
4523 bool unlocked;
4524 hva_t vmaddr;
4525 gpa_t tmp;
4526 int rc;
4527
4528 if (kvm_is_ucontrol(kvm)) {
4529 tmp = __gmap_translate(gmap, gaddr);
4530 gfn = gpa_to_gfn(tmp);
4531 }
4532
4533 vmaddr = gfn_to_hva(kvm, gfn);
4534 rc = fixup_user_fault(gmap->mm, vmaddr, FAULT_FLAG_WRITE, &unlocked);
4535 if (!rc)
4536 rc = __gmap_link(gmap, gaddr, vmaddr);
4537 return rc;
4538 }
4539
4540 /**
4541 * __kvm_s390_mprotect_many() - Apply specified protection to guest pages
4542 * @gmap: the gmap of the guest
4543 * @gpa: the starting guest address
4544 * @npages: how many pages to protect
4545 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
4546 * @bits: pgste notification bits to set
4547 *
4548 * Returns: 0 in case of success, < 0 in case of error - see gmap_protect_one()
4549 *
4550 * Context: kvm->srcu and gmap->mm need to be held in read mode
4551 */
__kvm_s390_mprotect_many(struct gmap * gmap,gpa_t gpa,u8 npages,unsigned int prot,unsigned long bits)4552 int __kvm_s390_mprotect_many(struct gmap *gmap, gpa_t gpa, u8 npages, unsigned int prot,
4553 unsigned long bits)
4554 {
4555 unsigned int fault_flag = (prot & PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
4556 gpa_t end = gpa + npages * PAGE_SIZE;
4557 int rc;
4558
4559 for (; gpa < end; gpa = ALIGN(gpa + 1, rc)) {
4560 rc = gmap_protect_one(gmap, gpa, prot, bits);
4561 if (rc == -EAGAIN) {
4562 __kvm_s390_fixup_fault_sync(gmap, gpa, fault_flag);
4563 rc = gmap_protect_one(gmap, gpa, prot, bits);
4564 }
4565 if (rc < 0)
4566 return rc;
4567 }
4568
4569 return 0;
4570 }
4571
kvm_s390_mprotect_notify_prefix(struct kvm_vcpu * vcpu)4572 static int kvm_s390_mprotect_notify_prefix(struct kvm_vcpu *vcpu)
4573 {
4574 gpa_t gaddr = kvm_s390_get_prefix(vcpu);
4575 int idx, rc;
4576
4577 idx = srcu_read_lock(&vcpu->kvm->srcu);
4578 mmap_read_lock(vcpu->arch.gmap->mm);
4579
4580 rc = __kvm_s390_mprotect_many(vcpu->arch.gmap, gaddr, 2, PROT_WRITE, GMAP_NOTIFY_MPROT);
4581
4582 mmap_read_unlock(vcpu->arch.gmap->mm);
4583 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4584
4585 return rc;
4586 }
4587
kvm_s390_handle_requests(struct kvm_vcpu * vcpu)4588 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
4589 {
4590 retry:
4591 kvm_s390_vcpu_request_handled(vcpu);
4592 if (!kvm_request_pending(vcpu))
4593 return 0;
4594 /*
4595 * If the guest prefix changed, re-arm the ipte notifier for the
4596 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
4597 * This ensures that the ipte instruction for this request has
4598 * already finished. We might race against a second unmapper that
4599 * wants to set the blocking bit. Lets just retry the request loop.
4600 */
4601 if (kvm_check_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu)) {
4602 int rc;
4603
4604 rc = kvm_s390_mprotect_notify_prefix(vcpu);
4605 if (rc) {
4606 kvm_make_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu);
4607 return rc;
4608 }
4609 goto retry;
4610 }
4611
4612 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
4613 vcpu->arch.sie_block->ihcpu = 0xffff;
4614 goto retry;
4615 }
4616
4617 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
4618 if (!ibs_enabled(vcpu)) {
4619 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
4620 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS);
4621 }
4622 goto retry;
4623 }
4624
4625 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
4626 if (ibs_enabled(vcpu)) {
4627 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
4628 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS);
4629 }
4630 goto retry;
4631 }
4632
4633 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
4634 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
4635 goto retry;
4636 }
4637
4638 if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) {
4639 /*
4640 * Disable CMM virtualization; we will emulate the ESSA
4641 * instruction manually, in order to provide additional
4642 * functionalities needed for live migration.
4643 */
4644 vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA;
4645 goto retry;
4646 }
4647
4648 if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) {
4649 /*
4650 * Re-enable CMM virtualization if CMMA is available and
4651 * CMM has been used.
4652 */
4653 if ((vcpu->kvm->arch.use_cmma) &&
4654 (vcpu->kvm->mm->context.uses_cmm))
4655 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA;
4656 goto retry;
4657 }
4658
4659 /* we left the vsie handler, nothing to do, just clear the request */
4660 kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu);
4661
4662 return 0;
4663 }
4664
__kvm_s390_set_tod_clock(struct kvm * kvm,const struct kvm_s390_vm_tod_clock * gtod)4665 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod)
4666 {
4667 struct kvm_vcpu *vcpu;
4668 union tod_clock clk;
4669 unsigned long i;
4670
4671 preempt_disable();
4672
4673 store_tod_clock_ext(&clk);
4674
4675 kvm->arch.epoch = gtod->tod - clk.tod;
4676 kvm->arch.epdx = 0;
4677 if (test_kvm_facility(kvm, 139)) {
4678 kvm->arch.epdx = gtod->epoch_idx - clk.ei;
4679 if (kvm->arch.epoch > gtod->tod)
4680 kvm->arch.epdx -= 1;
4681 }
4682
4683 kvm_s390_vcpu_block_all(kvm);
4684 kvm_for_each_vcpu(i, vcpu, kvm) {
4685 vcpu->arch.sie_block->epoch = kvm->arch.epoch;
4686 vcpu->arch.sie_block->epdx = kvm->arch.epdx;
4687 }
4688
4689 kvm_s390_vcpu_unblock_all(kvm);
4690 preempt_enable();
4691 }
4692
kvm_s390_try_set_tod_clock(struct kvm * kvm,const struct kvm_s390_vm_tod_clock * gtod)4693 int kvm_s390_try_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod)
4694 {
4695 if (!mutex_trylock(&kvm->lock))
4696 return 0;
4697 __kvm_s390_set_tod_clock(kvm, gtod);
4698 mutex_unlock(&kvm->lock);
4699 return 1;
4700 }
4701
__kvm_inject_pfault_token(struct kvm_vcpu * vcpu,bool start_token,unsigned long token)4702 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
4703 unsigned long token)
4704 {
4705 struct kvm_s390_interrupt inti;
4706 struct kvm_s390_irq irq;
4707
4708 if (start_token) {
4709 irq.u.ext.ext_params2 = token;
4710 irq.type = KVM_S390_INT_PFAULT_INIT;
4711 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
4712 } else {
4713 inti.type = KVM_S390_INT_PFAULT_DONE;
4714 inti.parm64 = token;
4715 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
4716 }
4717 }
4718
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4719 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
4720 struct kvm_async_pf *work)
4721 {
4722 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
4723 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
4724
4725 return true;
4726 }
4727
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4728 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
4729 struct kvm_async_pf *work)
4730 {
4731 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
4732 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
4733 }
4734
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4735 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
4736 struct kvm_async_pf *work)
4737 {
4738 /* s390 will always inject the page directly */
4739 }
4740
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)4741 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
4742 {
4743 /*
4744 * s390 will always inject the page directly,
4745 * but we still want check_async_completion to cleanup
4746 */
4747 return true;
4748 }
4749
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu)4750 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
4751 {
4752 hva_t hva;
4753 struct kvm_arch_async_pf arch;
4754
4755 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
4756 return false;
4757 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
4758 vcpu->arch.pfault_compare)
4759 return false;
4760 if (psw_extint_disabled(vcpu))
4761 return false;
4762 if (kvm_s390_vcpu_has_irq(vcpu, 0))
4763 return false;
4764 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK))
4765 return false;
4766 if (!vcpu->arch.gmap->pfault_enabled)
4767 return false;
4768
4769 hva = gfn_to_hva(vcpu->kvm, current->thread.gmap_teid.addr);
4770 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
4771 return false;
4772
4773 return kvm_setup_async_pf(vcpu, current->thread.gmap_teid.addr * PAGE_SIZE, hva, &arch);
4774 }
4775
vcpu_pre_run(struct kvm_vcpu * vcpu)4776 static int vcpu_pre_run(struct kvm_vcpu *vcpu)
4777 {
4778 int rc, cpuflags;
4779
4780 /*
4781 * On s390 notifications for arriving pages will be delivered directly
4782 * to the guest but the house keeping for completed pfaults is
4783 * handled outside the worker.
4784 */
4785 kvm_check_async_pf_completion(vcpu);
4786
4787 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
4788 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
4789
4790 if (need_resched())
4791 schedule();
4792
4793 if (!kvm_is_ucontrol(vcpu->kvm)) {
4794 rc = kvm_s390_deliver_pending_interrupts(vcpu);
4795 if (rc || guestdbg_exit_pending(vcpu))
4796 return rc;
4797 }
4798
4799 rc = kvm_s390_handle_requests(vcpu);
4800 if (rc)
4801 return rc;
4802
4803 if (guestdbg_enabled(vcpu)) {
4804 kvm_s390_backup_guest_per_regs(vcpu);
4805 kvm_s390_patch_guest_per_regs(vcpu);
4806 }
4807
4808 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask);
4809
4810 vcpu->arch.sie_block->icptcode = 0;
4811 current->thread.gmap_int_code = 0;
4812 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
4813 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
4814 trace_kvm_s390_sie_enter(vcpu, cpuflags);
4815
4816 return 0;
4817 }
4818
vcpu_post_run_addressing_exception(struct kvm_vcpu * vcpu)4819 static int vcpu_post_run_addressing_exception(struct kvm_vcpu *vcpu)
4820 {
4821 struct kvm_s390_pgm_info pgm_info = {
4822 .code = PGM_ADDRESSING,
4823 };
4824 u8 opcode, ilen;
4825 int rc;
4826
4827 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
4828 trace_kvm_s390_sie_fault(vcpu);
4829
4830 /*
4831 * We want to inject an addressing exception, which is defined as a
4832 * suppressing or terminating exception. However, since we came here
4833 * by a DAT access exception, the PSW still points to the faulting
4834 * instruction since DAT exceptions are nullifying. So we've got
4835 * to look up the current opcode to get the length of the instruction
4836 * to be able to forward the PSW.
4837 */
4838 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1);
4839 ilen = insn_length(opcode);
4840 if (rc < 0) {
4841 return rc;
4842 } else if (rc) {
4843 /* Instruction-Fetching Exceptions - we can't detect the ilen.
4844 * Forward by arbitrary ilc, injection will take care of
4845 * nullification if necessary.
4846 */
4847 pgm_info = vcpu->arch.pgm;
4848 ilen = 4;
4849 }
4850 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
4851 kvm_s390_forward_psw(vcpu, ilen);
4852 return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
4853 }
4854
kvm_s390_assert_primary_as(struct kvm_vcpu * vcpu)4855 static void kvm_s390_assert_primary_as(struct kvm_vcpu *vcpu)
4856 {
4857 KVM_BUG(current->thread.gmap_teid.as != PSW_BITS_AS_PRIMARY, vcpu->kvm,
4858 "Unexpected program interrupt 0x%x, TEID 0x%016lx",
4859 current->thread.gmap_int_code, current->thread.gmap_teid.val);
4860 }
4861
4862 /*
4863 * __kvm_s390_handle_dat_fault() - handle a dat fault for the gmap of a vcpu
4864 * @vcpu: the vCPU whose gmap is to be fixed up
4865 * @gfn: the guest frame number used for memslots (including fake memslots)
4866 * @gaddr: the gmap address, does not have to match @gfn for ucontrol gmaps
4867 * @flags: FOLL_* flags
4868 *
4869 * Return: 0 on success, < 0 in case of error.
4870 * Context: The mm lock must not be held before calling. May sleep.
4871 */
__kvm_s390_handle_dat_fault(struct kvm_vcpu * vcpu,gfn_t gfn,gpa_t gaddr,unsigned int flags)4872 int __kvm_s390_handle_dat_fault(struct kvm_vcpu *vcpu, gfn_t gfn, gpa_t gaddr, unsigned int flags)
4873 {
4874 struct kvm_memory_slot *slot;
4875 unsigned int fault_flags;
4876 bool writable, unlocked;
4877 unsigned long vmaddr;
4878 struct page *page;
4879 kvm_pfn_t pfn;
4880 int rc;
4881
4882 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4883 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
4884 return vcpu_post_run_addressing_exception(vcpu);
4885
4886 fault_flags = flags & FOLL_WRITE ? FAULT_FLAG_WRITE : 0;
4887 if (vcpu->arch.gmap->pfault_enabled)
4888 flags |= FOLL_NOWAIT;
4889 vmaddr = __gfn_to_hva_memslot(slot, gfn);
4890
4891 try_again:
4892 pfn = __kvm_faultin_pfn(slot, gfn, flags, &writable, &page);
4893
4894 /* Access outside memory, inject addressing exception */
4895 if (is_noslot_pfn(pfn))
4896 return vcpu_post_run_addressing_exception(vcpu);
4897 /* Signal pending: try again */
4898 if (pfn == KVM_PFN_ERR_SIGPENDING)
4899 return -EAGAIN;
4900
4901 /* Needs I/O, try to setup async pfault (only possible with FOLL_NOWAIT) */
4902 if (pfn == KVM_PFN_ERR_NEEDS_IO) {
4903 trace_kvm_s390_major_guest_pfault(vcpu);
4904 if (kvm_arch_setup_async_pf(vcpu))
4905 return 0;
4906 vcpu->stat.pfault_sync++;
4907 /* Could not setup async pfault, try again synchronously */
4908 flags &= ~FOLL_NOWAIT;
4909 goto try_again;
4910 }
4911 /* Any other error */
4912 if (is_error_pfn(pfn))
4913 return -EFAULT;
4914
4915 /* Success */
4916 mmap_read_lock(vcpu->arch.gmap->mm);
4917 /* Mark the userspace PTEs as young and/or dirty, to avoid page fault loops */
4918 rc = fixup_user_fault(vcpu->arch.gmap->mm, vmaddr, fault_flags, &unlocked);
4919 if (!rc)
4920 rc = __gmap_link(vcpu->arch.gmap, gaddr, vmaddr);
4921 scoped_guard(spinlock, &vcpu->kvm->mmu_lock) {
4922 kvm_release_faultin_page(vcpu->kvm, page, false, writable);
4923 }
4924 mmap_read_unlock(vcpu->arch.gmap->mm);
4925 return rc;
4926 }
4927
vcpu_dat_fault_handler(struct kvm_vcpu * vcpu,unsigned long gaddr,unsigned int flags)4928 static int vcpu_dat_fault_handler(struct kvm_vcpu *vcpu, unsigned long gaddr, unsigned int flags)
4929 {
4930 unsigned long gaddr_tmp;
4931 gfn_t gfn;
4932
4933 gfn = gpa_to_gfn(gaddr);
4934 if (kvm_is_ucontrol(vcpu->kvm)) {
4935 /*
4936 * This translates the per-vCPU guest address into a
4937 * fake guest address, which can then be used with the
4938 * fake memslots that are identity mapping userspace.
4939 * This allows ucontrol VMs to use the normal fault
4940 * resolution path, like normal VMs.
4941 */
4942 mmap_read_lock(vcpu->arch.gmap->mm);
4943 gaddr_tmp = __gmap_translate(vcpu->arch.gmap, gaddr);
4944 mmap_read_unlock(vcpu->arch.gmap->mm);
4945 if (gaddr_tmp == -EFAULT) {
4946 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
4947 vcpu->run->s390_ucontrol.trans_exc_code = gaddr;
4948 vcpu->run->s390_ucontrol.pgm_code = PGM_SEGMENT_TRANSLATION;
4949 return -EREMOTE;
4950 }
4951 gfn = gpa_to_gfn(gaddr_tmp);
4952 }
4953 return __kvm_s390_handle_dat_fault(vcpu, gfn, gaddr, flags);
4954 }
4955
vcpu_post_run_handle_fault(struct kvm_vcpu * vcpu)4956 static int vcpu_post_run_handle_fault(struct kvm_vcpu *vcpu)
4957 {
4958 unsigned int flags = 0;
4959 unsigned long gaddr;
4960 int rc;
4961
4962 gaddr = current->thread.gmap_teid.addr * PAGE_SIZE;
4963 if (kvm_s390_cur_gmap_fault_is_write())
4964 flags = FAULT_FLAG_WRITE;
4965
4966 switch (current->thread.gmap_int_code & PGM_INT_CODE_MASK) {
4967 case 0:
4968 vcpu->stat.exit_null++;
4969 break;
4970 case PGM_SECURE_STORAGE_ACCESS:
4971 case PGM_SECURE_STORAGE_VIOLATION:
4972 kvm_s390_assert_primary_as(vcpu);
4973 /*
4974 * This can happen after a reboot with asynchronous teardown;
4975 * the new guest (normal or protected) will run on top of the
4976 * previous protected guest. The old pages need to be destroyed
4977 * so the new guest can use them.
4978 */
4979 if (kvm_s390_pv_destroy_page(vcpu->kvm, gaddr)) {
4980 /*
4981 * Either KVM messed up the secure guest mapping or the
4982 * same page is mapped into multiple secure guests.
4983 *
4984 * This exception is only triggered when a guest 2 is
4985 * running and can therefore never occur in kernel
4986 * context.
4987 */
4988 pr_warn_ratelimited("Secure storage violation (%x) in task: %s, pid %d\n",
4989 current->thread.gmap_int_code, current->comm,
4990 current->pid);
4991 send_sig(SIGSEGV, current, 0);
4992 }
4993 break;
4994 case PGM_NON_SECURE_STORAGE_ACCESS:
4995 kvm_s390_assert_primary_as(vcpu);
4996 /*
4997 * This is normal operation; a page belonging to a protected
4998 * guest has not been imported yet. Try to import the page into
4999 * the protected guest.
5000 */
5001 rc = kvm_s390_pv_convert_to_secure(vcpu->kvm, gaddr);
5002 if (rc == -EINVAL)
5003 send_sig(SIGSEGV, current, 0);
5004 if (rc != -ENXIO)
5005 break;
5006 flags = FAULT_FLAG_WRITE;
5007 fallthrough;
5008 case PGM_PROTECTION:
5009 case PGM_SEGMENT_TRANSLATION:
5010 case PGM_PAGE_TRANSLATION:
5011 case PGM_ASCE_TYPE:
5012 case PGM_REGION_FIRST_TRANS:
5013 case PGM_REGION_SECOND_TRANS:
5014 case PGM_REGION_THIRD_TRANS:
5015 kvm_s390_assert_primary_as(vcpu);
5016 return vcpu_dat_fault_handler(vcpu, gaddr, flags);
5017 default:
5018 KVM_BUG(1, vcpu->kvm, "Unexpected program interrupt 0x%x, TEID 0x%016lx",
5019 current->thread.gmap_int_code, current->thread.gmap_teid.val);
5020 send_sig(SIGSEGV, current, 0);
5021 break;
5022 }
5023 return 0;
5024 }
5025
vcpu_post_run(struct kvm_vcpu * vcpu,int exit_reason)5026 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
5027 {
5028 struct mcck_volatile_info *mcck_info;
5029 struct sie_page *sie_page;
5030 int rc;
5031
5032 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
5033 vcpu->arch.sie_block->icptcode);
5034 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);
5035
5036 if (guestdbg_enabled(vcpu))
5037 kvm_s390_restore_guest_per_regs(vcpu);
5038
5039 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
5040 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
5041
5042 if (exit_reason == -EINTR) {
5043 VCPU_EVENT(vcpu, 3, "%s", "machine check");
5044 sie_page = container_of(vcpu->arch.sie_block,
5045 struct sie_page, sie_block);
5046 mcck_info = &sie_page->mcck_info;
5047 kvm_s390_reinject_machine_check(vcpu, mcck_info);
5048 return 0;
5049 }
5050
5051 if (vcpu->arch.sie_block->icptcode > 0) {
5052 rc = kvm_handle_sie_intercept(vcpu);
5053
5054 if (rc != -EOPNOTSUPP)
5055 return rc;
5056 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
5057 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
5058 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
5059 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
5060 return -EREMOTE;
5061 }
5062
5063 return vcpu_post_run_handle_fault(vcpu);
5064 }
5065
kvm_s390_enter_exit_sie(struct kvm_s390_sie_block * scb,u64 * gprs,unsigned long gasce)5066 int noinstr kvm_s390_enter_exit_sie(struct kvm_s390_sie_block *scb,
5067 u64 *gprs, unsigned long gasce)
5068 {
5069 int ret;
5070
5071 guest_state_enter_irqoff();
5072
5073 /*
5074 * The guest_state_{enter,exit}_irqoff() functions inform lockdep and
5075 * tracing that entry to the guest will enable host IRQs, and exit from
5076 * the guest will disable host IRQs.
5077 *
5078 * We must not use lockdep/tracing/RCU in this critical section, so we
5079 * use the low-level arch_local_irq_*() helpers to enable/disable IRQs.
5080 */
5081 arch_local_irq_enable();
5082 ret = sie64a(scb, gprs, gasce);
5083 arch_local_irq_disable();
5084
5085 guest_state_exit_irqoff();
5086
5087 return ret;
5088 }
5089
5090 #define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK)
__vcpu_run(struct kvm_vcpu * vcpu)5091 static int __vcpu_run(struct kvm_vcpu *vcpu)
5092 {
5093 int rc, exit_reason;
5094 struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block;
5095
5096 /*
5097 * We try to hold kvm->srcu during most of vcpu_run (except when run-
5098 * ning the guest), so that memslots (and other stuff) are protected
5099 */
5100 kvm_vcpu_srcu_read_lock(vcpu);
5101
5102 do {
5103 rc = vcpu_pre_run(vcpu);
5104 if (rc || guestdbg_exit_pending(vcpu))
5105 break;
5106
5107 kvm_vcpu_srcu_read_unlock(vcpu);
5108 /*
5109 * As PF_VCPU will be used in fault handler, between
5110 * guest_timing_enter_irqoff and guest_timing_exit_irqoff
5111 * should be no uaccess.
5112 */
5113 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5114 memcpy(sie_page->pv_grregs,
5115 vcpu->run->s.regs.gprs,
5116 sizeof(sie_page->pv_grregs));
5117 }
5118
5119 local_irq_disable();
5120 guest_timing_enter_irqoff();
5121 __disable_cpu_timer_accounting(vcpu);
5122
5123 exit_reason = kvm_s390_enter_exit_sie(vcpu->arch.sie_block,
5124 vcpu->run->s.regs.gprs,
5125 vcpu->arch.gmap->asce);
5126
5127 __enable_cpu_timer_accounting(vcpu);
5128 guest_timing_exit_irqoff();
5129 local_irq_enable();
5130
5131 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5132 memcpy(vcpu->run->s.regs.gprs,
5133 sie_page->pv_grregs,
5134 sizeof(sie_page->pv_grregs));
5135 /*
5136 * We're not allowed to inject interrupts on intercepts
5137 * that leave the guest state in an "in-between" state
5138 * where the next SIE entry will do a continuation.
5139 * Fence interrupts in our "internal" PSW.
5140 */
5141 if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR ||
5142 vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) {
5143 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK;
5144 }
5145 }
5146 kvm_vcpu_srcu_read_lock(vcpu);
5147
5148 rc = vcpu_post_run(vcpu, exit_reason);
5149 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
5150
5151 kvm_vcpu_srcu_read_unlock(vcpu);
5152 return rc;
5153 }
5154
sync_regs_fmt2(struct kvm_vcpu * vcpu)5155 static void sync_regs_fmt2(struct kvm_vcpu *vcpu)
5156 {
5157 struct kvm_run *kvm_run = vcpu->run;
5158 struct runtime_instr_cb *riccb;
5159 struct gs_cb *gscb;
5160
5161 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb;
5162 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb;
5163 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
5164 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
5165 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
5166 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
5167 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
5168 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
5169 }
5170 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
5171 vcpu->arch.pfault_token = kvm_run->s.regs.pft;
5172 vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
5173 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
5174 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
5175 kvm_clear_async_pf_completion_queue(vcpu);
5176 }
5177 if (kvm_run->kvm_dirty_regs & KVM_SYNC_DIAG318) {
5178 vcpu->arch.diag318_info.val = kvm_run->s.regs.diag318;
5179 vcpu->arch.sie_block->cpnc = vcpu->arch.diag318_info.cpnc;
5180 VCPU_EVENT(vcpu, 3, "setting cpnc to %d", vcpu->arch.diag318_info.cpnc);
5181 }
5182 /*
5183 * If userspace sets the riccb (e.g. after migration) to a valid state,
5184 * we should enable RI here instead of doing the lazy enablement.
5185 */
5186 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) &&
5187 test_kvm_facility(vcpu->kvm, 64) &&
5188 riccb->v &&
5189 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) {
5190 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)");
5191 vcpu->arch.sie_block->ecb3 |= ECB3_RI;
5192 }
5193 /*
5194 * If userspace sets the gscb (e.g. after migration) to non-zero,
5195 * we should enable GS here instead of doing the lazy enablement.
5196 */
5197 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) &&
5198 test_kvm_facility(vcpu->kvm, 133) &&
5199 gscb->gssm &&
5200 !vcpu->arch.gs_enabled) {
5201 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)");
5202 vcpu->arch.sie_block->ecb |= ECB_GS;
5203 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
5204 vcpu->arch.gs_enabled = 1;
5205 }
5206 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) &&
5207 test_kvm_facility(vcpu->kvm, 82)) {
5208 vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
5209 vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0;
5210 }
5211 if (cpu_has_gs()) {
5212 preempt_disable();
5213 local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT);
5214 if (current->thread.gs_cb) {
5215 vcpu->arch.host_gscb = current->thread.gs_cb;
5216 save_gs_cb(vcpu->arch.host_gscb);
5217 }
5218 if (vcpu->arch.gs_enabled) {
5219 current->thread.gs_cb = (struct gs_cb *)
5220 &vcpu->run->s.regs.gscb;
5221 restore_gs_cb(current->thread.gs_cb);
5222 }
5223 preempt_enable();
5224 }
5225 /* SIE will load etoken directly from SDNX and therefore kvm_run */
5226 }
5227
sync_regs(struct kvm_vcpu * vcpu)5228 static void sync_regs(struct kvm_vcpu *vcpu)
5229 {
5230 struct kvm_run *kvm_run = vcpu->run;
5231
5232 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
5233 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
5234 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
5235 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
5236 /* some control register changes require a tlb flush */
5237 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5238 }
5239 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
5240 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
5241 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
5242 }
5243 save_access_regs(vcpu->arch.host_acrs);
5244 restore_access_regs(vcpu->run->s.regs.acrs);
5245 vcpu->arch.acrs_loaded = true;
5246 kvm_s390_fpu_load(vcpu->run);
5247 /* Sync fmt2 only data */
5248 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) {
5249 sync_regs_fmt2(vcpu);
5250 } else {
5251 /*
5252 * In several places we have to modify our internal view to
5253 * not do things that are disallowed by the ultravisor. For
5254 * example we must not inject interrupts after specific exits
5255 * (e.g. 112 prefix page not secure). We do this by turning
5256 * off the machine check, external and I/O interrupt bits
5257 * of our PSW copy. To avoid getting validity intercepts, we
5258 * do only accept the condition code from userspace.
5259 */
5260 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC;
5261 vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask &
5262 PSW_MASK_CC;
5263 }
5264
5265 kvm_run->kvm_dirty_regs = 0;
5266 }
5267
store_regs_fmt2(struct kvm_vcpu * vcpu)5268 static void store_regs_fmt2(struct kvm_vcpu *vcpu)
5269 {
5270 struct kvm_run *kvm_run = vcpu->run;
5271
5272 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
5273 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
5274 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
5275 kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC;
5276 kvm_run->s.regs.diag318 = vcpu->arch.diag318_info.val;
5277 if (cpu_has_gs()) {
5278 preempt_disable();
5279 local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT);
5280 if (vcpu->arch.gs_enabled)
5281 save_gs_cb(current->thread.gs_cb);
5282 current->thread.gs_cb = vcpu->arch.host_gscb;
5283 restore_gs_cb(vcpu->arch.host_gscb);
5284 if (!vcpu->arch.host_gscb)
5285 local_ctl_clear_bit(2, CR2_GUARDED_STORAGE_BIT);
5286 vcpu->arch.host_gscb = NULL;
5287 preempt_enable();
5288 }
5289 /* SIE will save etoken directly into SDNX and therefore kvm_run */
5290 }
5291
store_regs(struct kvm_vcpu * vcpu)5292 static void store_regs(struct kvm_vcpu *vcpu)
5293 {
5294 struct kvm_run *kvm_run = vcpu->run;
5295
5296 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
5297 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
5298 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
5299 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
5300 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
5301 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
5302 kvm_run->s.regs.pft = vcpu->arch.pfault_token;
5303 kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
5304 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
5305 save_access_regs(vcpu->run->s.regs.acrs);
5306 restore_access_regs(vcpu->arch.host_acrs);
5307 vcpu->arch.acrs_loaded = false;
5308 kvm_s390_fpu_store(vcpu->run);
5309 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu)))
5310 store_regs_fmt2(vcpu);
5311 }
5312
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)5313 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
5314 {
5315 struct kvm_run *kvm_run = vcpu->run;
5316 DECLARE_KERNEL_FPU_ONSTACK32(fpu);
5317 int rc;
5318
5319 /*
5320 * Running a VM while dumping always has the potential to
5321 * produce inconsistent dump data. But for PV vcpus a SIE
5322 * entry while dumping could also lead to a fatal validity
5323 * intercept which we absolutely want to avoid.
5324 */
5325 if (vcpu->kvm->arch.pv.dumping)
5326 return -EINVAL;
5327
5328 if (!vcpu->wants_to_run)
5329 return -EINTR;
5330
5331 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS ||
5332 kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS)
5333 return -EINVAL;
5334
5335 vcpu_load(vcpu);
5336
5337 if (guestdbg_exit_pending(vcpu)) {
5338 kvm_s390_prepare_debug_exit(vcpu);
5339 rc = 0;
5340 goto out;
5341 }
5342
5343 kvm_sigset_activate(vcpu);
5344
5345 /*
5346 * no need to check the return value of vcpu_start as it can only have
5347 * an error for protvirt, but protvirt means user cpu state
5348 */
5349 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
5350 kvm_s390_vcpu_start(vcpu);
5351 } else if (is_vcpu_stopped(vcpu)) {
5352 pr_err_ratelimited("can't run stopped vcpu %d\n",
5353 vcpu->vcpu_id);
5354 rc = -EINVAL;
5355 goto out;
5356 }
5357
5358 kernel_fpu_begin(&fpu, KERNEL_FPC | KERNEL_VXR);
5359 sync_regs(vcpu);
5360 enable_cpu_timer_accounting(vcpu);
5361
5362 might_fault();
5363 rc = __vcpu_run(vcpu);
5364
5365 if (signal_pending(current) && !rc) {
5366 kvm_run->exit_reason = KVM_EXIT_INTR;
5367 rc = -EINTR;
5368 }
5369
5370 if (guestdbg_exit_pending(vcpu) && !rc) {
5371 kvm_s390_prepare_debug_exit(vcpu);
5372 rc = 0;
5373 }
5374
5375 if (rc == -EREMOTE) {
5376 /* userspace support is needed, kvm_run has been prepared */
5377 rc = 0;
5378 }
5379
5380 disable_cpu_timer_accounting(vcpu);
5381 store_regs(vcpu);
5382 kernel_fpu_end(&fpu, KERNEL_FPC | KERNEL_VXR);
5383
5384 kvm_sigset_deactivate(vcpu);
5385
5386 vcpu->stat.exit_userspace++;
5387 out:
5388 vcpu_put(vcpu);
5389 return rc;
5390 }
5391
5392 /*
5393 * store status at address
5394 * we use have two special cases:
5395 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
5396 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
5397 */
kvm_s390_store_status_unloaded(struct kvm_vcpu * vcpu,unsigned long gpa)5398 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
5399 {
5400 unsigned char archmode = 1;
5401 freg_t fprs[NUM_FPRS];
5402 unsigned int px;
5403 u64 clkcomp, cputm;
5404 int rc;
5405
5406 px = kvm_s390_get_prefix(vcpu);
5407 if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
5408 if (write_guest_abs(vcpu, 163, &archmode, 1))
5409 return -EFAULT;
5410 gpa = 0;
5411 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
5412 if (write_guest_real(vcpu, 163, &archmode, 1))
5413 return -EFAULT;
5414 gpa = px;
5415 } else
5416 gpa -= __LC_FPREGS_SAVE_AREA;
5417
5418 /* manually convert vector registers if necessary */
5419 if (cpu_has_vx()) {
5420 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
5421 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
5422 fprs, 128);
5423 } else {
5424 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
5425 vcpu->run->s.regs.fprs, 128);
5426 }
5427 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
5428 vcpu->run->s.regs.gprs, 128);
5429 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
5430 &vcpu->arch.sie_block->gpsw, 16);
5431 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
5432 &px, 4);
5433 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
5434 &vcpu->run->s.regs.fpc, 4);
5435 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
5436 &vcpu->arch.sie_block->todpr, 4);
5437 cputm = kvm_s390_get_cpu_timer(vcpu);
5438 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
5439 &cputm, 8);
5440 clkcomp = vcpu->arch.sie_block->ckc >> 8;
5441 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
5442 &clkcomp, 8);
5443 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
5444 &vcpu->run->s.regs.acrs, 64);
5445 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
5446 &vcpu->arch.sie_block->gcr, 128);
5447 return rc ? -EFAULT : 0;
5448 }
5449
kvm_s390_vcpu_store_status(struct kvm_vcpu * vcpu,unsigned long addr)5450 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
5451 {
5452 /*
5453 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
5454 * switch in the run ioctl. Let's update our copies before we save
5455 * it into the save area
5456 */
5457 kvm_s390_fpu_store(vcpu->run);
5458 save_access_regs(vcpu->run->s.regs.acrs);
5459
5460 return kvm_s390_store_status_unloaded(vcpu, addr);
5461 }
5462
__disable_ibs_on_vcpu(struct kvm_vcpu * vcpu)5463 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
5464 {
5465 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
5466 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
5467 }
5468
__disable_ibs_on_all_vcpus(struct kvm * kvm)5469 static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
5470 {
5471 unsigned long i;
5472 struct kvm_vcpu *vcpu;
5473
5474 kvm_for_each_vcpu(i, vcpu, kvm) {
5475 __disable_ibs_on_vcpu(vcpu);
5476 }
5477 }
5478
__enable_ibs_on_vcpu(struct kvm_vcpu * vcpu)5479 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
5480 {
5481 if (!sclp.has_ibs)
5482 return;
5483 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
5484 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
5485 }
5486
kvm_s390_vcpu_start(struct kvm_vcpu * vcpu)5487 int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
5488 {
5489 int i, online_vcpus, r = 0, started_vcpus = 0;
5490
5491 if (!is_vcpu_stopped(vcpu))
5492 return 0;
5493
5494 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
5495 /* Only one cpu at a time may enter/leave the STOPPED state. */
5496 spin_lock(&vcpu->kvm->arch.start_stop_lock);
5497 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
5498
5499 /* Let's tell the UV that we want to change into the operating state */
5500 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5501 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR);
5502 if (r) {
5503 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5504 return r;
5505 }
5506 }
5507
5508 for (i = 0; i < online_vcpus; i++) {
5509 if (!is_vcpu_stopped(kvm_get_vcpu(vcpu->kvm, i)))
5510 started_vcpus++;
5511 }
5512
5513 if (started_vcpus == 0) {
5514 /* we're the only active VCPU -> speed it up */
5515 __enable_ibs_on_vcpu(vcpu);
5516 } else if (started_vcpus == 1) {
5517 /*
5518 * As we are starting a second VCPU, we have to disable
5519 * the IBS facility on all VCPUs to remove potentially
5520 * outstanding ENABLE requests.
5521 */
5522 __disable_ibs_on_all_vcpus(vcpu->kvm);
5523 }
5524
5525 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED);
5526 /*
5527 * The real PSW might have changed due to a RESTART interpreted by the
5528 * ultravisor. We block all interrupts and let the next sie exit
5529 * refresh our view.
5530 */
5531 if (kvm_s390_pv_cpu_is_protected(vcpu))
5532 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK;
5533 /*
5534 * Another VCPU might have used IBS while we were offline.
5535 * Let's play safe and flush the VCPU at startup.
5536 */
5537 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5538 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5539 return 0;
5540 }
5541
kvm_s390_vcpu_stop(struct kvm_vcpu * vcpu)5542 int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
5543 {
5544 int i, online_vcpus, r = 0, started_vcpus = 0;
5545 struct kvm_vcpu *started_vcpu = NULL;
5546
5547 if (is_vcpu_stopped(vcpu))
5548 return 0;
5549
5550 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
5551 /* Only one cpu at a time may enter/leave the STOPPED state. */
5552 spin_lock(&vcpu->kvm->arch.start_stop_lock);
5553 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
5554
5555 /* Let's tell the UV that we want to change into the stopped state */
5556 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5557 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP);
5558 if (r) {
5559 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5560 return r;
5561 }
5562 }
5563
5564 /*
5565 * Set the VCPU to STOPPED and THEN clear the interrupt flag,
5566 * now that the SIGP STOP and SIGP STOP AND STORE STATUS orders
5567 * have been fully processed. This will ensure that the VCPU
5568 * is kept BUSY if another VCPU is inquiring with SIGP SENSE.
5569 */
5570 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED);
5571 kvm_s390_clear_stop_irq(vcpu);
5572
5573 __disable_ibs_on_vcpu(vcpu);
5574
5575 for (i = 0; i < online_vcpus; i++) {
5576 struct kvm_vcpu *tmp = kvm_get_vcpu(vcpu->kvm, i);
5577
5578 if (!is_vcpu_stopped(tmp)) {
5579 started_vcpus++;
5580 started_vcpu = tmp;
5581 }
5582 }
5583
5584 if (started_vcpus == 1) {
5585 /*
5586 * As we only have one VCPU left, we want to enable the
5587 * IBS facility for that VCPU to speed it up.
5588 */
5589 __enable_ibs_on_vcpu(started_vcpu);
5590 }
5591
5592 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5593 return 0;
5594 }
5595
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5596 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5597 struct kvm_enable_cap *cap)
5598 {
5599 int r;
5600
5601 if (cap->flags)
5602 return -EINVAL;
5603
5604 switch (cap->cap) {
5605 case KVM_CAP_S390_CSS_SUPPORT:
5606 if (!vcpu->kvm->arch.css_support) {
5607 vcpu->kvm->arch.css_support = 1;
5608 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
5609 trace_kvm_s390_enable_css(vcpu->kvm);
5610 }
5611 r = 0;
5612 break;
5613 default:
5614 r = -EINVAL;
5615 break;
5616 }
5617 return r;
5618 }
5619
kvm_s390_vcpu_sida_op(struct kvm_vcpu * vcpu,struct kvm_s390_mem_op * mop)5620 static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu,
5621 struct kvm_s390_mem_op *mop)
5622 {
5623 void __user *uaddr = (void __user *)mop->buf;
5624 void *sida_addr;
5625 int r = 0;
5626
5627 if (mop->flags || !mop->size)
5628 return -EINVAL;
5629 if (mop->size + mop->sida_offset < mop->size)
5630 return -EINVAL;
5631 if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block))
5632 return -E2BIG;
5633 if (!kvm_s390_pv_cpu_is_protected(vcpu))
5634 return -EINVAL;
5635
5636 sida_addr = (char *)sida_addr(vcpu->arch.sie_block) + mop->sida_offset;
5637
5638 switch (mop->op) {
5639 case KVM_S390_MEMOP_SIDA_READ:
5640 if (copy_to_user(uaddr, sida_addr, mop->size))
5641 r = -EFAULT;
5642
5643 break;
5644 case KVM_S390_MEMOP_SIDA_WRITE:
5645 if (copy_from_user(sida_addr, uaddr, mop->size))
5646 r = -EFAULT;
5647 break;
5648 }
5649 return r;
5650 }
5651
kvm_s390_vcpu_mem_op(struct kvm_vcpu * vcpu,struct kvm_s390_mem_op * mop)5652 static long kvm_s390_vcpu_mem_op(struct kvm_vcpu *vcpu,
5653 struct kvm_s390_mem_op *mop)
5654 {
5655 void __user *uaddr = (void __user *)mop->buf;
5656 enum gacc_mode acc_mode;
5657 void *tmpbuf = NULL;
5658 int r;
5659
5660 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_INJECT_EXCEPTION |
5661 KVM_S390_MEMOP_F_CHECK_ONLY |
5662 KVM_S390_MEMOP_F_SKEY_PROTECTION);
5663 if (r)
5664 return r;
5665 if (mop->ar >= NUM_ACRS)
5666 return -EINVAL;
5667 if (kvm_s390_pv_cpu_is_protected(vcpu))
5668 return -EINVAL;
5669 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
5670 tmpbuf = vmalloc(mop->size);
5671 if (!tmpbuf)
5672 return -ENOMEM;
5673 }
5674
5675 acc_mode = mop->op == KVM_S390_MEMOP_LOGICAL_READ ? GACC_FETCH : GACC_STORE;
5676 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
5677 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size,
5678 acc_mode, mop->key);
5679 goto out_inject;
5680 }
5681 if (acc_mode == GACC_FETCH) {
5682 r = read_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf,
5683 mop->size, mop->key);
5684 if (r)
5685 goto out_inject;
5686 if (copy_to_user(uaddr, tmpbuf, mop->size)) {
5687 r = -EFAULT;
5688 goto out_free;
5689 }
5690 } else {
5691 if (copy_from_user(tmpbuf, uaddr, mop->size)) {
5692 r = -EFAULT;
5693 goto out_free;
5694 }
5695 r = write_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf,
5696 mop->size, mop->key);
5697 }
5698
5699 out_inject:
5700 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
5701 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
5702
5703 out_free:
5704 vfree(tmpbuf);
5705 return r;
5706 }
5707
kvm_s390_vcpu_memsida_op(struct kvm_vcpu * vcpu,struct kvm_s390_mem_op * mop)5708 static long kvm_s390_vcpu_memsida_op(struct kvm_vcpu *vcpu,
5709 struct kvm_s390_mem_op *mop)
5710 {
5711 int r, srcu_idx;
5712
5713 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5714
5715 switch (mop->op) {
5716 case KVM_S390_MEMOP_LOGICAL_READ:
5717 case KVM_S390_MEMOP_LOGICAL_WRITE:
5718 r = kvm_s390_vcpu_mem_op(vcpu, mop);
5719 break;
5720 case KVM_S390_MEMOP_SIDA_READ:
5721 case KVM_S390_MEMOP_SIDA_WRITE:
5722 /* we are locked against sida going away by the vcpu->mutex */
5723 r = kvm_s390_vcpu_sida_op(vcpu, mop);
5724 break;
5725 default:
5726 r = -EINVAL;
5727 }
5728
5729 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
5730 return r;
5731 }
5732
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5733 long kvm_arch_vcpu_async_ioctl(struct file *filp,
5734 unsigned int ioctl, unsigned long arg)
5735 {
5736 struct kvm_vcpu *vcpu = filp->private_data;
5737 void __user *argp = (void __user *)arg;
5738 int rc;
5739
5740 switch (ioctl) {
5741 case KVM_S390_IRQ: {
5742 struct kvm_s390_irq s390irq;
5743
5744 if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
5745 return -EFAULT;
5746 rc = kvm_s390_inject_vcpu(vcpu, &s390irq);
5747 break;
5748 }
5749 case KVM_S390_INTERRUPT: {
5750 struct kvm_s390_interrupt s390int;
5751 struct kvm_s390_irq s390irq = {};
5752
5753 if (copy_from_user(&s390int, argp, sizeof(s390int)))
5754 return -EFAULT;
5755 if (s390int_to_s390irq(&s390int, &s390irq))
5756 return -EINVAL;
5757 rc = kvm_s390_inject_vcpu(vcpu, &s390irq);
5758 break;
5759 }
5760 default:
5761 rc = -ENOIOCTLCMD;
5762 break;
5763 }
5764
5765 /*
5766 * To simplify single stepping of userspace-emulated instructions,
5767 * KVM_EXIT_S390_SIEIC exit sets KVM_GUESTDBG_EXIT_PENDING (see
5768 * should_handle_per_ifetch()). However, if userspace emulation injects
5769 * an interrupt, it needs to be cleared, so that KVM_EXIT_DEBUG happens
5770 * after (and not before) the interrupt delivery.
5771 */
5772 if (!rc)
5773 vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING;
5774
5775 return rc;
5776 }
5777
kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu * vcpu,struct kvm_pv_cmd * cmd)5778 static int kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu *vcpu,
5779 struct kvm_pv_cmd *cmd)
5780 {
5781 struct kvm_s390_pv_dmp dmp;
5782 void *data;
5783 int ret;
5784
5785 /* Dump initialization is a prerequisite */
5786 if (!vcpu->kvm->arch.pv.dumping)
5787 return -EINVAL;
5788
5789 if (copy_from_user(&dmp, (__u8 __user *)cmd->data, sizeof(dmp)))
5790 return -EFAULT;
5791
5792 /* We only handle this subcmd right now */
5793 if (dmp.subcmd != KVM_PV_DUMP_CPU)
5794 return -EINVAL;
5795
5796 /* CPU dump length is the same as create cpu storage donation. */
5797 if (dmp.buff_len != uv_info.guest_cpu_stor_len)
5798 return -EINVAL;
5799
5800 data = kvzalloc(uv_info.guest_cpu_stor_len, GFP_KERNEL);
5801 if (!data)
5802 return -ENOMEM;
5803
5804 ret = kvm_s390_pv_dump_cpu(vcpu, data, &cmd->rc, &cmd->rrc);
5805
5806 VCPU_EVENT(vcpu, 3, "PROTVIRT DUMP CPU %d rc %x rrc %x",
5807 vcpu->vcpu_id, cmd->rc, cmd->rrc);
5808
5809 if (ret)
5810 ret = -EINVAL;
5811
5812 /* On success copy over the dump data */
5813 if (!ret && copy_to_user((__u8 __user *)dmp.buff_addr, data, uv_info.guest_cpu_stor_len))
5814 ret = -EFAULT;
5815
5816 kvfree(data);
5817 return ret;
5818 }
5819
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5820 long kvm_arch_vcpu_ioctl(struct file *filp,
5821 unsigned int ioctl, unsigned long arg)
5822 {
5823 struct kvm_vcpu *vcpu = filp->private_data;
5824 void __user *argp = (void __user *)arg;
5825 int idx;
5826 long r;
5827 u16 rc, rrc;
5828
5829 vcpu_load(vcpu);
5830
5831 switch (ioctl) {
5832 case KVM_S390_STORE_STATUS:
5833 idx = srcu_read_lock(&vcpu->kvm->srcu);
5834 r = kvm_s390_store_status_unloaded(vcpu, arg);
5835 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5836 break;
5837 case KVM_S390_SET_INITIAL_PSW: {
5838 psw_t psw;
5839
5840 r = -EFAULT;
5841 if (copy_from_user(&psw, argp, sizeof(psw)))
5842 break;
5843 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
5844 break;
5845 }
5846 case KVM_S390_CLEAR_RESET:
5847 r = 0;
5848 kvm_arch_vcpu_ioctl_clear_reset(vcpu);
5849 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5850 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5851 UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc);
5852 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x",
5853 rc, rrc);
5854 }
5855 break;
5856 case KVM_S390_INITIAL_RESET:
5857 r = 0;
5858 kvm_arch_vcpu_ioctl_initial_reset(vcpu);
5859 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5860 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5861 UVC_CMD_CPU_RESET_INITIAL,
5862 &rc, &rrc);
5863 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x",
5864 rc, rrc);
5865 }
5866 break;
5867 case KVM_S390_NORMAL_RESET:
5868 r = 0;
5869 kvm_arch_vcpu_ioctl_normal_reset(vcpu);
5870 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5871 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5872 UVC_CMD_CPU_RESET, &rc, &rrc);
5873 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x",
5874 rc, rrc);
5875 }
5876 break;
5877 case KVM_SET_ONE_REG:
5878 case KVM_GET_ONE_REG: {
5879 struct kvm_one_reg reg;
5880 r = -EINVAL;
5881 if (kvm_s390_pv_cpu_is_protected(vcpu))
5882 break;
5883 r = -EFAULT;
5884 if (copy_from_user(®, argp, sizeof(reg)))
5885 break;
5886 if (ioctl == KVM_SET_ONE_REG)
5887 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®);
5888 else
5889 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®);
5890 break;
5891 }
5892 #ifdef CONFIG_KVM_S390_UCONTROL
5893 case KVM_S390_UCAS_MAP: {
5894 struct kvm_s390_ucas_mapping ucasmap;
5895
5896 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
5897 r = -EFAULT;
5898 break;
5899 }
5900
5901 if (!kvm_is_ucontrol(vcpu->kvm)) {
5902 r = -EINVAL;
5903 break;
5904 }
5905
5906 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
5907 ucasmap.vcpu_addr, ucasmap.length);
5908 break;
5909 }
5910 case KVM_S390_UCAS_UNMAP: {
5911 struct kvm_s390_ucas_mapping ucasmap;
5912
5913 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
5914 r = -EFAULT;
5915 break;
5916 }
5917
5918 if (!kvm_is_ucontrol(vcpu->kvm)) {
5919 r = -EINVAL;
5920 break;
5921 }
5922
5923 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
5924 ucasmap.length);
5925 break;
5926 }
5927 #endif
5928 case KVM_S390_VCPU_FAULT: {
5929 idx = srcu_read_lock(&vcpu->kvm->srcu);
5930 r = vcpu_dat_fault_handler(vcpu, arg, 0);
5931 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5932 break;
5933 }
5934 case KVM_ENABLE_CAP:
5935 {
5936 struct kvm_enable_cap cap;
5937 r = -EFAULT;
5938 if (copy_from_user(&cap, argp, sizeof(cap)))
5939 break;
5940 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5941 break;
5942 }
5943 case KVM_S390_MEM_OP: {
5944 struct kvm_s390_mem_op mem_op;
5945
5946 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
5947 r = kvm_s390_vcpu_memsida_op(vcpu, &mem_op);
5948 else
5949 r = -EFAULT;
5950 break;
5951 }
5952 case KVM_S390_SET_IRQ_STATE: {
5953 struct kvm_s390_irq_state irq_state;
5954
5955 r = -EFAULT;
5956 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
5957 break;
5958 if (irq_state.len > VCPU_IRQS_MAX_BUF ||
5959 irq_state.len == 0 ||
5960 irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
5961 r = -EINVAL;
5962 break;
5963 }
5964 /* do not use irq_state.flags, it will break old QEMUs */
5965 r = kvm_s390_set_irq_state(vcpu,
5966 (void __user *) irq_state.buf,
5967 irq_state.len);
5968 break;
5969 }
5970 case KVM_S390_GET_IRQ_STATE: {
5971 struct kvm_s390_irq_state irq_state;
5972
5973 r = -EFAULT;
5974 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
5975 break;
5976 if (irq_state.len == 0) {
5977 r = -EINVAL;
5978 break;
5979 }
5980 /* do not use irq_state.flags, it will break old QEMUs */
5981 r = kvm_s390_get_irq_state(vcpu,
5982 (__u8 __user *) irq_state.buf,
5983 irq_state.len);
5984 break;
5985 }
5986 case KVM_S390_PV_CPU_COMMAND: {
5987 struct kvm_pv_cmd cmd;
5988
5989 r = -EINVAL;
5990 if (!is_prot_virt_host())
5991 break;
5992
5993 r = -EFAULT;
5994 if (copy_from_user(&cmd, argp, sizeof(cmd)))
5995 break;
5996
5997 r = -EINVAL;
5998 if (cmd.flags)
5999 break;
6000
6001 /* We only handle this cmd right now */
6002 if (cmd.cmd != KVM_PV_DUMP)
6003 break;
6004
6005 r = kvm_s390_handle_pv_vcpu_dump(vcpu, &cmd);
6006
6007 /* Always copy over UV rc / rrc data */
6008 if (copy_to_user((__u8 __user *)argp, &cmd.rc,
6009 sizeof(cmd.rc) + sizeof(cmd.rrc)))
6010 r = -EFAULT;
6011 break;
6012 }
6013 default:
6014 r = -ENOTTY;
6015 }
6016
6017 vcpu_put(vcpu);
6018 return r;
6019 }
6020
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6021 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6022 {
6023 #ifdef CONFIG_KVM_S390_UCONTROL
6024 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
6025 && (kvm_is_ucontrol(vcpu->kvm))) {
6026 vmf->page = virt_to_page(vcpu->arch.sie_block);
6027 get_page(vmf->page);
6028 return 0;
6029 }
6030 #endif
6031 return VM_FAULT_SIGBUS;
6032 }
6033
kvm_arch_irqchip_in_kernel(struct kvm * kvm)6034 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
6035 {
6036 return true;
6037 }
6038
6039 /* Section: memory related */
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)6040 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6041 const struct kvm_memory_slot *old,
6042 struct kvm_memory_slot *new,
6043 enum kvm_mr_change change)
6044 {
6045 gpa_t size;
6046
6047 if (kvm_is_ucontrol(kvm) && new->id < KVM_USER_MEM_SLOTS)
6048 return -EINVAL;
6049
6050 /* When we are protected, we should not change the memory slots */
6051 if (kvm_s390_pv_get_handle(kvm))
6052 return -EINVAL;
6053
6054 if (change != KVM_MR_DELETE && change != KVM_MR_FLAGS_ONLY) {
6055 /*
6056 * A few sanity checks. We can have memory slots which have to be
6057 * located/ended at a segment boundary (1MB). The memory in userland is
6058 * ok to be fragmented into various different vmas. It is okay to mmap()
6059 * and munmap() stuff in this slot after doing this call at any time
6060 */
6061
6062 if (new->userspace_addr & 0xffffful)
6063 return -EINVAL;
6064
6065 size = new->npages * PAGE_SIZE;
6066 if (size & 0xffffful)
6067 return -EINVAL;
6068
6069 if ((new->base_gfn * PAGE_SIZE) + size > kvm->arch.mem_limit)
6070 return -EINVAL;
6071 }
6072
6073 if (!kvm->arch.migration_mode)
6074 return 0;
6075
6076 /*
6077 * Turn off migration mode when:
6078 * - userspace creates a new memslot with dirty logging off,
6079 * - userspace modifies an existing memslot (MOVE or FLAGS_ONLY) and
6080 * dirty logging is turned off.
6081 * Migration mode expects dirty page logging being enabled to store
6082 * its dirty bitmap.
6083 */
6084 if (change != KVM_MR_DELETE &&
6085 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
6086 WARN(kvm_s390_vm_stop_migration(kvm),
6087 "Failed to stop migration mode");
6088
6089 return 0;
6090 }
6091
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)6092 void kvm_arch_commit_memory_region(struct kvm *kvm,
6093 struct kvm_memory_slot *old,
6094 const struct kvm_memory_slot *new,
6095 enum kvm_mr_change change)
6096 {
6097 int rc = 0;
6098
6099 if (kvm_is_ucontrol(kvm))
6100 return;
6101
6102 switch (change) {
6103 case KVM_MR_DELETE:
6104 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE,
6105 old->npages * PAGE_SIZE);
6106 break;
6107 case KVM_MR_MOVE:
6108 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE,
6109 old->npages * PAGE_SIZE);
6110 if (rc)
6111 break;
6112 fallthrough;
6113 case KVM_MR_CREATE:
6114 rc = gmap_map_segment(kvm->arch.gmap, new->userspace_addr,
6115 new->base_gfn * PAGE_SIZE,
6116 new->npages * PAGE_SIZE);
6117 break;
6118 case KVM_MR_FLAGS_ONLY:
6119 break;
6120 default:
6121 WARN(1, "Unknown KVM MR CHANGE: %d\n", change);
6122 }
6123 if (rc)
6124 pr_warn("failed to commit memory region\n");
6125 return;
6126 }
6127
nonhyp_mask(int i)6128 static inline unsigned long nonhyp_mask(int i)
6129 {
6130 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;
6131
6132 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
6133 }
6134
kvm_s390_init(void)6135 static int __init kvm_s390_init(void)
6136 {
6137 int i, r;
6138
6139 if (!sclp.has_sief2) {
6140 pr_info("SIE is not available\n");
6141 return -ENODEV;
6142 }
6143
6144 if (nested && hpage) {
6145 pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n");
6146 return -EINVAL;
6147 }
6148
6149 for (i = 0; i < 16; i++)
6150 kvm_s390_fac_base[i] |=
6151 stfle_fac_list[i] & nonhyp_mask(i);
6152
6153 r = __kvm_s390_init();
6154 if (r)
6155 return r;
6156
6157 r = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
6158 if (r) {
6159 __kvm_s390_exit();
6160 return r;
6161 }
6162 return 0;
6163 }
6164
kvm_s390_exit(void)6165 static void __exit kvm_s390_exit(void)
6166 {
6167 kvm_exit();
6168
6169 __kvm_s390_exit();
6170 }
6171
6172 module_init(kvm_s390_init);
6173 module_exit(kvm_s390_exit);
6174
6175 /*
6176 * Enable autoloading of the kvm module.
6177 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
6178 * since x86 takes a different approach.
6179 */
6180 #include <linux/miscdevice.h>
6181 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6182 MODULE_ALIAS("devname:kvm");
6183