1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4 *
5 * Authors:
6 * Atish Patra <atish.patra@wdc.com>
7 */
8
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/uaccess.h>
13 #include <clocksource/timer-riscv.h>
14 #include <asm/delay.h>
15 #include <asm/kvm_nacl.h>
16 #include <asm/kvm_vcpu_timer.h>
17
kvm_riscv_current_cycles(struct kvm_guest_timer * gt)18 static u64 kvm_riscv_current_cycles(struct kvm_guest_timer *gt)
19 {
20 return get_cycles64() + gt->time_delta;
21 }
22
kvm_riscv_delta_cycles2ns(u64 cycles,struct kvm_guest_timer * gt,struct kvm_vcpu_timer * t)23 static u64 kvm_riscv_delta_cycles2ns(u64 cycles,
24 struct kvm_guest_timer *gt,
25 struct kvm_vcpu_timer *t)
26 {
27 unsigned long flags;
28 u64 cycles_now, cycles_delta, delta_ns;
29
30 local_irq_save(flags);
31 cycles_now = kvm_riscv_current_cycles(gt);
32 if (cycles_now < cycles)
33 cycles_delta = cycles - cycles_now;
34 else
35 cycles_delta = 0;
36 delta_ns = (cycles_delta * gt->nsec_mult) >> gt->nsec_shift;
37 local_irq_restore(flags);
38
39 return delta_ns;
40 }
41
kvm_riscv_vcpu_hrtimer_expired(struct hrtimer * h)42 static enum hrtimer_restart kvm_riscv_vcpu_hrtimer_expired(struct hrtimer *h)
43 {
44 u64 delta_ns;
45 struct kvm_vcpu_timer *t = container_of(h, struct kvm_vcpu_timer, hrt);
46 struct kvm_vcpu *vcpu = container_of(t, struct kvm_vcpu, arch.timer);
47 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
48
49 if (kvm_riscv_current_cycles(gt) < t->next_cycles) {
50 delta_ns = kvm_riscv_delta_cycles2ns(t->next_cycles, gt, t);
51 hrtimer_forward_now(&t->hrt, ktime_set(0, delta_ns));
52 return HRTIMER_RESTART;
53 }
54
55 t->next_set = false;
56 kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_VS_TIMER);
57
58 return HRTIMER_NORESTART;
59 }
60
kvm_riscv_vcpu_timer_cancel(struct kvm_vcpu_timer * t)61 static int kvm_riscv_vcpu_timer_cancel(struct kvm_vcpu_timer *t)
62 {
63 if (!t->init_done || !t->next_set)
64 return -EINVAL;
65
66 hrtimer_cancel(&t->hrt);
67 t->next_set = false;
68
69 return 0;
70 }
71
kvm_riscv_vcpu_update_vstimecmp(struct kvm_vcpu * vcpu,u64 ncycles)72 static int kvm_riscv_vcpu_update_vstimecmp(struct kvm_vcpu *vcpu, u64 ncycles)
73 {
74 #if defined(CONFIG_32BIT)
75 ncsr_write(CSR_VSTIMECMP, ULONG_MAX);
76 ncsr_write(CSR_VSTIMECMPH, ncycles >> 32);
77 ncsr_write(CSR_VSTIMECMP, (u32)ncycles);
78 #else
79 ncsr_write(CSR_VSTIMECMP, ncycles);
80 #endif
81 return 0;
82 }
83
kvm_riscv_vcpu_update_hrtimer(struct kvm_vcpu * vcpu,u64 ncycles)84 static int kvm_riscv_vcpu_update_hrtimer(struct kvm_vcpu *vcpu, u64 ncycles)
85 {
86 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
87 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
88 u64 delta_ns;
89
90 if (!t->init_done)
91 return -EINVAL;
92
93 kvm_riscv_vcpu_unset_interrupt(vcpu, IRQ_VS_TIMER);
94
95 delta_ns = kvm_riscv_delta_cycles2ns(ncycles, gt, t);
96 t->next_cycles = ncycles;
97 hrtimer_start(&t->hrt, ktime_set(0, delta_ns), HRTIMER_MODE_REL);
98 t->next_set = true;
99
100 return 0;
101 }
102
kvm_riscv_vcpu_timer_next_event(struct kvm_vcpu * vcpu,u64 ncycles)103 int kvm_riscv_vcpu_timer_next_event(struct kvm_vcpu *vcpu, u64 ncycles)
104 {
105 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
106
107 return t->timer_next_event(vcpu, ncycles);
108 }
109
kvm_riscv_vcpu_vstimer_expired(struct hrtimer * h)110 static enum hrtimer_restart kvm_riscv_vcpu_vstimer_expired(struct hrtimer *h)
111 {
112 u64 delta_ns;
113 struct kvm_vcpu_timer *t = container_of(h, struct kvm_vcpu_timer, hrt);
114 struct kvm_vcpu *vcpu = container_of(t, struct kvm_vcpu, arch.timer);
115 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
116
117 if (kvm_riscv_current_cycles(gt) < t->next_cycles) {
118 delta_ns = kvm_riscv_delta_cycles2ns(t->next_cycles, gt, t);
119 hrtimer_forward_now(&t->hrt, ktime_set(0, delta_ns));
120 return HRTIMER_RESTART;
121 }
122
123 t->next_set = false;
124 kvm_vcpu_kick(vcpu);
125
126 return HRTIMER_NORESTART;
127 }
128
kvm_riscv_vcpu_timer_pending(struct kvm_vcpu * vcpu)129 bool kvm_riscv_vcpu_timer_pending(struct kvm_vcpu *vcpu)
130 {
131 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
132 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
133
134 if (!kvm_riscv_delta_cycles2ns(t->next_cycles, gt, t) ||
135 kvm_riscv_vcpu_has_interrupts(vcpu, 1UL << IRQ_VS_TIMER))
136 return true;
137 else
138 return false;
139 }
140
kvm_riscv_vcpu_timer_blocking(struct kvm_vcpu * vcpu)141 static void kvm_riscv_vcpu_timer_blocking(struct kvm_vcpu *vcpu)
142 {
143 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
144 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
145 u64 delta_ns;
146
147 if (!t->init_done)
148 return;
149
150 delta_ns = kvm_riscv_delta_cycles2ns(t->next_cycles, gt, t);
151 hrtimer_start(&t->hrt, ktime_set(0, delta_ns), HRTIMER_MODE_REL);
152 t->next_set = true;
153 }
154
kvm_riscv_vcpu_timer_unblocking(struct kvm_vcpu * vcpu)155 static void kvm_riscv_vcpu_timer_unblocking(struct kvm_vcpu *vcpu)
156 {
157 kvm_riscv_vcpu_timer_cancel(&vcpu->arch.timer);
158 }
159
kvm_riscv_vcpu_get_reg_timer(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)160 int kvm_riscv_vcpu_get_reg_timer(struct kvm_vcpu *vcpu,
161 const struct kvm_one_reg *reg)
162 {
163 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
164 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
165 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
166 unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
167 KVM_REG_SIZE_MASK |
168 KVM_REG_RISCV_TIMER);
169 u64 reg_val;
170
171 if (KVM_REG_SIZE(reg->id) != sizeof(u64))
172 return -EINVAL;
173 if (reg_num >= sizeof(struct kvm_riscv_timer) / sizeof(u64))
174 return -ENOENT;
175
176 switch (reg_num) {
177 case KVM_REG_RISCV_TIMER_REG(frequency):
178 reg_val = riscv_timebase;
179 break;
180 case KVM_REG_RISCV_TIMER_REG(time):
181 reg_val = kvm_riscv_current_cycles(gt);
182 break;
183 case KVM_REG_RISCV_TIMER_REG(compare):
184 reg_val = t->next_cycles;
185 break;
186 case KVM_REG_RISCV_TIMER_REG(state):
187 reg_val = (t->next_set) ? KVM_RISCV_TIMER_STATE_ON :
188 KVM_RISCV_TIMER_STATE_OFF;
189 break;
190 default:
191 return -ENOENT;
192 }
193
194 if (copy_to_user(uaddr, ®_val, KVM_REG_SIZE(reg->id)))
195 return -EFAULT;
196
197 return 0;
198 }
199
kvm_riscv_vcpu_set_reg_timer(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)200 int kvm_riscv_vcpu_set_reg_timer(struct kvm_vcpu *vcpu,
201 const struct kvm_one_reg *reg)
202 {
203 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
204 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
205 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
206 unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
207 KVM_REG_SIZE_MASK |
208 KVM_REG_RISCV_TIMER);
209 u64 reg_val;
210 int ret = 0;
211
212 if (KVM_REG_SIZE(reg->id) != sizeof(u64))
213 return -EINVAL;
214 if (reg_num >= sizeof(struct kvm_riscv_timer) / sizeof(u64))
215 return -ENOENT;
216
217 if (copy_from_user(®_val, uaddr, KVM_REG_SIZE(reg->id)))
218 return -EFAULT;
219
220 switch (reg_num) {
221 case KVM_REG_RISCV_TIMER_REG(frequency):
222 if (reg_val != riscv_timebase)
223 return -EINVAL;
224 break;
225 case KVM_REG_RISCV_TIMER_REG(time):
226 gt->time_delta = reg_val - get_cycles64();
227 break;
228 case KVM_REG_RISCV_TIMER_REG(compare):
229 t->next_cycles = reg_val;
230 break;
231 case KVM_REG_RISCV_TIMER_REG(state):
232 if (reg_val == KVM_RISCV_TIMER_STATE_ON)
233 ret = kvm_riscv_vcpu_timer_next_event(vcpu, reg_val);
234 else
235 ret = kvm_riscv_vcpu_timer_cancel(t);
236 break;
237 default:
238 ret = -ENOENT;
239 break;
240 }
241
242 return ret;
243 }
244
kvm_riscv_vcpu_timer_init(struct kvm_vcpu * vcpu)245 int kvm_riscv_vcpu_timer_init(struct kvm_vcpu *vcpu)
246 {
247 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
248
249 if (t->init_done)
250 return -EINVAL;
251
252 t->init_done = true;
253 t->next_set = false;
254
255 /* Enable sstc for every vcpu if available in hardware */
256 if (riscv_isa_extension_available(NULL, SSTC)) {
257 t->sstc_enabled = true;
258 hrtimer_setup(&t->hrt, kvm_riscv_vcpu_vstimer_expired, CLOCK_MONOTONIC,
259 HRTIMER_MODE_REL);
260 t->timer_next_event = kvm_riscv_vcpu_update_vstimecmp;
261 } else {
262 t->sstc_enabled = false;
263 hrtimer_setup(&t->hrt, kvm_riscv_vcpu_hrtimer_expired, CLOCK_MONOTONIC,
264 HRTIMER_MODE_REL);
265 t->timer_next_event = kvm_riscv_vcpu_update_hrtimer;
266 }
267
268 return 0;
269 }
270
kvm_riscv_vcpu_timer_deinit(struct kvm_vcpu * vcpu)271 int kvm_riscv_vcpu_timer_deinit(struct kvm_vcpu *vcpu)
272 {
273 int ret;
274
275 ret = kvm_riscv_vcpu_timer_cancel(&vcpu->arch.timer);
276 vcpu->arch.timer.init_done = false;
277
278 return ret;
279 }
280
kvm_riscv_vcpu_timer_reset(struct kvm_vcpu * vcpu)281 int kvm_riscv_vcpu_timer_reset(struct kvm_vcpu *vcpu)
282 {
283 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
284
285 t->next_cycles = -1ULL;
286 return kvm_riscv_vcpu_timer_cancel(&vcpu->arch.timer);
287 }
288
kvm_riscv_vcpu_update_timedelta(struct kvm_vcpu * vcpu)289 static void kvm_riscv_vcpu_update_timedelta(struct kvm_vcpu *vcpu)
290 {
291 struct kvm_guest_timer *gt = &vcpu->kvm->arch.timer;
292
293 #if defined(CONFIG_32BIT)
294 ncsr_write(CSR_HTIMEDELTA, (u32)(gt->time_delta));
295 ncsr_write(CSR_HTIMEDELTAH, (u32)(gt->time_delta >> 32));
296 #else
297 ncsr_write(CSR_HTIMEDELTA, gt->time_delta);
298 #endif
299 }
300
kvm_riscv_vcpu_timer_restore(struct kvm_vcpu * vcpu)301 void kvm_riscv_vcpu_timer_restore(struct kvm_vcpu *vcpu)
302 {
303 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
304
305 kvm_riscv_vcpu_update_timedelta(vcpu);
306
307 if (!t->sstc_enabled)
308 return;
309
310 #if defined(CONFIG_32BIT)
311 ncsr_write(CSR_VSTIMECMP, ULONG_MAX);
312 ncsr_write(CSR_VSTIMECMPH, (u32)(t->next_cycles >> 32));
313 ncsr_write(CSR_VSTIMECMP, (u32)(t->next_cycles));
314 #else
315 ncsr_write(CSR_VSTIMECMP, t->next_cycles);
316 #endif
317
318 /* timer should be enabled for the remaining operations */
319 if (unlikely(!t->init_done))
320 return;
321
322 kvm_riscv_vcpu_timer_unblocking(vcpu);
323 }
324
kvm_riscv_vcpu_timer_sync(struct kvm_vcpu * vcpu)325 void kvm_riscv_vcpu_timer_sync(struct kvm_vcpu *vcpu)
326 {
327 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
328
329 if (!t->sstc_enabled)
330 return;
331
332 #if defined(CONFIG_32BIT)
333 t->next_cycles = ncsr_read(CSR_VSTIMECMP);
334 t->next_cycles |= (u64)ncsr_read(CSR_VSTIMECMPH) << 32;
335 #else
336 t->next_cycles = ncsr_read(CSR_VSTIMECMP);
337 #endif
338 }
339
kvm_riscv_vcpu_timer_save(struct kvm_vcpu * vcpu)340 void kvm_riscv_vcpu_timer_save(struct kvm_vcpu *vcpu)
341 {
342 struct kvm_vcpu_timer *t = &vcpu->arch.timer;
343
344 if (!t->sstc_enabled)
345 return;
346
347 /*
348 * The vstimecmp CSRs are saved by kvm_riscv_vcpu_timer_sync()
349 * upon every VM exit so no need to save here.
350 *
351 * If VS-timer expires when no VCPU running on a host CPU then
352 * WFI executed by such host CPU will be effective NOP resulting
353 * in no power savings. This is because as-per RISC-V Privileged
354 * specificaiton: "WFI is also required to resume execution for
355 * locally enabled interrupts pending at any privilege level,
356 * regardless of the global interrupt enable at each privilege
357 * level."
358 *
359 * To address the above issue, vstimecmp CSR must be set to -1UL
360 * over here when VCPU is scheduled-out or exits to user space.
361 */
362
363 csr_write(CSR_VSTIMECMP, -1UL);
364 #if defined(CONFIG_32BIT)
365 csr_write(CSR_VSTIMECMPH, -1UL);
366 #endif
367
368 /* timer should be enabled for the remaining operations */
369 if (unlikely(!t->init_done))
370 return;
371
372 if (kvm_vcpu_is_blocking(vcpu))
373 kvm_riscv_vcpu_timer_blocking(vcpu);
374 }
375
kvm_riscv_guest_timer_init(struct kvm * kvm)376 void kvm_riscv_guest_timer_init(struct kvm *kvm)
377 {
378 struct kvm_guest_timer *gt = &kvm->arch.timer;
379
380 riscv_cs_get_mult_shift(>->nsec_mult, >->nsec_shift);
381 gt->time_delta = -get_cycles64();
382 }
383