xref: /linux/arch/riscv/kvm/mmu.c (revision 4ea7c1717f3f2344f7a1cdab4f5875cfa89c87a9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4  *
5  * Authors:
6  *     Anup Patel <anup.patel@wdc.com>
7  */
8 
9 #include <linux/errno.h>
10 #include <linux/hugetlb.h>
11 #include <linux/module.h>
12 #include <linux/uaccess.h>
13 #include <linux/vmalloc.h>
14 #include <linux/kvm_host.h>
15 #include <linux/sched/signal.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_nacl.h>
18 
mmu_wp_memory_region(struct kvm * kvm,int slot)19 static void mmu_wp_memory_region(struct kvm *kvm, int slot)
20 {
21 	struct kvm_memslots *slots = kvm_memslots(kvm);
22 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
23 	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
24 	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
25 	struct kvm_gstage gstage;
26 
27 	gstage.kvm = kvm;
28 	gstage.flags = 0;
29 	gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
30 	gstage.pgd = kvm->arch.pgd;
31 
32 	spin_lock(&kvm->mmu_lock);
33 	kvm_riscv_gstage_wp_range(&gstage, start, end);
34 	spin_unlock(&kvm->mmu_lock);
35 	kvm_flush_remote_tlbs_memslot(kvm, memslot);
36 }
37 
kvm_riscv_mmu_ioremap(struct kvm * kvm,gpa_t gpa,phys_addr_t hpa,unsigned long size,bool writable,bool in_atomic)38 int kvm_riscv_mmu_ioremap(struct kvm *kvm, gpa_t gpa, phys_addr_t hpa,
39 			  unsigned long size, bool writable, bool in_atomic)
40 {
41 	int ret = 0;
42 	pgprot_t prot;
43 	unsigned long pfn;
44 	phys_addr_t addr, end;
45 	struct kvm_mmu_memory_cache pcache = {
46 		.gfp_custom = (in_atomic) ? GFP_ATOMIC | __GFP_ACCOUNT : 0,
47 		.gfp_zero = __GFP_ZERO,
48 	};
49 	struct kvm_gstage_mapping map;
50 	struct kvm_gstage gstage;
51 
52 	gstage.kvm = kvm;
53 	gstage.flags = 0;
54 	gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
55 	gstage.pgd = kvm->arch.pgd;
56 
57 	end = (gpa + size + PAGE_SIZE - 1) & PAGE_MASK;
58 	pfn = __phys_to_pfn(hpa);
59 	prot = pgprot_noncached(PAGE_WRITE);
60 
61 	for (addr = gpa; addr < end; addr += PAGE_SIZE) {
62 		map.addr = addr;
63 		map.pte = pfn_pte(pfn, prot);
64 		map.pte = pte_mkdirty(map.pte);
65 		map.level = 0;
66 
67 		if (!writable)
68 			map.pte = pte_wrprotect(map.pte);
69 
70 		ret = kvm_mmu_topup_memory_cache(&pcache, kvm_riscv_gstage_pgd_levels);
71 		if (ret)
72 			goto out;
73 
74 		spin_lock(&kvm->mmu_lock);
75 		ret = kvm_riscv_gstage_set_pte(&gstage, &pcache, &map);
76 		spin_unlock(&kvm->mmu_lock);
77 		if (ret)
78 			goto out;
79 
80 		pfn++;
81 	}
82 
83 out:
84 	kvm_mmu_free_memory_cache(&pcache);
85 	return ret;
86 }
87 
kvm_riscv_mmu_iounmap(struct kvm * kvm,gpa_t gpa,unsigned long size)88 void kvm_riscv_mmu_iounmap(struct kvm *kvm, gpa_t gpa, unsigned long size)
89 {
90 	struct kvm_gstage gstage;
91 
92 	gstage.kvm = kvm;
93 	gstage.flags = 0;
94 	gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
95 	gstage.pgd = kvm->arch.pgd;
96 
97 	spin_lock(&kvm->mmu_lock);
98 	kvm_riscv_gstage_unmap_range(&gstage, gpa, size, false);
99 	spin_unlock(&kvm->mmu_lock);
100 }
101 
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)102 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
103 					     struct kvm_memory_slot *slot,
104 					     gfn_t gfn_offset,
105 					     unsigned long mask)
106 {
107 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
108 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
109 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
110 	struct kvm_gstage gstage;
111 
112 	gstage.kvm = kvm;
113 	gstage.flags = 0;
114 	gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
115 	gstage.pgd = kvm->arch.pgd;
116 
117 	kvm_riscv_gstage_wp_range(&gstage, start, end);
118 }
119 
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)120 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
121 {
122 }
123 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free)124 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free)
125 {
126 }
127 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)128 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
129 {
130 }
131 
kvm_arch_flush_shadow_all(struct kvm * kvm)132 void kvm_arch_flush_shadow_all(struct kvm *kvm)
133 {
134 	kvm_riscv_mmu_free_pgd(kvm);
135 }
136 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)137 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
138 				   struct kvm_memory_slot *slot)
139 {
140 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
141 	phys_addr_t size = slot->npages << PAGE_SHIFT;
142 	struct kvm_gstage gstage;
143 
144 	gstage.kvm = kvm;
145 	gstage.flags = 0;
146 	gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
147 	gstage.pgd = kvm->arch.pgd;
148 
149 	spin_lock(&kvm->mmu_lock);
150 	kvm_riscv_gstage_unmap_range(&gstage, gpa, size, false);
151 	spin_unlock(&kvm->mmu_lock);
152 }
153 
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)154 void kvm_arch_commit_memory_region(struct kvm *kvm,
155 				struct kvm_memory_slot *old,
156 				const struct kvm_memory_slot *new,
157 				enum kvm_mr_change change)
158 {
159 	/*
160 	 * At this point memslot has been committed and there is an
161 	 * allocated dirty_bitmap[], dirty pages will be tracked while
162 	 * the memory slot is write protected.
163 	 */
164 	if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES)
165 		mmu_wp_memory_region(kvm, new->id);
166 }
167 
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)168 int kvm_arch_prepare_memory_region(struct kvm *kvm,
169 				const struct kvm_memory_slot *old,
170 				struct kvm_memory_slot *new,
171 				enum kvm_mr_change change)
172 {
173 	hva_t hva, reg_end, size;
174 	bool writable;
175 	int ret = 0;
176 
177 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
178 			change != KVM_MR_FLAGS_ONLY)
179 		return 0;
180 
181 	/*
182 	 * Prevent userspace from creating a memory region outside of the GPA
183 	 * space addressable by the KVM guest GPA space.
184 	 */
185 	if ((new->base_gfn + new->npages) >=
186 	    (kvm_riscv_gstage_gpa_size >> PAGE_SHIFT))
187 		return -EFAULT;
188 
189 	hva = new->userspace_addr;
190 	size = new->npages << PAGE_SHIFT;
191 	reg_end = hva + size;
192 	writable = !(new->flags & KVM_MEM_READONLY);
193 
194 	mmap_read_lock(current->mm);
195 
196 	/*
197 	 * A memory region could potentially cover multiple VMAs, and
198 	 * any holes between them, so iterate over all of them.
199 	 *
200 	 *     +--------------------------------------------+
201 	 * +---------------+----------------+   +----------------+
202 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
203 	 * +---------------+----------------+   +----------------+
204 	 *     |               memory region                |
205 	 *     +--------------------------------------------+
206 	 */
207 	do {
208 		struct vm_area_struct *vma;
209 		hva_t vm_end;
210 
211 		vma = find_vma_intersection(current->mm, hva, reg_end);
212 		if (!vma)
213 			break;
214 
215 		/*
216 		 * Mapping a read-only VMA is only allowed if the
217 		 * memory region is configured as read-only.
218 		 */
219 		if (writable && !(vma->vm_flags & VM_WRITE)) {
220 			ret = -EPERM;
221 			break;
222 		}
223 
224 		/* Take the intersection of this VMA with the memory region */
225 		vm_end = min(reg_end, vma->vm_end);
226 
227 		if (vma->vm_flags & VM_PFNMAP) {
228 			/* IO region dirty page logging not allowed */
229 			if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
230 				ret = -EINVAL;
231 				goto out;
232 			}
233 		}
234 		hva = vm_end;
235 	} while (hva < reg_end);
236 
237 out:
238 	mmap_read_unlock(current->mm);
239 	return ret;
240 }
241 
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)242 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
243 {
244 	struct kvm_gstage gstage;
245 
246 	if (!kvm->arch.pgd)
247 		return false;
248 
249 	gstage.kvm = kvm;
250 	gstage.flags = 0;
251 	gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
252 	gstage.pgd = kvm->arch.pgd;
253 	kvm_riscv_gstage_unmap_range(&gstage, range->start << PAGE_SHIFT,
254 				     (range->end - range->start) << PAGE_SHIFT,
255 				     range->may_block);
256 	return false;
257 }
258 
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)259 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
260 {
261 	pte_t *ptep;
262 	u32 ptep_level = 0;
263 	u64 size = (range->end - range->start) << PAGE_SHIFT;
264 	struct kvm_gstage gstage;
265 
266 	if (!kvm->arch.pgd)
267 		return false;
268 
269 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
270 
271 	gstage.kvm = kvm;
272 	gstage.flags = 0;
273 	gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
274 	gstage.pgd = kvm->arch.pgd;
275 	if (!kvm_riscv_gstage_get_leaf(&gstage, range->start << PAGE_SHIFT,
276 				       &ptep, &ptep_level))
277 		return false;
278 
279 	return ptep_test_and_clear_young(NULL, 0, ptep);
280 }
281 
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)282 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
283 {
284 	pte_t *ptep;
285 	u32 ptep_level = 0;
286 	u64 size = (range->end - range->start) << PAGE_SHIFT;
287 	struct kvm_gstage gstage;
288 
289 	if (!kvm->arch.pgd)
290 		return false;
291 
292 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
293 
294 	gstage.kvm = kvm;
295 	gstage.flags = 0;
296 	gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
297 	gstage.pgd = kvm->arch.pgd;
298 	if (!kvm_riscv_gstage_get_leaf(&gstage, range->start << PAGE_SHIFT,
299 				       &ptep, &ptep_level))
300 		return false;
301 
302 	return pte_young(ptep_get(ptep));
303 }
304 
kvm_riscv_mmu_map(struct kvm_vcpu * vcpu,struct kvm_memory_slot * memslot,gpa_t gpa,unsigned long hva,bool is_write,struct kvm_gstage_mapping * out_map)305 int kvm_riscv_mmu_map(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
306 		      gpa_t gpa, unsigned long hva, bool is_write,
307 		      struct kvm_gstage_mapping *out_map)
308 {
309 	int ret;
310 	kvm_pfn_t hfn;
311 	bool writable;
312 	short vma_pageshift;
313 	gfn_t gfn = gpa >> PAGE_SHIFT;
314 	struct vm_area_struct *vma;
315 	struct kvm *kvm = vcpu->kvm;
316 	struct kvm_mmu_memory_cache *pcache = &vcpu->arch.mmu_page_cache;
317 	bool logging = (memslot->dirty_bitmap &&
318 			!(memslot->flags & KVM_MEM_READONLY)) ? true : false;
319 	unsigned long vma_pagesize, mmu_seq;
320 	struct kvm_gstage gstage;
321 	struct page *page;
322 
323 	gstage.kvm = kvm;
324 	gstage.flags = 0;
325 	gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
326 	gstage.pgd = kvm->arch.pgd;
327 
328 	/* Setup initial state of output mapping */
329 	memset(out_map, 0, sizeof(*out_map));
330 
331 	/* We need minimum second+third level pages */
332 	ret = kvm_mmu_topup_memory_cache(pcache, kvm_riscv_gstage_pgd_levels);
333 	if (ret) {
334 		kvm_err("Failed to topup G-stage cache\n");
335 		return ret;
336 	}
337 
338 	mmap_read_lock(current->mm);
339 
340 	vma = vma_lookup(current->mm, hva);
341 	if (unlikely(!vma)) {
342 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
343 		mmap_read_unlock(current->mm);
344 		return -EFAULT;
345 	}
346 
347 	if (is_vm_hugetlb_page(vma))
348 		vma_pageshift = huge_page_shift(hstate_vma(vma));
349 	else
350 		vma_pageshift = PAGE_SHIFT;
351 	vma_pagesize = 1ULL << vma_pageshift;
352 	if (logging || (vma->vm_flags & VM_PFNMAP))
353 		vma_pagesize = PAGE_SIZE;
354 
355 	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
356 		gfn = (gpa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
357 
358 	/*
359 	 * Read mmu_invalidate_seq so that KVM can detect if the results of
360 	 * vma_lookup() or __kvm_faultin_pfn() become stale prior to acquiring
361 	 * kvm->mmu_lock.
362 	 *
363 	 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
364 	 * with the smp_wmb() in kvm_mmu_invalidate_end().
365 	 */
366 	mmu_seq = kvm->mmu_invalidate_seq;
367 	mmap_read_unlock(current->mm);
368 
369 	if (vma_pagesize != PUD_SIZE &&
370 	    vma_pagesize != PMD_SIZE &&
371 	    vma_pagesize != PAGE_SIZE) {
372 		kvm_err("Invalid VMA page size 0x%lx\n", vma_pagesize);
373 		return -EFAULT;
374 	}
375 
376 	hfn = __kvm_faultin_pfn(memslot, gfn, is_write ? FOLL_WRITE : 0,
377 				&writable, &page);
378 	if (hfn == KVM_PFN_ERR_HWPOISON) {
379 		send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva,
380 				vma_pageshift, current);
381 		return 0;
382 	}
383 	if (is_error_noslot_pfn(hfn))
384 		return -EFAULT;
385 
386 	/*
387 	 * If logging is active then we allow writable pages only
388 	 * for write faults.
389 	 */
390 	if (logging && !is_write)
391 		writable = false;
392 
393 	spin_lock(&kvm->mmu_lock);
394 
395 	if (mmu_invalidate_retry(kvm, mmu_seq))
396 		goto out_unlock;
397 
398 	if (writable) {
399 		mark_page_dirty_in_slot(kvm, memslot, gfn);
400 		ret = kvm_riscv_gstage_map_page(&gstage, pcache, gpa, hfn << PAGE_SHIFT,
401 						vma_pagesize, false, true, out_map);
402 	} else {
403 		ret = kvm_riscv_gstage_map_page(&gstage, pcache, gpa, hfn << PAGE_SHIFT,
404 						vma_pagesize, true, true, out_map);
405 	}
406 
407 	if (ret)
408 		kvm_err("Failed to map in G-stage\n");
409 
410 out_unlock:
411 	kvm_release_faultin_page(kvm, page, ret && ret != -EEXIST, writable);
412 	spin_unlock(&kvm->mmu_lock);
413 	return ret;
414 }
415 
kvm_riscv_mmu_alloc_pgd(struct kvm * kvm)416 int kvm_riscv_mmu_alloc_pgd(struct kvm *kvm)
417 {
418 	struct page *pgd_page;
419 
420 	if (kvm->arch.pgd != NULL) {
421 		kvm_err("kvm_arch already initialized?\n");
422 		return -EINVAL;
423 	}
424 
425 	pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
426 				get_order(kvm_riscv_gstage_pgd_size));
427 	if (!pgd_page)
428 		return -ENOMEM;
429 	kvm->arch.pgd = page_to_virt(pgd_page);
430 	kvm->arch.pgd_phys = page_to_phys(pgd_page);
431 
432 	return 0;
433 }
434 
kvm_riscv_mmu_free_pgd(struct kvm * kvm)435 void kvm_riscv_mmu_free_pgd(struct kvm *kvm)
436 {
437 	struct kvm_gstage gstage;
438 	void *pgd = NULL;
439 
440 	spin_lock(&kvm->mmu_lock);
441 	if (kvm->arch.pgd) {
442 		gstage.kvm = kvm;
443 		gstage.flags = 0;
444 		gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
445 		gstage.pgd = kvm->arch.pgd;
446 		kvm_riscv_gstage_unmap_range(&gstage, 0UL, kvm_riscv_gstage_gpa_size, false);
447 		pgd = READ_ONCE(kvm->arch.pgd);
448 		kvm->arch.pgd = NULL;
449 		kvm->arch.pgd_phys = 0;
450 	}
451 	spin_unlock(&kvm->mmu_lock);
452 
453 	if (pgd)
454 		free_pages((unsigned long)pgd, get_order(kvm_riscv_gstage_pgd_size));
455 }
456 
kvm_riscv_mmu_update_hgatp(struct kvm_vcpu * vcpu)457 void kvm_riscv_mmu_update_hgatp(struct kvm_vcpu *vcpu)
458 {
459 	unsigned long hgatp = kvm_riscv_gstage_mode << HGATP_MODE_SHIFT;
460 	struct kvm_arch *k = &vcpu->kvm->arch;
461 
462 	hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) & HGATP_VMID;
463 	hgatp |= (k->pgd_phys >> PAGE_SHIFT) & HGATP_PPN;
464 
465 	ncsr_write(CSR_HGATP, hgatp);
466 
467 	if (!kvm_riscv_gstage_vmid_bits())
468 		kvm_riscv_local_hfence_gvma_all();
469 }
470