xref: /linux/arch/riscv/kvm/vcpu.c (revision 43db1111073049220381944af4a3b8a5400eda71)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4  *
5  * Authors:
6  *     Anup Patel <anup.patel@wdc.com>
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/entry-kvm.h>
11 #include <linux/errno.h>
12 #include <linux/err.h>
13 #include <linux/kdebug.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sched/signal.h>
18 #include <linux/fs.h>
19 #include <linux/kvm_host.h>
20 #include <asm/cacheflush.h>
21 #include <asm/kvm_nacl.h>
22 #include <asm/kvm_vcpu_vector.h>
23 
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
26 
27 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
28 	KVM_GENERIC_VCPU_STATS(),
29 	STATS_DESC_COUNTER(VCPU, ecall_exit_stat),
30 	STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
31 	STATS_DESC_COUNTER(VCPU, wrs_exit_stat),
32 	STATS_DESC_COUNTER(VCPU, mmio_exit_user),
33 	STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
34 	STATS_DESC_COUNTER(VCPU, csr_exit_user),
35 	STATS_DESC_COUNTER(VCPU, csr_exit_kernel),
36 	STATS_DESC_COUNTER(VCPU, signal_exits),
37 	STATS_DESC_COUNTER(VCPU, exits),
38 	STATS_DESC_COUNTER(VCPU, instr_illegal_exits),
39 	STATS_DESC_COUNTER(VCPU, load_misaligned_exits),
40 	STATS_DESC_COUNTER(VCPU, store_misaligned_exits),
41 	STATS_DESC_COUNTER(VCPU, load_access_exits),
42 	STATS_DESC_COUNTER(VCPU, store_access_exits),
43 };
44 
45 const struct kvm_stats_header kvm_vcpu_stats_header = {
46 	.name_size = KVM_STATS_NAME_SIZE,
47 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
48 	.id_offset = sizeof(struct kvm_stats_header),
49 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
50 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
51 		       sizeof(kvm_vcpu_stats_desc),
52 };
53 
kvm_riscv_vcpu_context_reset(struct kvm_vcpu * vcpu,bool kvm_sbi_reset)54 static void kvm_riscv_vcpu_context_reset(struct kvm_vcpu *vcpu,
55 					 bool kvm_sbi_reset)
56 {
57 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
58 	struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
59 	void *vector_datap = cntx->vector.datap;
60 
61 	memset(cntx, 0, sizeof(*cntx));
62 	memset(csr, 0, sizeof(*csr));
63 	memset(&vcpu->arch.smstateen_csr, 0, sizeof(vcpu->arch.smstateen_csr));
64 
65 	/* Restore datap as it's not a part of the guest context. */
66 	cntx->vector.datap = vector_datap;
67 
68 	if (kvm_sbi_reset)
69 		kvm_riscv_vcpu_sbi_load_reset_state(vcpu);
70 
71 	/* Setup reset state of shadow SSTATUS and HSTATUS CSRs */
72 	cntx->sstatus = SR_SPP | SR_SPIE;
73 
74 	cntx->hstatus |= HSTATUS_VTW;
75 	cntx->hstatus |= HSTATUS_SPVP;
76 	cntx->hstatus |= HSTATUS_SPV;
77 }
78 
kvm_riscv_reset_vcpu(struct kvm_vcpu * vcpu,bool kvm_sbi_reset)79 static void kvm_riscv_reset_vcpu(struct kvm_vcpu *vcpu, bool kvm_sbi_reset)
80 {
81 	bool loaded;
82 
83 	/**
84 	 * The preemption should be disabled here because it races with
85 	 * kvm_sched_out/kvm_sched_in(called from preempt notifiers) which
86 	 * also calls vcpu_load/put.
87 	 */
88 	get_cpu();
89 	loaded = (vcpu->cpu != -1);
90 	if (loaded)
91 		kvm_arch_vcpu_put(vcpu);
92 
93 	vcpu->arch.last_exit_cpu = -1;
94 
95 	kvm_riscv_vcpu_context_reset(vcpu, kvm_sbi_reset);
96 
97 	kvm_riscv_vcpu_fp_reset(vcpu);
98 
99 	kvm_riscv_vcpu_vector_reset(vcpu);
100 
101 	kvm_riscv_vcpu_timer_reset(vcpu);
102 
103 	kvm_riscv_vcpu_aia_reset(vcpu);
104 
105 	bitmap_zero(vcpu->arch.irqs_pending, KVM_RISCV_VCPU_NR_IRQS);
106 	bitmap_zero(vcpu->arch.irqs_pending_mask, KVM_RISCV_VCPU_NR_IRQS);
107 
108 	kvm_riscv_vcpu_pmu_reset(vcpu);
109 
110 	vcpu->arch.hfence_head = 0;
111 	vcpu->arch.hfence_tail = 0;
112 	memset(vcpu->arch.hfence_queue, 0, sizeof(vcpu->arch.hfence_queue));
113 
114 	kvm_riscv_vcpu_sbi_sta_reset(vcpu);
115 
116 	/* Reset the guest CSRs for hotplug usecase */
117 	if (loaded)
118 		kvm_arch_vcpu_load(vcpu, smp_processor_id());
119 	put_cpu();
120 }
121 
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)122 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
123 {
124 	return 0;
125 }
126 
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)127 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
128 {
129 	int rc;
130 
131 	spin_lock_init(&vcpu->arch.mp_state_lock);
132 
133 	/* Mark this VCPU never ran */
134 	vcpu->arch.ran_atleast_once = false;
135 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
136 	bitmap_zero(vcpu->arch.isa, RISCV_ISA_EXT_MAX);
137 
138 	/* Setup ISA features available to VCPU */
139 	kvm_riscv_vcpu_setup_isa(vcpu);
140 
141 	/* Setup vendor, arch, and implementation details */
142 	vcpu->arch.mvendorid = sbi_get_mvendorid();
143 	vcpu->arch.marchid = sbi_get_marchid();
144 	vcpu->arch.mimpid = sbi_get_mimpid();
145 
146 	/* Setup VCPU hfence queue */
147 	spin_lock_init(&vcpu->arch.hfence_lock);
148 
149 	spin_lock_init(&vcpu->arch.reset_state.lock);
150 
151 	if (kvm_riscv_vcpu_alloc_vector_context(vcpu))
152 		return -ENOMEM;
153 
154 	/* Setup VCPU timer */
155 	kvm_riscv_vcpu_timer_init(vcpu);
156 
157 	/* setup performance monitoring */
158 	kvm_riscv_vcpu_pmu_init(vcpu);
159 
160 	/* Setup VCPU AIA */
161 	rc = kvm_riscv_vcpu_aia_init(vcpu);
162 	if (rc)
163 		return rc;
164 
165 	/*
166 	 * Setup SBI extensions
167 	 * NOTE: This must be the last thing to be initialized.
168 	 */
169 	kvm_riscv_vcpu_sbi_init(vcpu);
170 
171 	/* Reset VCPU */
172 	kvm_riscv_reset_vcpu(vcpu, false);
173 
174 	return 0;
175 }
176 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)177 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
178 {
179 	/**
180 	 * vcpu with id 0 is the designated boot cpu.
181 	 * Keep all vcpus with non-zero id in power-off state so that
182 	 * they can be brought up using SBI HSM extension.
183 	 */
184 	if (vcpu->vcpu_idx != 0)
185 		kvm_riscv_vcpu_power_off(vcpu);
186 }
187 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)188 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
189 {
190 	/* Cleanup VCPU AIA context */
191 	kvm_riscv_vcpu_aia_deinit(vcpu);
192 
193 	/* Cleanup VCPU timer */
194 	kvm_riscv_vcpu_timer_deinit(vcpu);
195 
196 	kvm_riscv_vcpu_pmu_deinit(vcpu);
197 
198 	/* Free unused pages pre-allocated for G-stage page table mappings */
199 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
200 
201 	/* Free vector context space for host and guest kernel */
202 	kvm_riscv_vcpu_free_vector_context(vcpu);
203 }
204 
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)205 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
206 {
207 	return kvm_riscv_vcpu_timer_pending(vcpu);
208 }
209 
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)210 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
211 {
212 	kvm_riscv_aia_wakeon_hgei(vcpu, true);
213 }
214 
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)215 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
216 {
217 	kvm_riscv_aia_wakeon_hgei(vcpu, false);
218 }
219 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)220 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
221 {
222 	return (kvm_riscv_vcpu_has_interrupts(vcpu, -1UL) &&
223 		!kvm_riscv_vcpu_stopped(vcpu) && !vcpu->arch.pause);
224 }
225 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)226 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
227 {
228 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
229 }
230 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)231 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
232 {
233 	return (vcpu->arch.guest_context.sstatus & SR_SPP) ? true : false;
234 }
235 
236 #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)237 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
238 {
239 	return vcpu->arch.guest_context.sepc;
240 }
241 #endif
242 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)243 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
244 {
245 	return VM_FAULT_SIGBUS;
246 }
247 
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)248 long kvm_arch_vcpu_async_ioctl(struct file *filp,
249 			       unsigned int ioctl, unsigned long arg)
250 {
251 	struct kvm_vcpu *vcpu = filp->private_data;
252 	void __user *argp = (void __user *)arg;
253 
254 	if (ioctl == KVM_INTERRUPT) {
255 		struct kvm_interrupt irq;
256 
257 		if (copy_from_user(&irq, argp, sizeof(irq)))
258 			return -EFAULT;
259 
260 		if (irq.irq == KVM_INTERRUPT_SET)
261 			return kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_VS_EXT);
262 		else
263 			return kvm_riscv_vcpu_unset_interrupt(vcpu, IRQ_VS_EXT);
264 	}
265 
266 	return -ENOIOCTLCMD;
267 }
268 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)269 long kvm_arch_vcpu_ioctl(struct file *filp,
270 			 unsigned int ioctl, unsigned long arg)
271 {
272 	struct kvm_vcpu *vcpu = filp->private_data;
273 	void __user *argp = (void __user *)arg;
274 	long r = -EINVAL;
275 
276 	switch (ioctl) {
277 	case KVM_SET_ONE_REG:
278 	case KVM_GET_ONE_REG: {
279 		struct kvm_one_reg reg;
280 
281 		r = -EFAULT;
282 		if (copy_from_user(&reg, argp, sizeof(reg)))
283 			break;
284 
285 		if (ioctl == KVM_SET_ONE_REG)
286 			r = kvm_riscv_vcpu_set_reg(vcpu, &reg);
287 		else
288 			r = kvm_riscv_vcpu_get_reg(vcpu, &reg);
289 		break;
290 	}
291 	case KVM_GET_REG_LIST: {
292 		struct kvm_reg_list __user *user_list = argp;
293 		struct kvm_reg_list reg_list;
294 		unsigned int n;
295 
296 		r = -EFAULT;
297 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
298 			break;
299 		n = reg_list.n;
300 		reg_list.n = kvm_riscv_vcpu_num_regs(vcpu);
301 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
302 			break;
303 		r = -E2BIG;
304 		if (n < reg_list.n)
305 			break;
306 		r = kvm_riscv_vcpu_copy_reg_indices(vcpu, user_list->reg);
307 		break;
308 	}
309 	default:
310 		break;
311 	}
312 
313 	return r;
314 }
315 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)316 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
317 				  struct kvm_sregs *sregs)
318 {
319 	return -EINVAL;
320 }
321 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)322 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
323 				  struct kvm_sregs *sregs)
324 {
325 	return -EINVAL;
326 }
327 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)328 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
329 {
330 	return -EINVAL;
331 }
332 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)333 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
334 {
335 	return -EINVAL;
336 }
337 
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)338 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
339 				  struct kvm_translation *tr)
340 {
341 	return -EINVAL;
342 }
343 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)344 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
345 {
346 	return -EINVAL;
347 }
348 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)349 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
350 {
351 	return -EINVAL;
352 }
353 
kvm_riscv_vcpu_flush_interrupts(struct kvm_vcpu * vcpu)354 void kvm_riscv_vcpu_flush_interrupts(struct kvm_vcpu *vcpu)
355 {
356 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
357 	unsigned long mask, val;
358 
359 	if (READ_ONCE(vcpu->arch.irqs_pending_mask[0])) {
360 		mask = xchg_acquire(&vcpu->arch.irqs_pending_mask[0], 0);
361 		val = READ_ONCE(vcpu->arch.irqs_pending[0]) & mask;
362 
363 		csr->hvip &= ~mask;
364 		csr->hvip |= val;
365 	}
366 
367 	/* Flush AIA high interrupts */
368 	kvm_riscv_vcpu_aia_flush_interrupts(vcpu);
369 }
370 
kvm_riscv_vcpu_sync_interrupts(struct kvm_vcpu * vcpu)371 void kvm_riscv_vcpu_sync_interrupts(struct kvm_vcpu *vcpu)
372 {
373 	unsigned long hvip;
374 	struct kvm_vcpu_arch *v = &vcpu->arch;
375 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
376 
377 	/* Read current HVIP and VSIE CSRs */
378 	csr->vsie = ncsr_read(CSR_VSIE);
379 
380 	/* Sync-up HVIP.VSSIP bit changes does by Guest */
381 	hvip = ncsr_read(CSR_HVIP);
382 	if ((csr->hvip ^ hvip) & (1UL << IRQ_VS_SOFT)) {
383 		if (hvip & (1UL << IRQ_VS_SOFT)) {
384 			if (!test_and_set_bit(IRQ_VS_SOFT,
385 					      v->irqs_pending_mask))
386 				set_bit(IRQ_VS_SOFT, v->irqs_pending);
387 		} else {
388 			if (!test_and_set_bit(IRQ_VS_SOFT,
389 					      v->irqs_pending_mask))
390 				clear_bit(IRQ_VS_SOFT, v->irqs_pending);
391 		}
392 	}
393 
394 	/* Sync up the HVIP.LCOFIP bit changes (only clear) by the guest */
395 	if ((csr->hvip ^ hvip) & (1UL << IRQ_PMU_OVF)) {
396 		if (!(hvip & (1UL << IRQ_PMU_OVF)) &&
397 		    !test_and_set_bit(IRQ_PMU_OVF, v->irqs_pending_mask))
398 			clear_bit(IRQ_PMU_OVF, v->irqs_pending);
399 	}
400 
401 	/* Sync-up AIA high interrupts */
402 	kvm_riscv_vcpu_aia_sync_interrupts(vcpu);
403 
404 	/* Sync-up timer CSRs */
405 	kvm_riscv_vcpu_timer_sync(vcpu);
406 }
407 
kvm_riscv_vcpu_set_interrupt(struct kvm_vcpu * vcpu,unsigned int irq)408 int kvm_riscv_vcpu_set_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
409 {
410 	/*
411 	 * We only allow VS-mode software, timer, and external
412 	 * interrupts when irq is one of the local interrupts
413 	 * defined by RISC-V privilege specification.
414 	 */
415 	if (irq < IRQ_LOCAL_MAX &&
416 	    irq != IRQ_VS_SOFT &&
417 	    irq != IRQ_VS_TIMER &&
418 	    irq != IRQ_VS_EXT &&
419 	    irq != IRQ_PMU_OVF)
420 		return -EINVAL;
421 
422 	set_bit(irq, vcpu->arch.irqs_pending);
423 	smp_mb__before_atomic();
424 	set_bit(irq, vcpu->arch.irqs_pending_mask);
425 
426 	kvm_vcpu_kick(vcpu);
427 
428 	return 0;
429 }
430 
kvm_riscv_vcpu_unset_interrupt(struct kvm_vcpu * vcpu,unsigned int irq)431 int kvm_riscv_vcpu_unset_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
432 {
433 	/*
434 	 * We only allow VS-mode software, timer, counter overflow and external
435 	 * interrupts when irq is one of the local interrupts
436 	 * defined by RISC-V privilege specification.
437 	 */
438 	if (irq < IRQ_LOCAL_MAX &&
439 	    irq != IRQ_VS_SOFT &&
440 	    irq != IRQ_VS_TIMER &&
441 	    irq != IRQ_VS_EXT &&
442 	    irq != IRQ_PMU_OVF)
443 		return -EINVAL;
444 
445 	clear_bit(irq, vcpu->arch.irqs_pending);
446 	smp_mb__before_atomic();
447 	set_bit(irq, vcpu->arch.irqs_pending_mask);
448 
449 	return 0;
450 }
451 
kvm_riscv_vcpu_has_interrupts(struct kvm_vcpu * vcpu,u64 mask)452 bool kvm_riscv_vcpu_has_interrupts(struct kvm_vcpu *vcpu, u64 mask)
453 {
454 	unsigned long ie;
455 
456 	ie = ((vcpu->arch.guest_csr.vsie & VSIP_VALID_MASK)
457 		<< VSIP_TO_HVIP_SHIFT) & (unsigned long)mask;
458 	ie |= vcpu->arch.guest_csr.vsie & ~IRQ_LOCAL_MASK &
459 		(unsigned long)mask;
460 	if (READ_ONCE(vcpu->arch.irqs_pending[0]) & ie)
461 		return true;
462 
463 	/* Check AIA high interrupts */
464 	return kvm_riscv_vcpu_aia_has_interrupts(vcpu, mask);
465 }
466 
__kvm_riscv_vcpu_power_off(struct kvm_vcpu * vcpu)467 void __kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu)
468 {
469 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
470 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
471 	kvm_vcpu_kick(vcpu);
472 }
473 
kvm_riscv_vcpu_power_off(struct kvm_vcpu * vcpu)474 void kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu)
475 {
476 	spin_lock(&vcpu->arch.mp_state_lock);
477 	__kvm_riscv_vcpu_power_off(vcpu);
478 	spin_unlock(&vcpu->arch.mp_state_lock);
479 }
480 
__kvm_riscv_vcpu_power_on(struct kvm_vcpu * vcpu)481 void __kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu)
482 {
483 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
484 	kvm_vcpu_wake_up(vcpu);
485 }
486 
kvm_riscv_vcpu_power_on(struct kvm_vcpu * vcpu)487 void kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu)
488 {
489 	spin_lock(&vcpu->arch.mp_state_lock);
490 	__kvm_riscv_vcpu_power_on(vcpu);
491 	spin_unlock(&vcpu->arch.mp_state_lock);
492 }
493 
kvm_riscv_vcpu_stopped(struct kvm_vcpu * vcpu)494 bool kvm_riscv_vcpu_stopped(struct kvm_vcpu *vcpu)
495 {
496 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
497 }
498 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)499 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
500 				    struct kvm_mp_state *mp_state)
501 {
502 	*mp_state = READ_ONCE(vcpu->arch.mp_state);
503 
504 	return 0;
505 }
506 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)507 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
508 				    struct kvm_mp_state *mp_state)
509 {
510 	int ret = 0;
511 
512 	spin_lock(&vcpu->arch.mp_state_lock);
513 
514 	switch (mp_state->mp_state) {
515 	case KVM_MP_STATE_RUNNABLE:
516 		WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
517 		break;
518 	case KVM_MP_STATE_STOPPED:
519 		__kvm_riscv_vcpu_power_off(vcpu);
520 		break;
521 	case KVM_MP_STATE_INIT_RECEIVED:
522 		if (vcpu->kvm->arch.mp_state_reset)
523 			kvm_riscv_reset_vcpu(vcpu, false);
524 		else
525 			ret = -EINVAL;
526 		break;
527 	default:
528 		ret = -EINVAL;
529 	}
530 
531 	spin_unlock(&vcpu->arch.mp_state_lock);
532 
533 	return ret;
534 }
535 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)536 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
537 					struct kvm_guest_debug *dbg)
538 {
539 	if (dbg->control & KVM_GUESTDBG_ENABLE) {
540 		vcpu->guest_debug = dbg->control;
541 		vcpu->arch.cfg.hedeleg &= ~BIT(EXC_BREAKPOINT);
542 	} else {
543 		vcpu->guest_debug = 0;
544 		vcpu->arch.cfg.hedeleg |= BIT(EXC_BREAKPOINT);
545 	}
546 
547 	return 0;
548 }
549 
kvm_riscv_vcpu_setup_config(struct kvm_vcpu * vcpu)550 static void kvm_riscv_vcpu_setup_config(struct kvm_vcpu *vcpu)
551 {
552 	const unsigned long *isa = vcpu->arch.isa;
553 	struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
554 
555 	if (riscv_isa_extension_available(isa, SVPBMT))
556 		cfg->henvcfg |= ENVCFG_PBMTE;
557 
558 	if (riscv_isa_extension_available(isa, SSTC))
559 		cfg->henvcfg |= ENVCFG_STCE;
560 
561 	if (riscv_isa_extension_available(isa, ZICBOM))
562 		cfg->henvcfg |= (ENVCFG_CBIE | ENVCFG_CBCFE);
563 
564 	if (riscv_isa_extension_available(isa, ZICBOZ))
565 		cfg->henvcfg |= ENVCFG_CBZE;
566 
567 	if (riscv_isa_extension_available(isa, SVADU) &&
568 	    !riscv_isa_extension_available(isa, SVADE))
569 		cfg->henvcfg |= ENVCFG_ADUE;
570 
571 	if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) {
572 		cfg->hstateen0 |= SMSTATEEN0_HSENVCFG;
573 		if (riscv_isa_extension_available(isa, SSAIA))
574 			cfg->hstateen0 |= SMSTATEEN0_AIA_IMSIC |
575 					  SMSTATEEN0_AIA |
576 					  SMSTATEEN0_AIA_ISEL;
577 		if (riscv_isa_extension_available(isa, SMSTATEEN))
578 			cfg->hstateen0 |= SMSTATEEN0_SSTATEEN0;
579 	}
580 
581 	cfg->hedeleg = KVM_HEDELEG_DEFAULT;
582 	if (vcpu->guest_debug)
583 		cfg->hedeleg &= ~BIT(EXC_BREAKPOINT);
584 }
585 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)586 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
587 {
588 	void *nsh;
589 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
590 	struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
591 
592 	if (kvm_riscv_nacl_sync_csr_available()) {
593 		nsh = nacl_shmem();
594 		nacl_csr_write(nsh, CSR_VSSTATUS, csr->vsstatus);
595 		nacl_csr_write(nsh, CSR_VSIE, csr->vsie);
596 		nacl_csr_write(nsh, CSR_VSTVEC, csr->vstvec);
597 		nacl_csr_write(nsh, CSR_VSSCRATCH, csr->vsscratch);
598 		nacl_csr_write(nsh, CSR_VSEPC, csr->vsepc);
599 		nacl_csr_write(nsh, CSR_VSCAUSE, csr->vscause);
600 		nacl_csr_write(nsh, CSR_VSTVAL, csr->vstval);
601 		nacl_csr_write(nsh, CSR_HEDELEG, cfg->hedeleg);
602 		nacl_csr_write(nsh, CSR_HVIP, csr->hvip);
603 		nacl_csr_write(nsh, CSR_VSATP, csr->vsatp);
604 		nacl_csr_write(nsh, CSR_HENVCFG, cfg->henvcfg);
605 		if (IS_ENABLED(CONFIG_32BIT))
606 			nacl_csr_write(nsh, CSR_HENVCFGH, cfg->henvcfg >> 32);
607 		if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) {
608 			nacl_csr_write(nsh, CSR_HSTATEEN0, cfg->hstateen0);
609 			if (IS_ENABLED(CONFIG_32BIT))
610 				nacl_csr_write(nsh, CSR_HSTATEEN0H, cfg->hstateen0 >> 32);
611 		}
612 	} else {
613 		csr_write(CSR_VSSTATUS, csr->vsstatus);
614 		csr_write(CSR_VSIE, csr->vsie);
615 		csr_write(CSR_VSTVEC, csr->vstvec);
616 		csr_write(CSR_VSSCRATCH, csr->vsscratch);
617 		csr_write(CSR_VSEPC, csr->vsepc);
618 		csr_write(CSR_VSCAUSE, csr->vscause);
619 		csr_write(CSR_VSTVAL, csr->vstval);
620 		csr_write(CSR_HEDELEG, cfg->hedeleg);
621 		csr_write(CSR_HVIP, csr->hvip);
622 		csr_write(CSR_VSATP, csr->vsatp);
623 		csr_write(CSR_HENVCFG, cfg->henvcfg);
624 		if (IS_ENABLED(CONFIG_32BIT))
625 			csr_write(CSR_HENVCFGH, cfg->henvcfg >> 32);
626 		if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) {
627 			csr_write(CSR_HSTATEEN0, cfg->hstateen0);
628 			if (IS_ENABLED(CONFIG_32BIT))
629 				csr_write(CSR_HSTATEEN0H, cfg->hstateen0 >> 32);
630 		}
631 	}
632 
633 	kvm_riscv_gstage_update_hgatp(vcpu);
634 
635 	kvm_riscv_vcpu_timer_restore(vcpu);
636 
637 	kvm_riscv_vcpu_host_fp_save(&vcpu->arch.host_context);
638 	kvm_riscv_vcpu_guest_fp_restore(&vcpu->arch.guest_context,
639 					vcpu->arch.isa);
640 	kvm_riscv_vcpu_host_vector_save(&vcpu->arch.host_context);
641 	kvm_riscv_vcpu_guest_vector_restore(&vcpu->arch.guest_context,
642 					    vcpu->arch.isa);
643 
644 	kvm_riscv_vcpu_aia_load(vcpu, cpu);
645 
646 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
647 
648 	vcpu->cpu = cpu;
649 }
650 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)651 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
652 {
653 	void *nsh;
654 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
655 
656 	vcpu->cpu = -1;
657 
658 	kvm_riscv_vcpu_aia_put(vcpu);
659 
660 	kvm_riscv_vcpu_guest_fp_save(&vcpu->arch.guest_context,
661 				     vcpu->arch.isa);
662 	kvm_riscv_vcpu_host_fp_restore(&vcpu->arch.host_context);
663 
664 	kvm_riscv_vcpu_timer_save(vcpu);
665 	kvm_riscv_vcpu_guest_vector_save(&vcpu->arch.guest_context,
666 					 vcpu->arch.isa);
667 	kvm_riscv_vcpu_host_vector_restore(&vcpu->arch.host_context);
668 
669 	if (kvm_riscv_nacl_available()) {
670 		nsh = nacl_shmem();
671 		csr->vsstatus = nacl_csr_read(nsh, CSR_VSSTATUS);
672 		csr->vsie = nacl_csr_read(nsh, CSR_VSIE);
673 		csr->vstvec = nacl_csr_read(nsh, CSR_VSTVEC);
674 		csr->vsscratch = nacl_csr_read(nsh, CSR_VSSCRATCH);
675 		csr->vsepc = nacl_csr_read(nsh, CSR_VSEPC);
676 		csr->vscause = nacl_csr_read(nsh, CSR_VSCAUSE);
677 		csr->vstval = nacl_csr_read(nsh, CSR_VSTVAL);
678 		csr->hvip = nacl_csr_read(nsh, CSR_HVIP);
679 		csr->vsatp = nacl_csr_read(nsh, CSR_VSATP);
680 	} else {
681 		csr->vsstatus = csr_read(CSR_VSSTATUS);
682 		csr->vsie = csr_read(CSR_VSIE);
683 		csr->vstvec = csr_read(CSR_VSTVEC);
684 		csr->vsscratch = csr_read(CSR_VSSCRATCH);
685 		csr->vsepc = csr_read(CSR_VSEPC);
686 		csr->vscause = csr_read(CSR_VSCAUSE);
687 		csr->vstval = csr_read(CSR_VSTVAL);
688 		csr->hvip = csr_read(CSR_HVIP);
689 		csr->vsatp = csr_read(CSR_VSATP);
690 	}
691 }
692 
kvm_riscv_check_vcpu_requests(struct kvm_vcpu * vcpu)693 static void kvm_riscv_check_vcpu_requests(struct kvm_vcpu *vcpu)
694 {
695 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
696 
697 	if (kvm_request_pending(vcpu)) {
698 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) {
699 			kvm_vcpu_srcu_read_unlock(vcpu);
700 			rcuwait_wait_event(wait,
701 				(!kvm_riscv_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
702 				TASK_INTERRUPTIBLE);
703 			kvm_vcpu_srcu_read_lock(vcpu);
704 
705 			if (kvm_riscv_vcpu_stopped(vcpu) || vcpu->arch.pause) {
706 				/*
707 				 * Awaken to handle a signal, request to
708 				 * sleep again later.
709 				 */
710 				kvm_make_request(KVM_REQ_SLEEP, vcpu);
711 			}
712 		}
713 
714 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
715 			kvm_riscv_reset_vcpu(vcpu, true);
716 
717 		if (kvm_check_request(KVM_REQ_UPDATE_HGATP, vcpu))
718 			kvm_riscv_gstage_update_hgatp(vcpu);
719 
720 		if (kvm_check_request(KVM_REQ_FENCE_I, vcpu))
721 			kvm_riscv_fence_i_process(vcpu);
722 
723 		/*
724 		 * The generic KVM_REQ_TLB_FLUSH is same as
725 		 * KVM_REQ_HFENCE_GVMA_VMID_ALL
726 		 */
727 		if (kvm_check_request(KVM_REQ_HFENCE_GVMA_VMID_ALL, vcpu))
728 			kvm_riscv_hfence_gvma_vmid_all_process(vcpu);
729 
730 		if (kvm_check_request(KVM_REQ_HFENCE_VVMA_ALL, vcpu))
731 			kvm_riscv_hfence_vvma_all_process(vcpu);
732 
733 		if (kvm_check_request(KVM_REQ_HFENCE, vcpu))
734 			kvm_riscv_hfence_process(vcpu);
735 
736 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
737 			kvm_riscv_vcpu_record_steal_time(vcpu);
738 	}
739 }
740 
kvm_riscv_update_hvip(struct kvm_vcpu * vcpu)741 static void kvm_riscv_update_hvip(struct kvm_vcpu *vcpu)
742 {
743 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
744 
745 	ncsr_write(CSR_HVIP, csr->hvip);
746 	kvm_riscv_vcpu_aia_update_hvip(vcpu);
747 }
748 
kvm_riscv_vcpu_swap_in_guest_state(struct kvm_vcpu * vcpu)749 static __always_inline void kvm_riscv_vcpu_swap_in_guest_state(struct kvm_vcpu *vcpu)
750 {
751 	struct kvm_vcpu_smstateen_csr *smcsr = &vcpu->arch.smstateen_csr;
752 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
753 	struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
754 
755 	vcpu->arch.host_scounteren = csr_swap(CSR_SCOUNTEREN, csr->scounteren);
756 	vcpu->arch.host_senvcfg = csr_swap(CSR_SENVCFG, csr->senvcfg);
757 	if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN) &&
758 	    (cfg->hstateen0 & SMSTATEEN0_SSTATEEN0))
759 		vcpu->arch.host_sstateen0 = csr_swap(CSR_SSTATEEN0,
760 						     smcsr->sstateen0);
761 }
762 
kvm_riscv_vcpu_swap_in_host_state(struct kvm_vcpu * vcpu)763 static __always_inline void kvm_riscv_vcpu_swap_in_host_state(struct kvm_vcpu *vcpu)
764 {
765 	struct kvm_vcpu_smstateen_csr *smcsr = &vcpu->arch.smstateen_csr;
766 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
767 	struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
768 
769 	csr->scounteren = csr_swap(CSR_SCOUNTEREN, vcpu->arch.host_scounteren);
770 	csr->senvcfg = csr_swap(CSR_SENVCFG, vcpu->arch.host_senvcfg);
771 	if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN) &&
772 	    (cfg->hstateen0 & SMSTATEEN0_SSTATEEN0))
773 		smcsr->sstateen0 = csr_swap(CSR_SSTATEEN0,
774 					    vcpu->arch.host_sstateen0);
775 }
776 
777 /*
778  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
779  * the vCPU is running.
780  *
781  * This must be noinstr as instrumentation may make use of RCU, and this is not
782  * safe during the EQS.
783  */
kvm_riscv_vcpu_enter_exit(struct kvm_vcpu * vcpu,struct kvm_cpu_trap * trap)784 static void noinstr kvm_riscv_vcpu_enter_exit(struct kvm_vcpu *vcpu,
785 					      struct kvm_cpu_trap *trap)
786 {
787 	void *nsh;
788 	struct kvm_cpu_context *gcntx = &vcpu->arch.guest_context;
789 	struct kvm_cpu_context *hcntx = &vcpu->arch.host_context;
790 
791 	/*
792 	 * We save trap CSRs (such as SEPC, SCAUSE, STVAL, HTVAL, and
793 	 * HTINST) here because we do local_irq_enable() after this
794 	 * function in kvm_arch_vcpu_ioctl_run() which can result in
795 	 * an interrupt immediately after local_irq_enable() and can
796 	 * potentially change trap CSRs.
797 	 */
798 
799 	kvm_riscv_vcpu_swap_in_guest_state(vcpu);
800 	guest_state_enter_irqoff();
801 
802 	if (kvm_riscv_nacl_sync_sret_available()) {
803 		nsh = nacl_shmem();
804 
805 		if (kvm_riscv_nacl_autoswap_csr_available()) {
806 			hcntx->hstatus =
807 				nacl_csr_read(nsh, CSR_HSTATUS);
808 			nacl_scratch_write_long(nsh,
809 						SBI_NACL_SHMEM_AUTOSWAP_OFFSET +
810 						SBI_NACL_SHMEM_AUTOSWAP_HSTATUS,
811 						gcntx->hstatus);
812 			nacl_scratch_write_long(nsh,
813 						SBI_NACL_SHMEM_AUTOSWAP_OFFSET,
814 						SBI_NACL_SHMEM_AUTOSWAP_FLAG_HSTATUS);
815 		} else if (kvm_riscv_nacl_sync_csr_available()) {
816 			hcntx->hstatus = nacl_csr_swap(nsh,
817 						       CSR_HSTATUS, gcntx->hstatus);
818 		} else {
819 			hcntx->hstatus = csr_swap(CSR_HSTATUS, gcntx->hstatus);
820 		}
821 
822 		nacl_scratch_write_longs(nsh,
823 					 SBI_NACL_SHMEM_SRET_OFFSET +
824 					 SBI_NACL_SHMEM_SRET_X(1),
825 					 &gcntx->ra,
826 					 SBI_NACL_SHMEM_SRET_X_LAST);
827 
828 		__kvm_riscv_nacl_switch_to(&vcpu->arch, SBI_EXT_NACL,
829 					   SBI_EXT_NACL_SYNC_SRET);
830 
831 		if (kvm_riscv_nacl_autoswap_csr_available()) {
832 			nacl_scratch_write_long(nsh,
833 						SBI_NACL_SHMEM_AUTOSWAP_OFFSET,
834 						0);
835 			gcntx->hstatus = nacl_scratch_read_long(nsh,
836 								SBI_NACL_SHMEM_AUTOSWAP_OFFSET +
837 								SBI_NACL_SHMEM_AUTOSWAP_HSTATUS);
838 		} else {
839 			gcntx->hstatus = csr_swap(CSR_HSTATUS, hcntx->hstatus);
840 		}
841 
842 		trap->htval = nacl_csr_read(nsh, CSR_HTVAL);
843 		trap->htinst = nacl_csr_read(nsh, CSR_HTINST);
844 	} else {
845 		hcntx->hstatus = csr_swap(CSR_HSTATUS, gcntx->hstatus);
846 
847 		__kvm_riscv_switch_to(&vcpu->arch);
848 
849 		gcntx->hstatus = csr_swap(CSR_HSTATUS, hcntx->hstatus);
850 
851 		trap->htval = csr_read(CSR_HTVAL);
852 		trap->htinst = csr_read(CSR_HTINST);
853 	}
854 
855 	trap->sepc = gcntx->sepc;
856 	trap->scause = csr_read(CSR_SCAUSE);
857 	trap->stval = csr_read(CSR_STVAL);
858 
859 	vcpu->arch.last_exit_cpu = vcpu->cpu;
860 	guest_state_exit_irqoff();
861 	kvm_riscv_vcpu_swap_in_host_state(vcpu);
862 }
863 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)864 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
865 {
866 	int ret;
867 	struct kvm_cpu_trap trap;
868 	struct kvm_run *run = vcpu->run;
869 
870 	if (!vcpu->arch.ran_atleast_once)
871 		kvm_riscv_vcpu_setup_config(vcpu);
872 
873 	/* Mark this VCPU ran at least once */
874 	vcpu->arch.ran_atleast_once = true;
875 
876 	kvm_vcpu_srcu_read_lock(vcpu);
877 
878 	switch (run->exit_reason) {
879 	case KVM_EXIT_MMIO:
880 		/* Process MMIO value returned from user-space */
881 		ret = kvm_riscv_vcpu_mmio_return(vcpu, vcpu->run);
882 		break;
883 	case KVM_EXIT_RISCV_SBI:
884 		/* Process SBI value returned from user-space */
885 		ret = kvm_riscv_vcpu_sbi_return(vcpu, vcpu->run);
886 		break;
887 	case KVM_EXIT_RISCV_CSR:
888 		/* Process CSR value returned from user-space */
889 		ret = kvm_riscv_vcpu_csr_return(vcpu, vcpu->run);
890 		break;
891 	default:
892 		ret = 0;
893 		break;
894 	}
895 	if (ret) {
896 		kvm_vcpu_srcu_read_unlock(vcpu);
897 		return ret;
898 	}
899 
900 	if (!vcpu->wants_to_run) {
901 		kvm_vcpu_srcu_read_unlock(vcpu);
902 		return -EINTR;
903 	}
904 
905 	vcpu_load(vcpu);
906 
907 	kvm_sigset_activate(vcpu);
908 
909 	ret = 1;
910 	run->exit_reason = KVM_EXIT_UNKNOWN;
911 	while (ret > 0) {
912 		/* Check conditions before entering the guest */
913 		ret = xfer_to_guest_mode_handle_work(vcpu);
914 		if (ret)
915 			continue;
916 		ret = 1;
917 
918 		kvm_riscv_gstage_vmid_update(vcpu);
919 
920 		kvm_riscv_check_vcpu_requests(vcpu);
921 
922 		preempt_disable();
923 
924 		/* Update AIA HW state before entering guest */
925 		ret = kvm_riscv_vcpu_aia_update(vcpu);
926 		if (ret <= 0) {
927 			preempt_enable();
928 			continue;
929 		}
930 
931 		local_irq_disable();
932 
933 		/*
934 		 * Ensure we set mode to IN_GUEST_MODE after we disable
935 		 * interrupts and before the final VCPU requests check.
936 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
937 		 * Documentation/virt/kvm/vcpu-requests.rst
938 		 */
939 		vcpu->mode = IN_GUEST_MODE;
940 
941 		kvm_vcpu_srcu_read_unlock(vcpu);
942 		smp_mb__after_srcu_read_unlock();
943 
944 		/*
945 		 * We might have got VCPU interrupts updated asynchronously
946 		 * so update it in HW.
947 		 */
948 		kvm_riscv_vcpu_flush_interrupts(vcpu);
949 
950 		/* Update HVIP CSR for current CPU */
951 		kvm_riscv_update_hvip(vcpu);
952 
953 		if (kvm_riscv_gstage_vmid_ver_changed(&vcpu->kvm->arch.vmid) ||
954 		    kvm_request_pending(vcpu) ||
955 		    xfer_to_guest_mode_work_pending()) {
956 			vcpu->mode = OUTSIDE_GUEST_MODE;
957 			local_irq_enable();
958 			preempt_enable();
959 			kvm_vcpu_srcu_read_lock(vcpu);
960 			continue;
961 		}
962 
963 		/*
964 		 * Cleanup stale TLB enteries
965 		 *
966 		 * Note: This should be done after G-stage VMID has been
967 		 * updated using kvm_riscv_gstage_vmid_ver_changed()
968 		 */
969 		kvm_riscv_local_tlb_sanitize(vcpu);
970 
971 		trace_kvm_entry(vcpu);
972 
973 		guest_timing_enter_irqoff();
974 
975 		kvm_riscv_vcpu_enter_exit(vcpu, &trap);
976 
977 		vcpu->mode = OUTSIDE_GUEST_MODE;
978 		vcpu->stat.exits++;
979 
980 		/* Syncup interrupts state with HW */
981 		kvm_riscv_vcpu_sync_interrupts(vcpu);
982 
983 		/*
984 		 * We must ensure that any pending interrupts are taken before
985 		 * we exit guest timing so that timer ticks are accounted as
986 		 * guest time. Transiently unmask interrupts so that any
987 		 * pending interrupts are taken.
988 		 *
989 		 * There's no barrier which ensures that pending interrupts are
990 		 * recognised, so we just hope that the CPU takes any pending
991 		 * interrupts between the enable and disable.
992 		 */
993 		local_irq_enable();
994 		local_irq_disable();
995 
996 		guest_timing_exit_irqoff();
997 
998 		local_irq_enable();
999 
1000 		trace_kvm_exit(&trap);
1001 
1002 		preempt_enable();
1003 
1004 		kvm_vcpu_srcu_read_lock(vcpu);
1005 
1006 		ret = kvm_riscv_vcpu_exit(vcpu, run, &trap);
1007 	}
1008 
1009 	kvm_sigset_deactivate(vcpu);
1010 
1011 	vcpu_put(vcpu);
1012 
1013 	kvm_vcpu_srcu_read_unlock(vcpu);
1014 
1015 	return ret;
1016 }
1017